AU2001255451A1 - Throughput enhancement for single wafer reactor - Google Patents
Throughput enhancement for single wafer reactorInfo
- Publication number
- AU2001255451A1 AU2001255451A1 AU2001255451A AU5545101A AU2001255451A1 AU 2001255451 A1 AU2001255451 A1 AU 2001255451A1 AU 2001255451 A AU2001255451 A AU 2001255451A AU 5545101 A AU5545101 A AU 5545101A AU 2001255451 A1 AU2001255451 A1 AU 2001255451A1
- Authority
- AU
- Australia
- Prior art keywords
- substrate
- substrates
- cassette
- transport assembly
- wafer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000758 substrate Substances 0.000 claims abstract description 193
- 235000012431 wafers Nutrition 0.000 claims abstract description 135
- 238000012545 processing Methods 0.000 claims abstract description 34
- 239000004065 semiconductor Substances 0.000 claims abstract description 13
- 238000000151 deposition Methods 0.000 claims description 43
- 238000000034 method Methods 0.000 claims description 41
- 230000008021 deposition Effects 0.000 claims description 39
- 238000003491 array Methods 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 9
- 239000010409 thin film Substances 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 5
- 238000003860 storage Methods 0.000 claims description 3
- 230000001172 regenerating effect Effects 0.000 claims 2
- 230000008929 regeneration Effects 0.000 claims 1
- 238000011069 regeneration method Methods 0.000 claims 1
- 230000004048 modification Effects 0.000 abstract description 6
- 238000012986 modification Methods 0.000 abstract description 6
- 238000005137 deposition process Methods 0.000 abstract 1
- 238000012546 transfer Methods 0.000 description 17
- 230000009977 dual effect Effects 0.000 description 10
- 230000007246 mechanism Effects 0.000 description 10
- 238000000427 thin-film deposition Methods 0.000 description 7
- 239000010408 film Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/20—Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/673—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
- H01L21/6732—Vertical carrier comprising wall type elements whereby the substrates are horizontally supported, e.g. comprising sidewalls
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/54—Apparatus specially adapted for continuous coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/673—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
- H01L21/67326—Horizontal carrier comprising wall type elements whereby the substrates are vertically supported, e.g. comprising sidewalls
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
- H01L21/67763—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
- H01L21/67778—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading involving loading and unloading of wafers
- H01L21/67781—Batch transfer of wafers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
- H01L21/68764—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
- H01L21/68771—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by supporting more than one semiconductor substrate
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Chemical Vapour Deposition (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Warehouses Or Storage Devices (AREA)
Abstract
A semiconductor substrate processing system, including a single wafer reactor and a multi-wafer holder positionable in the reactor. The system also optionally includes an automated substrate transport assembly including a multi-wand array for transporting a corresponding plurality of wafers into and out of the reactor, and a multi-wafer cassette for simultaneously supplying multiple wafers to the multi-wand array. The multi-wafer modifications permit ready upgradeability to an existing single wafer reactor and markedly enhance the throughput capacity of the reactor while retaining the film uniformity and deposition process control advantages of the single wafer reactor system.
Description
THROUGHPUT ENHANCEMENT FOR SINGLE WAFER REACTOR
BACKGROUND OF THE INVENTION
Field of the Invention
The present invention generally relates to semiconductor manufacturing process systems, and particularly to an enhanced throughput method and apparatus for processing semiconductor wafers in a single wafer reactor.
Description of the Art
In the manufacture of semiconductor materials and device structures by deposition of thin film materials, a variety of deposition systems are in conventional use. These deposition systems include a reaction chamber in which the wafer substrate is heated to a high temperature in the presence of a vapor phase source material to deposit the desired thin film on the wafer surface.
Silicon epitaxial films are typically deposited in two general types of reactors. The older type is a batch reactor, which holds many wafers at a time. Batch reactors have progressively grown in size, driven by the desire for increased throughput. A state of the art batch reactor can hold 34 100mm diameter wafers and 18 150mm diameter
wafers. A typical process time for a batch reactor is several hours; thus, throughputs of tens of wafers per hour can be achieved. Nonetheless, the large area required to hold such numbers of multiple wafers (the wafer carrier or the susceptor in such large system is on the order of 30 inches in diameter) results in less than desirable uniformity across all wafers. The susceptors in such large systems typically have two or more concentric rows of wafers, and the characteristics in each row can be significantly different. In order to achieve improved uniformity, especially on large diameter wafers (150mm and larger), single wafer reactors were developed.
Single wafer reactors have a process chamber that is only slightly larger than the wafer diameter. This results in improved control of the processing conditions and thus yields improved uniformity of the product thin films. The characteristics of primary importance in the product thin film are uniformity of film thickness and uniformity of film resistivity of the silicon epitaxial thin film. Typical process time for a single wafer reactor is on the order of 10-20 minutes with relatively thin (<30 micrometers thickness) epitaxial films, resulting in a throughput of 3-6 wafers per hour.
For large area substrates, single wafer reaction chambers provide very high uniformity, reproducibility, and yield. Multiple-wafer reaction chambers are typically not able to achieve the same levels of uniformity and reproducibility, and the performance of multiple-wafer reaction chambers degrades significantly as the substrate diameter increases.
In single wafer deposition systems, the throughput, expressed as the number of substrates processed per unit time, does not change dramatically with the substrate area. Thus, a 100 mm diameter substrate requires almost the same amount of time for processing as a 200 mm diameter substrate. The decreased processing time for the smaller substrate in a single substrate reactor is on the order of 5-15%. In contrast, multi-substrate reactors are able to achieve large increases in throughput with decreasing substrate area. By way of illustration, a typical barrel reactor (see, for example, U.S. Patent No. 4,099,041 issued July 4, 1978 to Berkman et al. for "Susceptor for Heating Semiconductor Substrates") may hold fifteen 150 mm diameter substrates, eighteen 125 mm substrates, and twenty-eight 100 mm substrates. There is thus a dramatic improvement in throughput for smaller diameter substrates.
As a result of this greater throughput efficiency, single wafer deposition tools are not cost-competitive with multi-substrate reactors for smaller diameter substrates. This disadvantage, however, must be balanced against the greater uniformity and reproducibility achievable in processing smaller diameter substrates in single wafer deposition chambers. Further, there is a large existing base of installed single wafer deposition systems.
U.S. Patent No. 5,855,681 issued January 5, 1999 to Mayden, et al. for "Ultra High Throughput Wafer Vacuum Processing System" discloses one approach to the problem of achieving high throughput of wafers. The disclosure of such patent is incorporated herein by reference in its entirety. Mayden provides a complex apparatus utilizing a
plurality of dual wafer processing chambers arrayed around a common wafer handling system (robot), together with a loadlock chamber for introducing and extracting wafers from the system. The Mayden system is an integrated, stand-alone wafer processing system comprising multiple complex sub-functions, and thus entails an intricate and expensive apparatus requiring correspondingly complex and expensive support systems.
There is accordingly a need in the art to provide a thin film deposition system for smaller diameter substrates that improves operating efficiency by processing a significantly greater number of wafers per unit time, while retaining the significant advantages of uniformity and reproducibility that are characteristic of a single wafer deposition chamber, in a relatively simple and economic apparatus configuration.
It is one object of the invention to provide an improved reactor system for epitaxial thin film formation.
It is another object of the present invention to provide a means and method for improving the throughput and operational efficiency of a single wafer reactor.
It is a further object of the present invention to provide an increased throughput thin film deposition processing system for smaller diameter wafers, utilizing existing single wafer reaction chambers and their associated (existing) wafer handling and processing
systems.
It is a still further object of the present invention to provide an increased throughput thin film deposition processing system for smaller diameter wafers, utilizing existing single wafer reaction chambers and their associated (existing) wafer handling and processing systems, in a manner that minimizes new expenditure requirements and maximizes utilization of existing investment in semiconductor processing equipment.
Other objects and advantages of the present invention will be more fully apparent from the ensuing disclosure and appended claims.
SUMMARY OF THE INVENTION
The present invention relates to an enhanced throughput method and apparatus for processing plural semiconductor wafers in a single wafer reactor.
The method and apparatus of the invention are therefore amenable to implementation as a retrofit modification of an existing single wafer reactor, to enhance the throughput capacity thereof.
In one aspect, the invention relates to a semiconductor substrate processing system, comprising:
a reactor comprising a single substrate deposition chamber; and
a wafer holder positionable in the deposition chamber, having a plurality of recesses formed therein, with each of such recesses being arranged and configured to hold a correspondingly sized substrate therein.
In another aspect, the invention relates to a method of increasing the throughput of a semiconductor processing system including a reactor comprising a single substrate deposition chamber, by positioning in the deposition chamber a substrate holder having a plurality of recesses formed therein, with each of said recesses being arranged and configured to hold a correspondingly sized substrate therein.
Other aspects, features and embodiments of the invention will be more fully apparent from the ensuing disclosure and claims.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1A (PRIOR ART) is a schematic top plan view of a substrate holder of the prior art.
Figure IB is a schematic top plan view of a substrate holder according to one embodiment of the present invention.
Figure 1C is a schematic top plan view of a substrate holder according to another embodiment of the present invention.
Figure 2A (PRIOR ART) is a schematic top plan view of a substrate cassette of the prior art.
Figure 2B is a schematic top plan view of a substrate cassette according to one embodiment of the present invention.
Figure 3 is a schematic top plan view of a transport assembly unit according to one embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION. AND PREFERRED
EMBODIMENTS THEREOF
The present invention provides an apparatus and method for processing two or more wafers at a time in what was originally a single wafer processing system. The invention in one embodiment utilizes a wafer holder (e.g., susceptor) for holding multiple substrates, a substrate cassette for storage and bulk transport of multiple arrays of substrates, and an automated transfer mechanism to transfer substrates from the substrate cassette to the reactor and subsequently (after thin film deposition has been completed in the reactor) from the reactor to the same or a different substrate cassette.
Such automated transfer mechanism preferably is under computer control and functions without human intervention.
The substrate cassette may be configured in any suitable manner to provide a source of substrates to the reactor, being preferably configured as hereinafter more fully described, to accommodate multiple arrays of the substrates, as a source for wafers that are picked up, transported to the deposition chamber of the reactor, coated in the deposition chamber, then extracted from the chamber of the reactor, and transported to the same cassette, or to a different cassette or other repository for the coated substrate articles.
Figure 1A depicts in top plan view a prior art substrate holder 10 deployed in a typical single substrate reactor. The prior art substrate holder 10 is a round plate-like element formed of a suitable material such as graphite having appropriate heat-resistant character. The holder 10 as illustrated has a recess 18 formed therein, bounded by the recess side wall 20 and the floor 22 of the recess. The recess is correspondingly sized to retain therein a large substrate, e.g., a wafer of 200mm diameter.
Figure IB is a top plan schematic view of a substrate holder 30 according to one embodiment of the present invention. The substrate holder 30 is of a round plate-like form, having an outer dimension (outer diameter) that is compatible with the single wafer reactor and corresponds to the outer dimension of the prior art holder for such reactor, as shown in Figure 1 A.
The wafer holder 30 as shown in Figure IB recesses 40 and 42 formed therein, with each of the recesses being sized to accept smaller substrates than the corresponding
single wafer holder shown in Figure 1A. For example, the multi-recess wafer holder may have recesses for holding 100mm diameter wafers therein.
Figure IC is a schematic top plan view of a substrate holder 60 according to another embodiment of the present invention. The substrate holder 60 as illustrated has four recesses 62 therein, each being of a suitable diameter, e.g., 100mm, to hold a correspondingly sized wafer therein. It will of course be recognized that the recess is typically of slightly larger dimensional character than the wafer to be held therein, so as to provide an appropriate fit, consistent with ready insertability of wafers into and extraction of wafers from the recess, without binding.
In one embodiment, the present invention provides a new substrate cassette and transfer mechanism enabling automatic transfer of a plurality of substrates into and out of the deposition chamber simultaneously.
Figure 2 A depicts a prior art cassette 100 suitable for use with a single chamber reactor.
Cassette 100 is configured to hold a plurality of substrates, typically 25, in slots 102 of the respective opposedly facing side walls 104 and 106. The side walls 104 and 106 at
their respective ends are joined to end walls 108 and 110 to form an open-bottomed box-like container in which the substrates are stored and transported.
Figure 2B is a schematic top plan view of a substrate cassette 120 according .to one embodiment of the present invention. The cassette 120 features slots 122 in side walls 124 and 128 and intermediate wall 126, all of such walls being parallel to each other, and such walls are joined as shown with end walls 130, 132, 134 and 136.
The cassette thereby forms a two-compartment structure, including a first compartment 138 and a second compartment 140, to contain the substrates in slots 122. In this manner, a first array of substrates is retained in the left-hand portion of the cassette (compartment 138, having reference to the top plan view shown in Figure 2B), and a second array of substrates is retained in the right-hand portion of the cassette (compartment 140) (substrates not shown in Figure 2B for reasons of clarity).
Figure 3 is a schematic top plan view of a transport assembly unit 144 according to one embodiment of the present invention. The transport assembly unit 144 in the embodiment shown comprises two wand subassemblies 148 and 150 deployed on robotic arm 152 and automated by means of processor (CPU) 156 joined by signal transmission line 154 to the robotic arm.
The processor 156 may be programmably arranged to effect translation of the transport assembly unit and gripping/release actions of the wand subassemblies 148 and 150, according to a cycle time program or other predetermined and actuated sequence of operational steps. The processor may be of any suitable type, as for example a microprocessor or microcontroller unit, or a computer terminal.
In operation, the substrate cassette is loaded into a loadlock station and the transfer mechanism (robot) is programmably arranged to pick substrates out of the cassette and transfer them into the deposition chamber, depositing the substrates into the recesses of the wafer holder. Following thin film deposition within the chamber, the substrates are retrieved by the transfer mechanism and transferred back to either the same cassette or a different cassette.
In the dual substrate array embodiment shown in Figure 2B the center-to-center spacing of corresponding substrates in respective tray sections of the cassette (e.g., between the center of a wafer in a first slot of the left hand tray section, and the center of a wafer in a first slot of the right-hand tray section) is the same as the center-to- center spacing of the recipient recesses for such substrates in the substrate holder, and such center-to-center spacing is also the same as the center-to-center spacing of the wand elements of the automated substrate transport assembly.
The automated substrate transport assembly is usefully employed as a robot mechanism with plural "wand" or wafer holder elements attached. The wafer may be secured to a
corresponding wand during wafer transport, e.g., by vacuum, as disclosed in U.S. Patent No. 4,775,281, Apparatus and Method for Loading and Unloading Wafers, issued to Prentakis on Oct. 4, 1988, the disclosure of which is hereby incorporated herein by reference in its entirety. Alternatively, other suitable securing means and/or methods may employed for wafer transport.
When the multi-wafer holder, automated substrate transport assembly including plural wands, and multi-wafer cassette of the present invention are operatively coupled and employed in accordance with the present invention, smaller (e.g., 100mm) wafers are processed in the single wafer reactor with significantly greater throughput than is possible when processing larger (e.g., 200mm) wafers in the same reactor. However, the significant advantages of uniformity and reproducibility of deposition inherent in the single wafer reaction chamber are retained.
As will be clear to those of ordinary skill in the art, variations are possible within the broad scope and spirit of the present invention. For example, two wafers could be simultaneously processed within recesses of the multi-substrate holder, with the transport of the wafers into and out of the deposition chamber being effected by a prior art single wand transfer system, viz., by making two trips. In such arrangement, the wafers could be extracted from and/or deposited into either a single wafer holding cassette, or into a dual cassette of the type illustratively shown in Figure 2B, by appropriately programming the transport mechanism (robot).
Alternatively, the substrate holder can be configured with three or more recesses formed therein, for the simultaneous processing of more than two substrates. The greatest throughput will be achieved by utilizing a multi-wafer cassette similar to the type shown in Figure 2B and a multi-wand transfer mechanism similar to the type shown in Figure 3.
Use of a prior art single wand transfer mechanism with either a dual cassette of the type shown in Figure 2B or a single cassette of the prior art as shown in Figure 2A, is within the broad spirit and scope of the present invention and could be practiced by one of ordinary skill in the art without undue experimentation. Similarly, either a single or dual wand transfer mechanism and single or dual cassette may be employed for the insertion and extraction of an odd number of substrates being processed simultaneously in the broad practice of the present invention.
As a further variant embodiment, the same system can be expanded to more than two wafers being transported and/or processed simultaneously.
A double-sided wand is employed in one embodiment of the invention, for loading and unloading wafers, with one wafer being invertedly positioned on the wand, e.g., on an upper face thereof, while a second wafer is normally positioned on a wand on the lower face of the wand. The wand is axially rotatable to translate a formerly bottom face of the wand to a top face position, and to concurrently translate a formerly top face of the
wand to a bottom face position, so that associated wafers are flipped in position by such axially rotation of the wand.
A multi-parted cassette could be used in another embodiment, to replace a wand altogether. The cassette parts would act like a wand to load and unload wafers, and a fork-like attachment on the arm (which otherwise would have a wand assembly mounted thereon) would pick up the parts of the cassette. The cassette would in essence disassemble itself in one loadlock of the system, and reassemble again in the other loadlock.
In another embodiment, the susceptor itself could be loaded and unloaded in a cyclic manner. Having two or more susceptors rotating through the deposition chamber would reduce chamber etch times, so that as one susceptor is being etched, another could be running process.
The invention contemplates in another embodiment single wafer transport into and out of the deposition chamber, with the growth process being carried out with a susceptor holding a multiplicity of wafers. For example, a susceptor may be constructed to hold two 125mm diameter wafers on a single susceptor, but the wafers are loaded and unloaded in serial (single) fashion.
By way of specific example, a single wafer reactor may be modified with a susceptor that is constructed to hold two 4-inch wafers on what was nominally a single 8-inch susceptor.
In another example, a single wafer reactor system may be modified by provided a susceptor constructed to hold five 4-inch wafers.
In various other embodiments, the system may be selectively arranged to use only a single substrate holder in the loadlock, for ease of loading and unloading wafers.
The susceptor ring may also be varied and modified in the practice of the invention.
The features and advantages of the invention are more fully shown by the following non-limiting example.
Example 1
An increased through-put thin film deposition processing arrangement in accordance with the present invention was implemented on an ASM Epsilon One, Model E2 silicon chemical vapor deposition (CVD) system. Unmodified, this single wafer reactor can process one substrate at a time, with the diameter of the substrate ranging from 100- 200mm.
Following modification of the system in accordance with the present invention, the system was operated to simultaneously process two 100 mm wafers, with fully automated substrate transfer.
This system was modified to comprise the following components:
♦ A dual cassette was designed to hold dual arrays of 100mm wafers side by side, and to fit into the existing loadlock
♦ A transfer mechanism was adapted to contain dual wands on the wafer transfer arm.
♦ A wafer holder was provided with two recesses formed therein, shaped and located to hold two 100mm substrates.
♦ Concomitant modifications were made in the tools and control logic in the existing rotation and wafer transfer sub-system.
Over 200 dual wafer transfers were performed with no operational problems. The ability to deposit thin films onto two substrates simultaneously in the single substrate reactor effectively doubled the throughput, over sequential processing of single wafers. This resulted in a dramatic reduction in manufacturing costs, while retaining the significant advantages of uniformity and reproducibility of the thin film deposition.
****
The present invention extends to and encompasses other features, modifications, and alternative embodiments, as will readily suggest themselves to those of ordinary skill in the art based on the disclosure and illustrative teachings herein. The claims that follow are therefore to be construed and interpreted as including all such features, modifications and alternative embodiments, within their spirit and scope.
Claims (46)
1. A semiconductor substrate processing system, comprising:
a reactor comprising a single substrate deposition chamber; and
a wafer holder positionable in said deposition chamber, having a plurality of recesses formed therein, with each of said recesses being arranged and configured to hold a correspondingly sized substrate therein.
2. The system of claim 1, further comprising an automated substrate transport assembly including a wand array comprising a plurality of wands constructed and arranged to simultaneously transport a corresponding plurality of substrates into and out of the deposition chamber.
3. The system of claim 1, further comprising an automated substrate transport assembly arranged for serially transporting single ones of a plurality of substrates into and out of the deposition chamber.
4. The system of claim 1, further comprising an automated substrate transport assembly.
5. The system of claim 4, further comprising a substrate cassette for storage and bulk transport of plural arrays of substrates, and positionable in substrate pickup and substrate delivery relationship to the automated substrate transport assembly.
6. The system of claim 5, further comprising an automated substrate transport assembly including a wand array comprising a plurality of wands constructed and arranged to simultaneously transport a corresponding plurality of substrates into and out of the deposition chamber, wherein the automated substrate transport assembly and substrate cassette are constructed and arranged so that when the automated substrate transport assembly is translated into a pickup position relative to the substrate cassette, said plurality of wands engage and extract a plurality of substrates from the substrate cassette, with each wand engaging and extracting a substrate from a different one of said plural arrays of substrates, and so that when the automated substrate transport assembly is translated into a deposit position relative to the substrate cassette, said plurality of wands release and deposit a plurality of substrates on the substrate cassette, with each wand releasing and depositing a substrate into a different one of said plural arrays of substrates.
7. The system of claim 1, further comprising an automated substrate transport assembly including a double-sided wand array comprising a plurality of wands constructed and arranged to simultaneously transport a corresponding plurality of substrates into and out of the deposition chamber.
8. The system of claim 1, further comprising a loadlock chamber, and a wandless automated substrate transport assembly including a multiparted cassette, and a transport arm arranged to selectively engage said multiparted cassette and disengage from said multiparted cassette in the loadlock chamber.
9. The system of claim 1, further comprising an etch chamber for regeneration of a wafer, at least two wafer holders and an automated substrate transport assembly arranged to introduce one of said at least two wafer holders into the reactor while another of said at least two wafer holders is in said etch chamber, and to thereafter extract wafer holders from the reactor and etch chamber, followed by introduction of the wafer holder from the etch chamber into the reactor, and introduction of the wafer holder from the reactor into the etch chamber.
10. The system of claim 1, wherein the wafer holder has two recesses therein.
11. The system of claim 1 , wherein the wafer holder has four recesses therein.
12. The system of claim 1, wherein the wafer holder has a diameter in the range of from about 200mm to about 350mm.
13. The system of claim 1, wherein the wafer holder has a diameter in the range of from about 200mm to about 300mm.
14. The system of claim 1, wherein each of the wafer holder recesses has a diameter in the range of from about 100mm to about 150mm.
15. The system of claim 1, wherein each of the wafer holder recesses has a diameter in the range of from about 100mm to about 125mm.
16. The system of claim 1, further comprising a substrate cassette including slot members for positioning substrates in plural arrays, and wherein successive arrays are in side-by-side relationship to one another.
17. The system of claim 16, wherein the substrate cassette is constructed and arranged for holding two arrays of substrates, wherein all substrates are planar and each respective substrate in a first array is generally coplanar with a corresponding respective substrate in a second array.
18. The system of claim 17, wherein the first and second arrays are parallel to one another.
19. The system of claim 1, further comprising an automated substrate transport assembly and a substrate cassette, wherein the substrate holder, automated substrate transport assembly, and substrate cassette are constructed and arranged to simultaneously process two substrates.
20. The system of claim 1 , wherein the reactor comprises a single wafer deposition chamber sized for processing single substrates having a 200mm diameter.
21. The system of claim 1, wherein the plurality of recesses formed in the wafer holder are arranged and configured to hold substrates having a 100mm diameter.
22. The system of claim 1, wherein each of the recesses formed in the wafer holder is circular.
23. The system of claim 1, further comprising a processor for programmably operating the automated substrate transport assembly according to a cycle time program.
24. A method of increasing the throughput of a semiconductor processing system including a reactor comprising a single substrate deposition chamber, said method comprising:
positioning in said deposition chamber a substrate holder having a plurality of recesses formed therein, with each of said recesses being arranged and configured to hold a correspondingly sized substrate therein.
25. The method of claim 24, further comprising providing an automated substrate transport assembly including a wand array comprising a plurality of wands constructed and arranged to simultaneously transport a corresponding plurality of substrates into and out of the deposition chamber.
26. The method of claim 24, further comprising providing an automated substrate transport assembly arranged for serially transporting single ones of a plurality of substrates into and out of the reactor.
27. The method of claim 24, further comprising providing an automated substrate transport assembly.
28. The method of claim 27, further comprising providing a substrate cassette for storage and bulk transport of plural arrays of substrates, wherein the cassette is positionable in substrate pickup and substrate delivery relationship to the automated substrate transport assembly.
29. The method of claim 28, further comprising providing an automated substrate transport assembly including a wand array comprising a plurality of wands constructed and arranged to simultaneously transport a corresponding plurality of substrates into and out of the deposition chamber, wherein the substrate cassette contains plural arrays of substrates, and positioning the substrate cassette in substrate pickup and substrate delivery relationship to the automated substrate transport assembly; and
operating the semiconductor processing system by:
translating the automated substrate transport assembly into a pickup position relative to the substrate cassette, so that the plurality of wands engage and extract a plurality of substrates from the substrate cassette, with each wand engaging and extracting a substrate from a different one of the plural arrays of substrates;
translating the automated substrate transport assembly carrying the engaged and extracted substrates to the deposition chamber and releasing the substrates into respective recesses in the wafer holder;
depositing thin film material on the substrates in the deposition chamber, to yield coated substrates;
translating the automated substrate transport assembly into the deposition chamber after the depositing step is completed and extracting the coated substrates from the respective recesses in the wafer holder;
translating the automated substrate transport assembly carrying the extracted coated substrates into a deposit position relative to said substrate cassette or a second substrate cassette, and releasing the coated substrates to said substrate cassette or a second substrate cassette;
whereby the throughput of the semiconductor processing system is increased relative to serial transport and processing of individual substrates.
30. The method of claim 24, comprising using a double-sided wand assembly comprising a plurality of wands and arranged to simultaneously transport a corresponding plurality of substrates into and out of the deposition chamber.
31. The method of claim 24, comprising sequentially using multiple wafer holders including positioning one of the multiple wafer holders in the deposition chamber for processing of wafers thereon, and concurrently regenerating another of said wafer holders after it has been in the deposition chamber during processing of wafers thereon.
32. The method of claim 31, wherein said regenerating comprises etch processing of said another of said wafer holders.
33. The method of claim 24, wherein the wafer holder has two recesses therein.
34. The method of claim 24, wherein the wafer holder has four recesses therein.
35. The method of claim 24, wherein the wafer holder has a diameter in the range of from about 200mm to about 350mm.
36. The method of claim 24, wherein the wafer holder has a diameter in the range of from about 200mm to about 300mm.
37. The method of claim 24, wherein each of the wafer holder recesses has a diameter in the range of from about 100mm to about 150mm.
38. The method of claim 24, wherein each of the wafer holder recesses has a diameter in the range of from about 100mm to about 125mm.
39. The method of claim 24, further comprising providing a substrate cassette including slot members for positioning substrates in plural arrays, and wherein successive arrays are in side-by-side relationship to one another.
40. The method of claim 24, further comprising providing a substrate cassette that is constructed and arranged for holding two arrays of substrates, wherein all substrates are planar and each respective substrate in a first array is generally coplanar with a corresponding respective substrate in a second array.
41. The method of claim 40, wherein the first and second arrays are parallel to one another.
42. The method of claim 24, further comprising providing an automated substrate transport assembly and a substrate cassette, wherein the substrate holder, automated substrate transport assembly, and substrate cassette are constructed and arranged to simultaneously process two substrates.
43. The method of claim 24, wherein the reactor comprises a single wafer deposition chamber sized for processing single substrates having a 200mm diameter.
44. The method of claim 24, wherein the plurality of recesses formed in the wafer holder are arranged and configured to hold substrates having a 100mm diameter.
45. The method of claim 24, wherein each of the recesses formed in the wafer holder is circular.
46. The method of claim 24, further comprising providing an automated substrate transport assembly for transporting substrates into and out of the deposition chamber, and programmably operating the automated substrate transport assembly according to a cycle time program.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09563784 | 2000-04-29 | ||
US09/563,784 US6508883B1 (en) | 2000-04-29 | 2000-04-29 | Throughput enhancement for single wafer reactor |
PCT/US2001/012593 WO2001083333A1 (en) | 2000-04-29 | 2001-04-18 | Throughput enhancement for single wafer reactor |
Publications (1)
Publication Number | Publication Date |
---|---|
AU2001255451A1 true AU2001255451A1 (en) | 2001-11-12 |
Family
ID=24251897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2001255451A Abandoned AU2001255451A1 (en) | 2000-04-29 | 2001-04-18 | Throughput enhancement for single wafer reactor |
Country Status (16)
Country | Link |
---|---|
US (1) | US6508883B1 (en) |
EP (1) | EP1339625B1 (en) |
JP (1) | JP2003532302A (en) |
KR (1) | KR100758567B1 (en) |
CN (1) | CN1270946C (en) |
AT (1) | ATE382023T1 (en) |
AU (1) | AU2001255451A1 (en) |
CA (1) | CA2407358A1 (en) |
CZ (1) | CZ20023573A3 (en) |
DE (1) | DE60132110T2 (en) |
IL (1) | IL152500A0 (en) |
MX (1) | MXPA02010669A (en) |
MY (1) | MY119887A (en) |
NO (1) | NO20025177L (en) |
TW (1) | TW593741B (en) |
WO (1) | WO2001083333A1 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8034100B2 (en) * | 1999-03-11 | 2011-10-11 | Endologix, Inc. | Graft deployment system |
US6645344B2 (en) * | 2001-05-18 | 2003-11-11 | Tokyo Electron Limited | Universal backplane assembly and methods |
US20030022498A1 (en) * | 2001-07-27 | 2003-01-30 | Jeong In Kwon | CMP system and method for efficiently processing semiconductor wafers |
US8060252B2 (en) | 2007-11-30 | 2011-11-15 | Novellus Systems, Inc. | High throughput method of in transit wafer position correction in system using multiple robots |
US9002514B2 (en) * | 2007-11-30 | 2015-04-07 | Novellus Systems, Inc. | Wafer position correction with a dual, side-by-side wafer transfer robot |
US20090194026A1 (en) * | 2008-01-31 | 2009-08-06 | Burrows Brian H | Processing system for fabricating compound nitride semiconductor devices |
US9343273B2 (en) * | 2008-09-25 | 2016-05-17 | Seagate Technology Llc | Substrate holders for uniform reactive sputtering |
US8216379B2 (en) * | 2009-04-23 | 2012-07-10 | Applied Materials, Inc. | Non-circular substrate holders |
CN102117757A (en) * | 2011-01-17 | 2011-07-06 | 上海宏力半导体制造有限公司 | Wafer cover with self-recognition function and wafer assembling and disassembling platform assembly |
JP5795172B2 (en) * | 2011-03-17 | 2015-10-14 | 株式会社アルバック | Semiconductor manufacturing equipment |
CN103132055B (en) * | 2011-12-01 | 2015-01-14 | 北京北方微电子基地设备工艺研究中心有限责任公司 | Substrate material loading assembly, substrate loading and unloading device and plasma enhanced chemical vapor deposition (PECVD) device |
US20130171350A1 (en) * | 2011-12-29 | 2013-07-04 | Intermolecular Inc. | High Throughput Processing Using Metal Organic Chemical Vapor Deposition |
CN103451630B (en) * | 2012-05-29 | 2015-07-01 | 北京北方微电子基地设备工艺研究中心有限责任公司 | Substrate loading device and PECVD equipment |
CN104658956A (en) * | 2013-11-18 | 2015-05-27 | 北京北方微电子基地设备工艺研究中心有限责任公司 | Support structure for wafer transfer system |
JP6478878B2 (en) * | 2015-09-01 | 2019-03-06 | 東京エレクトロン株式会社 | Substrate processing apparatus, substrate transport method, and computer readable storage medium storing substrate transport program |
KR101904671B1 (en) * | 2017-09-29 | 2018-10-04 | 캐논 톡키 가부시키가이샤 | Structure for supporting substrate, vacuum deposition apparatus including the same and deposition method |
US10796940B2 (en) | 2018-11-05 | 2020-10-06 | Lam Research Corporation | Enhanced automatic wafer centering system and techniques for same |
US11587815B2 (en) * | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4099041A (en) * | 1977-04-11 | 1978-07-04 | Rca Corporation | Susceptor for heating semiconductor substrates |
US4801241A (en) * | 1984-03-09 | 1989-01-31 | Tegal Corporation | Modular article processing machine and method of article handling therein |
US4566726A (en) * | 1984-06-13 | 1986-01-28 | At&T Technologies, Inc. | Method and apparatus for handling semiconductor wafers |
US4775281A (en) | 1986-12-02 | 1988-10-04 | Teradyne, Inc. | Apparatus and method for loading and unloading wafers |
US4951601A (en) * | 1986-12-19 | 1990-08-28 | Applied Materials, Inc. | Multi-chamber integrated process system |
KR970003907B1 (en) * | 1988-02-12 | 1997-03-22 | 도오교오 에레구토론 가부시끼 가이샤 | Resist process system and resist processing method |
US5820686A (en) * | 1993-01-21 | 1998-10-13 | Moore Epitaxial, Inc. | Multi-layer susceptor for rapid thermal process reactors |
JPH07321178A (en) * | 1994-05-24 | 1995-12-08 | Hitachi Ltd | Carrier device and multichamber device with the carrier device |
JP2845773B2 (en) * | 1995-04-27 | 1999-01-13 | 山形日本電気株式会社 | Atmospheric pressure CVD equipment |
US6299404B1 (en) * | 1995-10-27 | 2001-10-09 | Brooks Automation Inc. | Substrate transport apparatus with double substrate holders |
JPH09285982A (en) * | 1996-04-19 | 1997-11-04 | Metsukusu:Kk | Thin workpiece carrier device |
JP3947761B2 (en) * | 1996-09-26 | 2007-07-25 | 株式会社日立国際電気 | Substrate processing apparatus, substrate transfer machine, and substrate processing method |
US5855681A (en) * | 1996-11-18 | 1999-01-05 | Applied Materials, Inc. | Ultra high throughput wafer vacuum processing system |
US5879459A (en) * | 1997-08-29 | 1999-03-09 | Genus, Inc. | Vertically-stacked process reactor and cluster tool system for atomic layer deposition |
JP2000021788A (en) * | 1998-06-26 | 2000-01-21 | Shin Etsu Handotai Co Ltd | Apparatus for growing thin film and thin-film growing method using apparatus |
-
2000
- 2000-04-29 US US09/563,784 patent/US6508883B1/en not_active Expired - Lifetime
-
2001
- 2001-04-18 AU AU2001255451A patent/AU2001255451A1/en not_active Abandoned
- 2001-04-18 DE DE60132110T patent/DE60132110T2/en not_active Expired - Fee Related
- 2001-04-18 CN CNB018087841A patent/CN1270946C/en not_active Expired - Fee Related
- 2001-04-18 CA CA002407358A patent/CA2407358A1/en not_active Abandoned
- 2001-04-18 EP EP01928614A patent/EP1339625B1/en not_active Expired - Lifetime
- 2001-04-18 WO PCT/US2001/012593 patent/WO2001083333A1/en active IP Right Grant
- 2001-04-18 AT AT01928614T patent/ATE382023T1/en not_active IP Right Cessation
- 2001-04-18 CZ CZ20023573A patent/CZ20023573A3/en unknown
- 2001-04-18 KR KR1020027014542A patent/KR100758567B1/en not_active IP Right Cessation
- 2001-04-18 IL IL15250001A patent/IL152500A0/en unknown
- 2001-04-18 MX MXPA02010669A patent/MXPA02010669A/en unknown
- 2001-04-18 JP JP2001580174A patent/JP2003532302A/en active Pending
- 2001-04-27 MY MYPI20011989A patent/MY119887A/en unknown
- 2001-05-01 TW TW090110118A patent/TW593741B/en not_active IP Right Cessation
-
2002
- 2002-10-28 NO NO20025177A patent/NO20025177L/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
CA2407358A1 (en) | 2001-11-08 |
WO2001083333A1 (en) | 2001-11-08 |
CZ20023573A3 (en) | 2003-11-12 |
EP1339625B1 (en) | 2007-12-26 |
ATE382023T1 (en) | 2008-01-15 |
KR100758567B1 (en) | 2007-09-14 |
DE60132110D1 (en) | 2008-02-07 |
MXPA02010669A (en) | 2003-10-06 |
TW593741B (en) | 2004-06-21 |
KR20020093998A (en) | 2002-12-16 |
NO20025177L (en) | 2002-12-11 |
MY119887A (en) | 2005-07-29 |
CN1533347A (en) | 2004-09-29 |
EP1339625A4 (en) | 2004-08-25 |
DE60132110T2 (en) | 2008-12-04 |
NO20025177D0 (en) | 2002-10-28 |
EP1339625A1 (en) | 2003-09-03 |
CN1270946C (en) | 2006-08-23 |
IL152500A0 (en) | 2003-05-29 |
US6508883B1 (en) | 2003-01-21 |
JP2003532302A (en) | 2003-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1339625B1 (en) | Throughput enhancement for single wafer reactor | |
US6648974B1 (en) | Device and method for handling substrates by means of a self-leveling vacuum system in epitaxial induction | |
US5879459A (en) | Vertically-stacked process reactor and cluster tool system for atomic layer deposition | |
US7059817B2 (en) | Wafer handling apparatus and method | |
US20100273314A1 (en) | Non-circular substrate holders | |
US20130291798A1 (en) | Thin film deposition apparatus and substrate treatment system including the same | |
US20020170673A1 (en) | System and method of processing composite substrates within a high throughput reactor | |
TW201044487A (en) | Systems and methods for handling wafers | |
US6177129B1 (en) | Process for handling workpieces and apparatus therefor | |
US10968052B2 (en) | Long reach vacuum robot with dual wafer pockets | |
US6890862B2 (en) | Processes for vacuum treating workpieces, and corresponding process equipment | |
JP3274602B2 (en) | Semiconductor element manufacturing method and substrate processing apparatus | |
JP2004172374A (en) | Holding jig, manufacturing method of semiconductor wafer, and method for mounting semiconductor substrate and holding jig | |
US6391377B1 (en) | Process for vacuum treating workpieces, and corresponding process equipment | |
JP2543795Y2 (en) | Vapor phase growth equipment | |
CN118231324A (en) | End effector and substrate processing apparatus including the same | |
JPH0294627A (en) | Heat treatment | |
CN117276159A (en) | Wafer transport system |