AU2001266208A1 - Cyclic ketones, their preparation and their use in the synthesis of amino acids - Google Patents

Cyclic ketones, their preparation and their use in the synthesis of amino acids

Info

Publication number
AU2001266208A1
AU2001266208A1 AU2001266208A AU2001266208A AU2001266208A1 AU 2001266208 A1 AU2001266208 A1 AU 2001266208A1 AU 2001266208 A AU2001266208 A AU 2001266208A AU 2001266208 A AU2001266208 A AU 2001266208A AU 2001266208 A1 AU2001266208 A1 AU 2001266208A1
Authority
AU
Australia
Prior art keywords
formula
compound
cyclopentanone
methyl
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2001266208A
Other versions
AU2001266208B2 (en
Inventor
David Clive Blakemore
Justin Stephen Bryans
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Warner Lambert Co LLC
Original Assignee
Warner Lambert Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0015771A external-priority patent/GB2364049A/en
Application filed by Warner Lambert Co LLC filed Critical Warner Lambert Co LLC
Publication of AU2001266208A1 publication Critical patent/AU2001266208A1/en
Application granted granted Critical
Publication of AU2001266208B2 publication Critical patent/AU2001266208B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

CYCLIC KETONES , THEIR PREPARATION AND THEIR USE IN THE SYNTHESIS OF AMINO ACIDS
5 FIELD OF THE INVENTION
The present invention relates to methods for the synthesis of alkyl- and alkenyl- and cycloalkyl-substituted cyclopentanones that are useful inter alia as intermediates for the synthesis of analogues of gabapentin (Neurontin®). It also
10 relates to methods for the synthesis of gabapentin analogues using these intermediates, and also to certain novel intermediates per se.
BACKGROUND TO THE INVENTION
15 Gabapentin (Neurontin®) is an anti-convulsant agent that is useful in the treatment of epilepsy and that has recently been shown to be a potential treatment for neurogenic pain. It is l-(aminomethyl)-cyclohexaneacetic acid of structural formula:
20 Gabapentin is one of a series of compounds of formula
^N-C^-C-CT^-COORj
(CH2>n
in which Rj is hydrogen or a lower alkyl radical and n is 4, 5, or 6. These compounds are described US-A-4,024,175 and its divisional US-A-4,087,544.
Their disclosed uses are: protective effect against cramp induced by
25 thiosemicarbazide; protective action against cardiazole cramp; the cerebral diseases, epilepsy, faintness attacks, hypokinesia, and cranial traumas; and improvement in cerebral functions. The compounds are useful in geriatric patients. The disclosures of the above two patents are hereby incorporated by reference.
WO 99/21824, whose disclosure is also incorporated by reference, discloses further cyclic amino acids that are useful in the treatment of epilepsy, faintness attacks, neurodegenerative disorders, depression, anxiety, panic, pain, neuropathological disorders, gastrointestinal disorders such as irritable bowel syndrome (IBS) and inflammation, especially arthritis. The compounds disclosed include those of the formula:
and salts thereof, in which:
R is hydrogen or a lower alkyl;
R! to R8 are each independently selected from hydrogen, straight or branched alkyl of from 1 to 6 carbons, phenyl, benzyl, fluorine, chlorine, bromine, hydroxy, hydroxymethyl, amino, aminomethyl, trifluoromethyl, -CO2H,
-CO2R15, -CH2CO2H, -CH2CO2R15, -OR15 wherein R15 is a straight or branched alkyl of from 1 to 6 carbons, phenyl, or benzyl, and R to R^ are not simultaneously hydrogen.
The compounds of WO 99/21824 may be synthesized:
• using a general strategy (General Scheme 1) outlined by G. Griffiths et al., Helv. Chim. Acta, 1991;74:309; analogously to the published procedure for the synthesis of 3-oxo-
2,8-diazaspiro[4,5]decane-8-carboxylic acid tert-butyl ester, see P. W. Smith et al., J. Med. Chem., 1995;38:3772 ( General Scheme 2); by the methods outlined by G. Satzinger et al., (Ger Offen 2,460,891;
US 4,024,175, and Ger Offen 2,611,690; US 4,152,326) (General Schemes
3 and 4); by a route outlined by G. Griffiths et al., Helv. Chim. Acta, 1991 ;74:309 (General
Scheme 5).
General Scheme 1
(i) Ethyl cyanoacetate, piperidine (Cope et al., J. Am. Chem. £Oc.,1941;63:3452); (ii) NaCN, EtOH/H20; (iii) EtOH, HC1; (iv) F^O/FT"; (v) H2, Rh/C, MeOH; (vi) HC1. General Scheme 2
(i) Ph3P=CHC02Me; (ii) MeN02, 1,1,3,3-tetramethylguanidine; (iii) Raney nickel, EtOH/H20; (iv) HC1. General Scheme 3
(i) Ethylcyanoacetate, ammonia then H3θ+; (ii) H SC>4; (iii) Ac 0; (iv) MeOH;(v) Curtius Reaction; (vi) HCl, H 0 then anion exchange.
General Scheme 4
(i) Ethylcyanoacetate, ammonia then H3O "; (ii) H2SO4; (iii) Ac20; (iv) H2NOH; (v) PhS02Cl; (vi) Et3N, MeOH; (vii) HCl, H20 then anion exchange.
General Scheme 5
(i) Ethyl cyanoacetate, piperidine (Cope et al., J. Am. Chem. Soc, 1941;63:3452); (ii) NaCN, EtOH/H20; (iii) BnOH, HCl; (iv) H20/H+; (v) H2, Rh/C, MeOH.
Intermediates disclosed in WO 99/21824 include the following:
(3S,4S)-3,4-Dimethyl-cyclopentanone (R)-3-Methyl-cyclopentanone
(3R,4R)-3,4-Dimethyl-cyclopentanone
Our US Patent Application 60/169602, the disclosure of which is also incorporated herein by reference, describes and claims methods for the stereocontrolled synthesis of five-member ring Gabapentin analogues that are pure stereoisomers of compounds of formulae shown below and to salts thereof.
wherein R represents Cj-Cio alkyl and C3-C20 cycloalkyl. The synthesis starts with the Knoevenagel condensation of a 3 -substituted cyclopentanone of the kind described above with ethyl cyanoacetate and proceeds via the key intermediates
A method for preparing a compound of formula (I) in the following reaction scheme and pharmaceutically acceptable salts thereof comprises:
a) adding ethyl cyanoacetate to a mixture of a chiral cyclopentanone of formula (1) in a solvent to which a Cj-Cg carboxylic acid and an amphoteric catalyst were added, and stirring the mixture to produce the alkene of formula (2); b) adding the product of Step a) above to a mixture of benzylmagnesium chloride in a dry solvent to produce the addition product of formula (3); c) adding the product of Step b) above to a mixture of a base in a solvent and stirring the mixture to produce the carboxylic acid of formula (4); d) contacting the product of Step c) above with (S)-α-methyl-benzylamine in a solvent, and recrystallizing the salt so formed to produce the enriched diastereomer of formula (5) as the (S)-α-methyl-benzylamine salt; e) adding the product of Step d) to an inorganic acid dissolved in a solvent and stirring to produce the carboxylic acid of formula (6); f) adding the product of Step e) to a mixture of iodomethane in a solvent to which l,8-diazabicyclo[5.4.0]undec-7-ene (DBU) was added, and stirring to produce the ester of formula (7); g) adding the product of Step f) to a mixture of carbon tetrachloride and acetonitrile to which water, sodium periodate, and ruthenium(III) chloride were added, and stirring to produce the carboxylic acid of formula (8); h) adding the product of Step g) to a mixture of an amine base and a solvent to which diphenylphosphoryl azide (DPP A) was added, and stirring to produce the isocyanate of formula (9); i) adding the product of Step h) to a solvent to which methanol was added, and stirring to produce the carbamate of formula (10); j) adding the product of Step i) to a solvent to which aqueous hydrochloric acid was added, and stirring to produce a compound of Formula la; k) converting the product of Step j) to a compound of Formula I, and further converting, if desired, to a pharmaceutically acceptable salt by known means:
Ph' "NH
(8) (9) (10)
(1) (la)
Preparation of a compound of formula // can proceed by a method which involves following the above-described sequence of steps (a) to (e) to produce the intermediate of step (6), and thereafter following the further steps indicated below:
f) adding the product of Step e) to a mixture of an amine base and a solvent to which diphenylphosphoryl azide (DPP A) was added, and stirring to produce the isocyanate of formula (11); g) adding the product of Step f) to a solvent to which methanol was added and stirring to produce the carbamate of formula (12); h) adding the product of Step g) to a mixture of carbon tetrachloride and acetonitrile to which water, sodium periodate, and ruthenium(III) chloride were added, and stirring to produce the carboxylic acid of formula (13); i) adding the product of Step h) to a solvent to which aqueous hydrochloric acid was added, and stirring to produce a compound of Formula Ila; k) converting the product of Step i) to a compound of Formula II, and further converting, if desired, to a pharmaceutically acceptable salt by known means:
(6) (11) (12)
An alternative route to the compounds of formula (II), also proceeding from compound (6) above involves the further steps of:
f) adding oxalyl chloride to a mixture of the product of Step e) and a solvent to which N,N-dimethylformamide (DMF) was added, and stirring to produce the acid chloride of formula (14); g) adding the product of Step f) to a mixture of tert-butyl alcohol in a solvent to which an amine base was added, and stirring to produce the ester of formula (15); h) adding the product of Step g) to a mixture of carbon tetrachloride and acetonitrile to which water, sodium periodate, and ruthenium(IIι) chloride were added, and stirring to produce the carboxylic acid of formula (16); i) adding the product of Step h) to a solvent to which methanol and (trimethylsilyl)diazomethane were added, and stirring to produce the bis ester of formula (17); j) adding an acid to a mixture of the product from Step i) and a solvent and stirring to produce the carboxylic acid of formula (18); k) adding the product of Step j) to a mixture of an amine base and a solvent to which diphenylphosphoryl azide (DPP A) was added, and stirring to produce the isocyanate of formula (19); 1) adding the product of Step k) to a solvent to which methanol was added and stirring to produce the carbamate of formula (20); m) adding the product of Step 1) to a solvent to which aqueous hydrochloric acid was added, and stirring to produce a compound of Formula Ila; n) converting the product of Step m) to a compound of Formula II, and further converting, if desired, to a pharmaceutically acceptable salt by known means:
(Ha) (II)
Compounds of formula (III) can be prepared by processes that involve the same steps as those for the compounds of formula (I), for example by following the sequence of reactions set out below:
(21) (22) (23) (24)
(27) (26) (25)
(III) (Ilia)
Similarly, compounds of formula (IV) may be made by a sequence of reactions analogous to those described above:
(21) (22) (23) (24)
(34) (26) (25)
(40) (38)
(IVa) dv)
It will be noted that the synthetic methods disclosed in both WO 99/21824 and USSN 60/169602 rely on 3- or 3,4-substituted cyclopentanones. SUMMARY OF THE INVENTION
This invention is concerned with the problem that the cyclopentanones available up to now have been limited in their range of stereoisomers and substituents because they have been derived from natural sources, or have been complex. For example, (R)-3-methyl-cyclopentanone is a compound that is readily available commercially from natural sources, whereas (S)-3-methyl- cyclopentanone is not. It is an object of the invention to provide a simple stereospecific synthetic route to 3-substituted or 3,4-disubstituted cyclopentanones that permits a range of desired substituents to be introduced and a range of desired stereoisomers to be made.
That problem is solved, according to the invention, by a process method of making an enantiomerically pure compound of the formula (I) or (II):
wherein R and R' represent Cj-Cio alkyl, C2-C10 alkenyl or C3-C10 cycloalkyl and the wedges signify (S)- or (R)- stereochemistry, the substituents in compound (II) being trans, which method comprises:
conjugate addition of an organometallic nucleophile that provides a group
R as defined above to a compound of the formula (III) or (IV):
wherein X represents a leaving group (e.g. an acetoxy group as in (R)-4- acetoxycyclopent-2-en-l-one or (S)- 4-acetoxycyclopent-2-en-l-one) to give a trans 3,4-disubstituted addition product of formula (V) or (VI) in which R and X are as previously defined;
eliminating the leaving-group from the addition product of formula (V) or
(VI) to give an (R)- or (S)- 4-alkyl or 4-alkenyl cyclopent-2-en-l-one of formula
(VII) or (VIII)
; and either
(i) hydrogenation of the compound of formula (VII) or (VIII) to give a cyclopentanone of formula (I) or
(ii) conjugate addition of a second organometallic nucleophile that provides a group R' as defined above to the compound of formula (VII) or (VIII) to give a trans 3,4-disubstituted addition product of formula (II).
While conjugate addition to conjugated cyclopentenones is known for soft nucleophiles such as enolates, sulfides and bromides, such reactions have not been carried out with carbon-based nucleophiles with a view to producing chirally pure ketones. The group AcO- in the starting material brings about stereospecific addition of the group R during the first Michael addition, and where a second Michael addition is carried out, the group R that is already present in the compound of formula (VII) or (VIII) brings about stereospecific addition of the group R. The enantiomeric purity of the resulting compounds of formula (I) and (II) can be tested by reacting them with an asymmetric diol such as (2R,3R)-2,3- butanediol to give an acetal having an additional asymmetric centre in the molecule, e.g
and obtaining the NMR spectrum of the resulting chiral acetal. If the starting material is an enantiomeric mixture, then the two resulting cyclic acetals will be diastereomeric and give distinguishable peaks in the NMR spectrum provided that the enantiomeric impurity is present in an amount of 2% or above. No such peaks have been observed in the materials that we have made, and we therefore believe that the method of the invention gives desired enantiomers with a purity of at least 98%.
According to a further aspect of the invention, a compound of formula (I) and (II) may be converted in manner known per se to a gabapentin analogue of one of the formulae shown below:
in which the substituents R and R' and the wedges have the meanings indicated above, and may be further converted into a pharmaceutically acceptable salt thereof. Conversion to a compound of formula (XI) - (XIV) may, for example, follow one of the general schemes disclosed in WO 99/21824, or it may follow the Knoevenagel addition route disclosed in USSN 60/169602. In the latter case, there may be produced the key intermediates (XV) - (XVIII) shown below:
(XV) (XVI) (XVII) (XVIII) in which the substituents R and R' and the wedges have the meanings indicated above. Thereafter, the intermediate of formula (XV) - (XVIII) may be converted to a compound of formula (I) or (II) by one of the three principal strategies disclosed in USSN 60/169602, i.e. (i) transforming the phenyl ring to a carboxylic acid and then to an amine; (ii) transforming the carboxylic acid group into an amine and oxidizing the phenyl group to an acid, or (iii) protecting the carboxylic acid group, oxidizing the phenyl ring to a second carboxylic acid group, protecting the second carboxylic acid group, selectively de-protecting the first carboxylic acid group, transforming the first carboxylic acid group to an amine, and de- protecting the second carboxylic acid group.
Certain of the present intermediates are believed to be new. In a further aspect, therefore, the invention provides enantiomerically pure compounds of the formula:
wherein R and R1 represent -Cio alkyl, C2-C10 alkenyl or C3-C10 cycloalkyl and the wedges signify (S)- or (R)- stereochemistry, the substituents being trans, and at least one of R and R' not being methyl. DESCRIPTION OF PREFERRED FEATURES
As previously stated, the compounds of the invention can be prepared in chirally pure form from (R)-4-acetoxycyclopent-2-en-l-one (1) or (S)- 4- acetoxycyclopent-2-en-l-one (2).
The reactions of 4-Oxo-2-cyclopentenyl Acetate (4-Acetoxy-2- cyclopenten-1-one) have been reviewed by M. Harre, P. Raddatz, R. Walenta and E. Winterfeldt, Angew. Chem. Int. Ed. Engl, 1982, 21, 480. It has been synthesised in enantiomerically pure form using two main approaches:
• Acetylation of chirally pure 4-hydroxy-2-cyclopenten-l -one, see K. Ogura, M. Yamashita and G. Tsuchihashi, Tetrahedron Letters, 1976, 759. For examples of approaches to chiral 4-hydroxy-2-cyclopenten-l-one see the following and references therein: S.R. Ghorpade, K.B. Bastawade, D.V. Gokhale, P.D.
Shinde, V.A. Mahajan, U.R. Kalkote and T. Ravindranathan, Tetrahedron Asymmetry, 1999, 10, 4115; S.P. Khanapure, N. Najafi, S. Manna, J-J. Yang and J. Rokach, J. Org. Chem., 1995, 60, 7548; E. Mezzina, D. Savoia, E. Tagliavini, C. Trombini and A. Umani-Ronchi, J. Chem. Soc. Per kin Trans. 1, 1989, 845; M. Kitamura, K. Manabe and R. Noyori, Tetrahedron Letters,
1987, 28, 4719; R. Noyori, I. Tomino, M. Yamada and M. Nishizawa, J. Am. Chem. Soc, 1984, 106, 6717; M. Suzuki, T. Kawagishi, T. Suzuki and R. Noyori, Tetrahedron letters, 1982, 23, 4057; R. Noyori, Pure & Appl. Chem., 1981, 53, 2315; T.J.N. Watson, T.T. Curran, D.A. Hay, R.S. Shah, D.L. Wenstrup and M.E. Webster, Organic Process Research & Development, 1998, 2, 357; S.R. Ghoipade, K.B. Bastawade, D.V. Gokhale, P.D. Shinde, V.A. Mahajan, U.R. Kalkote and T. Ravindranathan, Tetrahedron: Asymmetry, 1999, 10, 4115-4122).
• Oxidation of 3-acetoxy-5-hydroxycyclopent-l-enes, for example see: M.
Korach, D.R. Nielsen and W.H. Rideout, Org. Synth, Collect. Vol. 5, 1973,
414; D.R. Deardoff and D.C. Myles, Org. Synth, 1989, 67, 114; D.R. Deardorff, C.Q. Windham and C.L. Craney, Org. Synth, 1995, 73, 25; C.R.
Johnson and S.J. Bis, Tetrahedron Letters, 1992, 33, 7287.
The following reactions may be used to make compounds according to the invention:
A) Conjugate addition to a cyclopent-2-en-l-one (1) or (2) can be carried out using an organo-Grignard reagent in the presence of dimethylzinc giving a trans 3,4-disubstituted intermediate e.g. an addition product of formula (3) or (4). In particular, the chiral cyclopentenone of formula (1) or (2) may be added to the organo-Grignard reagent or to an organo-lithium reagent in the presence of a dialkylzinc or zinc chloride or a copper (I) salt or a trialkylaluminium in a solvent, for example, tetrahydrofuran, 1,4-dioxane, n- heptane, toluene, diethyl ether or tert-butyl methyl ether at a temperature from -100 °C to 0 °C to produce said addition product.
B) Adding the product of step A) above to a mixture of base, for example, 1,8- diazabicyclo[5.4.0]undec-7-ene (DBU), l,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,1,3,3-tetramethyl guanidine (TMG), lithium hydride or sodium hydride in a solvent, for example, dichloromethane, diethyl ether, tetrahydrofuran, tert-butyl methyl ether or 1,4-dioxane to produce an elimination product of formula (5) or (6). C) Adding the product of step B) above to a mixture of organo-Grignard reagent or organo-lithium reagent in the presence of a dialkylzinc or zinc chloride or a copper (I) salt or a trialkylaluminium salt in a solvent, for example, tetrahydrofuran, 1,4-dioxane, ^-heptane, toluene, diethyl ether or tert-butyl methyl ether at a temperature from -100 °C to 0 °C can be used to produce an addition product of formula (7) or (8).
D) Adding the product of step B) above to a hydrogenation catalyst, for example, palladium on charcoal, platinum oxide, Raney nickel, Rhodium on alumina in a solvent, for example, ethyl acetate or methanol under a hydrogen atmosphere at 1 to 30 atmospheres pressure and at a temperature in the range 0-60°C, can be used to make a product of formula (9) or (10).
The above described reactions are illustrated in the following schemes:
Scheme 1
Scheme 2
An example of the utility of the above reaction scheme is shown below:
MeMgCI, Me2Zn THF, -78 °C
atalyst
Compounds that can be made by the present process are shown below, and the following are believed to be new:
(3S,4S)-3,4-diethyl-cyclopentanone;
(3R,4R)-3,4-diethyl-cyclopentanone;
(3S,4S)-3-ethyl-4-methyl-cyclopentanone;
(3R,4R)-3-ethyl-4-methyl-cyclopentanone;
(3S,4S)-3-methyl-4-propyl-cyclopentanone;
(3R,4R)-3-methyl-4-propyl-cyclopentanone;
(3S,4S)-3-ethyl-4-propyl-cyclopentanone; and
(3R,4R)-3-ethyl-4-propyl-cyclopentanone.
(S)-3-Methyl-cyclopentanone (S)-3 -Ethyl-cyclopentanone
(S)-3-Propyl-cyclopentanone 0 .)-3-Ethyl-cyclopentanone
(R)-3-Propyl-cyclopentanone (3S,4S)-3,4-Dimethyl-cyclopentanone
(3R,4R)-3,4-Dimethyl-cyclopentanone (3S,4S)-3-Ethyl-4-methyl-cyclopentanone
(3R,4R)-3-Ethyl-4-methyl-cyclopentanone (3S,4S)-3-Methyl-4-propyl-cyclopentanone
(3R,4R)-3 -Methyl-4-propyl-cyclopentanone (3 S,4S)-3 ,4-Diethyl-cyclopentanone
(3R,4R)-3,4-Diethyl-cyclopentanone (3R,4R)-3-n-Pr-4-Et-cyclopentanone
(3S,4S)-3-n~Pr-4-Et-cyclopentanone (R)-3 -Methyl-cy clopentanone Other leaving groups may be present in the starting materials employed in the above process in place of the acetoxy compounds, and in general any compound that is available in optically pure form and that has a 4-substituent that permits stereospecific addition to the en-one conjugated system and can then undergo elimination can be used. Examples of such leaving groups are halides and sulfonic acid ester groups. Examples of alternative starting materials include:
For preparation see T. Hirao, S. Mikami, M. Mori, Y. Ohshiro, Tet. left., 1991, 32(14), 1741-4. For stereospecific preparation of R and S enantiomers see R. Gerdil, H. Liu, G. Bernardinelli, Helv. Chim. Acta., 1999, 82(3), 418-34.
For preparation see: F. Gavina, A. Costero, A. Gonzalez, S. Luis, J. Org. Chem., 1987, 52(14), 2997-9; C. H. DePuy, M. Isaks, K. L. Eilers, G. F. Morris, J. Org. Chem., 1964, 29, 3503-10; J.A. Bloodworth, H. J. Eggelte, J. Chem. Soc. Perkin Trans. I, 1981, 12, 3272-8.
For preparation of the above two compounds or the class of compounds of the third formula, in which R = straight or branched alkyl of Ci-Cβ, see M. Minamii, Y. Ueda, JP 62116537 (JP 85-262204), JP 85-167970 and M. Minamii, Y. Ueda, EP-A-0170506. The invention will now be further described in the following Examples.
EXAMPLE 1 Enantiomerically pure (S)-3-n-propyl-cyclopentanone (3).
55 psi H2 10% Pd/C EtOAc
(3R,4R)-3-acetoxy-4-Λ-propyl-cycIopentanone (l).
«-Propylmagnesium chloride (15.7 ml of a 2M solution in ether, 31.4 mmol) was added slowly to a stirred solution of dimethylzinc (15.7 ml of a 2M solution in toluene, 31.4 mmol) in THF (80 ml) under argon at 0 °C. After 30 minutes, the mixture was cooled to -78 °C and (R)-4-acetoxycyclopent-2-enone
(4.0 g, 28.5 mmol) in THF (45 ml) was added dropwise over 1 hour. The reaction mixture was stirred for a further 20 minutes and then quenched by the addition of saturated ammonium cliloride solution (20 ml). The reaction mixture was allowed to warm to room temperature, diluted with IN hydrochloric acid (100 ml) and extracted with ether (3 x 200 ml). The organic layer was washed with brine (200 ml), dried (MgSO ) and the solvent was removed under reduced pressure to yield the acetoxy cyclopentanone 1 as a solution in toluene which was used without further purification in the next step.
vmax(fιlm)/cm"1 1740 (C=O). δH(400 MHz; CDC13) 5.08 (1H, m, CHOAc), 2.70 (1H, dd, J 19.2, 5.9), 2.59 (1H, dd, J 8.1, 1.2), 2.34 (1H, m), 2.23 (1H, dd, J 19.1, 4.6), 2.07 (3H, s, OCO e), 1.98 (1H, dd, J 18.4, 6.4), 1.54 (1H, m), 1.46-1.21 (3H, m), 0.94 (3H, t, J 7.1, Me).
(R)-4-n-propyl-cyclopent-2-enone (2).
The acetoxy cyclopentanone 1 (approx. 28.5 mmol) in ether (40 ml) was added dropwise over 1 hr to a stirred solution of DBU (4.27 ml, 28.5 mmol) in ether (50 ml) at -40 °C under argon. The mixture was allowed to warm to —30 °C and stirred for 30 minutes before being quenched with dilute hydrochloric acid (20 ml). The reaction mixture was partitioned between ether (100 ml) and IN HCl (150 ml). The organic layer was separated and the aqueous layer was further extracted with ether (2 x 100 ml). The combined ether layers were washed with brine, dried (MgSO4) and the solvent was evaporated under reduced pressure. The residue was chromatographed (SiO2, pentane-ether, 1:0 to 8:2) to give the propylcyclopentenone 2 (2.4 g, 68% from (R)-4-acetoxycyclopent-2-enone).
Vmax filmycm-1 1708 (C=O).
δH(400 MHz; CDC13) 7.64 (1H, dd, J5.6, 2.4, CH=CHC=O), 6.14 (1H, dd, J 5.6, 2.0, CH=CHC=O), 2.75 (1H, m), 2.53 (1H, dd, J 18.8, 6.4, CHAHsC=O), 2.00 (1H, dd, J 18.8, 2.0, CHAHsC=O) 1.60-1.20 (4H, m), 0.96 (3H, t, J6.8, Me).
(S)-3-«-propylcyclopentanone (3)
A mixture of 2 (1.2 g, 9.7 mmol) and 10 % palladium on charcoal
(catalytic quantity) in ethyl acetate (30 ml) was shaken in hydrogen at 55 psi and at 30 °C for 6 hours. The reaction mixture was filtered and the solvent was evaporated under reduced pressure. The residue was chromatographed (SiO2, pentane-ether, 1:0 to 9:1) to give the 3-propylcyclopentanone 3 (1.07 g, 88%).
vmax(film)/cm-1 1744 (C=O). δH(400 MHz; CDC13) 2.29 (1H, dd, J 16.0, 8.4), 2.38 (1H, dd, J 18.8, 7.6), 2.21-2.09 (2H, m), 1.79 (1H, dd, J 18.0, 9.6), 1.56-1.34 (6H, m), 0.93 (3H, t, J7.2, Me).
Enantiomeric purity by conversion to acetal (7)
(2R,3R)(-)-2,3-butanediol p-TSA, benzene, reflux
The ketone 3 (0.12 g, 0.95 mmol), (2R,3R)-(-)-2,3-butanediol (0.087 ml, 0.96 mmol) and 7-toluenesulphonic acid (0.018 g, 0.095 mmol) were refluxed together in benzene (10 ml) for 3 hours using a Dean-Stark trap. The reaction mixture was allowed to cool, taken up in ethyl acetate (100 ml) and washed with saturated sodium bicarbonate solution, brine, dried (MgSO4) and concentrated in vacuo to give a single diastereoisomeric acetal 7 (0.12 g, 65%).
δH(400 MHz; CDC13) 3.61-3.57 (2H, m), 2.1-1.76 (5H, m), 1.47-1.40 (2H, m), 1.35-1.20 (10H, m), 0.88 (3H, t, J6.8, Me); δc(CDCl3) 117.2, 78.3, 78.1, 44.6, 38.4, 37.6, 37.2, 30.1, 21.3, 17.2, 17.1, 14.2.
EXAMPLE 2 (3R,4R)-3-methyl-4-«-propyI-cyclopentanone (4)
Methylmagnesium chloride (7.1 ml of a 3M solution in ether, 21.3 mmol) was added slowly to a stirred solution of dimethylzinc (5.3 ml of a 2M solution in toluene, 10.6 mmol) in THF (80ml) under argon at 0 °C. After 30 minutes the mixture was cooled to -78 °C and 2 (1.2 g, 9.7 mmol) in THF (45 ml) was added dropwise over 1 hour. The reaction mixture was stirred for 20 minutes and then quenched by the addition of saturated ammonium chloride solution (20 ml). The reaction mixture was allowed to warm to room temperature, diluted with IN hydrochloric acid (100ml) and extracted with ether (3 x 200 ml). The organic layer was washed with brine (200 ml), dried (MgSO ) and the solvent was removed under reduced pressure to yield 4 as a solution in toluene which was purified by column chromatography (SiO , pentane-ether, 1:0 to 9:1 to give the cyclopentanone 4 (0.86 g, 63%).
δH(400 MHz; CDC13) 2.49-2.42 (2H, m), 1.87-1.80 (3H, m), 1.79-1.61 (2H, m), 1.80-1.43 (3H, m), 1.12 (3H, d, J 6.1, Me), 0.93 (3H, t, J 7.3, Me); δc(CDCl3) 220.0, 48.1, 46.2, 45.5, 38.4, 37.0, 232.1, 19.6, 15.8.
Enantiomeric purity by conversion to acetal 8
The ketone 4 (0.12 g, 0.86 mmol), (2R,3R)-(-)-2,3-butanediol (0.086 ml, 0.94 mmol) and ^-toluenesulphonic acid (0.0163 g, 0.086 mmol) were refluxed together in benzene (10 ml) for 3 hours using a Dean-Stark trap. The reaction mixture was allowed to cool, taken up in ethyl acetate (100 ml), washed with saturated sodium bicarbonate solution, brine, dried (MgSO ) and concentrated in vacuo to give 8 (0.08 g, 44%).
δH(400 MHz; CDC13) 3.61-3.58 (2H, m), 2.51-2.39, 2.27, 2.19-2.06, 1.90- 1.60 (6H, m), 1.60-1.04 (10H, m), 0.98 (3H, d, J 6.6, Me), 0.89 (3H, t, J7.3, Me); δc(400 MHz; CDC13) 115.8, 78.2, 78.1, 47.2, 45.1, 45.0, 38.4, 36.5, 21.4, 18.8, 17.3 (x2), 14.4.
EXAMPLES 3 & 4
(R)-3-«-propyl-cyclopentanone (5) and (3S,4S)-3-methyl-4-«-propyl-cyclo- pentanone (6).
Ketones 5 and 6 were made using the same procedures as in the preceding examples, but starting from (S)-4-acetoxycyclopent-2-enone.
Enantiomeric purity by conversion to chiral acetals 9, 10.
The enantiomeric purity of ketone 5 was confirmed by making acetal 9 using the procedure of the foregoing examples.
δH(400 MHz; CDC13) 3.60-3.48 (2H, m), 2.45-1.76 (5H, m), 1.44-1.41 (2H, m), 1.38-1.14 (10H, m), 0.88 (3H, t, J7.1, mE); δc(CDCl3) 117.2, 78.2, 78.1, 44.9, 38.2, 38.0, 37.7, 30.5, 21.3, 17.0, 16.9, 14.2.
The enantiomeric purity of ketone 6 was confirmed by making acetal 10 using the procedure of the above examples.
δH(400 MHz; CDC13) 3.56-3.49 (2H, m), 2.49-2.22, 2.13-2.04, 1.90-1.62 (6H, m), 1.60-1.02 (10H, m), 0.97 (3H, d, J 6.1, Me), 0.89 (3H, t, J 7.3, Me); δc(CDCl3) 115.7, 78.1, 47.6, 45.5, 45.2, 38.6, 36.0, 21.4, 18.2, 16.9 (x2), 14.4.
EXAMPLE 5
Enantiomerically pure (3S,4S)-3,4-dimethylcyclopentanone (13)
gCI, Me2Zn -78 °C
14 13
The acetoxy cyclopentanone 11
Methylmagnesium chloride (11.3 ml of a 3M solution in THF, 33.9 mmol) was added slowly to a stirred solution of dimethylzinc (17.0 ml of a 2M solution in toluene, 34.0 mmol) in THF (80 ml) at 0 °C under argon. After 20 minutes, the mixture was cooled to -78 °C and (S)-4-acetoxycyclopent-2-enone (4.33 g, 30.9 mmol) in THF (45 ml) was added dropwise over 1 hour. The reaction mixture was stirred for a further 20 minutes and then quenched by the addition of saturated ammonium chloride solution (20 ml). The reaction mixture was allowed to warm to room temperature, diluted with IN hydrochloric acid (100ml) and extracted with ether (3 x 200 ml). The organic layer was washed with brine (200 ml), dried (MgSO ) and the solvent was removed under reduced pressure to yield the acetoxy cyclopentanone 11 as a solution in toluene which was used without further purification in the next step.
vmax(film)/cm-1 1737 (CO).
δH(400 MHz; CDC13) 5.01 (1H, m, CHOAc), 2.72 (1H, dd, J 19.0, 6.6), 2.59 (1H, m), 2.46 (1H, m), 2.24 (1H, dd, J 19.0, 4.6), 2.07 (3H, s, OCO e), 1.95 (1H, dd, J 18.6, 5.7), 1.13 (3H, d, J7.1, CH e).
The methylcyclopentanone 12
Acetoxy cyclopentanone 11 (approx. 30.9 mmol) in dichloromethane (40 ml) was added dropwise over 1 hour to a stirring solution of DBU (4.6 ml, 30.9 mmol) in dichloromethane (50 ml) at -^ 0 °C under argon. The mixture was allowed to warm to -30 °C and stirred for 30 minutes before being quenched with dilute hydrochloric acid (20 ml). The reaction mixture was partitioned between ether (100 ml) and IN HCl (150 ml). The organic layer was separated and the aqueous layer was further extracted with ether (2 x 100 ml). The combined ether layers were washed with brine, dried (MgSO ) and the solvent was evaporated under reduced pressure. The residue was chromatographed (SiO2, pentane-ether, 7:3) to give methylcyclopentenone 12 (1.51 g, 51% from (S)-4-acetoxycyclopent- 2-enone).
Vma Cfilmycm"1 1715 (CO).
δH(400 MHz; CDCI3) 7.59 (1H, dd, J 5.6, 2.4, CHOHCO), 6.14 (1H, dd,
J 5.6, 2.0, CHOHCO), 3.02 (1H, m), 2.60 (1H, dd, J 18.8, 6.3, CHAHsCO), 1.95 (1H, dd, J 18.8, 2.2, CHAHsCO) 1.21 (3H, d, J7.1, CHMe).
The dimethylcyclopentanone 13
Methylmagnesium chloride (5.2 ml of a 3M solution in ether, 15.6 mmol) was added slowly to a stirred solution of dimethylzinc (3.9 ml of a 2M solution in toluene, 7.8 mmol) in THF (20 ml) under argon at 0°C. After 30 minutes the mixture was cooled to -78 °C and 12 (0.67 g, 7.0 mmol) in THF (10 ml) was added dropwise over 1 hour. The reaction mixture was stirred for 20 minutes and then quenched by the addition of saturated ammonium chloride solution (10 ml). The reaction mixture was allowed to warm to room temperature, diluted with IN hydrochloric acid (40 ml) and extracted with ether (3 x 50 ml). The organic layer was washed with brine (50 ml), dried (MgSO ) and the solvent was removed under reduced pressure to yield 13 as a solution in toluene which was purified by column chromatography (SiO2, pentane-ether, 95:5) to give the dimethylcyclopentanone 13 (0.45g, 52%).
vmaχ(fιlm)/cm-1 1732 (CO).
δH(400 MHz; CDC13) 2.50-2.39 (2H, m), 1.89-1.72 (4H, m), 1.12 (6H, d, J
5.6, 2 x Me).
Enantiomeric purity of 13 was established by conversion to acetal 14.
The ketone 13 (0.25 g, 2.23 mmol), (2R,3R)-(-)-2,3-butanediol (0.23 ml, 2.45 mmol) and j^-toluenesulphonic acid (0.042 g, 0.22 mmol) were refluxed together in benzene (10 ml) for 3 hours using a Dean-Stark trap. The reaction mixture was allowed to cool, taken up in ethyl acetate (100 ml), washed with saturated sodium bicarbonate solution, brine, dried (MgSO ) and concentrated in vacuo to give 14 (0.21 g, 51%).
δc(CDCl3) 115.5, 78.0, 47.8, 40.1, 17.7, 16.9.
/z (Cf) 185 (M+H, 70%)
The acetal made from racemic (3RS,4RS)-3,4-dimethylketone has signals as shown below: δc(CDCl3) 115.6, 115.5, 78.2, 78.1, 47.8, 47.5, 40.2, 40.0, 18.1, 17.7, 17.3,
16.9
EXAMPLE 6
Enantiomerically pure (S)-3~methylcyclopentanone (16).
DBU, DCM -40 °C to -30 °C
ne
17 16
The methylcyclopentenone 15.
Compound 15 was prepared using the same method as 12.
The methylcyclopentanone 16
A mixture of 15 (1.17 g, 12.2 mmol) and 10 % palladium on charcoal (catalytic quantity) in ethyl acetate (30 ml) was shaken at 55 psi Hydrogen at 30
°C for 6 hours. The reaction mixture was filtered and the solvent was removed under reduced pressure. The residue was chromatographed (SiO2, pentane-ether,
9:1) to give the 3 -methylcyclopentanone 16 (1.09 g, 91%).
vmβx(film)/cm-1 (C=O) 1731.
δH(400 MHz; CDC13) 2.42-2.08 (5H, m), 1.78 (1H, ddd, J 16.8, 9.3, 0.7),
1.51 (lH, m), 1.13 (3H, d, J6.8). The acetal 17
The ketone 16 (0.25 g, 2.55 mmol), (2R,3R)-(-)-2,3-butanediol (0.26 ml, 2.80 mmol) and 7-toluenesulphonic acid (0.05 g, 0.255 mmol) were refluxed together in benzene (10 ml) for 3 hours using a Dean-Stark trap. The reaction mixture was allowed to cool, taken up in ethyl acetate (100 ml), washed with saturated sodium bicarbonate solution, brine, dried (MgSO4) and concentrated in vacuo to give the acetal 17 (0.20 g, 47%).
δH(400 MHz; CDC13) 3.59 (2H, m), 2.08-1.17 (13H, m), 1.01 (3H, d, J6.8, Me); δc(CDCl3) 117.4, 78.3, 78.0, 46.4, 38.0, 32.1, 20.6, 17.2, 17.1
The acetal of the racemic 3 -methylcyclopentanone has signals as shown below:
δc(CDCl3) 117.4, 78.3, 78.1 (x2), 78.0, 46.7, 46.4, 38.5, 38.0, 32.5, 32.1, 20.6, 20.2, 17.2, 17.1, 16.9 (x2).
EXAMPLE 7 Enantiomerically pure (3S,4S)-3-ethyI-4-methyl-cyclopentanone (20)
20
The acetoxy cyclopentanone 18
Ethylmagnesium chloride (19.6 ml of a 2M solution in THF, 39.2 mmol) was added slowly to a stirred solution of dimethylzinc (19.6 ml of a 2M solution in toluene, 39.2 mmol) in THF (80 ml) at 0 °C under argon. After 20 minutes, the mixture was cooled to -78 °C and (S)-4-acetoxycyclopent-2-enone (5.0 g, 35.7 mmol) in THF (45 ml) was added dropwise over 1 hour. The reaction mixture was stirred for a further 20 minutes and then quenched by the addition of saturated ammonium chloride solution (20 ml). The reaction mixture was allowed to warm to room temperature, diluted with IN hydrochloric acid (100ml) and extracted with ether (3 x 200 ml). The organic layer was washed with brine (200 ml), dried (MgSO4) and the solvent was removed under reduced pressure to yield the acetoxy cyclopentanone 18 as a solution in toluene which was used without further purification in the next step.
vraax(film)/cm"1 1741 (CO).
δH(400 MHz; CDC13) 5.10 (1H, m, CHOAc), 2.70 (1H, dd, J 19.3, 6.7), 2.57 (1H, ddd, J 18.5, 8.3, 1.2), 2.32-2.20 (2H, m), 2.07 (3H, s, OCO e), 2.00 (1H, m), 1.62 (2H, m), 0.98 (3H, t, J7.2, Me).
The ethylcyclopentenone 19
Acetoxy cyclopentanone 18 (approx. 35.7 mmol) in dichloromethane (45 ml) was added dropwise over 1 hr to a stirring solution of DBU (5.34 ml, 35.7 mmol) in dichloromethane (100 ml) at -40 °C under argon. The mixture was allowed to warm to -30 °C and stirred for 30 minutes before being quenched with dilute hydrochloric acid (30 ml). The reaction mixture was partitioned between ether (100 ml) and IN HCl (150 ml). The organic layer was separated and the aqueous layer was further extracted with ether (2 x 100 ml). The combined ether layers were washed with brine, dried (MgSO4) and the solvent was evaporated under reduced pressure. The residue was chromatographed (SiO2, pentane-ether, 8:2) to give ethylcyclopentenone 19 (3.4 g, 86% from (S)-4-acetoxycyclopent-2- enone).
vmax(film)/cm * 1713 (CO).
δH(400 MHz; CDCI3) 7.65 (1H, dd, J5.6, 2.4, CHOHCO), 6.16 (1H, dd, J 5.6, 2.0, CHOHCO), 2.88 (1Η, m), 2.54 (1Η, dd, J 19.0, 6.3, CHAΗ5CO), 2.02 (IH, dd, J 18.8, 2.2, CHAH5CO) 1.63 (IH, m), 1.47 (IH, m), 0.99 (3H, t, J 7.6, Me).
The cyclopentanone 20
Methylmagnesium cliloride (22.5 ml of a 3M solution in ether, 67.5 mmol) was added slowly to a stirred solution of dimethylzinc (16.9 ml of a 2M solution in toluene, 33.8 mmol) in THF (100 ml) under argon at 0°C. After 30 minutes the mixture was cooled to -78 °C and 19 (3.37 g, 30.6 mmol) in THF (45 ml) was added dropwise over 1 hour. The reaction mixture was stirred for 20 minutes and then quenched by the addition of saturated ammonium chloride solution (25 ml). The reaction mixture was allowed to warm to room temperature, diluted with IN hydrochloric acid (100 ml) and extracted with ether (3 x 100 ml). The organic layer was washed with brine (50 ml), dried (MgSO ) and the solvent was removed under reduced pressure to yield 20 as a solution in toluene which was purified by column chromatography (SiO2, pentane-ether, 95:5) to give the cyclopentanone 20 (2.4 g, 62%).
Vmax filmycm-1 1738 (CO).
δH(400 MHz; CDC13) 2.50-2.40 (2H, m), 1.92-1.60 (6H, m), 1.12 (3H, d, J 6.1, Me), 0.93 (3H, t, J6.5, Me).
Conversion to an acetal
The ketone 20 (0.22 g, 1.74 mmol), (2R,3R)-(-)-2,3-butanediol (0.18 ml, 1.91 mmol) and jo-toluenesulphonic acid (0.033 g, 0.174 mmol) were refluxed together in benzene (10 ml) for 3 hours using a Dean-Stark trap. The reaction mixture was allowed to cool, taken up in ethyl acetate (100 ml), washed with saturated sodium bicarbonate solution, brine, dried (MgSO4) and concentrated in vacuo to give 24 (0.19g, 55%).
δc(CDCl3) 115.6, 78.1 (x2), 47.6, 47.1, 44.9, 38.2, 26.2, 19.3, 18.2, 16.9, 14.2; m/z (Cf) 199 (M+H, 82%).
EXAMPLE 8
Enantiomerically pure (R)-3-eth lcyclopentanone (21)
19 21
A mixture of 19 (3.4 g, 30.9 mmol) and 10 % palladium on charcoal
(catalytic quantity) in ethyl acetate (50 ml) was shaken at 55 psi in hydrogen at 30 °C for 6 hours. The reaction mixture was filtered and the solvent was removed under reduced pressure. The residue was chromatographed (SiO2, pentane-ether,
9:1) to give the 3-ethylcyclopentanone 21 (3.4 g, 98%).
vmax(film)/cm"1 1737 (CO).
δH(400 MHz; CDC13) 2.38 (IH, dd, J 18.1, 7.3), 2.29 (IH, dd, J 16.1, 8.8), 2.21-2.04 (4H, m), 1.79 (IH, ddd, J 18.1, 9.8, 1.1), 1.47 (2H, m), 0.95 (3H, t, J 7.6, Me).
Conversion to acetal 25
The ketone 21 (0.098 g, 0.874 mmol), (2R,3R)-(-)-2,3-butanediol (0.088 ml, 0.96 mmol) andjp-toluenesulphonic acid (0.017 g, 0.087 mmol) were refluxed together in benzene (10 ml) for 3 hours using a Dean-Stark trap. The reaction mixture was allowed to cool, taken up in ethyl acetate (100 ml), washed with saturated sodium bicarbonate solution, brine, dried (MgSO4) and concentrated in vacuo to give 25 (0.12 g, 73%).
δc(CDCl3) 117.2, 78.2, 78.1, 44.5, 39.8, 38.0, 30.1, 28.6, 17.0, 16.9, 12.5; m/z (Cf) 185 (M+H, 75%)
EXAMPLES 10 & 11
(3R,4R)-3 ethyl-4-methyl-cyclopentanone (22) and (S)-3-ethyl-cyclopentanone
(23)
Compounds 22 and 23 were made using the procedure of the previous examples.
Conversion to acetals 26, 27
The enantiomeric purity of ketone 22 was confirmed by making acetal 26 using the previously described procedure.
δc(CDCl3) 115.7, 78.2, 78.1, 47.3, 46.9, 44.6, 38.0, 26.6, 19.3, 18.8, 17.3, 17.2, 14.2; m/z (CI+) 199 (M+H, 80%)
The enantiomeric purity of ketone 23 was also confirmed by making acetal
26 using the previously described procedure.
δc(CDCl3) 117.2, 78.3, 78.1, 44.2, 39.3, 37.6, 29.7, 28.8, 17.2, 12.5; m/z (CI+) 185 (M+H, 78%).

Claims (29)

1. A method of making an enantiomerically pure compound of the formula (I) or (II):
wherein R and R' represent CI-CJO alkyl, C2-C10 alkenyl or C3-C10 cycloalkyl and the wedges signify (S)- or (R)- stereochemistry, the substituents in compound (II) being trans, which method comprises:
conjugate addition of an organometallic nucleophile that provides a group R as defined above to a compound of the formula (III) or (IV):
wherein X represents a leaving group to give a trans 3,4-disubstituted addition product of formula (V) or (VI) in which R and X are as previously defined;
eliminating the leaving-group X from the addition product of formula (V) or (VI) to give an (R)- or (S)- 4-alkyl or 4-alkenyl cyclopent-2-en-l-one of formula (VII) or (VIII) ; and either
(i) hydrogenation of the compound of formula (VII) or (VIII) to give a cyclopentanone of formula (I) or
(ii) conjugate addition of a second organometallic nucleophile that provides a group R' as defined above to the compound of formula (VII) or (VIII) to give a trans 3,4-disubstituted addition product of formula (II).
2. The method of claim 1, when used to make an (S)- compound of formula (I).
3. The method of claim 1, when used to make an (R)- compound of formula (I).
4. The method of claim 1, when used to make a (3S,4S)- compound of formula (II).
5. The method of claim 1, when used to make a (3R,4R)- compound of formula (II).
6. The method of any preceding claim , when used to make a compound in which R and R (if present) represent methyl, ethyl or rc-propyl.
7. The method of claim 1, when used to make any of the following compounds:
! (S)-3-metnylcyclopentanone;
(R)-3 -methylcyclopentanone;
(S)-3 -ethylcyclopentanone;
(R)-3-ethylcyclopentanone; (S)-3 -n-propylcyclopentanone;
(R)-3 -n-prppylcyclopentanone;
(3S,4S)-3,4-dimethyl-cyclopentanone;
(3R,4R)-3,4-dimethyl-cyclopentanone;
(3S,4S)-3,4-diethyl-cyclopentanone;
(3R,4R)-3,4-diethyl-cyclopentanone;
(3S,4S)-3-ethyl-4-methyl-cyclopentanone;
(3R,4R)-3~ethyl-4-methyl-cyclopentanone;
(3S,4S)-3-methyl-4-propyl-cyclopentanone;
(3R,4R)-3 -methyl-4-propyl-cyclopentanone;
(3 S,4S)-3 -ethyl-4-propyl-cyclopentanone;
(3R,4R)-3-ethyl-4-propyl-cyclopentanone.
8. The method of any preceding claim, wherein the conjugate addition is carried out by adding the chiral cyclopentenone of formula (III) or (IV) to an organo-Grignard reagent or to an organo-lithium reagent in the presence of a dialkylzinc or zinc chloride or a copper (I) salt or a trialkylaluminium in a solvent at a temperature from -100 °C to 0 °C.
9. The method of claim 8, wherein the solvent is selected from tetrahydrofuran, 1,4-dioxane, rø-heptane, toluene, diethyl ether and t-butyl methyl ether.
10. The method of any preceding claim, wherein the elimination product of formula (VII) or (VIII) is produced by treating the trans 3,4-disubstituted addition product of formula (V) or (VI) with a strong organic base or with a metal hydride in a solvent.
11. The method of claim 10, wherein the base or hydride is selected from 1,8- diazabicyclo[5.4.0]undec-7-ene (DBU), l,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,1,3,3-tetramethyl guanidine (TMG), lithium hydride and sodium hydride.
12. The method of claim 10 or 11, wherein the solvent is selected from dichloromethane, diethyl ether, tetrahydrofuran, t-butyl methyl ether and 1,4- dioxane.
13. The method of any preceding claim, wherein the elimination product of formula (VII) or (VIII) is treated with hydrogen at a pressure of 1-30 atmospheres at a temperature in the range 0-60°C in a solvent and in the presence of a hydrogenation catalyst to give a compound of formula (I).
14. The method of claim 13, wherein the hydrogenation catalyst is selected from palladium on charcoal, platinum oxide, Raney nickel, and rhodium on alumina.
15. The method of claim 13 or 14, wherein in the solvent is ethyl acetate or methanol.
16. The method of any of claims 1-12, wherein the conjugate addition is carried out by treating the elimination product of formula (VII) or (VIII) with a second organo-Grignard reagent or with a second an organo-lithium reagent in the presence of a dialkylzinc or zinc chloride or a copper (I) salt or a trialkylaluminium in a solvent at a temperature from -100 °C to 0 °C to produce a compound of formula (II).
17. The method of claim 16, wherein the solvent is selected from tetrahydrofuran, 1,4-dioxane, rø-heptane, toluene, diethyl ether and t-butyl methyl ether.
18. The method of any preceding claim, wherein the leaving group X in the compound of formula (III) or (IV) is acetoxy.
19. The method of any of claims 1-17, wherein the leaving group X in the compound of formula (III) or (IV) is halogen or sulfonic acid ester group.
20. An enantiomerically pure compound made by the method of any of claims 1-19.
21. The compound of claim 20, whose enantiomeric purity is 98% or above.
22. A method of producing a compound of one of the formulae shown below:
in which the substituents R and R' and the wedges have the meanings indicated in claim 1, which comprises providing a compound of formula (I) or (II) produced by the method of any of claims 1 - 17 or according to claim 18 or 19, converting said compound to a compound of formula (XI), (XII), (XIII) or (XIV), and optionally further converting said compound into a pharmaceutically acceptable salt.
23. The method of claim 22, wherein said conversion is via an intermediate (XV) - (XVIII) shown below:
(XV) (XVI) (XVII) (XVIII) in which the substituents R and R' and the wedges have the meanings indicated above.
24. The method of claim 23, wherein the intermediate of formula (XV) - (XVIII) is converted to a compound of formula (I) or (II) by transforming the phenyl ring to a carboxylic acid and then to an amine.
25. The method of claim 23, wherein the intermediate of formula (XV) - (XVIII) is converted to a compound of formula (I) or (II) by transforming the carboxylic acid group into an amine and oxidizing the phenyl group to an acid.
26. The method of claim 23, wherein the intermediate of formula (XV) - (XVIII) is converted to a compound of formula (I) or (II) by protecting the carboxylic acid group, oxidizing the phenyl ring to a second carboxylic acid group, protecting the second carboxylic acid group, selectively de-protecting the first carboxylic acid group, transforming the first carboxylic acid group to an amine, and de-protecting the second carboxylic acid group.
27. A method of producing a compound of the formula (XV) - (XVIII) shown below:
in which the substituents R and R' and the wedges have the meanings indicated in claim 1, which comprises providing a compound of formula (I) or (II) produced by the method of any of claims 1 - 19 or according to claim 20 or 21, and converting said compound to a compound of formula (XV) - (XVIII).
28. An enantiomerically pure compound of the formula:
wherein R and R' represent Ci-Cio alkyl, C2-C1Q alkenyl or C3-C10 cycloalkyl and the wedges signify (S)- or (R)- stereochemistry, the substituents being trans, and at least one of R and R not being methyl.
29. Any of the following compounds
(3 S,4S)-3 ,4-dimethyl-cyclopentanone;
(3R,4R)-3,4-dimethyl-cyclopentanone;
(3S,4S)-3,4-diethyl-cyclopentanone;
(3R,4R)-3,4-diethyl-cyclopentanone;
! (3S,4S)-3-ethyl-4-methyl-cyclopentanone;
(3R,4R)-3-ethyl-4-methyl-cyclopentanone;
(3S,4S)-3-methyl-4-propyl-cyclopentanone;
(3R,4R)-3-methyl-4-propyl-cyclopentanone;
(3S,4S)-3-ethyl-4-propyl-cyclopentanone; Ĩ3R,4R)-3-ethyl-4-propyl-cyclopentanone.
AU2001266208A 2000-06-28 2001-06-28 Cyclic ketones, their preparation and their use in the synthesis of amino acids Ceased AU2001266208B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0015771.9 2000-06-28
GB0015771A GB2364049A (en) 2000-06-28 2000-06-28 Cyclic ketones and their use in the synthesis of amino acids
PCT/GB2001/002900 WO2002000584A1 (en) 2000-06-28 2001-06-28 Cyclic ketones, their preparation and their use in the synthesis of amino acids

Publications (2)

Publication Number Publication Date
AU2001266208A1 true AU2001266208A1 (en) 2002-03-28
AU2001266208B2 AU2001266208B2 (en) 2006-11-23

Family

ID=9894534

Family Applications (2)

Application Number Title Priority Date Filing Date
AU6620801A Pending AU6620801A (en) 2000-06-28 2001-06-28 Cyclic ketones, their preparation and their use in the synthesis of amino acids
AU2001266208A Ceased AU2001266208B2 (en) 2000-06-28 2001-06-28 Cyclic ketones, their preparation and their use in the synthesis of amino acids

Family Applications Before (1)

Application Number Title Priority Date Filing Date
AU6620801A Pending AU6620801A (en) 2000-06-28 2001-06-28 Cyclic ketones, their preparation and their use in the synthesis of amino acids

Country Status (24)

Country Link
US (2) US6872856B2 (en)
EP (1) EP1296921A1 (en)
JP (1) JP2004501884A (en)
KR (1) KR100778953B1 (en)
CN (1) CN1438985A (en)
AP (1) AP2002002699A0 (en)
AU (2) AU6620801A (en)
BR (1) BR0112076A (en)
CA (1) CA2411808A1 (en)
EA (1) EA200201202A1 (en)
GB (1) GB2364049A (en)
HR (1) HRP20021017A2 (en)
HU (1) HUP0301306A2 (en)
IL (2) IL153704A0 (en)
IS (1) IS6636A (en)
MA (1) MA26921A1 (en)
MX (1) MXPA03000076A (en)
NO (1) NO20026198L (en)
NZ (1) NZ523218A (en)
OA (1) OA12298A (en)
PL (1) PL359107A1 (en)
WO (1) WO2002000584A1 (en)
YU (1) YU93702A (en)
ZA (1) ZA200300243B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2364049A (en) * 2000-06-28 2002-01-16 Warner Lambert Co Cyclic ketones and their use in the synthesis of amino acids
US8048917B2 (en) 2005-04-06 2011-11-01 Xenoport, Inc. Prodrugs of GABA analogs, compositions and uses thereof
US6818787B2 (en) 2001-06-11 2004-11-16 Xenoport, Inc. Prodrugs of GABA analogs, compositions and uses thereof
US7186855B2 (en) 2001-06-11 2007-03-06 Xenoport, Inc. Prodrugs of GABA analogs, compositions and uses thereof
EP1912936A2 (en) * 2005-07-18 2008-04-23 Pharmacia & Upjohn Company LLC Stereoselective synthesis of 3,4-disubstituted cyclopentanones and related compounds
CN102190536A (en) * 2010-03-08 2011-09-21 华东理工大学 Method for organically catalyzing asymmetric conjugated addition of ketene and organic phosphorus compound

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2460891C2 (en) * 1974-12-21 1982-09-23 Gödecke AG, 1000 Berlin 1-aminomethyl-1-cycloalkaneacetic acids and their esters, processes for their preparation and medicaments containing these compounds
US4087544A (en) * 1974-12-21 1978-05-02 Warner-Lambert Company Treatment of cranial dysfunctions using novel cyclic amino acids
US5254708A (en) * 1987-06-16 1993-10-19 Nissan Chemical Industries, Ltd. Substituted cyclic ketones, substituted cyclic enones, and process for producing the same
US5134238A (en) * 1990-05-24 1992-07-28 Brigham Young University Chiral copper amine complexes
US5480962A (en) 1993-07-22 1996-01-02 Eastman Chemical Company Copolyesters having repeat units derived from succinic acid
DE69834204T2 (en) * 1997-10-27 2007-03-29 Warner-Lambert Co. Llc CYCLIC AMINO ACIDS AND DERIVATIVES AS MEDICAMENTS
GB2364049A (en) * 2000-06-28 2002-01-16 Warner Lambert Co Cyclic ketones and their use in the synthesis of amino acids

Similar Documents

Publication Publication Date Title
US4943635A (en) Enantioselective reduction of ketones
US20050215816A1 (en) Cyclic ketones, their preparation and their use in the synthesis of amino acids
AU2001266208A1 (en) Cyclic ketones, their preparation and their use in the synthesis of amino acids
KR20040072711A (en) A process for producing phenserine and its analog
Fujisawa et al. A general method for the synthesis of both enantiomers of optically pure. BETA.-hydroxy esters from (S)-(p-chlorophenylsulfinyl) acetone easily obtainable by kinetic resolution with bakers' yeast.
Shono et al. Electroorganic chemistry. 100. A new stereoselective method of synthesis of pyrrolizidines and indolizidines
JP2004534040A (en) Stereoselective synthesis of 2-hydroxy-4-phenylbutyrate
HU214540B (en) Process for preparation amino acid amide derivatives, catalyst containing said compounds and preparation cyanohydrines in the presence of this catalyst
US20030083520A1 (en) Process for preparing bicyclic amino acid
JP4529419B2 (en) Optically active fluorine-containing compounds and methods for producing them
US6921832B2 (en) Optically active fluorine-containing compounds and processes for their production
JP3852122B2 (en) Complex and method for producing hydroxysulfides using the same
JP3296560B2 (en) Chemical method for producing optically active aminodiols
US8658806B2 (en) Process for preparing optically active antrocin
US20030050497A1 (en) Process and intermediates for preparing a cyclohexylnitrile
JP2023504018A (en) Method for producing maxacalcitol and intermediate therefor
CN114539125A (en) Synthetic method of pasiclovir intermediate
JP2004175758A (en) METHOD FOR STEREOSELECTIVELY PRODUCING ALKYLATED COMPOUND BY USING beta-KETOESTER
JPH0967382A (en) Production of optically active 4-trimethylsilyl-3butyn-2-ol
ZA200205391B (en) Process and intermediates for preparing a cyclohexylnitrile.
JPS63218638A (en) Novel norbornane derivative and production thereof
AU2004205303A1 (en) Process and intermediates for preparing a cyclohexylnitrile
GB2375108A (en) Production of a bicycloheptanone
JPH0413673A (en) Cyclic ketone and its production