AU2001258322A1 - Formulation having mobilising activity - Google Patents

Formulation having mobilising activity

Info

Publication number
AU2001258322A1
AU2001258322A1 AU2001258322A AU2001258322A AU2001258322A1 AU 2001258322 A1 AU2001258322 A1 AU 2001258322A1 AU 2001258322 A AU2001258322 A AU 2001258322A AU 2001258322 A AU2001258322 A AU 2001258322A AU 2001258322 A1 AU2001258322 A1 AU 2001258322A1
Authority
AU
Australia
Prior art keywords
haematopoietic
csf
defibrotide
progenitors
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2001258322A
Other versions
AU2001258322B2 (en
Inventor
Laura Ferro
Alessandro Massimo Gianni
Massimo Iacobelli
Roberto Porta
Carmelo Carlo Stella
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gentium SRL
Original Assignee
Gentium SRL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP00830293A external-priority patent/EP1147777A1/en
Application filed by Gentium SRL filed Critical Gentium SRL
Publication of AU2001258322A1 publication Critical patent/AU2001258322A1/en
Application granted granted Critical
Publication of AU2001258322B2 publication Critical patent/AU2001258322B2/en
Assigned to GENTIUM S.R.L. reassignment GENTIUM S.R.L. Request to Amend Deed and Register Assignors: GENTIUM SPA
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

Formulation having mobilising activity
The present invention relates to a novel formulation capable of increasing the amount of stem cells and progenitor cells in circulation in the peripheral blood of a mammal; the formulation is characterised in that it contains defibrotide in combination with at least one haematopoietic factor having the capacity to mobilise haematopoietic progenitors, preferably G-CSF.
FIELD OF THE INVENTION The possibility of obtaining an increased amount of stem cells and haematopoietic progenitors in circulation in the peripheral blood of a mammal, and in particular in that of a human being, has for years been the subject of intensive research activity; the availability of stem cells and/or haematopoietic progenitors is in fact particularly important in sectors such as the autologous transplantation of circulating haematopoietic progenitors, the allotransplantation of circulating haematopoietic progenitors and in program for the gene therapy of circulating haematopoietic cells.
Although, after birth, stem cells and progenitor cells are located almost exclusively in the bone marrow, they nevertheless exhibit migratory properties; that is to say, under physiological conditions, they migrate through the cavities of the bone marrow and pass into circulation. That process, commonly known as "mobilisation", can be amplified in mammals by various treatments, such as, for example, the administration of cytokines and, in particular, the growth factor of granulocyte colonies (G-CSF); the reverse process, known as "homing", occurs, for example, in irradiated receivers after the transplantation of haematopoietic cells; the mechanisms on which mobilisation and homing are based are, however, still obscure (C.F. Craddock et al., "Antibodies to VLA4 Integrin Mobilize Long- Term Repopulating Cells and Augment Cytokine-Induced Mobilization in Primates and Mice", Blood, Vol. 90, n. 12, 1997, pp. 4779-4788; F. Prosper et al., "Mobilization and Homing of Peripheral Blood Progenitors is Related to Reversible Downregulation of α4βl Integrin Expression and Function", J. Clin. Invest., Vol. 101, n. 11, 1998, pp. 2456-2467; M. Vermeulen et al., "Role of Adhesion Molecules in the Homing and Mobilization of Murine Hematopoietic Stem and Progenitor Cells", Blood, Vol. 92, n.3, 1998, pp. 894-900).
G-CSF (CAS registry number 143011-2-7/Merck Index, 1996, page 4558) is a haematopoietic growth factor which is indispensable in the proliferation and differentiation of the progenitor cells of granulocytes; it is a 18-22 kDa glycoprotein normally produced in response to specific stimulation by a variety of cells, including monocytes, fibroblasts and endothelial cells. The term defibrotide (CAS registry number 83712-60-1) normally identifies a polydeoxyribonucleotide obtained by extraction (US 3,770,720 and US 3,899,481) from animal and/or vegetable tissue; this polydeoxyribonucleotide is normally used in the form of a salt of an alkali metal, generally sodium. Defibrotide is used principally for its anti- thrombotic activity (US 3,829,567) although it may be used in different applications, such as, for example, the treatment of acute renal insufficiency (US 4,694,134) and the treatment of acute myocardial ischaemia (US 4,693,995). United States patents US 4,985,552 and US 5,223,609, finally, describe a process for the production of defibrotide which enables a product to be obtained which has constant and well defined physico-chemical characteristics and is also free from any undesired side-effects.
For the purposes of the present invention, the term defibrotide should therefore be understood as meaning any oligonucleotide and/or polynucleotide obtained by extraction from animal and/or vegetable tissue, in particular from the organs of mammals. Preferably, defibrotide is produced in accordance with the methods described in the patents listed above which should thus be regarded as an integral part of the present description; even more preferably, it is produced in accordance with the method described in United States patents US 4,985,552 and US 5,223,609.
DETAILED DESCRIPTION OF THE INVENTION It has now surprisingly been found that it is possible to obtain increased mobilisation of stem cells and haematopoietic progenitors by the administration of defibrotide in combination and/or in close temporal proximity with a haematopoietic factor having the capacity to mobilise haematopoietic progenitors. As will be appreciated from the Examples, the administration of defibrotide in combination and/or in close temporal proximity with a haematopoietic factor having the capacity to mobilise haematopoietic progenitors permits the attainment of mobilisation levels much higher than those obtainable by the administration of the haematopoietic factor alone.
The subject of the present invention is therefore represented by a formulation containing as "active agents" defibrotide in combination with at least one haematopoietic factor having the capacity to mobilise haematopoietic progenitors, preferably G-CSF. In its preferred embodiment, this formulation is constituted by an injectable aqueous solution; alternatively, the formulation could be constituted by two different solutions, one containing defibrotide and the other containing the haematopoietic factor having the capacity to mobilise haematopoietic progenitors. The formulation according to the present invention is therefore shaped as a combined preparation for simultaneous, separate or sequential use of the aforementioned active principles in order to increase the amount of stem cells and/or haematopoietic progenitors in circulation in the peripherial blood of a mammal. A second subject of the present invention is represented by the use of defibrotide, in combination with at least one haematopoietic factor having the capacity to mobilise haematopoietic progenitors, for the preparation of formulations capable of increasing the amount of stem cells and/or haematopoietic progenitors in circulation in the peripheral blood of a mammal, preferably a human being. Finally, a further subject of the present invention is represented by a method of increasing the amount of stem cells and/or haematopoietic progenitors in circulation in the peripheral blood of a mammal, characterised in that defibrotide is administered to the mammal in combination or in temporal proximity with at least one haematopoietic factor having the capacity to mobilise haematopoietic progenitors. The haematopoietic factor used to conduct the experiments which led to the present invention is G-CSF; however, it is not to be excluded that similar results may be obtained with haematopoietic factors other than G-CSF but nevertheless having the capacity to mobilise haematopoietic progenitors, such as, for example, the growth factor of granulocyte and macrophage colonies (GM-CSF), "Flt3 ligand" (FL), "stem cell factor" (SCF), thrombopoietin (TPO), interleukin 8 (IL-8), and others which will be clear to persons skilled in the art.
The defibrotide used in combination with G-CSF in this first experimental stage was the defibrotide currently marketed by Crinos Spa under the mark Prociclide™ and produced in accordance with the process described in United States patents US 4,985,552 and US 5,223,609.
As regards the methods of administering the two active ingredients, they are not limiting for the purposes of the invention. That is to say, defibrotide and haematopoietic factor having the capacity to mobilise haematopoietic progenitors can be administered to mammals (and in particular to human beings) in accordance with the methods and the posologies known in the art; generally, they are administered orally, intramuscularly, intraperitoneally, subcutaneously or intravenously, the last-mentioned route being the preferred one.
The two active ingredients can also be administered simultaneously or in succession. That is to say, in the first case, they are administered by means of a single formulation which contains both of the active ingredients and to which the usual excipients and/or coadjuvants known in the art have optionally been added; alternatively, the two active ingredients may be administered sequentially, namely, by means of two different formulations, one containing the haematopoietic factor having the capacity to mobilise haematopoietic progenitors, preferably G-CSF, and the other containing the defibrotide.
Generally, G-CSF will be administered subcutaneously, at a dosage of 5 to 24 μg/kg whereas DEF will be administered by continuous infusion at a dosage of 5 to 15 mg/kg/hr for 2-7 days.
As will be appreciated from the accompanying Examples, which are to be regarded purely as non-limiting illustrations of the invention, the combined administration of G-CSF and defibrotide to mice, as the most common experimental mammal model, and to monkeys, permits the attainment of levels of mobilisation much higher than those obtainable by the administration of G-CSF alone, with clear advantages for all those therapeutic sectors for which a high level of mobilisation is desirable. EXAMPLE 1
This experiment was carried out to evaluate the effect of the administration of G- CSF and/or defibrotide (DEF) on the amount of white blood cells (WBC) present in murine blood. BALB/c mice from 6 to 8 weeks old and having a body weight of from 20 to 25 g were subjected to intraperitoneal (IP) injections of G-CSF (5 μg/mouse/day), DEF (1 mg/mouse/day), or a combination of G-CSF (5 μg /mouse/day) and increasing doses of DEF (1, 10, 15 mg/mouse/day). A saline solution, buffered to 0.1%, of murine serum albumin (PBS/MSA) was administered by IP injection to the control mice which had not received G-CSF and/or DEF. The mice were treated for 5 days and sacrificed after 3 or 5 days of treatment, or 3 days after therapy had ceased. The results of this experiment are given in Figure 1. The following symbols were used to represent each group of mice: G-CSF (■) (n=24), DEF 1 (O) (n=3), G-CSF+DEF 1 (♦) (n=13), G-CSF+DEF 10 (A) (n=6), G-CSF+DEF 15 (•) (n=23). The mean white blood cell count in PBS/MSA in the control mice was 2.87 + 0.2 x 10 /ml of blood; the data are expressed as mean + standard error of the mean (SEM). EXAMPLE 2
Mobilisation kinetics of the cells forming the total colonies (CFC) per millilitre of blood of the mice of Example 1. The mean CFC count in PBS/MSA in the control mice was 39 + 12 per ml of blood; the data are given in Figure 2 and are expressed as mean + SEM derived from duplicated cultures on samples from each animal at each point in time. EXAMPLE 3
Changes in the frequency of the total CFCs (CFU-GM + BFU-E + CFU-Mix + HPP-CFC) per 105 buffy-coat cells of peripheral blood in the mice mentioned in Example 1. The mean CFC count in PBS/MSA in the control mice was 3.5 + 1; the data are given in Figure 3 and are expressed as mean + SEM derived from duplicated cultures on samples from each animal at each point in time. EXAMPLE 4
Total CFCs (CFU-GM + BFU-E + CFU-Mix + HPP-CFC) per millilitre of blood after 5 days' treatment of the mice of Example 1 ; the data are given in Figure 4 and are expressed as mean + SEM derived from duplicated cultures on samples from each animal. EXAMPLE 5
Frequency of the total CFCs (CFU-GM + BFU-E + CFU-Mix + HPP-CFC) for 105 buffy-coat cells of peripheral blood in the mice mentioned in Example 1 ; the data are given in Figure 5 and are expressed as mean + SEM derived from duplicated cultures on samples from each animal. EXAMPLE 6
This experiment was carried out to evaluate the effect of the administration of G- CSF and/or DEF on the amount of haematopoietic progenitors/stem cells (High- Proliferative Potentia-Colony Stimulating Cells, or HPP-CFC) in circulation in the peripheral blood of monkeys. The study was carried out in rhesus monkeys (Ma- caca Mulatta) of 4-6 years in good health and which showed normal values for hematology and clinical chemistry. The G-CSF was dosed subcutaneously, 100 μg/kg, for 5 days for two cycles; DEF was dosed 15 mg/kg/hr by a continuous infusion system for 5 days at the second cycle. The animals were anaesthetised for bleeding, administration of G-CSF and changing the drug-bag. The results of this experiment are given in Figure 6, from which it can be appreciated that the combined administration of G-CSF and defibrotide enables an HPP-CFC mobilisation in monkeys which is about 8 times higher than that obtainable by the administration of G-CSF alone. CONCLUSIONS
As will be readily appreciated from the data given in Figure 1, the combined administration of G-CSF and defibrotide produces a substantial increase in the amount of white blood cells in circulation in murine blood. It should, in particular, be noted that the administration of defibrotide alone does not have a positive influence on the amount of white blood cells in circulation; the combination of G- CSF and defibrotide therefore produces a surprising dose-dependent effect of increasing the number of white blood cells, which is not merely the sum of two effects which are independent of one another. Figures 2 to 5 clearly indicate that the combined administration of G-CSF and defibrotide enables levels of mobilisation to be obtained in mice that are from 10 to 100 times higher than those obtainable by the administration of G-CSF alone. Finally, figure 6 confirms that the combined administration of G-CSF and defibrotide enables a stem cell (HPP-CFC) mobilisation in monkeys which is about 8 times higher than that obtainable by the administration of G-CSF alone. The combined effect of the two active ingredients is dose-dependent because the levels of mobilisation increase proportionally with the amount of defibrotide administered; the highest mobilisation peak is reached in all cases on approximately the fifth day from administration.

Claims (13)

1. A formulation containing as active agents defibrotide and at least one haematopoietic factor having the capacity to mobilise haematopoietic progenitors.
2. A formulation according to claim 1, characterised in that the haematopoietic factor having the capacity to mobilise haematopoietic progenitors is G-CSF.
3. A formulation according to claim 1, characterised in that it is an aqueous solution.
4. A formulation according to claim 1, constituted by two different separately administrable formulations, one containing the haematopoietic factor having the capacity to mobilise haematopoietic progenitors and the other containing defibrotide.
5. A formulation containing defibrotide and at least one haematopoietic factor having the capacity to mobilise haematopoietic progenitors, preferably G-CSF, as a combined preparation for simultaneous, separate or sequential use to increase the amount of stem cells and/or haematopoietic progenitors in the peripheral blood of a mammal.
6. A formulation according to claims 1-5 further containing the usual excipients and/or coadjuvants.
7. The use of defibrotide in combination with at least one haematopoietic factor having the capacity to mobilise haematopoietic progenitors for the preparation of formulations capable of increasing the amount of stem cells and/or haematopoietic progenitors in the peripheral blood of a mammal.
8. The use according to claim 7, characterised in that the haematopoietic factor having the capacity to mobilise haematopoietic progenitors is G-CSF.
9. A method of increasing the amount of stem cells and/or haematopoietic progenitors in circulation in the peripheral blood of a mammal, characterised in that defibrotide is administered to the mammal in combination and/or in temporal proximity with at least one haematopoietic factor having the capacity to mobilise haematopoietic progemtors.
10. A method according to claim 9, characterised in that the haematopoietic factor having the capacity to mobilise haematopoietic progenitors is G-CSF.
11. A method according to claim 10, characterised in that G-CSF is administered at a dosage of 5 to 24 μg/kg and defibrotide is administered at a dosage of 5 to 15 mg/kg/hr.
12. A method according to claim 11, characterised in that G-CSF and defibrotide are administered for 2-7 days.
13. A method according to claim 9, characterised in that the mammal is a human being.
AU2001258322A 2000-04-18 2001-04-10 Formulation having mobilising activity Ceased AU2001258322B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP00830293.7 2000-04-18
EP00830293A EP1147777A1 (en) 2000-04-18 2000-04-18 Combination of defibrotide and G-CSF and its use to activate haematopoietic progenitors
PCT/EP2001/004105 WO2001078761A2 (en) 2000-04-18 2001-04-10 Mixture of defibrotide and g-csf ant its use for activating haematopoietic progenitors

Publications (2)

Publication Number Publication Date
AU2001258322A1 true AU2001258322A1 (en) 2002-01-17
AU2001258322B2 AU2001258322B2 (en) 2006-03-16

Family

ID=8175292

Family Applications (2)

Application Number Title Priority Date Filing Date
AU5832201A Pending AU5832201A (en) 2000-04-18 2001-04-10 Formulation having mobilising activity
AU2001258322A Ceased AU2001258322B2 (en) 2000-04-18 2001-04-10 Formulation having mobilising activity

Family Applications Before (1)

Application Number Title Priority Date Filing Date
AU5832201A Pending AU5832201A (en) 2000-04-18 2001-04-10 Formulation having mobilising activity

Country Status (31)

Country Link
US (1) US20040131588A1 (en)
EP (3) EP1147777A1 (en)
JP (1) JP5205668B2 (en)
KR (1) KR100849491B1 (en)
CN (1) CN1183962C (en)
AT (2) ATE443524T1 (en)
AU (2) AU5832201A (en)
BG (1) BG107203A (en)
CA (1) CA2406179C (en)
CY (1) CY1104971T1 (en)
CZ (1) CZ20023426A3 (en)
DE (2) DE60140015D1 (en)
DK (2) DK1621207T3 (en)
EE (1) EE200200596A (en)
ES (2) ES2252227T3 (en)
HR (1) HRP20020835A2 (en)
HU (1) HUP0300560A3 (en)
IL (1) IL152328A (en)
IS (1) IS2171B (en)
MX (1) MXPA02010346A (en)
NO (1) NO20024988L (en)
NZ (1) NZ522016A (en)
PL (1) PL358100A1 (en)
PT (1) PT1621207E (en)
RO (1) RO121006B1 (en)
RU (1) RU2248216C2 (en)
SI (1) SI21079B (en)
SK (1) SK14892002A3 (en)
UA (1) UA73566C2 (en)
WO (1) WO2001078761A2 (en)
ZA (1) ZA200208413B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106567694A (en) * 2016-11-14 2017-04-19 北京国泰通源技术有限公司 Intelligent water controlling pup joint

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8771663B2 (en) 2000-04-18 2014-07-08 Gentium Spa Formulation having mobilising activity
EP1656156A2 (en) 2003-08-13 2006-05-17 Children's Hospital Medical Center Mobilization of hematopoietic cells
US20050069553A1 (en) 2003-08-13 2005-03-31 Yi Zheng Chimeric peptides for the regulation of GTPases
EP2103689A1 (en) * 2008-03-19 2009-09-23 Gentium S.p.A. Synthetic phosphodiester oligonucleotides and therapeutical uses thereof
RU2376985C1 (en) * 2008-07-17 2009-12-27 Владислав Николаевич Ласкавый Means for stem cells activation
ES2694239T3 (en) 2010-11-12 2018-12-19 Gentium S.R.L. Defibrottid for use in prophylaxis and / or treatment of Graft-versus-host disease (GVHD)
IN2014DN10584A (en) 2012-06-22 2015-08-28 Gentium Spa
EP3026122A1 (en) 2014-11-27 2016-06-01 Gentium S.p.A. Cellular-based method for determining the potency of defibrotide
CA3055174C (en) * 2018-01-12 2021-05-18 Cellmig Biolabs Inc. Methods for generation of cytocapsulae and cytocapsular tubes
JP7270762B2 (en) 2019-11-13 2023-05-10 富士フイルム株式会社 Decorative films, moldings, and electronic devices

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2154279A1 (en) 1970-11-03 1972-05-25 Crinos Industria Farmaco Medicines for the fibrinolytic system
US3899481A (en) 1970-11-03 1975-08-12 Crinos Industria Farmaco Process for the controlled partial degradation of deoxyribonucleic acid extracted from animal organs
IT1043823B (en) * 1970-11-03 1980-02-29 Prephar PROCEDURE FOR THE EXTRACTION OF NUCLEIC ACIDS FROM ANIMAL BODIES
IT1206341B (en) 1984-02-16 1989-04-14 Crinos Industria Farmaco PHARMACEUTICAL COMPOSITION FOR THE TREATMENT OF ACUTE MYOCARDIUM ISCHHEMIA.
US4694134A (en) 1985-05-28 1987-09-15 Ajax Magnethermic Corporation Apparatus for overheating edges of skelp for the production of compression welded pipe
US5223609A (en) 1986-04-17 1993-06-29 Crinos Industria Farmacobiologica S.P.A. Process for obtaining chemically defined and reproducible polydeoxyribonucleotides
IT1190313B (en) 1986-04-17 1988-02-16 Crinos Industria Farmaco PROCEDURE FOR OBTAINING CHEMICALLY DEFINED AND REPRODUCIBLE POLYDOXYRIBONUCLEOTIDES AND THE PHARMACOLOGICALLY ACTIVE PRODUCT RESULT
IT1223322B (en) * 1987-10-23 1990-09-19 Crinos Industria Farmaco METHOD FOR PREVENTING THE FORMATION OF BLOOD CLOTS IN THE EXTRA-BODY CIRCUIT OF DIALYSIS EQUIPMENT USEFUL FOR IT
JP2907447B2 (en) * 1988-08-24 1999-06-21 中外製薬株式会社 Antithrombotic agent
IT1231509B (en) * 1989-09-07 1991-12-07 Crinos Industria Farmaco PHARMCEUTIC COMPOSITION FOR TOPICAL USE FOR THERAPY OF CAPILLARY FRAGILITY.
US5199942A (en) * 1991-06-07 1993-04-06 Immunex Corporation Method for improving autologous transplantation
US5977083A (en) * 1991-08-21 1999-11-02 Burcoglu; Arsinur Method for using polynucleotides, oligonucleotides and derivatives thereof to treat various disease states
JP3021906B2 (en) * 1992-01-28 2000-03-15 松下電器産業株式会社 Electric cooker
JPH08127539A (en) * 1994-10-31 1996-05-21 Ajinomoto Co Inc Human il-11-containing peripheral blood stem cell proliferator
WO1996016987A1 (en) * 1994-11-30 1996-06-06 Chugai Seiyaku Kabushiki Kaisha Thrombocytotic factor
US6383480B1 (en) * 1996-07-10 2002-05-07 Meiji Milk Products, Co., Ltd. Composition comprising midkine or pleiotrophin protein and method of increasing hematopoietic cells
WO1999026639A1 (en) * 1997-11-26 1999-06-03 Allegheny University Of The Health Sciences Methods for mobilizing hematopoietic facilitating cells and hematopoietic stem cells into the peripheral blood
US6573372B2 (en) * 1999-01-07 2003-06-03 Heska Corporation Feline immunoglobulin E molecules and compositions there of

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106567694A (en) * 2016-11-14 2017-04-19 北京国泰通源技术有限公司 Intelligent water controlling pup joint

Similar Documents

Publication Publication Date Title
US9782429B2 (en) Formulation having mobilizing activity
Grasso et al. Erythropoietin as a tissue-protective cytokine in brain injury: what do we know and where do we go?
JP2010280671A (en) Use of erythropoietin
US20070258945A1 (en) G-GSF therapy as an adjunct to reperfusion therapy in the treatment of acute myocardial infarction
EP1276497B1 (en) Mixture of defibrotide and g-csf and its use for activating haematopoietic progenitors
Sorg et al. The nonhematopoietic effects of erythropoietin in skin regeneration and repair: from basic research to clinical use
AU2001258322A1 (en) Formulation having mobilising activity
US6720011B1 (en) Injectable composition for cancer treatment
JPH11512747A (en) How to recruit hematopoietic stem cells
Visani et al. All‐trans retinoic acid significantly reduces the incidence of early hemorrhagic death during induction therapy of acute promyelocytic leukemia
EP0950416A1 (en) Preventive and/or therapeutic agent for cachexia
JPH04506818A (en) Maturation of hematopoietic cells
Zwick et al. Aspects of chemotherapy schedules in young and elderly patients with aggressive lymphoma
CN116790744A (en) Ischemic heart disease advanced fibrosis intervention target spot and application thereof
Carrión et al. A randomised study of 10? µg/kg/day (single dose) vs 2× 5? µg/kg/day (split dose) G-CSF as stem cell mobilisation regimen in high-risk breast cancer patients.
MXPA06008181A (en) Use of low-dose erythropoietin for the treatment of acute or chronic kidney failure and for the treatment of wounds