AU2001277628A1 - Process and apparatus for removing nox from engine exhaust gases - Google Patents

Process and apparatus for removing nox from engine exhaust gases

Info

Publication number
AU2001277628A1
AU2001277628A1 AU2001277628A AU7762801A AU2001277628A1 AU 2001277628 A1 AU2001277628 A1 AU 2001277628A1 AU 2001277628 A AU2001277628 A AU 2001277628A AU 7762801 A AU7762801 A AU 7762801A AU 2001277628 A1 AU2001277628 A1 AU 2001277628A1
Authority
AU
Australia
Prior art keywords
plasma
silver
further characterised
exhaust emissions
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2001277628A
Inventor
Robert Frew Gillespie
David Raybone
James Timothy Shawcross
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Accentus Medical PLC
Original Assignee
Accentus Medical PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Accentus Medical PLC filed Critical Accentus Medical PLC
Publication of AU2001277628A1 publication Critical patent/AU2001277628A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0892Electric or magnetic treatment, e.g. dissociation of noxious components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/208Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/402Perovskites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • B01D2255/504ZSM 5 zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0826Details relating to the shape of the electrodes essentially linear
    • B01J2219/083Details relating to the shape of the electrodes essentially linear cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0875Gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0892Materials to be treated involving catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • B01J2219/0896Cold plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of gallium, indium or thallium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/28Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a plasma reactor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

A method and apparatus for removing nitrogen oxides from internal combustion engine exhaust emissions consisting of the operations of contacting the exhaust emissions with a non-thermal plasma ( 1 ) and a silver doped alumina catalyst ( 2 ) and then an indium-doped zeolite catalyst ( 3 ).

Description

PROCESS AND APPARATUS FOR REMOVING NOX FROM ENGINE EXHAUST GASES
The present invention relates to the removal of nitrogen oxides from gaseous effluent and more particularly to the treatment of the exhaust gases from internal combustion engines to reduce the emissions of nitrogen oxides . The invention relates , but is not limited to automotive applications such as diesel engines and lean burn gasoline as well as gas turbines and effluent off -gas treatment.
One of the major problems associated with the development and use of internal combustion engines is the noxious exhaust emissions from such engines. Two of the most deleterious materials, particularly in the case of diesel engines, are particulate matter (primarily carbon) and oxides of nitrogen such as nitric oxide (NO) and nitrogen dioxide (N02) often collectively referred to as
(NOx) . Excessive levels of NOx are also produced by spark- ignition engines operating in what is known as
'lean burn' mode in which the air: fuel ratio, is higher than that required for stoichiσmetric combustion. It is also appreciated that alternative fuels and hybrid type combustion engines, as an example which may burn diesel fuel and/or natural gas, may also pose a similar problem.
Increasingly severe emissions control regulations are forcing internal combustion engine and vehicle manufacturers to find more efficient ways of removing these materials in particular from internal combustion engine exhaust emissions.
One of the ways in which emissions are being reduced is by modifying the combustion process in the engine. Modifications include altering injection timing, engine design, common rail systems and exhaust gas recirculation (EGR) but all have certain limits for practical engine operation. Unfortunately, in. practice, it is found that combustion techniques which improve the situation in relation to one of the above components of internal combustion engine exhaust emissions tend to worsen the situation in relation to the other.
There are however numerous aftertreatment techniques being developed to remove NOx emissions from exhaust gases from internal combustion engine exhaust as well as other waste, gas sources. In general, practical NOx reduction systems for internal combustion engines are reliant on passing the exhaust gases across a catalyst. There are generally two types of catalytic reduction methods used, non-selective and selective catalytic reduction (SCR). This invention is concerned primarily with SCR systems and requires a suitable reductant or reducing agent to be present or added to the exhaust gas . Typical reductants for this purpose are urea or ammonia, but these are not the most practical for mobile vehicle applications. This is because this needs additional space for the ' reductant tank on the vehicle and a supply infrastructure to allow the reductant to be replenished. SCR catalysts can however perform very effectively using hydrocarbons, normally found in the combustion engine exhaust, as the reductant for a certain range of temperatures . One of the key issues with this approach is whether the exhaust gas has the required concentration of hydrocarbon reductant present to promote the required selective catalytic reactions to reduce NOx to nitrogen. The concentration of hydrocarbons may be altered, if there is insufficient, in the exhaust, by for example, adding a post-injection of fuel into the combustion chamber or by injecting fuel into the exhaust.. One recently developed method is to use non-thermal plasma to activate the hydrocarbon, which, may be in the form of additional fuel, to promote the catalytic NOx reduction to nitrogen as disclosed in 099/12638.
Considerable effort has been dedicated to -the development of catalysts for the reduction of NOx from diesel exhausts. The paper 'Selective Catalytic
Reduction of NOx with N-Free Reductants' by M. Shelef published in Che . Rev. 1995 pages 209-225 is a comprehensive review in particular of the use of zeolites for the reduction of the NOx content of internal combustion engine exhaust gases. Other catalysts are mentioned but not dealt with comprehensively. The more recent review by Parvalescu et al 'Catalytic Removal of NO' published in Catalysis Today, volume 46 (1998) pp 233 - 316 is a comprehensive document on the range of materials that have been evaluated for the selective catalytic reduction of .NOx. The catalysts include. zeolites, both proton-exchanged and metal -exchanged zeolites, oxides such as simple oxides, for example A103,
V205 , complex oxides such as- perovskites and precious metal supported oxides, in the presence of reducing agents such as hydrocarbons or ammonia. Mixed oxides have also been used in the presence of hydrocarbons for example a mixed manganese/zirconium oxide as described in US 6,103,207.
Despite extensive worldwide efforts it has been difficult to find an effective catalyst for selective catalytic reduction of NOx because candidate materials can be deactivated in use for example by water vapour at typical diesel exhaust temperatures. ' Selectivity of the catalyst is difficult to control as the optimum operating temperature of the catalyst does not always coincide with the exhaust gas temperature. In practice, the catalyst may not be wholly selective to NOx for example it may oxidise hydrocarbon at the expense of selective catalytic reduction of NOχ to N . There are also concerns that lean
NOx catalysts which' are aimed at reducing N02 have demonstrated poor selectivity to nitrogen production with the majority of the N02 being converted to N20 or back- converted to NO.
Silver-based catalysts have been described for the reduction of NOx in vehicle emissions and these catalysts, particularly silver on alumina, have been prepared by a variety of wet chemical techniques including sol -gel processing. For example impregnation • methods including incipient wetness have been described in EP 0 658 368 A (Chemcat), A Martinez -Arias et al in Applied Catalysis B: Environmental, volume 28, pages 29- 41 (2000) has used microemulsions , K I Shimuzu et al in Applied Catalysis B: Environmental ,. volume 25, pages 239- 247, (2000) used coprecipitation from non-aqueous • solutions, Eranen et al in SAE 2000-01 2813 'used impregnation methods and Bethke and Kung in Journal of Catalysis, volume 172, pages 93-102 (1997) used incipient wetness on a sol -gel' derived gamma alumina powder. In .EP 0 658 368 A (Chemcat) the alumina substrate had a well- . defined pore size corresponding to a bulk density greater than 0.60 g cm - 3 , a surface area of 120 m2 g-1 and a
-3 skeleton density less than 1.80 g cm but the silver on alumina catalyst was not used in conjunction with any other catalyst material. Silver-based catalysts can be treated by a ydrothermal treatment before measurement of their catalytic activity as described in PCT/GB 01/01571 and the pending application GB 01 09734.4 filed on 20 April 2001.
In the papers by Miyadera "Alumina-supported silver catalysts for the selective reduction of nitric oxide with propene and oxygen-containing organic compounds" published in Applied Catalysis B: Environmental, volume 2, (1993) pages 199-205, and Miyadera and Yoshida "Alumina- supported silver catalysts for the selective reduction of nitric oxide with propene" published in Chemistry Letters, (1993), page 1483 a 2% Ag-alumina catalyst showed promising hydrothermal stability for NOx reduction. Added propene and partially oxygenated hydrocarbons, such as 2-propanol, were effective reductants. Masuda et al in the article "Silver promoted catalyst for removal of nitrogen oxides from emissions of diesel engines" in Applied Catalysis B: Environmental, volume 8, (1996), pages 33-40 showed that 3% Ag-mordenite was a promising lean NOx catalyst compared to Ag-ZSM-5 and Ag-alumina with CH3COCH3 as reductant. Bethke and
Kung in the paper "Supported Ag catalysts for the lean' reduction of NO with C3H6" published in Journal of
Catalysis, volume 172, (1997), page 93 showed that the oxidation state of silver affects its catalytic activity for the reduction of NOx. Another silver containing compound, silver aluminate, AgAl20 , doped with 0.1 weight % 03 was shown to be a promising catalyst for the reduction of NOx by Nakatsuj'i et al in the paper "Catalytic reduction system of. NOx in exhaust gases from diesel engines with secondary fuel injection" published in Applied Catalysis B: Environmental, volume 17, (1998), pages 333-345. Keshavaraja et al in an article 'Selective catalytic reduction of NO with methane over Ag-alumina catalysts' published in Applied Catalysis
B:Environmental , volume 27, pages Li-L9, 2000 used CH for the selective reduction of NO over silver-alumina catalysts at temperatures between 723-923 K with Ag loadings of 1-7 weight percent.
Meunier et al have discussed the role of silver- alumina catalysts on the selective catalytic reduction of NO by propene in an article 'Mechanistic aspects of the selective reduction of NO by propene over γ-alumina and silver-alumina catalysts' published in Journal of Catalysis, volume 187, pages 493-505, 1999. High silver loadings, 10 percent by weight produced N20 while a low loading, 1-2 percent by weight, was effective for the selective catalytic reduction of NO to N2. Adsorbed organo-nitrogen compounds such as orgaho-nitrites were intermediate species in the reaction.
Masters and Chadwick showed that oxygenated hydrocarbons , methanol and dimethyl ether 'can reduce NO to N2 under lean conditions by selective catalytic reduction over γ-alumina. This work, 'Selective reduction of nitric oxide by methanol and dimethyl ether over promoted alumina catalysts in excess oxygen' , published in Applied Catalysis B: Environmental, volume 23, pages
235-246, 1999 showed that molybdena (Mo03) additions improved the catalytic activity at temperatures lower than those required in the case of γ-Al03 alone. Surface formyl species were an intermediate product in the reaction. Combinations- of catalysts for reduction of N0X in which one is indium based have also been described. For example Iwa oto et al'in 'Oxidation of NO to N02 on a Pt-
MFI zeolite and subsequent reduction of NOx by C2H on an In-MFI zeolite: a novel de-NOx strategy in excess oxygen' published in Chemical Communications, pages 37-38 (1997) have described a combination of a platinum on zeolite catalyst for oxidation of NO to N02 followed by an indium on zeolite catalyst to reduce N02 to nitrogen in the presence of C2H4 in excess oxygen. A. combination of a silver-alumina catalyst and an indium-containing ZSM-5 zeolite has been described in JP 9103649 for the reduction of NOx when methanol was used as the reducing agent. The use of a mixed manganese/zirconium oxide catalyst combined with platinum deposited on gamma alumina that is described in US 6,103,207 is an example of a NOx reduction catalyst containing more than two active catalyst materials.
There have also been increasing levels of research and development into the combination of a non-thermal plasma and a catalyst to promote the reduction from NOx froiri combustion exhaust gas e.g. Hoard et al SAE-2000-01- 2895, Tonkyn et al SAE-2000-01-2896., La pert SAE-2000-01- 2962 and Fisher et al SAE-2000-01-2965.
The no -thermal plasma can help. the catalyst overcome some of ' its inherent temperature and selectivity limitations by creating .activated species not normally formed thermally. Two main routes can be identified in the effect of plasma on catalyst NOx reduction systems in for example automotive exhaust gas aftertreatment . The majority NOx species in combustion exhaust gas is nitric oxide NO although N0 can form as the gas cools along the exhaust pipework and when it enters the atmosphere.
A first route is to use a 2 -stage system relying upon the plasma oxidation of hydrocarbons (by O, OH radicals) to promote NO to N02 conversion as a precursor to N02 reduction over a suitable catalyst. The presence of the hydrocarbons also suppresses further oxidation of the N02 to acidic species.
This 2 -stage process (A) can then be summarised as:
(i) Plasma + NO + hydrocarbons + 02 —> N02,
followed b
' ( ii ) Catalyst + N02 + hydrocarbons - N2 +C02 + H20
In the second route plasma activation of hydrocarbon in the exhaust promotes NOx reduction over an NO selective catalyst. This process (B) can be. summarised as follows:
(i) Plasma + hydrocarbons + 02 —> plasma activated hydrocarbons ( PAC ' s )
followed by
(ii) Catalyst + NO + HC's/PAC's → N2 + C02 + H20 This process can occur in a 2 stage or single stage plasma catalyst system. The main effect of the plasma in process B is to activate the hydrocarbon in the exhaust gas that then promotes the reduction of NO over the catalyst as disclosed in W099/12638. The plasma can activate hydrocarbon that is in the exhaust gas or activate it in a separate stage that serves to inject the activated hydrocarbon into the exhaust gas containing NO before passing over the catalyst combination. This minimises any plasma enhanced NO to N02 conversion and promotes process' B. Process B is especially useful for simultaneous N0X and particulate removal (Thomas et al SAE 2000-01-1926). For example, when simultaneous removal of N0X and particulates is required a suitably designed plasma reactor, containing a packing material . designed to filter and retain particulate matter, can promote oxidation of the particulates in diesel exhausts at low temperatures. It is suggested that the trapped particulates compete with the hydrocarbons for 0 and possibly OH radicals. We have recognised that this is an important consideration in plasma catalyst systems employing an N02 selective catalyst, as the particulate oxidation may deplete the key radicals necessary for NO to N02 conversion. Thus for simultaneous N0X and particulate removal, there is advantage in selecting a catalyst formulation which is NO selective (process B) .
The present invention is based upon an appreciation of the advantages which flow from the effects of a non thermal plasma when combined in a particular way with a combination or mixture of an NO selective reduction catalyst such as silver alumina' and an N02 selective reduction catalyst such as Indium coated ZSM5- zeolite. It is an object of the present invention to' provide an improved method and reactor system using two or more catalytic materials which respectively provide selective catalytic reduction of NO and N02 in the emissions of internal combustion engines .
According to the invention there is provided a method for removing oxides of nitrogen from the exhaust emissions from an internal combustion engine comprising the operations of contacting exhaust emissions from an internal combustion engine with a body of silver- containing activated alumina in the presence of a gaseous hydrocarbon material and subsequently contacting the exhaust emissions with a body of indium-containing zeolite material, characterised in that the body of .silver-containing alumina is exposed to activated hydrocarbons produced in a non-thermal plasma generated in conditions in which hydrocarbons are activated by the plasma without significant simultaneous production of N02 by the plasma.
In this way NO reduction over the silver' doped alumina catalyst is enhanced and the indium doped zeolite catalyst reduces any N02 in the exhaust gas or N02 converted from NO over the first stage silver doped alumina catalyst.
The non-thermal plasma can be arranged to act directly on the exhaust emissions from an internal combustion engine to activate hydrocarbons which .are in the exhaust either from unburnt .fuel or which have been added to the exhaust. This can be arranged so that the plasma acts upon the exhaust emissions before passing over the catalyst combination, or, alternatively, the catalyst materials can also be exposed to the -no -thermal plasma. For either of these approaches, it is important that the conditions are such that the plasma energy is taken up principally for activation of hydrocarbons and not in the production of N02. This is achieved where other species in the exhaust subjected to the plasma combine thermodynamically more readily with oxygen than NO, as is the case, for example,- where the exhaust contains carbonaceous particulates. In this way significant simultaneous production of N02 by the plasma is avoided.
Alternatively, significant simultaneous production of N02 by the plasma is avoided by applying .the plasma to hydrocarbons separately from the exhaust emissions and injecting plasma activated hydrocarbons into the exhaust emissions.
' Types of non-thermal plasma reactor appropriate for this invention include but are not limited to, a dielectric barrier or silent discharge type, a pulsed corona reactor, packed bed reactor such as a ferroelectric bed reactor and a surface discharge reactor.
The concentration of silver in the alumina should be below a percent weight concentration above which N20 is produced in the catalytic reaction with the effluent stream. This may be achieved by adopting a silver concentration in the range 0.1 to 5 per cent by weight . A 2% by weight silver content is a particularly suitable concentration to use. The indium content is. in the range. 1 to 10 weight percent and a preferred content is "approximately 5 weight percent. . More than two catalyst combinations can be used to optimise the catalytic N0X reduction, including exhaust gas containing NO and N02 over the temperature range' required.
Also there may be included the operation of removing carbonaceous combustion products from the exhaust emissions prior to contact with the selective reduction catalysts. This may be done by establishing the non- thermal plasma in the exhaust gas emissions and/or by contacting the exhaust gas emissions with an oxidation .catalyst, acting as a carbon combustion catalyst, such as "alkali-metal salts including lithium nitrate described in GB 2 232 613 B, cerium oxide, alkali -metal doped lanthanum oxide-vanadium oxide, such as lanthanum- caesium-vanadium pentoxide, alkali metal vanadates and perovskites described in the pending application GB 00 15952.5 filed on the 30th June 2000 or perovskites described in WO 99/38603 or combinations of these materials. In either case attention is required, as explained above, to ensure that the exhaust gas emissions passing over the selective reduction catalysts contain hydrocarbons which have been activated by non-thermal plasma without significant simultaneous production of N02 by the plasma.
According to the invention in a second aspect there is provided a. reactor system for removing nitrogen oxides from exhaust emissions from an internal combustion engine comprising at least one reactor chamber, means for contacting the exhaust emissions .with a silver-containing activated alumina material and an indium-containing zeolite material, characterised in that means are provided for exposing the silver-containing alumina to activated hydrocarbons produced in a non-thermal plasma generated in conditions in which hydrocarbons are activated by the plasma without significant simultaneous production- of N02 by the plasma.-
The catalytic materials may both or individually be positioned within a plasma region or outside a plasma region and be as mixed coating on a suitable substrate or as separate catalyst sections. A number of permutations may be employed. The catalytic material, can be in the form of spheres, pellets, extrudates, fibres, sheets, wafers, frits, .meshes ,. coils , foams, membrane, ceramic honeycomb monolith or granules or as a' coating on any of the above shapes or contained within a dielectric, polymeric or metallic material in any of the above ' shapes or as a combination of more then one packing. The catalysts may also be coated onto suitable substrate materials such as Fecralloy steel and contained within micro-channel reactors. The amounts of catalysts may be optimised according to the application for example as different percentage volumes, space velocities, metal loadings as required.
Preferably there is included means for measuring the temperature of the exhaust emissions prior to contacting them with the silver-containing alumina, and means for stopping the generation of the non-thermal plasma if the temperature is above a pre- etermined value, for example 600 Kelvin.
In one arrangement in accordance with the invention, the silver-containing alumina is in the form of a gas permeable body contained between two electrodes through which the exhaust emissions are constrained to pass, and means is provided for applying to the electrodes across the body of silver-containing alumina a potential sufficient to excite a plasma in the exhaust emissions . within the interstices in the body of silver-containing alumina.
In an alternative arrangement, the no -thermal plasma is generated in a plasma generating reactor situated upstream of a reactor chamber containing the silver-containing alumina.
The invention will now be described by way of example, with reference to the accompanying drawings, in which
Figure 1 is a flow diagram of a first embodiment 'of the invention;
Figure 2 ( i ) is a series of curves showing the variation with temperature of the concentrations of different nitrogen oxides in the effluent passed over an upstream 80% silver alumina, followed by a 20% indium ZSM5 (by volume) catalyst combination, in which the effluent stream has. an initial composition of 500 ppm NO in 10% O2/90% N2 and a Cl: N0X ratio of 6 based on propene (C3H6). Note that on contacting NO with the 02/N2 mixture, some N02 is formed, as indicated by the position of the curves at the 273K temperature axis. (For all plots the values plotted at '273K'' represent the input species concentrations and not an effect of the catalysts at this temperature ) .
Figure 2(ii) is a series of. curves showing the variation with temperature of the concentrations of NO in the effluent from a reactor system embodying the invention of using the plasma and the combination of silver alumina and indium ZSM5 as an 80:20 by volume ratio, in which the effluent stream has an initial composition of 500 ppm NO in 10% O2/90% N2 and a Cl : NOx ratio of 6 based on propene (C3H6).
Figure 3 is a series of curves illustrating the effect of differing ratios of hydrocarbon to N0X in simulated internal combustion engines . exhaust gases on the effectiveness of a silver/alumina catalyst as an agent for removing NO from the simulated exhaust emissions with the same initial composition as shown in Figure 2;
Figure 4 is a series of curves corresponding to those of Figure 3 but relating to the effectiveness of indium doped ZSM5 zeolite as an agent for reducing N02 in the effluent from the silver/alumina catalytic reactor;
Figure 5 is a flow diagram of a second embodiment of the invention;
Figure 6 is a flow diagram of a third embodiment of the invention;
Figure 7 is a flow diagram of a fourth embodiment of the invention;
Figure 8 shows schematically an exhaust system embodying the invention;
Figure 9 is a longitudinal section of a plasma generator(of a form described in WO- 00/71866) suitable for use in carrying out the invention;
Figure 10 illustrates the gas flow path through the reactor of Figure 9. Referring to Figures 1 to 4 of the drawings , a method for the removal of NOx from the exhaust emissions from an internal combustion engine (not shown in the drawing), consists of the operations passing the exhaust gases through a plasma reactor chamber 1 and subsequently flowing these plasma processed exhaust gases through a , reactor chamber 2 containing a body of '.silver-containing activated alumina (Ag/Al203) and passing the effluent from reactor chamber 2 through a reactor chamber 3 containing a body of indium-containing zeolite material (In/ZSM5)." The arrows indicate the direction of exhaust gas flow constrained to' flow through an appropriate exhaust gas pipe typical of that found, by way of an example, for combustion engines. The catalysts can be contained, as shown, in two separate chambers 2 and 3 or be combined into one chamber. They may be intimately mixed or in separate sections of the single chamber so as to act sequentially.
Providing sufficient hydrocarbons are present in the exhaust gases from the internal combustion engine, such as is the case usually with diesel engines or spark- ignition engines operating in what is known in the art as lean burn conditions, and the temperature of the exhaust gases is in the region of 675° Kelvin, both of which conditions are satisfied in the vicinity of the exhaust manifold of an internal combustion engine, the Ag-Al203 acts to achieve high NO removal from the exhaust gases . Should the temperature of the exhaust gases be greater than approximately 723° Kelvin, however, then some conversion of NO to N02 may occur. The In/ZSM5 in the second reactor chamber 3 acts on N02 in the effluent from the reactor chamber 2 to reduce the N02 to N2. The ln/ZSM5 is effective over a wide range of temperatures, lower than those required by the Ag/Al203 ' catalyst, about 425° Kelvin being suitable. At higher temperatures 'there is evidence of back conversion of N02 to NO. The In/ZSM5 is however more selective at lower
N0 concentrations which results in the N02 to NO back ' conversion contribution being very small for the exhaust gas streams where NO is typically the majority NOx species. This is demonstrated 'in figure 2(i). Also, the reaction of -N02 over the In/ZSM5 catalyst is less dependent on the concentration of hydrocarbons in the gases exposed to it. It is suitable, therefore, for mounting in an exhaust system downstream of the Ag/Al203 catalyst.
Figure 2 (i ) presents the . temperature-related performance of the silver doped alumina and indium doped zeolite combination of catalysts for removal of NO, N02 and total NOx emissions with an initial hydrocarbon: nitrogen oxide ratio in the exhaust gases of 6:1. The catalyst combination demonstrates effective removal of
NO, N02- and total NOx emissions. What- is. especially notable is that the presence of the indium catalyst has reduced the N02 emissions very effectively across a broad temperature range -much more effectively than the silver catalyst on its own.
Figure 2 (ii) presents both the -temperature-related performance of the catalyst combination on its own and the effect when, in accordance with the invention, the exhaust gas is subjected to activation by a non-thermal plasma before passing over the silver and indium combination of catalysts. The curves show respective removal of N0X emissions with an initial hydrocarbon: nitrogen oxide ratio in the exhaust gases of 6:1. The plasma-catalyst combination configuration demonstrates significantly enhanced removal of NOx emissions over the catalyst only approach.
Figures 3 and 4 present curves showing similar parameters for the Ag/Al203 and In/ZSM5 catalysts separately with initial hydrocarbon to NOx mole ratios of
0, 1:1 and 6:1 based upon a C hydrocarbon (number of carbon atoms in hydrocarbon) . Note that in the Figures this ratio can refer to hydrocarbon: NOx, hydrocarbon: NO or hydrocarbon: N02 ratios. In practice a C3 hydrocarbon, propene, was used. To a first approximation propene is equivalent to a three C-L hydrocarbon.
The concentration of silver in the silver/alumina catalyst material may be in the range 0.1 to 5% by weight and the concentration of indium in the indium zeolite catalyst material may be in the range 0.5 to 10% by weight. Preferred values are 2% and 5% respectively. Indium can be deposited onto the zeolite by ion-exchange.
In practice, during the initial start-up of an internal combustion engine or similar for low load/low engine speed conditions, the temperature of the exhaust gases can be typically 425 - 525 Kelvin and as can be seen from Figure 3 in particular, at these temperatures the silver/alumina catalyst is relatively inefficient for the reduction of NO, the predominant N0X component although the In- zeolite is 'efficient at low temperature for conversion of N02 to N2. A way of alleviating this problem is to establish a non-thermal plasma in the exhaust gases either before they are exposed to the silver/alumina catalyst, or simultaneously therewith as demonstrated in figure 2(ii). Also, it may be necessary to inject additional hydrocarbons into the catalyst reactors and /or plasma, either in the form of the fuel supplied to the engine, or from a separate source to promote the catalytic reduction of NOx. The hydrocarbon, including additional hydrocarbon injected into the plasma, is converted by the plasma into activated hydrocarbon species, as described in W099/12638. ' Activated hydrocarbons can include oxygenated hydrocarbons. Such activated hydrocarbons react with , nitrogen oxides over catalytic materials such, as silver- containing alumina at lower temperatures than hydrocarbons which have not been plasma activated. In this way activated hydrocarbons can extend the temperature range of catalyst activity to lower temperature. For additional hydrocarbon injection a reservoir may be provided for the hydrocarbon additive (derived from the fuel supplied to the engine or from a separate source) and injection of hydrocarbon additive controlled in dependence upon information as to NO concentration in the exhaust. This NO concentration information may be derived from the engine management system and engine map or from an NO sensor appropriately positioned in the exhaust. The plasma can thus introduce beneficial effects, such as enhancing (through -the generation of activated hydrocarbons) the action of the silver-indium catalyst combination in reducing N0X to N,2.
Figure 5 illustrates such a process in which the temperature of the exhaust gases is' measured by a sensor 501, which actuates a power source 502 for a plasma generator 503 when the temperature of the exhaust gases is for example below -600 Kelvin. It will be appreciated that the appropriate temperature for this control of the plasma may vary according to the exhaust composition and the operating condition of the engine. The plasma is configured in such a way as to activate hydrocarbon in the exhaust gas to promote reduction over the catalysts in reactor chambers 2 and 3.
A more sophisticated process for the treatment of internal combustion engine exhaust emissions may include provision for removing particulate carbonaceous combustion products from the exhaust emissions by passing the exhaust emissions through a soot trap 601 containing, for example, a cordierite wall flow monolith or a silicon carbide filter which may be catalytically coated or a plasma oxidation stage before catalyst reactor chambers 2 and 3. Figure 6 illustrates such an exhaust emission treatment process. The initial -temperature measurement and plasma power supply stages are omitted from the drawing.- As an example if, soot trap 601 is a plasma oxidation stage it can be operated' in such a way as . to oxidise the particulate emissions from, for example . internal combustion engine exhaust and also activate hydrocarbons in the exhaust gas. These hydrocarbons may be those in the exhaust gas or added to it by systems such as described subsequently in figures 7 and 8. The source of hydrocarbon can also be the soluble organic fraction (SOF) of the particulate. -Additional hydrocarbon can also be generated by a controlled post-" injection of fuel into the engine. This combined particulate and NOx removal system can use similar control parameters such 'as temperature as described with reference to Figure. 5. Figure 7 shows schematically- a more sophisticated system in which there is incorporated a means for injecting activated hydrocarbons into the exhaust gas further enabling the plasma enhanced catalytic reduction of N0X to be achieved. Reactor chambers 2 and 3 are as, described previously. A sensor 701 which may monitor for example temperature and/or hydrocarbon concentration provides a signal to a controller 704 which processes the signal and controls the operation of a power source 702 that operates plasma reactor 703. The controller 704 also controls the addition of hydrocarbon from a source 705, which may be stored as a gas, liquid, or solid fuel.' This hydrocarbon is injected into the plasma reactor 703, which activates it before injecting it into the main exhaust flow via injection port 706. The -exhaust gases containing the plasma-activated hydrocarbons then pass.. over the catalysts contained in chambers 2 and 3 promoting enhanced NOx reduction. This approach uses the plasma to activate hydrocarbon via a hydrocarbon injection stage where the plasma' does not have the full exhaust flow passing through it. The plasma-activated hydrocarbon is then injected into the main exhaust flow.
Figure 8 shows schematically another system in which there is incorporated a means for injecting hydrocarbons into the exhaust gas further enabling the plasma enhanced catalytic reduction of NOx to be achieved. Reactor chambers 2 and 3 are as described previously. Referring to Figure 8 the temperature of the exhaust gases is measured by a sensor 801, which actuates a power source 802 for a plasma generator 803 positioned upstream of the catalyst chambers 2 and 3, when the temperature of the exhaust gases is for example below -600 Kelvin. A probe 804 connected to hydrocarbon sensor 805 is also mounted in the exhaust system. The hydrocarbon sensor 805 is connected to a source of hydrocarbon 806. The hydrocarbon source 806' is connected to an injector valve 807 again mounted in the exhaust system upstream of the plasma reactor 803. This hydrocarbon injection stage can then inject additional hydrocarbon to the exhaust gas if it falls below a critical level to sustain NOx reduction.
This stage may be- additionally controlled in conjunction with the plasma stage (not shown in figure 8) to match the concentration of additional hydrocarbon added to the. appropriate energy density of the plasma to activate sufficient hydrocarbons to promote enhanced N0X reduction* over the catalysts contained in chambers 2 and 3. By way of summary the approach illustrated by' Figure 8 uses a separate hydrocarbon injection stage into the main exhaust flow which then passes through the' plasma reactor 803.
It will be appreciated that the arrangements of Figure 7 and Figure 8 are readily adapted to respond to measurements from a sensor (not shown) of NO and/or N02 in the exhaust gases emerging from the final reactor chamber 3.
A suitable plasma generator for use as the plasma ' generator reactor 801 is shown in Figures 9 and 10.
Referring to Figure 9 , the plasma generator reactor 901 consists of a reactor chamber 901 which has inlet and outlet stubs 902, 903 respectively, by means of which it can be incorporated into the exhaust system of an internal combustion engine.
Inside the reactor chamber 901 there is an inner electrode 904 which is supported within a dielectric tube 905, made for example out of α-alumina which has its upstream end closed by a spherical dome 906' to facilitate the flow of exhaust gases through the reactor 901. The inner surface of the dielectric tube 905 can be metallised with a metal coating in order to increase the physical contact between the inner electrode 904 and the dielectric tube.905. In this example, the inner electrode 904 is conveniently provided by a deposited electrically conducting layer of silver on the inner surface of the dielectric tube 905. High voltage connection via an high' voltage input terminal 907 is made through a spring loaded telescopic tube assembly 908 and spring contacts 909. Load from the sprung telescopic tube assembly 908 is received by a load spreader plate 910, which is connected to the conducting layer of silver forming the inner electrode 9.04. The materials, including the spring are required to operate at elevated temperatures , and the spring must have low creep at such temperatures. A preferred material for the spring is an Inconel alloy such as that known as X750. An alumina end flange 911 is shaped to receive and locate the end of the dielectric tube 905 and is itself located by a sprung metal clip 912.
A convenient potential for the excitation of the plasma is of the order of kilovolts to tens of kilovolts and repetition frequencies in the range 50 to 5000 Hz, although higher frequencies of the order of tens of kilohertz can be used. Pulsed direct current is convenient for automotive use, but alternating potentials for example triangular or sine waves of the same or similar characteristics can be used. The potential is, when required, applied to the inner electrode 904. through the high voltage input terminal 907. Concentric with the inner electrode 904 and dielectric tube 905 is a grounded outer electrode 913 made for example of stainless steel. At the inlet end of the plasma' generator reactor 801 the spherical dome of the dielectric tube 905 is in contact with a compliant heat resistant material 914 that rests in the curved part of the outer electrode 913 and is held in place by a metallic ring 915 with a series of screws (not shown) .
As shown in Figure 10, the outer electrode 913 has a series of baffles 1001 and slots 1002. The baffles 1001 extend from the outer electrode 913 to the inner surface of the wall of the reactor chamber 801 and act as grounding connections- as ' well as causing the exhaust gases to follow a convoluted path which has both axial and circumferential components and being at least partially helical. There is also a radial component of flow, initially inwardly as the gas transfers from the outside of the outer electrode 913 to the space between the electrodes 904 and 913 and then outwardly as the gas returns, to leave the reactor from outside the outer electrode 913. Thus there is also a spiral component in the gas flow pattern.
Where the reactor is to be used for a configuration in which the' plasma is generated within the intertices of a porous body of the silver doped alumina catalyst, the latter is disposed in the space between the elctrodes' 904 and 913.
It will be appreciated by those skilled in the art that other configurations including axial flow such as a parallel plate configurations can be adopted if desired as can other forms of non-thermal plasma generator such as pulsed corona discharge reactors , surface discharge reactor, dielectric and/or ferroelectric pellet bed' reactor. The invention may also be incorporated into other aftertreatment systems, engine modifications or emissions control technologies such as EGR, cooled EGR, soot traps, continuously regenerating traps.'

Claims (28)

Claims
1. A method for removing oxides of nitrogen from the exhaust emissions from an internal combustion engine, comprising the. operations of contacting exhaust emissions from an internal combustion engine with a body of silver- containing activated alumina in the presence of a gaseous hydrocarbon material and subsequently contacting the exhaust emissions with a body of indium-containing zeolite material, characterised in that the body of silver-containing alumina is exposed to activated hydrocarbons produced in a non-thermal plasma generated in conditions in which hydrocarbons are activated by the plasma without significant simultaneous production of N02 by the plasma.
2. A method according to claim 1, further characterised in that significant simultaneous production of N02 by the plasma is avoided by applying the plasma to the exhaust gases under conditions in which carbonaceous combustion products are present.
3. A method according to claim 1, further characterised in that significant simultaneous production of N02 by the plasma is avoided by applying the plasma to hydrocarbons separately from the exhaust emissions and injecting plasma, activated hydrocarbons into the exhaust emissions.
4. A method according to any of the preceding claims--, further characterised in that there is included the operations of measuring the temperature of the exhaust emissions prior to contacting them with the silver- containing alumina and stopping the generation of non- thermal plasma when the temperature of the exhaust emissions is above a predetermined value.
5. A method according to claim 4 , further characterised in that generation of non-thermal plasma is stopped when the temperature of the exhaust emissions is above 600 ° Kelvin. '
6. A method according to any of the preceding claims ," further characterised in that there is included the operations of determining the initial concentration of hydrocarbons in the exhaust emissions and controlling addition of hydrocarbons to promote reduction of nitric oxide over the silver-containing alumina-and reduction of nitrogen dioxide over the indium-containing zeolite material .
7. A method according to any preceding claim, further characterised in that there is included the operation of removing carbonaceous combustion products from the exhaust emissions prior to contacting them with the silver-containing alumina material.
8. A method according to claim 7 , further characterised in that removal of carbonaceous combustion products is facilitated by passing the exhaust emissions over an oxidation catalyst acting as a carbon combustion catalyst.
9. A method according to claim 8, further characterised in that the oxidation catalyst is an alkali metal salt, cerium oxide, an alkali metal anadate, a perovskite or alkali metal doped lanthanum oxide-vanadium oxide or combinations of these.
10. A method according to any preceding claim, further characterised in that the concentration of silver in the alumina is in the range 0.1 to 5 per cent by weight.
11. A method according to claim 10, further characterised in that the concentration of silver in the alumina is approximately 2 per cent by weight.
12. A method according to any preceding claim, further characterised in that the concentration of indium in the zeolite material is in the range 1 to 10 per cent by weight.
13. A method according to claim 12, further characterised in that the concentration of indium in the zeolite material is approximately five per cent by weight . .
14. A 'method according to claim 13, further characterised in that the zeolite is a ZSM5 with a silica to alumina mole ratio around fifty to one.
15. A reactor system for removing nitrogen oxides from- exhaust emissions from an internal combustion engine comprising at least one reactor chamber (2,3), means (2,3) for contacting the exhaust emissions from an internal combustion- engine with a silver-containing activated alumina material and an indium-containing zeolite material, characterised in that means (1) are provided for exposing the silver-containing alumina to activated hydrocarbons produced in a non-thermal plasma generated in conditions in which hydrocarbons are activated by the plasma without significant simultaneous production of N02 by the plasma-.
16. A reactor system according to claim 15, further characterised in that significant simultaneous production of N02 by the plasma is avoided by applying the plasma to the exhaust gases under conditions in which carbonaceous' combustion products are present.
17. A reactor system according to claim 15, further characterised in that significant simultaneous production of N02 by the plasma is avoided by applying the plasma
(703; 803) to hydrocarbons (705; 806) separately from the exhaust emissions and injecting (706; 807) plasma activated hydrocarbons into the exhaust emissions.
18. A reactor system according to any of claims 15 to ' 17, further characterised in that there is included means (501) for measuring the temperature of the exhaust emissions prior to contacting them with the silver- containing alumina, and means for stopping the generation of non-thermal plasma if the temperature of the exhaust emissions is above a predetermined value.-
19. A reactor system according to any of claims 14 to 18, further characterised in that said at least one reactor chamber comprises a first reactor chamber (2) containing the silver-containing alumina, and a second reactor chamber (3) containing the indium-containing zeolite material.
20. A reactor system according to any of claims 15 to 19, further characterised in that the non-thermal plasma is generated in a plasma generating reactor (1) situated upstream of the said at least one reactor chamber (2,3) .
21.. A reactor system according to claim 19, further characterised in that the silver-containing alumina is in the form of a gas permeable body contained between two electrodes (904,913) through which the exhaust emissions are constrained to pass, and means is provided for applying to the electrodes (904,913) across the body of silver-containing alumina a potential sufficient to excite a plasma in the exhaust emissions within the interstices in the body of silver-containing alumina.
22. A reactor system according to claim 20 or- 21, further characterised in that there is included a reservoir (705; 806) for a hydrocarbon additive, which may be derived from the fuel supplied to the engine or from a separate source, means for providing an indication of NO concentration in the exhaust emissions ■ and means controlled in dependence upon the said indication of NO concentration for extracting hydrocarbon additive from the reservoir (705; 806) and injecting it into the exhaust emissions prior to them entering the said at least one reactor chamber (2,3).
23. A reactor system according to, claim 22, further characterised in that the said means for extracting and injecting hydrocarbon additive is controlled to provide just sufficient hydrocarbon additive to minimise NOx concentration in the exhaust emissions.
24. A reactor system according to any of claims 15 to 23, further characterised in that there is included means for removing carbonaceous combustion .products from the exhaust emissions prior to contacting them with the silver-containing alumina material.
25. A reactor system according to any of claims 15 to 24, further characterised in that the concentration of silver in the silver-containing alumina is in the range 0.1 to 5 per cent by weight .
26. A reactor system according to claim 25, further characterised in that the concentration of silver in the silver-containing alumina is approximately 2 per cent by weight .
27. A reactor system according to any of claims 15 to' 26, further characterised in that the concentration of indium in the indium-containing zeolite material is in the range 1 to 10 per cent by weight.
28. A reactor system according to claim.27, further characterised in1 that the concentration of indium in the indium-containing zeolite is approximately 5 per cent by weight.
AU2001277628A 2000-08-17 2001-08-15 Process and apparatus for removing nox from engine exhaust gases Abandoned AU2001277628A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0020287 2000-08-17
GBGB0020287.9A GB0020287D0 (en) 2000-08-17 2000-08-17 The catalytic treatment of gases
PCT/GB2001/003636 WO2002016014A1 (en) 2000-08-17 2001-08-15 Process and apparatus for removing nox from engine exhaust gases

Publications (1)

Publication Number Publication Date
AU2001277628A1 true AU2001277628A1 (en) 2002-03-04

Family

ID=9897799

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2001277628A Abandoned AU2001277628A1 (en) 2000-08-17 2001-08-15 Process and apparatus for removing nox from engine exhaust gases

Country Status (15)

Country Link
US (1) US6936232B2 (en)
EP (1) EP1309390B1 (en)
JP (1) JP2004506505A (en)
KR (1) KR20030059102A (en)
CN (1) CN1232337C (en)
AT (1) ATE290425T1 (en)
AU (1) AU2001277628A1 (en)
BR (1) BR0113285A (en)
CA (1) CA2418277A1 (en)
DE (1) DE60109300T2 (en)
ES (1) ES2239154T3 (en)
GB (1) GB0020287D0 (en)
MX (1) MXPA03001482A (en)
PL (1) PL359186A1 (en)
WO (1) WO2002016014A1 (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2836397B1 (en) * 2002-02-27 2004-04-23 Renault REACTOR FOR THE PLASMA TREATMENT OF A GASEOUS FLOW, IN PARTICULAR EXHAUST GASES PRODUCED BY THE INTERNAL COMBUSTION ENGINE OF A MOTOR VEHICLE
SE0203538L (en) * 2002-11-27 2004-05-28 Volvo Technology Corp Catalyst unit for reducing NOx compounds
JP4446269B2 (en) * 2003-02-28 2010-04-07 独立行政法人科学技術振興機構 Dry simultaneous desulfurization denitration equipment
US7374728B2 (en) * 2003-03-06 2008-05-20 Honda Motor Co., Ltd. Exhaust gas purification system
GB0318776D0 (en) 2003-08-09 2003-09-10 Johnson Matthey Plc Lean NOx catalyst
US7541010B2 (en) * 2003-12-19 2009-06-02 Caterpillar Inc. Silver doped catalysts for treatment of exhaust
US7316106B2 (en) * 2004-09-07 2008-01-08 Gm Daewoo Auto & Technology Company Method for processing combustion exhaust gas containing soot particles and NOx
GB0422549D0 (en) * 2004-10-12 2004-11-10 Johnson Matthey Plc Method of decomposing nitrogen dioxide
US7225613B2 (en) 2005-01-26 2007-06-05 Ford Global Technologies, Llc Diesel engine after treatment device for conversion of nitrogen oxide and particulate matter
JP4686553B2 (en) * 2005-02-28 2011-05-25 田中貴金属工業株式会社 Catalyst and method for reducing nitrogen oxides in an exhaust stream with hydrocarbons or alcohols
US7803338B2 (en) * 2005-06-21 2010-09-28 Exonmobil Research And Engineering Company Method and apparatus for combination catalyst for reduction of NOx in combustion products
US7455718B2 (en) * 2005-06-30 2008-11-25 Praxair Technology, Inc. Silver-exchanged zeolites and methods of manufacture therefor
FR2888835A1 (en) * 2005-07-25 2007-01-26 Armines Ass Loi De 1901 Procedure for producing hydrogen from hydrocarbon and oxidant products uses electrical discharge to produce a non-thermic plasma in a spiral reagent flow
US7396517B2 (en) * 2005-08-05 2008-07-08 Gm Global Technology Operations, Inc. Reduction of NOx emissions using a staged silver/alumina catalyst system
GB0523135D0 (en) 2005-11-14 2005-12-21 Johnson Matthey Plc Reducing coking over Ag/A1203 HC-SCR catalyst
US20070149385A1 (en) * 2005-12-23 2007-06-28 Ke Liu Catalyst system for reducing nitrogen oxide emissions
US7428810B2 (en) * 2006-04-25 2008-09-30 Caterpillar Inc. System for increasing efficiency of an SCR catalyst
US8173574B2 (en) * 2006-09-20 2012-05-08 Basf Corporation Catalysts to reduce NOx in an exhaust gas stream and methods of preparation
JP2009219971A (en) * 2007-03-20 2009-10-01 Denso Corp Ceramic honeycomb structure
JP2009219972A (en) * 2007-03-20 2009-10-01 Denso Corp Method for producing catalyst material
JP4992773B2 (en) * 2007-03-20 2012-08-08 株式会社デンソー Catalyst material
US9272271B2 (en) 2007-09-19 2016-03-01 General Electric Company Manufacture of catalyst compositions and systems
US9375710B2 (en) 2007-09-19 2016-06-28 General Electric Company Catalyst and method of manufacture
JP5045629B2 (en) * 2008-04-08 2012-10-10 三菱電機株式会社 Exhaust gas purification device
CN101344026B (en) * 2008-08-21 2010-07-21 上海交通大学 System for low temperature plasma pre-oxidizing NOx of auxiliary NH3-SCR fine purification diesel engine
US20100196237A1 (en) 2009-01-30 2010-08-05 General Electric Company Templated catalyst composition and associated method
US20100196236A1 (en) 2009-01-30 2010-08-05 General Electric Company Templated catalyst composition and associated method
CN102369159A (en) * 2009-01-30 2012-03-07 巴斯夫公司 Catalyst for producing ammonia from hydrocarbon and nitrogen oxides
US8178064B2 (en) * 2009-05-11 2012-05-15 Basf Corporation Treatment of power utilities exhaust
CN101832168B (en) * 2010-04-09 2012-04-25 上海交通大学 Integral reactor of dielectric barrier discharge coupling catalyst for removing NOx in diesel engine
US8466083B2 (en) * 2010-08-27 2013-06-18 GM Global Technology Operations LLC Bi-functional catalyst materials for lean exhaust NOx reduction
US20120329644A1 (en) 2011-06-21 2012-12-27 General Electric Company Catalyst composition and catalytic reduction system
US10138815B2 (en) * 2012-11-02 2018-11-27 General Electric Company System and method for diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
CN102958264B (en) * 2012-11-20 2015-04-22 浙江大学 Plasma generation device and method based on back corona creeping-surface breakdown of catalyst as well as application thereof
CN103820999A (en) * 2014-02-27 2014-05-28 江苏东方滤袋有限公司 Finishing method for bag type dedusting material and prepared dedusting material
DE102015007908A1 (en) * 2015-06-20 2016-12-22 Man Truck & Bus Ag Method for operating a gas engine
KR101818824B1 (en) * 2015-12-23 2018-01-16 한국기초과학지원연구원 System for denitrification using plasma and method for denitrification u sing plasma
WO2019101333A1 (en) * 2017-11-24 2019-05-31 Volvo Truck Corporation A method for controlling a turbocharger system with a pressurized gas tank connected to an exhaust manifold of a combustion engine
KR102031984B1 (en) * 2018-07-13 2019-10-14 (주)플라즈닉스 Method and apparatus for treating object gas-containing effluent gas
JP2020076348A (en) * 2018-11-06 2020-05-21 トヨタ自動車株式会社 Catalyst device and exhaust emission control system
JP2022512282A (en) * 2018-12-13 2022-02-03 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Transition Metal Doped Alumina to Improve OSC and TWC Performance
CN111350569A (en) * 2018-12-20 2020-06-30 上海必修福企业管理有限公司 Engine tail gas treatment method and system
WO2020204393A1 (en) * 2019-03-29 2020-10-08 울산과학기술원 Exhaust gas purification system for reducing fine dust

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8913978D0 (en) 1989-06-17 1989-08-09 Atomic Energy Authority Uk Catalytic treatment
JPH04243525A (en) * 1991-01-22 1992-08-31 Toyota Motor Corp Apparatus for purifying exhaust gas of internal combustion engine
JPH06126186A (en) * 1992-10-13 1994-05-10 Agency Of Ind Science & Technol Catalyst for removing nitrogen oxygen and removing method for the same
US6003303A (en) * 1993-01-11 1999-12-21 Clean Diesel Technologies, Inc. Methods for reducing harmful emissions from a diesel engine
EP0658368A1 (en) 1993-12-17 1995-06-21 N.E. Chemcat Corporation NOx removal catalyst and method of purifying exhaust gas by using the same
JPH07232035A (en) * 1994-02-21 1995-09-05 Toray Ind Inc Method and apparatus for purifying nitrogen oxide
JP3506292B2 (en) 1995-10-09 2004-03-15 株式会社新エィシーイー Automobile exhaust purification method
US5711147A (en) * 1996-08-19 1998-01-27 The Regents Of The University Of California Plasma-assisted catalytic reduction system
ATE201331T1 (en) 1997-09-09 2001-06-15 Aea Technology Plc TREATMENT OF EXHAUST GASES
GB9801775D0 (en) 1998-01-29 1998-03-25 Aea Technology Plc Gas purification
US6103207A (en) * 1999-04-26 2000-08-15 Ford Global Technologies, Inc. Treating diesel exhaust with a catalytic particulate mixture
GB9911728D0 (en) 1999-05-21 1999-07-21 Aea Technology Plc Dielectric barrier gas reactors with non-axial flow
GB0015952D0 (en) 2000-06-30 2000-08-23 Aea Technology Plc Plasma assisted reactor
ES2241811T3 (en) 2000-04-11 2005-11-01 Accentus Plc CATALYTIC TREATMENT OF GASES ASSISTED BY PLASMA.
GB2366747B (en) * 2000-09-14 2004-06-30 Aea Technology Plc The plasma assisted catalytic treatment of gases
GB2374559A (en) 2001-04-20 2002-10-23 Accentus Plc Removal of nitrogen oxides from effluent gases
GB2396316B (en) * 2001-11-29 2005-06-01 Accentus Plc Non-thermal plasma reactor with filter

Also Published As

Publication number Publication date
EP1309390A1 (en) 2003-05-14
WO2002016014A1 (en) 2002-02-28
EP1309390B1 (en) 2005-03-09
ATE290425T1 (en) 2005-03-15
KR20030059102A (en) 2003-07-07
US20030180196A1 (en) 2003-09-25
MXPA03001482A (en) 2004-05-04
DE60109300T2 (en) 2005-07-28
DE60109300D1 (en) 2005-04-14
JP2004506505A (en) 2004-03-04
CA2418277A1 (en) 2002-02-28
CN1232337C (en) 2005-12-21
PL359186A1 (en) 2004-08-23
GB0020287D0 (en) 2000-10-04
ES2239154T3 (en) 2005-09-16
CN1469771A (en) 2004-01-21
BR0113285A (en) 2003-07-15
US6936232B2 (en) 2005-08-30

Similar Documents

Publication Publication Date Title
EP1309390B1 (en) Process and apparatus for removing nox from engine exhaust gases
EP1274504B1 (en) The plasma assisted catalytic treatment of gases
Farrauto et al. Catalytic converters: state of the art and perspectives
EP1135580B1 (en) Selective catalytic reduction system and method
US7198764B2 (en) Gas treatment system and a method for using the same
EP1660217A1 (en) Catalyst arrangement and method of purifying the exhaust gas of internal combustion engines operated under lean conditions
KR20140027062A (en) Selective reduction catalyst, and exhaust gas purification device and exhaust gas purification method using same
CA2652241A1 (en) Improvements in diesel particulate control
EP2102462B1 (en) Reduction of nitrogen oxides using multiple split streams
JP2013543947A (en) Exhaust gas NOx treatment using 3 continuous SCR catalyst compartments
Gunnarsson et al. Combining HC-SCR over Ag/Al2O3 and hydrogen generation over Rh/CeO2-ZrO2 using biofuels: An integrated system approach for real applications
JP2001170454A (en) Exhaust gas cleaning system and exhaust gas cleaning catalyst
EP1536111B1 (en) Apparatus and method for removal of by-products from exhaust gases of a combustion engine
JPH0938467A (en) Purifying device for exhaust gas and purifying method of exhaust gas
JP4290391B2 (en) Method and apparatus for catalytic removal of nitrogen oxides
WO1998029188A1 (en) Exhaust gas purification catalyst and waste gas purification method
KR100444914B1 (en) Plasma/Gold Catalyst System for Removal of Nitrogen Oxides in Diesel Engine Exhaust Gas
JP4553763B2 (en) Exhaust gas purification method and purification apparatus
KR101266397B1 (en) After―treatment system for reducing nitrogen oxide in dimethylether fueled vehicles
Voss et al. Plasma-assisted catalytic reduction of NOx
JP2007203242A (en) System for cleaning exhaust gas