AT522937A3 - Method for the detection of technical irregularities of railway vehicles from the analysis of sound and vibration data - Google Patents
Method for the detection of technical irregularities of railway vehicles from the analysis of sound and vibration data Download PDFInfo
- Publication number
- AT522937A3 AT522937A3 AT601992019A AT601992019A AT522937A3 AT 522937 A3 AT522937 A3 AT 522937A3 AT 601992019 A AT601992019 A AT 601992019A AT 601992019 A AT601992019 A AT 601992019A AT 522937 A3 AT522937 A3 AT 522937A3
- Authority
- AT
- Austria
- Prior art keywords
- fband
- frep
- fsi
- data structure
- dimensional data
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H1/00—Measuring characteristics of vibrations in solids by using direct conduction to the detector
- G01H1/12—Measuring characteristics of vibrations in solids by using direct conduction to the detector of longitudinal or not specified vibrations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H5/00—Measuring propagation velocity of ultrasonic, sonic or infrasonic waves, e.g. of pressure waves
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
Die Erfindung betrifft ein computerimplementiertes Verfahren zur Detektion von technischen Irregularitäten an einem Schienenfahrzeug, - wobei die von dem Schienenfahrzeug während des Passierens des Messquerschnitts erzeugten Schallemissionen detektiert werden, - wobei der Messzeitraum den Zeitbereich umfasst, in dem das Schienenfahrzeug den Messquerschnitt vollständig passiert, - wobei als Ergebnis eines mathematischen Analyseschritts eine dreidimensionale Datenstruktur (fsi3(t, fband, frep)) vorliegt, - wobei in einem Entscheidungsschritt basierend auf der dreidimensionalen Datenstruktur (fsi3(t, fband, frep)) ein vom jeweiligen Frequenzband (fband), der Zeit (t) und der Wiederholungsfrequenz (frep). abhängiger Flachstellenindikator (fsi) ermittelt wird, - wobei der Flachstellenindikator (fsi) die mit technischen Irregularitäten assoziierten Zeitbereiche innerhalb des Messzeitraums (tMess) angibt, und - wobei der Flachstellenindikator (fsi) ermittelt wird, indem - die einzelnen Frequenzbänder (fband) zusammengeführt werden, sodass eine zweidimensionale Datenstruktur (fsi2(t, frep)) vorliegt.The invention relates to a computer-implemented method for the detection of technical irregularities on a rail vehicle, - wherein the noise emissions generated by the rail vehicle while passing the measurement cross-section are detected, - the measurement period comprises the time range in which the rail vehicle completely passes the measurement cross-section, - where a three-dimensional data structure (fsi3 (t, fband, frep)) is available as the result of a mathematical analysis step, - in a decision step based on the three-dimensional data structure (fsi3 (t, fband, frep)) one of the respective frequency band (fband), the time (t) and the repetition frequency (frep). dependent flat spot indicator (fsi) is determined, - the flat spot indicator (fsi) indicating the time ranges associated with technical irregularities within the measurement period (tMess), and - the flat spot indicator (fsi) being determined by - the individual frequency bands (fband) are merged so that there is a two-dimensional data structure (fsi2 (t, frep)).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT601992019A AT522937B1 (en) | 2019-09-04 | 2019-09-04 | Procedure for detecting technical irregularities in railway vehicles from the analysis of sound and vibration data |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT601992019A AT522937B1 (en) | 2019-09-04 | 2019-09-04 | Procedure for detecting technical irregularities in railway vehicles from the analysis of sound and vibration data |
Publications (3)
Publication Number | Publication Date |
---|---|
AT522937A2 AT522937A2 (en) | 2021-03-15 |
AT522937A3 true AT522937A3 (en) | 2021-09-15 |
AT522937B1 AT522937B1 (en) | 2022-01-15 |
Family
ID=74859565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AT601992019A AT522937B1 (en) | 2019-09-04 | 2019-09-04 | Procedure for detecting technical irregularities in railway vehicles from the analysis of sound and vibration data |
Country Status (1)
Country | Link |
---|---|
AT (1) | AT522937B1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101697175A (en) * | 2009-10-26 | 2010-04-21 | 华东交通大学 | Simulated prediction method for rail transit noise |
EP2393026A2 (en) * | 2010-06-04 | 2011-12-07 | Livermore Software Technology Corporation | Systems and methods of performing vibro-acoustic analysis of a structure |
CN102880767A (en) * | 2012-10-19 | 2013-01-16 | 西南交通大学 | Method for predicating noise simulation of rail transit bridge structure |
AT511769A2 (en) * | 2011-08-11 | 2013-02-15 | Oesterreichisches Forschungs Und Pruefzentrum Arsenal Ges M B H | METHOD FOR PREDICTING IMMISSIONS |
CN107215353A (en) * | 2017-05-26 | 2017-09-29 | 华东交通大学 | A kind of remote monitoring method for early warning of track structure disease |
CN107292046A (en) * | 2017-07-03 | 2017-10-24 | 西南交通大学 | The method of inspection and device of a kind of effect of vibration and noise reduction |
-
2019
- 2019-09-04 AT AT601992019A patent/AT522937B1/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101697175A (en) * | 2009-10-26 | 2010-04-21 | 华东交通大学 | Simulated prediction method for rail transit noise |
EP2393026A2 (en) * | 2010-06-04 | 2011-12-07 | Livermore Software Technology Corporation | Systems and methods of performing vibro-acoustic analysis of a structure |
AT511769A2 (en) * | 2011-08-11 | 2013-02-15 | Oesterreichisches Forschungs Und Pruefzentrum Arsenal Ges M B H | METHOD FOR PREDICTING IMMISSIONS |
CN102880767A (en) * | 2012-10-19 | 2013-01-16 | 西南交通大学 | Method for predicating noise simulation of rail transit bridge structure |
CN107215353A (en) * | 2017-05-26 | 2017-09-29 | 华东交通大学 | A kind of remote monitoring method for early warning of track structure disease |
CN107292046A (en) * | 2017-07-03 | 2017-10-24 | 西南交通大学 | The method of inspection and device of a kind of effect of vibration and noise reduction |
Also Published As
Publication number | Publication date |
---|---|
AT522937A2 (en) | 2021-03-15 |
AT522937B1 (en) | 2022-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fauriat et al. | Estimation of road profile variability from measured vehicle responses | |
JP2019518515A5 (en) | ||
Muñoz et al. | Railroad inspection based on ACFM employing a non-uniform B-spline approach | |
CN109141623A (en) | A kind of evaluation method and device of train in-vehicle sound quality | |
RU2014135372A (en) | DEFINITION OF A RAILWAY COMPOSITION | |
Wei et al. | Squats and corrugation detection of railway track based on time-frequency analysis by using bogie acceleration measurements | |
CN105654417A (en) | Lorry parking point information obtaining method and system | |
CN113358380B (en) | Rail vehicle snaking motion stability detection and evaluation method | |
Zhang et al. | Multi-bearing defect detection with trackside acoustic signal based on a pseudo time–frequency analysis and Dopplerlet filter | |
JP2007256153A (en) | System for detecting railway vehicle truck abnormality | |
Zhang et al. | A novel Doppler Effect reduction method for wayside acoustic train bearing fault detection systems | |
Severis et al. | Sustainable consumption in mobility from a life cycle assessment perspective | |
CN113343928A (en) | Method and device for detecting corrugation of high-speed railway steel rail on variable-speed road section and computer equipment | |
Liu et al. | An Introduction of a Robust OMA Method: CoS‐SSI and Its Performance Evaluation through the Simulation and a Case Study | |
Alemi et al. | Reconstruction of an informative railway wheel defect signal from wheel–rail contact signals measured by multiple wayside sensors | |
AT522937A3 (en) | Method for the detection of technical irregularities of railway vehicles from the analysis of sound and vibration data | |
Zhou et al. | Wheel flat detection on railway vehicles using the angular domain synchronous averaging method: An experimental study | |
CN107436363B (en) | A kind of rail traffic vehicles speed dynamic measurement method | |
Komorski et al. | Application of Time-Frequency Analysis of Acoustic Signal to Detecting Flat Places on the Rolling Surface of a Tram Wheel | |
Melnik et al. | The selection procedure of diagnostic indicator of suspension fault modes for the rail vehicles monitoring system | |
RU2537747C1 (en) | Acoustic-emission method to diagnose metal structures | |
KR20240074822A (en) | How to identify and characterize noise generated by vehicle braking systems using artificial intelligence | |
DE102015209939A1 (en) | Method and apparatus for evaluating significance of ultrasound signals received by means of a vehicle-mounted ultrasound sensor | |
Samann et al. | Removing noise and overlapping spikes from extracellular recordings using a regularized denoising autoencoder | |
Erviti et al. | Error analysis of the application of combined subspace identification to the modal analysis of railway vehicles |