AU2001282129A1 - Hydroxamate derivatives useful as deacetylase inhibitors - Google Patents

Hydroxamate derivatives useful as deacetylase inhibitors

Info

Publication number
AU2001282129A1
AU2001282129A1 AU2001282129A AU2001282129A AU2001282129A1 AU 2001282129 A1 AU2001282129 A1 AU 2001282129A1 AU 2001282129 A AU2001282129 A AU 2001282129A AU 2001282129 A AU2001282129 A AU 2001282129A AU 2001282129 A1 AU2001282129 A1 AU 2001282129A1
Authority
AU
Australia
Prior art keywords
aryl
alkyl
heteroaryl
heterocycloalkyl
arylalkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2001282129A
Other versions
AU2001282129B2 (en
Inventor
Kenneth Walter Bair
Michael A. Green
Lawrence B. Perez
Stacy W. Remiszewski
Lidia Sambucetti
Sushil Kumar Sharma
Richard William Versace
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Secura Bio Inc
Original Assignee
Secura Bio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Secura Bio Inc filed Critical Secura Bio Inc
Priority claimed from PCT/EP2001/010037 external-priority patent/WO2002022577A2/en
Publication of AU2001282129A1 publication Critical patent/AU2001282129A1/en
Application granted granted Critical
Publication of AU2001282129B2 publication Critical patent/AU2001282129B2/en
Assigned to SECURA BIO INC. reassignment SECURA BIO INC. Request for Assignment Assignors: NOVARTIS AG
Ceased legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Description

PEACETYLASE INHIBITORS
The present invention relates to hydroxamate compounds which are inhibitors of histone deacetylase. The inventive compounds are useful as pharmaceuticals for the treatment of proliferative diseases.
Background
Reversible acetylation of histones is a major regulator of gene expression that acts by altering accessibility of transcription factors to DNA. In normal cells, histone deacetylase (HDA) and histone acetyltrasferase together control the level of acetylation of histones to maintain a balance. Inhibition of HDA results in the accumulation of hyperacetylated histones, which results in a variety of cellular responses.
Inhibitors of HDA have been studied for their therapeutic effects on cancer cells. For example, butyric acid and its derivatives, including sodium phenylbutyrate, have been reported to induce apoptosis in vitro in human colon carcinoma, leukemia and retinoblastoma cell lines. However, butyric acid and its derivatives are not useful pharmacological agents because they tend to be metabolized rapidly and have a very short half-life in vivo. Other inhibitors of HDA that have been widely studied for their anti-cancer activities are trichostatin A and trapoxin. Trichostatin A is an antifungal and antibiotic and is a reversible inhibitor of mammalian HDA. Trapoxin is a cyclic tetrapeptide, which is an irreversible inhibitor of mammalian HDA. Although trichostatin and trapoxin have been studied for their anti-cancer activities, the in vivo instability of the compounds makes them less suitable as anti-cancer drugs. There remains a need for an active compound that is suitable for treating tumors, including cancerous tumors, that is highly efficacious and stable.
Summary
The present invention provides efficacious deacetylase inhibitor compounds that are useful as pharmaceutical agents having the formula I
wherein
Ri is H, halo, or a straight chain C C6 alkyl (especially methyl, ethyl or π-propyl, which methyl, ethyl and n-propyl substituents are unsubstituted or substituted by one or more substituents described below for alkyl substituents);
R2 is selected from H, C1-C10 alkyl, (e.g. methyl, ethyl or -CH2CH2-OH), C4 - C9 cycloalkyl, C - C9 heterocycloalkyl, C - C9 heterocycloalkylalkyl, cycloalkylalkyl (e.g., cyclopropylmethyl), aryl, heteroaryl, arylalkyl (e.g. benzyl), heteroarylalkyl (e.g. pyridylmethyl), -(CH2)„C(O)R6, -(CH2)nOC(O)R6, amino acyl, HON-C(O)-CH=C(R1)- aryl-alkyl- and -(CH2)nR7;
R3 and R4 are the same or different and independently H, CrC6 alkyl, acyl or acylamino, or R3 and R4 together with the carbon to which they are bound represent C=O, C=S, or C=NR8, or R2 together with the nitrogen to which it is bound and R3 together with the carbon to which it is bound can form a C - Cg heterocycloalkyl, a heteroaryl, a polyheteroaryl, a non-aromatic polyheterocycle, or a mixed aryl and non-aryl polyheterocycle ring;
R5 is selected from H, C C6 alkyl, C - C9 cycloalkyl, C - C9 heterocycloalkyl, acyl, aryl, heteroaryl, arylalkyl (e.g. benzyl), heteroarylalkyl (e.g. pyridylmethyl), aromatic polycycles, non-aromatic polycycles, mixed aryl and non-aryl polycycles, polyheteroaryl, non-aromatic polyheterocycles, and mixed aryl and non-aryl polyheterocycles; n, n1( n2 and n3 are the same or different and independently selected from 0 - 6, when ni is 1-6, each carbon atom can be optionally and independently substituted with R3 and/or R4;
X and Y are the same or different and independently selected from H, halo, C.-C alkyl, such as CH3 and CF3> NO2, C(O)Rι, OR9, SR9, ON, and NR.0R..; R6 is selected from H, Cι-C6 alkyl, C4 - C9 cyc\oalky\, C4 - C9 heterocycloalkyl, cycloalkylalkyl (e.g., cyclopropylmethyl), aryl, heteroaryl, arylalkyl (e.g., benzyl, 2- phenylethenyl), heteroarylalkyl (e.g., pyridylmethyl), OR12, and NRι ι4; R7 is selected from OR15) SRι5, S(O)R16, SO27, NR134, and NR12SO2R6; R8 is selected from H, OR15, NRι34, C C6 alkyl, C4 - C9 cycloalkyl, C - C9 heterocycloalkyl, aryl, heteroaryl, arylalkyl (e.g., benzyl), and heteroarylalkyl (e.g., pyridylmethyl); R9 is selected from Cι - C alkyl, for example, CH3 and CF3, C(O)-alkyl, for example
C(O)CH3, and C(O)CF3; R10 and Rn are the same or different and independently selected from H, Cι-C4 alkyl, and -C(O)-alkyl; R12 is selected from H, CrC6 alkyl, C4 - C9 cycloalkyl, C - C9 heterocycloalkyl, C4 - C9 heterocycloalkylalkyl, aryl, mixed aryl and non-aryl polycycle, heteroaryl, arylalkyl
(e.g., benzyl), and heteroarylalkyl (e.g., pyridylmethyl); R13 and R14 are the same or different and independently selected from H, C C6 alkyl,
C - C9 cycloalkyl, C4 - C9 heterocycloalkyl, aryl, heteroaryl, arylalkyl (e.g., benzyl), heteroarylalkyl (e.g., pyridylmethyl), amino acyl, or R13 and R14 together with the nitrogen to which they are bound are C - C9 heterocycloalkyl, heteroaryl, polyheteroaryl, non-aromatic polyheterocycle or mixed aryl and non-aryl polyheterocycle; Ri5 is selected from H, Ci-Ce alkyl, C4 - C9 cycloalkyl, C4 - C9 heterocycloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl and (CH2)mZR12; Rie is selected from CrC6 alkyl, C - C9 cycloalkyl, C - C9 heterocycloalkyl, aryl, heteroaryl, polyheteroaryl, arylalkyl, heteroarylalkyl and (CH2)mZRι2; Rι7 is selected from CrC6 alkyl, C4 - C9 cycloalkyl, C4 - C9 heterocycloalkyl, aryl, aromatic polycycles, heteroaryl, arylalkyl, heteroarylalkyl, polyheteroaryl and
m is an integer selected from 0 to 6; and Z is selected from O, NR13, S and S(O), or a pharmaceutically acceptable salt thereof.
The compounds of the present invention are suitable as active agents in pharmaceutical compositions that are efficacious particularly for treating cellular proliferative ailments. The pharmaceutical composition has a pharmaceutically effective amount of the present active agent along with other pharmaceutically acceptable exipients, carriers, fillers, diluents and the like. The term pharmaceutically effective amount as used herein indicates an amount necessary to administer to a host to achieve a therapeutic result, especially an anti-tumor effect, e.g., inhibition of proliferation of malignant cancer cells, benign tumor cells or other proliferative cells.
Detailed Description
The present invention provides hydroxamate compounds, e.g., hydroxamic acids, that are inhibitors of deacetylases, preferably inhibitors of histone deacetylases. The hydroxamate compounds are highly suitable for treating tumors, including cancerous tumors. The hydroxamate compounds of the present invention have the following structure I
wherein
R. is H, halo, or a straight chain CrC6 alkyl (especially methyl, ethyl or n-propyl, which methyl, ethyl and n-propyl substituents are unsubstituted or substituted by one or more substituents described below for alkyl substituents);
R2 is selected from H, C1-C10 alkyl, (preferably Cι-C6 alkyl, e.g. methyl, ethyl or -CH2CH2-OH), C4 - C9 cycloalkyl, C4 - C9 heterocycloalkyl, C4 - C9 heterocycloalkylalkyl, cycloalkylalkyl (e.g., cyclopropylmethyl), aryl, heteroaryl, arylalkyl (e.g. benzyl), heteroarylalkyl (e.g. pyridylmethyl), -(CH2)nC(O)R6, -(CH2)nOC(O)R6, amino acyl, HON-C(O)-CH=C(R1)-aryl-alkyl- and -(CH2)nR7;
R3 and R4 are the same or different and independently H, C C6 alkyl, acyl or acylamino, or R3 and R4 together with the carbon to which they are bound represent C=O, C=S, or C=NR8, or R2 together with the nitrogen to which it is bound and R3 together with the carbon to which it is bound can form a C4 - C9 heterocycloalkyl, a heteroaryl, a polyheteroaryl, a non-aromatic polyheterocycle, or a mixed aryl and non-aryl polyheterocycle ring; R5 is selected from H, CrC6 alkyl, C4 - C9 cycloalkyl, C4 - C9 heterocycloalkyl, acyl, aryl, heteroaryl, arylalkyl (e.g. benzyl), heteroarylalkyl (e.g. pyridylmethyl), aromatic polycycles, non-aromatic polycycles, mixed aryl and non-aryl polycycles, polyheteroaryl, non-aromatic polyheterocycles, and mixed aryl and non-aryl polyheterocycles; n, n1( n2 and n3 are the same or different and independently selected from 0 - 6, when ni is 1-6, each carbon atom can be optionally and independently substituted with R3 and/or R4; X and Y are the same or different and independently selected from H, halo, CrC4 alkyl, such as CH3 and CF3> NO2, C(O)Rι, OR9, SR9, CN, and NR10R11; R6 is selected from H, C C6 alkyl, C - C9 cycloalkyl, C4 - C9 heterocycloalkyl, cycloalkylalkyl (e.g., cyclopropylmethyl), aryl, heteroaryl, arylalkyl (e.g., benzyl, 2- phenylethenyl), heteroarylalkyl (e.g., pyridylmethyl), ORι2, and NRι3R14; R7 is selected from ORι5) SRι5, S(O)R16, SO2Ri7, NRι3R14, and NR12SO2Re; R8 is selected from H, ORι5, NR 34, C C6 alkyl, C - C9 cycloalkyl, C4 - C9 heterocycloalkyl, aryl, heteroaryl, arylalkyl (e.g., benzyl), and heteroarylalkyl (e.g., pyridylmethyl); R9 is selected from Ci - C alkyl, for example, CH3 and CF3, C(O)-alkyl, for example
C(O)CH3, and C(O)CF3; Rio and Rn are the same or different and independently selected from H, Cι-C alkyl, and -C(O)-alkyl; R12 is selected from H, CrC6 alkyl, C - C9 cycloalkyl, C4 - C9 heterocycloalkyl, C4 - C9 heterocycloalkylalkyl, aryl, mixed aryl and non-aryl polycycle, heteroaryl, arylalkyl
(e.g., benzyl), and heteroarylalkyl (e.g., pyridylmethyl); R13 and R are the same or different and independently selected from H, CrC6 alkyl,
C4- C9 cycloalkyl, C4- Cg heterocycloalkyl, aryl, heteroaryl, arylalkyl (e.g., benzyl), heteroarylalkyl (e.g., pyridylmethyl), amino acyl, or R 3 and Rι together with the nitrogen to which they are bound are C - C9 heterocycloalkyl, heteroaryl, polyheteroaryl, non-aromatic polyheterocycle or mixed aryl and non-aryl polyheterocycle; R15 is selected from H, CrC6 alkyl, C4 - C9 cycloalkyl, C4 - C9 heterocycloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl and (CH2)mZRι2; Rιe is selected from d-C6 alkyl, C4 - C9 cycloalkyl, C4 - C9 heterocycloalkyl, aryl, heteroaryl, polyheteroaryl, arylalkyl, heteroarylalkyl and (CH2)mZRι2;
R17 is selected from C C6 alkyl, C - C9 cycloalkyl, C4 - C9 heterocycloalkyl, aryl, aromatic polycycles, heteroaryl, arylalkyl, heteroarylalkyl, polyheteroaryl and NR134; m is an integer selected from 0 to 6; and
Z is selected from O, NR13, S and S(O), or a pharmaceutically acceptable salt thereof.
As appropriate, unsubstituted means that there is no substituent or that the only substituents are hydrogen.
Halo substituents are selected from fluoro, chloro, bromo and iodo, preferably fluoro or chloro.
Alkyl substituents include straight and branched CrC6alkyl, unless otherwise noted. Examples of suitable straight and branched Cι-C6alkyl substituents include methyl, ethyl, n-propyl, 2-propyl, n-butyl, sec-butyl, t-butyl, and the like. Unless otherwise noted, the alkyl substituents include both unsubstituted alkyl groups and alkyl groups that are substituted by one or more suitable substituents, including unsaturation (i.e. there are one or more double or triple C-C bonds), acyl, cycloalkyl, halo, oxyalkyl, alkylamino, aminoalkyl, acylamino and ORι5, for example, alkoxy. Preferred substituents for alkyl groups include halo, hydroxy, alkoxy, oxyalkyl, alkylamino, and aminoalkyl.
Cycloalkyl substituents include C3-C9 cycloalkyl groups, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like, unless otherwise specified. Unless otherwise noted, cycloalkyl substituents include both unsubstituted cycloalkyl groups and cycloalkyl groups that are substituted by one or more suitable substituents, including CrC6 alkyl, halo, hydroxy, aminoalkyl, oxyalkyl, alkylamino, and ORι5, such as alkoxy. Preferred substituents for cycloalkyl groups include halo, hydroxy, alkoxy, oxyalkyl, alkylamino and aminoalkyl. The above discussion of alkyl and cycloalkyl substituents also applies to the alkyl portions of other substituents, such as without limitation, alkoxy, alkyl amines, alkyl ketones, arylalkyl, heteroarylalkyl, alkylsulfonyl and alkyl ester substituents and the like.
Heterocycloalkyl substituents include 3 to 9 membered aliphatic rings, such as 4 to 7 membered aliphatic rings, containing from one to three heteroatoms selected from nitrogen, sulfur and oxygen. Examples of suitable heterocycloalkyl substituents include pyrrolidyl, tetrahydrofuryl, tetrahydrothiofuranyl, piperidyl, piperazyl, tetrahydropyranyl, morphilino, 1 ,3-diazapane, 1 ,4-diazapane, 1 ,4-oxazepane, and 1 ,4-oxathiapane. Unless otherwise noted, the rings are unsubstituted or substuted on the carbon atoms by one or more suitable substituents, including CrC6 alkyl, C - C9 cycloalkyl, aryl, heteroaryl, arylalkyl (e.g., benzyl), and heteroarylalkyl (e.g., pyridylmethyl), halo, amino, alkyl a ino and OR15, for example alkoxy. Unless otherwise noted, nitrogen heteroatoms are unsubstituted or substituted by H, d-C4 alkyl, arylalkyl (e.g., benzyl), and heteroarylalkyl (e.g., pyridylmethyl), acyl, aminoacyl, alkylsulfonyl, and arylsulfonyl.
Cycloalkylalkyl substituents include compounds of the formula -(CH2)n5-cycloalkyl wherein n5 is a number from 1-6. Suitable cycloalkylalkyl substituents include cyclopentylmethyl-, cyclopentylethyl, cyclohexylmethyl and the like. Such substituents are unsubstituted or substituted in the alkyl portion or in the cycloalkyl portion by a suitable substituent, including those listed above for alkyl and cycloalkyl.
Aryl substituents include unsubstituted phenyl and phenyl substituted by one or more suitable substituents, including C C6 alkyl, cycloalkylalkyl (e.g., cyclopropylmethyl), O(CO)alkyl, oxyalkyl, halo, nitro, amino, alkylamino, aminoalkyl, alkyl ketones, nitrile, carboxyalkyl, alkylsulfonyl, aminosulfonyl, arylsulfonyl, and ORι5, such as alkoxy. Preferred substituents include including Cι-C6 alkyl, cycloalkyl (e.g., cyclopropylmethyl), alkoxy, oxyalkyl, halo, nitro, amino, alkylamino, aminoalkyl, alkyl ketones, nitrile, carboxyalkyl, alkylsulfonyl, arylsulfonyl, and aminosulfonyl. Examples of suitable aryl groups include C C4alkylphenyl, CrC alkoxyphenyl, trifluoromethylphenyl, methoxyphenyl, hydroxyethylphenyl, dimethylaminophenyl, aminopropylphenyl, carbethoxyphenyl, methanesulfonylphenyl and tolylsulfonylphenyl. Aromatic polycycles include naphthyl, and naphthyl substituted by one or more suitable substituents, including CrC6 alkyl, cycloalkylalkyl (e.g., cyclopropylmethyl), oxyalkyl, halo, nitro, amino, alkylamino, aminoalkyl, alkyl ketones, nitrile, carboxyalkyl, alkylsulfonyl, arylsulfonyl, aminosulfonyl and ORι5, such as alkoxy.
Heteroaryl substituents include compounds with a 5 to 7 member aromatic ring containing one or more heteroatoms, for example from 1 to 4 heteroatoms, selected from N, O and S. Typical heteroaryl substituents include furyl, thienyl, pyrrole, pyrazole, triazole, thiazole, oxazole, pyridine, pyrimidine, isoxazolyl, pyrazine and the like. Unless otherwise noted, heteroaryl substituents are unsubstituted or substituted on a carbon atom by one or more suitable substituents, including alkyl, the alkyl substituents identified above, and another heteroaryl substituent. Nitrogen atoms are unsubstituted or substituted, for example by Rι3; especially useful N substituents include H, Ci - C alkyl, acyl, aminoacyl, and sulfonyl.
Arylalkyl substituents include groups of the formula -(CH2)n5-aryl, -(CH2)n5-r (CHaryl)-(CH2)n5-aryl or -(CH2)n5.ιCH(aryl)(aryl) wherein aryl and n5 are as defined above. Such arylalkyl substituents include benzyl, 2-phenylethyl, 1-phenylethyl, tolyl-3-propyl, 2- phenylpropyl, diphenylmethyl, 2-diphenylethyl, 5,5-dimethyl-3-phenylpentyl and the like. Arylalkyl substituents are unsubstituted or substituted in the alkyl moiety or the aryl moiety or both as described above for alkyl and aryl substituents.
Heteroarylalkyl substituents include groups of the formula -(CH2)n5-heteroaryl wherein heteroaryl and n5 are as defined above and the bridging group is linked to a carbon or a nitrogen of the heteroaryl portion, such as 2-, 3- or 4-pyridylmethyl, imidazolylmethyl, quinolylethyl, and pyrrolylbutyl. Heteroaryl substituents are unsubstituted or substituted as discussed above for heteroaryl and alkyl substituents.
Amino acyl substituents include groups of the formula -C(O)-(CH2)n-C(H)(NR13R14)- (CH2)n-R5 wherein n, Rι3, R and R5 are described above. Suitable aminoacyl substituents include natural and non-natural amino acids such as glycinyl, D-tryptophanyl, L-lysinyl, D- or L-homoserinyl, 4-aminobutryic acyl, ±-3-amin-4-hexenoyl. Non-aromatic polycycle substituents include bicyclic and tricyclic fused ring systems where each ring can be 4-9 membered and each ring can contain zero, 1 or more double and/or triple bonds. Suitable examples of non-aromatic polycycles include decalin, octahydroindene, perhydrobenzocycloheptene, perhydrobenzo-[t]-azulene. Such substituents are unsubstituted or substituted as described above for cycloalkyl groups.
Mixed aryl and non-aryl polycycle substituents include bicyclic and tricyclic fused ring systems where each ring can be 4 - 9 membered and at least one ring is aromatic. Suitable examples of mixed aryl and non-aryl polycycles include methylenedioxyphenyl, bis- methylenedioxyphenyl, 1 ,2,3,4-tetrahydronaphthalene, dibenzosuberane, dihdydroanthracene, 9H-fluorene. Such substituents are unsubstituted or substituted by nitro or as described above for cycloalkyl groups.
Polyheteroaryl substituents include bicyclic and tricyclic fused ring systems where each ring can independently be 5 or 6 membered and contain one or more heteroatom, for example, 1 , 2, 3, or 4 heteroatoms, chosen from O, N or S such that the fused ring system is aromatic. Suitable examples of polyheteroaryl ring systems include quinoline, isoquinoline, pyridopyrazine, pyrrolopyridine, furopyridine, indole, benzofuran, benzothiofuran, benzindole, benzoxazole, pyrroloquinoline, and the like. Unless otherwise noted, polyheteroaryl substituents are unsubstituted or substituted on a carbon atom by one or more suitable substituents, including alkyl, the alkyl substituents identified above and a substituent of the formula -O-(CH2CH=CH(CH3)(CH2))1.3H. Nitrogen atoms are unsubstituted or substituted, for example by Rι3; especially useful N substituents include H, Ci - C4 alkyl, acyl, aminoacyl, and sulfonyl.
Non-aromatic polyheterocyclic substituents include bicyclic and tricyclic fused ring systems where each ring can be 4 - 9 membered, contain one or more heteroatom, for example, 1 , 2, 3, or 4 heteroatoms, chosen from O, N or S and contain zero or one or more C-C double or triple bonds. Suitable examples of non-aromatic polyheterocycles include hexitol, cis-perhydro-cyclohepta[b]pyridinyl, decahydro-benzo[f][1 ,4]oxazepinyl, 2,8- dioxabicyclo[3.3.0]octane, hexahydro-thieno[3,2-b]thiophene, perhydropyrrolo[3,2-b]pyrrole, perhydronaphthyridine, perhydro-1H-dicyclopenta[b,e]pyran. Unless otherwise noted, non- aromatic polyheterocyclic substituents are unsubstituted or substituted on a carbon atom by one or more substituents, including alkyl and the alkyl substituents identified above. Nitrogen atoms are unsubstituted or substituted, for example, by Rι3; especially useful N substituents include H, Ci - C alkyl, acyl, aminoacyl, and sulfonyl.
Mixed aryl and non-aryl polyheterocycles substituents include bicyclic and tricyclic fused ring systems where each ring can be 4 - 9 membered, contain one or more heteroatom chosen from O, N or S, and at least one of the rings must be aromatic. Suitable examples of mixed aryl and non-aryl polyheterocycles include 2,3-dihydroindole, 1,2,3,4- tetrahydroquinoline, 5,11-dihydro-10H-dibenz[b,e][1 ,4]diazepine, 5H- dibenzo[b,e][1 ,4]diazepine, 1 ,2-dihydropyrrolo[3,4-b][1 ,5]benzodiazepine, 1 ,5-dihydro- pyrido[2,3-b][1 ,4]diazepin-4-one, 1 ,2,3,4,6,11 -hexahydro-benzo[b]pyrido[2,3- e][1 ,4]diazepin-5-one. Unless otherwise noted, mixed aryl and non-aryl polyheterocyclic substituents are unsubstituted or substituted on a carbon atom by one or more suitable substituents, including, -N-OH, =N-OH, alkyl and the alkyl substituents identified above. Nitrogen atoms are unsubstituted or substituted, for example, by R13; especially useful N substituents include H, Ci - C alkyl, acyl, aminoacyl, and sulfonyl.
Amino substituents include primary, secondary and tertiary amines and in salt form, quaternary amines. Examples of amino substituents include mono- and di-alkylamino, mono- and di-aryl amino, mono- and di-arylalkyl amino, aryl-arylalkylamino, alkyl-arylamino, alkyl-arylalkylamino and the like.
Sulfonyl substituents include alkylsulfonyl and arylsulfonyl, for example methane sulfonyl, benzene sulfonyl, tosyl and the like.
Acyl substituents include groups of the formula -C(O)-W, -OC(O)-W, -C(O)-O-W and -C(O)NR134, where W is R16, H or cycloalkylalkyl.
Acylamino substituents include groups of the formula -N(Rι2)C(O)-W, -N(Rι2)C(O)- O-W, and -N(R12)C(O)-NHOH and Rι2 and W are as defined above.
The R2 substituent HON-C(O)-CH=C(Rι)-aryl-alkyl- is a group of the formula
wherein n4 is 0-3 and X and Y are as defined above.
Preferences for each of the substituents include the following: Ri is H, halo, or a straight chain d-C alkyl; R2 is selected from H, C C6 alkyl, C4 - C9 cycloalkyl, C - C9 heterocycloalkyl, cycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, -(CH2)nC(O)R6, amino acyl, and -(CH2)nR7; R3 and R are the same or different and independently selected from H, and C C6 alkyl, or R3 and R4 together with the carbon to which they are bound represent C=O,
C=S, or C=NR8; R5 is selected from H, CrC6 alkyl, C4 - C9 cycloalkyl, C - C9 heterocycloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, an aromatic polycycle, a non-aromatic polycycle, a mixed aryl and non-aryl polycycle, polyheteroaryl, a non-aromatic polyheterocycle, and a mixed aryl and non-aryl polyheterocycle; n, ni, n2 and n3 are the same or different and independently selected from 0 - 6, when ni is 1-6, each carbon atom is unsubstituted or independently substituted with R3 and/or R4; X and Y are the same or different and independently selected from H, halo, C C4 alkyl,
CF3, NO2, C(O)Rι, OR9, SR9, CN, and NRioRn; R6 is selected from H, CrC6 alkyl, C4 - C9 cycloalkyl, C4 - C9 heterocycloalkyl, cycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, ORι2, and NRι34; R7 is selected from ORι5, SRι5, S(O)Rι6, SO2R17, NRi34, and NRι2SO2R6; Rs is selected from H, OR 5, NR 34, CrC6 alkyl, C4 - C9 cycloalkyl, C4 - C9 heterocycloalkyl, aryl, heteroaryl, arylalkyl, and heteroarylalkyl; R9 is selected from Ci - C4 alkyl and C(O)-alkyl; Rio and Rn are the same or different and independently selected from H, CrC4 alkyl, and -C(O)-alkyl; Rι2 is selected from H, Ci-Ce alkyl, C4 - C9 cycloalkyl, C4 - C9 heterocycloalkyl, aryl, heteroaryl, arylalkyl, and heteroarylalkyl; R13 and R14 are the same or different and independently selected from H, Cι-C6 alkyl,
C4- C9 cycloalkyl, C4 - C9 heterocycloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl and amino acyl; R15 is selected from H, d-Ce alkyl, C - C9 cycloalkyl, C4 - C9 heterocycloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl and (CH2)mZRι2; Rιe is selected from Cι-C6 alkyl, C - C9 cycloalkyl, C - C9 heterocycloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl and (CH2)mZRι2; Rι7 is selected from CrC6 alkyl, C - C9 cycloalkyl, C4 - C9 heterocycloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl and NRι34; m is an integer selected from 0 to 6; and Z is selected from O, NR13, S, S(O).
Useful compounds of the formula I include those wherein each of Ri, X, Y, R3, and R is H, including those wherein one of n2 and n3 is zero and the other is 1 , especially those wherein R2 is H or -CH2-CH2-OH.
One suitable genus of hydroxamate compounds are those of formula la
wherein n4 is 0-3,
R2 is selected from H, Cι-C6 alkyl, C4 - C9 cycloalkyl, C4 - C9 heterocycloalkyl, cycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, -(CH2)nC(O)Re, amino acyl and -(CH2)nR7; R5' is heteroaryl, heteroarylalkyl (e.g., pyridylmethyl), aromatic polycycles, non-aromatic polycycles, mixed aryl and non-aryl polycycles, polyheteroaryl, or mixed aryl and non-aryl polyheterocycles, or a pharmaceutically acceptable salt thereof. Another suitable genus of hydroxamate compounds are those of formula la
wherein n4 is 0-3,
R2 is selected from H, Cι-C6 alkyl, C4 - Cg cycloalkyl, C4 - Cg heterocycloalkyl, cycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, -(CH2)nC(O)R6, amino acyl and -(CH2)nR7;
R5' is aryl, arylalkyl, aromatic polycycles, non-aromatic polycycles, and mixed aryl and non-aryl polycycles; especially aryl, such as p-fluorophenyl, p-chlorophenyl, p-O-C C4-alkylphenyl, such as p-methoxyphenyl, and p-CrC4-alkylphenyl; and arylalkyl, such as benzyl, ortho, meta or para-i luorobenzyl, ortho, meta or para-chlorobenzyl, ortho, meta or para-mono, di or tri-O-Cι-C -alkylbenzyl, such as ortho, meta orpara- methoxybenzyl, /77,p-diethoxybenzyl, o,m,p-triimethoxybenzyl , and ortho, meta or para- mono, di or tri CrC4-alkylphenyl, such as p-methyl, m, -diethylphenyl, or a pharmaceutically acceptable salt thereof.
Another interesting genus are the compounds of formula lb
wherein R2' is selected from H, C C6 alkyl, C4-C6 cycloalkyl, cycloalkylalkyl (e.g., cyclopropylmethyl), -(CH2)2-4θR2ι where R2ι is H, methyl, ethyl, propyl, and Apropyl, and
R5" is unsubstituted 1 H-indol-3-yl, benzofuran-3-yl or quinolin-3-yl, or substituted 1 /-/-indol- 3-yl, such as 5-fluoro-1 H-indol-3-yl or 5-methoxy-1 H-indol-3-yl, benzofuran-3-yl or quinolin- 3-yl, or a pharmaceutically acceptable salt thereof.
Another interesting genus of hydroxamate compounds are the compounds of formula lc
wherein the ring containing Z is aromatic or non-aromatic, which non-aromatic rings are saturated or unsaturated,
Z is O, S or N-Rso,
8 is H, halo, Cι-C6alkyl (methyl, ethyl, t-butyl), C3-C7cycloalkyl, aryl, for example unsubstituted phenyl or phenyl substituted by 4-OCH3 or 4-CF3, or heteroaryl, such as 2-furanyl, 2-thiophenyl or 2-, 3- or 4-pyridyl;
R20 is H, Cι-C6alkyl, CrCealkyl-Qr-Cgcycloalkyl (e.g., cyclopropylmethyl), aryl, heteroaryl, arylalkyl (e.g., benzyl), heteroarylalkyl (e.g., pyridylmethyl), acyl (acetyl, propionyl, benzoyl) or sulfonyl (methanesulfonyl, ethanesulfonyl, benzenesulfonyl, toluenesulfonyl);
A1 is 1 , 2 or 3 substituents which are independently H, Cι-C-6alkyl, -ORι9, halo, alkylamino, aminoalkyl, halo, or heteroarylalkyl (e.g., pyridylmethyl),
Rig is selected from H, Cι-C6alkyl, C -C9cycloalkyl, C -C9heterocycloalkyl, aryl, heteroaryl, arylalkyl (e.g., benzyl), heteroarylalkyl (e.g., pyridylmethyl) and -(CH2CH=CH(CH3)(CH2))i.3H;
R2 is selected from H, CrC6 alkyl, C - Cg cycloalkyl, C4 - C9 heterocycloalkyl, cycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, -(CH2)nC(O)R6, amino acyl and -(CH2)nR7; v is 0, 1 or 2, p is 0-3, and q is 1 -5 and r is 0 or q is 0 and r is 1 -5, or a pharmaceutically acceptable salt thereof. The other variable substituents are as defined above.
Especially useful compounds of formula lc are those wherein R2 is H, or -(CH2)PCH2QH, wherein p is 1-3, especially those wherein Ri is H; such as those wherein Ri is H and X and Y are each H, and wherein q is 1-3 and r is 0 or wherein q is 0 and r is 1-3, especially those wherein Zi is N-R20. Among these compounds R2 is preferably H or -CH2-CH2-OH and the sum of q and r is preferably 1.
Another interesting genus of hydroxamate compounds are the compounds of formula Id
wherein
R18 is H, halo, CrCealkyl (methyl, ethyl, t-butyl), C3-C7cycloalkyl, aryl, for example, unsubstituted phenyl or phenyl substituted by 4-OCH3 or 4-CF3, or heteroaryl, R20 is H, Cι-C6alkyl, Ci-Cealkyl-Cr-Cgcycloalkyl (e.g., cyclopropylmethyl), aryl, heteroaryl, arylalkyl (e.g., benzyl), heteroarylalkyl (e.g., pyridylmethyl), acyl (acetyl, propionyl, benzoyl) or sulfonyl (methanesulfonyl, ethanesulfonyl, benzenesulfonyl, toluenesulfonyl);
A1 is 1 , 2 or 3 substituents which are independently H, Cι-C-6alkyl, -ORι9, or halo,
9 is selected from H, Cι-C6alkyl, C4-C9cycloalkyl, C4-C9heterocycloalkyl, aryl, heteroaryl, arylalkyl (e.g., benzyl), and heteroarylalkyl (e.g., pyridylmethyl); p is 0-3, and q is 1 -5 and r is 0 or q is O and r is 1-5, or a pharmaceutically acceptable salt thereof. The other variable substituents are as defined above.
Especially useful compounds of formula Id are those wherein R2 is H, or -(CH2)pCH2OH, wherein p is 1 -3, especially those wherein Ri is H; such as those wherein Ri is H and X and Y are each H, and wherein q is 1 -3 and r is 0 or wherein q is 0 and r is 1 -3. Among these compounds R2 is preferably H or -CH2-CH2-OH and the sum of q and r is preferably 1.
The present invention further relates to compounds of the formula le
or a pharmaceutically acceptable salt thereof. The variable substituents are as defined above.
Especially useful compounds of formula le are those wherein Rι8 is H, fluoro, chloro, bromo, a Cι-C alkyl group, a substituted CrC4alkyl group, a C3-C7cycloalkyl group, unsubstituted phenyl, phenyl substituted in the para position, or a heteroaryl (e.g., pyridyl) ring. Another group of useful compounds of formula le are those wherein R2 is H, or - (CH2)pCH2OH, wherein p is 1 -3, especially those wherein Rt is H; such as those wherein Ri is H and X and Y are each H, and wherein q is 1-3 and r is 0 or wherein q is 0 and r is 1-3. Among these compounds R2 is preferably H or -CH2-CH2-OH and the sum of q and r is preferably 1.
Another group of useful compounds of formula le are those wherein Rι8 is H, methyl, ethyl, t-butyl, trifluoromethyl, cyclohexyl, phenyl, 4-methoxyphenyl, 4-trifluoromethylphenyl, 2-furanyl, 2-thiophenyl, or 2-, 3- or 4-pyridyl wherein the 2-furanyl, 2-thiophenyl and 2-, 3- or 4-pyridyl substituents are unsubstituted or substituted as described above for heteroaryl rings; R2 is H, or -(CH2)pCH2OH, wherein p is 1 -3; especially those wherein Ri is H and X and Y are each H, and wherein q is 1 -3 and r is 0 or wherein q is 0 and r is 1 -3. Among these compounds R2 is preferably H or -CH2-CH2-OH and the sum of q and r is preferably 1.
Those compounds of formula le wherein R20 is H or CrC6alkyl, especially H, are important members of each of the subgenuses of compounds of formula le described above.
N-hydroxy-3-[4-[[(2-hydroxyethyl)[2-(1 H-indol-3-yl)ethyl]-amino]methyl]phenyl]-2E-2- propenamide, N-hydroxy-3-[4-[[[2-(1H-indol-3-yl)ethyl]-amino]methyl]phenyl]-2E-2- propenamide and N-hydroxy-3-[4-[[[2-(2-methyl-1 H-indol-3-yl)-ethyl]-amino]methyl]phenyl]- 2£-2-propenamide, or a pharmaceutically acceptable salt thereof, are important compounds of formula le.
The present invention further relates to the compounds of the formula If
or a pharmaceutically acceptable salt thereof. The variable substituents are as defined above.
Useful compounds of formula If are those wherein R2 is H, or -(CH2)pCH2OH, wherein p is 1- 3, especially those wherein Ri is H; such as those wherein Ri is H and X and Y are each H, and wherein q is 1 -3 and r is 0 or wherein q is 0 and r is 1 -3. Among these compounds R2 is preferably H or -CH2-CH2-OH and the sum of q and r is preferably 1.
N-hydroxy-3-[4-[[[2-(benzofur-3-yl)-ethyl]-amino]methyl]phenyl]-2E-2-propenamide,or a pharmaceutically acceptable salt thereof, is an important compound of formula If.
The compounds described above are often used in the form of a pharmaceutically acceptable salt. Pharmaceutically acceptable salts include, when appropriate, pharmaceutically acceptable base addition salts and acid addition salts, for example, metal salts, such as alkali and alkaline earth metal salts, ammonium salts, organic amine addition salts, and amino acid addition salts, and sulfonate salts. Acid addition salts include inorganic acid addition salts such as hydrochloride, sulfate and phosphate, and organic acid addition salts such as alkyl sulfonate, arylsulfonate, acetate, maleate, fumarate, tartrate, citrate and lactate. Examples of metal salts are alkali metal salts, such as lithium salt, sodium salt and potassium salt, alkaline earth metal salts such as magnesium salt and calcium salt, aluminum salt, and zinc salt. Examples of ammonium salts are ammonium salt and tetramethylammonium salt. Examples of organic amine addition salts are salts with morpholine and piperidine. Examples of amino acid addition salts are salts with glycine, phenylalanine, glutamic acid and lysine. Sulfonate salts include mesylate, tosylate and benzene sulfonic acid salts.
As is evident to those skilled in the art, the many of the deacetylase inhibitor compounds of the present invention contain asymmetric carbon atoms. It should be understood, therefore, that the individual stereoisomers are contemplated as being included within the scope of this invention.
The hydroxamate compounds of the present invention can be produced by known organic synthesis methods. For example, the hydroxamate compounds can be produced by reacting methyl 4-formyl cinnamate with tryptamine and then converting the reactant to the hydroxamate compounds. As an example, methyl 4-formyl cinnamate 2, is prepared by acid catalyzed esterification of 4-formylcinnamic acid 3 (Bull. Chem. Soc. Jpn. 1995; 68:2355-2362). An alternate preparation of methyl 4-formyl cinnamate 2 is by a Pd- catalyzed coupling of methyl acrylate 4 with 4-bromobenzaldehyde 5.
CHO
Additional starting materials can be prepared from 4-carboxybenzaldehyde 6, and an exemplary method is illustrated for the preparation of aldehyde 9, shown below. The carboxylic acid in 4-carboxybenzaldehyde 6 can be protected as a silyl ester (e.g., the t- butyldimethylsilyl ester) by treatment with a silyl chloride (e.g., f-butyldimethylsilyl chloride) and a base (e.g. triethylamine) in an appropriate solvent (e.g., dichloromethane). The resulting silyl ester 7 can undergo an olefination reaction (e.g., a Horner-Emmons olefination) with a phosphonate ester (e.g., triethyl 2-phosphonopropionate) in the presence of a base (e.g., sodium hydride) in an appropriate solvent (e.g., tetrahydrofuran (THF)). Treatment of the resulting diester with acid (e.g., aqueous hydrochloric acid) results in the hydrolysis of the silyl ester providing acid 8. Selective reduction of the carboxylic acid of 8 using, for example, borane-dimethylsuflide complex in a solvent (e.g., THF) provides an intermediate alcohol. This intermediate alcohol could be oxidized to aldehyde 9 by a number of known methods, including, but not limited to, Swern oxidation, Dess-Martin periodinane oxidation, Moffatt oxidation and the like.
The aldehyde starting materials 2 or 9 can be reductively aminated to provide secondary or tertiary amines. This is illustrated by the reaction of methyl 4-formyl cinnamate 2 with tryptamine 10 using sodium triacetoxyborohydride (NaBH(OAc)3) as the reducing agent in dichloroethane (DCE) as solvent to provide amine 11. Other reducing agents can be used, e.g., sodium borohydride (NaBH ) and sodium cyanoborohydride (NaBH3CN), in other solvents or solvent mixtures in the presence or absence of acid catalysts (e.g., acetic acid and trifluoroacetic acid). Amine 11 can be converted directly to hydroxamic acid 12 by treatment with 50% aqueous hydroxylamine in a suitable solvent (e.g., THF in the presence of a base, e.g., NaOH). Other methods of hydroxamate formation are known and include reaction of an ester with hydroxylamine hydrochloride and a base (e.g., sodium hydroxide or sodium methoxide) in a suitable solvent or solvent mixture (e.g., methanol, ethanol or methanol/THF).
Aldehyde 2 can be reductively aminated with a variety of amines, exemplified by, but not limited to, those illustrated in Table 1. The resulting esters can be converted to target hydroxamates by the methods listed.
Table 1
An alternate synthesis of the compounds of this invention starts by reductive amination of 4-formyl cinnamic acid 3, illustrated below with 3-phenylpropylamine 13, using, for example, NaBH3CN as the reducing agent in MeOH and HOAc as a catalyst. The basic nitrogen of the resulting amino acid 14 can be protected, for example, as f-butoxycarbamate (BOC) by reaction with di-f-butyldicarbonate to give 15. NaBH.CN ° (BOC^O/Et-N 3 + Ph(CH2)3NH> , BOC *τ^-Λ~ OH I OH
Dioxane/H20 Ph(CH2)3N . J
13 AcOH/ eOH Ph .
14 15
The carboxylic acid can be coupled with a protected hydroxylamine (e.g., O-trityl hydroxylamine) using a dehydrating agent (e.g., 1 -(3-dimethylaminopropyl)-3- ethylcarbodiimide hydrochloride (EDCI)) and a catalyst (e.g., 1 -hydroxybenzotriazole hydrate (HOBT)) in a suitable solvent (e.g., DMF) to produce 16. Treatment of 16 with a strong acid (e.g., trifluoroacetic acid (TFA)) provides a hydroxamic acid 17 of the present invention. Additional examples of compounds that can be prepared by this method are:
Tertiary amine compounds can be prepared by a number of methods. Reductive amination of 30 with nicotinaldehyde 32 using NaBH3CN as the reducing agent in dichloroethane and HOAc as a catalyst provides ester 34. Other reducing agents can be used (e.g., NaBH4 and NaBH(OAc)3 ) in other solvents or solvent mixtures in the presence or absence of acid catalysts (e.g., acetic acid, trifluoroacetic acid and the like). Reaction of ester 34 with HONH2»HCI, NaOH in MeOH provides hydroxamate 36.
Tertiary amine compounds prepared by this methodology are exemplified, but not limited to, those listed in Table 2.
Table 2
An alternate method for preparing tertiary amines is by reacting a secondary amine with an alkylating agent in a suitable solvent in the presence of a base. For example, heating a dimethylsulfoxide (DMSO) solution of amine 11 and bromide 40 in the presence of (APr)2NEt yielded tertiary amine 42. Reaction of the tertiary amine 42 with HONH2»HCI, NaOH in MeOH provides hydroxamate 43. The silyl group can be removed by any method known to those skilled in the art. For example, the hydroxamate 43 can be treated with an acid, e.g., trifluoroacetic acid, or fluoride to produce hydroxyethyl compound 44.
O-TBDMS
(/-Pr)2NEt ^ COaMe HONH 2»HCI
11 + BrCH 2CH20-TBDMS 40 DMSO 42 NaOH, MeOH
N H
The hydroxamate compound, or salt thereof, is suitable for preparing pharmaceutical compositions, especially pharmaceutical compositions having deacetylase, especially histone deacetylase, inhibiting properties. Studies with athymic mice demonstrate that the hydroxamate compound causes HDA inhibition and increased histone acetylation in vivo, which triggers changes in gene expression that correlate with tumor growth inhibition.
The present invention further includes pharmaceutical compositions comprising a pharmaceutically effective amount of one or more of the above-described compounds as active ingredient. Pharmaceutical compositions according to the invention are suitable for enteral, such as oral or rectal, and parenteral administration to mammals, including man, for the treatment of tumors, alone or in combination with one or more pharmaceutically acceptable carriers.
The hydroxamate compound is useful in the manufacture of pharmaceutical compositions having an effective amount the compound in conjunction or admixture with excipients or carriers suitable for either enteral or parenteral application. Preferred are tablets and gelatin capsules comprising the active ingredient together with (a) diluents; (b) lubricants, (c) binders (tablets); if desired, (d) disintegrants; and/or (e) absorbents, colorants, flavors and sweeteners. Injectable compositions are preferably aqueous isotonic solutions or suspensions, and suppositories are advantageously prepared from fatty emulsions or suspensions. The compositions may be sterilized and/or contain adjuvants, such as preserving, stabilizing, wetting or emulsifying agents, solution promoters, salts for regulating the osmotic pressure and/or buffers. In addition, the compositions may also contain other therapeutically valuable substances. The compositions are prepared according to conventional mixing, granulating or coating methods, respectively, and contain preferably about 1 to 50% of the active ingredient.
Suitable formulations also include formulations for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain antioxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents. The formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampules and vials, and may be stored in a f reeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example, water for injections, immediately prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets of the kind previously described.
As discussed above, the compounds of the present invention are useful for treating proliferative diseases. A proliferative disease is mainly a tumor disease (or cancer) (and/or any metastases). The inventive compounds are particularly useful for treating a tumor which is a breast cancer, genitourinary cancer, lung cancer, gastrointestinal cancer, epidermoid cancer, melanoma, ovarian cancer, pancreas cancer, neuroblastoma, head and/or neck cancer or bladder cancer, or in a broader sense renal, brain or gastric cancer; in particular (i) a breast tumor; an epidermoid tumor, such as an epidermoid head and/or neck tumor or a mouth tumor; a lung tumor, for example a small cell or non-small cell lung tumor; a gastrointestinal tumor, for example, a colorectal tumor; or a genitourinary tumor, for example, a prostate tumor (especially a hormone-refractory prostate tumor); or (ii) a proliferative disease that is refractory to the treatment with other chemotherapeutics; or (iii) a tumor that is refractory to treatment with other chemotherapeutics due to multidrug resistance.
In a broader sense of the invention, a proliferative disease may furthermore be a hyperproliferative condition such as leukemias, hyperplasias, fibrosis (especially pulmonary, but also other types of fibrosis, such as renal fibrosis), angiogenesis, psoriasis, atherosclerosis and smooth muscle proliferation in the blood vessels, such as stenosis or restenosis following angioplasty.
Where a tumor, a tumor disease, a carcinoma or a cancer are mentioned, also metastasis in the original organ or tissue and/or in any other location are implied alternatively or in addition, whatever the location of the tumor and/or metastasis.
The compound is selectively toxic or more toxic to rapidly proliferating cells than to normal cells, particularly in human cancer cells, e.g., cancerous tumors, the compound has significant antiproliferative effects and promotes differentiation, e.g., cell cycle arrest and apoptosis. In addition, the hydroxamate compound induces p21 , cyclin-CDK interacting protein, which induces either apoptosis or G1 arrest in a variety of cell lines.
The following examples are intended to illustrate the invention and are not to be construed as being limitations thereto.
Example P1
Preparation of A/-Hydroxy-3-[4-[[[2-(1 H-indol-3-yl)-ethyl]-amino]methyl]phenyl]-2E-2- propenamide.
4-formylcinnamic acid methylester is produced by adding 4-formyicinnamic acid (25 g, 0.143 mol) in MeOH and HCI (6.7 g, 0.18 mol). The resulting suspension is heated to reflux for 3 hours, cooled and evaporated to dryness. The resulting yellow solid is dissolved in EtOAc, the solution washed with saturated NaHCO3, dried (MgSO4) and evaporated to give a pale yellow solid which is used without further purification (25.0 g, 92%). To a solution of tryptamine (16.3 g, 100 mmol) and 4-formylcinnamic acid methylester (19 g, 100 mmol) in dichloroethane, NaBH(OAc)3 (21 g, 100 mmol) is added. After 4 hours the mixture is diluted with 10% K2CO3 solution, the organic phase separated and the aqueous solution extracted with CH2CI2. The combined organic extracts are dried (Na2SO ), evaporated and the residue purified by flash chromatography to produce 3-(4-{[2-(1 H-indol-3-yl)-ethylamino]- methyl}-phenyl)-(2£)-2-propenoic acid methyl ester (29 g). A solution of KOH (12.9 g 87%, 0.2 mol) in MeOH (100 mL) is added to a solution of HONH2»HCI (13.9 g, 0.2 mol) in MeOH (200 mL) and a precipitate results. After 15 minutes the mixture is filtered, the filter cake washed with MeOH and the filtrate evaporated under vacuum to approximately 75 mL. The mixture is filtered and the volume adjusted to 100 mL with MeOH. The resulting solution 2M HONH2 is stored under N2 at -20° C for up to 2 weeks. Then 3-(4-{[2-(1 H-indol-3-yl)- ethylamino]-methyl}-phenyl)-(2£)-2-propenoic acid methyl ester (2.20 g, 6.50 mmol) is added to 2 M HONH2 in MeOH (30 mL, 60 mmol) followed by a solution of KOH (420 mg, 6.5 mmol) in MeOH (5 mL). After 2 hours dry ice is added to the reaction and the mixture is evaporated to dryness. The residue is dissolved in hot MeOH (20 mL), cooled and stored at -20 °C overnight. The resulting suspension is filtered, the solids washed with ice cold MeOH and dried under vacuum, producing Λ/-Hydroxy-3-[4-[[[2-(1 H-indol-3-yl)-ethyl]- amino]methyl]phenyl]-2E-2-propenamide (m/z 336 [MH+]).
Example P2
Preparation of Λ/-Hydroxy-3-[4-[[(2-hydroxyethyl)[2-(1 H-indol-3-yl)-ethyl]- aminojmethyl]phenyl]-2E-2-propenamide
A solution of 3-(4-{[2-(1 /-/-indol-3-yl)-ethylamino]-methyl}-phenyl)-(2£)-2-propenoic acid methyl ester (12.6 g, 37.7 mmol), (2-bromoethoxy)-tert-butyldimethylsilane (12.8 g, 53.6 mmol), (/-Pr)2NEt, (7.42 g, 57.4 mmol) in DMSO (100 mL) is heated to 50° C. After 8 hours the mixture is partitioned with CH2CI2/H2O. The organic layer is dried (Na2SO4) and evaporated. The residue is chromatographed on silica gel to produce 3-[4-({[2-(tøπ> butyIdimethylsilanyloxy)-ethyl]-[2-(1H-indol-3-yl)-ethyl]-amino}-methyl)-phenyl]-(2E)-2- propenoic acid methyl ester (13.1 g). Following the procedure described for the preparation of the hydroxamate compound in Example P1, 3-[4-({[2-(fert-butyldimethylsilanyloxy)-ethyl]- [2-(1 H-indol-3-yl)-ethyl]-amino}-methyl)-phenyl]-(2E)-2-propenoic acid methyl ester (5.4 g, 11 mmol) is converted to N-hydroxy-3-[4-({[2-(terf-butyldimethylsilanyloxy)-ethyl]-[2-(1 H- indol-3-yl)-ethyl]-amino}-methyl)-phenyl]-(2 -2-propenamide (5.1 g,) and used without further purification. The hydroxamic acid (5.0 g, 13.3 mmol) is then dissolved in 95% TFA/H2O (59 mL) and heated to 40 - 50 °C for 4 hours. The mixture is evaporated and the residue purified by reverse phase HPLC to produce Λ/-Hydroxy-3-[4-[[(2-hydroxyethyl)[2- (1 H-indol-3-yl)-ethyl]-amino]methyl]phenyl]-2E-2-propenamide as the trifluoroacetate salt (m/z 380 [MH+]). Example P3
Preparation of N-hydroxy-3-[4-[[[2-(2-methyl-1 H-indol-3-yl)-ethyl]-amino]methyl]phenyl]-2E- 2-propenamide.
A suspension of LiAIH4 (17 g, 445 mmol) in dry THF (1000 mL) is cooled to 0 °C and 2- methylindole-3-glyoxylamide (30 g, 148 mmol) is added in portions over 30 min. The mixture is stirred at room temperature for 30 min. and then maintained at reflux for 3 h. The reaction is cooled to 0 °C and treated with H2O (17ml), 15% NaOH (aq., 17ml) and H2O (51ml). The mixture is treated with MgSO , filtered and the filtrate evaporated to give 2-methyltryptamine which is dissolved in MeOH. Methyl 4-formylcinnamate (16.9 g, 88.8 mmol) is added to the solution, followed by NaBH3CN (8.4 g) and AcOH (1 equiv.). After 1h the reaction is diluted with NaHCO3 (aq.) and extracted with EtOAc. The organic extracts are dried (MgSO4), filtered and evaporated. The residue is purified by chromatography to give 3-(4-{[2-(2- methyl-1 W-indo!-3-yl)-ethylamino]-methyl}-phenyl)-(2E)-2-propenoic acid methyl ester. The ester is dissolved in MeOH, 1.0 M HCI/dioxane (1 - 1.5 equiv.) is added followed by Et2O. The resulting precipitate is filtered and the solid washed with Et2O and dried thoroughly to give 3-(4-{[2-(2-methyl-1 -/-indol-3-yl)-ethylamino]-methyl}-phenyl)-(2E)-2-propenoic acid methyl ester hydrochloride. 1.0 M NaOH (aq., 85 mL) is added to an ice cold solution of the methyl ester hydrochloride (14.9 g, 38.6 mmol) and HONH2 (50% aq. solution, 24.0 mL, ca. 391.2 mmol). After 6 h, the ice cold solution is diluted with H2O and NH4CI (aq., 0.86 M, 100 mL). The resulting precipitate is filtered, washed with H2O and dried to afford N-hydroxy-3- [4-[[[2-(2-methyl-1 H-indol-3-yl)-ethyl]-amino]methyl]phenyl]-2E-2-propenamide (m/z 350 [MH+]).
Examples 1-265
The following compounds are prepared by methods analogous to those disclosed in Examples P1 , P2 and P3:
The compounds of Examples 1-265 show an HDA enzyme IC50 in the range from about 0.005 to about 0.5 μM.
Example B1
Cell lines H1299 (human lung carcinoma cell) and HCT116 (colon tumor cell) are obtained from the American Type Culture Collection, Rockville, MD. The cell lines are free of Mycoplasma contamination (Rapid Detection System by Gen-Probe, Inc., San Diego, CA) and viral contamination (MAP testing by MA BioServices, Inc., Rockville, MD). The cell lines are propagated and expanded in RPM1 1640 medium containing 10% heat-inactivated FBS (Life Technologies, Grand Island, NY). Cell expansions for implantation are performed in cell factories (NUNC, purchased from Fisher Scientific, Springfield, NJ). Cells are harvested at 50-90% confluency, washed once with HBSS (Hank's Balanced Salt Solution) containing 10% FBS, and suspended in 100% HBSS.
Cell proliferation is measured with a commercial MTS kit (Promega, Madision, Wis.) assay using an adaptation of published procedures, for example, that disclosed in Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay, Alley MC, et al., Cancer Res. 1988; 48:589-601. Cells are plated in 96- well tissue culture dishes, with top and bottom rows left empty. H1299 and HCT116 cells are suspended in complete media at a density of 5.3 x 103 and 3.6 x 103 cell/mL, respectively, and 190 μl are added per well. Each cell line is added to one half of the plate. Complete medium (200 μL) is added to the top and bottom rows. Twenty-four hours later, 10 μl of MTS solution is added to one of the plates to determine the activity at the time of compound addition (T0). The plate is incubated at 37 °C for 4 hours and the OD490 is measured on a Molecular Devices Thermomax at 490 nm using the Softmax program. The To plate serves as a reference for initial activity at the beginning of the experiment.
Five serial dilutions (1 :4) of each compound are made in a 96-deep well plate with the highest concentrations on the edge of plate. Two cell lines are tested with two compounds per plate. Ten microliters of each of the five dilutions are added in triplicate and complete medium alone is added to columns six and seven. The plates are incubated at 37 °C for 72 hours. The MTS solution is added (as for the T0 plate) and read four hours later.
In order to analyze the data, the average background value (media alone) is subtracted from each experimental well; the triplicate values are averaged for each compound dilution. The following formulas are used to calculate percent growth. If X > To, % Growth = ((X-T0)/(GC -T0)) x 100 If X < T0, % Growth = (X-T0) T0) x 100 in which T0 = (average value of cell viability at time 0) - background GC = average value of untreated cells (in triplicate) - background X = average value of compound treated cells (in triplicate) - background The "% Growth" is plotted against compound concentration and used to calculate IC50s employing the linear regression techniques between data points to predict the concentration of compounds at 50% inhibition.
Lactate salts of N-hydroxy-3-[4-[[[2-(1 W-indol-3-yl)-ethyl]-amino]methyl]phenylJ-2E-2- propenamide (CMD1), N-hydroxy-3-[4-[[(2-hydroxyethyl)[2-(1 H-indol-3-yl)-ethyl]- amino]methyl]phenyl]-2E-2-propenamide (CMD2), N-hydroxy-3-[4-[[[2-(5-methoxy-1 H-indol- 3-yl)-ethyl]-amino]methyl]phenyl]-2E-2-propenamide (CMD3), N-hydroxy-3-[4-[[[2-(5-fluoro- 1 H-indol-3-yl)-ethyl]-amino]methyl]phenyl]-2E-2-propenamide (CMD4), N-hydroxy-3-[4-[[[2- (benzofur-3-yl)-ethyl]-amino]methyl]phenyl]-2E-2-propenamide (CMD5) having a purity of higher than 95% are dissolved in pure dimethylsulfoxide (DMSO) to create a stock solution. The stock solution is diluted with 5% dextrose injection, USP, just prior to dosing. In addition, N- (2-aminophenyl)-4-[N-pyridin-3-yl)methoxycarbonylaminomethyl]benzamide is synthesized in accordance with Example 48 of EP 0847992 and used as a control compound (CMDC). Inhibition of cell growth in monolayer for 72 hours of compound treatment is measured in triplicate experiments and used to derive the IC50 by MTS assay. The results are shown in Table B1.
Table B1
Monolayer Growth ICfin (uM)
Compound H1299 HCT116
CMD1 0.40 0.03
CMD2 0.15 0.01
CMD3 0.58 0.03
CMD4 0.28 0.03
CMD5 0.18 0.03
CMDC 6.8 0.67
The results show that the hydroxamate compounds of the present invention are highly active in inhibition of tumor cell growth. In addition to the above results, it has been observed that the compounds selectively inhibited tumor cells while showing minimal inhibition activities in non-tumorous cells.
The cells treated with the hydroxamate compounds are also tested for the induction of p21 promoter, which is a key mediator of G1 arrest and differentiation. The hydroxamate compounds activate the p21 promoter to a readily detectable level at a concentration within two-fold of their respective IC50 for monolayer cell growth inhibition in H1299. Without being bound by any particular theory, the correlation appears to demonstrate that HDA inhibition leads to transcriptional activation of genes that inhibit tumor cell proliferation.
Example B2
HDA is partially purified from H1299, human non-small cell lung carcinoma cells (obtained from American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD 20852, USA). Cells are grown to 70-80% confluence in RPMI media in the presence of 10% FCS, harvested and lysed by sonication. The lysate is centrifuged at 23, 420g for 10-15 min, the supernatant is applied to a Hiload 26/10 High performance Q-sepharose column (Amersham Pharmacia Biotech), and equilibrated with a buffer containing 20 mM Tris pH8.0, 1 mM EDTA, 10 mM NH4CI2, 1 mM β-Mercaptoethanol, 5% glycerol, 2 μg/mL aprotinin, 1 μg/mL leupeptin, and 400 mM PMSF. Proteins are eluted in 4mL aliquotes with a linear gradient from 0-500 mM NaCI in the above buffer at a flow rate of 2.5 mlJmin. Each preparation of partially purified HDA enzyme is titrated to determine the optimal amount needed to obtain a signal to noise ratio of at least 5 to 1. Generally, 20-30 μl of partially purified HDA (5-10 mg protein/mL) is mixed with 2 μL of compound solution in DMSO in a deep well titer plate (Beckman). The compounds are serially diluted in DMSO to generate stocks at 20-fold of the assay concentrations. Final concentrations of compounds in the assay are 10 μM, 2 μM, 400 nM, 80 nM, and 16 nM with the final percentage of DMSO in each enzyme reaction equaling 0.1%. Each concentration of compound is assayed in duplicate. The substrate used in the reaction is a peptide of amino acid sequence, SGRGKGGKGLGKGGAKRHRKVLRD, corresponding to the twenty-four N-terminal amino acids of human histone H4, biotinylated at the N-terminus and penta-acetylated, at each lysine residue with 3H-acetate. To initiate the reaction, the substrate is diluted in 10 μL of Buffer A (100 mM Tris pH 8.0, 2 mM EDTA), added to the enzyme mixture and collected at the bottom of the deep well plate by centrifugation for 5 minutes at 1500 rpm. Following centrifugation, the mixture is incubated at 37 °C for 1.5 hr. The reaction is stopped by the addition of 20 μL of the Stop Buffer (0.5N HCI, 0.08M Acetic Acid). At this point, the assay proceeds to the robotic extraction phase or is frozen for several days at -80 °C.
The extraction of enzymatically cleaved 3H-acetate groups from the reaction mixture is achieved with the solvent TBME (t-butyl methyl ether) using the Tomtec Quadra 96 workstation. A program is written to add 200 μL of TBME to a 96 "deep well" plate. The workstation is programmed to aspirate 50 μL of air followed by 200 μL of TBME and finally another 25 μL of air, which is dispensed into the each well of the plate. The contents of the deep well were mixed thoroughly by pipetting 160 μL up and down 10 times. Before addition of TBME to the reaction mixture, it is necessary to "pre-wet" the pipette tips with TBME to prevent the solvent from dripping during the transfer to the deep well plate. The organic and aqueous phases in the deep well are separated by centrifugation at 1500 rpm for 5 min. Opti-Phase Supermix liquid scintillation cocktail (200 μL) (Wallac) is added to each well of the 96-well Trilux plate (Wallac). The deep well and Trilux plates are placed back on the workstation programmed to aspirate 25 μL of air into the pipette tips followed by 100 μL of the upper TBME phase and transfer it into the Trilux plate. The solutions are mixed by pipetting and expelling 50 μL, five times, within the same well. The Trilux plate is covered with clear film and read on a 1450 MicroBeta Trilux liquid scintillation and luminescence counter (Wallac) with a color/chemical quench and dpm correction.
In order to determine the IC50 values, the data are analyzed on a spreadsheet. The analysis requires a correction for the background luminescence that is accomplished by subtracting the dpm values of wells without 3H substrate from the experimental wells. The corrected dpm values along with the concentrations of the compounds are used to calculate IC50 using the user-defined spline function. This function utilizes linear regression techniques between data points to calculate the concentration of compounds that produced 50% inhibition. The results are shown in Table B2.
Table B2
Compound HDA Enzvme Activity IC™ (μM)
CMD1 0.032
CMD2 0.063
CMD3 0.014
CMD4 0.014
CMD5 0.016
CMDC > 10
Example B3
The A549 non-small cell lung human tumor cell line is purchased from the American Type Culture Collection, Rockville, MD. The cell line is free of Mycoplasma contamination (Rapid Detection System by Gen-Probe, Inc., San Diego, CA) and viral contamination (MAP testing by MA BioServices, Inc., Rockville, MD). The cell line is propagated and expanded in RPMI 1640 medium containing 10% heat-inactivated FBS (Life Technologies, Grand Island, NY). Cell expansions for implantation are performed in cell factories (NUNC, purchased from Fisher Scientific, Springfield, NJ). Cells are harvested at 50-90% confluency, washed once with HBSS containing 10% FBS, and suspended in 100% HBSS.
Outbred athymic (nu/nu) female mice ("Hsd:Athymic Nude-nu" from Harlan Sprague Dawley, Indianapolis, IN) are anesthetized with Metofane (Mallinckrodt Veterinary, Inc., Mundelein, IL), and 100 μL of the cell suspension containing 1x107 cells is injected subcutaneously into the right axillary (lateral) region of each animal. Tumors are allowed to grow for about 20 days until a volume of -100 mm3 is achieved. At this point, mice bearing tumors with acceptable morphology and size are sorted into groups of eight for the study. The sorting process produces groups balanced with respect to mean and range of tumor size. Antitumor activity is expressed as % T/C, comparing differences in tumor volumes for treatment group (T) to vehicle control group (C). Regressions are calculated using the formula: (1-T/T0) x 100%, where T is the tumor volume for the treatment group at the end of the experiment, and T0 is the tumor volume at the beginning of the experiment.
CMD1 is administered intravenously, once daily 5x week for three weeks, at doses of 10, 25, 50, or 100 mg/kg. The final DMSO concentration is 10%. Each test group has eight mice. Tumors are measured, and individual animal body weights recorded. Table B3 shows the results on the 41st day.
Table B3
Δ MEAN Δ %
DOSE TUMOR VOLUME 1 BODY WEIGHT*2
COMPOUND (mg/kg) (mm3 ± SEM*3) % T/C (% ± SEM*3.
10% DMSO/D5W*4 - 376 ± 55 - +11.9 ± 0.2
CMD1 10 121 + 27 32 + 1.3 + 0.3
CMD1 25 77 ± 32 20 - 0.9 ± 0.3
CMD1 50 57 + 10 15 - 0.4 ± 0.3
CMD1 100 28 ± 25 7 + 0.4 ± 0.3
Note:*1. Difference in mean tumor volume for a group of animals at the end of the experiment minus mean tumor volume at the beginning.
*2. Difference in body weight for a group of animals at the end of the experiment minus mean tumor volume at the beginning.
*3. Standard error of the mean.
*4. 5% dextrose injection, USP. Example B4
Example B3 repeated except CMD2 is used. Table B4 shows the results.
Table B4
Δ MEAN Δ %
DOSE TUMOR VOLUME BODY WEIGHT
COMPOUND (mg/kg) (mm3 ± SEM) % T/C (% ± SEM)
10% DMSO/D5W - 135 ± 43 - + 6.7 ± 1.1
CMD2 25 37 ± 16 27 - 4.2 ± 2.5
CMD2 50 29 ± 15 21 - 2.9 ± 1.5
Example B5
Example B3 is repeated except the HCT116 colon tumor cell line is used in place of the A549 cell line. The HCT116 cell line is also obtained from American Type Culture Collection, Rockville, MD, and the cell line is free of Mycoplasma contamination and viral contamination. The results are recorded on the 34th day and are shown in Table B5.
Table B5
Δ MEAN Δ %
DOSE TUMOR VOLUME BODY WEIGHT
COMPOUND (mq/kq) (mm3 ± SEM) % T/C (% ± SEM)
10% DMSO/D5W - 759 ± 108 - - 0.4 ± 0.4
CMD1 50*10 186 ± 40 25 - 7.4 ± 0.8
CMD1 100 140 ± 38 18 - 3.2 ± 0.4
Note: *10. Seven mice are tested in this group. Example B6
Example B4 is repeated except the HCT116 colon tumor cell line is used in place of the A549 cell line. The HCT116 is also obtained from American Type Culture Collection, Rockville, MD, and the cell line is free of Mycoplasma contamination and viral contamination. The results are recorded on the 34th day and are shown in Table B6.
Table B6
Δ MEAN Δ %
DOSE TUMOR VOLUME BODY WEIGHT
COMPOUND (mq/kq) (mm3 ± SEM) % T/C (% ± SEM)
10% DMSO/D5W - 759 ± 108 - - 0.4 ± 0.4
CMD2 10 422 ± 75 56 - 10.2 ± 0.5
CMD2 25 305 ± 47 40 - 7.0 ± 0.2
)
CMD2 50 97 ± 30 13 - 7.3 ± 0.3
CMD2 100 132 ± 30 17 - 9.4 ± 0.4
Example B7
Annexin V binding was used as a marker for the early stages of apoptosis. A549, HCT116 and Normal Dermal Human Fibroblasts (NDHF) cells are treated separately with four compounds (CMD1, CMD2, CMD3 and CMD4) for 24 or 48 hours, stained with annexin V and compared to cells treated similarly with vehicle (DMSO). Cells are examined by fluorescence microscopy. Those undergoing apoptosis exhibit green fluorescent membrane staining. Viability is assessed by the counterstain, propidium iodide. Cells detected by red fluorescence are not viable. A small percentage of A549 and the majority of HCT116 cells exhibit cell surface staining with annexin V after 24 hour exposure to each of the four compounds. After 48 hour treatment, the majority of the A549 and HCT116 stain with annexin V and/or propidium iodide indicating that the compounds induce apoptotic cell death. In contrast, NDHF cells do not show noticeable annexin V staining after 24 hour exposure and limited annexin V staining with CMD3 after 48 hour. These data show that NDHF cells predominantly underwent non-lethal growth arrest upon compound treatment, consistent with the cell cycle profile.
The staining results demonstrate that the hydroxamate compounds of the present invention cause tumor cells to die by apoptosis, while causing normal fibroblast to predominantly undergo cell cycle arrest, clearly demonstrating the selective efficacy of the present compounds.

Claims (40)

What is claimed is:
1. A compound of the formula I
wherein
RT is H, halo, or a straight chain C C6 alkyl;
R2 is selected from H, C Cιo alkyl, C4 - C9 cycloalkyl, C - C9 heterocycloalkyl, C - Cg heterocycloalkylalkyl, cycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, -(CH2)nC(O)R6, -(CH2)nOC(O)R6, amino acyl, HON-C(O)-CH=C(Rι)-aryl-alkyl- and -(CH2)nR7;
R3 and R4 are the same or different and independently H, Cι-C6 alkyl, acyl or acylamino, or R3 and R4 together with the carbon to which they are bound represent C=O, C=S, or C=NR8, or R2 together with the nitrogen to which it is bound and R3 together with the carbon to which it is bound can form a C4 - C9 heterocycloalkyl, a heteroaryl, a polyheteroaryl, a non-aromatic polyheterocycle, or a mixed aryl and non-aryl polyheterocycle ring;
R5 is selected from H, CrC6 alkyl, C - C9 cycloalkyl, C4 - C9 heterocycloalkyl, acyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, aromatic polycycle, non-aromatic polycycle, mixed aryl and non-aryl polycycle, polyheteroaryl, non-aromatic polyheterocycle, and mixed aryl and non-aryl polyheterocycle; n, ni, n2 and n3 are the same or different and independently selected from 0 - 6, when ni is 1-6, each carbon atom can be optionally and independently substituted with R3 and/or R4;
X and Y are the same or different and independently selected from H, halo, C C4 alkyl, NO2, C(O)Rι, ORg, SR9, CN, and NRioRn; R6 is selected from H, CrC6 alkyl, C - C9 cycloalkyl, C4 - C9 heterocycloalkyl, cycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, OR12, and NRι34; R7 is selected from OR15, SR15, S(O)R16, SO27, NRι34, and NRι2SO2R6; R8 is selected from H, OR15, NRι3R14, CrC6 alkyl, C4 - C9 cycloalkyl, C4 - C9 heterocycloalkyl, aryl, heteroaryl, arylalkyl, and heteroarylalkyl; R9 is selected from Ci - C4 alkyl and C(O)-alkyl; R10 and Rn are the same or different and independently selected from H, C C4 alkyl, and -C(O)-alkyl; Rι2 is selected from H, Cι-C6 alkyl, C4 - Cg cycloalkyl, C - Cg heterocycloalkyl, C4 - C9 heterocycloalkylalkyl, aryl, mixed aryl and non-aryl polycycle, heteroaryl, arylalkyl, and heteroarylalkyl; Rι3 and R,4 are the same or different and independently selected from H, Cι-C6 alkyl,
C4 - C9 cycloalkyl, C4 - C9 heterocycloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, amino acyl, or Rι3 and R 4 together with the nitrogen to which they are bound are
C4 - Cg heterocycloalkyl, heteroaryl, polyheteroaryl, non-aromatic polyheterocycle or mixed aryl and non-aryl polyheterocycle; R15 is selected from H, Ci-Ce alkyl, C4 - C9 cycloalkyl, C4 - C9 heterocycloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl and (CH2)mZR12; Rie is selected from C.-C6 alkyl, C4 - C9 cycloalkyl, C4 - C9 heterocycloalkyl, aryl, heteroaryl, polyheteroaryl, arylalkyl, heteroarylalkyl and (CH2)mZRι2; R17 is selected from CrC6 alkyl, C4 - C9 cycloalkyl, C - Cg heterocycloalkyl, aryl, aromatic polycycle, heteroaryl, arylalkyl, heteroarylalkyl, polyheteroaryl and NR13Rι ; m is an integer selected from 0 to 6; and Z is selected from O, NRi3, S and S(O); or a pharmaceutically acceptable salt thereof.
2. A compound of claim 1 wherein each of Ri, X, Y, R3, and R4 is H.
3. A compound of claim 2 wherein one of n2 and n3 is zero and the other is 1.
4. A compound of claim 3 wherein R2 is H or -CH2-CH2-OH.
5. A compound of claim 1 of the formula la wherein n4 is 0-3,
R2 is selected from H, CrC6 alkyl, C4 - Cg cycloalkyl, C4 - C9 heterocycloalkyl, cycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, -(CH2)nC(O)R6, amino acyl and -(CH2)nR7; R5' is heteroaryl, heteroarylalkyl, an aromatic polycycle, a non-aromatic polycycle, a mixed aryl and non-aryl polycycle, polyheteroaryl, or a mixed aryl and non-aryl polyheterocycle, or a pharmaceutically acceptable salt thereof.
6. A compound of claim 1 of the formula la
wherein n is 0-3,
R2 is selected from H, CrC6 alkyl, C4 - C9 cycloalkyl, C4 - C9 heterocycloalkyl, cycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, -(CH2)nC(O)R6, amino acyl and -(CH2)nR7; R5' is aryl, arylalkyl, an aromatic polycycle, a non-aromatic polycycle or a mixed aryl and non-aryl polycycle, or a pharmaceutically acceptable salt thereof.
7. A compound of claim 6 wherein R5' is aryl or arylalkyl.
8. A compound of claim 7 wherein R5' is p-fluorophenyl, p-chlorophenyl, p-O-C C4- alkylphenyl, p-d-C4-alkylphenyl, benzyl, ortho, meta or para-fluorobenzyl, ortho, meta or para-chlorobenzyl, or ortho, meta or para - mono, di or tri-O-CrC4-alkylbenzyl.
9. A compound of claim 1 of the formula lb
wherein
R2' is selected from H, CrC6 alkyl, C -C6 cycloalkyl, cycloalkylalkyl, -(CH2)2-4OR2ι where R2ι is H, methyl, ethyl, propyl, or isopropyl, and
R5" is unsubstituted or substituted 1 rY-indol-3-yl, benzofuran-3-yl or quinolin-3-yl, or a pharmaceutically acceptable salt thereof.
10. A compound of claim 9 wherein R5" is substituted 1 H-indol-3-yl or substituted benzofuran-3-yl.
11. A compound of claim 1 of the formula lc
wherein the ring containing Zi is aromatic or non-aromatic which non-aromatic rings are saturated or unsaturated, R18 is H, halo, d-C6alkyl, C3-C7cycloalkyl, aryl, or heteroaryl; R20 is H, Cι-C6alkyl, d-Cealkyl-Or-Cgcycloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, acyl or sulfonyl;
Ai is 1, 2 or 3 substituents which are independently H, Cι-C-6alkyl, -OR19, halo, alkylamino, aminoalkyl, halo, or heteroarylalkyl;
R2 is selected from H, Cι-C6 alkyl, C - C9 cycloalkyl, C4 - C9 heterocycloalkyl, cycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, -(CH2)nC(O)R6, amino acyl and -(CH2)nR7;
R19 is selected from H, d-C6alkyl, C4-C9cycIoalkyl, C4-Cgheterocycloalkyl, aryl, heteroaryl, arylalkyl, and heteroarylalkyl; v is O, 1 or 2, p is 0-3, and q is 1 -5 and r is 0 or q is 0 and r is 1-5, or a pharmaceutically acceptable salt thereof.
12. A compound of claim 11 wherein Z, is N-R20.
13. A compound of claim 11 wherein R2 is H or -CH2-CH2-OH and the sum of q and r is 1.
14. A compound of claim 1 of the formula Id
wherein
R18 is H, halo, CrC6alkyl, C3-C7cycloalkyl, unsubstituted phenyl, substituted phenyl, or heteroaryl, R20 is H, d-C6alkyl, Cι-C6alkyl-C3-C9cycloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, acyl or sulfonyl;
Ai is 1 , 2 or 3 substituents which are independently H, Cι-C-6alkyl, -OR19, or halo,
9 is selected from H, d-C6alkyl, C4-C9cycloalkyl, C4-C9heterocycloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl and -(CH2CH=CH(CH3)(CH2))ι-3H; p is 0-3, and q is 1 -5 and r is 0 or q is 0 and r is 1-5, or a pharmaceutically acceptable salt thereof.
15. A compound of claim 14 wherein R2 is H or -CH2-CH2-OH and the sum of q and r is 1.
16. A compound of claim 11 of the formula le
or a pharmaceutically acceptable salt thereof.
17. A compound of claim 16 wherein Rι8 is H, fluoro, chloro, bromo, Cι-C alkyl, C3- dcycloalkyl, phenyl or heteroaryl.
18. A compound of claim 16 wherein R2 is H, or -(CH2)pCH2OH and wherein p is 1-3.
19. A compound of claim 18 wherein Ri is H and X and Y are each H, and wherein q is 1-3 and r is 0 or wherein q is 0 and r is 1 -3.
20. A compound of claim 16 wherein Rι8 is H, methyl, ethyl, t-butyl, trifluoromethyl, cyclohexyl, phenyl, 4-methoxyphenyl, 4-trifluoromethylphenyl, 2-furanyl, 2-thiophenyl, or 2-, 3- or 4-pyridyl.
21. A compound of claim 20 wherein R2 is H, or -(CH2)pCH2OH.
22. A compound of claim 21 wherein p is 1-3.
23. A compound of claim 22 wherein Ri is H and X and Y are each H, and wherein q is 1-3 and r is 0 or wherein q is 0 and r is 1-3.
24. A compound of claim 23 wherein R2 is H or -CH2-CH2-OH and the sum of q and r is 1.
25. A compound of claim 16 wherein R20 is H or d-C6alkyl.
26. A compound of claim 16 seleoted from the group consisting of N-hydroxy-3-[4-[[(2- hydroxyethyl)[2-(1 H-indol-3-yl)ethylj-amino]methyl]phenyl]-2E-2-propenamide, N-hydroxy-3- [4-[[[2-(1 H-indol-3-yl)ethyl]-amino]methyl]phenyl]-2E-2-propenamide and N-hydroxy-3-[4- [[[2-(2-methyl-1 rV-indol-3-yl)-ethyl]-amino]methyl]phenyl]-2E-2-propenamide, or a pharmaceutically acceptable salt thereof.
27. A compound of claim 26 which is N-hydroxy-3-[4-[[(2-hydroxyethyl)[2-(1 H-indol-3- yl)ethyl]-amino]methyl]phenyl]-2E-2-propenamide, or a pharmaceutically acceptable salt thereof.
28. A compound of claim 1 of the formula If
or a pharmaceutically acceptable salt thereof.
29. A compound of claim 28 wherein R2 is H or -(CH2)pCH2OH and p is 1 -3.
30. A compound of claim 29 wherein R, is H and X and Y are each H, and wherein q is 1-3 and r is 0 or wherein q is 0 and r is 1 -3.
31. A compound of claim 30 wherein R2 is H or -CH2-CH2-OH and the sum of q and r is 1.
32. A compound of claim 28 which is N-hydroxy-3-[4-[[[2-(benzofur-3-yl)-ethyI]- amino]methyl]phenyl]-2E-2-propenamide, or a pharmaceutically acceptable salt thereof.
33. A pharmaceutical composition comprising a pharmaceutically effective amount of a compound of formula I
wherein
Ri is H, halo, or a straight chain d-Ce alkyl;
R2 is selected from H, d-C10 alkyl, C4 - Cg cycloalkyl, C4 - C9 heterocycloalkyl, C - C9 heterocycloalkylalkyl, cycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, -(CH2)nC(O)R6, -(CH2)nOC(O)R6, amino acyl, HON-C(O)-CH=C(Rι)-aryl-alkyl- and -(CH2)nR7;
R3 and R4 are the same or different and independently H, d-C6 alkyl, acyl or acylamino, or R3 and R4 together with the carbon to which they are bound represent C=O, C=S, or C=NR8, or R2 together with the nitrogen to which it is bound and R3 together with the carbon to which it is bound can form a C4 - C9 heterocycloalkyl, a heteroaryl, a polyheteroaryl, a non-aromatic polyheterocycle, or a mixed aryl and non-aryl polyheterocycle ring; R5 is selected from H, d-C6 alkyl, C4 - C9 cycloalkyl, C4 - C9 heterocycloalkyl, acyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, aromatic polycycle, non-aromatic polycycle, mixed aryl and non-aryl polycycle, polyheteroaryl, non-aromatic polyheterocycle, and mixed aryl and non-aryl polyheterocycle; n, ni, n2 and n3 are the same or different and independently selected from 0 - 6, when n, is 1-6, each carbon atom can be optionally and independently substituted with R3 and/or R4; X and Y are the same or different and independently selected from H, halo, d-C4 alkyl,
NO2, C(O)Rι, OR9, SR9, CN, and NRι0Rn; R6 is selected from H, Ci-Ce alkyl, C - C9 cycloalkyl, C - Cg heterocycloalkyl, cycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, OR12, and NR13R14; R7 is selected from ORι5, SRι5, S(O)Rι6, SO27, NR134, and NRι2SO2R6; R8 is selected from H, ORι5, NRι34, CrC6 alkyl, C4 - C9 cycloalkyl, C - C9 heterocycloalkyl, aryl, heteroaryl, arylalkyl, and heteroarylalkyl; R9 is selected from Ci - C4 alkyl and C(O)-alkyl; Rio and Rn are the same or different and independently selected from H, d-C4 alkyl, and -C(O)-alkyl; R12 is selected from H, Ci-Ce alkyl, C4 - C9 cycloalkyl, C - C9 heterocycloalkyl, C4 - C9 heterocycloalkylalkyl, aryl, mixed aryl and non-aryl polycycle, heteroaryl, arylalkyl, and heteroarylalkyl; Rι3 and Ru are the same or different and independently selected from H, Ci-Ce alkyl,
C4 - C9 cycloalkyl, C4 - C9 heterocycloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, amino acyl, or R 3 and Ri together with the nitrogen to which they are bound are
C4 - C9 heterocycloalkyl, heteroaryl, polyheteroaryl, non-aromatic polyheterocycle or mixed aryl and non-aryl polyheterocycle; Ri5 is selected from H, d-C6 alkyl, C4 - C9 cycloalkyl, C - C9 heterocycloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl and (CH2)mZRι2; Rιe is selected from d-C6 alkyl, C4 - C9 cycloalkyl, C4 - C9 heterocycloalkyl, aryl, heteroaryl, polyheteroaryl, arylalkyl, heteroarylalkyl and (CH2)mZRι2; Rι7 is selected from Cι-C6 alkyl, C - C9 cycloalkyl, C4 - C9 heterocycloalkyl, aryl, aromatic polycycle, heteroaryl, arylalkyl, heteroarylalkyl, polyheteroaryl and NRι34; m is an integer selected from 0 to 6; and Z is selected from O, NR13, S and S(O); pharmaceutically acceptable salt thereof.
34. A pharmaceutical composition of claim 33 wherein the compound of formula I is selected from the group consisting of N-hydroxy-3-[4-[[(2-hydroxyethyl)[2-(1 H-indol-3- yl)ethyl]-amino]methyl]phenyl]-2E-2-propenamide, N-hydroxy-3-[4-[[[2-(1H-indol-3-yl)ethyl]- amino]methyl]phenyl]-2E-2-propenamide and N-hydroxy-3-[4-[[[2-(2-methyl-1 -/-indol-3-yl)- ethyl]-amino]methyl]phenyl]-2E-2-propenamide, or a pharmaceutically acceptable salt thereof.
35. A pharmaceutical composition of claim 34 wherein the compound of formula I is N- hydroxy-3-[4-[[(2-hydroxyethyl)[2-(1H-indol-3-yl)ethyl]-amino]methyl]phenyl]-2E-2- propenamide, or a pharmaceutically acceptable salt thereof.
36. A pharmaceutical composition of claim 33 wherein the compound of formula I is N- hydroxy-3-[4-[[[2-(benzofur-3-yl)-ethyl]-amino]methyl]phenyl]-2E-2-propenamide, or a pharmaceutically acceptable salt thereof.
37. A method for treating a proliferative disorder in a mammal which comprises administering to said mammal a compound of the formula I
wherein
Ri is H, halo, or a straight chain Ci-Ce alkyl;
R2 is selected from H, C1-C10 alkyl, C4 - C9 cycloalkyl, C4 - C9 heterocycloalkyl, C4 - C9 heterocycloalkylalkyl, cycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl,
-(CH2)nC(O)R6, -(CH2)nOC(O)R6, amino acyl, HON-C(O)-CH=C(Rι)-aryl-alkyl- and
-(CH2)nRr; R3 and R4 are the same or different and independently H, Ci-Ce alkyl, acyl or acylamino. or R3 and R together with the carbon to which they are bound represent C=O, C=S, or C=NR8, or R2 together with the nitrogen to which it is bound and R3 together with the carbon to which it is bound can form a C4 - C9 heterocycloalkyl, a heteroaryl, a polyheteroaryl, a non-aromatic polyheterocycle, or a mixed aryl and non-aryl polyheterocycle ring; R5 is selected from H, Ci-Ce alkyl, C4 - Cg cycloalkyl, C - C9 heterocycloalkyl, acyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, aromatic polycycle, non-aromatic polycycle, mixed aryl and non-aryl polycycle, polyheteroaryl, non-aromatic polyheterocycle, and mixed aryl and non-aryl polyheterocycle; n, ni, n2 and n3 are the same or different and independently selected from 0 - 6, when ni is 1-6, each carbon atom can be optionally and independently substituted with R3 and/or R4; X and Y are the same or different and independently selected from H, halo, d-C alkyl,
NO2, C(O)R1f OR9, SR9, CN, and NRι0Rn; R6 is selected from H, C C6 alkyl, C4 - C9 cycloalkyl, C4 - Cg heterocycloalkyl, cycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, ORι2, and NRι34; R7 is selected from OR15, SR15, S(O)Rι6, SO27, NRι34, and NRι2SO2R6; R8 is selected from H, ORι5, NRι3Ri4, Ci-Ce alkyl, C4 - C9 cycloalkyl, C4 - C9 heterocycloalkyl, aryl, heteroaryl, arylalkyl, and heteroarylalkyl; R9 is selected from Ci - C4 alkyl and C(O)-alkyl; Rio and Rn are the same or different and independently selected from H, CrC alkyl, and -C(O)-alkyl; R12 is selected from H, Cι-C6 alkyl, C - C9 cycloalkyl, C4 - C9 heterocycloalkyl, C4 - C9 heterocycloalkylalkyl, aryl, mixed aryl and non-aryl polycycle, heteroaryl, arylalkyl, and heteroarylalkyl; Rι3 and R 4 are the same or different and independently selected from H, Ci-Ce alkyl,
C4 - C9 cycloalkyl, C4 - C9 heterocycloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, amino acyl, or R 3 and Rι4 together with the nitrogen to which they are bound are
C4 - C9 heterocycloalkyl, heteroaryl, polyheteroaryl, non-aromatic polyheterocycle or mixed aryl and non-aryl polyheterocycle; R15 is selected from H, Cι-C6 alkyl, C - C9 cycloalkyl, C4 - C9 heterocycloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl and (CH2)mZR12; Rie is selected from Cι-C6 alkyl, C4 - C9 cycloalkyl, C4 - C9 heterocycloalkyl, aryl, heteroaryl, polyheteroaryl, arylalkyl, heteroarylalkyl and (CH2)mZRι2; Rι7 is selected from Ci-Ce alkyl, C4 - C9 cycloalkyl, C - C9 heterocycloalkyl, aryl, aromatic polycycle, heteroaryl, arylalkyl, heteroarylalkyl, polyheteroaryl and Rι3R 4; m is an integer selected from 0 to 6; and Z is selected from O, NRι3, S and S(O); or a pharmaceutically acceptable salt thereof.
38. A method of claim 37 wherein the compound of formula I is selected from the group consisting of N-hydroxy-3-[4-[[(2-hydroxyethyl)[2-(1 H-indol-3-yl)ethyl]-amino]methyl]phenyl]- 2E-2-propenamide, N-hydroxy-3-[4-[[[2-(1H-indol-3-yl)ethyl]-amino]methyl]phenyl]-2E-2- propenamide and N-hydroxy-3-[4-[[[2-(2-methyl-1 H-indol-3-yl)-ethyl]-amino]methyl]phenyl]- 2E-2-propenamide, or a pharmaceutically acceptable salt thereof.
39. A method for regulating p21 promoter which comprises introducing a compound of the formula I
wherein
Ri is H, halo, or a straight chain Ci-Ce alkyl;
R2 is selected from H, C1-C10 alkyl, C4 - C9 cycloalkyl, C4 - C9 heterocycloalkyl, C - C9 heterocycloalkylalkyl, cycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, -(CH2)nC(O)R6, -(CH2)nOC(O)R6, amino acyl, HON-C(O)-CH=C(Rι)-aryl-alkyl- and -(CH2)nR7;
R3 and R4 are the same or different and independently H, Ci-Ce alkyl, acyl or acylamino, or R3 and R4 together with the carbon to which they are bound represent C=O, C=S, or C=NR8, or R2 together with the nitrogen to which it is bound and R3 together with the carbon to which it is bound can form a C4 - C9 heterocycloalkyl, a heteroaryl, a polyheteroaryl, a non-aromatic polyheterocycle, or a mixed aryl and non-aryl polyheterocycle ring; R5 is selected from H, Ci-Ce alkyl, C4 - C9 cycloalkyl, C4 - C9 heterocycloalkyl, acyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, aromatic polycycle, non-aromatic polycycle, mixed aryl and non-aryl polycycle, polyheteroaryl, non-aromatic polyheterocycle, and mixed aryl and non-aryl polyheterocycle; n, n , n2 and n3 are the same or different and independently selected from 0 - 6, when ni is 1 -6, each carbon atom can be optionally and independently substituted with R3 and/or R4; X and Y are the same or different and independently selected from H, halo, Cι-C alkyl,
NO2, C(O)Rι, OR9, SR9, CN, and NRι0Rn; R6 is selected from H, d-C6 alkyl, C4 - C9 cycloalkyl, C4 - Cg heterocycloalkyl, cycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, ORι2, and NRι34; R7 is selected from OR15, SRι5, S(O)Rι6, SO27, NRι34, and NR12SO2R6; R8 is selected from H, ORι5, NRι34, Cι-C6 alkyl, C4 - C9 cycloalkyl, C - C9 heterocycloalkyl, aryl, heteroaryl, arylalkyl, and heteroarylalkyl; R9 is selected from Ci - C4 alkyl and C(O)-alkyl; Rio and Rn are the same or different and independently selected from H, Cι-C4 alkyl, and -C(O)-alkyl; Rι2 is selected from H, Ci-Ce alkyl, C4 - C9 cycloalkyl, C4 - C9 heterocycloalkyl, C4 - C9 heterocycloalkylalkyl, aryl, mixed aryl and non-aryl polycycle, heteroaryl, arylalkyl, and heteroarylalkyl; Rι3 and Rι4 are the same or different and independently selected from H, CrC6 alkyl,
C4 - C9 cycloalkyl, C4 - C9 heterocycloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, amino acyl, or Rι3 and R,4 together with the nitrogen to which they are bound are
C4 - C9 heterocycloalkyl, heteroaryl, polyheteroaryl, non-aromatic polyheterocycle or mixed aryl and non-aryl polyheterocycle; R15 is selected from H, Ci-Ce alkyl, C - C9 cycloalkyl, C4 - C9 heterocycloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl and (CH2)mZRι2; R16 is selected from Ci-Ce alkyl, C - C9 cycloalkyl, C4 - C9 heterocycloalkyl, aryl, heteroaryl, polyheteroaryl, arylalkyl, heteroarylalkyl and (CH2)mZR12; Rι7 is selected from C C6 alkyl, C4 - C9 cycloalkyl, C4 - C9 heterocycloalkyl, aryl, aromatic polycycle, heteroaryl, arylalkyl, heteroarylalkyl, polyheteroaryl and NRι3Rι ; m is an integer selected from 0 to 6; and Z is selected from O, NRi3, S and S(O); pharmaceutically acceptable salt thereof, into the environment of a mammalian cell.
40. A method of claim 39 wherein the compound of formula I is selected from the group consisting of N-hydroxy-3-[4-[[(2-hydroxyethyl)[2-(1 H-indol-3-yl)ethyl]-amino]methyl]phenyl]- 2E-2-propenamide, N-hydroxy-3-[4-[[[2-(1H-indol-3-yl)ethyl]-amino]methyl]phenyl]-2E-2- propenamide and N-hydroxy-3-[4-[[[2-(2-methyl-1 H- indol-3-yl)-ethyl]-amino]methyl]phenyl]- 2E-2-propenamide, or a pharmaceutically acceptable salt thereof.
AU2001282129A 2000-09-01 2001-08-30 Hydroxamate derivatives useful as deacetylase inhibitors Ceased AU2001282129B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US22994300P 2000-09-01 2000-09-01
US60/229,943 2000-09-01
US29223201P 2001-05-18 2001-05-18
US60/292,232 2001-05-18
PCT/EP2001/010037 WO2002022577A2 (en) 2000-09-01 2001-08-30 Hydroxamate derivatives useful as deacetylase inhibitors

Publications (2)

Publication Number Publication Date
AU2001282129A1 true AU2001282129A1 (en) 2002-06-13
AU2001282129B2 AU2001282129B2 (en) 2005-08-25

Family

ID=26923760

Family Applications (2)

Application Number Title Priority Date Filing Date
AU2001282129A Ceased AU2001282129B2 (en) 2000-09-01 2001-08-30 Hydroxamate derivatives useful as deacetylase inhibitors
AU8212901A Pending AU8212901A (en) 2000-09-01 2001-08-30 Deacetylase inhibitors

Family Applications After (1)

Application Number Title Priority Date Filing Date
AU8212901A Pending AU8212901A (en) 2000-09-01 2001-08-30 Deacetylase inhibitors

Country Status (36)

Country Link
US (5) US6552065B2 (en)
EP (2) EP1318980B1 (en)
JP (1) JP4012819B2 (en)
KR (1) KR100585484B1 (en)
CN (1) CN1300110C (en)
AR (1) AR035057A1 (en)
AT (1) ATE376999T1 (en)
AU (2) AU2001282129B2 (en)
BE (1) BE2015C062I2 (en)
BR (1) BRPI0113669B8 (en)
CA (1) CA2420899C (en)
CY (2) CY1107839T1 (en)
CZ (1) CZ302707B6 (en)
DE (1) DE60131179T2 (en)
DK (1) DK1318980T3 (en)
EC (1) ECSP034492A (en)
ES (1) ES2292610T3 (en)
FR (1) FR15C0086I2 (en)
HK (1) HK1057746A1 (en)
HU (2) HU229796B1 (en)
IL (2) IL154574A0 (en)
LU (1) LU92890I2 (en)
MX (1) MXPA03001832A (en)
MY (1) MY136892A (en)
NL (1) NL300778I2 (en)
NO (2) NO324942B1 (en)
NZ (1) NZ524365A (en)
PE (1) PE20020354A1 (en)
PL (1) PL221738B1 (en)
PT (1) PT1318980E (en)
RU (1) RU2302408C3 (en)
SI (1) SI1318980T1 (en)
SK (1) SK287609B6 (en)
TW (1) TWI286544B (en)
WO (1) WO2002022577A2 (en)
ZA (1) ZA200301423B (en)

Families Citing this family (428)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6777217B1 (en) 1996-03-26 2004-08-17 President And Fellows Of Harvard College Histone deacetylases, and uses related thereto
US6822267B1 (en) * 1997-08-20 2004-11-23 Advantest Corporation Signal transmission circuit, CMOS semiconductor device, and circuit board
EP1233958B1 (en) 1999-11-23 2011-06-29 MethylGene Inc. Inhibitors of histone deacetylase
US20030129724A1 (en) 2000-03-03 2003-07-10 Grozinger Christina M. Class II human histone deacetylases, and uses related thereto
PE20020354A1 (en) * 2000-09-01 2002-06-12 Novartis Ag HYDROXAMATE COMPOUNDS AS HISTONE-DESACETILASE (HDA) INHIBITORS
CA2423868C (en) 2000-09-29 2011-06-07 Prolifix Limited Carbamic acid compounds comprising an amide linkage as hdac inhibitors
US7312247B2 (en) * 2001-03-27 2007-12-25 Errant Gene Therapeutics, Llc Histone deacetylase inhibitors
EP2269609A3 (en) 2001-10-16 2012-07-11 Sloan-Kettering Institute for Cancer Research Treatment of neurodegenerative diseases and cancer of the brain with SAHA
ATE352319T1 (en) * 2001-11-06 2007-02-15 Novartis Pharma Gmbh COMBINATION CYCLOOXYGENASE-2 INHIBITOR/HISTONE DEACETYLASE INHIBITOR
US7456219B2 (en) 2002-03-04 2008-11-25 Merck Hdac Research, Llc Polymorphs of suberoylanilide hydroxamic acid
US7148257B2 (en) 2002-03-04 2006-12-12 Merck Hdac Research, Llc Methods of treating mesothelioma with suberoylanilide hydroxamic acid
BR0308250A (en) 2002-03-04 2005-01-11 Aton Pharma Inc Terminal Differentiation Induction Methods
CA2479906C (en) 2002-04-03 2011-02-08 Topotarget Uk Limited Carbamic acid compounds comprising a piperazine linkage as hdac inhibitors
AU2003219595A1 (en) 2002-04-11 2003-10-27 In2Gen Co., Ltd. Alpha,Beta-UNSATURATED HYDROXAMIC ACID DERIVATIVES AND THEIR USE AS HISTONE DEACETYLASE INHIBITORS
AU2003226408B2 (en) * 2002-04-15 2007-06-14 Sloan-Kettering Institute For Cancer Research Combination therapy for the treatment of cancer
SG162616A1 (en) * 2002-06-10 2010-07-29 Novartis Ag Combinations comprising epothilones and pharmaceutical uses thereof
JP4804004B2 (en) * 2002-08-20 2011-10-26 アステラス製薬株式会社 Articular cartilage extracellular matrix degradation inhibitor
EP1553948B1 (en) * 2002-09-13 2011-08-24 Virginia Commonwealth University Combination of imatnib and a histone deacetylase inhibitor for the treatment of leukemia
US7154002B1 (en) 2002-10-08 2006-12-26 Takeda San Diego, Inc. Histone deacetylase inhibitors
US7250514B1 (en) 2002-10-21 2007-07-31 Takeda San Diego, Inc. Histone deacetylase inhibitors
US20060223826A1 (en) * 2002-11-19 2006-10-05 Takeda Pharmaceutical Company Limited Intellectual Property Department Indole derivatives as somatostatin agonists or antagonists
AU2003296310A1 (en) 2002-12-06 2004-06-30 University Of South Florida Histone deacetylase inhibitor enhancement of trail-induced apoptosis
TW200418806A (en) 2003-01-13 2004-10-01 Fujisawa Pharmaceutical Co HDAC inhibitor
JP4612621B2 (en) 2003-01-17 2011-01-12 トポターゲット ユーケー リミテッド Carbamate compounds containing ester or ketone linkages as HDAC inhibitors
AU2003900587A0 (en) * 2003-02-11 2003-02-27 Fujisawa Pharmaceutical Co., Ltd. Hdac inhibitor
AU2003900608A0 (en) * 2003-02-11 2003-02-27 Fujisawa Pharmaceutical Co., Ltd. Hdac inhibitor
JP4790594B2 (en) 2003-02-25 2011-10-12 トポターゲット ユーケー リミテッド Hydroxamic acid compounds containing bicyclic heteroaryl groups as HDAC inhibitors
JP2006520796A (en) * 2003-03-17 2006-09-14 タケダ サン ディエゴ インコーポレイテッド Histone deacetylase inhibitor
BRPI0410648A (en) * 2003-05-21 2006-07-04 Novartis Ag combination of histone deacetylase inhibitors with chemotherapeutic agents
WO2005011598A2 (en) * 2003-07-31 2005-02-10 University Of South Florida Leukemia treatment method and composition
WO2005013958A1 (en) * 2003-08-07 2005-02-17 Novartis Ag Histone deacetylase inhibitors as immunosuppressants
CA2533861A1 (en) 2003-08-08 2005-02-17 Novartis Ag Combinations comprising staurosporines
PL1663194T3 (en) 2003-08-26 2011-01-31 Merck Hdac Res Llc Use of SAHA for treating mesothelioma
US20070190022A1 (en) 2003-08-29 2007-08-16 Bacopoulos Nicholas G Combination methods of treating cancer
CN100455564C (en) * 2003-09-12 2009-01-28 深圳微芯生物科技有限责任公司 Histone de-acetylase inhibitor, preparation and application of pharmaceutical preparations of the same
CN1852737A (en) * 2003-09-18 2006-10-25 诺瓦提斯公司 Combination of a histone deacetylase inhibitor with a death receptor ligand
EP1673349B1 (en) * 2003-09-22 2010-06-30 S*Bio Pte Ltd Benzimidazole derivatives: preparation and pharmaceutical applications
BRPI0414581C1 (en) 2003-09-22 2021-05-25 Mei Pharma Inc compound, pharmaceutical composition comprising said compound and use of said compound
JP2007505938A (en) * 2003-09-23 2007-03-15 ノバルティス アクチエンゲゼルシャフト Combination of VEGF receptor inhibitor and chemotherapeutic agent
TW200524575A (en) * 2003-10-27 2005-08-01 S Bio Pte Ltd Biaryl linked hydroxamates: preparation and pharmaceutical applications
JP5107579B2 (en) * 2003-12-02 2012-12-26 ザ オハイオ ステート ユニバーシティー リサーチ ファウンデーション Zn2 + chelate motif tethered short chain fatty acids as a novel class of histone deacetylase inhibitors
EP1541549A1 (en) * 2003-12-12 2005-06-15 Exonhit Therapeutics S.A. Tricyclic hydroxamate and benzaminde derivatives, compositions and methods
WO2005065681A1 (en) * 2003-12-19 2005-07-21 Takeda San Diego, Inc. N- hydroxy-3-(3-(1h-imidazol-2-yl)-phenyl)-acrylamide derivatives and related compounds as histone deacetylase (hdac) inhibitors for the treatment of cancer
US20050137234A1 (en) * 2003-12-19 2005-06-23 Syrrx, Inc. Histone deacetylase inhibitors
US20050197336A1 (en) * 2004-03-08 2005-09-08 Miikana Therapeutics Corporation Inhibitors of histone deacetylase
US7345043B2 (en) * 2004-04-01 2008-03-18 Miikana Therapeutics Inhibitors of histone deacetylase
NZ549925A (en) 2004-04-07 2010-08-27 Novartis Ag Inhibitors of IAP
US7507858B2 (en) * 2004-07-19 2009-03-24 Merck & Co., Inc. Histone deacetylase inhibitors
JP4946861B2 (en) * 2004-08-09 2012-06-06 アステラス製薬株式会社 Hydroxamide compound having inhibitory activity of histone deacetylase (HDAC)
ITMI20041869A1 (en) 2004-10-01 2005-01-01 Dac Srl NEW INHIBITORS OF DEACETYLASE HISTONS
US8242175B2 (en) 2004-10-01 2012-08-14 Dac S.R.L. Class of histone deacetylase inhibitors
US20070021612A1 (en) * 2004-11-04 2007-01-25 University Of Notre Dame Du Lac Processes and compounds for preparing histone deacetylase inhibitors and intermediates thereof
US7235688B1 (en) 2004-11-04 2007-06-26 University Of Notre Dame Du Lac Process for preparing histone deacetylase inhibitors and intermediates thereof
EP1824831A2 (en) * 2004-12-16 2007-08-29 Takeda San Diego, Inc. Histone deacetylase inhibitors
WO2006088949A1 (en) 2005-02-14 2006-08-24 Miikana Therapeutics, Inc. Fused heterocyclic compounds useful as inhibitors of histone deacetylase
US7666880B2 (en) 2005-03-21 2010-02-23 S*Bio Pte Ltd. Imidazo[1,2-A]pyridine derivatives: preparation and pharmaceutical applications
EP2491926B1 (en) 2005-03-22 2018-05-09 President and Fellows of Harvard College Treatment of protein degradation disorders
GB0509225D0 (en) 2005-05-05 2005-06-15 Chroma Therapeutics Ltd Inhibitors of enzymatic activity
GB0509223D0 (en) 2005-05-05 2005-06-15 Chroma Therapeutics Ltd Enzyme inhibitors
JP2008540574A (en) * 2005-05-11 2008-11-20 タケダ サン ディエゴ インコーポレイテッド Histone deacetylase inhibitor
GB0510390D0 (en) 2005-05-20 2005-06-29 Novartis Ag Organic compounds
TWI365068B (en) 2005-05-20 2012-06-01 Merck Sharp & Dohme Formulations of suberoylanilide hydroxamic acid and methods for producing same
BRPI0613429A2 (en) 2005-07-14 2009-02-10 Takeda San Diego Inc histone deacetylase inhibitors
WO2007016532A2 (en) * 2005-08-02 2007-02-08 Novartis Ag Mutations and polymorphisms of hdac4
PL1912640T3 (en) 2005-08-03 2015-11-30 Novartis Ag Use of the hdac inhibitor panobinostat for the treatment of myeloma
BRPI0614903A2 (en) * 2005-08-10 2011-04-19 Novartis Ag method of using deacetylase inhibitors
EP1915154A2 (en) * 2005-08-11 2008-04-30 Novartis AG Combination of organic compounds
EP2258359A3 (en) 2005-08-26 2011-04-06 Braincells, Inc. Neurogenesis by muscarinic receptor modulation with sabcomelin
EP2275095A3 (en) 2005-08-26 2011-08-17 Braincells, Inc. Neurogenesis by muscarinic receptor modulation
US20070155730A1 (en) * 2005-08-26 2007-07-05 Methylgene, Inc. Benzodiazepine And Benzopiperazine Analog Inhibitors Of Histone Deacetylase
WO2007030454A2 (en) * 2005-09-07 2007-03-15 Novartis Ag Mutations and polymorphisms of hdac9
WO2007030455A2 (en) * 2005-09-07 2007-03-15 Novartis Ag Mutations and polymorphisms of hdac10
WO2007038073A2 (en) * 2005-09-22 2007-04-05 Novartis Ag Mutations and polymorphisms of hdac11
WO2007038459A2 (en) 2005-09-27 2007-04-05 Novartis Ag Carboxyamine compounds and their use in the treatment of hdac dependent diseases
EP2377530A3 (en) 2005-10-21 2012-06-20 Braincells, Inc. Modulation of neurogenesis by PDE inhibition
WO2007047998A2 (en) * 2005-10-21 2007-04-26 Novartis Ag Mutations and polymorphisms of hdac2
BRPI0617806A2 (en) 2005-10-24 2011-08-09 Novartis Ag combination of histone deacetylase inhibitors with radiation
EP2314289A1 (en) 2005-10-31 2011-04-27 Braincells, Inc. Gaba receptor mediated modulation of neurogenesis
WO2007053502A2 (en) * 2005-11-01 2007-05-10 Novartis Ag Mutations and polymorphisms of hdac5
WO2007058992A2 (en) * 2005-11-14 2007-05-24 Novartis Ag Mutations and polymorphisms of hdac6
US9006224B2 (en) 2005-11-21 2015-04-14 Novartis Ag Neuroendocrine tumor treatment
US20070207950A1 (en) * 2005-12-21 2007-09-06 Duke University Methods and compositions for regulating HDAC6 activity
WO2007084390A2 (en) * 2006-01-13 2007-07-26 Takeda San Diego, Inc. Histone deacetylase inhibitors
RU2008135979A (en) * 2006-02-07 2010-03-20 Астеллас Фарма Инк. (Jp) HYDROXYACRYLAMIDE COMPOUNDS
CA2642273C (en) 2006-02-14 2016-09-20 President And Fellows Of Harvard College Bifunctional histone deacetylase inhibitors
US20100216734A1 (en) 2006-03-08 2010-08-26 Braincells, Inc. Modulation of neurogenesis by nootropic agents
GB0605120D0 (en) 2006-03-14 2006-04-26 Novartis Ag Organic Compounds
EP2004163B1 (en) 2006-04-05 2014-09-17 Novartis Pharma AG Combination of everolimus and vinorelbine
RU2452492C2 (en) 2006-04-05 2012-06-10 Новартис Аг COMBINATIONS CONTAININS Bcr-Abl/c-Kit/PDGF-RTK INHIBITORS FOR TREATING CANCER
PL2450437T3 (en) 2006-04-14 2017-12-29 Cell Signaling Technology Inc Gene defects and mutant ALK kinase in human solid tumors
US8168383B2 (en) 2006-04-14 2012-05-01 Cell Signaling Technology, Inc. Gene defects and mutant ALK kinase in human solid tumors
CA2650520A1 (en) 2006-04-24 2008-01-31 Gloucester Pharmaceuticals Treatment of ras-expressing tumors
US20090018142A9 (en) * 2006-05-02 2009-01-15 Zhengping Zhuang Use of phosphatases to treat tumors overexpressing N-CoR
CA2651813A1 (en) 2006-05-09 2007-11-22 Braincells, Inc. Neurogenesis by modulating angiotensin
WO2007134077A2 (en) 2006-05-09 2007-11-22 Braincells, Inc. 5 ht receptor mediated neurogenesis
NZ572299A (en) 2006-05-09 2010-07-30 Novartis Ag Combination comprising a substituted 3,5-diphenyl-1,2,4-triazole and a platinum compound and use thereof
WO2007146730A2 (en) 2006-06-08 2007-12-21 Gloucester Pharmaceuticals Deacetylase inhibitor therapy
PL2032531T3 (en) * 2006-06-12 2016-07-29 Novartis Ag Salts of n-hydroxy-3-[4-[[[2-(2-methyl-1h-indol-3-yl)ethyl]amino]methyl]phenyl]-2e-2-propenamide
WO2007146716A2 (en) * 2006-06-12 2007-12-21 Novartis Ag Polymorphs of n-hydroxy-3-[4-[[[2-(2-methyl-1h-indol-3-yl)ethyl]amino]methyl]phenyl]-2e-2-propenamide
UA95289C2 (en) * 2006-06-12 2011-07-25 Новартис Аг Salts of n-hydroxy-3-[4-[[[2-(2-methyl-1h-indol-3-yl)ethyl]amino]methyl]phenyl]-2e-2-propenamide
US7989639B2 (en) * 2006-06-12 2011-08-02 Novartis Ag Process for making salts of N-hydroxy-3-[4-[[[2-(2-methyl-1H-indol-3-yl)ethyl]amino]methyl]phenyl]-2E-2-propenamide
RU2448090C2 (en) * 2006-06-12 2012-04-20 Новартис Аг Method of producing n-hydroxy-3-[4-[[[2-(2-methyl-1h-indol-3-yl)ethyl]amino]methyl]phenyl]-2e-2-propenamide and starting materials for said method
WO2008002862A1 (en) * 2006-06-26 2008-01-03 Novartis Ag Organic compounds
AU2007292848A1 (en) 2006-09-08 2008-03-13 Braincells, Inc. Combinations containing a 4-acylaminopyridine derivative
US20100184806A1 (en) 2006-09-19 2010-07-22 Braincells, Inc. Modulation of neurogenesis by ppar agents
ES2561835T3 (en) 2006-09-20 2016-03-01 Mei Pharma, Inc. Imidazo [1,2-a] pyridine hydroxamate compounds that are histone deacetylase inhibitors
EP2079304A4 (en) * 2006-09-28 2010-01-06 Merck & Co Inc Amine base salts of saha and polymorphs thereof
WO2008037477A1 (en) 2006-09-29 2008-04-03 Novartis Ag Pyrazolopyrimidines as p13k lipid kinase inhibitors
GB0619753D0 (en) 2006-10-06 2006-11-15 Chroma Therapeutics Ltd Enzyme inhibitors
WO2008053131A1 (en) 2006-10-30 2008-05-08 Chroma Therapeutics Ltd. Hydroxamates as inhibitors of histone deacetylase
US20080242648A1 (en) * 2006-11-10 2008-10-02 Syndax Pharmaceuticals, Inc., A California Corporation COMBINATION OF ERa+ LIGANDS AND HISTONE DEACETYLASE INHIBITORS FOR THE TREATMENT OF CANCER
MX2009005946A (en) * 2006-12-04 2009-06-17 Novartis Ag Combination.
CN101583599A (en) * 2006-12-15 2009-11-18 安斯泰来制药有限公司 N-hydroxyacrylamide compounds
EP2117598A2 (en) * 2007-01-10 2009-11-18 Novartis AG Formulations of deacetylase inhibitors
CA2676422C (en) * 2007-02-06 2018-10-16 Lixte Biotechnology Holdings, Inc. Oxabicycloheptanes and oxabicycloheptenes, their preparation and use
EP2120900A2 (en) 2007-02-15 2009-11-25 Novartis AG Combination of lbh589 with other therapeutic agents for treating cancer
WO2008123395A1 (en) 2007-03-28 2008-10-16 Santen Pharmaceutical Co., Ltd. Ocular hypotensive agent comprising compound capable of inhibiting histone deacetylase as active ingredient
TWI539947B (en) 2007-04-09 2016-07-01 米希爾金尼公司 Inhibitors of histone deacetylase
JP2010526149A (en) * 2007-05-04 2010-07-29 ノバルティス アーゲー Use of HDAC inhibitors for the treatment of gastrointestinal cancer
CN101677995A (en) * 2007-05-11 2010-03-24 诺瓦提斯公司 Use of hdac inhibitors for the treatment of melanoma
CA2687274A1 (en) * 2007-05-30 2008-12-11 Novartis Ag Use of hdac inhibitors for the treatment of bone destruction
US7737175B2 (en) 2007-06-01 2010-06-15 Duke University Methods and compositions for regulating HDAC4 activity
CA2718472A1 (en) * 2007-08-03 2009-02-12 Lixte Biotechnology, Inc. Use of phosphatases to treat neuroblastomas and medulloblastomas
CL2008002786A1 (en) * 2007-09-20 2009-05-15 Novartis Ag Pharmaceutically acceptable cake, formed by lyophilization, comprising: n-hydroxy-3- [4 - [[[2- (2-methyl-1h-indol-3-yl] -ethyl] -amino] -methyl] -phenyl] -2e-2-propenamide or a salt, a selected pH regulator of lactate or lactic acid, phosphate or phosphoric acid or a combination and a bulking agent; manufacturing process.
EP2200439B1 (en) 2007-10-01 2017-03-22 Lixte Biotechnology, Inc. Hdac inhibitors
WO2009053808A2 (en) * 2007-10-22 2009-04-30 Orchid Research Laboratories Limited Histone deacetylase inhibitors
CN101417967A (en) * 2007-10-26 2009-04-29 浙江海正药业股份有限公司 Histone deacetylase inhibitor, compounds thereof and use thereof
US20090131367A1 (en) * 2007-11-19 2009-05-21 The Regents Of The University Of Colorado Combinations of HDAC Inhibitors and Proteasome Inhibitors
WO2009067808A1 (en) * 2007-11-27 2009-06-04 Ottawa Health Research Institute Amplification of cancer-specific oncolytic viral infection by histone deacetylase inhibitors
EP2234608A2 (en) 2007-12-11 2010-10-06 Viamet Pharmaceuticals, Inc. Metalloenzyme inhibitors using metal binding moieties in combination with targeting moieties
ITFI20070288A1 (en) 2007-12-21 2009-06-22 A I L Firenze Sezione Autonoma INHIBITORS OF ISTONIC DEACETYLASES
EP2100879A1 (en) * 2008-03-13 2009-09-16 4Sc Ag Novel N-substituted tetrahydroisoquinoline/isoindoline hydroxamic acid compounds
CN102036953B (en) 2008-03-24 2015-05-06 诺华股份有限公司 Arylsulfonamide-based matrix metalloprotease inhibitors
EA019033B1 (en) 2008-03-26 2013-12-30 Новартис Аг Hydroxamate-based inhibitors of deacetylases b
US20110118309A1 (en) * 2008-07-18 2011-05-19 Peter Wisdom Atadja Use of hdac inhibitors for the treatment of hodgkin's disease
WO2010011296A2 (en) 2008-07-23 2010-01-28 President And Fellows Of Harvard College Deacetylase inhibitors and uses thereof
WO2010014220A1 (en) * 2008-08-01 2010-02-04 Lixte Biotechnology, Inc. Neuroprotective agents for the prevention and treatment of neurodegenerative diseases
WO2010147612A1 (en) 2009-06-18 2010-12-23 Lixte Biotechnology, Inc. Methods of modulating cell regulation by inhibiting p53
US8227473B2 (en) * 2008-08-01 2012-07-24 Lixte Biotechnology, Inc. Oxabicycloheptanes and oxabicycloheptenes, their preparation and use
EP2309853A4 (en) * 2008-08-01 2012-04-25 Lixte Biotechnology Inc Methods for regulating cell mitosis by inhibiting serine/threonine phosphatase
WO2010083617A1 (en) 2009-01-21 2010-07-29 Oncalis Ag Pyrazolopyrimidines as protein kinase inhibitors
WO2010088335A1 (en) 2009-01-29 2010-08-05 Novartis Ag Substituted benzimidazoles for the treatment of astrocytomas
US20100216805A1 (en) 2009-02-25 2010-08-26 Braincells, Inc. Modulation of neurogenesis using d-cycloserine combinations
GB0903480D0 (en) * 2009-02-27 2009-04-08 Chroma Therapeutics Ltd Enzyme Inhibitors
KR101168801B1 (en) 2009-03-27 2012-07-25 주식회사종근당 Novel hydroxamate derivatives, method for the preparation thereof, and pharmaceutical composition containing the same
US7994357B2 (en) 2009-04-03 2011-08-09 Naturewise Biotech & Medicals Corporation Cinamic compounds and derivatives therefrom for the inhibition of histone deacetylase
ES2473792T3 (en) 2009-04-03 2014-07-07 Naturewise Biotech & Medicals Corporation Kinematic compounds and derivatives thereof for histone deacetylase inhibition
US8901337B2 (en) 2009-07-16 2014-12-02 Royal College Of Surgeons In Ireland Metal complexes having dual histone deacetylase inhibitory and DNA-binding activity
US8389526B2 (en) 2009-08-07 2013-03-05 Novartis Ag 3-heteroarylmethyl-imidazo[1,2-b]pyridazin-6-yl derivatives
WO2011019393A2 (en) 2009-08-11 2011-02-17 President And Fellows Of Harvard College Class- and isoform-specific hdac inhibitors and uses thereof
BR112012003262A8 (en) 2009-08-12 2016-05-17 Novartis Ag Heterocyclic Hydrazone Compounds and Their Uses to Treat Cancer and Inflammation
IN2012DN01961A (en) 2009-08-17 2015-08-21 Intellikine Llc
CA2771432A1 (en) 2009-08-20 2011-02-24 Novartis Ag Heterocyclic oxime compounds
JP2013503129A (en) 2009-08-26 2013-01-31 ノバルティス アーゲー Tetra-substituted heteroaryl compounds and their use as MDM2 and / or MDM4 modulators
AR077975A1 (en) 2009-08-28 2011-10-05 Irm Llc PIRAZOL PYRIMIDINE DERIVATIVES AND COMPOSITIONS AS PROTEIN KINASE INHIBITORS
US20110053925A1 (en) * 2009-08-28 2011-03-03 Novartis Ag Hydroxamate-Based Inhibitors of Deacetylases
CN102596951B (en) 2009-11-04 2015-04-15 诺华股份有限公司 Heterocyclic sulfonamide derivatives useful as MEK inhibitors
AU2010321533A1 (en) 2009-11-23 2012-05-31 Cerulean Pharma Inc. Cyclodextrin-based polymers for therapeutic delivery
US8614239B2 (en) 2009-12-08 2013-12-24 Novartis Ag Heterocyclic sulfonamide derivatives
US8440693B2 (en) 2009-12-22 2013-05-14 Novartis Ag Substituted isoquinolinones and quinazolinones
CU24130B1 (en) 2009-12-22 2015-09-29 Novartis Ag ISOQUINOLINONES AND REPLACED QUINAZOLINONES
US20130040998A1 (en) * 2010-01-08 2013-02-14 Dana-Farber Cancer Institute, Inc. Fluorinated hdac inhibitors and uses thereof
AU2011205283B2 (en) 2010-01-13 2014-07-10 Tempero Pharmaceuticals, Inc. Compounds and methods
EP2523664A4 (en) 2010-01-13 2013-06-26 Tempero Pharmaceuticals Inc Compounds and methods
WO2011090940A1 (en) 2010-01-19 2011-07-28 Cerulean Pharma Inc. Cyclodextrin-based polymers for therapeutic delivery
UY33236A (en) 2010-02-25 2011-09-30 Novartis Ag DIMERIC INHIBITORS OF THE IAP
WO2011119995A2 (en) 2010-03-26 2011-09-29 Cerulean Pharma Inc. Formulations and methods of use
US8217079B2 (en) 2010-03-26 2012-07-10 Italfarmaco Spa Method for treating Philadelphia-negative myeloproliferative syndromes
UA112517C2 (en) 2010-07-06 2016-09-26 Новартіс Аг TETRAHYDROPYRIDOPYRIMIDINE DERIVATIVES
EP2407164A1 (en) 2010-07-14 2012-01-18 Dublin Institute of Technology Intellectual Property Ltd Copper II complexes of phenanthroline and their use in cancer treatment
WO2012025701A1 (en) * 2010-08-25 2012-03-01 Chroma Therapeutics Ltd. Alpha, alpha - di substituted glycine ester derivatives and their use as hdac inhibitors
WO2012025155A1 (en) * 2010-08-26 2012-03-01 Novartis Ag Hydroxamate-based inhibitors of deacetylases
JP2013536207A (en) * 2010-08-27 2013-09-19 ノバルティス アーゲー Hydroxamate skeleton deacetylase inhibitors
UY33794A (en) 2010-12-13 2012-07-31 Novartis Ag DIMERIC INHIBITORS OF THE IAP
CN103261186A (en) 2010-12-13 2013-08-21 诺瓦提斯公司 Dimeric IAP inhibitors
EP2663312B1 (en) 2011-01-10 2017-10-11 Nimbus Iris, Inc. Irak inhibitors and uses thereof
TW201245115A (en) 2011-01-24 2012-11-16 Chdi Foundation Inc Histone deacetylase inhibitors and compositions and methods of use thereof
WO2012107500A1 (en) 2011-02-10 2012-08-16 Novartis Ag [1, 2, 4] triazolo [4, 3 -b] pyridazine compounds as inhibitors of the c-met tyrosine kinase
EP2678016B1 (en) 2011-02-23 2016-08-10 Intellikine, LLC Heterocyclic compounds and uses thereof
JP6130305B2 (en) 2011-02-23 2017-05-17 インテリカイン, エルエルシー Combinations of kinase inhibitors and their use
MX2013010329A (en) 2011-03-09 2014-03-12 Sverker Jern Compounds and methods for improving impaired endogenous fibrinolysis using histone deacetylase inhibitors.
JP2014517004A (en) 2011-06-09 2014-07-17 ノバルティス アーゲー Heterocyclic sulfonamide derivatives
JP6200884B2 (en) 2011-06-14 2017-09-20 ノバルティス アーゲー Combination of panobinostat and ruxolitinib in the treatment of cancers such as myeloproliferative tumors
EP2721008B1 (en) 2011-06-20 2015-04-29 Novartis AG Hydroxy substituted isoquinolinone derivatives as p53 (mdm2 or mdm4) inhibitors
WO2012175487A1 (en) 2011-06-20 2012-12-27 Novartis Ag Cyclohexyl isoquinolinone compounds
SG195067A1 (en) 2011-06-27 2013-12-30 Novartis Ag Solid forms and salts of tetrahydro-pyrido-pyrimidine derivatives
MX339302B (en) 2011-09-15 2016-05-19 Novartis Ag 6 - substituted 3 - (quinolin- 6 - ylthio) - [1,2,4] triazolo [4, 3 -a] pyradines as tyrosine kinase.
CN108542906A (en) 2011-11-11 2018-09-18 诺华股份有限公司 The method for treating proliferative disease
SG11201401260QA (en) 2011-11-23 2014-07-30 Novartis Ag Pharmaceutical formulations
CN103130673B (en) * 2011-11-28 2017-05-03 重庆医药工业研究院有限责任公司 Preparation method of agomelatine crystal type I
CN104080787B (en) 2011-11-29 2016-09-14 诺华股份有限公司 Pyrazolo pyrrolidine compound
US9408885B2 (en) 2011-12-01 2016-08-09 Vib Vzw Combinations of therapeutic agents for treating melanoma
EP2794594A1 (en) 2011-12-22 2014-10-29 Novartis AG Quinoline derivatives
SG11201402237WA (en) 2011-12-22 2014-09-26 Novartis Ag Dihydro-benzo-oxazine and dihydro-pyrido-oxazine derivatives
US20140350014A1 (en) 2011-12-23 2014-11-27 Novartis Ag Compounds for inhibiting the interaction of bcl2 with binding partners
US20130178520A1 (en) 2011-12-23 2013-07-11 Duke University Methods of treatment using arylcyclopropylamine compounds
WO2013096049A1 (en) 2011-12-23 2013-06-27 Novartis Ag Compounds for inhibiting the interaction of bcl2 with binding partners
KR20140104047A (en) 2011-12-23 2014-08-27 노파르티스 아게 Compounds for inhibiting the interaction of bcl2 with binding partners
US20140357633A1 (en) 2011-12-23 2014-12-04 Novartis Ag Compounds for inhibiting the interaction of bcl2 with binding partners
US20140357666A1 (en) 2011-12-23 2014-12-04 Novartis Ag Compounds for inhibiting the interaction of bcl2 with binding partners
EP2797875A4 (en) * 2011-12-29 2015-09-02 Pharmacyclics Inc Cinnamic acid hydroxyamides as inhibitors of histone deacetylase 8
EP3608317A1 (en) 2012-01-12 2020-02-12 Yale University Compounds & methods for the enhanced degradation of targeted proteins & other polypeptides by an e3 ubiquitin ligase
UY34591A (en) 2012-01-26 2013-09-02 Novartis Ag IMIDAZOPIRROLIDINONA COMPOUNDS
TWI573792B (en) 2012-02-01 2017-03-11 歐陸斯迪公司 Novel therapeutic agents
ES2894830T3 (en) 2012-04-03 2022-02-16 Novartis Ag Combination products with tyrosine kinase inhibitors and their use
CN104302634B (en) 2012-05-15 2017-02-08 诺华股份有限公司 Benzamide derivatives for inhibiting the activity of ABL1, ABL2 and BCR-ABL1
AU2013261128B2 (en) 2012-05-15 2015-11-12 Novartis Ag Benzamide derivatives for inhibiting the activity of ABL1, ABL2 and BCR-ABL1
AU2013261129B2 (en) 2012-05-15 2016-05-12 Novartis Ag Compounds and compositions for inhibiting the activity of ABL1, ABL2 and BCR-ABL1
PE20210667A1 (en) 2012-05-15 2021-04-05 Novartis Ag BENZAMIDE DERIVATIVES FOR INHIBITION OF ABL1, ABL2 AND BCR-ABL1 ACTIVITY
CN104321325B (en) 2012-05-24 2016-11-16 诺华股份有限公司 Pyrrolopyrrole alkanone compound
US9789193B2 (en) 2012-06-15 2017-10-17 The Brigham And Women's Hospital, Inc. Compositions for treating cancer and methods for making the same
TW201408628A (en) 2012-07-16 2014-03-01 Chdi Foundation Inc Histone deacetylase inhibitors and compositions and methods of use thereof
WO2014025395A1 (en) 2012-08-06 2014-02-13 Duke University Compounds and methods for targeting hsp90
CA2885969C (en) 2012-10-02 2021-04-06 Epitherapeutics Aps Substitued pyridine derivatives and compositions thereof useful as inhibitors of histone demethylases
US20150258068A1 (en) 2012-10-30 2015-09-17 Mei Pharma, Inc. Combination therapies
CN105377288B (en) 2012-11-05 2019-11-15 达纳-法伯癌症研究所股份有限公司 The composition of XBP1, CD138 and CS1 peptide prepares the purposes of drug
EP2916834A1 (en) 2012-11-08 2015-09-16 Novartis AG Pharmaceutical combination comprising a b-raf inhibitor and a histone deacetylase inhibitor and their use in the treatment of proliferative diseases
TW201422625A (en) 2012-11-26 2014-06-16 Novartis Ag Solid form of dihydro-pyrido-oxazine derivative
EP2948451B1 (en) 2013-01-22 2017-07-12 Novartis AG Substituted purinone compounds
WO2014115080A1 (en) 2013-01-22 2014-07-31 Novartis Ag Pyrazolo[3,4-d]pyrimidinone compounds as inhibitors of the p53/mdm2 interaction
WO2014128612A1 (en) 2013-02-20 2014-08-28 Novartis Ag Quinazolin-4-one derivatives
US9650339B2 (en) 2013-02-27 2017-05-16 Gilead Sciences, Inc. Inhibitors of histone demethylases
WO2014151147A1 (en) 2013-03-15 2014-09-25 Intellikine, Llc Combination of kinase inhibitors and uses thereof
WO2014155268A2 (en) 2013-03-25 2014-10-02 Novartis Ag Fgf-r tyrosine kinase activity inhibitors - use in diseases associated with lack of or reduced snf5 activity
AU2014251038A1 (en) 2013-04-08 2015-11-26 Dennis M. Brown Therapeutic benefit of suboptimally administered chemical compounds
CN105209036B (en) 2013-04-09 2018-10-26 莱克斯特生物技术公司 The preparation of oxa-bicyclo heptane and oxabicyclo heptene
KR101645379B1 (en) 2013-04-29 2016-08-03 주식회사 종근당 Novel compounds for selective histone deacetylase inhibitor, and the pharmaceutical composition comprising thereof
US20150018376A1 (en) 2013-05-17 2015-01-15 Novartis Ag Pyrimidin-4-yl)oxy)-1h-indole-1-carboxamide derivatives and use thereof
GB201311888D0 (en) 2013-07-03 2013-08-14 Glaxosmithkline Ip Dev Ltd Novel compounds
GB201311891D0 (en) 2013-07-03 2013-08-14 Glaxosmithkline Ip Dev Ltd Novel compound
UY35675A (en) 2013-07-24 2015-02-27 Novartis Ag SUBSTITUTED DERIVATIVES OF QUINAZOLIN-4-ONA
WO2015013581A1 (en) 2013-07-26 2015-01-29 Update Pharma Inc. Combinatorial methods to improve the therapeutic benefit of bisantrene
US9227969B2 (en) 2013-08-14 2016-01-05 Novartis Ag Compounds and compositions as inhibitors of MEK
WO2015022664A1 (en) 2013-08-14 2015-02-19 Novartis Ag Compounds and compositions as inhibitors of mek
WO2015022663A1 (en) 2013-08-14 2015-02-19 Novartis Ag Compounds and compositions as inhibitors of mek
SG11201600028YA (en) 2013-09-22 2016-02-26 Calitor Sciences Llc Substituted aminopyrimidine compounds and methods of use
EP3757130A1 (en) 2013-09-26 2020-12-30 Costim Pharmaceuticals Inc. Methods for treating hematologic cancers
CN103467359B (en) * 2013-09-27 2015-04-22 山东大学 Cinnamon amides histone deacetylase inhibitor with benzpyrole and preparation method and application of same
TW201605450A (en) 2013-12-03 2016-02-16 諾華公司 Combination of Mdm2 inhibitor and BRAF inhibitor and their use
CN103664734B (en) * 2013-12-10 2015-09-23 广州康缔安生物科技有限公司 Heterocycle hydroximic acid compound and medicinal compositions thereof and application
TR201900057T4 (en) 2013-12-12 2019-01-21 Chong Kun Dang Pharmaceutical Corp New azaindole derivatives and pharmaceutical compositions containing them as selective histone deacetylase (HDAC) inhibitors.
KR101685639B1 (en) 2014-01-03 2016-12-12 주식회사 종근당 Indole Derivatives Compound, and the pharmaceutical composition comprising the same
JOP20200094A1 (en) 2014-01-24 2017-06-16 Dana Farber Cancer Inst Inc Antibody molecules to pd-1 and uses thereof
JOP20200096A1 (en) 2014-01-31 2017-06-16 Children’S Medical Center Corp Antibody molecules to tim-3 and uses thereof
CN106661039B (en) 2014-02-28 2019-09-13 林伯士拉克许米公司 2 (TYK2) inhibitor of tyrosine protein matter kinases and its purposes
WO2015148714A1 (en) 2014-03-25 2015-10-01 Duke University Heat shock protein 70 (hsp-70) receptor ligands
CA2943979A1 (en) 2014-03-28 2015-10-01 Calitor Sciences, Llc Substituted heteroaryl compounds and methods of use
JP2017512804A (en) 2014-03-31 2017-05-25 ギリアード サイエンシーズ, インコーポレイテッド Inhibitors of histone demethylase
CA2944401A1 (en) 2014-04-03 2015-10-08 Invictus Oncology Pvt. Ltd. Supramolecular combinatorial therapeutics
KR20240038809A (en) 2014-04-14 2024-03-25 아비나스 오퍼레이션스, 인코포레이티드 Imide-based modulators of proteolysis and associated methods of use
GB201409488D0 (en) 2014-05-28 2014-07-09 Euro Celtique Sa Pharmaceutical composition
GB201409471D0 (en) 2014-05-28 2014-07-09 Euro Celtique Sa Pharmaceutical composition
GB201409485D0 (en) 2014-05-28 2014-07-09 Euro Celtique Sa Pharmaceutical composition
WO2016011658A1 (en) 2014-07-25 2016-01-28 Novartis Ag Combination therapy
US10195208B2 (en) 2014-07-31 2019-02-05 Novartis Ag Combination therapy
US10071164B2 (en) 2014-08-11 2018-09-11 Yale University Estrogen-related receptor alpha based protac compounds and associated methods of use
AU2015303835B2 (en) 2014-08-12 2020-04-09 Monash University Lymph directing prodrugs
BR112017003442A2 (en) 2014-08-27 2017-11-28 Gilead Sciences Inc compounds and methods for inhibiting histone demethylases
EP2995630A1 (en) 2014-09-09 2016-03-16 Dublin Institute of Technology Hybrid compounds formed from ionic liquids and uses thereof in ion selective electrodes
US20170281624A1 (en) 2014-09-13 2017-10-05 Novartis Ag Combination therapies of alk inhibitors
EA201790737A1 (en) 2014-10-03 2017-08-31 Новартис Аг COMBINED THERAPY
EP3262049B1 (en) 2015-02-27 2022-07-20 Nimbus Lakshmi, Inc. Tyk2 inhibitors and uses thereof
KR20170129802A (en) 2015-03-10 2017-11-27 아두로 바이오테크, 인코포레이티드 Compositions and methods for activating "stimulating factors" -dependent signaling of interferon genes
CN107531660A (en) 2015-03-13 2018-01-02 福马治疗股份有限公司 α cinnamide compounds and composition as HDAC8 inhibitor
CN108601764A (en) 2015-03-18 2018-09-28 阿尔维纳斯股份有限公司 The Compounds and methods for of enhancing degradation for target protein
DK3297992T3 (en) 2015-05-22 2020-04-20 Chong Kun Dang Pharmaceutical Corp Heterocyclic alkyl derivative compounds as selective histone deacetylase inhibitors and pharmaceutical compositions comprising the same
WO2017004134A1 (en) 2015-06-29 2017-01-05 Nimbus Iris, Inc. Irak inhibitors and uses thereof
WO2017004133A1 (en) 2015-06-29 2017-01-05 Nimbus Iris, Inc. Irak inhibitors and uses thereof
CA2995036A1 (en) 2015-08-06 2017-02-09 Dana-Farber Cancer Institute, Inc. Tunable endogenous protein degradation
WO2017032281A1 (en) * 2015-08-21 2017-03-02 苏州晶云药物科技有限公司 Novel crystal forms of panobinostat lactate
EP3344624B8 (en) 2015-09-02 2023-11-29 Takeda Pharmaceutical Company Limited Tyk2 inhibitors and uses thereof
CA2997106C (en) 2015-09-08 2024-06-04 Monash University Lymph directing prodrugs
US9938257B2 (en) 2015-09-11 2018-04-10 Calitor Sciences, Llc Substituted heteroaryl compounds and methods of use
FI3364958T3 (en) 2015-10-23 2023-04-06 Navitor Pharm Inc Modulators of sestrin-gator2 interaction and uses thereof
AU2016349781A1 (en) 2015-11-02 2018-05-10 Yale University Proteolysis targeting chimera compounds and methods of preparing and using same
ITUB20155193A1 (en) 2015-11-03 2017-05-03 Italfarmaco Spa Physically and chemically stable oral Givinostat suspensions
JP6864296B2 (en) 2015-12-14 2021-04-28 エックス4 ファーマシューティカルズ, インコーポレイテッド How to treat cancer
EP3389652B1 (en) 2015-12-14 2022-09-28 X4 Pharmaceuticals, Inc. Methods for treating cancer
EP3389664A4 (en) 2015-12-14 2020-01-08 Raze Therapeutics Inc. Caffeine inhibitors of mthfd2 and uses thereof
ES2935834T3 (en) 2015-12-22 2023-03-10 X4 Pharmaceuticals Inc Methods for treating immunodeficiency disease
CN105732467A (en) * 2016-01-13 2016-07-06 深圳市康立生生物科技有限公司 Preparation method of panobinostat
PL3884939T3 (en) 2016-03-09 2024-02-26 Raze Therapeutics, Inc. 3-phosphoglycerate dehydrogenase inhibitors and uses thereof
US11014882B2 (en) * 2016-03-09 2021-05-25 Raze Therapeutics, Inc. 3-phosphoglycerate dehydrogenase inhibitors and uses thereof
CN109195593A (en) 2016-03-15 2019-01-11 奥莱松基因组股份有限公司 For treating the combination of the LSD1 inhibitor of solid tumor
CN109462980B (en) 2016-03-15 2022-02-08 奥莱松基因组股份有限公司 Combination of LSD1 inhibitors for the treatment of hematologic malignancies
EP3440112A4 (en) 2016-04-08 2019-10-09 X4 Pharmaceuticals, Inc. Methods for treating cancer
US11261187B2 (en) 2016-04-22 2022-03-01 Duke University Compounds and methods for targeting HSP90
AR108257A1 (en) 2016-05-02 2018-08-01 Mei Pharma Inc POLYMORPHIC FORMS OF 3- [2-BUTIL-1- (2-DIETILAMINO-ETIL) -1H-BENCIMIDAZOL-5-IL] -N-HYDROXY-ACRYLAMIDE AND USES OF THE SAME
CN109641874A (en) 2016-05-10 2019-04-16 C4医药公司 C for target protein degradation3The glutarimide degron body of carbon connection
WO2017197036A1 (en) 2016-05-10 2017-11-16 C4 Therapeutics, Inc. Spirocyclic degronimers for target protein degradation
CN109562107A (en) 2016-05-10 2019-04-02 C4医药公司 Heterocycle degron body for target protein degradation
JP7054529B2 (en) 2016-06-21 2022-04-14 エックス4 ファーマシューティカルズ, インコーポレイテッド CXCR4 inhibitor and its use
EP3471726A4 (en) 2016-06-21 2019-10-09 X4 Pharmaceuticals, Inc. Cxcr4 inhibitors and uses thereof
CA3068059A1 (en) * 2016-06-21 2017-12-28 The University Of Melbourne Activators of hiv latency
US11332470B2 (en) 2016-06-21 2022-05-17 X4 Pharmaceuticals, Inc. CXCR4 inhibitors and uses thereof
WO2018015493A1 (en) 2016-07-20 2018-01-25 Royal College Of Surgeons In Ireland Metal complexes having therapeutic applications
WO2018039205A1 (en) 2016-08-23 2018-03-01 Oncopep, Inc. Peptide vaccines and durvalumab for treating breast cancer
WO2018039203A1 (en) 2016-08-23 2018-03-01 Oncopep, Inc. Peptide vaccines and durvalumab for treating multiple myeloma
WO2018054960A1 (en) 2016-09-21 2018-03-29 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting and treating resistance to chemotherapy in npm-alk(+) alcl
US10207998B2 (en) 2016-09-29 2019-02-19 Duke University Substituted benzimidazole and substituted benzothiazole inhibitors of transforming growth factor-β kinase and methods of use thereof
US10927083B2 (en) 2016-09-29 2021-02-23 Duke University Substituted benzimidazoles as inhibitors of transforming growth factor-β kinase
CA3040155C (en) 2016-10-11 2024-01-16 Euro-Celtique S.A. Compound for use in the treatment of hodgkin lymphoma
ES2930198T3 (en) 2016-10-14 2022-12-07 Nimbus Lakshmi Inc TYK2 inhibitors and uses thereof
WO2018075937A1 (en) 2016-10-21 2018-04-26 Nimbus Lakshmi, Inc. Tyk2 inhibitors and uses thereof
WO2018089499A1 (en) 2016-11-08 2018-05-17 Navitor Pharmaceuticals, Inc. PHENYL AMINO PIPERIDINE mTORC INHIBITORS AND USES THEREOF
JP2019535839A (en) 2016-11-29 2019-12-12 ピュアテック ヘルス エルエルシー Exosomes for the delivery of therapeutic agents
US11091451B2 (en) 2016-12-05 2021-08-17 Raze Therapeutics, Inc. SHMT inhibitors and uses thereof
CN110603261A (en) 2016-12-23 2019-12-20 拜斯科阿迪有限公司 Peptide derivatives having novel bond structure
EP3565638B8 (en) 2017-01-06 2024-04-10 BicycleRD Limited Bicycle conjugate for treating cancer
CN111386263A (en) 2017-02-08 2020-07-07 达纳-法伯癌症研究所有限公司 Modulation of chimeric antigen receptors
TWI783978B (en) 2017-03-08 2022-11-21 美商林伯士拉克許米公司 Tyk2 inhibitors, uses, and methods for production thereof
EP3375784A1 (en) 2017-03-14 2018-09-19 Artax Biopharma Inc. Aza-dihydro-acridone derivatives
EP3375778A1 (en) 2017-03-14 2018-09-19 Artax Biopharma Inc. Aryl-piperidine derivatives
WO2018191146A1 (en) 2017-04-10 2018-10-18 Navitor Pharmaceuticals, Inc. Heteroaryl rheb inhibitors and uses thereof
JOP20180036A1 (en) 2017-04-18 2019-01-30 Vifor Int Ag Novel ferroportin-inhibitor salts
US10857196B2 (en) 2017-04-27 2020-12-08 Bicycletx Limited Bicyclic peptide ligands and uses thereof
UY37695A (en) 2017-04-28 2018-11-30 Novartis Ag BIS 2’-5’-RR- (3’F-A) (3’F-A) CYCLE DINUCLEOTIDE COMPOUND AND USES OF THE SAME
CN107141244B (en) * 2017-05-08 2019-11-19 潍坊医学院 Indolebutyric acid class inhibitors of histone deacetylase and its preparation method and application
GB201709405D0 (en) 2017-06-13 2017-07-26 Euro Celtique Sa Compounds for treating ovarian cancer
GB201709406D0 (en) 2017-06-13 2017-07-26 Euro-Cletique S A Compounds for treating TNBC
GB201709403D0 (en) 2017-06-13 2017-07-26 Euro Celtique Sa Compounds for treating sarcoma
GB201709402D0 (en) 2017-06-13 2017-07-26 Euro Celtique Sa Compounds for treating t-pll
CN111032678A (en) 2017-06-26 2020-04-17 拜西克尔德有限公司 Bicyclic peptide ligands with detectable moieties and uses thereof
US11046698B2 (en) 2017-07-28 2021-06-29 Nimbus Lakshmi, Inc. TYK2 inhibitors and uses thereof
JP2020529427A (en) 2017-08-04 2020-10-08 バイスクルテクス・リミテッド Bicyclic peptide ligand specific for CD137
KR101977970B1 (en) 2017-08-04 2019-05-14 중원대학교 산학협력단 Novel benzamide derivatives compounds, manufacturing method thereof, and phamaceutical composition for preventing and treating cancer containing the same
US20200283482A1 (en) 2017-08-14 2020-09-10 Bicyclerd Limited Bicyclic peptide ligand prr-a conjugates and uses thereof
WO2019034866A1 (en) 2017-08-14 2019-02-21 Bicyclerd Limited Bicyclic peptide ligand sting conjugates and uses thereof
US11883497B2 (en) 2017-08-29 2024-01-30 Puretech Lyt, Inc. Lymphatic system-directing lipid prodrugs
IL295603B2 (en) 2017-09-22 2024-03-01 Kymera Therapeutics Inc Protein degraders and uses thereof
US11358948B2 (en) 2017-09-22 2022-06-14 Kymera Therapeutics, Inc. CRBN ligands and uses thereof
EP3461488A1 (en) 2017-09-27 2019-04-03 Onxeo Combination of a dbait molecule and a hdac inhibitor for treating cancer
EP3461480A1 (en) 2017-09-27 2019-04-03 Onxeo Combination of a dna damage response cell cycle checkpoint inhibitors and belinostat for treating cancer
WO2019084026A1 (en) 2017-10-24 2019-05-02 Genentech, Inc. (4-hydroxypyrrolidin-2-yl)-heterocyclic compounds and methods of use thereof
WO2019084030A1 (en) 2017-10-24 2019-05-02 Genentech, Inc. (4-hydroxypyrrolidin-2-yl)-hydroxamate compounds and methods of use thereof
WO2019083960A1 (en) 2017-10-24 2019-05-02 Oncopep, Inc. Peptide vaccines and hdac inhibitors for treating multiple myeloma
AU2018353984A1 (en) 2017-10-24 2020-05-07 Oncopep, Inc. Peptide vaccines and pembrolizumab for treating breast cancer
US10683297B2 (en) 2017-11-19 2020-06-16 Calitor Sciences, Llc Substituted heteroaryl compounds and methods of use
US10537585B2 (en) 2017-12-18 2020-01-21 Dexcel Pharma Technologies Ltd. Compositions comprising dexamethasone
US11304954B2 (en) 2017-12-19 2022-04-19 Puretech Lyt, Inc. Lipid prodrugs of mycophenolic acid and uses thereof
US11608345B1 (en) 2017-12-19 2023-03-21 Puretech Lyt, Inc. Lipid prodrugs of rapamycin and its analogs and uses thereof
EP3730483B1 (en) 2017-12-21 2023-08-30 Hefei Institutes of Physical Science, Chinese Academy of Sciences Class of pyrimidine derivative kinase inhibitors
AU2018396142A1 (en) 2017-12-26 2020-07-16 Kymera Therapeutics, Inc. IRAK degraders and uses thereof
EP3737675A4 (en) 2018-01-12 2022-01-05 Kymera Therapeutics, Inc. Crbn ligands and uses thereof
EP3737666A4 (en) 2018-01-12 2022-01-05 Kymera Therapeutics, Inc. Protein degraders and uses thereof
CA3083040A1 (en) 2018-01-20 2019-07-25 Sunshine Lake Pharma Co., Ltd. Substituted aminopyrimidine compounds and methods of use
IL301089A (en) 2018-01-29 2023-05-01 Vertex Pharma Gcn2 inhibitors and uses thereof
TW201940481A (en) 2018-01-29 2019-10-16 美商維泰克斯製藥公司 GCN2 inhibitors and uses thereof
BR112020016314A2 (en) 2018-02-12 2020-12-15 Inimmune Corporation PHARMACEUTICALLY ACCEPTABLE COMPOUNDS OR SALTS, PHARMACEUTICAL COMPOSITION, KIT, AND, METHODS FOR ELICITATING, INTENSIFYING OR MODIFYING AN IMMUNOLOGICAL RESPONSE, TO TREAT, PREVENT OR REDUCE THE SUSCETIBILITY TO CANCER, TO REDUCE, UNDERSTAND TREAT, PREVENT OR REDUCE SUSCEPTIBILITY TO AN ALLERGY, TO TREAT, PREVENT OR REDUCE SUSCETIBILITY TO AUTOIMMUNE AFFECTION, TO TREAT, PREVENT OR REDUCE SUSCETIBILITY IN A SUBJECT TO BACTERIAL INFECTION, ALTERNATE, VENEER, NAVAL, NAVARI TREAT, PREVENT OR REDUCE SUSCEPTIBILITY TO AUTOIMMUNITY, ALLERGY, ISCHEMIA OR SEPSIS REPERFUSION, TO TREAT, PREVENT OR REDUCE THE GRAVITY OF EPILETIC ATTACKS AND TO TREAT, PREVENT OR REDUCE THE MACANTIC HERITAGE OF HERITAGE,
AU2019229258B2 (en) 2018-02-27 2023-09-14 Artax Biopharma Inc. Chromene derivatives as inhibitors of TCR-Nck interaction
WO2019183523A1 (en) 2018-03-23 2019-09-26 Genentech, Inc. Hetero-bifunctional degrader compounds and their use as modulators of targeted ubiquination (vhl)
CN118480030A (en) 2018-04-13 2024-08-13 阿尔维纳斯运营股份有限公司 Cerebulin ligands and bifunctional compounds comprising same
MX2020011089A (en) 2018-04-24 2020-11-06 Merck Patent Gmbh Antiproliferation compounds and uses thereof.
US11059826B2 (en) 2018-04-24 2021-07-13 Vertex Pharmaceuticals Incorporated Pteridinone compounds and uses thereof
JP2021533181A (en) 2018-06-13 2021-12-02 アンフィスタ セラピューティクス リミテッド Bifunctional molecule for targeting UchL5
WO2019238886A1 (en) 2018-06-13 2019-12-19 University Of Dundee Bifunctional molecules for targeting usp14
CN112533918A (en) 2018-06-13 2021-03-19 安菲斯塔治疗有限责任公司 Bifunctional molecules for targeting Rpn11
LT3813946T (en) 2018-06-15 2024-07-10 Janssen Pharmaceutica Nv Rapamycin analogs and uses thereof
US11180531B2 (en) 2018-06-22 2021-11-23 Bicycletx Limited Bicyclic peptide ligands specific for Nectin-4
WO2020010177A1 (en) 2018-07-06 2020-01-09 Kymera Therapeutics, Inc. Tricyclic crbn ligands and uses thereof
CN108752255A (en) * 2018-07-19 2018-11-06 重庆医科大学 A kind of preparation method of pabishta and its key intermediate
WO2020023628A1 (en) 2018-07-24 2020-01-30 Hygia Pharmaceuticals, Llc Compounds, derivatives, and analogs for cancer
US10548889B1 (en) 2018-08-31 2020-02-04 X4 Pharmaceuticals, Inc. Compositions of CXCR4 inhibitors and methods of preparation and use
EP3846793B1 (en) 2018-09-07 2024-01-24 PIC Therapeutics, Inc. Eif4e inhibitors and uses thereof
EP3866789A4 (en) 2018-10-15 2022-07-06 Nimbus Lakshmi, Inc. Tyk2 inhibitors and uses thereof
US10919937B2 (en) 2018-10-23 2021-02-16 Bicycletx Limited Bicyclic peptide ligands and uses thereof
CN109574936B (en) * 2018-11-23 2022-02-22 沈阳药科大学 Hydroxamic acid compound with HDAC6 inhibitory activity and application thereof
CA3119773A1 (en) 2018-11-30 2020-06-04 Kymera Therapeutics, Inc. Irak degraders and uses thereof
CN113271938A (en) 2018-11-30 2021-08-17 林伯士拉克许米公司 TYK2 inhibitors and uses thereof
EP3670659A1 (en) 2018-12-20 2020-06-24 Abivax Biomarkers, and uses in treatment of viral infections, inflammations, or cancer
WO2020132561A1 (en) 2018-12-20 2020-06-25 C4 Therapeutics, Inc. Targeted protein degradation
CN113348021A (en) 2019-01-23 2021-09-03 林伯士拉克许米公司 TYK2 inhibitors and uses thereof
WO2020165600A1 (en) 2019-02-14 2020-08-20 Bicycletx Limited Bicyclic peptide ligand sting conjugates and uses thereof
AU2020253990A1 (en) 2019-04-02 2021-10-28 Bicycletx Limited Bicycle toxin conjugates and uses thereof
CA3135802A1 (en) 2019-04-05 2020-10-08 Kymera Therapeutics, Inc. Stat degraders and uses thereof
MX2021014441A (en) 2019-05-31 2022-01-06 Ikena Oncology Inc Tead inhibitors and uses thereof.
GB201913123D0 (en) 2019-09-11 2019-10-23 Seald As Compositions and methods for treatment of cholangiocarcinoma
US11845724B2 (en) 2019-09-11 2023-12-19 Vincere Biosciences, Inc. USP30 inhibitors and uses thereof
GB201913122D0 (en) 2019-09-11 2019-10-23 Seald As Compositions and methods for treatment of cholangiocarcinoma
GB201913124D0 (en) 2019-09-11 2019-10-23 Seald As Compositions and methods for treatment of cholangiocarcinoma
GB201913121D0 (en) 2019-09-11 2019-10-23 Seald As Compositions and methods for treatment of cholangiocarcinoma
EP3798250A1 (en) 2019-09-25 2021-03-31 University College Dublin Hyperbranched cationic polymers useful as nucleic acid delivery vectors for transfecting
CA3151988A1 (en) 2019-09-25 2021-04-01 Wenxin Wang Nanoparticle compositions for gene therapy
US20220401564A1 (en) * 2019-11-06 2022-12-22 Dana-Farber Cancer Institute, Inc. Selective histone deacetylase (hdac) degraders and methods of use thereof
EP4069223A4 (en) 2019-12-05 2023-12-20 Janssen Pharmaceutica NV Rapamycin analogs and uses thereof
WO2021127283A2 (en) 2019-12-17 2021-06-24 Kymera Therapeutics, Inc. Irak degraders and uses thereof
JP2023509366A (en) 2019-12-17 2023-03-08 カイメラ セラピューティクス, インコーポレイテッド IRAK dissolving agents and their uses
TW202136240A (en) 2019-12-19 2021-10-01 美商亞文納營運公司 Compounds and methods for the targeted degradation of androgen receptor
CA3162502A1 (en) 2019-12-23 2021-07-01 Yi Zhang Smarca degraders and uses thereof
WO2021148581A1 (en) 2020-01-22 2021-07-29 Onxeo Novel dbait molecule and its use
KR20220149534A (en) 2020-02-05 2022-11-08 퓨어테크 엘와이티, 아이엔씨. Lipid prodrugs of neurosteroids
IT202000004075A1 (en) 2020-02-27 2021-08-27 Flamma Spa PROCESS FOR THE PREPARATION OF PANOBINOSTAT
CN115515685A (en) 2020-03-03 2022-12-23 皮克医疗公司 EIF4E inhibitor and application thereof
WO2021233534A1 (en) 2020-05-20 2021-11-25 Pvac Medical Technologies Ltd Use of substance and pharmaceutical composition thereof, and medical treatments or uses thereof
WO2021185844A1 (en) 2020-03-16 2021-09-23 Pvac Medical Technologies Ltd Use of substance and pharmaceutical composition thereof, and medical treatments or uses thereof
BR112022018678A2 (en) 2020-03-19 2022-11-01 Kymera Therapeutics Inc MDM2 DEGRADATORS AND THEIR USES
TW202210483A (en) 2020-06-03 2022-03-16 美商凱麥拉醫療公司 Crystalline forms of irak degraders
EP4192509A1 (en) 2020-08-05 2023-06-14 Ellipses Pharma Ltd Treatment of cancer using a cyclodextrin-containing polymer-topoisomerase inhibitor conjugate and a parp inhibitor
CN116234931A (en) 2020-08-17 2023-06-06 拜斯科技术开发有限公司 Bicyclic conjugates with specificity for NECTIN-4 and uses thereof
US11999964B2 (en) 2020-08-28 2024-06-04 California Institute Of Technology Synthetic mammalian signaling circuits for robust cell population control
WO2022120353A1 (en) 2020-12-02 2022-06-09 Ikena Oncology, Inc. Tead inhibitors and uses thereof
CN117015531A (en) 2020-12-02 2023-11-07 医肯纳肿瘤学公司 TEAD inhibitors and uses thereof
KR20230137889A (en) 2020-12-18 2023-10-05 암피스타 테라퓨틱스 엘티디 Novel bifunctional molecules for targeted protein degradation
GB202020359D0 (en) 2020-12-22 2021-02-03 Midatech Pharma Wales Ltd Pharmaceutical compositions and use thereof in combination therapy for brain cancer
KR20230152692A (en) 2021-02-02 2023-11-03 리미널 바이오사이언시스 리미티드 GPR84 antagonists and their uses
MX2023009060A (en) 2021-02-02 2023-09-29 Liminal Biosciences Ltd Gpr84 antagonists and uses thereof.
JP2024514879A (en) 2021-04-16 2024-04-03 イケナ オンコロジー, インコーポレイテッド MEK inhibitors and their uses
EP4392422A1 (en) 2021-08-25 2024-07-03 PIC Therapeutics, Inc. Eif4e inhibitors and uses thereof
WO2023028238A1 (en) 2021-08-25 2023-03-02 PIC Therapeutics, Inc. Eif4e inhibitors and uses thereof
WO2023041805A1 (en) 2021-09-20 2023-03-23 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for improving the efficacy of hdac inhibitor therapy and predicting the response to treatment with hdac inhibitor
GB2611043A (en) 2021-09-22 2023-03-29 Univ Dublin City A cis-platinum(II)-oligomer hybrid
CN118632688A (en) 2021-11-19 2024-09-10 布朗卡布努斯有限公司 Composition comprising a therapeutically active agent packaged in a drug delivery vehicle
WO2023114984A1 (en) 2021-12-17 2023-06-22 Ikena Oncology, Inc. Tead inhibitors and uses thereof
IL314437A (en) 2022-01-31 2024-09-01 Kymera Therapeutics Inc Irak degraders and uses thereof
WO2023173053A1 (en) 2022-03-10 2023-09-14 Ikena Oncology, Inc. Mek inhibitors and uses thereof
WO2023173057A1 (en) 2022-03-10 2023-09-14 Ikena Oncology, Inc. Mek inhibitors and uses thereof
WO2023194441A1 (en) 2022-04-05 2023-10-12 Istituto Nazionale Tumori Irccs - Fondazione G. Pascale Combination of hdac inhibitors and statins for use in the treatment of pancreatic cancer
WO2023211889A1 (en) 2022-04-25 2023-11-02 Ikena Oncology, Inc. Polymorphic compounds and uses thereof
GB2617409B (en) 2022-04-27 2024-06-26 Cancertain Ltd Method for predicting responsiveness to therapy
TW202404581A (en) 2022-05-25 2024-02-01 美商醫肯納腫瘤學公司 Mek inhibitors and uses thereof
WO2023242597A1 (en) 2022-06-16 2023-12-21 Amphista Therapeutics Limited Bifunctional molecules for targeted protein degradation
TW202415650A (en) 2022-08-02 2024-04-16 英商利米那生物科技有限公司 Aryl-triazolyl and related gpr84 antagonists and uses thereof
WO2024028363A1 (en) 2022-08-02 2024-02-08 Liminal Biosciences Limited Heteroaryl carboxamide and related gpr84 antagonists and uses thereof
WO2024030441A1 (en) 2022-08-02 2024-02-08 National University Corporation Hokkaido University Methods of improving cellular therapy with organelle complexes
TW202416972A (en) 2022-08-02 2024-05-01 英商利米那生物科技有限公司 Substituted pyridone gpr84 antagonists and uses thereof
WO2024041744A1 (en) 2022-08-26 2024-02-29 Biodexa Ltd. Combination therapy for brain cancer
WO2024112894A1 (en) 2022-11-22 2024-05-30 PIC Therapeutics, Inc. Eif4e inhibitors and uses thereof
WO2024184266A1 (en) 2023-03-03 2024-09-12 Ionctura Sa Combination of roginolisib and hdac inhibitor in the treatment of haematological malignancy

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5700811A (en) * 1991-10-04 1997-12-23 Sloan-Kettering Institute For Cancer Research Potent inducers of terminal differentiation and method of use thereof
JP3342485B2 (en) * 1991-12-10 2002-11-11 塩野義製薬株式会社 Aromatic sulfonamide hydroxamic acid derivatives
US5569668A (en) * 1995-03-29 1996-10-29 Webster; John M. Indole derivatives with antibacterial and antimycotic properties
US5722242A (en) * 1995-12-15 1998-03-03 Borealis Technical Limited Method and apparatus for improved vacuum diode heat pump
US6777217B1 (en) 1996-03-26 2004-08-17 President And Fellows Of Harvard College Histone deacetylases, and uses related thereto
JPH10182583A (en) 1996-12-25 1998-07-07 Mitsui Chem Inc New hydroxamic acid derivative
AUPO721997A0 (en) * 1997-06-06 1997-07-03 Queensland Institute Of Medical Research, The Anticancer compounds
US6127392A (en) * 1997-08-05 2000-10-03 American Home Products Corporation Anthranilic acid analogs
WO1999007669A1 (en) 1997-08-05 1999-02-18 American Home Products Corporation Anthranilic acid analogs
ES2228119T3 (en) 1998-10-19 2005-04-01 Methylgene, Inc. MODULATION OF THE EXPRESSION OF DNA-METHYL-TRANFERASE THROUGH COMBINATION THERAPY.
US6110922A (en) 1998-12-29 2000-08-29 Abbott Laboratories Cell adhesion-inhibiting antiinflammatory and immune-suppressive compounds
UA74781C2 (en) 1999-04-02 2006-02-15 Abbott Lab Antiinflammatory and immumosuppressive compounds inhibiting cell adhesion
CN1378450A (en) 1999-09-08 2002-11-06 斯隆-凯特林癌症研究院 Novel class of cytodifferentiating agents and histone deactylase inhibitors, and methods of use thereof
GB9922173D0 (en) 1999-09-21 1999-11-17 Zeneca Ltd Chemical compounds
EP1233958B1 (en) * 1999-11-23 2011-06-29 MethylGene Inc. Inhibitors of histone deacetylase
DE60026733T2 (en) 1999-12-08 2006-11-02 AXYS Pharmaceuticals, Inc., South San Francisco HISTONE DEACETYLASE-8 PROTEINS, NUCLEIC ACIDS AND METHODS OF USE
TW427572U (en) * 1999-12-17 2001-03-21 Hon Hai Prec Ind Co Ltd Electrical connector
EP1280764B1 (en) 2000-03-24 2010-11-24 Methylgene, Inc. Inhibitors of histone deacetylase
EP1438404A2 (en) * 2000-03-24 2004-07-21 Methylgene, Inc. Inhibition of specific histone deacetylase isoforms
EP1314721A1 (en) * 2000-08-31 2003-05-28 Wakunaga Pharmaceutical Co., Ltd. Novel propenohydroxamic acid derivatives
PE20020354A1 (en) * 2000-09-01 2002-06-12 Novartis Ag HYDROXAMATE COMPOUNDS AS HISTONE-DESACETILASE (HDA) INHIBITORS
MXPA03003002A (en) 2000-10-05 2004-12-06 Fujisawa Pharmaceutical Co Benzamide compounds as apo b secretion inhibitors.
SE0101386D0 (en) 2001-04-20 2001-04-20 Astrazeneca Ab New compounds
US6905669B2 (en) 2001-04-24 2005-06-14 Supergen, Inc. Compositions and methods for reestablishing gene transcription through inhibition of DNA methylation and histone deacetylase
HUP0500573A2 (en) 2001-08-11 2005-11-28 Bristol-Myers Squibb Pharma Company Triphenyl-ethylene derivatives as selective estrogen receptor modulators and pharmaceutical compositions containing the same
US6706686B2 (en) * 2001-09-27 2004-03-16 The Regents Of The University Of Colorado Inhibition of histone deacetylase as a treatment for cardiac hypertrophy
DE10152764A1 (en) * 2001-10-29 2003-05-08 Linde Ag Valve for cryogenic media

Similar Documents

Publication Publication Date Title
US6552065B2 (en) Deacetylase inhibitors
AU2001282129A1 (en) Hydroxamate derivatives useful as deacetylase inhibitors
KR20080035683A (en) Method of use of deacetylase inhibitors
EP1443967B1 (en) Cyclooxygenase-2 inhibitor/histone deacetylase inhibitor combination
KR100464526B1 (en) Sodium-hydrogen exchanger type 1 inhibitor crystals
AU2008204928B2 (en) Formulations of deacetylase inhibitors
WO2008137630A1 (en) Use of hdac inhibitors for the treatment of gastrointestinal cancers
JP2010526830A (en) Use of HDAC inhibitors for the treatment of melanoma