AU2001267155A1 - Synthesis of cyclic compounds - Google Patents

Synthesis of cyclic compounds

Info

Publication number
AU2001267155A1
AU2001267155A1 AU2001267155A AU2001267155A AU2001267155A1 AU 2001267155 A1 AU2001267155 A1 AU 2001267155A1 AU 2001267155 A AU2001267155 A AU 2001267155A AU 2001267155 A AU2001267155 A AU 2001267155A AU 2001267155 A1 AU2001267155 A1 AU 2001267155A1
Authority
AU
Australia
Prior art keywords
halogen
formula
alkyl
compound
independently
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2001267155A
Other versions
AU2001267155B2 (en
Inventor
Naresh Kumar
Roger Wayne Read
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unisearch Ltd
Original Assignee
Unisearch Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AUPQ8419A external-priority patent/AUPQ841900A0/en
Application filed by Unisearch Ltd filed Critical Unisearch Ltd
Priority claimed from AU6715501A external-priority patent/AU6715501A/en
Publication of AU2001267155A1 publication Critical patent/AU2001267155A1/en
Assigned to UNISEARCH LIMITED reassignment UNISEARCH LIMITED Amend patent request/document other than specification (104) Assignors: Kumar, Naresh and Read, Roger Wayne, UNISEARCH LIMITED
Application granted granted Critical
Publication of AU2001267155B2 publication Critical patent/AU2001267155B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

Synthesis of cyclic compounds
Technical Field
The present invention relates to novel synthesis methods, to the products of such novel methods, and to uses of these products. In particular, the present invention provides methods for the cyclisation of substituted or unsubstituted halogenated 4-oxo- alkanoic acids (halogenated levulinic acids) and to the products of such a method. The invention has particular application in the synthesis of furanones including fimbrolides (halogenated 5-methylene-2(5H)-furanones) and their synthetic analogues. The invention also relates to novel furnanone compounds and uses thereof.
Background Art
Fimbrolides (halogenated 5-methylene-2(5H)-furanones) possess a wide range of important biological properties including antifungal and antimicrobial properties (see WO 96/29392 and WO 99/53915, the disclosures of which are incorporated herein by cross-reference). These metabolites can be isolated from red marine algae Delisea fimbriata, Delisea elegans and Delisea pulchra.
In spite of recently discovered biological significance of fimbrolides, there is not at present a general method suitable for the large-scale synthesis of these metabolites. The few reported syntheses of these metabolites utilise either the sulfuric acid-catalysed cyclisation of brominated levulinic acid at elevated temperatures (Tetrahedron 1997, 53: 15813-15826) or use (E)-β-bromo-β-lithioacrylate (J. Org. Chem. 1985, 50, 2195- 2198) or allenes (J. Org. Chem. 1995, 60, 1814-1822) as starting materials.
Known acids used in the cyclisation reaction include 100% or 98% sulfuric acid which causes a high degree of charring during the reaction thus producing large quantities of intractable materials. Furthermore copious amounts of water are required to quench these reactions, a process that generates a large quantity of aqueous acidic waste.
These reactions are non-selective, extremely difficult to control and lead to mixtures of different products due to scrambling of bromines atoms under these conditions. Exhaustive chromatography is required to separate the reaction products and this results in low yields of desired 4-bromo-5-(bromomethylene)-, 5- (dibromomethylene)-, 4-bromo-5-(dibromomethylene)-2(5H)-furanones. The chromatography required is tedious and often impractical for large scale reactions. The compounds 3-alkyl-4-bromo-5-(bromomethylene)- ,and 3-alkyl-5- (dibromomethylene)-2(5H)-furanones are key intermediates in the synthesis of highly of active side chain functionalised furanones (see WO 99/54323, the disclosure of which is incorporated herein by cross-reference). Accordingly, there is a need for more efficient and reliable syntheses of parent furanones.
We have found conditions that, surprisingly, enable the cyclisation of halogenated 4-oxoalkanoic acids under mild conditions. We have found this discovery to be particularly useful in cyclising brominated 4-oxopentanoic acids under mild conditions to afford high yields of brominated 2(5H)-furanones or tetrahydro-2(5H)- furanones under mild conditions. Furthermore tetrahydrofuranones generated under these conditions can be dehydrobrominated to yield a range of 5-(methylene)-3 5- (bromomethylene)-, 5-(dibromomethylene)- or 4-bromo-5-(bromomethylene)-2(5H)- furanones. These furanones can be further functionalised to yield novel analogues of Delisea metabolites.
Disclosure of Invention In a first aspect, the present invention provides a method for the preparation of a compound of formula II
wherein Ri and R2 are independently H, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, optionally interrupted by one or more hetero atoms, straight chain or branched chain, hydrophilic, hydrophobic or fluorophilic; R3, R-t, R5 and Re are independently or all hydrogen or halogen; and provided that at least two of the R3) R4, R5 and R<5 are halogens;
the method comprising cyclising a compound of formula I
I wherein R], 2, R3, R4, R5 and Re are as defined above, wherein the cyclisation is carried out in the presence of a mild acid catalyst or a dehydrating agent or a mixture thereof, optionally in the presence of solvent. In formula II, a particular geometry is not to be taken as specified. For example, the formula covers both Z- and E- isomers.
The starting 4-oxoalkanoic acid of formula I and the tetrahydrofuranone of formula II preferably have the following substituents wherein:
Ri and R2 are independently H, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, optionally interrupted by one or more hetero atoms, straight chain or branched chain, hydrophilic, hydrophobic or fluorophilic;
R3, R4, R5 and Rδ are independently or all hydrogen or halogen; and provided that at least two of the R3, K4, 5 and Rό are halogens (F, Cl, Br, I); More preferably, the starting levulinic acid of formula I and the tetrahydrofuranone of formula II have the following substituents wherein:
Ri and R2 are independently H, alkyl, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, optionally interrupted by one or more hetero atoms, straight chain or branched chain, hydrophilic, hydrophobic or fluorophilic; R3, R4, R5 and R are independently or all hydrogen or halogens; and provided that at least two of the R3, R , R5 and ό are halogens (F, Br, I);
Most preferably, the starting levulinic acid of formula I and the tetrahydrofuranone of formula II have the following substituents wherein:
Ri and R2 are independently H, alkyl, aryl or arylalkyl whether unsubstituted or substituted, optionally interrupted by one or more hetero atoms, straight chain or branched chain, hydrophilic, hydrophobic or fluorophilic;
R3, R4, R5 and Rό are independently or all hydrogen or halogen; and provided that at least two of R3, Rj, R5 and Re are halogens (F, Br, I);
Most preferably, at least one of R5 and Re is Br. The method of the present invention has particular application in the cyclisation of brominated 4-oxopentanoic acid compounds of formula I wherein at least two of R3, R , R5 and Re are halogens. Preferably, the compound of formula II produced by the method of the present invention is selected from halogenated 2-tetrahydrofUranones. The term "alkyl" is taken to mean both straight chain alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tertiary butyl, and the like. Preferably the alkyl group is a lower alkyl of 1 to 6 carbon atoms. The alkyl group may optionally be substituted by one or more groups selected from alkyl, cycloalkyl, alkenyl, alkynyl, halo, haloalkyl, haloalkynyl, hydroxy, alkoxy, alkenyloxy, haloalkoxy, haloalkenyloxy, nitro, amino, nitroalkyl, nitroalkenyl, nitroalkynyl, nitroheterocyclyl, alkylamino, dialkylamino, alkenylamine, alkynylamino, acyl, alkenoyl, alkynoyl, acylamino, diacylamino, acyloxy, alkylsulfonyloxy, heterocyclyl, heterocycloxy, heterocyclamino, haloheterocyclyl, alkylsulfenyl, alkylcarbonyloxy, alkylthio, acylthio, phosphorus-containing groups such as phosphono and phosphinyl. The term "alkoxy" denotes straight chain or branched alkyloxy, preferably C1-10 alkoxy. Examples include methoxy, ethoxy, n-propoxy, isopropoxy and the different butoxy isomers.
The term "alkenyl" denotes groups formed from straight chain, branched or mono- or polycyclic alkenes and polyene. Substituents include mono- or poly- unsaturated alkyl or cycloalkyl groups as previously defined, preferably C2-1o alkenyl. Examples of alkenyl include vinyl, allyl, 1-methylvinyl, butenyl, iso-butenyl, 3-methyl- 2-butenyl, 1-pentenyl, cyclopentenyl, 1-methyl-cyclopentenyl, 1-hexenyl, 3-hexenyl, cyclohexenyl, 1-heptenyl, 3-heptenyl, 1-octenyl, cyclooctenyl, 1-nonenyl, 2-nonenyl, 3-nonenyl, 1-decenyl, 3-decenyl, 1,3-butadienyl, l-4,pentadienyl, 1,3-cyclopentadienyl, 1,3-hexadienyl, 1,4-hexadienyl, 1,3-cyclohexadienyl, 1,4-cyclohexadienyl, 1,3- cycloheptadienyl, 1,3,5-cycloheptatrienyl, or 1,3,5,7-cyclooctatetraenyl.
The term "halogen" denotes fluorine, chlorine, bromine or iodine, preferably bromine or fluorine.
The term "heteroatoms" denotes O, N or S. The term "acyl" used either alone or in compound words such as "acyloxy",
"acylthio", "acylamino" or diacylamino" denotes an aliphatic acyl group and an acyl group containing a heterocyclic ring which is referred to as heterocyclic acyl, preferably a C1-10 alkanoyl. Examples of acyl include carbamoyl; straight chain or branched alkanoyl, such as formyl, acetyl, propanoyl, butanoyl, 2-methylpropanoyl, pentanoyl, 2,2-dimethylpropanoyl, hexanoyl, heptanoyl, octanoyl, nonanoyl, decanoyl; alkoxycarbonyl, such as methoxycarbonyl, ethoxycarbonyl, t-butoxycarbonyl, t- pentyloxycarbonyl or heptyloxycarbonyl; cycloalkanecarbonyl such as cyclopropanecarbonyl cyclobutanecarbonyl, cyclop entanecarbonyl or cyclohexanecarbonyl; alkanesulfonyl, such as methanesulfonyl or ethanesulfonyl; alkoxysulfonyl, such as methoxysulfonyl or ethoxysulfonyl; heterocycloalkanecarbonyl; heterocyclyoalkanoyl, such as pyrrolidinylacetyl, pyrrolidinylpropanoyl, pyrrolidinylbutanoyl, pyrrolidinylpentanoyl, pyrrolidinylhexanoyl or thiazolidinylacetyl; heterocyclylalkenoyl, such as heterocyclylpropenoyl, heterocyclylbutenoyl, heterocyclylpentenoyl or heterocyclylhexenoyl; or heterocyclylglyoxyloyl, such as, thiazolidinylglyoxyloyl or pyrrolidinylglyoxyloyl.
The term "fluorophilic" is used to indicate the highly attractive interactions between certain groups, such as highly fluorinated alkyl groups of C4-C10 chain length, have for perfluoroalkanes and perfluoroalkane polymers.
The mild acid catalysts may be selected from catalysts that are insoluble in the reaction medium or catalysts that are soluble in the reaction medium. Examples of insoluble acid catalysts include polyphosphoric acid, Eaton's reagent, acidic resins and polymers, Lewis acids, acidic metal salts.
Examples of soluble acid catalysts include chlorosulfonic acid, phosphoric acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid, methanesulfonic acid, acetic acid, bromine, phosphorus tribromide and hydrobromic acid.
Examples of suitable dehydrating agents include phosphorus pentoxide, silica gel, molecular sieves, alumina, phosphorus oxychloride, acetic anhydride, N, N'- dicyclohexyl-carbodiimide (DCC), trifluoroacetic anhydride, trifluorosulfonic acid anhydride (triflic anhydride). Preferably cyclisation is carried out using phosphorus pentoxide or polyphosphoric acid by itself or mixed with a mineral acid. More preferably cyclisation is carried out using phosphorus pentoxide.
The cyclisation may be performed with a mild acid or a dehydrating agent in the presence or absence of a solvent. The solvent may be any suitable solvent. Preferable solvents in the present invention include alkyl acetates, aromatic hydrocarbons, chlorinated alkanes, tetrahydrofuran, diethyl ether, dioxane and C1-C3 acids. More preferably, the solvents are aromatic hydrocarbons and chlorinated alkanes. Most preferably, the solvent is dichloromethane, as well as dichloroethane and trichloroethane. The reaction is preferably carried out at mild temperatures. Preferably the cyclisation reaction is performed at a temperature in the range of from about 20-150°C. Where a solvent is present, the cyclisation may be performed at reflux temperature of the solvent, for example, at the reflux temperature of dichloromethane.
The reaction time may range from about 2 hours to 12 hours or more and is typically about 2 hours or more. It will be appreciated that reaction conditions may be varied depending on the individual nature of the substrate and the desired rate of the reaction.
In the case of halogenated 4-oxoalkanoic acids, whilst the parent levulinic acid is commercially available, the corresponding alkyl substituted 4-oxoalkanoic acids can be prepared from the condensation of ethyl acetoacetate with alkyl haloalkanoates followed by hydrolysis and decarboxylation of the keto ester (Tetrahedron, 1997, 53, 15813). Di-, tribromolevulinic acids are readily obtained by the bromination of the corresponding levulinic acids, for example with bromine and catalytic hydrobromic acid.
Alternatively the brominated 4-oxoalkanoic acid derivatives can be conveniently obtained by the addition of bromine or hydrogen bromide to the corresponding 4-oxo-
3-alkyl-2-pentenoic acids.
The present invention extends to these brominated intermediates including those novel compounds of formula I.
Representative examples of 3-alkyl-2,3-dibromo-4-oxoalkanoic acids (la-i) prepared for use in this invention are listed below.
The present inventors have found that with a judicious choice of acid catalysts and solvents, the brominated levulinic acids could be cyclised with few side products and in high yields to the corresponding tetrahydro-2(5H)-furanones. In particular the use of phosphorus pentoxide in dichloromethane provided very efficient cyclisation of the levulinic acids to tetrahydro-2(5H)-furanones.
The surprising results obtained by the present inventors are in sharp contrast to those reported in the literature for attempted cyclisation of brominated levulinic acid. It has been reported that when 5-bromolevulinic acid was treated with relatively mild dehydrating agents (trifluoroacetic acid or dicyclohexylcarbodiimide) the major product of the cyclisation reaction was a cyclic allyl bromide (J. Am. Chem. Soc, 1981, 103, 5459).
No further reaction of the tetrahydrofuranone was observed even if the reaction was continued for a longer period of time. This reaction appears to be quite general and was repeated on a hundred gram scale.
Representative examples of tetrahydrofuranones (2a-i) that can be synthesised by this procedure are listed below.
In a second aspect, the present invention consists in a tetrahydro-2(5H)-furanone derivative of formula II, wherein Ri and R2 are independently H, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, optionally interrupted by one or more hetero atoms, straight chain or branched chain, hydrophilic, hydrophobic or fluorophilic;
R3, R , R5 and Re are independently or all hydrogen or halogen; and provided that at least two of the R3, R4, R5 and e are halogens; with the proviso Rι= R2 = H, R3= R4 = Cl, R5= Re = Br;
Ri = R2 = R5 = Re = H, R3, R4 = Cl.
The inventors have found the brominated tetrahydrofuranones of formula II can be dehydrobrominated to yield a range of 5-(methylene)-2(5H)-furanones, 5- (dibromomethylene)-2(5H)-furanones or 4-bromo-5-(bromomethylene)-2(5H)- furanones.
We believe that the 2(5H)-furanones prepared in accordance with the present invention are novel compounds. In a third aspect, the present invention provides a method for the dehydrohalogenation of a compound of formula II above, provided that at least two of the R3, R ) R5 and Re are halogens; to prepare a compound of formula Ilia or Tub;
wherein R2 is an alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic; R4 is a halogen (X = F, Cl, Br or I);
Rj and R3 are independently or both hydrogen or halogen;
wherein R2 is an alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic;
R3 and * are hydrogen and Rr is a halogen; the method comprising contacting a compound of formula II with a base.
The compound of formula II used in the second aspect of the invention may be a compound of formula II produced by the method of the first aspect of the invention, although compounds of formula II produced by other methods may be used. .
Dehydrobromination of the tetrahydrofuranones to 5 -(methylene)-, 5- (bromomethylene)- and 5-(dibromomethylene)-2(5H)-furanones may be accomplished by treatment of the tetrahydrofuranones with a base e.g. l,4-diazabicyclo[2.2.2]octane (DABCO), 4-(dimethylamino)pyridine (DMAP), l,8-diazabicyclo[5.4.0]undec-7-ene (DBU), triethylamine, sodium or potassium carbonate, sodium or potassium acetate and N,N'-diisopropylethyl amine (Hunig's base). Representative examples of furanones (3a-n) that can be synthesised by this procedure are listed below.
In a fourth aspect, the present invention consists in a 2(5H)-furanone derivative having formula πia or LTIb;
wherein R2 is an alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic;
Rt is a halogen (X = F, Cl, Br or I);
Rj and R3 are independently or both hydrogen or halogen; with the proviso that Rt = H, R2 = Me or Ph, R3 = I, R4 = H; and
Ri = H, R2 = OMe, R3 = Cl, R* = Cl,
wherein R2 is an alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic; and
R3 and R_> are hydrogen and Rx is a halogen.
In a fifth aspect, the present invention provides a method for the halogenation of a compound of formula π, Ula or nib above to prepare a compound of formula IV
wherein R2 is independently H, halogen, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophilic or fluorophilic;
P^ and R5 are halogen (X = F, Cl, Br or I); R4 can also be OH or alkoxy; Rt and R3 are independently or both hydrogen or halogen; and :" is a single bond or double bond,
the method comprising contacting a compound of formula III with a halogenating agent in the absence of solvent or in the presence of an unreactive or reactive solvent or reagent..
Halogenation of the 2(5H)-furanones of formula (III) to 5-halo-5-halomethyl- or 5-halo-5-dihalomethyl-2(5H)-furanones of formula (IV) may achieved by treatment of the 2(5H)-furanone with an halogenating agent e.g. bromine, chlorine, iodine, N- bromosuccinimide, N-chlorosuccinimde, iodine monochloride, phenyltrimethylammonium bromide perbromide, pyridinium tribromide and cupric bromide.
Unreactive solvents and reagents are non-nucleophilic organic solvents or ionic liquids, including dichloromethane, chloroform, toluene, diethyl ether, N,N- dimethylformamide, N-methylpyrrolidinone, butylmethylimidazolium tetrafluoroborate.
Reactive solvents and reagents are nuceophilic organic or inorganic substances such as water, methanol, acetic acid, lithium chloride, benzylamine and silver nitrate.
Representative examples of furanones (4a-p) that can be synthesised by this procedure are listed below.
In a sixth aspect, the present invention consists in a 2(5H)-furanone of formula IV.
IV
wherein R2 is independently alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophilic or fluorophilic; R4 and R5 are halogen (X = F, Cl, Br or I); can also be OH or alkoxy; Rj and R3 are independently or both hydrogen or halogen; and " " is a single bond or double bond.
In yet a seventh aspect, the present invention provides a method for the dehydrohalogenation of a compound of formula IV above, to prepare a compound of formula V
wherein R2 is a H, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic;
Rt is a halogen (X = F, Cl, Br or I); Rj and R3 are independently or both hydrogen or halogen; the method comprising contacting a compound of formula IV with a base.
The compound of formula IV used in the seventh aspect of the invention may be a compound of formula IV produced by the method of the fifth aspect of the invention, although compounds of formula IV produced by other methods may be used.
Dehydrohalogenation of the to 5-halo-5-halomethyl- or 5-halo-5-dihalomethyl- 2(5H)-furanones of formula (IV) may be accomplished by treatment of the furanones with a base e.g. l,4-diazabicyclo[2.2.2]octane (DABCO), 4-(dimethylamino)pyridine (DMAP), l,8-diazabicyclo[5.4.0]undec-7-ene (DBU), triethylamine, sodium or potassium carbonate, sodium or potassium acetate and ,N'-diisopropylethyl amine (Hunig's base). Surprisingly the present inventors have found that the dehydrohalogenation of compounds of formula (IV) where R1 is a halogen cannot be achieved satisfactorily by the use of the above mentioned reagents. Pleasingly the present inventors have found that dehydrohalogenation of these compounds can be achieved successfully by the use of N,N-diisopropylethyl amine. Representative examples of furanones (5a-m) that can be synthesised by this procedure are listed below.
In an eighth aspect, the present invention consists in a 2(5H)-furanone of derivative of formula V, wherein R2 is an alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic;
Rt is a halogen (X = F, Cl, Br or I);
Rt and R3 are independently or both hydrogen or halogen; with the proviso that Ri = H, R2 = Me or Ph, R3 = I, R = H; and
Ri = H, R2 = OMe, R3 = Cl, R4 = Cl. Furthermore the present inventors have also found that halogenated 4- oxoalkanoic acid substrates of formula (I) where R5 and R6 are halogens, when treated with sulfuric acid undergo lactonisation with concomitant dehalogenation rather than oxidation as reported in the literature. The halogen produced in this reaction is consumed in situ to produce compounds of formula (VI). For example when 3-alkyl-2,3-dibromo-4-oxopentanoic acid was treated with sulfuric acid it underwent clean cyclisation with concomitant debromination and utilisation of the liberated bromine through a bromination-dehydrobromination sequence to yield 4- alkyl-5-(bromomethylene)-2(5H)-furanone in good yields. Similarly 2,3,5-tribromo-4- oxopentanoic acid and 2,3-dibromo-4-oxopentanoic acid gave 4-bromo-5- (bromomethylene)-2(5H)-furanone in high yields.
Furthermore compounds of formula (VI) can also be prepared by the treatment of the starting 3-alkyl-4-oxo-2-pentenoic acids with sulfuric acid followed by the addition of bromine.
Accordingly, in a ninth aspect, the present invention provides a method of concomitant cyclisation and dehalogenation of compounds of formula I as defined above to form a compound of formula (VI), the method comprising contacting the compound with sulfuric acid or other strong acid.
wherein R2 is a H, halogen, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic; R4 is a halogen (X = F, Cl, Br or I);
Rl is hydrogen; and
R3 is a hydrogen or halogen;
The sulfuric acid type reagent may be, for example, concentrated sulfuric acid, oleum, chlorosulfonic acid, or a mixture of sulfuric acid with one or more other like agents.
Examples of compounds of formula I that may be used in the method of the seventh aspect include 3-alkyl-2,3-dibromo-4-oxopentanoic acid, 2,3,5-tribromo-4- oxopentanoic acid, 2,3-dibromo-4-oxopentanoic acid, 2,5-dibromo-4-oxopentanoic acid, 2,3,5,5-tetrabromo-4-oxopentanoic acid, 2,3,3-tribromo-4-oxopentanoic acid and 2,3,3, 5-tetrabromo-4-oxopentanoic acid.
Representative examples of furanones (6a-g) that can be synthesised by this . procedure are listed below.
In a tenth aspect, the present invention consists in a 2(5H)-furanone of derivative of formula VI, wherein R2 is an alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic; R4 is a halogen (X = F, Cl, Br or I);
Rl is hydrogen; and R3 is a hydrogen or halogen; with the proviso that Ri = H, R = Me or Ph, R3 = I, t = H; and Ri = H, R2 = OMe, R3 = Cl, R4 = Cl. In an eleventh aspect the present invention consists in a fimbrolide derivative, having a formula (VII), wherein
R2 is a H, alkyl, alkoxy, polyethyleneglycyl, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic; R4 is a hydrogen, halogen (X = F, Cl, Br or I); <
Rj and R3 are independently or both hydrogen or halogen;
Z is independently selected from the group R2, halogen, OC(O)R2, =O, amine azide, thiol, R , mercaptoaryl, arylalkoxy, mercaptoarylalkyl, SC(O)R2, OS(O)2R2, NHC(O)R2, =NR2 or NHR2; prepared by functionalizing a fimbrolide of formula (VIII) wherein, Rla R2, R3 and i are as defined above, with reagent according to our complete specification, (see WO 99/54323, the disclosures of which are incorporated herein by cross-reference).
Reagents including halogenating and oxidising agents (N-halosuccinimide, lead tetraacetate, selenium dioxide, Jones reagent), nucleophiles including (organic metal carboxylates, organic alcohols, dimethyl sulfoxide and organonitriles) and electrophiles including (organic acids, isocyanates, carboxylic or sulfonic acid halides and diethylaminosulfur trifluoride).
In a twelfth aspect the present invention provides an oligomer or polymer formed by oligomerising or polymerising a compound of formula III - VTJ, described in the in the present invention directly or with one or more monomers.
The one or more other monomer may be any suitable polymerisable copolymer e.g. acrylate ester such as alkyl, hydroxyalkyl, aminoalkyl, or substituted aryl acrylates or methacrylates, crotonates, substituted or unsubstituted acrylonitriles, vinyl alcohols or acetates, styrene and siloxanes. In a thirteenth aspect, the present invention consists in incorporation of fimbrolides either in surface coatings or polymers through the newly introduced functionality on the alkyl chain or the alkyl chain itself via direct polymerisation or copolymerisation with suitable monomers.
In an fourteenth aspect, the present invention consists in a fimbrolide derivative produced by the method according to the first, third, fifth, seventh, ninth, or eleventh aspects of the present invention.
In a fifteenth aspect, the present invention consists in the use of a fimbrolide derivative according to the present invention. The present inventors have found that many of the fimbrolide derivatives having the formula (II), (III), (IV), (V), (VI) and (VII) have antimicrobial and/or antifouling properties. Accordingly, the fimbrolide derivatives are suitable for use as antimicrobial and/or antifouling agents.
In a sixteenth aspect, the present invention provides methods of use of fimbrolides of formula II in medical, scientific and/or biological applications. Throughout this specification the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.
Brief description of the drawings Figure 1 is a graph showing growt of Staphylococcus aureus against compound 120;
Figure 2 is a graph showing growth of Staphylococcus aureus against compound 63; Figure 3 is a graph showing growth of Staphylococcus aureus against compound 105;
Figure 4 is a graph showing growth of Candida albicans against compound 73; Figure 5 is a graph showing Growth of Candida albicans against compound 113.
Modes for Carrying Out the Invention
The invention is further described in and illustrated by the following examples. The examples are not to be construed as limiting the invention in any way.
EXPERIMENTAL DETAILS
General. Melting points are uncorrected. Microanalyses were performed by Dr H.P. Phairi of The University of New South Wales Microanalytical Laboratory. *H NMR spectra were obtained in CDCI3 on a Bruker AC300F (300 MHz) or aBruker DMX500 (500 MHz) spectrometer. 13C NMR were obtained in the same solvent on a Bruker AC300F (75.5 MHz) or aBruker DMX500 (125.8 MHz) spectrometer. Chemical shifts were measured on the δ scale internally referenced to the solvent peaks: CDCI3 (δ 7.26, δ 77.04). Ultraviolet spectra were measured on an Hitachi U- 3200 spectrophotometer and refer to solutions in absolute MeOH. Infrared spectra were recorded on a Perkin-Elmer 298 or a Perkin-Elmer 580B spectrophotometer and refer to paraffin mulls. The electron impact mass spectra were recorded on an VG Quattro mass spectrometer at 70eV ionisation voltage and 200°C ion source temperature. FAB spectra were recorded on an AutoSpecQ mass spectrometer.
Column chromatography was carried out using Merck silica gel 60H (Art. 7736), whilst preparative thin layer chromatography was performed on 2 mm plates using Merck ' silica gel 6OGF254 (Art. 7730).
General method A:-for the synthesis of 4-oxo-2-alkenoic acids
Orthophosphoric acid (30 ml) was added to a mixture of glyoxylic acid (0.21 mol) and an alkanone (0.63 mol). The mixture was heated in an oil bath maintained at 80-85°C for 4h and then stirred at room temperature overnight. The mixture was extracted with dichloromethane/diethyl ether (1:1, 3 x 100 ml). The combined organic phase was washed with brine (3 x 75 ml), dried over sodium sulfate and evaporated to yield a dark brown oil. The crude product was chromatographed on a silica gel column using initially dichloromethane/light petroleum (1:1) to remove the unreacted alkanone followed by ethyl acetate/dichloromethane (1:1) to yield the 4-oxo-2-alkenoic acid as a pale yellow oil that solidified on keeping at room temperature.
The following compounds were prepared according to method A.
4-Oxo-2-pentenoic acid
Prepared from glyoxylic acid (40 g, 0.44 mol), acetone (60 g, 1.00 mol) and orthophosphoric acid (85%, 60 ml) Pale yellow prisms (10.5 g, 20%). m.p. 120-121°C (lit m.p. 121-122°C).
3-Methyl-4-oxo-2-pentenoic acid
Prepared from glyoxylic acid (16. lg, 0.18 mol), 2-butanone (45.6g, 0.63 mol) and orthophosphoric acid (30 ml). Η n.m.r. δ (CDC1 ) 2.07, s, 3H, CH3; 2.40, s, CH3; 6.57, s, 1H, H2. 13C n.m.r. δ (CDCI3): 13.2, CH3; 26.2, CH3; 125.2, C2; 152.6, C3;
171.2, Cl; 199.8, C4.
3-PropyI-4-oxo-2-pentenoic acid
Prepared from glyoxylic acid (15.2g, 0.17 mol), 2-hexanone (30g, 0.3 mol) and orthophosphoric acid (30 ml). H n.m.r. δ (CDCI3) 0.88, t J 7.2 Hz, 3H, CH3; 1.44, m, 2H, CH2; 2.41, s, 3H, CH3; 2.78, t J 7.5 Hz, 2H, CH2; 6.51, s, CH. 13C n.m.r. δ (CDCI3): 14.0, CH3; 22.5, 26.5, CH2; 28.6, CH3; 124.5, C2; 157.3, C3; 170.4, COOH; 199.8 C2.
3-Butyl-4-oxo-2-pentenoic acid
Prepared from glyoxylic acid (15.2g, 0.17 mol), 2-heptanone (34.2g, 0.3 mol) and orthophosphoric acid (30 ml). *H n.m.r. δ (CDCI3) 0.91, t J 7.2 Hz, 3H, CH3; 1.38, m, 4H, CH2; 2.39, s, 3H, CH3; 2.77, t J 7.2 Hz, 2H, CH2; 6.49, s, CH.
3-Hexyl-4-oxo-2-pentenoic acid
Prepared from glyoxylic acid (5.35g, 7.0 mmol), 2-nonanone (14.2g, 1.0 mol) and orthophosphoric acid (20 ml). vmax 2925, 2850, 1700, 1450, 1410, 1350, 1220, 1120, 870, 770, 720 cm"1. *H n.m.r. δ (CDCI3) 0.87, t J 7.2 Hz, 3H, CH3; 1.29, m, 8H, CH2; 2.39, s, 3H, CH3; 2.77, t J 6.8 Hz, 2H, CH2; 6.50, s, CH. 3-Heptyl-4-oxo-2-pentenoic acid
Prepared from glyoxylic acid (5.10g, 6.7 mmol), 2-decanone (15.0g, 9.6 mmol) and orthophosphoric acid (20 ml). vmaχ 2925, 2820, 1690, 1460, 1380, 1240, 1120, 880, 720 cm"1. 4ϊ n.m.r. δ (CDC13) 0.87, t J 7.2 Hz, 3H, CH3; 1.29, m, 10H, CH2;
2.39, s, 3H, CH3; 2.77, t J 6.8 Hz, 2H, CH2; 6.50, s, CH. 13C n.m.r. δ (CDCI3): 13.9, CH3; 22.5, 26.6, 26.9, 29.1, 29.6, 31.6 CH2; 28.8, CH3; 124.3, C2; 157.9, C3; 170.9, COOH; 199.9 C2.
3-Decyl-4-oxo-2-pentenoic acid
Prepared from glyoxylic acid (4.94g, 6.5 mmol), 2-tridecanone (12.9g, 6.5 mmol) and orthophosphoric acid (20 ml). *H n.m.r. δ (CDCI3) 0.87, t J 7.2 Hz, 3H, CH3; 1.30, m, 16H, CH2; 2.39, s, 3H, CH3; 2.77, t J 7.0 Hz, 2H, CH2; 6.50, s, CH.
3-Methyl-4-oxo-2-hexenoic acid
Prepared from glyoxylic acid (16. lg, 0.18 mol), 3-pentanone (45.6g, 0.63 mol) and orthophosphoric acid (30 ml). *H n.m.r. δ (CDCI3) 1.23, t J 7.2 Hz, 3H, CH3; 2.56, s, 3H, CH3; 2.76, q J 7.2 Hz, CH2; 6.55, s, CH.
2-Methyl-4-oxo-2-pentenoic acid and 3,5-dimethyl-5-hydroxy-2-(5H)-furanone
Orthophosphoric acid (30 ml) was added dropwise to a mixture of pyruvic acid (12.7g, 0.14 mol) and dry A.R. grade acetone (25g, 0.54 mol). The mixture was heated under reflux in an oil bath maintained at 80-85°C for 5h and then stirred at room temperature for 72 h. The mixture was extracted with dichloromethane/diethyl ether (1 : 1, 3 x 100 ml). The combined organic phase was washed with brine (3 x 75 ml), dried over sodium sulfate and evaporated to yield a dark brown oil (12.7g). The crude product was chromatographed on a silica gel column using initially dichloromethane as the eluent to yield 3,5-dimethyl-5-hydroxy-2-(5H)-furanone (3.2g, 25%) (1H n.m.r. δ (CDCI3) 1.67, s, 3H, CH3; 1.91, d J 1.5 Hz, CH3; 3.41, bs, 1H, OH; 6.85, q J 1.5 Hz, H4. 13C n.m.r. δ (CDCI3): 10.2, CH3; 24.5, CH3; 104.6, C5; 131.3, C3; 148.0, C4; 172.3, C2.) followed by ethyl acetate/dichloromethane (1:1) to yield the 2-methyl-4- oxo-2-pentenoic acid (2.6g, 20%) as a pale yellow oil which solidified on keeping at room temperature.
4-Oxo-3-phenyI-2-pentenoic acid and 5-hydroxy-5-methyl-4-phenyl-2-(5H)- furanone Orthophosphoric acid (30 ml) was added dropwise to a mixture of glyoxylic acid (15.2g, 0.20 mol) and benzyl methyl ketone (40.2g, 0.30 mol). The mixture was heated in an oil bath maintained at 80-85°C for 4h and then stirred at room temperature for 24 h. The mixture was poured onto brine (100 ml) and extracted with dichloromethane/diethyl ether (1 : 1, 2 x 150 ml). The combined organic phase was washed with brine (3 x 75 ml), dried over sodium sulfate and evaporated to yield a brown viscous oil (30g). Light petroleum (100 ml, 60-80°C) was added to the viscous oil and the mixture cooled in an ice bath for 2h. The resulting solid was collected, washed with saturated sodium bicarbonate solution (75 ml), water and recrystallised form dichloromethane/light petroleum to yield 5-hydroxy-5-methyl-4-phenyl-2-(5H)- furanone (8.9g, 21%) as a colourless needles. *H n.m.r. δ (CDCI3) 1.81, s, 3H, CH3; 6.25, s, H3; 7.47, m, 3H, ArH; 7.80, m, 2H, ArH. 13C n.m.r. δ (CDCI3): 25.1, CH3; 107.3, C5; 114.3, C4; 128.2, 128.9, 129.0, 131.3, ArH; 166.1, C3; 171.0, C2. The bicarbonate extract was acidified with hydrochloric acid (6N) and extracted with dichloromethane (3 x 75 ml). The combined extract was washed with brine, dried over anhydrous sodium sulfate and evaporated to yield 2-methyl-4-oxo-2-pentenoic acid (8.7g, 23%) as a pale yellow oil that solidified on keeping at room temperature. lH n.m.r. δ (CDCI3) 2.27, s, CH3; 6.70, s, 1H, H4, 7.18, m, 2H, ArH; 7.47, m, 3H, ArH. 13C n.m.r. δ (CDCI3): 28.0, CH3; 125.2, C2; 128.9, 129.0, 129.4, 131.3, ArH; 152.5, C3; 169.7, Cl; 199.3, C4.
GENERAL METHODS FOR THE SYNTHESIS OF HALOGENATED 4- OXOALKANOIC ACIDS
Examples of the preparartion of 2,3-dibromo-4-oxoalkanoic acids, and 3,5- dibromo- and 3,5,5-tribromolevulinic acids are provided below.
General method B:- for the synthesis of 2,3-dibromo-4-oxoalkanoic acids
A solution of bromine ( 0.045 mol) in dry dichloromethane (8 ml) was added slowly to an ice-cooled solution of 4-oxo-2-alkenoic acid (0.03 mol) in dry dichloromethane (30 ml). The mixture was stirred in an ice-bath for 0.5h and then at room temperature for 0.5 h. The resulting solution was washed with aqueous sodium metabisulfite (0.5 M, 30 ml) and brine (30 ml). The solution was dried over sodium sulfate and evaporated to dryness to yield the crude 2,3-dibromo-4-oxoalkanoic acid as a pale brown oil (60-65%). The crude product was used for the lactonisation step without further purification. 2,3-Dibromo-4-oxopentanoic acid
4-Oxo-2-pentenoic acid afforded a pale yellow oil (0.93 g, 39%) as a mixture of diastereoisomers. *H n.m.r. δ (CDCI3) 2.42, s, 3H, CH3; 2.44, s, 3H, CH3; 4.65-4.74, m, H2 and H3; 6.32, broad s, COOH. 13C n.m.r. δ (CDCI3): 27.2, 27.5, CH3; 40.0,
45.1, C2; 46.6, 52.0, C3; 171.2, 172.3, Cl; 196.9, 200.3, C4.
2,3-Dibromo-3-methyl-4-oxopentanoic acid
3-Methyl-4-oxo-2-pentenoic acid (5g, 39 mmol) and bromine (7.5g, 46.9 mmol) in dichloromethane (100 ml) gave a mixture of diastereoisomersas a pale yellow oil (8.2g, 75%). IH n.m.r. δ (CDCI3): 2.18, bs, 3H, CH3; 2.20, bs, 3H, CH3; 5.01, s, IH, H2; 5.08, s, IH, H2; 6.00, bs, COOH. 13C n.m.r. δ (CDCI3): 22.5, 24.0, 24..2, 25.1, CH3, 52.3, 53.4, C2; 61.8, 65.3, C3; 171.8, 172.8, Cl; 198.9, 201.4, C4.
2,3-Dibromo-3-butyl-4-oxopentanoic acid
3-Butyl-4-oxo-2-pentenoic acid (2.00g, 13.0 mmol) and bromine (3.2g, 20 mmol) in dichloromethane (35 ml) gave a mixture of diastereoisomers as a colourless oil (3.7g, 92%). !H n.m.r. δ (CDCI3) 0.93, m, 3H, CH3; 0.95, m, 3H, CH3; 1.42, broad m, CH2; 1.87, broad m, CH2; 2.18, bs, 3H, CH3; 2.54, broad m, CH2; 4.87, bs, IH, H2; 5.00, s, IH, H2; 7.4, bs, COOH.
2,3-Dibromo-3-hexyl-4-oxopentanoic acid
3-Hexyl-4-oxo-2-pentenoic acid (2.12g, 13.4 mmol) and bromine (2.4g, 15 mmol) in dichloromethane (35 ml) gave a mixture of diastereoisomers as a colourless oil (3.4g, 87%). IH n.m.r. δ (CDCI3) 0.88, t, J 7.1 Hz, 3H, CH3; 0.90, t, J 7.1 Hz, 3H,
CH3; 1.33, broad m, CH2; 1.50-1.67, broad m, CH2; 2.00-2.30, m, CH2; 2.54, s, CH3; 2.57, s, CH3; 4.83, s, IH, H2; 5.00, s, IH, H2.
2,3-Dibromo-3-heptyl-4-oxopentanoic acid 3-Heptyl-4-oxo-2-pentenoic acid (l.lg, 5.0 mmol) and bromine (1.2g, 7.0 mmol) in dichloromethane (35 ml) gave a mixture of diastereoisomers as a colourless oil (1.6g, 80%). IH n.m.r. δ (CDCI3) 0.88, broad t, 3H, CH3; 1.28, broad m, CH2; 1.50- 1.67, broad m, CH2; 2.00-2.30, m, CH2; 2.54, s, CH3; 2.57, s, CH3; 4.87, s, IH, H2; 4.99, s, IH, H2.
2,3-Dibromo-3-methyl-4-oxohexanoic acid 3-Methyl-4-oxo-2-hexenoic acid (l.Olg, 7.1 mmol) and bromine (1.7g, 10.7 mmol) in dichloromethane (35 ml) gave a mixture of diastereoisomers as a pale yellow oil (1.7g, 75%). IH n.m.r. δ (CDC13) 1.16, t J 7.1 Hz, H6; 1.18, t J 7.1 Hz, H6, 2.17, q J 7.1 Hz, H5; 2.18, q J 7.1 Hz, H5; 2.19, bs, 3H, CH3; 2.20, bs, 3H, CH3; 5.03, s, IH, H2; 5.14, s, IH, H2.
2,3,5-Tribromo-4-oxopentanoic acid
A solution of bromine (10 g, 0.06 mol) in dry dichloromethane (8 ml) was added slowly to an ice-cooled solution of 4-oxo-2-pentenoic acid (3.6 g, 0.03 mol) in dry dichloromethane (30 ml). The mixture was stirred atroom temperature for 0.5 h and then at reflux for 1 h. After cooling to room temperature, the resulting solution was washed with aqueous sodium metabisulfite (0.5 M, 30 ml) and brine (30 ml). The solution was dried over sodium sulfate and evaporated to dryness to yield the crude 2,3,5-tribromo-4-oxopentanoic acid a pale brown oil (7.2 g, 65%). *H n.m.r. δ (CDCI3) 4.06, d, J 12.4 Hz, Ha5; 4.27, d, J 12.4 Hz, H 5; 4.67, d, J 11.3 Hz, H2; 5.20, d, J 11.3
Hz, H3.
Synthesis of 3,5-dibromo-4-oxopentanoic acid
A solution of bromine (70 g, 0.44 mol) in dry dichloromethane (80 ml) was added slowly to a solution of 4-oxopentanoic acid (23.2 g, 0.2 mol) in dry dichloromethane (700 ml) containing hydrobromic acid (33% in acetic acid, 12 drops). The mixture was warmed at 50°C for 0.5 h, and then at reflux for 1 h. It was cooled to room temperature and the resulting solution was washed successively with water (100 ml), aqueous sodium metabisulfite (0.5 M, 100 ml) and brine (100 ml). The organic phase was dried over sodium sulfate, and evaporated to dryness to yield the crude 3,5- dibromo-4-oxopentanoic acid as a white solid. The crude product was recrystallised from chloroform to yield the acid as colourless needles (44 g, 76%) m.p. 112-113°C (lit. mp. 113°C).
Synthesis of 3,5,5-tribromo-4-oxopentanoic acid
A solution of bromine (43 g, 0.27 mol) in dry dichloromethane (80 ml) was added slowly to a solution of 4-oxopentanoic acid (10 g, 0.90 mol) in dry dichloromethane (70 ml) containing hydrobromic acid (33% in acetic acid, 12 drops). The mixture was warmed at 50°C for 0.5 h, and then at reflux for 1 h. It was cooled to room temperature and the resulting solution was washed successively with water (100 ml), aqueous sodium metabisulfite (0.5 M, 100 ml) and brine (100 ml). The solution was dried over sodium sulfate and evaporated to dryness to yield the crude 3,5,5- tribromo-4-oxopentanoic acid as a yellow oil. *H n,m.r. δ (CDCI3) 3.13, dd, J 6.8 Hz 17.7 Hz, Ha2; 3.41, dd, J6.8 Hz 17.7 Hz, H 2; 5.18, dd, J6.8, 6.8 Hz, H3; 6.47, s, H5.
The corresponding alkyl substituted di- and tri-brominated 4-oxopentanoic acids were similarly prepared.
GENERAL METHODS FOR THE SYNTHESIS OF HALOGENATED 2- TETRAHYDROFURANONES Examples of the preparation of 3,4-dibromo-4-alkyl-5-(methylene)-, 4-bromo-5-
(bromomethylene)-, 3-alkyl-4-bromo-5-(dibromomethylene)-, and 3-alkyl-3,4- dibromo-5-(alkylidene)-2(5H)-tetrahydrofuranone are provided below.
General method C:- for the synthesis of 3,4-dibromo-4-alkyl-5-(methylene)-, 2- tetrahydrofuranones
3,4-Dibromo-4-alkyl-5-(methylene)-2-tetrahydrofuranone
Phosphorus pentoxide (11.4 g) was added with stirring to a solution of 2,3- dibromo-3-alkyl-4-oxopentanoic acid (4.6 g, 16.0 mmol) in dry dichloromethane (25 ml). The mixture was heated at reflux with stirring for 2 h, and cooled to room temperature. The resulting mixture was filtered through a pad of celite, washed with brine, dried over sodium sulfate and evaporated to yield the tetrahydrofuranone as a pale yellow oil (60-80%). This product was used in the next step without further purification. Method C was used to prepare the following compounds.
3,4-Dibromo-4-methyl-5-(methylene)-2-tetrahydrofuranone
Colourless oil (85%) as a mixture of diastereoisomers. *H n.m.r. δ (CDCI3) 2.10, s, 3H, CH3; 2.17, s, 3H, CH3; 4.48, s, H3; 4.77, s, H3; 4.89, d, J 3.8 Hz, CHa; 4.92, d, J 3.8 Hz, CHb; 5.02, d, J 3.8 Hz, CHa; 5.08, d, J 3.8 Hz, CHb.
3,4-Dibromo-4-propyl-5-(methylene)-2-tetrahydrofuranone
Pale yellow oil (62%) as a mixture of diastereoisomers. *H n.m.r. δ (CDCI3) 1.01, t, 3H, CH3; 1.05, m, 3H, CH3; 1.62, m, 2H, CH2; 1.65, m, 2H, CH2; 2.45, m, 2H, CH2; 2.47, m, 2H, CH2; 4.66, s, H3; 4.71, s, H3; 4.90, d, J 3.3 Hz, CHa; 4.91, d, J 3.7
Hz, CHb; 4.91, d, J 3.3 Hz, CHa; 5.04, d, J 3.7 Hz, CHb. 3,4-Dibromo-4-butyl-S-(methylene)-2-tetrahydrofuranone
Pale yellow oil (58%) as mixture of diastereoisomers. *H n.m.r. δ (CDCI3) 0.98, t, 3H, CH3; 1.00, t, 3H, CH3; 142, m, 2H, CH2; 1.69, m, 2H, CH2; 2.28, m, 2H5 CH2; 4.66, s, H3; 4.71, s, H3; 4.86, d, J 3.8 Hz, CHa; 4.88, d, J 3.7 Hz, CHb; 5.03, d, J 3.7
Hz, CHa; 5.05, d, J 3.7 Hz, CHb.
3,4-Dibromo-4-hexyl-5-(methylene)-2-tetrahydrofuranone
Pale yellow oil (89%) as a mixture of diastereoisomers. *H n.m.r. δ (CDCI3) 0.92, t, 3H, CH3; 1.35, m, 6H, CH2; 1.76, m, 2H, CH2; 2.23, m, 2H, CH2; 4.62, s, H3; 4.66, s, H3; 4.87, d, J 3.2 Hz, CHa; 4.88, d, J 3.2 Hz, CH ; 5.03, d, J 3.2 Hz, CHa; 5.05, d, J 3.2 Hz, CHb.
3,4-Dibromo-4-heptyl-5-(methylene)-2-tetrahydrofuranone Pale yellow oil (59%) as mixture of diastereoisomers. H n.m.r. δ (CDCI3) 0.90, t, 3H, CH3; 1.32, m, 8H, CH2; 1.76, m, 2H, CH2; 2.30, m, 2H, CH2; 4.63, s, H3; 4.66, s, H3; 4.86, d, J 3.8 Hz, CHa; 4.87, d, J 3.8 Hz, CH ; 5.02, d, J 3.8 Hz, CHa; 5.04, d, J 3.8 Hz, CH .
Synthesis of 3,4-dibromo-3-ethyI-5-(ethylidene)-2-tetrahydrofuranone
Pale yellow oil (3.68 g, 84%) as a mixture of diastereoisomers. *H n.m.r. δ (CDCI3) 1.91, d, J 7.1 Hz, 5-(CHMe); 1.92, d, J 7.1 Hz, 5-(CHMe); 2.03, s, 3H, CH3; 2.12, s, 3H, CH3; 4.48, s, H4; 4.76, s H4; 5.34, q, IH, 5-(CHMe); 5.36, q, IH, 5-(CHMe).
Synthesis of 4-bromo-5-(bromomethylene)-2-tetrahydrofuranone
Phosphorus pentoxide (22.5 g) was added with stirring to a solution of 3,5- dibromo-4-oxopentanoic acid (30.4 g, 0.11 mol) in dry dichloromethane (500 ml). The mixture was heated at reflux with stirring for 2 h, and cooled to room temperature. The resulting mixture was filtered through a pad of filter aid, washed with brine, dried over sodium sulfate and evaporated to yield the tetrahydrofuranone (mixture of Z- and E- isomers in 4:1 ratio) as a pale yellow oil (23.4 g, 82%). The oil solidified on standing at room temperature overnight. Crystallisation from dichloromethane/light petroleum (60-80°C) gave an analytically pure sample of the Z-isomer. m.p. 79°C. Vmax 3094, 3027, 2947, 1799, 1634, 1393, 1289, 1114, 949, 838, 747, 718, 660 cm"1. λma 279 nm (ε 4938). lU n.m.r. δ (CDCI3) 3.10, dd, J2.3 Hz, 18.8 Hz, Ha3; 3.45, dd, J7.9 Hz, 18.8 Hz, Hb3; 5.07, m, H4; 5.90, s, 5-CHBr. 13C n.m.r. δ (CDC13): 37.2, C3; 40.5, C4; 86.9, 5-CHBr; 152.3, C5; 169.5, C2.
E-isomer: lR n.m.r. δ (CDCI3) 3.09, dd, J2.3 Hz, 18.8 Hz, Ha3; 3.38, dd, J7.9 Hz, 18.8 Hz, Hb3; 5.15, m, H4; 6.19, s, 5-CHBr. 13C n.m.r. δ (CDCI3): 37.0, C3; 39.8, C4; 90.1, 5-CHBr; 151.9, C5; 170.4, C2.
Synthesis of 4-bromo-3-butyl-5-(dibromomethylene)-2-tetrahydrofuranone
Phosphorus pentoxide (10.0 g) was added with stirring to a solution of 2-(l,3,3- tribromo-2-oxopropyl)hexanoic acid (7.7 g, 0.11 mol) in dry dichloromethane (150 ml). The mixture was heated at reflux with stirring for 2 h, and cooled to room temperature. The resulting mixture was filtered through a pad of filter aid, washed with brine, dried over sodium sulfate and evaporated to yield the tetrahydrofuranone as a pale brown oil (7.0 g, 82%) that solidified on standing at 4°C overnight. vmax 2958, 2930, 2871, 1820, 1782, 1638, 1455, 1127, 1086, 965, 849, 757, 718 cm"1. lH n.m.r. δ (CDCI3) 0.93, t, J6.7 Hz, (H4')3; 1.37-1.81, m, (H3')2- (Hl')2; 3.22, t, J7.5 Hz, H3; 4.79, s, H4.
13C n.m.r. δ (CDCI3): 14.1, C4'; 22.5, C3'; 28.9, Cl'; 31.6, C2'; 43.6, C4; 53.7, C3; 76.5, 5-CBr2; 149.8, C5; 172.5, C2.
GENERAL METHODS FOR THE SYNTHESIS OF HALOGENATED 2(5H)- FURANONES
Examples of the preparation of 3-bromo-4-alkyl-5-(methylene)-2(5H)-furanone, 5-(bromomethylene)-2(5H)-, 5-(dibromomethylene)-2(5H)- and 3-alkyl-5- (bromomethylene)-2(5H)-tetrahydrofuranone are provided below.
General method Part D:- for the synthesis of 3-bromo-4-alkyl-5-(methylene)-
2(5H)-furanones l,8-Diazabicyclo[5.4.0]undec-7-ene (DBU/DABCO or DMAP) (14.8 mmol) was added dropwise to a cooled stirred solution of 3,4-dibromo-4-alkyl-5-(methylene)- 2-tetrahydrofuranone (0.016 mol) in dichloromethane (30 ml). The mixture was stirred at room temperature for 0.5 h, washed with dilute hydrochloric acid (2N, 20 ml), brine (20 ml), dried over sodium sulfate, and evaporated to dryness. The crude product was passed through a short plug of silica gel to yield the 3-bromo-4-methyl-5-(methylene)- 2(5H)-furanone (50-83%o) as a colourless oil.
3-Bromo-4-methyl-5-(methylene)-2(5H)-furanone Pale brown oil (65%). lH n.m.r. δ (CDCI3) 2.17, s, 3H, CH3; 5.01, d, J 3.0 Hz, CHa; 5.22, d, J 3.0 Hz, CHb.
3-Bromo-4-propyI-5-(methyIene)-2(5H)-furanone Pale brown oil (69%). JH n.m.r. δ (CDCI3) 1.02, t, J 7.1 Hz, 3H, CH3; 1.68, m,
2H, CH2; 2.52, t, J 7.1 Hz, 2H, CH2; 5.01, d, J 3.1 Hz, CHa; 5.24, d, J 3.1 Hz, CHb.
3-Bromo-4-butyl-5-(methylene)-2(5H)-furanone
Pale brown oil (58%). *H n.m.r. δ (CDCI3) 0.96, t, J 7.2 Hz, 3H, CH3; 1.37, m, 2H, CH2; 1.64, m, 2H, CH2; 2.52, t, J 7.3 Hz, 2H, CH2; 5.02, d, J 3.1 Hz, CHa; 5.24, d, J 3.1 Hz, CHb.
3-Bromo-4-hexyI-5-(methylene)-2(5H)-furanone
Pale brown oil (73%). 1Hn.ra.r. δ (CDCI3) 0.93, t, J 7.1 Hz, 3H, CH3; 1.35, m, 6H, CH2; 1.62, m, 2H, CH2; 2.53, m, 2H, CH2; 5.01, d, J 3.0 Hz, CHa; 5.24, d, J 3.0
Hz, CHb.
3-Bromo-4-heptyl-5-(methylene)-2(5H)-furanone
Pale brown oil (82%). *H n.m.r. δ (CDCI3) 0.89, t, J 7.3 Hz, 3H, CH3; 1.29, m, 8H, CH2; 1.61, m, 2H, CH2; 2.53, t, J 7.5 Hz, 2H, CH2; 5.02, d, J 3.2 Hz, CHa; 5.24, d, J 3.2 Hz, CH . 13C n.m.r. δ (CDCI3): 13.9, CH3; 22.5, 26.2, 28.1, 28.8, 29.1, 31.5, CH2; 95.3, 5-(CH2); 112.2, C3; 154.3, C5; 154.6, C4; 164.6, C2.
Synthesis of 5-(bromomethyIene)-2(5H)-furanone l,4-Diazabicyclo[2.2.2]octane (DABCO) (2.8 g, 0.025 mol) was added to a stirred solution of a mixture of (E) and (Z)-isomers of 4-bromo-5-(bromomethylene)- tetrahydro-2-furanone (4.2 g, 0.016 mol) in dichloromethane (20 ml). The mixture was stirred at room temperature for 2 h and filtered. The filtrate was washed with dilute hydrochloric acid (2N, 10 ml), brine (20 ml), dried over sodium sulfate, and evaporated to dryness. The crude product was recrystallised from light petroleum (60-80°C) to yield 5-(bromomethylene)-2(5H)-furanone as colourless needles (2.2 g, 76%) m.p. 80- 82°C. vmax 2905, 2840, 1770, 1740, 1630, 1540, 1450, 1370, 1290, 1160, 1100, 1070, 915, 880, 815, 770, 720 cm"1. λmax 284 nm (ε 13535). IH n.m.r. δ (CDCI3) 6.12, s, 5- CHBr; 6.32, d, J 5.1 Hz, H3; 7.40, d, J 5.1 Hz, H4. 13C n.m.r. δ (CDCI3): 92.5, 5- CHBr; 120.7, C3; 141.8, C4; 152.4, C5; 168.3, C2. Mass spectrum: m/z 176 (M (81Br),
100%); 174 (M (79Br), 100); 148 (44); 142 (40); 122 (26); 120 (24); 95 (30). Synthesis of 3-butyl-5-(dibromomethylene)-2(5H)-furanone l,4-Diazabicyclo[2.2.2]octane (DABCO) (1.2 g, 10.4 mmol) was added to a stirred solution of 4-bromo-3-butyl-5-(dibromomethylene)-tetrahydro-2(5H)-furanone (2.0 g, 6.9 mmol) in dichloromethane (20 ml). The mixture was stirred at room temperature for 2 h and filtered. The filtrate was washed successively with dilute hydrochloric acid (2N, 10 ml), brine (20 ml). It was dried over sodium sulfate and evaporated to dryness to yield the furanone as pale brown solid. The crude product was recrystallised from light petroleum (60-80°C) containing a small amount of dichloromethane to yield 3-butyl-5-(dibromomethylene)-2(5H)-furanone as a white solid (1.0 g, 63%). m.p. 48-49°C. vma 3080, 2900, 2840, 1740, 1590, 1445, 1330, 1255, 1040, 960, 890, 840, 820, 705 cm"1, λmax 303 nm (ε 13682). iHn.m.r. δ (CDC13) 0.92, t, J7.2 Hz, (H4')3; 1.32, m, (H3')2; 1.56, m, (H2')2; 2.32, t, J7.3 Hz, (Hl')2; 7.27, br s, H4. * C n.m.r. δ (CDCI3): 13.7, C4'; 22.3, C3'; 25.4, Cl'; 29.3, C2'; 78.8, 5-CBr2; 134.0, C4; 138.0, C3, 149.7, C5; 166.7, C2. Mass spectrum: m/z 312 (M
(81Br2), 7%); 310 (M (81Br, 79Br), 14); 308 (M, 7); 283 (6); 281 (12); 279 (7); 270 (19); 268 (35); 266 (20); 231 (72); 229 (72); 202 (16); 200 (32); 198 (16); 189 (30); 187 (30); 172 (16); 161 (14); 159 (14); 149 (28).
One pot syntheses of 3-bromo-4-alkyl-5-(methylene)-2(5H)-furanone, 5- (bromomethylene)-2(5H)-, 5-(dibromomethylene)-2(5H)- and 3-alkyl-5- (bromomethylene)-2(5H)-furanones
The general methods C and D were carried out in one sequence without the isolation and purification of intermediates.
Synthesis of 3-Bromo-4-methyl-5-(methyIene)-2(5H)furanone
Phosphorus pentoxide (11.5 g) was added with stirring to a solution of 2,3 - dibromo-3-methyl-4-oxopentanoic acid (4.6g, 16.0 mmol) in dry dichloromethane (30 ml). The mixture was heated at reflux with stirring for 2 h. It was cooled to room temperature and the resulting mixture was filtered through a pad of filter aid and treated with l,4-diazabicyclo[2.2.2]octane (DABCO) (2.24 g, 14.8 mmol). The mixture was stirred at room temperature for 1 h, washed with dilute hydrochloric acid (2N, 10 ml), brine (20 ml), dried over sodium sulfate, and chromatographed on a short plug of silica gel to yield the 3-bromo-4-methyl-5-(methylene)-2(5H)furanone as a colourless oil
(2.14 g, 83%). Synthesis of 5-(bromomethylene)-2(5H)-furanone
Phosphorus pentoxide (22.5 g) was added with stirring to a solution of 3,5- dibromo-4-oxopentanoic acid (30.4g, 0.11 mol) in dry dichloromethane (500 ml). The mixture was heated at reflux with stirring for 2 h. It was cooled to room temperature and the resulting mixture was filtered through a pad of filter aid and treated with 1,4- diazabicyclo[2.2.2]octane (DABCO) (2.8 g, 0.025 mol). The mixture was stirred at room temperature for 2 h and filtered. The filtrate was washed with dilute hydrochloric acid (2N, 10 ml), brine (20 ml), dried over sodium sulfate, and evaporated to dryness. The crude product was recrystallised from light petroleum (60-80°C) to yield the 5- (bromomethylene)-2(5H)-furanone as colourless needles (2.1 g, 73%) m.p. 82-83°C.
Synthesis of 5-(dibromomethylene)-2(5H)-furanone
Phosphorus pentoxide (20 g) was added with stirring to a solution of 3,5,5- tribromo-4-oxopentanoic acid (14.5 g, 4.1 mmol) in dry dichloromethane (200 ml).
The mixture was heated at reflux with stirring for 2 h, and cooled to room temperature. The resulting mixture was filtered through a pad of filter aid and the filtrate treated with a solution of 4-(dimethylamino)pyridine (DMAP) (5.8 g, 4.7 mmol) in dichloromethane (30 ml). The mixture was stirred at room temperature for 2 h and filtered. The filtrate was washed with dilute hydrochloric acid (2N, 10 ml), brine (20 ml), dried over sodium sulfate, and evaporated to dryness. The crude product was chromatographed on silica using light petroleum (60-80°C) as the eluent to yield the 5-(dibromomethylene)-2(5H)- furanone as pale yellow prisms. (4.2 g, 40%) m.p. 135°C. vmax 2905, 2840, 1805, 1783, 1558, 1257, 1102, 1067, 960, 887, 826 cm"1. λmax 306 nm (ε 4300). lHn.m.r. δ (CDC13) 6.40, d, J5.3 Hz, H3; 7.66, d, J5.3 Hz, H4. *3C n.m.r. δ (CDCI3): 81.7, 5-
CBr2; 122.3, C3; 140.6, C4; 150.7, C5; 167.6, C2. Mass spectrum: m/z 176 (M (81Br), 100%); 174 (M (79Br), 100).
GENERAL METHODS FOR THE SYNTHESIS OF HALOGENATED HALOALKYL-2(5H)-FURANONES
Examples of the preparation of 5-(bromomethyl)-3,5-dibromo- and 5- (dibromomethyl)-5-bromo-2(5H)-furanones are provided below.
General method E:- for the synthesis of 4-alkyl-5-(bromomethyl)-3,5-dibromo-, 4-alkyl-3,5-dibromo-5-(dibromomethyl)-, 4-alkyl-5-bromo-(bromomethyl)-5- and 4- alkyl-5-bromo-5-(dibromomethyl)-2(5H)-furanones A solution of bromine (17 mmol) in dichloromethane (10 ml) was added dropwise to an ice-cooled solution of 3-bromo-4-alkyl-5-(methylene)-2(5H)-furanone (18.7 mmol) in dichloromethane (20 ml). The mixture was stirred in ice for 0.5h and then at room temperature for further lh. It was washed with saturated sodium metabisulfite solution (30 ml) followed by brine (40 ml). The resulting solution was dried over anhydrous sodium sulfate and evaporated to yield the 3,5-dibromo-5- bromomethyl-4-alkyl-2(5H)-furanone (65-85%) as a colourless oil.
5-(Bromomethyl)-3,5-dibromo-4-methyl-2(5H)-furanone Pale yellow solid (79%). vmax 2925, 2850, 1780, 1650, 1430, 1380, 1295,
1260, 1160, 1130, 970, 850, 740 cm"1. 1H n.ra.r. δ (CDC13) 2.19, s, 3H, CH3; 3.97, d, J 11.7 Hz, CHaBr; 4.26, d, J 11.7 Hz, CHtjBr. 13C n.m.r. δ (CDCI3): 12.9, CH3; 33.8, CH2Br; 90.9, C5; 112.3, C3; 161.5, C4; 163.6, C2. Mass spectrum: m/z 352 (M (81Br3), 4%); 350 (M (81Br2), (79Br), 8%); 348 (M (81Br), (79Br2), 8%); 346 (M, (79Br3), 4%); 271 (40); 269 (80); 265 (40); 213 (10); 190 (70); 188 (70); 162 (20); 158 (20; 122 (40);
120 (40).
3,5-Dibromo-5-(dibromomethyl)-4-methyl-2(5H)-furanone
Colourless prisms (34%). lR n.m.r. δ (CDCI3) 2.26, s, 3H, CH3; 5.91, s, 5- (CHBr2). 1 C n.m.r. δ (CDCI3): 13.7, CH3; 43.1, 5-(CHBr2); 93.8, C5; 112.9, C3; 143.3, C4; 161.4, C2.
S-(Bromomethyl)-3,5-dibromo-4-butyl-2(5H)-furanone
Pale yellow oil (84%). *H n.m.r. δ (CDCI3) 1.00, t, J 7.3 Hz, 3H, CH3; 1.45, m, 2H, CH2; 1.80, m, 2H, CH2; 2.45, t, J 7.1 Hz, 2H, CH2; 4.00, d, J 10.7 Hz, CHaBr;
4.28, d, J 11.7 Hz, CΑ\βτ. 13C n.m.r. δ (CDCI3): 13.5, CH3; 23.0, 27.5, 28.3, CH2; 34.2, CH2Br; 91.3, C5; 112.4, C3; 163.8, C4; 164.2, C2.
5-(Bromomethyl)-3,5-dibromo-4-hexyl-2(5H)-furanone Pale yellow oil (85%). *H n.m.r, δ (CDCI3) 0.92, t J 7.1 Hz, 3H, CH3; 1.35, m,
4H, CH2; 1.46, m, 2H, CH2; 1.82, m, 2H, CH2; 2.47, t, J 8.1 Hz, 2H, CH2; 4.00, d, J 11.7 Hz, CHaBr; 4.27, d, J 11.7 Hz, CHtjBr.
5-(Bromomethyl)-3,5-dibromo-4-heptyl-2(5H)-furanone Pale yellow oil (72%). vmaχ 3038, 2953, 2927, 2855, 1793, 1635, 1463, 1415,
1377, 1265, 1227, 1165, 1129, 973, 881, 743 cm"1. ? x 244 nm (ε 4330). Ηn.m.r. δ (CDCI3) 0.90, t, J 7.1 Hz, 3H, CH3; 1.32, m, 8H, CH2; 1.82, m, 2H, CH2; 2.47, t, J 8.1 Hz, 2H, CH2; 4.00, d, J 11.7 Hz, CHaBr; 4.27, d, J 11.7 Hz, CH\βτ. 13C n.m.r. δ (CDCI3): 13.9, CH3; 22.5, 26.3, 27.8, 28.6, 29.8, 31.5, CH2; 34.2, CH2Br; 91.3, C5; 112.4, C3; 163.8, C4; 164.3, C2.
5-(Dibromomethyl)-3,5-dibromo-4-heptyl-2(5H)-furanone
Pale yellow oil (52%). vmax 3005, 2953, 2926, 2855, 1796, 1630, 1464, 1377, 1260, 1165, 1143, 968, 885, 799, 746, 720 cm"1. ? 242 nm (ε 3312). *H n.m.r. δ (CDCI3) 0.90, t, J 7.2 Hz, 3H, CH3; 1.32, m, 8H, CH2; 1.86, m, 2H, CH2; 2.50, m, 2H, CH2; 5.93', s, 5-CHBr2. *3C n.m.r. δ (CDCI3): 13.9, CH3; 22.5, 26.5, 28.2, 28.6, 29.8,
31.5, CH2; 43.4, 5-CHBr2; 94.0, C5; 112.6, C3; 163.3, C4; 164.4, C2.
5-(Bromomethyl)-5-bromo-4-phenyl-2(5H)-furanone
Colourless prisms (79%). *H n.m.r. δ (CDCI3) 4.11, d J, 11.3 Hz, CHaBr; 4.38, d, J 11.3 Hz, CHt r. *3C n.m.r. δ (CDCI3): 34.8, CH2Br; 89.4, C5; 116.9, C3; 128.0,
129.2, 131.8, Ph; 165.9, C4; 167.2, C2. Mass spectrum: m/z 334 (M (81Br2), 5%); 332 (M (81Br), (79Br), 10%); 330 (M (79Br2), 4%); 253 (10); 251 (10); 172 (40); 116 (50); 115 (50); 102 (100).
GENERAL METHODS FOR THE SYNTHESIS OF HALOGENATED 5- (HALOMETHYLENE)-2(5H)-FURANONES
Examples of the preparation of 3-bromo-4-alkyl-5-(bromomethylene)-2(5H)- furanone produced are provided below.
General method F:- for the synthesis of 3-bromo-4-alkyl-5-(bromomethylene)-
2(5H)-furanone
A solution of N,N'-diisopropylethyl amine (Hunig's base) (36 mmol) in dichloromethane (10 ml) was added dropwise with stirring to an ice cooled solution of 3,5-dibromo-5-bromomethyl-4-alkyl-2(5H)-furanone (7.2 mmol) in dichloromethane (40 ml). The mixture was allowed to warm to room temperature and further stirred at room temperature for 60h. The resulting mixture was washed with aqueous hydrochloric acid (100 ml, 2M), dried over anhydrous sodium sulfate and evaporated to yield 3-bromo-4-alkyl-5-(bromomethylene)-2(5H)-furanone as a dark brown oil. The crude product was chromatographed on a silica gel column using dichloromethane/light petroleum (60-80°C) (1 :3) as eluent to yield the pure furanone as a pale yellow oil. 3-Bromo-4-methyl-5-(bromomethylene)-2(5H)-furanone
Pale yellow oil (64%). vmax 2905, 2850, 1760, 1630, 1580, 1450, 1380, 1270, 1230, 1105, 980, 900, 720 cm"1. λmax 290 nm (ε 20570). Ηn.m δ (CDCI3) 2.16, s, 3H, CH3; 6.22, s, 5-(CHBr). 13C n.m.r. δ (CDCI3): 11.5, CH3; 90.4, 5-(CHBr); 112.2, C3; 149.3, C5; 152.0, C4; 163.4, C2. Mass spectrum: m/z 270 (M (81Br2), 40%); 268
(M (81Br, 79Br), 80); 266 (M, (81Br2), 40%); 242 (5); 240 (10); 238 (10); 189 (10); 187 (10); 161 (12); 159 (12); 133 (20); 131 (20); 122 (15); 120 (15).
3-Bromo-5-(dibromomethylene)-4-methyl-2(5H)-furanone Colourless prisms (9%). vmax 2951, 2924, 2853, 1771, 1592, 1576, 1462,
1428, 1382, 1232, 1020, 906, 847, 746, 718 cm"1. 307 nm (ε 24576). lR n.m.r. δ (CDCI3) 2.50, s, 3H, CH3. 13C n.m.r. δ (CDCI3): 16.4, CH3; 81.6, 5-(CBr2); 115.9, C3; 148.8, C5; 149.5, C4; 162.2, C2. Mass spectrum: m/z 350 (M (81Br3), 30%); 348 (M (81Br2) (7 Br), 100%); 346 (M (81Br) (79Br2), 100%); 344 (M (79Br3), 30%); 269 (10); 267 (20); 265 (10); 241 (10); 239 (20); 237 (10); 213 (20); 211 (40); 209 (20); 202
(10); 200 (20); 198 (10).
3-Bromo-5-(bromomethylene)-4-propyl-2(5H)-furanone
Pale yellow oil (58%). vmaχ 2936, 2843, 1760, 1595, 1440, 1380, 1270, 1190, llOO 1010, 950, 845, 760, 710 cm"1, λ™* 287 nm (ε 13757). H n.m.r. δ (CDCI3)
1.01, t, J 7.5 Hz, 3H, CH3; 1.67, m, 2H, CH2; 2.52, t, J 7.2 Hz, t, 2H, CH2; 6.23, s, 5- (CHBr). 13C n.m.r. δ (CDCI3): 13.9, CH3; 21.8, 28.0, CH ; 90.8, 5-(CHBr); 112.0, C3; 151.5, C5; 153.3, C4; 163.6, C2. Mass spectrum: m/z 298 (M (81Br2), 20%); 296 (M (81Br, 79Br), 40); 294 (M, (81Br2), 20%); 217 (100); 215 (100%); 189 (60); 187 (60); 159 (20); 161 (20); 136 (100).
3-Bromo-4-butyl-5-(bromomethylene)-2(5H)-furanone
Pale yellow oil (52%). vmax 2950, 2850, 1750, 1590, 1450, 1380, 1310, 1270, 1195, 1100, 1050, 1010, 950, 890, 840, 760, 720 cm"1, λmax 295 nm (ε 9827). H n.m.r. δ (CDCI3) 0.96, t, J 7.2 Hz, 3H, CH3; 1.42, m, 2H, CH2; 1.57, m, 2H, CH2; 2.53, t, J 7.5 Hz, t, 2H, CH2; 6.23, s, 5-(CHBr). 13C n.m.r. δ (CDCI3): 13.5, CH3; 22.6, 25.8, 30.3, CH2; 90.7, 5-(CHBr); 111.6, C3; 151.3, C5; 153.5, C4; 163.6, C2. Mass spectrum: m/z 312 (M (81Br2), 8%); 310 (M (81Br, 79Br), 16); 306 (M, (81Br2), 8%); 270 (20); 268 (40); 266 (20); 231 (20), 229 (20); 217 (15); 215 (15); 189 (60); 187 (60); 159 (20); 161 (20). 3-Bromo-5-(dibromomethylene)-4-butyl~2(5H)-furanone
Pale yellow needles (10%). vmaχ 2980, 2952, 2850, 1766, 1615, 1575, 1462, 1380, 1150, 1009, 910, 830, 760, 720 cm"1. ∞ 310 nm (ε 2350). lH n.m.r. δ (CDC13) 0.97, t, J 7.2 Hz, 3H, CH3; 1.45, m, 2H, CH2; 1.59, m, 2H, CH2; 2.88, t, J 7.5 Hz, 2H, CH2. 13C n.m.r. δ (CDCI3): 13.6, CH3; 22.6, 28.0, 29.9 CH2; 81.2, 5-(CBr2); 115.4, C3; 148.4, C5; 153.4, C4; 162.2, C2. Mass spectrum: m/z 392 (M (81Br3), 8%); 390 (M (81Br2), (79Br), 20%); 388 (M (81Br), (79Br2), 20%); 386 (M, (79Br3), 8%); 350 (8); 348 (20); 346 (20); 342 (8); 311 (40); 309 (100); 307 (40); 269 (40); 267 (100); 265 (40); 239 (15); 227 (20).
3-Bromo-4-hexyl-5-(bromomethylene)-2(5H)-furanone
Pale yellow oil (55%). vmax 3092, 2955, 2928, 2857, 1786, 1679, 1636, 1595, 1465, 1364, 1301, 1219, 1183, 1050, 982, 914, 840, 765, 750 cm'1. ? x 290 nm (ε 5647). IH n.m.r. δ (CDCI3) 0.90, t, J 7.2 Hz, 3H, CH3; 1.33, m, 6H, CH2; 1.61, m, 2H, CH2; 2.52, t, J 7.9 Hz, t, 2H, CH2; 6.22, s, 5-(CHBr). C n.m.r. δ (CDCI3): 13.9, CH3;
22.3, 26.1, 28.2, 29.0, 31.2, CH2; 90.5, 5-(CHBr); 111.7, C3; 151.4, C5; 153.5, C4; 163.5, C2. Mass spectrum: m/z 340 (M (81Br2), 20%); 338 (M (81Br, 79Br), 40); 336 (M, (81Br2), 20%); 270 (20); 268(40); 266 (20); 259 (44), 257 (44); 215 (30); 213 (30); 189 (100); 187 (100); 178 (30); 176 (30); 159 930); 149 (40); 135 (70); 121 (80).
3-Bromo-4-heptyl-5-(bromomethylene)-2(5H)-furanone
Pale yellow oil (60%). vmax 3094, 2953, 2928, 2856, 1789, 1636, 1596, 1464, 1377, 1268, 1183, 1046, 981, 891, 840, 764, 749 cm"1. ∞ 293 nm (ε 14610). lK n.m.r. δ (CDCI3) 0.89, t, J 7.2 Hz, 3H, CH3; 1.33, m, 8H, CH2; 1.59, m, 2H, CH2; 2.52, t, J 7.5 Hz, t, 2H, CH2; 6.22, s, 5-(CHBr). *3C n.m.r. δ (CDCI3): 13.9, CH3; 22.5, 26.1, 28.2, 28.7, 29.3, 31.5, CH2; 90.5, 5-(CHBr); 111.6, C3; 151.4, C5; 153.5, C4; 163.5, C2. Mass spectrum: m/z 354 (M (81Br2), 15%); 352 (M (81Br, 79Br), 30); 350 (M, (81Br2), 15%); 270 (25); 268(50); 266 (25); 231 (40), 257 (44); 215 (30); 213 (30); 189 (100); 187 (100); 173 (100); 145 (40); 135 (20); 121 (40).
3-Bromo-4-decyl-5-(bromomethylene)-2(5H)-furanone
Pale yellow oil (28%). vmaχ 2925, 2850, 1789, 1636, 1590, 1450, 1380, 1100, 980, 890, 750, 720 cm"1. *H n.m.r. δ (CDCI3) 0.89, t J 7.0 Hz, 3H, CH3; 1.32, m, 14H, CH2; 1.58, m, 2H, CH2; 2.52, t J 7.5 Hz, t, 2H, CH2; 6.23, s, 5-(CHBr). 13C n.m.r. δ (CDCI3): 14.0, CH3; 22.5, 26.1, 28.2, 29.0, 29.1, 29.3, 29.4, 31.7, CH2; 90.7, 5-
(CHBr); 111.6, C3; 151.3, C5; 153.6, C4; 163.5, C2. Mass spectrum: m/z 396 (M (81Br2), 3%); 394 (M(81Br, 79Br), 6); 392 (M, (81Br2), 3%); 315 (10); 313 (10); 270 (5); 268 (10); 266 (5); 257 (44); 231 (10), 215 (30); 189 (20); 187 (20).
3-Bromo-4-methyl-5-(ethylidene)-2(5H)-furanone Pale yellow solid (42%). vmaχ 2952, 2850, 1778, 1630, 1430, 1380, 1270,
1238, 1105, 1047, 912, 854, 720 cm"1. iH nm δ (CDCI3) 1.93, d, J 7.2 Hz, 3H, CH3; 2.12, s, 3H, CH3; 5.47, q, J 7.2 Hz, 5-(CHMe). 13C n.m.r. δ (CDCI3): 11.5, CH3; 11.6, CH3; 109.2, 5-(CHMe); 110.0, C3; 149.9, C5; 150.8, C4; 165.0, C2. Mass spectrum: m/z 204 (M (81Br), 5%); 202 (M, (79Br), 5%); 192 (10); 190 (10); 178 (20); 176 (20); 148 (10); 146 (10).
GENERAL METHODS FOR THE SYNTHESIS OF 4-ALKYL-, AND 4- BROMO-5-(HALOMETHYLENE)-2(5H)-FURANONES
Examples of the preparation of 4-alkyl-5-(bromomethylene)- and 4-bromo-5- (bromomethylene)-2(5H)-furanone are provided below.
Synthesis of 4-aIkyI-5-(bromomethylene)- and 4-bromo-5-(bromomethyIene)- 2(5H)-furanone
General method G:-
Synthesis of 4-aIkyI-5-(bromomethyIene)~2(5H)-furanones
2,3-Dibromo-3-aIkyl-4-oxopentanoic acid (5 g) was added with stirring to hot concentrated sulfuric acid (30 ml) held at 100°C. The mixture was further heated with stirring at this temperature for 20 minutes, cooled to ambient temperature and treated slowly with ice water. The resulting oily product was extracted with dichloromethane (3 x 75 ml). The combined extracts were washed with saturated sodium bicarbonate solution, dried over anhydrous sodium sulfate and evaporated to yield the 4-alkyl-5- (bromomethylene)-2(5H)-furanone as a pale yellow oil. The crude product was chromatographed on a silica gel column using dichloromethane/light petroleum (1:1) as eluent to yield pure 4-alkyl-5-(bromomethylene)-2(5H)-furanone (50-60%) as a pale . yellow oil. Further elution of the column with dichloromethane yielded 4-alkyl-5- bromo-5-bromomethyl-, 4-alkyl-5-bromo-5-dibromomethyl- and 4-alkyl-5- (dibromomethylene)-2(5H)-furanones (5-8%).
General method H:- 3-alkyl-4-oxo-2-pentenoic acid (7.8 mmol) was added with stirring to hot concentrated sulfuric acid (10 ml) held at 100°C. The mixture was further heated with stirring at this temperature for 10 minutes, cooled to ambient temperature and treated slowly with bromine (11.7 mmol). The mixture was stirred at room temperature for 15 minutes and then at 100°C for further 15 minutes. The mixture was cooled to room temperature and poured over crushed ice. The resulting oily product was extracted with dichloromethane (3 x 50 ml). The combined extract was washed with saturated sodium bicarbonate solution, dried over anhydrous sodium sulfate and evaporated to yield a pale yellow oil. The crude product was chromatographed on a silica gel column using dichloromethane/light petroleum (1 : 1) as eluent to yield 4-alkyl-5-
(bromomethylene)-2(5H)-furanone (40-60%) as a pale yellow oil. Further elution of the column with dichloromethane yielded mixtures of 4-alkyl-5-bromo-5- bromomethyl-, 4-alkyl-5-bromo-5-dibromomethyl- and 4-alkyl-5-(dibromomethylene)- 2(5H)-furanones (20-30%), some of which were purified.
The following 4-alkyl-5-(bromomethylene)-2(5H)-furanones were prepared according to methods G and H.
5-(Bromomethylene)-4-methyl-2(5H)-furanone Colourless prisms (52%) (Found: (HRESMS) m/z 210.9370. C6H5BrO2Na (79Br) requires m/z 210.9365). vmax 2920, 2850, 1765, 1590, 1460, 1380, 1230, 1020, 910, 850, 750, 720 cm"1. λmax 281 nm (ε 20675). *H n.m.r. δ (CDC13) 2.11, d J 1.3 Hz, 3H, CH3; 5.98, q J 1.3 Hz, H3; 6.02, s, 5-(CHBr). * C n.m.r. δ (CDCI3): 12.1, CH3; 89.8, 5-(CHBr); 117.9, C3; 153.6, C5; 154.0, C4; 168.0, C2. High resolution mass: observed 210.9370 C6H5BrO2Na requires: Mass spectrum: m/z 190 (M (81Br), 90%); 188 (M,
(79Br), 90%); 162 (20); 160 (20); 122 (50); 120 (50).
5-Bromo-5-(dibromomethyl)-4-methyl-2(5H)-furanone
Colourless needles (22%) (Found: (HRESMS) m/z 368.7749. C6H5Br3O2Na (79Br) requires m/z 368.7732). vmax 3006, 2923, 2853, 1779, 1642, 1595, 1460, 1380,
1330, 1290, 1182, 1140, 1085, 911, 868, 750, 720 cm"1. λmax 212 nm (ε 8401). JH n.m.r. δ (CDCI3) 2.28, d J 1.5 Hz, 3H, CH3; 5.89 s, 5-(CHBr2), 6.10, q J 1.5 Hz, H3.
*3C n.m.r. δ (CDCI3): 13.5, CH3; 43.1, 5-(CHBr2); 94.5, C5; 118.5, C3; 166.6, C4;
166.9, C2. Mass spectrum: m/z 352 (M (81Br3), 3%); 350 (M (81Br2) <7 Br), 6%); 348 (M (81Br) (79Br2), 6%); 346 (M (79Br3), 3%); 269 (15); 267 (30); 265 (15); 241 (15);
239 (30); 237 915); 213 (20); 211 (40); 209 (20); 202 (12); 204 (24); 206 (12). 5-(Bromomethylene)-4-propyl-2(5H)-furanone
Pale yellow oil (48%). vmaχ 3080, 2950, 2850, 1780, 1630, 1595, 1460, 1380, 1330, 1290, 1150, 1085, 1020, 920, 830, 750, 720 cm"1. H n.m.r. δ (CDCI3) 0.90, t, J 7.5 Hz, 3H, CH3; 1.65, m, 2H, CH2; 2.44, t, J 7.5 Hz, 2H, CH2; 6.03, s, H3; 6.10, s, 5- (CHBr). C n.m.r. δ (CDCI3): 13.5, CH3; 21.2, 27.9, CH2; 89.2, 5-(CHBr); 116.2, C3; 153.0, C5; 157.7, C4; 167.7, C2. Mass spectrum: m/z 218 (M (81Br), 40%); 216 (M, (79Br), 40%); 203 (20); 201 (20); 190 (25); 188 (25); 137 (100); 122 (50); 118 (50); 109 (70).
5-(Dibromomethylene)-4-propyl-2(5H)-furanone
Colourless prisms (12%). vmax 3070, 2950, 2850, 1775, 1630, 1590, 1460, 1380, 1150, 1090, 1020, 920, 830, 760 cm"1. *H n.m.r. δ (CDCI3) 1.04, t, J 7.2 Hz, 3H, CH3; 1.70, m, 2H, CH2; 2.77, t, J 8.4 Hz, 2H, CH2; 6.18, t, J 1.5 Hz, H3. 13C n.m.r. δ (CDCI3): 13.6, CH3; 21.2, 31.7, CH2; 80.2, 5-(CBr2); 119.4, C3; 149.8, C5; 158.2, C4; 165.9, C2. Mass spectrum: m/z 298 (M (81Br2), 25%); 296 (M (81Br), (79Br) 50%); 294 (M (79Br2), 25%); 283 (10); 281 (20); 279 (10); 268 (40); 254 (25); 217 (100); 215 (100); 202 (30); 200 (60); 198 (30); 189 (25); 187 (25); 174 (10); 172 (20); 170 (10).
5-(Bromomethylene)-4-butyl-2(5H)-furanone
Pale yellow oil (56%). vmaχ2995, 2950, 2850, 1780, 1610, 1595, 1460, 1380, 1350, 1290, 1150, 1090, 1020, 920, 840, 750, 720 cm"1. λ,** 281 nm (ε 10540). lH n.m.r. δ (CDCI3) 0.90, t, J 7.5 Hz, 3H, CH3; 1.41, m, 2H, CH2; 1.62, m, 2H, CH2; 2.42, t, J 8.2 Hz, 2H, CH2; 6.02, s, H3; 6.10, s, 5-(CHBr). 13C n.m.r. δ (CDCI3): 13.9, CH3; 22.4, 25.9, 27.7, 28.7, 31.3, CH2; 89.3, 5-(CHBr); 116.1, C3; 152.9, C5; 158.1, C4;
167.8, C2. Mass spectrum: m z 232 (M (81Br), 20%); 230 (M, (79Br), 20%); 203 (10); 201 (10); 190 (60); 189 (60); 151 (75); 123 (40); 109 (100).
5-(Bromomethylene)-4-hexyl-2(5H)-furanone Pale yellow oil (63%). Vmax 3095, 2930, 2850, 1778, 1638, 1600, 1450, 1160,
1028, 920, 758 cm"1. ^ax 283 nm (ε 5093). lR n.m.r. δ (CDCI3) 0.90, t, J 7.1 Hz, 3H, CH3; 1.32, m, 8H, CH2; 1.62, m, 2H, CH2; 2.42, t, J 6.8 Hz, 2H, CH2; 6.02, s H3; 6.09, s, 5-(CHBr). 13C n.m.r. δ (CDCI3): 13.6, CH3; 22.3, 25.7, 29.9, CH2; 89.4, 5-(CHBr); 116.1, C3; 153.0, C5; 158.3, C4; 167.8, C2. Mass spectrum: m/z 260 (M (81Br), 10%); 258 (M, (79Br), 10%); 190 (40);188 (40); 179 (50); 151 (30); 137 (40); 109 (60). 5-Bromo-5-(Bromomethyl)-4-hexyl-2(5H)-furanone
Pale yellow oil (14%). vmaχ 3111, 3039, 2954, 2929, 2854, 1793, 1637, 1600, 1465, 1414, 1377, 1263, 1237, 1178, 1151, 1124, 992, 910, 858 cm"1. ^ 214 nm (ε 1054). !H n.m.r. δ (CDC13) 0.91, t, J 7.1 Hz, 3H, CH3; 1.35, m, 4H, CH2; 1.47, m, 2H, CH2; 1.71, m, 2H, CH2; 2.51, m, 2H, CH2; 3.94, d, J 11.7 Hz, CHaBr; 4.26, d, J 11.7 Hz, CHijBr; 6.03, bs, H3. 13C n.m.r. δ (CDCI3): 13.9, CH3; 22.4, 26.2, 26.8, 28.6, 31.3, CH2; 33.8, 5-(CH2Br); 91.8, C5; 116.8, C3; 167.8, C4; 171.3, C2. Mass spectrum: m/z 342 (M (81Br2), 3%); 340 (M (81Br), (^Br), 3%); 338 (M, (79Br2), 3%); 325 (5), 314 (5); 261 (8); 259 (8); 191 (10); 189 (10); 152 915); 137 (30); 110 (60).
5-(Bromomethylene)-4-heptyl-2(5H)-furanone
Pale yellow oil (61%). vmax 3095, 2920, 2850, 1770, 1630, 1595, 1450, 1360, 1280, 1150, 1100, 1020, 910, 840, 750, 720 cm"1. 214 nm (ε 9590). iH n.m.r. δ (CDCI3) 0.89, t, J 7.1 Hz, 3H, CH3; 1.32, m, 10H, CH2; 1.62, m, 2H, CH2; 2.44, t, J 8.4 Hz, 2H, CH2; 6.01, s H3; 6.09, s, 5-(CHBr). 13C n.m.r. δ (CDCI3): 13.9, CH3; 22.5, 25.9, 27.8, 28.7, 29.0, 31.5, CH2; 89.2, 5-(CHBr); 116.1, C3; 153.0, C5; 158.1, C4; 167.7, C2. Mass spectrum: m/z 274 (M (81Br), 10%); 272 (M, (79Br), 10%); 193 (100); 190 (75); 188 (75); 165 (70); 151 (80); 123 (60); 109 (100).
5-(Dibromomethylene)-4-heptyl-2(5H)-furanone
Pale yellow solid (6%). vmaχ 3085, 2925, 2850, 1759, 1586, 1463, 1360, 1280,
1175, 1068, 959, 836, 720 cm"1. λ,„ax 296 nm (ε 8857). !Hn.m.r. δ (CDCI3) 0.89, t, J
7.1 Hz, 3H, CH3; 1.36, m, 10H, CH2; 1.66, m, 2H, CH2; 2.76, t, J 7.0 Hz, 2H, CH2;
6.17, t, J 1.5 Hz, H3. * C n.m.r. δ (CDCI3): 13.9, CH3; 22.5, 27.8, 28.8, 29.0, 29.8, 31.5, CH2; 80.2, 5-(CBr2); 119.3, C3; 149.8, C5; 158.5, C4; 166.0, C2. Mass spectrum: m/z 354 (M (81Br2), 5%); 352 (M (81Br, 79Br), 10); 350 (M, (79Br2), 15%); 273 (80);
270 (15); 268 (30); 266 (15); 240 (8); 211 (20); 200 (10); 189 (15); 187 (15).
5-Bromo-5-(bromomethyl)-4-heptyl-2(5H)-furanone Pale yellow oil (14%). vmax 3111, 3039, 2954, 2929, 2856, 1794, 1638, 1465,
1416, 1378, 1264, 1237, 1178, 1152, 1124, 990, 910, 858, 710 cm"1. ? x 296 nm (8 8857). *H n.m.r. δ (CDCI3) 0.91, t, J 7.1 Hz, 3H, CH3; 1.31-1.45, m, 8H, CH2; 1.73, m, 2H, CH2; 2.32, m, IH, CH2; 2.53, m, IH, CH2; 3.93, d, J 11.7 Hz, CHaBr; 4.26, d, J 11.7 Hz, CHt r; 6.03, bs, H3. 1 C n.m.r. δ (CDCI3): 13.9, CH3; 22.5, 26.2, 26.8, 28.8, 28.9, 31.5, CH2; 33.8, 5-(CH2Br); 91.7, C5; 116.8, C3; 167.8, C4; 171.2, C2. Mass spectrum: m/z 356 (M (81Br2), 3%); 354 (M (81Br), (79Br), 3%); 352 (M, C9^2), 3%); 311 (5), 314 (5); 281 (8); 250 (8); 232 (5); 194 (10); 189 (10); 166 (5); 151 (15); 137 (30); 110 (60).
5-(Bromomethylene)-4-decyl-2(5H)-furanone Pale yellow oil (22%). vmax 3118, 3088, 2923, 2852, 1781, 1761, 1602, 1465,
1160, 1100, 923, 890, 760 cm"1. *H n.m.r. δ (CDC13) 0.88, t, J 7.2 Hz, 3H, CH3; 1.32, m, 14H, CH2; 1.62, m, 2H, CH2; 2.44, t, J 8.2 Hz, 2H, CH2; 6.02, s, H3; 6.09, s, 5- (CHBr). 13C n.m.r. δ (CDCI3): 14.1, CH3; 22.7, 26.0, 27.9, 29.2, 29.2, 29.3, 29.4, 29.5, 31.9, CH2; 89.3, 5-(CHBr); 111.6, C3; 153.1, C5; 158.2, C4; 167.8, C2. Mass spectrum: m/z 316 (M (81Br), 5%); 314 (M, (79Br), 5%); 282 (5); 267 (5); 253 (5); 235
(10); 217 (5); 207 (10); 190 (10); 188 (10); 175 (5); 165 910); 151 (10); 133 (15); 123 915); 109 920).
5-(Bromomethylene)-4-phenyl-2(5H)-furanone Colourless prisms (52%). vmaχ 3090, 2920, 2850, 1760, 1630, 1605, 1590, 1440,
1385, 1340, 1260, 1160, 1080, 950, 900, 840, 760, 710 cm"1. > x 251 nm (ε 2263). !H n.m.r. δ (CDCI3) 6.25, s, 5-(CHBr); 6.30, s, H3. 1 C n.m.r. δ (CDCI3): 93.1 , 5-(CHBr); 116.1, C3; 128.2, 129.2, 130.9, Ph; 151.8, C5; 155.7, C4; 167.0, C2. Mass spectrum: m/z 252 (M (81Br), 10%); 250 (M, (79Br), 10%); 172 (30); 144 (10); 116 (50); 114 (50); 102 (100).
Synthesis of 4-bromo-5-(bromomethylene)-2(5H)-furanone
(i) Crude 2,3,5-tribromo-4-oxopentanoic acid (1.0 g) was treated according to method G to yield 4-bromo-5-bromomethylene-2(5H)-furanone (0.6g, 83%) as colourless needles m.p. 97-98°C. vmax 3160, 3120, 1805, 1783, 1644, 1565, 1314,
1244, 1156, 1101, 976, 892, 831 cm"1. λmax 290 nm (ε 8230). iHmm.r. δ (CDCI3) 6.42, s, 5-CHBr; 6.50, s, H3. 13C n.m.r. δ (CDCI3): 93.8, 5-CHBr; 121.0, C3; 135.3, C4; 151.5, C5; 165.5, C2.
(ii) 2,3-Dibromo-4-oxopentanoic acid (1 g) was treated according to method G to yield 4-bromo-5-bromomethylene-2(5H)-furanone (0.4g, 50%) as colourless needles m.p. 97-98°C.
GENERAL METHODS FOR THE SYNTHESIS OF 4-(l'-HALOALKYL)-5- (HALOMETHYLENE)-, AND 3-BROMO-4-(l'-HALOALKYL)-5-
(HALOMETHYLENE)-2(5H)-FURANONES An example of 3-bromo-4-(l-bromoalkyl)-5-(halomethylene)-2(5H)-furanone produced is provided below.
General method I:- for the synthesis of 3-bromo-4-(l-bromoalkyl)-5- (halomethylene)-, and 4-(l-bromoalkyl)-5-(halomethylene)-2(5H)-furanone
N-Halosuccinimide (2.43 mmol) was added to a solution of 3-bromo-4- alkyl-5-(halomethylene)-, or 4-alkyl-5-(halomethylene)-2(5H)-furanone (2.43 mmol) in carbon tetrachloride (15 ml) containing a few crystals of benzoyl peroxide. The mixture was irradiated with a 250 W lamp and refluxed in an oil bath for 18h. After cooling the mixture to room temperature it was filtered and the precipitate washed with carbon tetrachloride (50 ml). The combined filtrate and washings were evaporated under reduced pressure and the crude product was purified by silica gel chromatography using dichloromethane / light petroleum (1 : 2) as the eluent to yield the 1-haloalkyl compounds (45-55%).
3-Bromo-4-(l'-bromoheptyl)-5-(bromomethylene)-2(5H)-furanone
Colourless oil (52%). vm 3101, 2954, 2927, 2866, 1790, 1632, 1585, 1463, 1377, 1270, 1177, 992, 897, 774, 748 cm"1. ^ax 305 nm (ε 11284). 4ϊ n.m.r. δ (CDC13) 0.88, t, J 7.2 Hz, 3H, CH3; 1.29, m, 6H, CH2; 1.48, m, 2H, CH2; 2.25, m, 2H, CH2; 4.87, t, J 7.9 Hz, 2H, CH2; 6.65, s, 5-(CHBr). 13C n.m.r. δ (CDCI3): 13.9, CH3; 22.3, 27.7, 28.2, 31.3, 37.7, 40.4, CH2; 93.5, 5-(CHBr); 112.6, C3; 148.5, C5; 150.6, C4; 162.3, C2. Mass spectrum: m/z 434 (M (81Br3), 3%); 432 (M (81Br2) (79Br), 6%); , 430 (M (81Br) (79Br2), 6%); 428 (M (^Bra), 3%); 408 (10); 391 (10); 354 (20); 352 (35); 350 (20); 328 (10);326 (10); 270 (60); 268 (100); 266 (60); 229 (10); 213915); 189 (30); 173 (30).
Biological activity of furanones
Growth of Staphylococcus aureus and Candida albicans against furanones (Figures 1-5)
Material and methods
The growth of Staphylococcus aureus against furanones was tested in sidearm flasks. One percent of an overnight culture was added to the growth media, Nutrient Broth, containing furanones at the concentrations 1-50 μg/ml. The bacteria were incubated at 37C and growth was measured at 610 nm. Results
The results demonstrated that furanone 63 prolonged the lag phase of growth at 25 and 50 μg/ml. The effect of prolonged lag phase of growth was also demonstrated with compound 105. Ten μg ml inhibited the growth of S. aureus for 72 hrs. No growth was detected with compound 120 at 1 μg/ml.
Candida albicans were grown in Sabouraud dextrose media at 37C. One percent of overnight culture was inoculated to 10 ml of growth media containing furanones at concentrations 1-50 μg/ml. The growth was measured at 610 nm for 72 hrs for compound 73 and 24 hrs for compound 113. Ten μg/ml of compound 73 completely inhibited the growth of C. albicans while 5 μg/ml gave a prolonged lag phase of 8 hrs. Compound 113 completely inhibited the growth for at least 24 hrs at 10 μg/ml.
Effect of furanones as inhibitor of AHL-mediated quorum sensing, attachment/biofilm formation, two-component signal transduction assay and AI-2 activity Methods Gfp assay
Briefly, the Gfp assay determines the relative effectiveness of a compound as an inhibitor of AHL mediated quorum sensing. The assay is dependent on a bacterial strain that carries a reporter plasmid. This plasmid expresses the green fluorescent protein (Gfp) in the presence of AHLs (2). The presence of a competitor will prevent AHL mediated Gfp expression of the reporter. The assay can be used to generate an index of inhibition for each compound. The results here, presented as good, moderate, or poor, are based on the index of each of the compounds as an inhibitor of AHL mediated quorum sensing using this bioassay.
Attachment/Biofilm formation
The ability of furanones to inhibit biofilm formation or attachment has been determined using a modification of the 96 well microtitre method described by Christensen et al. ((1)). The furanones are added to the wells of the microplate and the solvent is allowed to evaporate, leaving the furanones adsorbed onto the plate. Then a suspension of the monitor bacterium, Pseudomonas aeruginosa, is added to each well and incubated for 24h. Following incubation, the wells are rinsed to remove unattached or loosely adhered cells. The attached wells are fixed with formaldehyde and subsequently stained with cyrstal violet. Following extensive washing to remove the crystal violet, the wells are read at 600 nm. The attachment/biofilm formation in the presence of the furanones is calculated as the percentage of the controls, which are not exposed to the furanones.
Two-Component signal transduction Assays Taz-1 Assay
The Taz-assay carried out according to the method of Jin and Inouye (1993) with the following alterations. E. coli RU1012 (pYT0301) were grown overnight in M9 medium at 37°C supplemented with 100 ug/ml ampicillin and 50 ug/ml kanamycin. This overnight culture was then used to inoculate 50 ml M9 medium in side-arm flasks which were then incubated at 37°C and shaken at 180 rpm. The OD61o of the growing cultures was monitored regularly and when the OD61o = 0.2 the cultures were placed on ice. Aspartate was added to side-arm flasks to give a final concentration of 3 mM (aspartate stock solution made up in M9 salts).
The test compound or mixtures of compounds were dissolved in ethanol and added to cultures to give the required final concentrations. Negative controls were prepared with equal volumes of ethanol. Cultures were then placed in a 37°C incubator and shaken for 4 hours (OD61o approximately 0.7) before being removed and put on ice. Samples were then removed for Deta-galactosidase assays carried out according to the method of Miller (1972).
V. harveyi bioassay for the detection of AI-2 activity
The V. hai eyi bioassay was performed as described previously (Surette and Bassler, 1998). The V. haiyeyi reporter strain BB170 was grown for 16 hours at 30°C with shaking in AB medium. Cells were diluted 1:5,000 into 30°C prewarmed AB medium and 90 ul of the diluted suspension was added to wells containing supernatant. Furanones were added to the wells to achieve the desired final concentrations and the final volume in each well was adjusted with sterile medium to 100 ul. Ten ul of V. harveyi BB152 (AI-1-, AI-2+) supernatant was used as a positive control and 10 ul of E. coli DH5α supernatant or sterile media was used as a negative control. This strain of E. coli has previously been shown to harbor a mutation in the AI-2 synthase gene, ygaG, which results in a truncated protein with no AI-2 activity (Surette et al. 1998). The microtiter plates were incubated at 30°C with shaking at 175 rpm. Hourly determinations of the total luminescence were quantified using the chemiluminescent setting on a Wallac (Gaithersburg, MD) model 1450 Microbeta Plus liquid scintillation counter. The V. harveyi cell density was monitored by the use of a microplate reader (Bio-Rad, Hercules, CA). Activity is reported as the percentage of activity obtained from V. han'eyi BB152 cell-free supernatant. While the absolute values of luminescence varied considerably between experiments, the pattern of results obtained was reproducible.
The results of these experiments are summarised in the table 1.
Table 1. Effect of furanones as inhibitor of AHL-mediated quorum sensing, attachment/biofilm formation, two-component signal transduction assay and AI-2 activity Christensen, G. D., W. A. Simpson, J. J. Younger, L. M. Baddour, F. F. Barrett, D. M. Melton, and E. H. Beachey. 1985. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 22(6):996-1006.
Andersen, J. B., C. Sternberg, L. K. Poulsen, S. P. Bjorn, M. Givskov, and S. Molin. 1998. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl.JEnviron. Microbiol. 64(6):2240-2246.
Jin, T., and M. Inouye. 1993. Ligand binding to the receptor domain regulates the ratio of kinase to phosphatase activities of the signalling domain of the hybrid Escherichia coli transmembrane receptor, Tazl. J. Mol. Biol. 232: 484-49
Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, . N. Y.
Surette, M. G., and B. L. Bassler. 1998. Quorum sensing in Escherichia coli and Salmonella typhimurium. Proc. Natl. Acad. Sci., USA 95:7046-7050.
Surette, M. G., M. B. Miller, and B. L. Bassler. 1999. Quorum sensing in. Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc. Natl. Acad. Sci., USA 96:1639-1644.
Any description of prior art documents herein is not to be taken as an admission that the documents form part of the common general knowledge of the relevant art. It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.

Claims (1)

  1. CLAIMS:
    1. A method for the preparation of a compound of formula II
    wherein Ri and R2 are independently H, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, optionally intermpted by one or more hetero atoms, straight chain or branched chain, hydrophilic, hydrophobic or fluorophilic; R3, R4, R5 and e are independently or all hydrogen or halogen; the method comprising cyclising a compound of formula I
    wherein Ri, R2, R3, R4, R5 and Rg are as defined above, wherein the cyclisation is carried out in the presence of a mild acid catalyst or a dehydrating agent or a mixture thereof, optionally in the presence of solvent.
    2. A method according to claim 1 wherein at least two of the R3, R4, R5 and Rg are halogens;
    3. A method according to claim 1 or claim 2 wherein in the compound of formula I and the compound of formula II:
    Ri and R2 are independently H, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, optionally interrupted by one or more hetero atoms, straight chain or branched chain, hydrophilic, hydrophobic or fluorophilic; R3, Rt, R5 and Re are independently or all hydrogen or halogen; and provided that at least two of the R3, R4, R5 and Re, which may be the same or different, are halogens.
    4. A method according to claim 1 wherein in the compound of formula I and the compound of formula II:
    Ri and R2 are independently H, alkyl, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, optionally intermpted by one or more hetero atoms, straight chain or branched chain, hydrophilic, hydrophobic or fluorophilic; R , R , R5 and Re are independently or all hydrogen or halogens; and provided that at least two of the R3, R , R5 and Re, which may be the same or different, are halogens.
    5. A method of claim 1 wherein in the compound of formula I and the compound of formula II:
    Ri and R2 are independently H, alkyl, aryl or arylalkyl whether unsubstituted or substituted, optionally intermpted by one or more hetero atoms, straight chain or branched chain, hydrophilic, hydrophobic or fluorophilic;
    R3, R4, R5 and R are independently or all hydrogen or halogen; and provided that at least two of R3, R , R5 and Re, which may be the same or different are halogens.
    6. A method according to any one of the preceding claims wherein at least one of R5 and R is Br.
    7. A method according to claim 1, wherein the compound of formula I is a brominated 4-oxopentanoic acid, wherein at least two of R3, R-^, R5 and Re, which may be the same or different are halogens.
    8. A method according to claim 1 wherein the compound of formula II is selected from halogenated 2-tetrahydrofuranones.
    9. A method according to any one of the preceding claims, wherein the reaction is carried out in the presence of a mild acid catalyst(s).
    10. A method according to claim 8. wherein the catalyst(s) is/are insoluble in the reaction medium
    11. A method according to claim 10, wherein that catalyst is selected from the group consisting of polyphosphoric acid, Eaton's reagent, acidic resins and polymers, Lewis acids and acidic metal salts.
    12. A method according to claim 9, wherein the catalyst is/are soluble in the reaction medium.
    13. A method according to claim 12, wherein the catalyst is/are selected from the group consisting of chlorosulfonic acid, phosphoric acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid, methanesulfonic acid, acetic acid, bromine, phosphoms tribromide and hydrobromic acid.
    14. A method according to any one of the preceding claims which is carried out in the presence of a dehydrating agent.
    15. A method according to claim 14, wherein the drying agent is selected from the group consisting of phosphoms pentoxide, silica gel, molecular sieves, alumina, phosphoms oxychloride, acetic anhydride, N, N'-dicyclohexyl-carbodiimide DCC), trifluoroacetic anhydride and trifluorosulfonic acid anhydride (triflic anhydride).
    16. A method according to claim 15, wherein the dehydrating agent is phosphoms pentoxide or polyphosphoric acid optionally mixed with a mineral acid.
    17. A method according to claim 16 wherein the dehydrating agent is phosphoms pentoxide.
    18. A method according to any one of the preceding claims wherein the cyclisation is carried out in the presence of at least one solvent.
    19. A method according to claim 18, wherein the solvent is selected from the group consisting of alkyl acetates, aromatic hydrocarbons, chlorinated alkanes, tetrahydrofuran, diethyl ether, dioxane and C1-C3 acids.
    20. A method according to claim 19 wherein the solvent is selected from aromatic hydrocarbons and chlorinated alkanes.
    21. A method according to claim 20, wherein the solvent is selected from the group • consisting of dichloromethane, dichloroethane and trichloroethane and mixtures of two or more thereof.
    22. A method according to any one of the preceding claims wherein the cyclisation reaction is performed at a temperature in the range of from about 20-150°C.
    23. A method according to any one of claims 18 to 22, wherein at least one solvent is present and the cyclisation is performed at reflux temperature of the solvent.
    24. A method according to any one of the preceding claims, wherein the cyclisation reaction is carried out for at least 2 hours.
    25. A compound of formula II produced by a method in accordance with any one of the preceding claims.
    26. A compound of formula I
    I wherein Ri and R are independently H, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, optionally intermpted by one or more hetero atoms, straight chain or branched chain, hydrophilic, hydrophobic or fluorophilic; R3, R4, R5 and e are independently or all hydrogen or halogen; "and provided that at least two of the R3, R4, R5 and e are halogens;
    27. A compound according to claim 26 selected from the group consisting of compounds of formulae la-i:
    28. A tetrahydro-2(5H)-furanone derivative of formula II,
    wherein Ri and R are independently H, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, optionally intermpted by one or more hetero atoms, straight chain or branched chain, hydrophilic, hydrophobic or fluorophilic;
    R3, R4, R5 and Re are independently or all hydrogen or halogen; and provided that at least two of the R3, R4, R5 and Re are halogens; with the proviso Rι= R2 = H, R3= R4 = Cl, R5= Re = Br;
    29. A compound according to claim 28, which is selected from the group consisting of compounds of formula 2a-i
    30. A method for the dehydrohalogenation of a compound of formula II
    wherein Ri and R are independently H, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, optionally interrupted by one or more hetero atoms, straight chain or branched chain, hydrophilic, hydrophobic or fluorophilic;
    R3, 4, R5 and Re are independently or all hydrogen or halogen, provided that at least two of the R3, R4, R5 and Re are halogens; to prepare a compound of formula πia or THb;
    wherein R2 is an alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic;
    P> is a halogen
    Rj and R3 are independently or both hydrogen or halogen;
    wherein R2 is an alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic; R3 and R4 are hydrogen and Rx is a halogen; the method comprising contacting a compound of formula II with a base.
    31. A method according to claim 30, wherein the base is selected from the group consisting of l,4-diazabicyclo[2.2.2]octane (DABCO), 4-(dimethylamino)pyridine (DMAP), l,8-diazabicyclo[5.4.0]undec-7-ene (DBU), triethylamine, alkali metal carbonate, alkali metal acetate and ,N'-diisopropylethyl amine (Hunig's base).
    32. A method according to claim 30 or claim 31, wherein the compound of formula III is selected from the group consisting of furanones of formula 3a-n:
    33. A compound according to formula IHa or DHb.
    wherein R2 is an alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic;
    R is a halogen;
    Rx and R3 are independently or both hydrogen or halogen; with the proviso that Rt = H, R2 = Me or Ph, R3 = I, R = H; and
    Rx = H, R2 = OMe, R3 = Cl, R4 = Cl;
    wherein R2 is an alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic; R3 and Rt are hydrogen; and
    Rj is a halogen.
    34. A method for the halogenation of a compound of formula II, Ilia or mb
    wherein Ri and R2 are independently H, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, optionally intermpted by one or more hetero atoms, straight chain or branched chain, hydrophilic, hydrophobic or fluorophilic;
    R3, R4, R5 and R are independently or all hydrogen or halogen; and provided that at least two of the R3, R4, R5 and R are halogens;
    wherein R2 is an alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic;
    R-t is a halogen
    Rj and R3 are independently or both hydrogen or halogen;
    wherein R2 is an alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic; R3 and R4 are hydrogen and Rt is a halogen;
    to prepare a compound of formula IV
    wherein R is independently H, halogen, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophilic or fluorophilic;
    R is selected from halogen, OH and alkoxy; R5 are halogen;
    Rx and R3 are independently or both hydrogen or halogen; and " " is a single bond or double bond, the method comprising contacting a compound of formula II, IHa or mb with a halogenating agent optionally in the presence of at least one unreactive or reactive solvent or reagent.
    35. A method according to claim 34, wherein the halogenating agent is selected from the group consisting of bromine, chlorine, iodine, N-bromosuccinimide, N- chlorosuccinimde, iodine monochloride, phenyltrimethylammonium bromide perbromide, pyridinium tribromide and cupric bromide.
    36. A method according to claim 34 or 35, wherein the unreactive solvent or reagent is selected from non-nucleophilic organic solvents or ionic liquids.
    37. A method according to claim 36, wherein the solvent or reagent is selected from the group consisting of dichloromethane, chloroform, toluene, diethyl ether, N,N- dimethylformamide, N-methylpyrrolidinone and butylmethylimidazolium tetrafluoroborate.
    38. A method according to claim 34 or 35 wherein the at least one reactive solvent or reagent is a nuceophilic organic or inorganic substance.
    39. A method according to claim 38, wherein the at least one reactive solvent or reagent is selected from the group consisting of water, methanol, acetic acid, lithium chloride, benzylamine and silver nitrate.
    40. A method according to any one of claims 34 to 39 wherein the compound of formula IV is selected from the group consisting of compounds of formula 4a-p:
    4d 4e(120)
    41. A compound of formula IV,
    IV
    wherein R is independently alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophilic or fluorophilic;
    Rt is selected from halogen, OH and Oalkyl; R5 are halogen;
    Rx and R3 are independently or both hydrogen or halogen; and " " is a single bond or double bond.
    42. A method for the dehydrohalogenation of a compound of formula IV:
    IV
    wherein R2 is independently H, halogen, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophilic or fluorophilic;
    R4 is selected from halogen, OH and Oalkyl;
    R5 are halogen;
    Rl and R3 are independently or both hydrogen or halogen; and " " is a single bond or double bond.
    to prepare a compound of formula V
    wherein R2 is a H, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic;
    R4 is a halogen;
    Rt and R3 are independently or both hydrogen or halogen; the method comprising contacting a compound of formula IV with a base.
    43. A method according to claim 42 wherein the base is selected from the group consisting of l,4-diazabicyclo[2.2.2]octane (DABCO), 4-(dimethylamino)pyridine (DMAP), l,8-diazabicyclo[5.4.0]undec-7-ene (DBU), triethylamine, alkali metal carbonate, alkali metal acetate and N,N'-diisoρropylethyl amine (Hunig's base).
    44. A method according to claim 42 wherein Ri of formula (IV) is a halogen and the base is N,N-diisopropylethyl amine.
    45. A method according to any one of claims 42 to 44, wherein the compound of formula V is selected from the group consisting of a compounds 5a-m:
    44. A compound of formula V: wherein R2 is an alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic; Ri is a halogen;
    R1 and R3 are independently or both hydrogen or halogen; with the proviso that i = H, R2 = Me or Ph, R3 = I, j = H; and
    Ri = H, Ra = OMe, R3 = Cl, 4 = Cl.
    46. A method of tandem cyclisation, dehalogenation, rehalogenation and dehydrohalogenation of compounds of formula I :
    wherein Ri and R2 are independently H, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, optionally intermpted by one or more hetero atoms, straight chain or branched chain, hydrophilic, hydrophobic or fluorophilic;
    R3, R , R5 and R are independently or all hydrogen or halogen; and provided that at least two of the R3, R4, R5 and R are halogens; to form a compound of formula (VI), the method comprising contacting the compound with a strong acid
    wherein 2 is a H, halogen, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic;
    R4 is a halogen;
    Rl is hydrogen; and
    R3 is a hydrogen or halogen.
    47. A method according to claim 46, wherein the strong acid is a sulfuric acid type reagent.
    48. A method according to claim 47, wherein the sulfuric acid type reagent is selected from the group consisting of concentrated sulfuric acid, oleum, chlorosulfonic acid, and a mixture of two or more thereof with one or more other like agents.
    49. A method according to any one of claims 46 to 48, wherein the compound of formula I is selected from the group consisting of 3-alkyl-2,3-dibromo-4-oxopentanoic acid, 2,3,5-tribromo-4-oxopentanoic acid, 2,3-dibromo-4-oxopentanoic acid, 2,5- dibromo-4-oxopentanoic acid, 2,3,5,5-tetrabromo-4-oxopentanoic acid, 2,3,3-tribromo- 4-oxopentanoic acid and 2,3,3, 5-tetrabromo-4-oxopentanoic acid.
    50. A method according to claim 49, wherein the compound of formula VI is selected from the group consisting of compounds of formula 6a-g:
    51. A compound of formula VI:
    wherein R2 is an alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic;
    R4 is a halogen;
    Rl is hydrogen; and
    R3 is a hydrogen or halogen; with the proviso that Ri = H, R2 = Me or Ph, R3 = I, i = H; and
    Ri = H, R2 = OMe, R3 = CL R4 = Cl.
    52. A compound of formula (VII) : wherein R2 is a H, alkyl, alkoxy, polyethyleneglycyl, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic;
    Ri is a hydrogen, halogen;
    Rj and R3 are independently or both hydrogen or halogen;
    Z is independently selected from the group R2, halogen, OC(O)R , =O, amine azide, thiol, R2, mercaptoaryl, arylalkoxy, mercaptoarylalkyl, SC(O)R2, OS(O)2R_, NHC(O)R2, =NR2 or NHR2,
    prepared by functionalizing a fimbrolide of formula (VIII) wherein, Ri, R2, R3 and R4 are as defined above, with reagents selected from the group consisting of halogenating, oxidising agents , nucleophiles and electrophiles .
    53. A compound according to claim 52 wherein the halogenation and oxidising agents are selected from N-halosuccinimide, lead tetraacetate, selenium dioxide, Jones reagent, organic metal carboxylates, organic alcohols, dimethyl sulfoxide, organonitriles, organic acids, isocyanates, carboxylic or sulfonic acid halides and diethylaminosulfur trifluoride.
    54. An oligomer or polymer formed by oligomerising or polymerising a compound selected from the group consisting of compounds of formula Ilia, Illb - VII, directly or with one or more monomers
    wherein R2 is an alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic;
    R is a halogen
    Rj and R^ are independently or both hydrogen or halogen;
    wherein R2 is an alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic;
    R3 and R are hydrogen; and Rj is a halogen.
    IV wherein R is independently H, halogen, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophilic or fluorophilic;
    Ri is selected from halogen, OH and Oalkyl;
    R5 are halogen;
    Rt and R3 are independently or both hydrogen or halogen; and " " is a single bond or double bond.
    wherein R2 is a H, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic; is a halogen;
    R1 and R^ are independently or both hydrogen or halogen;
    wherein R2 is a H, halogen, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic; R4 is a halogen; Rl is hydrogen; and R3 is a hydrogen or halogen;
    wherein R2 is a H, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl whether unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic; i is a hydrogen, halogen;
    Rj and R3 are independently or both hydrogen or halogen;
    Z is independently selected from the group R2, halogen, OC(O)R , =O, amine azide, thiol, R2, mercaptoaryl, arylalkoxy, mercaptoarylalkyl, SC(O)R2, OS(O)2R2, NHC(O)R2, =NR2 or NHR2,
    55. An oligomer or polymer according to claim 54, where the at least one monomer is selected from the group consisting of acrylate ester such as alkyl, hydroxyalkyl, aminoalkyl, or substituted aryl acrylates or methacrylates, crotonates, substituted or unsubstituted acrylonitriles, vinyl alcohols or acetates, styrene and siloxanes.
    56. An article incorporating at least one compound of formula II to VII in a surface coating(s) or polymer(s) through the newly introduced functionality on the alkyl chain or the alkyl chain itself via direct polymerisation or copolymerisation with suitable monomers.
AU2001267155A 2000-06-28 2001-06-28 Synthesis of cyclic compounds Ceased AU2001267155B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AUPQ8419 2000-06-28
AUPQ8419A AUPQ841900A0 (en) 2000-06-28 2000-06-28 Synthesis of cyclic compounds
PCT/AU2001/000781 WO2002000639A1 (en) 2000-06-28 2001-06-28 Synthesis of cyclic compounds
AU6715501A AU6715501A (en) 2000-06-28 2001-06-28 Synthesis of cyclic compounds

Publications (2)

Publication Number Publication Date
AU2001267155A1 true AU2001267155A1 (en) 2002-03-28
AU2001267155B2 AU2001267155B2 (en) 2005-05-12

Family

ID=25635331

Family Applications (2)

Application Number Title Priority Date Filing Date
AU6715501A Pending AU6715501A (en) 2000-06-28 2001-06-28 Synthesis of cyclic compounds
AU2001267155A Ceased AU2001267155B2 (en) 2000-06-28 2001-06-28 Synthesis of cyclic compounds

Family Applications Before (1)

Application Number Title Priority Date Filing Date
AU6715501A Pending AU6715501A (en) 2000-06-28 2001-06-28 Synthesis of cyclic compounds

Country Status (1)

Country Link
AU (2) AU6715501A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113354593B (en) * 2021-06-28 2022-11-18 苏州大学 Fluorine-containing graft copolymer, and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US6958145B2 (en) Synthesis of cyclic compounds
EP0330172B1 (en) Improved process for trans-6-[2-(substituted-pyrol-1-yl)alkyl]pyran-2-one inhibitors of cholesterol synthesis
EP1071677B1 (en) Production of furanones
US20050215772A1 (en) Furanone derivatives and methods of making same
EP0237084A2 (en) 4-Bromomethyl-5-methyl-1,3-dioxolen-2-one, and a process for the production thereof
EP0496238A1 (en) Substituted benzoxazepines and benzothiazepines, process for their preparation and their use as medicaments
AU2001267155B2 (en) Synthesis of cyclic compounds
AU2001267155A1 (en) Synthesis of cyclic compounds
FI75156C (en) Process for the preparation of novel 2,3,4-trinor-m-inter-phenylene-prost α-cyclin derivatives with platelet aggregation inhibitory effect.
KR20070038466A (en) Regulators of bacterial signalling pathways
AU2020267321B2 (en) Furanone compounds and lactam analogues thereof
AU2005254124A1 (en) Regulators of bacterial signalling pathways
Kwiecień et al. Benzofuran systems. Synthesis and biological examination of 1‐(3‐benzofuranyl)‐2‐phenylethanones
Sánchez et al. Synthese von Derivaten des 5-Glucopyranosylaminopyrano [2, 3-d] pyrimidin-2-on
SU1268586A1 (en) Method of producing unsubstituted 4-oxo-1,2,3,3a-tetrahydropyrimido-(1,2,3-l,m)-alpha-carbolin or 5,6-alkyl-(aryl)-derivatives thereof
CN1200110A (en) Iminoacetic acid amides compound
AU754362B2 (en) Production of furanones
JPH02124890A (en) Pyrrolo-1,4-benzodiazepine derivative, its production and antitumor agent containing the derivative as active component
KR970001479B1 (en) 2-(pyrimidin-2-yl) oxyacetophenone derivatives useful as a herbicide and process for preparation thereof
SU1606510A1 (en) Method of producing 5-aryl-2-hydroxy-2-methoxycarbonylmethyl-2,3-dihydrofurane-3-ons
KR0137884B1 (en) Improved process for trans-6-£2-(substituted-pyrrol-1-yl) alkyl| pyran-2-one inhibitors of cholesterol synthesis
AU2003257229A1 (en) Furanone derivatives and methods of making same
NO770428L (en) ACYLOXY-2, N-ACYLACETAMIDES AND PROCEDURES FOR THEIR PREPARATION.
HU178717B (en) New process for preparing 3-substituted cyclopropane-1-carboxylic acids
CS221187B1 (en) 2-vinyl-5-trimethylamonium derivatives of furane and method of preparation of the same