AU2001283414A1 - A method of characterizing spectrometer instruments and providing calibration models to compensate for instrument variation - Google Patents

A method of characterizing spectrometer instruments and providing calibration models to compensate for instrument variation

Info

Publication number
AU2001283414A1
AU2001283414A1 AU2001283414A AU8341401A AU2001283414A1 AU 2001283414 A1 AU2001283414 A1 AU 2001283414A1 AU 2001283414 A AU2001283414 A AU 2001283414A AU 8341401 A AU8341401 A AU 8341401A AU 2001283414 A1 AU2001283414 A1 AU 2001283414A1
Authority
AU
Australia
Prior art keywords
clusters
calibration
compensate
models
characterizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2001283414A
Inventor
Thomas B. Blank
Kevin H. Hazen
Stephen L. Monfre
Timothy L. Ruchti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sensys Medical Inc
Original Assignee
Sensys Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sensys Medical Inc filed Critical Sensys Medical Inc
Publication of AU2001283414A1 publication Critical patent/AU2001283414A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1495Calibrating or testing of in-vivo probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4785Standardising light scatter apparatus; Standards therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0223Operational features of calibration, e.g. protocols for calibrating sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0223Operational features of calibration, e.g. protocols for calibrating sensors
    • A61B2560/0228Operational features of calibration, e.g. protocols for calibrating sensors using calibration standards
    • A61B2560/0233Optical standards
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1075Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions by non-invasive methods, e.g. for determining thickness of tissue layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J2003/2866Markers; Calibrating of scan
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Psychiatry (AREA)
  • Fuzzy Systems (AREA)
  • Emergency Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Evolutionary Computation (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Spectrometer instruments are characterized by classifying (12) their spectra into previously defined clusters (13). The spectra are mapped to the clusters and a classification is made based on similarity of extracted spectral features to one of the previously defined clusters. Calibration models for each cluster are provided to compensate for instrumental variation. Calibration models (14) are provided either by transferring a master calibration to slave calibrations or by calculating a separate calibration for each cluster. <??>A simplified method of calibration transfer maps clusters to each other, so that a calibration transferred between clusters models only the difference between the two clusters, substantially reducing the complexity of the model. <IMAGE>
AU2001283414A 2000-09-18 2001-08-16 A method of characterizing spectrometer instruments and providing calibration models to compensate for instrument variation Abandoned AU2001283414A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/664,973 US6864978B1 (en) 1999-07-22 2000-09-18 Method of characterizing spectrometer instruments and providing calibration models to compensate for instrument variation
US09664973 2000-09-18
PCT/US2001/025706 WO2002025233A2 (en) 2000-09-18 2001-08-16 Method of characterizing spectrometers and providing calibration models

Publications (1)

Publication Number Publication Date
AU2001283414A1 true AU2001283414A1 (en) 2002-04-02

Family

ID=24668196

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2001283414A Abandoned AU2001283414A1 (en) 2000-09-18 2001-08-16 A method of characterizing spectrometer instruments and providing calibration models to compensate for instrument variation

Country Status (10)

Country Link
US (2) US6864978B1 (en)
EP (2) EP1319176B1 (en)
JP (1) JP2004526938A (en)
CN (1) CN100458409C (en)
AT (1) ATE306656T1 (en)
AU (1) AU2001283414A1 (en)
DE (1) DE60114036T2 (en)
DK (1) DK1319176T3 (en)
HK (1) HK1058234A1 (en)
WO (1) WO2002025233A2 (en)

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7436511B2 (en) * 1999-01-22 2008-10-14 Sensys Medical, Inc. Analyte filter method and apparatus
US20070179367A1 (en) * 2000-05-02 2007-08-02 Ruchti Timothy L Method and Apparatus for Noninvasively Estimating a Property of an Animal Body Analyte from Spectral Data
SE0001967D0 (en) * 2000-05-25 2000-05-25 Torbjoern Lestander Single seed sortation
US8174394B2 (en) * 2001-04-11 2012-05-08 Trutouch Technologies, Inc. System for noninvasive determination of analytes in tissue
US8581697B2 (en) * 2001-04-11 2013-11-12 Trutouch Technologies Inc. Apparatuses for noninvasive determination of in vivo alcohol concentration using raman spectroscopy
US7259906B1 (en) 2002-09-03 2007-08-21 Cheetah Omni, Llc System and method for voice control of medical devices
JP3566276B1 (en) 2003-05-07 2004-09-15 株式会社日立製作所 Blood glucose meter
EP1568311A1 (en) * 2004-02-27 2005-08-31 Hitachi, Ltd. Blood sugar level measuring apparatus
US8730047B2 (en) 2004-05-24 2014-05-20 Trutouch Technologies, Inc. System for noninvasive determination of analytes in tissue
US8515506B2 (en) * 2004-05-24 2013-08-20 Trutouch Technologies, Inc. Methods for noninvasive determination of in vivo alcohol concentration using Raman spectroscopy
US20080319286A1 (en) * 2004-05-24 2008-12-25 Trent Ridder Optical Probes for Non-Invasive Analyte Measurements
US20110178420A1 (en) * 2010-01-18 2011-07-21 Trent Ridder Methods and apparatuses for improving breath alcohol testing
RU2266523C1 (en) * 2004-07-27 2005-12-20 Общество с ограниченной ответственностью ООО "ВИНТЕЛ" Method of producing independent multidimensional calibration models
JP2006112996A (en) * 2004-10-18 2006-04-27 Yokogawa Electric Corp Near-infrared spectroscopic analyzer
JP4513061B2 (en) * 2004-10-18 2010-07-28 横河電機株式会社 How to create a multivariate analytical calibration curve using conversion of specific sample spectra
US7519253B2 (en) 2005-11-18 2009-04-14 Omni Sciences, Inc. Broadband or mid-infrared fiber light sources
US7536266B2 (en) * 2006-04-17 2009-05-19 Lincoln Global, Inc. Universal X-ray fluorescence calibration technique for wire surface analysis
RU2308684C1 (en) * 2006-06-20 2007-10-20 Общество с ограниченной ответственностью "ВИНТЕЛ" Method of producing multi-dimension calibrating models
US20080001099A1 (en) * 2006-07-01 2008-01-03 Sharaf Muhammad A Quantitative calibration method and system for genetic analysis instrumentation
EP1998155A1 (en) 2007-05-30 2008-12-03 Roche Diagnostics GmbH Method for wavelength calibration of a spectrometer
WO2009149207A2 (en) 2008-06-03 2009-12-10 Bsst Llc Thermoelectric heat pump
US20120226117A1 (en) 2010-12-01 2012-09-06 Lamego Marcelo M Handheld processing device including medical applications for minimally and non invasive glucose measurements
US9377396B2 (en) 2011-11-03 2016-06-28 Verifood, Ltd. Low-cost spectrometry system for end-user food analysis
US8902423B2 (en) * 2011-11-23 2014-12-02 University Of South Carolina Classification using multivariate optical computing
US9585604B2 (en) 2012-07-16 2017-03-07 Zyomed Corp. Multiplexed pathlength resolved noninvasive analyzer apparatus with dynamic optical paths and method of use thereof
US9351671B2 (en) 2012-07-16 2016-05-31 Timothy Ruchti Multiplexed pathlength resolved noninvasive analyzer apparatus and method of use thereof
US20150018646A1 (en) 2013-07-12 2015-01-15 Sandeep Gulati Dynamic sample mapping noninvasive analyzer apparatus and method of use thereof
US9351672B2 (en) 2012-07-16 2016-05-31 Timothy Ruchti Multiplexed pathlength resolved noninvasive analyzer apparatus with stacked filters and method of use thereof
CN103018178A (en) * 2012-12-06 2013-04-03 江苏省质量安全工程研究院 LPP (Local Preserving Projection)-based Infrared spectrometer calibration method
EP3184038B1 (en) 2012-12-31 2019-02-20 Omni MedSci, Inc. Mouth guard with short-wave infrared super-continuum lasers for early detection of dental caries
US10660526B2 (en) 2012-12-31 2020-05-26 Omni Medsci, Inc. Near-infrared time-of-flight imaging using laser diodes with Bragg reflectors
WO2014143276A2 (en) 2012-12-31 2014-09-18 Omni Medsci, Inc. Short-wave infrared super-continuum lasers for natural gas leak detection, exploration, and other active remote sensing applications
US9993159B2 (en) 2012-12-31 2018-06-12 Omni Medsci, Inc. Near-infrared super-continuum lasers for early detection of breast and other cancers
US9494567B2 (en) 2012-12-31 2016-11-15 Omni Medsci, Inc. Near-infrared lasers for non-invasive monitoring of glucose, ketones, HBA1C, and other blood constituents
CA2895969A1 (en) 2012-12-31 2014-07-03 Omni Medsci, Inc. Near-infrared lasers for non-invasive monitoring of glucose, ketones, hba1c, and other blood constituents
US8467988B1 (en) * 2013-01-02 2013-06-18 Biodesix, Inc. Method and system for validation of mass spectrometer machine performance
GB2529070B (en) 2013-08-02 2017-07-12 Verifood Ltd Spectrometer comprising a plurality of isolated optical paths
WO2015101992A2 (en) 2014-01-03 2015-07-09 Verifood, Ltd. Spectrometry systems, methods, and applications
US11093869B2 (en) * 2014-02-13 2021-08-17 Brewmetrix Inc. Analytical system with iterative method of analyzing data in web-based data processor with results display designed for non-experts
US20150276479A1 (en) * 2014-03-26 2015-10-01 Intellectual Property Transfer, LLC Method accounting for thermal effects of lighting and radiation sources for spectroscopic applications
WO2016054079A1 (en) 2014-09-29 2016-04-07 Zyomed Corp. Systems and methods for blood glucose and other analyte detection and measurement using collision computing
EP3209983A4 (en) 2014-10-23 2018-06-27 Verifood Ltd. Accessories for handheld spectrometer
WO2016125164A2 (en) 2015-02-05 2016-08-11 Verifood, Ltd. Spectrometry system applications
WO2016125165A2 (en) 2015-02-05 2016-08-11 Verifood, Ltd. Spectrometry system with visible aiming beam
WO2016162865A1 (en) 2015-04-07 2016-10-13 Verifood, Ltd. Detector for spectrometry system
US10066990B2 (en) 2015-07-09 2018-09-04 Verifood, Ltd. Spatially variable filter systems and methods
US10203246B2 (en) 2015-11-20 2019-02-12 Verifood, Ltd. Systems and methods for calibration of a handheld spectrometer
US9554738B1 (en) 2016-03-30 2017-01-31 Zyomed Corp. Spectroscopic tomography systems and methods for noninvasive detection and measurement of analytes using collision computing
US10254215B2 (en) 2016-04-07 2019-04-09 Verifood, Ltd. Spectrometry system applications
WO2018015951A1 (en) 2016-07-20 2018-01-25 Verifood, Ltd. Accessories for handheld spectrometer
US10791933B2 (en) 2016-07-27 2020-10-06 Verifood, Ltd. Spectrometry systems, methods, and applications
US10429240B2 (en) 2016-07-29 2019-10-01 Viavi Solutions Inc. Transfer of a calibration model using a sparse transfer set
KR20180042700A (en) 2016-10-18 2018-04-26 삼성전자주식회사 Apparatus and method for monitoring stability of spectrum
US11457872B2 (en) 2017-12-01 2022-10-04 Samsung Electronics Co., Ltd. Bio-signal quality assessment apparatus and bio-signal quality assessment method
KR102588906B1 (en) 2017-12-01 2023-10-13 삼성전자주식회사 Apparatus and method for assessment biological signal quality
FR3094791B1 (en) * 2019-04-04 2021-07-02 Greentropism Method for configuring a spectrometry device
KR20200133525A (en) 2019-05-20 2020-11-30 삼성전자주식회사 Apparatus and method for determining validity of bio-information estimation model
CN110286094B (en) * 2019-07-18 2022-04-01 山东省科学院海洋仪器仪表研究所 Spectrum model transfer method based on cluster analysis
CN110926357B (en) * 2019-12-09 2020-12-11 哈尔滨工业大学 Method for constructing puncture needle shape change calibration model
DE102020105123B3 (en) 2020-02-27 2021-07-01 Bruker Daltonik Gmbh Method for the spectrometric characterization of microorganisms
DE102020116094B4 (en) 2020-06-18 2022-02-10 Carl Zeiss Spectroscopy Gmbh Large number of identical spectrometers and methods for their calibration
US11287384B2 (en) * 2020-07-17 2022-03-29 Endress+Hauser Optical Analysis, Inc. System and method for improving calibration transfer between multiple raman analyzer installations
CN113065584B (en) * 2021-03-22 2023-04-18 哈尔滨工程大学 Target classification method for constructing basic probability assignment based on interval number similarity difference
US20230004815A1 (en) * 2021-07-01 2023-01-05 Medtronic Minimed, Inc. Glucose sensor identification using electrical parameters
WO2023091709A2 (en) * 2021-11-18 2023-05-25 Si-Ware Systems On-line compensation of instrumental response drift in miniaturized spectrometers

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204532A (en) 1989-01-19 1993-04-20 Futrex, Inc. Method for providing general calibration for near infrared instruments for measurement of blood glucose
WO1991002975A1 (en) * 1989-08-21 1991-03-07 The Board Of Regents Of The University Of Washington Multiple-probe diagnostic sensor
US5459677A (en) * 1990-10-09 1995-10-17 Board Of Regents Of The University Of Washington Calibration transfer for analytical instruments
MY107650A (en) * 1990-10-12 1996-05-30 Exxon Res & Engineering Company Method of estimating property and / or composition data of a test sample
US5243546A (en) * 1991-01-10 1993-09-07 Ashland Oil, Inc. Spectroscopic instrument calibration
US5435309A (en) * 1993-08-10 1995-07-25 Thomas; Edward V. Systematic wavelength selection for improved multivariate spectral analysis
US5710713A (en) 1995-03-20 1998-01-20 The Dow Chemical Company Method of creating standardized spectral libraries for enhanced library searching
FR2734360B1 (en) 1995-05-19 1997-07-04 Elf Antar France METHOD OF CORRECTING A SIGNAL DELIVERED BY A MEASURING INSTRUMENT
FR2739928B1 (en) 1995-10-16 1997-11-21 Elf Antar France METHOD FOR MONITORING AND MONITORING THE OPERATION OF AN ANALYZER AND A MANUFACTURING UNIT TO WHICH IT IS CONNECTED
WO1998037805A1 (en) * 1997-02-26 1998-09-03 Diasense, Inc. Individual calibration of blood glucose for supporting noninvasive self-monitoring blood glucose
JP3982731B2 (en) * 1998-03-31 2007-09-26 株式会社堀場製作所 Spectrometer wavelength correction method
IL144401A0 (en) 1999-01-22 2002-05-23 Instrumentation Metrics Inc System and method for noninvasive blood analyte measurements
US6549861B1 (en) * 2000-08-10 2003-04-15 Euro-Celtique, S.A. Automated system and method for spectroscopic analysis
US6615151B1 (en) * 2000-08-28 2003-09-02 Cme Telemetrix Inc. Method for creating spectral instrument variation tolerance in calibration algorithms

Also Published As

Publication number Publication date
DK1319176T3 (en) 2006-02-13
WO2002025233A2 (en) 2002-03-28
ATE306656T1 (en) 2005-10-15
HK1058234A1 (en) 2004-05-07
CN1483141A (en) 2004-03-17
US6864978B1 (en) 2005-03-08
DE60114036T2 (en) 2006-06-22
EP1442699A1 (en) 2004-08-04
WO2002025233A3 (en) 2002-06-27
US7038774B2 (en) 2006-05-02
US20040223155A1 (en) 2004-11-11
DE60114036D1 (en) 2005-11-17
EP1319176B1 (en) 2005-10-12
JP2004526938A (en) 2004-09-02
EP1319176A2 (en) 2003-06-18
CN100458409C (en) 2009-02-04

Similar Documents

Publication Publication Date Title
AU2001283414A1 (en) A method of characterizing spectrometer instruments and providing calibration models to compensate for instrument variation
Samoylenko et al. Systematic analysis of verbalizations produced in comparing musical timbres
JPH08317238A (en) Method and device for color imaging
TW200702768A (en) System and method for controlling a LED luminary
ATE37243T1 (en) METHOD OF REPRODUCTION OF COLORED ORIGINAL IN FOUR-COLOR PRINTING USING COLOR REMOVAL.
EP0782102A3 (en) User interaction with images in a image structured format
AU720671C (en) System for corporate traveler planning and travel management
AU2003226089A1 (en) Customized media interface
CA2371628A1 (en) Method and apparatus for determining the appearance of an object
NO982821D0 (en) Boundary mapping system and method
EP1645841A4 (en) Three-dimensional shape-measuring device
WO2000011574A3 (en) System and method for updating a credit information database
EP1051122B8 (en) Device for gauging and verifying the precision of surgical instruments
AU2003296262A1 (en) Method of analysing a stack of flat objects
CN101778299A (en) Method for color space conversion and system thereof
EP1385098A3 (en) Simulation of data types in a relational database
CA2046529A1 (en) Electronic single pass, two color printing system
CN101118363A (en) Self-adapting complementary colour light source
WO2001067280A3 (en) Method for a knowledge model
Bustamante et al. Assessment of color discrimination of different light sources
WO1999052059A3 (en) Method and apparatus for performing robust recognition
EP1143246A4 (en) System for identifying microorganism
Sappa et al. Coloresia: An Interactive Colour Perception Device for the Visually Impaired
CN212796336U (en) Multifunctional music painting pen based on color recognition
Weidenhammer August Kirschmann and the Material Culture of Colour in Toronto’s Early Psychological Laboratory