AU2001256123A1 - Method for operating offshore wind turbine plants based on the frequency of their towers - Google Patents
Method for operating offshore wind turbine plants based on the frequency of their towersInfo
- Publication number
- AU2001256123A1 AU2001256123A1 AU2001256123A AU5612301A AU2001256123A1 AU 2001256123 A1 AU2001256123 A1 AU 2001256123A1 AU 2001256123 A AU2001256123 A AU 2001256123A AU 5612301 A AU5612301 A AU 5612301A AU 2001256123 A1 AU2001256123 A1 AU 2001256123A1
- Authority
- AU
- Australia
- Prior art keywords
- frequency
- towers
- wind turbine
- offshore wind
- turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000001105 regulatory effect Effects 0.000 abstract 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/04—Automatic control; Regulation
- F03D7/042—Automatic control; Regulation by means of an electrical or electronic controller
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/0276—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling rotor speed, e.g. variable speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/0296—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor to prevent, counteract or reduce noise emissions
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B17/00—Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
- E02B2017/0091—Offshore structures for wind turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/90—Mounting on supporting structures or systems
- F05B2240/91—Mounting on supporting structures or systems on a stationary structure
- F05B2240/913—Mounting on supporting structures or systems on a stationary structure on a mast
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/90—Mounting on supporting structures or systems
- F05B2240/95—Mounting on supporting structures or systems offshore
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/10—Purpose of the control system
- F05B2270/107—Purpose of the control system to cope with emergencies
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/30—Control parameters, e.g. input parameters
- F05B2270/334—Vibration measurements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/727—Offshore wind turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/728—Onshore wind turbines
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Wind Motors (AREA)
- Control Of Eletrric Generators (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Abstract
A method for operating a wind power plant which is provided with a device for regulating the speed of a rotor of the wind power plant. The method includes the steps of: determining the critical frequency of the respective turbine and/or turbine components, determining the speed range of the rotor in which the entire turbine and/or individual turbine components are excited in the vicinity of their critical frequencies and operation of the wind turbine plant only below and above the critical range; the latter being traversed rapidly.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10016912A DE10016912C1 (en) | 2000-04-05 | 2000-04-05 | Operation of offshore wind turbines dependent on the natural frequency of the tower |
DE10016912 | 2000-04-05 | ||
PCT/DE2001/001189 WO2001077524A1 (en) | 2000-04-05 | 2001-03-28 | Method for operating offshore wind turbine plants based on the frequency of their towers |
Publications (1)
Publication Number | Publication Date |
---|---|
AU2001256123A1 true AU2001256123A1 (en) | 2001-10-23 |
Family
ID=7637663
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2001256123A Abandoned AU2001256123A1 (en) | 2000-04-05 | 2001-03-28 | Method for operating offshore wind turbine plants based on the frequency of their towers |
Country Status (9)
Country | Link |
---|---|
US (1) | US6891280B2 (en) |
EP (1) | EP1269015B1 (en) |
JP (1) | JP4776857B2 (en) |
CN (1) | CN1237271C (en) |
AT (1) | ATE302904T1 (en) |
AU (1) | AU2001256123A1 (en) |
DE (2) | DE10016912C1 (en) |
DK (1) | DK1269015T3 (en) |
WO (1) | WO2001077524A1 (en) |
Families Citing this family (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10113038C2 (en) | 2001-03-17 | 2003-04-10 | Aloys Wobben | Tower vibration monitoring |
DK2113980T3 (en) * | 2001-09-28 | 2016-05-30 | Wobben Properties Gmbh | A method of operating a wind power installation |
NO317431B1 (en) * | 2002-05-22 | 2004-10-25 | Sway As | Device for deep water wind turbines |
KR100702336B1 (en) * | 2003-02-12 | 2007-04-03 | 알로이즈 우벤 | Wind energy installation comprising premounted conductor rails in tower segments |
NO324756B1 (en) | 2003-04-28 | 2007-12-10 | Sway As | Liquid wind turbine with stiffening system |
KR20070026362A (en) * | 2004-02-27 | 2007-03-08 | 미츠비시 쥬고교 가부시키가이샤 | Wind turbine generator, active vibration damping method for the same, and wind turbine tower |
NO20041208L (en) * | 2004-03-22 | 2005-09-23 | Sway As | Procedure for reducing axial power variations for rotor and directional control for wind power with active pitch control |
US7317260B2 (en) * | 2004-05-11 | 2008-01-08 | Clipper Windpower Technology, Inc. | Wind flow estimation and tracking using tower dynamics |
FI118027B (en) * | 2004-08-11 | 2007-05-31 | Abb Oy | Method in connection with a wind turbine |
US7309930B2 (en) * | 2004-09-30 | 2007-12-18 | General Electric Company | Vibration damping system and method for variable speed wind turbines |
TWM279734U (en) * | 2004-10-22 | 2005-11-01 | Jr-Feng Chen | Multi-direction wind-bearing generator |
US7198453B2 (en) * | 2004-11-12 | 2007-04-03 | Keystone Engineering, Inc. | Offshore structure support and foundation for use with a wind turbine and an associated method of assembly |
JP4177339B2 (en) * | 2005-02-16 | 2008-11-05 | 株式会社東芝 | Distributed system, computer, and state transition control method for distributed system |
BRPI0520373A2 (en) * | 2005-07-18 | 2009-05-05 | Clipper Windpower Technology | fluid flow estimator and tracking using tower dynamics |
US7476985B2 (en) * | 2005-07-22 | 2009-01-13 | Gamesa Innovation & Technology, S.L. | Method of operating a wind turbine |
NO325856B1 (en) * | 2005-11-01 | 2008-08-04 | Hywind As | Method for damping unstable free rigid body oscillations in a floating wind turbine installation |
US20070124025A1 (en) * | 2005-11-29 | 2007-05-31 | General Electric Company | Windpark turbine control system and method for wind condition estimation and performance optimization |
JP4814644B2 (en) * | 2006-02-01 | 2011-11-16 | 富士重工業株式会社 | Wind power generator |
WO2007089136A2 (en) * | 2006-02-03 | 2007-08-09 | Pantheon Bv | Wind turbine tower vibration damping |
JP5001358B2 (en) * | 2006-05-30 | 2012-08-15 | アナリティカル デザイン サービス コーポレーション | Vertical axis wind system |
NO335851B1 (en) * | 2006-08-22 | 2015-03-09 | Hywind As | Procedure for wind turbine installation for damping tower oscillations |
EP2076672A1 (en) | 2006-10-24 | 2009-07-08 | Vestas Wind Systems A/S | A method for damping tower oscillations, an active stall controlled wind turbine and use hereof |
DE102006054666B4 (en) | 2006-11-17 | 2010-01-14 | Repower Systems Ag | Vibration damping of a wind turbine |
US8021110B2 (en) | 2007-01-05 | 2011-09-20 | General Electric Company | Tonal emission control for wind turbines |
DE102007009080A1 (en) * | 2007-02-24 | 2008-08-28 | Oerlikon Leybold Vacuum Gmbh | Fast-rotating vacuum pump |
US8226347B2 (en) * | 2007-10-30 | 2012-07-24 | Northern Power Systems Utility Scale, Inc. | Variable speed operating system and method of operation for wind turbines |
ES2552162T5 (en) | 2007-11-26 | 2020-03-02 | Siemens Ag | Wind turbine tower vibration damping method and tilt control system |
DK2235367T3 (en) | 2007-12-21 | 2016-06-27 | 2-B Energy Holding B V | Wind farm |
US8220213B2 (en) * | 2007-12-21 | 2012-07-17 | Tony Jolly | Tower foundation |
US8499513B2 (en) | 2007-12-21 | 2013-08-06 | Tony Jolly | Tower foundation |
US8607517B2 (en) | 2007-12-21 | 2013-12-17 | Tony Jolly | Tower foundation |
DE102008009740A1 (en) | 2008-02-18 | 2009-08-20 | Imo Holding Gmbh | Wind turbine and method for operating the same |
DK2107236T3 (en) * | 2008-04-02 | 2015-02-02 | Siemens Ag | Method for attenuating tower vibration of a wind turbine and wind turbine control system |
DE102008018790A1 (en) * | 2008-04-15 | 2009-10-22 | Wobben, Aloys | Wind energy plant with busbars |
ES2532253T3 (en) * | 2008-04-29 | 2015-03-25 | Gamesa Innovation & Technology, S.L. | Operation method of a wind turbine that minimizes tower oscillations |
EP2123906A1 (en) * | 2008-05-21 | 2009-11-25 | Siemens Aktiengesellschaft | Method and apparatus for damping tower oscillation in a wind turbine |
CN102482859A (en) * | 2009-06-03 | 2012-05-30 | 钥石工程公司 | Pile splice and method of forming a pile splice |
US7772713B2 (en) * | 2009-09-30 | 2010-08-10 | General Electric Company | Method and system for controlling a wind turbine |
US7755210B2 (en) * | 2009-12-04 | 2010-07-13 | General Electric Company | System and method for controlling wind turbine actuation |
ES2380744B1 (en) * | 2009-12-24 | 2013-04-23 | Acciona Windpower S.A. | METHOD FOR MONITORING THE STATE OF THE SUPPORT STRUCTURE OF A WINDER |
NO20100154A1 (en) * | 2010-02-01 | 2011-03-21 | Dag Velund | Device and method of floating wind turbine |
US20110133476A1 (en) * | 2010-04-29 | 2011-06-09 | Jacob Johannes Nies | Rotor support device and method for accessing a drive train of a wind turbine |
US8022566B2 (en) * | 2010-06-23 | 2011-09-20 | General Electric Company | Methods and systems for operating a wind turbine |
DE102010041508A1 (en) | 2010-09-28 | 2012-03-29 | Repower Systems Se | Speed adaptation of a wind energy plant |
DE102010053523B4 (en) | 2010-12-04 | 2015-09-10 | Nordex Energy Gmbh | Method for monitoring a static and / or dynamic stability of a wind turbine |
EP2463517B1 (en) | 2010-12-08 | 2014-06-25 | Siemens Aktiengesellschaft | Method and control system for reducing vibrations of a wind turbine |
US8169098B2 (en) * | 2010-12-22 | 2012-05-01 | General Electric Company | Wind turbine and operating same |
CN102564561A (en) * | 2010-12-30 | 2012-07-11 | 沈阳黎明航空发动机(集团)有限责任公司 | Test method for natural frequency of blade of integral blade disc |
US9151170B2 (en) | 2011-06-28 | 2015-10-06 | United Technologies Corporation | Damper for an integrally bladed rotor |
US20120133134A1 (en) * | 2011-11-15 | 2012-05-31 | General Electric Company | Method and apparatus for damping vibrations in a wind energy system |
US9453499B2 (en) * | 2011-12-30 | 2016-09-27 | Vestas Wind Systems A/S | Wind turbine generator with adaptive locked speed operation |
CN103244349B (en) * | 2013-04-24 | 2015-04-01 | 北京金风科创风电设备有限公司 | Fan tower vibration suppression system and control system for improving fan cut-out wind speed |
DE102013009122A1 (en) * | 2013-05-29 | 2014-12-04 | Voith Patent Gmbh | Underwater current power plant |
CN103334876B (en) * | 2013-07-16 | 2015-04-01 | 北京金风科创风电设备有限公司 | Three-order frequency vibration suppression system and method of fan blade on impeller rotation plane |
JP6165053B2 (en) * | 2013-12-27 | 2017-07-19 | 株式会社日立製作所 | Wind power generator |
US9651443B2 (en) | 2014-06-06 | 2017-05-16 | General Electric Company | System and method for protecting rotary machines |
ES2743942T3 (en) | 2014-07-09 | 2020-02-21 | Vestas Wind Sys As | Active promotion of wind turbine tower oscillations |
CN104122013B (en) * | 2014-07-15 | 2016-06-08 | 西安交通大学 | A kind of on-line monitoring method for large-scale wind electricity tower barrel structure stress |
DK201470481A1 (en) * | 2014-08-13 | 2015-08-17 | Vestas Wind Sys As | Improvements relating to wind turbine operation |
EP3076011B1 (en) * | 2015-03-31 | 2020-09-30 | Siemens Gamesa Renewable Energy A/S | Method for operating a wind turbine |
DK179069B1 (en) | 2015-09-04 | 2017-10-02 | Envision Energy Denmark Aps | A wind turbine and a method of operating a wind turbine with a rotational speed exclusion zone |
ES2900760T3 (en) * | 2015-12-17 | 2022-03-18 | Vestas Wind Sys As | Wind power plant output modulation using different frequency modulation components to damp grid oscillations |
CN108779759A (en) * | 2016-04-08 | 2018-11-09 | 温德维斯有限公司 | Wind power equipment and method for operating wind power equipment |
DE102017124412A1 (en) * | 2017-10-19 | 2019-04-25 | Innogy Se | Soft-Soft foundation for offshore structures |
DE102018100726A1 (en) | 2018-01-15 | 2019-07-18 | Wobben Properties Gmbh | Wind turbine and method for controlling a wind turbine |
DE102018102863A1 (en) | 2018-02-08 | 2019-08-08 | Wobben Properties Gmbh | Method for controlling a wind turbine and corresponding wind turbine |
US11525431B2 (en) | 2018-02-09 | 2022-12-13 | Vestas Wind Systems A/S | Method and system for controlling a wind turbine to manage edgewise blade vibrations |
US11635062B2 (en) | 2018-11-07 | 2023-04-25 | General Electric Renovables Espana, S.L. | Wind turbine and method to determine modal characteristics of the wind turbine in a continuous manner |
DE102018132413A1 (en) | 2018-12-17 | 2020-06-18 | Wobben Properties Gmbh | Method for detecting different vibrations in a wind turbine |
DE102019105296A1 (en) * | 2019-03-01 | 2020-09-03 | Wobben Properties Gmbh | Method for operating a wind power plant, regulator structure, wind power plant and wind farm |
CN109915327B (en) * | 2019-04-18 | 2020-05-12 | 上海电力设计院有限公司 | Method for determining natural frequency of reinforced concrete-steel combined fan tower |
EP3957851A1 (en) * | 2020-08-17 | 2022-02-23 | Siemens Gamesa Renewable Energy A/S | Controlling a floating wind turbine at critical frequencies |
CN113503227B (en) * | 2021-07-07 | 2022-08-16 | 华北电力大学 | Series connection type double-impeller wind generating set resonance crossing method based on vibration frequency searching |
Family Cites Families (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4180372A (en) * | 1977-03-02 | 1979-12-25 | Grumman Corporation | Wind rotor automatic air brake |
DE2823525C2 (en) * | 1978-05-30 | 1985-05-09 | M.A.N. Maschinenfabrik Augsburg-Nuernberg Ag, 8000 Muenchen | Wind turbine and method for its construction |
US4189648A (en) * | 1978-06-15 | 1980-02-19 | United Technologies Corporation | Wind turbine generator acceleration control |
US4160170A (en) * | 1978-06-15 | 1979-07-03 | United Technologies Corporation | Wind turbine generator pitch control system |
US4161658A (en) * | 1978-06-15 | 1979-07-17 | United Technologies Corporation | Wind turbine generator having integrator tracking |
US4193005A (en) * | 1978-08-17 | 1980-03-11 | United Technologies Corporation | Multi-mode control system for wind turbines |
US4316698A (en) * | 1979-08-23 | 1982-02-23 | Bertoia Val O | Fluid-driven turbine with speed regulation |
DE3013473A1 (en) * | 1980-04-08 | 1981-10-15 | Braun Ag, 6000 Frankfurt | METHOD AND ARRANGEMENT FOR CONTROLLING AND CONTROLLING A MOTOR WITH PERMANENT MAGNETIC RUNNER |
US4355955A (en) * | 1981-04-06 | 1982-10-26 | The Boeing Company | Wind turbine rotor speed control system |
US4495423A (en) * | 1981-09-10 | 1985-01-22 | Felt Products Mfg. Co. | Wind energy conversion system |
US4420692A (en) * | 1982-04-02 | 1983-12-13 | United Technologies Corporation | Motion responsive wind turbine tower damping |
US4435647A (en) * | 1982-04-02 | 1984-03-06 | United Technologies Corporation | Predicted motion wind turbine tower damping |
US4496847A (en) * | 1982-06-04 | 1985-01-29 | Parkins William E | Power generation from wind |
US4496846A (en) * | 1982-06-04 | 1985-01-29 | Parkins William E | Power generation from wind |
US4498017A (en) * | 1982-12-16 | 1985-02-05 | Parkins William E | Generating power from wind |
US4461957A (en) * | 1982-06-17 | 1984-07-24 | Control Data Corporation | Speed tolerant alternator system for wind or hydraulic power generation |
US4515525A (en) * | 1982-11-08 | 1985-05-07 | United Technologies Corporation | Minimization of the effects of yaw oscillations in wind turbines |
US4703189A (en) * | 1985-11-18 | 1987-10-27 | United Technologies Corporation | Torque control for a variable speed wind turbine |
US4700081A (en) * | 1986-04-28 | 1987-10-13 | United Technologies Corporation | Speed avoidance logic for a variable speed wind turbine |
US4966525A (en) * | 1988-02-01 | 1990-10-30 | Erik Nielsen | Yawing device and method of controlling it |
GB2228541B (en) * | 1989-02-23 | 1993-04-14 | Rolls Royce Plc | Device for damping vibrations in turbomachinery blades |
US4906060A (en) * | 1989-03-23 | 1990-03-06 | Twind Energy Corporation | Apparatus and method for controlling the output frequency of a wind-driven alternator |
US5083039B1 (en) * | 1991-02-01 | 1999-11-16 | Zond Energy Systems Inc | Variable speed wind turbine |
US5155375A (en) * | 1991-09-19 | 1992-10-13 | U.S. Windpower, Inc. | Speed control system for a variable speed wind turbine |
US5232344A (en) * | 1992-01-17 | 1993-08-03 | United Technologies Corporation | Internally damped blades |
US5302085A (en) * | 1992-02-03 | 1994-04-12 | General Electric Company | Turbine blade damper |
GB2265672B (en) * | 1992-03-18 | 1995-11-22 | Advanced Wind Turbines Inc | Wind turbines |
US5346362A (en) * | 1993-04-26 | 1994-09-13 | United Technologies Corporation | Mechanical damper |
US5440219A (en) * | 1993-05-21 | 1995-08-08 | Wilkerson; Alan W. | Induction motor speed control having improved sensing of motor operative conditions |
US5652485A (en) * | 1995-02-06 | 1997-07-29 | The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency | Fuzzy logic integrated electrical control to improve variable speed wind turbine efficiency and performance |
US5498137A (en) * | 1995-02-17 | 1996-03-12 | United Technologies Corporation | Turbine engine rotor blade vibration damping device |
DE19534404A1 (en) * | 1995-09-16 | 1997-03-20 | En Umwelt Beratung E V I | Wind power installation technical state monitoring method |
EP0970308B1 (en) * | 1997-03-26 | 2003-05-21 | Forskningscenter Riso | A wind turbine with a wind velocity measurement system |
DE19731918B4 (en) * | 1997-07-25 | 2005-12-22 | Wobben, Aloys, Dipl.-Ing. | Wind turbine |
US6600240B2 (en) * | 1997-08-08 | 2003-07-29 | General Electric Company | Variable speed wind turbine generator |
US6137187A (en) * | 1997-08-08 | 2000-10-24 | Zond Energy Systems, Inc. | Variable speed wind turbine generator |
US6327957B1 (en) * | 1998-01-09 | 2001-12-11 | Wind Eagle Joint Venture | Wind-driven electric generator apparatus of the downwind type with flexible changeable-pitch blades |
DK1045988T3 (en) * | 1998-01-14 | 2002-10-14 | Dancontrol Engineering As | Detection and control of oscillations in a wind turbine |
DE19844258A1 (en) * | 1998-09-26 | 2000-03-30 | Dewind Technik Gmbh | Wind turbine |
DE19860215C1 (en) * | 1998-12-24 | 2000-03-16 | Aerodyn Eng Gmbh | Method of operating offshore wind turbine involves controlling turbine if loads exceed a set value to limit forces on pylon |
US6827551B1 (en) * | 2000-02-01 | 2004-12-07 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Self-tuning impact damper for rotating blades |
US6703718B2 (en) * | 2001-10-12 | 2004-03-09 | David Gregory Calley | Wind turbine controller |
US6800956B2 (en) * | 2002-01-30 | 2004-10-05 | Lexington Bartlett | Wind power system |
-
2000
- 2000-04-05 DE DE10016912A patent/DE10016912C1/en not_active Revoked
-
2001
- 2001-03-28 WO PCT/DE2001/001189 patent/WO2001077524A1/en active IP Right Grant
- 2001-03-28 DE DE50107203T patent/DE50107203D1/en not_active Expired - Lifetime
- 2001-03-28 DK DK01929272T patent/DK1269015T3/en active
- 2001-03-28 JP JP2001574754A patent/JP4776857B2/en not_active Expired - Fee Related
- 2001-03-28 AT AT01929272T patent/ATE302904T1/en not_active IP Right Cessation
- 2001-03-28 EP EP01929272A patent/EP1269015B1/en not_active Expired - Lifetime
- 2001-03-28 US US10/240,979 patent/US6891280B2/en not_active Expired - Lifetime
- 2001-03-28 AU AU2001256123A patent/AU2001256123A1/en not_active Abandoned
- 2001-03-28 CN CNB018077110A patent/CN1237271C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003530518A (en) | 2003-10-14 |
EP1269015B1 (en) | 2005-08-24 |
ATE302904T1 (en) | 2005-09-15 |
WO2001077524A1 (en) | 2001-10-18 |
US6891280B2 (en) | 2005-05-10 |
CN1422363A (en) | 2003-06-04 |
DE50107203D1 (en) | 2005-09-29 |
DK1269015T3 (en) | 2005-12-19 |
DE10016912C1 (en) | 2001-12-13 |
CN1237271C (en) | 2006-01-18 |
US20030151260A1 (en) | 2003-08-14 |
EP1269015A1 (en) | 2003-01-02 |
JP4776857B2 (en) | 2011-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2001256123A1 (en) | Method for operating offshore wind turbine plants based on the frequency of their towers | |
EP2626553A3 (en) | Monitoring the operation of a wind energy plant | |
MX2009003399A (en) | A wind turbine, a method for damping edgewise oscillations in one or more blades of a wind turbine by changing the blade pitch and use hereof. | |
DE60323937D1 (en) | WIND TURBINE WITH VERTICAL ROTATING AXLE AND SELF-ESTIPPING TOWER | |
EP1854963A3 (en) | Methods and apparatus for electric power grid frequency stabilization | |
AU2003258568A1 (en) | Method for producing a rotor blade, a corresponding rotor blade and a wind power plant | |
BG105542A (en) | Reduction in the noise produced by a rotor blade of a wind turbine | |
ATE220762T1 (en) | CONTROL LOGIC FOR A WIND TURBINE | |
GB2342124B (en) | Method, device and use of the method for the cooling of guide vanes in a gas turbine plant | |
NO20032316D0 (en) | Procedure for controlling a wind power plant | |
AU2003229497A1 (en) | Blade connection for the rotor blades of a wind-energy turbine and a method for the production thereof | |
MXPA01009155A (en) | Method of operation of a gas turbine engine power plant and a gas turbine engine power plant. | |
ATE355459T1 (en) | METHOD AND DEVICE FOR ARRANGEMENT OF AT LEAST ONE WIND TURBINE ON OPEN WATER | |
CA2318386A1 (en) | Method for measuring and controlling oscillations in a wind turbine | |
ATE299994T1 (en) | WIND TURBINE | |
NO20041044L (en) | Wind turbine device. | |
DK1893870T3 (en) | Method and system for controlling the rotational speed of a rotor in a wind power plant | |
PL367357A1 (en) | Wind turbine power module mounted on the tower foundation | |
CA2483558A1 (en) | Methods of handling wind turbine blades and mounting said blades on a wind turbine, system and gripping unit for handling a wind turbine blade | |
MXPA06013085A (en) | Wind turbine blade and method of installing the wind turbine blade on tower. | |
NO20025296L (en) | A method for operating a wind power plant and such a plant for carrying out the process | |
EP1500792A3 (en) | System and method of cooling steam turbines | |
WO2007092621A3 (en) | Turbine with constant voltage and frequency output | |
HUP0202549A2 (en) | Method and apparatus for increasing efficiency of a wind turbine | |
DK1777410T3 (en) | Wind turbine power control system, which consists of a variation of the coefficient and disturbance of the stray areas |