AU2000247325A1 - A nozzle guard for an ink jet printhead - Google Patents

A nozzle guard for an ink jet printhead

Info

Publication number
AU2000247325A1
AU2000247325A1 AU2000247325A AU2000247325A AU2000247325A1 AU 2000247325 A1 AU2000247325 A1 AU 2000247325A1 AU 2000247325 A AU2000247325 A AU 2000247325A AU 2000247325 A AU2000247325 A AU 2000247325A AU 2000247325 A1 AU2000247325 A1 AU 2000247325A1
Authority
AU
Australia
Prior art keywords
nozzle
passages
pct
layer
nozzle guard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2000247325A
Other versions
AU2000247325B2 (en
Inventor
Kia Silverbrook
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zamtec Ltd
Original Assignee
Zamtec Ltd
Filing date
Publication date
Application filed by Zamtec Ltd filed Critical Zamtec Ltd
Priority to SG200406110-7A priority Critical patent/SG145549A1/en
Priority claimed from PCT/AU2000/000590 external-priority patent/WO2001089846A1/en
Publication of AU2000247325A1 publication Critical patent/AU2000247325A1/en
Priority to AU2002325638A priority patent/AU2002325638B2/en
Application granted granted Critical
Publication of AU2000247325B2 publication Critical patent/AU2000247325B2/en
Priority to AU2004214596A priority patent/AU2004214596B2/en
Assigned to ZAMTEC LIMITED reassignment ZAMTEC LIMITED Request for Assignment Assignors: SILVERBROOK RESEARCH PTY LTD
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

"A NOZZLE GUARD FOR AN INK JET PRINTHEAD"
FIELD OF THE INVENTION
I his invention relates to an ink jet pπnthead More particularly, the invention relates to a nozzle guard for an ink jet pπnthead
CO-PENDING APPLICATIONS
Various methods, systems and apparatus relating to the present invention are disclosed in the following co-pending applications filed by the applicant or assignee of the present invention simultaneously with the present application
PCT/AU00/00518, PC 1 /AU00/00519, PCT/AU00/00520, PCT/AU00/00521 , PCT/AU00/00522, PCT/AU00/00523, PCT/AU00/00524, PC I/AU00/00525, PCT/AU00/00526, PCT/AU00/00527, PCT/AU00/00528, PCT/AU00/00529, PCT/AU00/00530, PCT/AU00/00531 , PCT/AU00/00532, PCT/AU00/00533, PCT/AU00/00534, PCT/AU00/00535, PCT/AU00/00536, PCT/AUOO/00537, PCT/AU00/00538, PCT/AU00/00539, PCT/AUOO/00540, PCT/AU00/00541 , PCT/AU00/00542,
PCT/AU00/00543, PCT/AU00/00544, PCT/AU00/00545, PCT/AU00/00547, PCT/AU00/00546, PCT/AU00/00554, PCT/AU00/00556 PCT/AU00/00557, PC1 /AU00/00558, PCT/AU00/00559, PCT/AU00/00560, PCT/AU00/00561 , PCT/AU00/00562, PCT/AU00/00563, PCT/AU00/00564, PCT/AU00/00565, PCT/AU00/00566, PCT/AU00/00567, PCT/AU00/00568, PC 1 /AU00/00569, PCI /AU00/00570, PCT/AU00/00571 , PCT/AU00/00572, PCT/AU00/00573, PC r/AU00/00574,
PC I /AU00/00575, PCT/AU00/00576, PCT/AU00/00577, PCT/AU00/00578, PCT/AU00/00579, PC r/AU00/00581 , PCT/AU00/00580, PCT/AUOO/00582, PCT/AU00/00587, PCT/AU00/00588, PCT/AU00/00589, PCT/AU00/00583, PC r/AUOO/00593, PCT/AUOO/00590, PCT/AU00/00591 , PCT/AU00/00592, PCT/AU00/00584, PCT/AU00/00585, PCT/AU00/00586, PCT/AU00/00594, PC r/AUOO/00595, PCT/AU00/00596, PCT/AU00/00597, PCT/AU00/00598, PCT/AU00/00516,
PCT/AUOO/00517, PCT/AU00/0051 1 , PCT/AUOO/00501, PCT/AU00/00502, PCT/AU00/00503, PCT/AU00/00504, PCT/AU00/00505, PCT/AU00/00506, PC r/AUOO/00507, PCT/AU00/00508, PCT/AU00/00509, PCT/AU00/00510, PCT/AU00/00512, PCT/AUOO/00513, PCT/AU00/00514, PC1 /AU00/00515 The disclosures of these co-pending applications arc incorporated herein by cross-reference
BACKGROUND TO THE INVENTION
Our co-pending patent application, United States Patent Application Serial Number to be advised when known (identified temporarily by our Docket No 1J52) discloses a nozzle guard for an ink jet pπnthead The array of nozzles is formed using microelectromechanical systems (MEMS) technology, and has mechanical structures with sub- micron thicknesses Such structures are very fragile, and can be damaged by contact with paper, fingers, and other objects The present invention discloses a nozzle guard to protect the fragile nozzles and keep them clear of paper dust
SUMMARY OF THE INVENTION According to the invention, there is provided a nozzle guard ior an ink jet pπnthead, the nozzle guard including a body member mountable on a substrate which carries a nozzle array, the body member defining a plurality of
RECTIFIED SHEET (Rule 91) ISA/AU - la - passages through it such that, in use, each passage is in register with a nozzle opening of one of the nozzles of the array and the body member further defining fluid inlet openings for directing fluid through the passages, from an inlet end of said passages, for inhibiting the build up of foreign particles on the nozzle array
In this specification the term "nozzle" is to be understood as an element defining an opening and not the opening itself
The nozzle guard may include a support means for supporting the body member on the substrate The support means may be formed integrally with the body member, the support means comprising a pair of spaced support elements one being arranged at each end of the body member
Then, the fluid inlet openings may be arranged in one of the support elements It will be appreciated that, when air is directed through the openings, over the nozzle array and out through the passages, a low pressure region is created above the nozzle array which, it is envisaged, will inhibit the build up of foreign particles on the nozzle array
T he fluid inlet openings may be arranged in the support element remote from a bond pad of the nozzle array
RECTIFIED SHEET (Rule 91) ISA/AU - 2 -
The invention extends also to an ink jet printhead which includes a nozzle array carried on a substrate; and a nozzle guard, as described above, mounted on the substrate.
The invention extends still further to a method of operating an ink jet printhead, as described above, the method including directing fluid through the fluid inlet openings of the nozzle guard and through the passages to an outlet end of said passages for inhibiting the build up of foreign particles on the nozzle array.
Then, the method may include directing air through the passages irrespective of whether or not ink droplets are being ejected through the passages.
The method may include directing fluid through the passages at a rate different from that at which the ink droplets are ejected through the passages. Preferably, the method includes directing the fluid through the passages at a rate lower than that at which the ink droplets are ejected through the passages. In this regard, the air may be charged through the passages at approximately lm/s. In use, ink is ejected from the nozzle opening of a nozzle of the array at approximately 3m/s and travels through the passage at approximately that velocity.
BRIEF DESCRIPTION OF THE DRAWINGS The invention is now described by way of example with reference to the accompanying diagrammatic drawings in which:-
Figure 1 shows a three dimensional, schematic view of a nozzle assembly for an ink jet printhead;
Figures 2 to 4 show a three dimensional, schematic illustration of an operation of the nozzle assembly of Figure i; Figure 5 shows a three dimensional view of a nozzle array constituting an ink jet printhead;
Figure 6 shows, on an enlarged scale, part of the array of Figure 5;
Figure 7 shows a three dimensional view of an ink jet printhead including a nozzle guard, in accordance with the invention;
Figures 8a to 8r show three dimensional views of steps in the manufacture of a nozzle assembly of an ink jet printhead;
Figures 9a to 9r show sectional side views of the manufacturing steps; Figures 10a to 10k show layouts of masks used in various steps in the manufacturing process; Figures 11a to lie show three dimensional views of an operation of the nozzle assembly manufactured according to the method of Figures 8 and 9; and Figures 12a to 12c show sectional side views of an operation of the nozzle assembly manufactured according to the method of Figures 8 and 9.
DETAILED DESCRIPTION OF THE DRAWINGS Referring initially to Figure 1 of the drawings, a nozzle assembly, in accordance with the invention is designated generally by the reference numeral 10. An ink jet printhead has a plurality of nozzle assemblies 10 arranged in an ink array 14 (Figures 5 and 6) on a silicon substrate 16. The array 14 will be described in greater detail below.
The assembly 10 includes a silicon substrate or wafer 16 on which a dielectric layer 18 is deposited. A CMOS passivation layer 20 is deposited on the dielectric layer 18.
Each nozzle assembly 12 includes a nozzle 22 defining a nozzle opening 24, a connecting member in the form of a lever arm 26 and an actuator 28. The lever arm 26 connects the actuator 28 to the nozzle 22. As shown in greater detail in Figures 2 to 4 of the drawings, the nozzle 22 comprises a crown portion 30 with a skirt portion 32 depending from the crown portion 30. The skirt portion 32 forms part of a peripheral wall of a nozzle chamber 34 (Figures 2 to 4 of the drawings). The nozzle opening 24 is in fluid communication with the nozzle chamber - 3 -
34. It is to be noted that the nozzle opening 24 is surrounded by a raised rim 36 which "pins" a meniscus 38 (Figure 2) of a body of ink 40 in the nozzle chamber 34.
An ink inlet aperture 42 (shown most clearly in Figure 6 of the drawing) is defined in a floor 46 of the nozzle chamber 34. The aperture 42 is in fluid communication with an ink inlet channel 48 defined through the substrate 16. A wall portion 50 bounds the aperture 42 and extends upwardly from the floor portion 46. The skirt portion 32, as indicated above, of the nozzle 22 defines a first part of a peripheral wall of the nozzle chamber 34 and the wall portion
50 defines a second part of the peripheral wall of the nozzle chamber 34.
The wall 50 has an inwardly directed lip 52 at its free end which serves as a fluidic seal which inhibits the escape of ink when the nozzle 22 is displaced, as will be described in greater detail below. It will be appreciated that, due to the viscosity of the ink 40 and the small dimensions of the spacing between the lip 52 and the skirt portion 32, the inwardly directed lip 52 and surface tension function as an effective seal for inhibiting the escape of ink from the nozzle chamber 34.
The actuator 28 is a thermal bend actuator and is connected to an anchor 54 extending upwardly from the substrate 16 or, more particularly from the CMOS passivation layer 20. The anchor 54 is mounted on conductive pads 56 which form an electrical connection with the actuator 28.
The actuator 28 comprises a first, active beam 58 arranged above a second, passive beam 60. In a preferred embodiment, both beams 58 and 60 are of, or include, a conductive ceramic material such as titanium nitride (TiN).
Both beams 58 and 60 have their first ends anchored to the anchor 54 and their opposed ends connected to the arm 26. When a current is caused to flow through the active beam 58 thermal expansion of the beam 58 results. As the passive beam 60, through which there is no current flow, does not expand at the same rate, a bending moment is created causing the arm 26 and, hence, the nozzle 22 to be displaced downwardly towards the substrate 16 as shown in Figure 3 of the drawings. This causes an ejection of ink through the nozzle opening 24 as shown at 62 in Figure 3 of the drawings.
When the source of heat is removed from the active beam 58, i.e. by stopping current flow, the nozzle 22 returns to its quiescent position as shown in Figure 4 of the drawings. When the nozzle 22 returns to its quiescent position, an ink droplet 64 is formed as a result of the breaking of an ink droplet neck as illustrated at 66 in Figure 4 of the drawings. The ink droplet 64 then travels on to the print media such as a sheet of paper. As a result of the formation of the ink droplet
64, a "negative" meniscus is formed as shown at 68 in Figure 4 of the drawings. This "negative" meniscus 68 results in an inflow of ink 40 into the nozzle chamber 34 such that a new meniscus 38 (Figure 2) is formed in readiness for the next ink drop ejection from the nozzle assembly 10. Referring now to Figures 5 and 6 of the drawings, the nozzle array 14 is described in greater detail. The array
14 is for a four color printhead. Accordingly, the array 14 includes four groups 70 of nozzle assemblies, one for each color. Each group 70 has its nozzle assemblies 10 arranged in two rows 72 and 74. One of the groups 70 is shown in greater detail in Figure 6 of the drawings.
To facilitate close packing of the nozzle assemblies 10 in the rows 72 and 74, the nozzle assemblies 10 in the row 74 are offset or staggered with respect to the nozzle assemblies 10 in the row 72. Also, the nozzle assemblies 10 in the row 72 are spaced apart sufficiently far from each other to enable the lever arms 26 of the nozzle assemblies 10 in the row 74 to pass between adjacent nozzles 22 of the assemblies 10 in the row 72. It is to be noted that each nozzle assembly 10 is substantially dumbbell shaped so that the nozzles 22 in the row 72 nest between the nozzles 22 and the actuators 28 of adjacent nozzle assemblies 10 in the row 74. Further, to facilitate close packing of the nozzles 22 in the rows 72 and 74, each nozzle 22 is substantially hexagonally shaped. - 4 - It will be appreciated by those skilled in the art that, when the nozzles 22 are displaced towards the substrate 16, in use, due to the nozzle opening 24 being at a slight angle with respect to the nozzle chamber 34 ink is ejected slightly off the perpendicular. It is an advantage of the arrangement shown in Figures 5 and 6 of the drawings that the actuators 28 of the nozzle assemblies 10 in the rows 72 and 74 extend in the same direction to one side of the rows 72 and 74. Hence, the ink ejected from the nozzles 22 in the row 72 and the ink ejected from the nozzles 22 in the row 74 are offset with respect to each other by the same angle resulting in an improved print quality.
Also, as shown in Figure 5 of the drawings, the substrate 16 has bond pads 76 arranged thereon which provide the electrical connections, via the pads 56, to the actuators 28 of the nozzle assemblies 10. These electrical connections are formed via the CMOS layer (not shown). Referring to Figure 7 of the drawings, a development of the invention is shown. With reference to the previous drawings, like reference numerals refer to like parts, unless otherwise specified.
In this development, a nozzle guard 80 is mounted on the substrate 16 of the array 14. The nozzle guard 80 includes a body member 82 having a plurality of passages 84 defined therethrough. The passages 84 are in register with the nozzle openings 24 of the nozzle assemblies 10 of the array 14 such that, when ink is ejected from any one of the nozzle openings 24, the ink passes through the associated passage before striking the print media.
The body member 82 is mounted in spaced relationship relative to the nozzle assemblies 10 by limbs or struts 86. One of the struts 86 has air inlet openings 88 defined therein.
In use, when the array 14 is in operation, air is charged through the inlet openings 88 to be forced through the passages 84 together with ink travelling through the passages 84. The ink is not entrained in the air as the air is charged through the passages 84 at a different velocity from that of the ink droplets 64. For example, the ink droplets 64 are ejected from the nozzles 22 at a velocity of approximately 3m/s. The air is charged through the passages 84 at a velocity of approximately lm/s.
The purpose of the air is to maintain the passages 84 clear of foreign particles. A danger exists that these foreign particles, such as dust particles, could fall onto the nozzle assemblies 10 adversely affecting their operation. With the provision of the air inlet openings 88 in the nozzle guard 80 this problem is, to a large extent, obviated.
Referring now to Figures 8 to 10 of the drawings, a process for manufacturing the nozzle assemblies 10 is described.
Starting with the silicon substrate or wafer 16, the dielectric layer 18 is deposited on a surface of the wafer 16. The dielectric layer 18 is in the form of approximately 1.5 microns of CVD oxide. Resist is spun on to the layer 18 and the layer 18 is exposed to mask 100 and is subsequently developed.
After being developed, the layer 18 is plasma etched down to the silicon layer 16. The resist is then stripped and the layer 18 is cleaned. This step defines the ink inlet aperture 42.
In Figure 8b of the drawings, approximately 0.8 microns of aluminum 102 is deposited on the layer 18. Resist is spun on and the aluminum 102 is exposed to mask 104 and developed. The aluminum 102 is plasma etched down to the oxide layer 18, the resist is stripped and the device is cleaned. This step provides the bond pads and interconnects to the Inkjet actuator 28. This interconnect is to an NMOS drive transistor and a power plane with connections made in the CMOS layer (not shown).
Approximately 0.5 microns of PECVD nitride is deposited as the CMOS passivation layer 20. Resist is spun on and the layer 20 is exposed to mask 106 whereafter it is developed. After development, the nitride is plasma etched down to the aluminum layer 102 and the silicon layer 16 in the region of the inlet aperture 42. The resist is stripped and the device cleaned. - 5 -
A layer 108 of a sacrificial material is spun on to the layer 20. The layer 108 is 6 microns of photo-sensitive polyimide or approximately 4 μm of high temperature resist. The layer 108 is softbaked and is then exposed to mask 110 whereafter it is developed. The layer 108 is then hardbaked at 400°C for one hour where the layer 108 is comprised of polyimide or at greater than 300°C where the layer 108 is high temperature resist. It is to be noted in the drawings that the pattern-dependent distortion of the polyimide layer 108 caused by shrinkage is taken into account in the design of the mask 110.
In the next step, shown in Figure 8e of the drawings, a second sacrificial layer 112 is applied. The layer 112 is either 2 μm of photo-sensitive polyimide which is spun on or approximately 1.3 μm of high temperature resist. The layer 112 is softbaked and exposed to mask 114. After exposure to the mask 114, the layer 112 is developed. In the case of the layer 112 being polyimide, the layer 112 is hardbaked at 400°C for approximately one hour. Where the layer 112 is resist, it is hardbaked at greater than 300°C for approximately one hour.
A 0.2 micron multi-layer metal layer 116 is then deposited. Part of this layer 116 forms the passive beam 60 of the actuator 28.
The layer 116 is formed by sputtering l,OOθA of titanium nitride (TiN) at around 300°C followed by sputtering 5θA of tantalum nitride (TaN). A further 1,000A of TiN is sputtered on followed by 5θA of TaN and a further 1,000A of
TiN.
Other materials which can be used instead of TiN are TiB2, MoSi or (Ti, A1)N.
The layer 116 is then exposed to mask 118, developed and plasma etched down to the layer 112 whereafter resist, applied for the layer 116, is wet stripped taking care not to remove the cured layers 108 or 112. A third sacrificial layer 120 is applied by spinning on 4 μm of photo-sensitive polyimide or approximately 2.6 μm high temperature resist. The layer 120 is softbaked whereafter it is exposed to mask 122. The exposed layer is then developed followed by hard baking. In the case of polyimide, the layer 120 is hardbaked at 400°C for approximately one hour or at greater than 300°C where the layer 120 comprises resist.
A second multi-layer metal layer 124 is applied to the layer 120. The constituents of the layer 124 are the same as the layer 116 and are applied in the same manner. It will be appreciated that both layers 116 and 124 are electrically conductive layers.
The layer 124 is exposed to mask 126 and is then developed. The layer 124 is plasma etched down to the polyimide or resist layer 120 whereafter resist applied for the layer 124 is wet stripped taking care not to remove the cured layers 108, 112 or 120. It will be noted that the remaining part of the layer 124 defines the active beam 58 of the actuator 28.
A fourth sacrificial layer 128 is applied by spinning on 4 μm of photo-sensitive polyimide or approximately 2.6μm of high temperature resist. The layer 128 is softbaked, exposed to the mask 130 and is then developed to leave the island portions as shown in Figure 9k of the drawings. The remaining portions of the layer 128 are hardbaked at 400°C for approximately one hour in the case of polyimide or at greater than 300°C for resist. As shown in Figure 81 of the drawing a high Young's modulus dielectric layer 132 is deposited. The layer 132 is constituted by approximately lμm of silicon nitride or aluminum oxide. The layer 132 is deposited at a temperature below the hardbaked temperature of the sacrificial layers 108, 112, 120, 128. The primary characteristics required for this dielectric layer 132 are a high elastic modulus, chemical inertness and good adhesion to TiN.
A fifth sacrificial layer 134 is applied by spinning on 2μm of photo-sensitive polyimide or approximately 1.3μm of high temperature resist. The layer 134 is softbaked, exposed to mask 136 and developed. The remaining portion of the layer 134 is then hardbaked at 400°C for one hour in the case of the polyimide or at greater than 300°C for the resist. - 6 -
The dielectric layer 132 is plasma etched down to the sacrificial layer 128 taking care not to remove any of the sacrificial layer 134.
This step defines the nozzle opening 24, the lever arm 26 and the anchor 54 of the nozzle assembly 10.
A high Young's modulus dielectric layer 138 is deposited. This layer 138 is formed by depositing 0.2μm of silicon nitride or aluminum nitride at a temperature below the hardbaked temperature of the sacrificial layers 108, 112,
120 and 128.
Then, as shown in Figure 8p of the drawings, the layer 138 is anisotropically plasma etched to a depth of 0.35 microns. This etch is intended to clear the dielectric from all of the surface except the side walls of the dielectric layer 132 and the sacrificial layer 134. This step creates the nozzle rim 36 around the nozzle opening 24 which "pins" the meniscus of ink, as described above.
An ultraviolet (UV) release tape 140 is applied. 4μm of resist is spun on to a rear of the silicon wafer 16. The wafer 16 is exposed to mask 142 to back etch the wafer 16 to define the ink inlet channel 48. The resist is then stripped from the wafer 16.
A further UV release tape (not shown) is applied to a rear of the wafer 16 and the tape 140 is removed. The sacrificial layers 108, 112, 120, 128 and 134 are stripped in oxygen plasma to provide the final nozzle assembly 10 as shown in Figures 8r and 9r of the drawings. For ease of reference, the reference numerals illustrated in these two drawings are the same as those in Figure 1 of the drawings to indicate the relevant parts of the nozzle assembly 10. Figures 11 and 12 show the operation of the nozzle assembly 10, manufactured in accordance with the process described above with reference to Figures 8 and 9 and these figures correspond to Figures 2 to 4 of the drawings. It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.

Claims (10)

- 7 - THE CLAIMS
1. A nozzle guard for an ink jet printhead, the nozzle guard including a body member mountable on a substrate which carries a nozzle array, the body member defining a plurality of passages through it such that, in use, each passage is in register with a nozzle opening of one of the nozzles of the array and the body member further defining fluid inlet openings for directing fluid through the passages, from an inlet end of said passages, for inhibiting the build up of foreign particles on the nozzle array.
2. The nozzle guard of Claim 1 which, includes a support means for supporting the body member on the substrate.
3. The nozzle guard of Claim 2 in which the support means is formed integrally with the body member, the support means comprising a pair of spaced support elements, one element being arranged at each end of the body member.
4. The nozzle guard of Claim 3 in which the fluid inlet openings are arranged in one of the support elements.
5. The nozzle guard as claimed in Claim 4 in which the fluid inlet openings are arranged in the support element remote from a bond pad of the nozzle array.
6. An ink jet printhead which includes a nozzle array carried on a substrate; and a nozzle guard, as claimed in Claim 1, mounted on the substrate.
7. A method of operating an ink jet printhead as claimed in Claim 6, the method including directing fluid through the fluid inlet openings of the nozzle guard and through the passages to an outlet end of said passages for inhibiting the build up of foreign particles on the nozzle array.
8. The method of Claim 7 which includes directing air through the passages irrespective of whether or not ink droplets are being ejected through the passages.
9. The method of Claim 8 which includes directing fluid through the passages at a rate different from that at which the ink droplets are ejected through the passages.
10. The method of Claim 9 which includes directing the fluid through the passages at a rate lower than that at which the ink droplets are ejected through the passages.
AU2000247325A 2000-05-24 2000-05-24 A nozzle guard for an ink jet printhead Ceased AU2000247325B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG200406110-7A SG145549A1 (en) 2000-05-24 2000-05-24 A micro-electromechanical fluid ejection device incorporating a movable nozzle structure
AU2002325638A AU2002325638B2 (en) 2000-05-24 2002-08-29 A nozzle guard for an ink jet printhead
AU2004214596A AU2004214596B2 (en) 2000-05-24 2004-09-28 A micro-electromechanical fluid ejection device incorporating a movable nozzle structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/AU2000/000590 WO2001089846A1 (en) 2000-05-24 2000-05-24 A nozzle guard for an ink jet printhead

Related Child Applications (2)

Application Number Title Priority Date Filing Date
AU2002325638A Division AU2002325638B2 (en) 2000-05-24 2002-08-29 A nozzle guard for an ink jet printhead
AU2004214596A Division AU2004214596B2 (en) 2000-05-24 2004-09-28 A micro-electromechanical fluid ejection device incorporating a movable nozzle structure

Publications (2)

Publication Number Publication Date
AU2000247325A1 true AU2000247325A1 (en) 2002-02-21
AU2000247325B2 AU2000247325B2 (en) 2004-07-15

Family

ID=3700809

Family Applications (2)

Application Number Title Priority Date Filing Date
AU4732500A Pending AU4732500A (en) 2000-05-24 2000-05-24 A nozzle guard for an ink jet printhead
AU2000247325A Ceased AU2000247325B2 (en) 2000-05-24 2000-05-24 A nozzle guard for an ink jet printhead

Family Applications Before (1)

Application Number Title Priority Date Filing Date
AU4732500A Pending AU4732500A (en) 2000-05-24 2000-05-24 A nozzle guard for an ink jet printhead

Country Status (10)

Country Link
US (2) US6874868B1 (en)
EP (1) EP1289763B1 (en)
JP (1) JP2004500264A (en)
CN (1) CN100344454C (en)
AT (1) ATE377509T1 (en)
AU (2) AU4732500A (en)
DE (1) DE60037039D1 (en)
IL (1) IL166727A (en)
WO (1) WO2001089846A1 (en)
ZA (1) ZA200209789B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6557970B2 (en) * 2000-05-23 2003-05-06 Silverbrook Research Pty Ltd Nozzle guard for a printhead
US6588886B2 (en) 2000-05-23 2003-07-08 Silverbrook Research Pty Ltd Nozzle guard for an ink jet printhead
US6412908B2 (en) * 2000-05-23 2002-07-02 Silverbrook Research Pty Ltd Inkjet collimator
US7237873B2 (en) * 2002-11-23 2007-07-03 Silverbrook Research Pty Ltd Inkjet printhead having low pressure ink ejection zone
AU2002325638B2 (en) * 2000-05-24 2005-11-17 Zamtec Limited A nozzle guard for an ink jet printhead
US6874868B1 (en) * 2000-05-24 2005-04-05 Silverbrook Research Pty Ltd Nozzle guard for an ink jet printhead
US6457812B1 (en) * 2000-10-20 2002-10-01 Silverbrook Research Pty Ltd Bend actuator in an ink jet printhead
AUPR292501A0 (en) 2001-02-07 2001-03-01 Silverbrook Research Pty. Ltd. A method and apparatus (ART100)
AUPR292401A0 (en) 2001-02-06 2001-03-01 Silverbrook Research Pty. Ltd. An apparatus and method (ART101)
CN113941469B (en) * 2021-10-14 2023-03-28 合肥鑫晟光电科技有限公司 Printing nozzle and process equipment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4417259A (en) * 1981-02-04 1983-11-22 Sanyo Denki Kabushiki Kaisha Method of preventing ink clogging in ink droplet projecting device, an ink droplet projecting device, and an ink jet printer
US4427259A (en) * 1982-08-23 1984-01-24 Rockwell International Corporation Selectable field-of-view infrared lens
EP0212943B1 (en) * 1985-08-13 1991-02-27 Matsushita Electric Industrial Co., Ltd. Ink jet recording apparatus
US5849537A (en) * 1989-09-19 1998-12-15 Miller Brewing Company Method of expressing antifreeze proteins in yeast
US5665249A (en) 1994-10-17 1997-09-09 Xerox Corporation Micro-electromechanical die module with planarized thick film layer
US5877788A (en) 1995-05-09 1999-03-02 Moore Business Forms, Inc. Cleaning fluid apparatus and method for continuous printing ink-jet nozzle
DE19522593C2 (en) * 1995-06-19 1999-06-10 Francotyp Postalia Gmbh Device for keeping the nozzles of an ink print head clean
US6328417B1 (en) * 2000-05-23 2001-12-11 Silverbrook Research Pty Ltd Ink jet printhead nozzle array
US6390591B1 (en) * 2000-05-23 2002-05-21 Silverbrook Research Pty Ltd Nozzle guard for an ink jet printhead
US6874868B1 (en) * 2000-05-24 2005-04-05 Silverbrook Research Pty Ltd Nozzle guard for an ink jet printhead

Similar Documents

Publication Publication Date Title
US7984968B2 (en) Inkjet printhead nozzle assembly having a raised rim to support an ink meniscus
US7883183B2 (en) Inkjet nozzle assembly with actuatable nozzle chamber
US20090237449A1 (en) Inkjet printhead having an array of displacable nozzles
US7021744B2 (en) Printhead assembly having nozzle guard
AU2000247313A1 (en) Ink jet printhead having a moving nozzle with an externally arranged actuator
WO2001089839A1 (en) Ink jet printhead having a moving nozzle with an externally arranged actuator
AU2000247327A1 (en) Ink jet printhead nozzle array
US6328417B1 (en) Ink jet printhead nozzle array
AU2000247314A1 (en) Method of manufacture of an ink jet printhead having a moving nozzle with an externally arranged actuator
AU2000247326A1 (en) Fluidic seal for an ink jet nozzle assembly
AU2000247325A1 (en) A nozzle guard for an ink jet printhead
AU2001295291A1 (en) Printed media production
WO2002034532A1 (en) Printed media production
US8075095B2 (en) Inkjet printhead with moving nozzle openings
US6390591B1 (en) Nozzle guard for an ink jet printhead
WO2003097366A1 (en) A nozzle guard for an ink jet printhead
AU2004214596B2 (en) A micro-electromechanical fluid ejection device incorporating a movable nozzle structure
AU2002325638A1 (en) A nozzle guard for an ink jet printhead