AU2001261675A1 - Thermoelectric dehumidifier - Google Patents

Thermoelectric dehumidifier

Info

Publication number
AU2001261675A1
AU2001261675A1 AU2001261675A AU2001261675A AU2001261675A1 AU 2001261675 A1 AU2001261675 A1 AU 2001261675A1 AU 2001261675 A AU2001261675 A AU 2001261675A AU 2001261675 A AU2001261675 A AU 2001261675A AU 2001261675 A1 AU2001261675 A1 AU 2001261675A1
Authority
AU
Australia
Prior art keywords
enclosure
coldplate
thermoelectric
further including
dehumidifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2001261675A
Inventor
Craig H. Mccordic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Raytheon Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raytheon Co filed Critical Raytheon Co
Publication of AU2001261675A1 publication Critical patent/AU2001261675A1/en
Granted legal-status Critical Current

Links

Description

THERMOELECTRIC DEHUMIDIFIER
FIELD OF THE INVENTION The present invention relates generally to dehumidifÏŠers, and more particularly, to devices for reducing the relative humidity in enclosures.
BACKGROUND OF THE INVENTION
Challenges associated with maintaining relatively low moisture levels within enclosures containing electronic assemblies are well known to one of ordinary skill in the art. For example, it is known that condensation within a sealed unit containing electronic components accelerates corrosion of the components. Harsh environmental conditions, e.g., relatively large temperature swings, salty air, and airborne contaminants, can accelerate corrosion effects.
Various attempts have been made to decrease the moisture levels within sealed electronic enclosures. In some cases air conditioning is used to reduce humidity. However, air conditioning is relatively heavy, costly, noisy and unreliable. Desiccants placed in a sealed enclosure may have some initial success in reducing moisture levels, but will inevitably become saturated and, therefore, ineffective. Other attempts include the use of blower fans and temperature controllers. While heating the air within the enclosure may lessen the relative humidity, moisture within the air is not removed. In addition, fans are mechanically and electrically noisy which can degrade the performance of the electronics within the enclosure. Further, temperature controllers have a limited useful life since they contain active components.
It would, therefore, be desirable to provide a relatively quiet and reliable dehumidifier that removes moisture from the air within a sealed electronic enclosure. SUMMARY OF THE INVENTION
The present invention provides a thermoelectric dehumidifier that passively reduces the relative humidity of the air within a sealed electronic assembly. While the thermoelectric dehumidifier is primarily shown and described in conjunction with an antenna array enclosure, it is understood that the invention is also applicable to other enclosures in which it is desirable to reduce the relative humidity, such as enclosures for a receiver/exciter, a high power transformer, and AC/DC power.
In one embodiment, a thermoelectric dehumidifier in accordance with the present invention includes at least one thermoelectric chiller element disposed in a sealed region defined by opposing walls. The opposing walls can correspond to a hot plate facing an interior of an enclosure in which the thermoelectric dehumidifier is located and to a coldplate facing an exterior of the enclosure. The thermoelectric dehumidifier device can include a gutter at a bottom of the coldplate for collecting condensate on the coldplate.
In operation, the thermoelectric chiller elements are energized with a direct current signal that is effective to cool the coldplate to a predetermined temperature. Moisture in the air within the relatively sealed enclosure condenses on the coldplate and travels to the gutter. The collected moisture ultimately drains to an exterior of the enclosure to reduce the relative humidity within the enclosure.
An antenna array in accordance with the present invention can include a thermoelectric dehumidifier for extracting moisture from the array enclosure. In one embodiment, the thermoelectric dehumidifier is located proximate an enclosure wall. A drainage tube extends from a gutter for draining condensate from the array interior. The thermoelectric dehumidifier reduces the relative humidity within the array enclosure. BRIEF DESCRIPTION OF THE DRAWINGS
The invention will be more fully understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
FIG. 1 is a schematic cross-sectional of a thermoelectric dehumidifier in accordance with the present invention;
FIG. 1A is a schematic cross-sectional view of an alternative embodiment of a thermoelectric dehumidifier in accordance with the present invention;
FIG. 2 is a lengthwise cutaway view of a thermoelectric dehumidifier in accordance with the present invention;
FIG. 3 is a perspective view of a thermoelectric dehumidifier in accordance with the present invention shown within an enclosure;
FIG. 4 is a further perspective view of the thermoelectric dehumidifier of FIG. 3 within an antenna array enclosure; and
FIG. 5 is a graphical depiction of relative humidity over time in an exemplary electronic enclosure before and after activation of a thermoelectric dehumidifier in accordance with the present invention.
DETAILED DESCRIPTION OF THE INVENTION FIG. 1 shows a thermoelectric dehumidifier 100 in accordance with the present invention for removing reducing moisture levels within a substantially sealed enclosure.
The thermoelectric dehumidifier 100 is well suited to decreasing relative humidity levels within electronic enclosures to reduce corrosion of components within the enclosure. In an exemplary embodiment, the thermoelectric dehumidifier 100 includes at least one thermoelectric chiller (TEC) element 102 (FIG. 2) disposed in a region 104 located between a first wall 106 and a second wall 108. In one embodiment, the first wall 106 corresponds to a hot plate facing an interior of an enclosure and the second wall corresponds to a cold plate facing an exterior of the enclosure, as described more fully below. The region 104 between the hot and cold plates 106,108 should be sealed to provide a closed environment for the thermoelectric chiller elements. In one embodiment, a sealant 110, such as silicone, is disposed at ends of the hot and coldplates to seal the region 104.
The thermoelectric dehumidifier 100 can include an optional gutter 112 for receiving condensate that collects on the cold plate 108. It is understood that gutter is to be construed broadly to include known liquid collecting structures that guide liquid to a desired location. In an exemplary embodiment, the gutter 112 includes a U-shaped channel 114 extending outwardly from the coldplate surface. A drainage mechanism 116, such as a tube or other fluid carrying device, can be connected to the gutter 112 to provide a conduit for fluid to drain from the enclosure.
FIG. 1 A shows an alternative gutter 112' structure in which a channel 114'is formed within the coldplate 108'. A thermally insulative material 119 can be affixed to the coldplate in a region below the channel 114' to inhibit the formation of condensate at locations in which the condensate will not flow into the gutter 112', as described more fully below.
FIG. 2 shows the interior region 104 of the thermoelectric dehumidifier 100 of
FIG. 1 with the hot plate 106 removed. The thermoelectric dehumidifier 100 includes four TEC elements 102a-d coupled in series along the length of the cold plate 108. The TEC elements 102 transfer heat from the cold plate to the hot plate when energized. It is understood that the number of TEC elements can vary in accordance with the requirements of a particular application. It is further understood that TEC elements can also be coupled in parallel. Each of the TEC elements 102 is energized with DC signal energy via first 118a, e.g., positive, and second 118b, e.g., ground, connections. The TEC elements can be provided as part number CP1.4-054L from Melcor corporation of Trenton, New Jersey having a website identified as www.melcor.com. These parts operate at about seven volts drawing about fourteen Amps.
It is understood that the spacing of the TEC elements can vary to meet the requirements of a particular application. In general, the TEC element spacing should minimize temperature gradients between TEC elements.
FIG. 3 shows a portion of an exemplary enclosure 10 having a thermoelectric dehumidifier 100 in accordance with the present invention. The enclosure can be an antenna array for a shipboard radar that may include thousands of transmit/receive modules (not shown). The array 10 includes a support structure 12 for holding the transmit/receive modules. The support structure 12 can include a manifold 14 having a fluid coolant network for dissipating heat and maintaining the temperature within the enclosure to acceptable levels. First and second fluid ports 16 can form a part of the coolant network that can extend throughout the support structure.
The thermoelectric dehumidifier 100 can be located in a variety of locations within the array enclosure. In an exemplary embodiment, the thermoelectric dehumidifier 100 is located in upper corner of the array enclosure 10 to take advantage of natural convection within the enclosure. The hotplate 106 can face the transmit receive modules and the coldplate 108 can face an outer wall of the array enclosure. A stiffening member 109 can be affixed to the hotplate 106 to increase the overall structural integrity of the dehumidifier. A gap ranging from about one inch to about six inches is provided between the coldplate and the enclosure to allow natural convection to circulate air within the enclosure. That is, air within the relatively sealed enclosure circulates without active forces, such as a fan. Mass diffusion reduces humidity in the absence of air circulation but at a relatively slow rate. FIG. 4 shows a further embodiment of an antenna array having a thermoelectric dehumidifier 100 in accordance with the present invention. One or more corners of the thermoelectric dehumidifier 100 proximate the coldplate 108 can be formed as a beveled surface 111 to facilitate condensate collection on the coldplate and into the gutter 112 at the bottom of the device. In addition, portions of the coldplate 108 in which it is undesirable to form condensate can be covered with a thermally insulative material 119. In general, insulation is affixed to the thermoelectric dehumidifier at edges of the outer surface on or near the coldplate as well as below the gutter since condensate formed below the gutter would not drain into the gutter.
In operation, the coldplate 108 is cooled to a relatively cold temperature, e.g., four degrees Celsius, which causes moisture in the enclosure to condense on the coldplate. The moisture collects on the coldplate 108 and travels downward into the gutter 112 and ultimately out of the enclosure via the drainage tube 116. In the event that external air enters the enclosure via the drainage tube, this air is immediately exposed to the coldplate. Thus, moisture within incoming air is at least to some extent removed before it enters the array interior.
It is understood that the overall dimensions of the thermoelectric dehumidifier of the present invention will vary in accordance with the intended application. In one exemplary embodiment, an antenna array includes thousands of transmit/receive modules contained within a 6 by 4 by 1.5 foot array enclosure. An exemplary thermoelectric dehumidifier in accordance with the present invention can include four thermoelectric chiller elements each being about 1.5 inch by 1.5 inch. The dehumidifier can have a length of about 16 inches, a height of about three inches and a width of about one inch.
FIG. 5 shows the relatively humidity over time for an exemplary enclosure that is about five feet wide, six feet high and about one and one half feet deep and contains about five thousand transmit/receive modules. The operating temperature within the array is about twenty-eight degrees Celsius and the thermoelectric dehumidifier is located in an upper corner of the array, as shown in FIG. 4.
When the thermoelectric dehumidifier is activated at time to (17:00 hours), the relative humidity in the array enclosure decreases from about sixty-five percent to about thirty percent in about four hours. The coldplate temperature of the thermoelectric dehumidifier decreases to a steady state temperature of about three or four degrees Celsius.
Similar device performance is achieved for comparable ratios of coldplate surface area and air volume. The rate at which moisture is removed from an enclosure depends in part upon the surface area of the coldplate and the volume of air within the enclosure.
It is understood that the temperature to which the coldplate is cooled can vary. An exemplary temperature range for the coldplate is from about two to about twenty degrees Celsius. In one embodiment, the coldplate temperature is held to about three degrees Celsius. The hotplate has a temperature ranging from about twenty-five degrees Celsius to about fifty-five degrees Celsius. It is understood that the coldplate temperature defines the dew point within the enclosure, which can be selected based upon size of the TEC elements in conjunction with thermal analysis of the enclosure operating condition.
The hotplate and coldplate of the thermoelectric dehumidifier can be formed from a variety of suitable materials known to one of ordinary skill in the art. In general, the hot and coldplates should be relatively heat transmissive and rigid. It is understood that many metals, such as aluminum, as well as plastics and ceramics having suitable properties can be used. In one embodiment, the hotplate and the coldplate are formed from aluminum. The thermoelectric chiller elements can be selected from a variety of suitable Peltier-type devices that move heat from one side of a device to the other when a DC current is applied. An exemplary device includes two ceramic plates having an array of Bismuth Telluride cubes therebetween.
It is understood that one of ordinary skill in the art can readily stack thermoelectric elements in series and/or parallel to achieve a desired heat transfer capacity.
The thermoelectric dehumidifier of the present invention is effective to passively reduce the relative humidity of an enclosure. The passive nature of the thermoelectric chiller elements minimizes electrical and mechanical noise. In addition, the thermoelectric dehumidifier gracefully degrades in performance in the event one or more the thermoelectric chiller elements fails. Further, the placement of the dehumidifier can be selected to reduce the moisture contained incoming air prior to dispersion within the array enclosure. The thermoelectric dehumidifier is relatively low power and is relatively reliable as compared to dehumidifier devices having moving parts.
One of ordinary skill in the art will appreciate further features and advantages of the invention based on the above-described embodiments. Accordingly, the invention is not to be limited by what has been particularly shown and described, except as indicated by the appended claims. All publications and references cited herein are expressly incorporated herein by reference in their entirety.
What is claimed is:

Claims (24)

1. A method of passively reducing moisture from a substantially sealed enclosure, comprising: energizing a thermoelectric chiller element disposed within a sealed region defined by a hotplate and a coldplate for cooling the coldplate such that moisture within the enclosure collects on the coldplate; and draining the collected moisture from the enclosure.
2. The method according to claim 1 , wherein energizing the thermoelectric chiller element includes applying a DC voltage.
3. The method according to claim 1, further including maintaining the cold plate temperature at less than about twenty degrees Celsius.
4. The method according to claim 1 , further including maintaining the cold plate temperature at less than about four degrees Celsius.
5. The method according to claim 1 , further including maintaining a temperature differential between the coldplate temperature and the enclosure temperature that is greater than about ten degrees Celsius.
6. The method according to claim 1 , further including maintaining a temperature differential between the coldplate temperature and the hotplate temperature that is greater than about twenty-five degrees Celsius.
7. The method according to claim 1 , wherein the coldplate faces an outer portion of the enclosure.
8. The method according to claim 7, wherein the hotplate faces an interior of the enclosure.
9. A method of passively reducing the relative humidity in a substantially sealed antenna array enclosure, comprising: placing a thermoelectric dehumidifier within the array enclosure, the thermoelectric dehumidifier having at least one thermoelectric chiller element disposed in a sealed region defined by a coldplate and an opposing hotplate; energizing the at least one thermoelectric chiller element to cool the coldplate to a predetermined temperature such that moisture in the array enclosure collects on the coldplate; and draining the collected moisture from the array enclosure.
10. The method according to claim 9, further including cooling the coldplate to a temperature of less than about four degrees Celsius.
11. A thermoelectric dehumidifier, comprising: a first plate; a second plate in spaced opposition to the first plate so as to define a sealed cavity therebetween; and a first thermoelectric chiller element disposed within the cavity for cooling the first plate.
12. The thermoelectric dehumidifier according to claim 11 , further including a gutter for collecting condensate on the first plate.
13. The thermoelectric dehumidifier according to claim 11, further including a second thermoelectric chiller element coupled in series with the first thermoelectric chiller element.
14. The thermoelectric dehumidifier according to claim 11, further including a second thermoelectric chiller element coupled in parallel with the first thermoelectric chiller element.
15. The thermoelectric dehumidifier according to claim 11 , further including a thermally insulative material disposed on a portion of the first plate.
16. The thermoelectric dehumidifier according to claim 11, wherein an edge of the first plate is beveled.
17. A substantially sealed enclosure having passive moisture reduction, comprising: a thermoelectric dehumidifier including a coldplate; a hotplate disposed in spaced opposition to the coldplate so as to form a cavity; a sealant for sealing the cavity; and a thermoelectric chiller element disposed in the cavity for cooling the coldplate to condense moisture on the coldplate; and a support structure for supporting a plurality of electronic modules.
18. The enclosure according to claim 17, wherein the enclosure is an antenna array.
19. The enclosure according to claim 17, wherein the thermoelectric dehumidifier includes a gutter for collecting the moisture condensed on the coldplate.
20. The enclosure according to claim 19, further including a drain mechanism coupled to the gutter.
21. The enclosure according to claim 20, wherein the drain mechanism includes a tube.
22. The enclosure according to claim 17, wherein the coldplate faces an outer wall of the enclosure.
23. The enclosure according to claim 17, further including insulation covering portions of the coldplate.
24. The enclosure according to claim 17, wherein an edge of the coldplate is beveled.
AU2001261675A 2000-05-18 2001-05-17 Thermoelectric dehumidifier Granted AU2001261675A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09574107 2000-05-18

Publications (1)

Publication Number Publication Date
AU2001261675A1 true AU2001261675A1 (en) 2002-02-14

Family

ID=

Similar Documents

Publication Publication Date Title
EP1283975B1 (en) Thermoelectric dehumidifier
US6499306B2 (en) Compact thermoelectric cooling system
JPH01281344A (en) Dehumidifying device
JP3300431B2 (en) Cooling device for electronic devices by radiative conduction
US7816631B2 (en) Inverter with a housing having a cooling unit
EP0592044B1 (en) Thermoelectric cooling device for thermoelectric refrigerator and process of fabrication thereof
US6834715B2 (en) Apparatus for cooling a battery in an outdoor equipment cabinet
US20080060371A1 (en) Compact refrigeration apparatus
US20070215198A1 (en) Solar cell system with thermal management
US20020015287A1 (en) Cooling system and method for a high density electronics enclosure
CA2055083A1 (en) Heat exchanger for a sealed cabinet
US10028414B2 (en) Passive cooling features for electronics equipment cabinets
CN103872584A (en) Semiconductor refrigerating dehumidifying and cooling electric power cabinet
JPS6292455A (en) Heat radiating equipment for output semiconductor element
US20150192332A1 (en) Thermoelectric assembly
US7836704B2 (en) Compact thermal exchange unit of thermo-electric cooling mode using heat pipe
AU2001261675A1 (en) Thermoelectric dehumidifier
EP2891176B1 (en) Thermoelectric assembly
EP1820333A2 (en) Dehumidified equipment housing
RU2180421C2 (en) Air dehumidifier for spacecraft pressurized compartment
KR200157564Y1 (en) Industrial dehumidifier
KR20050089752A (en) Multipurpose electronic dehumidify dryer
JP3261820B2 (en) Heating element mounting board
JPH09162580A (en) Heat pipe type enclosure heat radiating device
KR19990007787U (en) Dehumidifiers for industrial equipment