AU2001248397A1 - Method for manufacturing a cooling element and a cooling element - Google Patents

Method for manufacturing a cooling element and a cooling element

Info

Publication number
AU2001248397A1
AU2001248397A1 AU2001248397A AU2001248397A AU2001248397A1 AU 2001248397 A1 AU2001248397 A1 AU 2001248397A1 AU 2001248397 A AU2001248397 A AU 2001248397A AU 2001248397 A AU2001248397 A AU 2001248397A AU 2001248397 A1 AU2001248397 A1 AU 2001248397A1
Authority
AU
Australia
Prior art keywords
housing part
cooling element
soldering
elements
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2001248397A
Other versions
AU2001248397B2 (en
Inventor
Yrjo Leppanen
Risto Saarinen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Outokumpu Oyj
Original Assignee
Outokumpu Oyj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FI20000658A external-priority patent/FI112534B/en
Application filed by Outokumpu Oyj filed Critical Outokumpu Oyj
Publication of AU2001248397A1 publication Critical patent/AU2001248397A1/en
Application granted granted Critical
Publication of AU2001248397B2 publication Critical patent/AU2001248397B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

METHOD FOR MANUFACTURING A COOLING ELEMENT AND A COOLING ELEMENT
The present invention relates to a method for manufacturing a cooling element according to the preamble of the appended claim 1. The invention also relates to a cooling element.
In connection with industrial furnaces, such as flash smelting furnaces, blast furnaces and electric furnaces used in the manufacturing of metals, or in connection with other metallurgic reactors, there are used cooling elements that are typically made of mainly copper. On the surface of the cooling element, there is often arranged a ceramic lining, for instance made of fireproof bricks. The cooling elements are typically water-cooled and thus provided with a cooling water channel system, so that the heat is transferred from the fireproof bricks through the housing of the cooling element to the cooling water. The cooling elements are used in extreme working conditions, where they are subjected to strong corrosion and erosion strain caused by the furnace atmosphere or contacts with the molten material. For an effective operation of the cooling element, it is important that the joint between the fireproof bricks and the cooling element is good, in which case an effectively heat-transferring contact is achieved. A drawback in the manufacturing of known cooling elements is the complexity of the manufacturing methods in attaching the ceramic/fireproof lining and the difficulty in obtaining a good contact between the ceramic lining and the element. Thus the cooling properties of the element cannot be fully utilized. This in turn results in an accelerated wearing of the lining.
The object of the invention is to realize a method for manufacturing a cooling element, by which method the drawbacks of the prior art can be avoided. Another object of the invention is to realize a cooling element that has a good contact between the ceramic lining and the element housing. The invention is characterized by what is specified in the appended claims.
The arrangement according to the invention has several remarkable advantages. According to the method, there is obtained an extremely good contact between the ceramic lining elements and the cooling element housing. This maintains the temperature on the furnace-side of the cooling element and its ceramic parts, such as the fireproof bricks, sufficiently low, so that on the element surface there is created a so-called autogenous lining, comprising among others oxidic and/or sulfidic molten components. Now the wearing of the bricks, among others, is essentially slowed down, and the working life of the cooling element is increased. The method according to the invention is advantageous also as regards the manufacturing technology.
The invention is explained in more detail below, with reference to the appended drawing, where
Figure 1 illustrates the cooling element according to the invention, seen in cross-section.
The cooling element according to the invention comprises a housing part 1 , provided with a channel system 4 for the cooling water circulation, and a lining formed of ceramic elements 2 applied to at least part of the surface of the housing part. The elements 2 of the ceramic lining are attached to the housing part 1 by means of a soldering/brazing agent in a way that results in a good thermal contact between the ceramic part and the housing part. The housing part 1 of the cooling element is typically made of copper, for example. Advantageously the housing part 1 of the cooling element is made for instance by casting, such as by draw casting. The housing part is provided with a channel system 6 for the cooling water circulation. Typically the channel system 4 is made by working, for instance by drilling, or in connection with the casting. At least one of the surfaces of the housing part 1 is provided with grooves 3, where there are arranged elements 2 of the ceramic lining, typically fireproof bricks. In between the housing part 1 of the cooling element and the ceramic elements 2, there is made a joint enabling a good thermal contact by means of a soldering/brazing agent. The ceramic elements 2 are arranged to be held in the grooves in a shape-locking fashion, when the element is in a position where the groove opens downwardly. The grooves 3 can be for instance narrowing at the groove bottom towards the element surface, in which case the groove width Wι at the groove bottom is larger than the groove width W2 on the surface level. In a typical embodiment, the groove width W2 on the housing part surface level is 2 - 10 mm narrower than the groove width Wι at the groove bottom. The dimensional tolerance between the grooves 3 and the ceramic lining elements 2 is arranged to be such that the ceramic elements 2 can be inserted in the grooves 3 at the ends thereof, from the side of the element housing part. In between the ceramic elements 2 and the housing part 1 , at least at the junction surfaces, there is applied an intermediate layer of the soldering/brazing agent, with a melting temperature that is lower than the melting temperature of the pieces to be joined. The soldering/brazing agent can be brought in the joint for instance in the form of foil or powder. The soldering/brazing agent can also be readily included in at least one of the parts to be joined. For instance, the elements of a ceramic lining can include a layer of soldering/brazing agent on the junction surface, in which case said elements are immersed in the molten soldering/brazing agent prior to installing them in the grooves of the housing part. In that case a soldering/brazing agent layer is absorbed in the surface of the ceramic lining element. The soldering/brazing agent can be for example a copper-based alloy with a melting temperature within the range of 400 - 700° C.
When the ceramic lining elements 2, for instance fireproof bricks, and the soldering/brazing agent are arranged in the groove, the junction area of at least the pieces to be joined together is heated up to a temperature where the soldering/brazing agent melts and makes a good thermal contact between the bricks and the housing part. It is also possible to bring more soldering/brazing agent to the junction area during the heating process. The heating can be carried out in the same step where a possible blocking joint of the cooling channel is made.
The cooling elements according to the invention can be used in several different applications. A typical target for the use of the cooling element according to the invention is for instance the ceiling of the lower furnace in a flash smelting furnace. There the shape of the grooves made in the cooling element prevents the ceramic lining elements from falling off the grooves, although the element is installed so that the lining side is directed downwards. The grooves do not have to be narrowed very much, because the temperature of the elements on the furnace side is higher than the temperature on the side that is directed away from the furnace, in which case thermal expansion causes pressure tension on the surface that is located on the furnace side. Typical measures for a cooling element according to the invention are: width: 0.25 - 1 m, length 1 - 2 m, and thickness of the housing part 100 - 200 mm, of which the thickness of the grooved part constitutes roughly a half.

Claims (10)

1. A method for manufacturing a cooling element comprising a housing part and ceramic lining elements arranged on the housing part surface, characterized in that the ceramic lining elements (2) are connected to the element housing part (1) by using in the joint between the lining elements and the housing part a soldering/brazing agent, wherein at least the junction area is heated at least up to the melting temperature of the soldering/brazing agent, so that there is created a joint with a good thermal contact with the element housing part (1 ) and a ceramic lining element (2).
2. A method according to claim 1 , characterized in that the housing part (1 ) is mainly made of copper.
3. A method according to claim 1 or 2, characterized in that the ceramic lining elements (2) are fireproof bricks.
4. A method according to any of the claims 1 - 3, characterized in that the soldering/brazing agent is brought separately to the junction area, for example as a powder or a foil.
5. A method according to any of the claims 1 - 4, characterized in that the soldering/brazing agent is brought to the junction area together with the pieces to be joined together.
6. A method according to any of the claims 1 - 5, characterized in that in the ceramic lining elements (2), at least on the junction surface thereof, there is applied at least one intermediate agent layer, such as a metal layer or a soldering/brazing agent layer, prior to bringing the elements to the junction area.
7. A cooling element comprising a housing part (1 ) provided with a channel system for the cooling water circulation, and a lining made of ceramic elements
(2) in at least part of the housing part surface, characterized in that the ceramic lining elements (2) are connected to the housing part (1 ) by means of a soldering/brazing agent in a way that results in a good thermal contact between the ceramic element and the housing part.
8. A cooling element according to claim 7, characterized in that the surface of the cooling element housing part (1 ) is provided with grooves (3), in which the ceramic lining elements (2) are arranged to be fitted.
9. A cooling element according to claim 7 or 8, characterized in that the ceramic lining elements (2) are arranged to be kept in the grooves (3) in a shape-locked fashion, when the element is in a position where the groove opens downwardly.
10. A cooling element according to any of the claims 7 - 9, characterized in that the distance (Wι, W2) between the opposite walls of the housing part grooves
(3) is reduced while proceeding from the bottom of the grooves towards the housing part surface.
AU2001248397A 2000-03-21 2001-03-21 Method for manufacturing a cooling element and a cooling element Ceased AU2001248397B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FI20000658A FI112534B (en) 2000-03-21 2000-03-21 Process for producing cooling elements and cooling elements
FI20000658 2000-03-21
PCT/FI2001/000280 WO2001071267A2 (en) 2000-03-21 2001-03-21 Method for manufacturing a cooling element and a cooling element

Publications (2)

Publication Number Publication Date
AU2001248397A1 true AU2001248397A1 (en) 2001-12-13
AU2001248397B2 AU2001248397B2 (en) 2005-09-29

Family

ID=8557991

Family Applications (2)

Application Number Title Priority Date Filing Date
AU2001248397A Ceased AU2001248397B2 (en) 2000-03-21 2001-03-21 Method for manufacturing a cooling element and a cooling element
AU4839701A Pending AU4839701A (en) 2000-03-21 2001-03-21 Method for manufacturing a cooling element and a cooling element

Family Applications After (1)

Application Number Title Priority Date Filing Date
AU4839701A Pending AU4839701A (en) 2000-03-21 2001-03-21 Method for manufacturing a cooling element and a cooling element

Country Status (22)

Country Link
US (1) US6742699B2 (en)
EP (1) EP1272802B1 (en)
JP (1) JP2003528285A (en)
KR (1) KR100735593B1 (en)
CN (1) CN1301395C (en)
AP (1) AP1507A (en)
AR (1) AR028520A1 (en)
AT (1) ATE345479T1 (en)
AU (2) AU2001248397B2 (en)
BG (1) BG64806B1 (en)
BR (1) BR0109309B1 (en)
CA (1) CA2403844C (en)
DE (1) DE60124518T2 (en)
EA (1) EA004088B1 (en)
ES (1) ES2274876T3 (en)
FI (1) FI112534B (en)
MX (1) MXPA02009128A (en)
PE (1) PE20020136A1 (en)
PL (1) PL197177B1 (en)
RO (1) RO119213B1 (en)
WO (1) WO2001071267A2 (en)
ZA (1) ZA200207287B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI112534B (en) * 2000-03-21 2003-12-15 Outokumpu Oy Process for producing cooling elements and cooling elements
FI115251B (en) * 2002-07-31 2005-03-31 Outokumpu Oy Heat Sink
LU91142B1 (en) * 2005-02-28 2006-08-29 Wurth Paul Sa Electric arc furnace
FI121351B (en) * 2006-09-27 2010-10-15 Outotec Oyj A method for coating a heat sink
DE102008008477A1 (en) * 2008-02-08 2009-08-13 Sms Demag Ag Cooling element for cooling the refractory lining of a metallurgical furnace (AC, DC)
CN101269990B (en) * 2008-04-27 2011-12-21 贾剑光 Honeycomb ceramic suspending board
LU91454B1 (en) * 2008-06-06 2009-12-07 Wurth Paul Sa Cooling plate for a metallurgical furnace
FI122005B (en) * 2008-06-30 2011-07-15 Outotec Oyj Process for producing a cooling element and a cooling element
RU2487946C2 (en) * 2008-12-29 2013-07-20 Лувата Эспоо Ой Method of making cooling element for pyrometallurgical reactor and cooling element
LU91551B1 (en) 2009-04-14 2010-10-15 Wurth Paul Sa Cooling plate for a metallurgical furnace

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1389002A (en) * 1970-11-27 1975-04-03 Mansfiedl Heat Ltd Electric cooking ovens
US5729988A (en) * 1974-11-04 1998-03-24 Tchernev; Dimiter I. Heat pump energized by low-grade heat source
US4637218A (en) * 1974-11-04 1987-01-20 Tchernev Dimiter I Heat pump energized by low-grade heat source
DE2907511C2 (en) 1979-02-26 1986-03-20 Kabel- und Metallwerke Gutehoffnungshütte AG, 3000 Hannover Cooling plate for shaft furnaces, in particular blast furnaces, and method for producing the same
NO158618C (en) * 1985-10-09 1988-10-12 Elkem As COMPOSITE CERAMIC MATERIAL AND METALLURGICAL MELTING Oven comprising a liner consisting of the composite ceramic material.
JP2613781B2 (en) * 1987-12-14 1997-05-28 古河機械金属株式会社 Cooling method for refractories on the furnace wall of industrial kiln
JPH02163307A (en) * 1988-05-25 1990-06-22 Nippon Steel Corp Method for casting brick into stave cooler
JPH0380162A (en) * 1989-08-21 1991-04-04 Ngk Insulators Ltd Method for joining ceramic parts with metallic parts
AUPM393094A0 (en) * 1994-02-16 1994-03-10 University Of Melbourne, The Internal refractory cooler
NL1005114C2 (en) * 1997-01-29 1998-07-30 Hoogovens Staal Bv Refractory wall, metallurgical vessel comprising such a refractory wall and method using such a refractory wall.
WO1998054367A1 (en) * 1997-05-30 1998-12-03 Hoogovens Staal B.V. Refractory wall structure
JPH11189830A (en) * 1997-12-26 1999-07-13 Mitsui Mining & Smelting Co Ltd Matte trough for flash smelting furnace
DE19816867A1 (en) * 1998-04-16 1999-10-21 Schloemann Siemag Ag Blast furnace
US6404799B1 (en) * 1999-02-03 2002-06-11 Nippon Steel Corporation Water-cooling panel for furnace wall and furnace cover of arc furnace
FI114855B (en) * 1999-07-09 2005-01-14 Outokumpu Oy A method of plugging a hole and a heat sink made by the method
FI112534B (en) * 2000-03-21 2003-12-15 Outokumpu Oy Process for producing cooling elements and cooling elements

Similar Documents

Publication Publication Date Title
FI117768B (en) Heat sink
EP1272802B1 (en) Method for manufacturing a cooling element and a cooling element
ZA200500513B (en) Cooling element
AU2001248397A1 (en) Method for manufacturing a cooling element and a cooling element
AU2002212376A1 (en) Cooling element
KR101277112B1 (en) Cooling element and method for manufacturing the same
EP1218137A1 (en) Method for plugging a hole and a cooling element manufactured by said method
US4752218A (en) Ceramic composite material and a lining for metallurgical smelting furnaces wherein a ceramic composite material is used
US20040245684A1 (en) Melt launder
AU2002329303A1 (en) Melt launder
FI116317B (en) Cooling element and process for producing a cooling element
KR20230118754A (en) Muffle for hydrogen brazing furnace