AU1841401A - Thermostat controller - Google Patents

Thermostat controller Download PDF

Info

Publication number
AU1841401A
AU1841401A AU18414/01A AU1841401A AU1841401A AU 1841401 A AU1841401 A AU 1841401A AU 18414/01 A AU18414/01 A AU 18414/01A AU 1841401 A AU1841401 A AU 1841401A AU 1841401 A AU1841401 A AU 1841401A
Authority
AU
Australia
Prior art keywords
temperature
refrigeration
sensed
evaporator
refrigeration mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU18414/01A
Inventor
Kerron James Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orford Refrigeration Pty Ltd
Original Assignee
Orford Refrigeration Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AUPQ5881A external-priority patent/AUPQ588100A0/en
Application filed by Orford Refrigeration Pty Ltd filed Critical Orford Refrigeration Pty Ltd
Priority to AU18414/01A priority Critical patent/AU1841401A/en
Publication of AU1841401A publication Critical patent/AU1841401A/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

M
1
AUSTRALIA
Patents Act 1990 COMPLETE SPECIFICATION FOR A STANDARD PATENT Name of Applicant: Actual Inventor: Orford Refrigeration Pty Ltd Kerron James Martin CULLEN CO., Patent Trade Mark Attorneys, 239 George Street, Brisbane, QId. 4000, Australia.
Address for Service: Invention Title: Thermostat Controller Details of Associated Provisional Applications: Application No. PQ5881 filed 28 February 2000 The following statement is a full description of this invention, including the best method of performing it known to us: This invention relates to a method and apparatus for thermostat control of a refrigeration system. In particular, the invention is directed to an improved thermostat control method and apparatus in which the refrigeration mechanism is disabled in the event of abnormal temperatures in components of the refrigeration mechanism.
BACKGROUND ART Refrigeration mechanisms, such as those used to refrigerate display cabinets, usually have a thermostat which maintains the temperature of the cabinet chamber at or near a desired temperature. The thermostat normally operates with a fixed hysteresis to avoid overly frequent switching of the refrigeration mechanism. That is, for a desired set temperature (Tset), the thermostat will activate the refrigeration mechanism when the temperature rises above a temperature (Tmax) which is slightly above Tset. The refrigeration mechanism will continue to operate until the temperature of the refrigerated space falls below a temperature (Tmin) which is slightly below Tset. The thermostat will not activate the refrigeration mechanism again until the temperature of the refrigerated space rises above Tmax.
*o.In most refrigerated cabinets and similar refrigeration systems, the thermostat controls the refrigeration mechanism in response to one only of the following: the temperature of the refrigerated space, the temperature of the refrigerated product or the evaporator temperature.
It is an object of this invention to provide an improved thermostat controller which is responsive to one or more conditions in addition to the temperature of the space or product being cooled.
SUMMARY OF THE INVENTION In one broad form, the invention provides a refrigeration system having: a refrigeration mechanism for cooling an object, the refrigeration mechanism including a compressor, condensor and evaporator in a refrigeration circuit; thermostat means for regulating the operation of the refrigeration mechanism in response to the temperature of the object; wherein the refrigeration system further includes control means for controlling the refrigeration mechanism in response to the sensed temperature of at least one component of the refrigeration mechanism, the control means overriding the normal operation of the thermostat means.
The term "object" is used in a broad sense, and includes a space such as a refrigerator chamber, or one or more items or products within that chamber, or a container, or a liquid within the container.
Preferably, the control means controls the operation of the refrigeration mechanism in response to the temperature of the evaporator. In one embodiment, the control means stops or otherwise disables the operation of the refrigeration mechanism if the temperature of the evaporator drops below a predetermined temperature (Tdisable). Further, the control means controls the refrigeration mechanism to ensure that it does not commence unless the temperature of the evaporator is above a (higher) pre-determined temperature (Tstar.
The control means will therefore override the thermostat means and disable the refrigeration mechanism if the evaporator temperature falls below Tdisable. This may be caused by the evaporator icing up or, in the case of a forced draught system, failure of the evaporator fan(s). Further, the control means overrides the normal operation of the thermostat means to ensure that the refrigeration mechanism will only start if the evaporator is completely defrosted, i.e. the evaporator temperature is above Tstart. The control means therefore ensures that the refrigeration mechanism operates only when the evaporator is able to operate effectively.
The refrigeration system suitably includes a temperature probe S" connected to the control means and adapted to sense the temperature of the evaporator.
Further, or in the alternative, the control means controls the refrigeration mechanism in response to the temperature of the condensor.
Typically, if the condensor temperature rises above a predetermined value (Taiarm), an alarm is triggered. The alarm may suitably be an audio and/or visual alarm. This alarm may be reset by switching the power off for a predetermined period, then switching it back on. However, the alarm will reactivate if the condensor temperature remains above Talarm.
If the condensor temperature rises above a (higher) predetermined valued (Tshutdomn), the control means will stop or otherwise disable the refrigeration mechanism, until re-set in the same manner as the alarm.
By controlling the refrigeration mechanism in response to the condensor temperature, the control means ensures safe operation by alerting the operator to high condensor temperature and/or shutting down the refrigeration mechanism in the event of sustained high condensor temperature.
The refrigeration system may suitably include a temperature probe connected to the control means for sensing the temperature of the condensor, as well as an alarm circuit.
The control means may suitably be in the form of an electronic circuit which also incorporates the thermostat means. The electronic circuit may include a programmed micro-processor or any other suitable electrical control circuit.
In order that the invention may be more fully understood and put into practice, a preferred embodiment thereof will now be described with reference to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a block diagram of the refrigeration system of the preferred embodiment; *.i Fig. 2 contains temperature and operational charts illustrating the operation of the refrigeration system in various conditions.
DESCRIPTION OF PREFERRED EMBODIMENT As shown in Fig. 1, a refrigeration system 10 includes a conventional refrigeration mechanism 11 which comprises a compressor 12, condensor 13 and evaporator 14 connected in a refrigeration circuit. The evaporator 14 is typically used to cool a space 15 such as the product cabinet or chamber of a display refrigerator. However, the evaporator 14 may also be used to cool a product directly or indirectly.
The refrigeration system 10 also includes a thermostat controller 16 which incorporates the functions of a conventional thermostat and the control means of this invention. A temperature sensor or probe 17 located in the refrigerated space 15 is connected to an input of the thermostat controller 16. In its normal thermostat function, the thermostat controller switches the compressor 12 on and off so that the evaporator 14 maintains the refrigerated space 15 close to a pre-determined temperature (T set) set by a temperature adjustment potentiometer 18, with typical hysteresis control. That is, when the temperature of space 15 as sensed by probe 17 rises above Tmax (slightly above Tset), the compressor 12 is switched on so that the evaporator 12 cools the space 15. When the temperature of the space 15 falls below Tmin (slightly below Tset), the compressor 12 is switched off. The abovedescribed temperature control procedure is well known, and need not be described in detail.
According to the preferred embodiment of this invention, the refrigeration system 10 further includes a temperature sensor or probe 19 connected to an input of the thermostat controller 16. The sensor 19 senses the evaporator temperature, and the thermostat controller controls the operation of the compressor 12 in response to that temperature overriding the conventional hysteresis thermostat operation described above.
More specifically, the temperature controller 16 will only activate the compressor 12 if the temperature of the evaporator is above a predetermined temperature, Tstart. At this temperature, the evaporator is g completely defrosted. Hence, the thermostat controller will not start the compressor unless the evaporator is defrosted. If during operation, the °*°temperature of the evaporator 14 falls below a (lower) pre-determined temperature Tdisable, the thermostat controller overrides the normal thermostat hysteresis operation, and stops or disables the compressor 12.
The temperature Tdisable is selected as being a temperature which would be reached if, for example, the evaporator begins to ice up or, in the case of a forced draught system, there is a failure of the evaporator fan(s) thereby reducing the evaporator's capacity to cool. Hence, the thermostat controller ensures that the refrigeration mechanism is shut off if the evaporator 6 falls to a temperature which is too low to function effectively. Moreover, the thermostat controller 16 will not allow the compressor 12 to be restarted by the normal hysteresis thermostat unless the temperature of the evaporator has risen above Tstart.
The refrigeration system also includes a second temperature sensor or probe 20 connected to an input of the thermostat controller 16. The temperature sensor 20 senses the temperature of the condensor 13, and the controller 16 actuates an alarm 21 and/or controls the operation of the compressor 12 in response to that temperature (overriding the normal hysteresis thermostat operation).
If the condensor temperature, as sensed by sensor 20, rises above a pre-determined value TalamI, the controller 16 will activate an alarm 21.
This is typically an audible alarm, such as a buzzer, but may be a visual alarm, such as a warning light. The alarm may be re-set by switching off the power to the refrigeration system for a pre-determined period of time, say 30 seconds, and then switching the power back on. However, if the condensor temperature is still above Taiarm the alarm 21 will remain activated. The temperature Taiarm is selected to indicate some overheating of the compressor.
the condensor temperature 13 rises above a higher temperature Tshutdown, the thermostat controller will override the normal thermostat hysteresis control of the compressor 12 and shut down or otherwise disable the compressor. The temperature Tshutdown is selected to be the maximum allowable operating temperature of the compressor. The refrigeration mechanism will remain shut down until re-set by switching the power on and off as for the alarm re-set. However, if the temperature is still above Tshutdown, the -refrigeration mechanism will remain disabled. This safety mechanism ensures that the refrigeration system is not operated if the condensor temperature is unduly high.
An example of the operation of the refrigeration system is illustrated in Fig. 2. At start up, if the temperature in the chamber 15 is above Tmax, and providing that the evaporator temperature is above Tstart, the compressor will be switched on by the controller 16. Once the chamber temperature has dropped below Tmin (at T1), the compressor will be switched off in accordance with the normal hysteresis control procedure.
At T 2 when the chamber temperature has risen above Tmax, and again providing that the evaporator temperature is above Tstart, the compressor will be switched on. However, if the evaporator temperature drops below Tdisable (at T 3 the compressor will be switched off even though the chamber temperature has not yet reached Tmin. The compressor will not start again until the evaporator temperature rises above Tstart (at T 4 If the condensor temperature rises above Talarm (at T 5 the alarm 21 will switch on, and remain on until the condensor temperature drops below Talarm (at T 7 and is reset (at T 7 as described above. Further, if the condensor temperature rises above Tshut down (T 6 the thermostat controller will override the normal hysteresis control, and shut down the compressor leaving the alarm on, until reset (T 7 as described above, typically after the temperature has dropped below Talarm. (In the illustrated example, although the condensor temperature no longer overrides the normal hysteresis control at T 7 the compressor does not switch on until the evaporator temperature rises above Tstart (at T 8 If the system is reset after the condensor temperature has dropped below Tshutdown but above Talarm, the compressor will normally start again but the alarm will sound.
The foregoing describes only one embodiment of the invention, and modifications which are obvious to those skilled in the art may be made thereto without departing from the scope of the invention.
For example, the refrigeration system may include a display panel to display the temperatures of the evaporator and/or condensor, or indicate when the temperatures of the evaporator and/or condensor are outside normal operating parameters.

Claims (14)

1. A refrigeration system having a refrigeration mechanism for cooling an object, the refrigeration mechanism including a compressor, condensor and evaporator in a refrigeration circuit, a thermostat means for regulating the operation of the refrigeration mechanism in response to the temperature of the object, and wherein the refrigeration system further includes control means for controlling the refrigeration mechanism in response to the temperature of at least one component of the refrigeration mechanism, the control means overriding the normal operation of the thermostat means.
2. A refrigeration system as claimed in claim 1, including a first sensor for sensing the temperature of the evaporator, the sensor being connected to the control means, wherein the control means is responsive to the sensed temperature of the evaporator to control the operation of the refrigeration mechanism.
3. A refrigeration system as claimed in claim 2, wherein the control means is responsive to the sensed evaporator temperature to stop operation of IlO f the refrigeration mechanism if the sensed evaporator temperature falls below a first predetermined temperature.
4. A refrigeration system as claimed in claim 3, wherein the control means is responsive to the sensed evaporator temperature to prevent g. commencement of operation of the refrigeration mechanism if the sensed evaporator temperature is below a second predetermined temperature, the °**second predetermined temperature being higher than the first predetermined temperature.
A refrigeration system as claimed in any preceding claim, including a second sensor for sensing the temperature of the condensor, the sensor being connected to the control means, wherein the control means is responsive to the sensed temperature of the condensor to control the operation of the refrigeration mechanism.
6. A refrigeration system as claimed in claim 5, further including an alarm, the alarm being activated by the control means if the sensed condensor temperature rises above a predetermined third temperature.
7. A refrigeration system as claimed in claim 6, wherein the control means is responsive to the sensed condensor temperature to disable operation of the refrigeration mechanism if the sensed condensor temperature rises above a predetermined fourth temperature.
8. A refrigeration system as claimed in any preceding claim, wherein the thermostat means and the control means are incorporated in an electronic control circuit.
9. An electronic controller for a refrigeration system having a refrigeration mechanism for cooling an object, the refrigeration mechanism including a compressor, condensor and evaporator connected in a refrigeration circuit, the electronic controller including a thermostat for regulating the operation of the refrigeration circuit in response to the temperature of the object, at least one temperature sensor for sensing the temperature of at :I least one component of the refrigeration mechanism, and an electronic control circuit responsive to the sensed temperature of the component(s) for controlling the operation of the refrigeration mechanism, the electronic control circuit overriding the operation of the thermostat.
An electronic controller as claimed in claim 9, having a first temperature sensor for sensing the temperature of the evaporator, the electronic control circuit being responsive to the evaporator temperature sensed the sensor to disable operation of the refrigeration mechanism if the sensed evaporator temperature falls below a first predetermined value.
11. An electronic controller as claimed in claim 9 or 10, having a second temperature sensor for sensing the temperature of the condensor, the electronic control circuit being responsive to the condensor temperature sensed by the sensor to disable operation of the refrigeration mechanism if the sensed condensor temperature rises above a second predetermined value.
12. A method of operating a refrigeration system having a refrigeration mechanism for cooling an object, the refrigeration mechanism including a compressor, condensor and evaporator connected in a refrigeration circuit, the method including the steps of using a thermostat to regulate the operation of the refrigeration mechanism in response to the temperature of the object, and overriding the normal operation of the thermostat and controlling the operation of the refrigeration mechanism in response to the sensed temperature of at least one component of the refrigeration mechanism.
13. A method as claimed in claim 12, wherein the operation of the refrigeration mechanism is controlled in response to the sensed temperature of the evaporator, including the step of disabling operation of the refrigeration mechanism if the sensed evaporator temperature falls below a first predetermined value.
14. A method as claimed in claim 12 or 13, wherein the operation of the refrigeration mechanism is controlled in response to the sensed temperature of the condensor, including the step of disabling operation of the refrigeration mechanism if the sensed condensor temperature rises above a ~second predetermined value. A refrigeration system substantially as hereinbefore described with reference to the drawings. DATED this eighth day of February 2001 S-Orford Refrigeration Pty Ltd By their Patent Attorneys Cullen Co.
AU18414/01A 2000-02-28 2001-02-08 Thermostat controller Abandoned AU1841401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU18414/01A AU1841401A (en) 2000-02-28 2001-02-08 Thermostat controller

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AUPQ5881 2000-02-28
AUPQ5881A AUPQ588100A0 (en) 2000-02-28 2000-02-28 Thermostat controller
AU18414/01A AU1841401A (en) 2000-02-28 2001-02-08 Thermostat controller

Publications (1)

Publication Number Publication Date
AU1841401A true AU1841401A (en) 2001-08-30

Family

ID=25617155

Family Applications (1)

Application Number Title Priority Date Filing Date
AU18414/01A Abandoned AU1841401A (en) 2000-02-28 2001-02-08 Thermostat controller

Country Status (1)

Country Link
AU (1) AU1841401A (en)

Similar Documents

Publication Publication Date Title
AU724798B2 (en) Refrigeration system and method of control
US4283921A (en) Control and alarm system for freezer case temperature
US7975497B2 (en) Refrigeration unit having variable performance compressor operated based on high-pressure side pressure
US4514989A (en) Method and control system for protecting an electric motor driven compressor in a refrigeration system
EP3187800B1 (en) A method of deciding when to terminate a defrosting cycle within a refrigerated container
US5228307A (en) Multitemperature responsive coolant coil fan control and method
US5535597A (en) Refrigerator and method for controlling the same
JPH0228069B2 (en)
JPH0642851A (en) Method of monitoring refrigerator for transport
US20070157640A1 (en) Temperature guard system for a refrigerator
US6564561B2 (en) Methods and apparatus for refrigerator temperature display
US20010017037A1 (en) Thermostat controller
EP1225406B1 (en) Defrost control method and apparatus
GB2230080A (en) Refrigerating apparatus
AU1841401A (en) Thermostat controller
US20030000233A1 (en) Methods and system for cooling device control
JP2957792B2 (en) Temperature control device abnormality warning device
CN114353402A (en) Temperature adjustment system, controller thereof, control method thereof, and computer readable medium
GB2348947A (en) Defrost control method and apparatus
JPH03260577A (en) Temperature control for showcase
JP2687637B2 (en) Operation control device for container refrigeration equipment
JP2588085B2 (en) Temperature alarm device of constant temperature machine
KR970062627A (en) How to control the temperature of the refrigerator
KR100817940B1 (en) Compensation circuit for low temperature of refrigerator
JP3581230B2 (en) Refrigerated open showcase