AT522937A3 - Method for the detection of technical irregularities of railway vehicles from the analysis of sound and vibration data - Google Patents

Method for the detection of technical irregularities of railway vehicles from the analysis of sound and vibration data Download PDF

Info

Publication number
AT522937A3
AT522937A3 AT601992019A AT601992019A AT522937A3 AT 522937 A3 AT522937 A3 AT 522937A3 AT 601992019 A AT601992019 A AT 601992019A AT 601992019 A AT601992019 A AT 601992019A AT 522937 A3 AT522937 A3 AT 522937A3
Authority
AT
Austria
Prior art keywords
fband
frep
fsi
data structure
dimensional data
Prior art date
Application number
AT601992019A
Other languages
German (de)
Other versions
AT522937A2 (en
AT522937B1 (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to AT601992019A priority Critical patent/AT522937B1/en
Publication of AT522937A2 publication Critical patent/AT522937A2/en
Publication of AT522937A3 publication Critical patent/AT522937A3/en
Application granted granted Critical
Publication of AT522937B1 publication Critical patent/AT522937B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/12Measuring characteristics of vibrations in solids by using direct conduction to the detector of longitudinal or not specified vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H5/00Measuring propagation velocity of ultrasonic, sonic or infrasonic waves, e.g. of pressure waves

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

Die Erfindung betrifft ein computerimplementiertes Verfahren zur Detektion von technischen Irregularitäten an einem Schienenfahrzeug, - wobei die von dem Schienenfahrzeug während des Passierens des Messquerschnitts erzeugten Schallemissionen detektiert werden, - wobei der Messzeitraum den Zeitbereich umfasst, in dem das Schienenfahrzeug den Messquerschnitt vollständig passiert, - wobei als Ergebnis eines mathematischen Analyseschritts eine dreidimensionale Datenstruktur (fsi3(t, fband, frep)) vorliegt, - wobei in einem Entscheidungsschritt basierend auf der dreidimensionalen Datenstruktur (fsi3(t, fband, frep)) ein vom jeweiligen Frequenzband (fband), der Zeit (t) und der Wiederholungsfrequenz (frep). abhängiger Flachstellenindikator (fsi) ermittelt wird, - wobei der Flachstellenindikator (fsi) die mit technischen Irregularitäten assoziierten Zeitbereiche innerhalb des Messzeitraums (tMess) angibt, und - wobei der Flachstellenindikator (fsi) ermittelt wird, indem - die einzelnen Frequenzbänder (fband) zusammengeführt werden, sodass eine zweidimensionale Datenstruktur (fsi2(t, frep)) vorliegt.The invention relates to a computer-implemented method for the detection of technical irregularities on a rail vehicle, - wherein the noise emissions generated by the rail vehicle while passing the measurement cross-section are detected, - the measurement period comprises the time range in which the rail vehicle completely passes the measurement cross-section, - where a three-dimensional data structure (fsi3 (t, fband, frep)) is available as the result of a mathematical analysis step, - in a decision step based on the three-dimensional data structure (fsi3 (t, fband, frep)) one of the respective frequency band (fband), the time (t) and the repetition frequency (frep). dependent flat spot indicator (fsi) is determined, - the flat spot indicator (fsi) indicating the time ranges associated with technical irregularities within the measurement period (tMess), and - the flat spot indicator (fsi) being determined by - the individual frequency bands (fband) are merged so that there is a two-dimensional data structure (fsi2 (t, frep)).

AT601992019A 2019-09-04 2019-09-04 Procedure for detecting technical irregularities in railway vehicles from the analysis of sound and vibration data AT522937B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT601992019A AT522937B1 (en) 2019-09-04 2019-09-04 Procedure for detecting technical irregularities in railway vehicles from the analysis of sound and vibration data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT601992019A AT522937B1 (en) 2019-09-04 2019-09-04 Procedure for detecting technical irregularities in railway vehicles from the analysis of sound and vibration data

Publications (3)

Publication Number Publication Date
AT522937A2 AT522937A2 (en) 2021-03-15
AT522937A3 true AT522937A3 (en) 2021-09-15
AT522937B1 AT522937B1 (en) 2022-01-15

Family

ID=74859565

Family Applications (1)

Application Number Title Priority Date Filing Date
AT601992019A AT522937B1 (en) 2019-09-04 2019-09-04 Procedure for detecting technical irregularities in railway vehicles from the analysis of sound and vibration data

Country Status (1)

Country Link
AT (1) AT522937B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101697175A (en) * 2009-10-26 2010-04-21 华东交通大学 Simulated prediction method for rail transit noise
EP2393026A2 (en) * 2010-06-04 2011-12-07 Livermore Software Technology Corporation Systems and methods of performing vibro-acoustic analysis of a structure
CN102880767A (en) * 2012-10-19 2013-01-16 西南交通大学 Method for predicating noise simulation of rail transit bridge structure
AT511769A2 (en) * 2011-08-11 2013-02-15 Oesterreichisches Forschungs Und Pruefzentrum Arsenal Ges M B H METHOD FOR PREDICTING IMMISSIONS
CN107215353A (en) * 2017-05-26 2017-09-29 华东交通大学 A kind of remote monitoring method for early warning of track structure disease
CN107292046A (en) * 2017-07-03 2017-10-24 西南交通大学 The method of inspection and device of a kind of effect of vibration and noise reduction

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101697175A (en) * 2009-10-26 2010-04-21 华东交通大学 Simulated prediction method for rail transit noise
EP2393026A2 (en) * 2010-06-04 2011-12-07 Livermore Software Technology Corporation Systems and methods of performing vibro-acoustic analysis of a structure
AT511769A2 (en) * 2011-08-11 2013-02-15 Oesterreichisches Forschungs Und Pruefzentrum Arsenal Ges M B H METHOD FOR PREDICTING IMMISSIONS
CN102880767A (en) * 2012-10-19 2013-01-16 西南交通大学 Method for predicating noise simulation of rail transit bridge structure
CN107215353A (en) * 2017-05-26 2017-09-29 华东交通大学 A kind of remote monitoring method for early warning of track structure disease
CN107292046A (en) * 2017-07-03 2017-10-24 西南交通大学 The method of inspection and device of a kind of effect of vibration and noise reduction

Also Published As

Publication number Publication date
AT522937A2 (en) 2021-03-15
AT522937B1 (en) 2022-01-15

Similar Documents

Publication Publication Date Title
Fauriat et al. Estimation of road profile variability from measured vehicle responses
JP2019518515A5 (en)
Muñoz et al. Railroad inspection based on ACFM employing a non-uniform B-spline approach
CN109141623A (en) A kind of evaluation method and device of train in-vehicle sound quality
RU2014135372A (en) DEFINITION OF A RAILWAY COMPOSITION
Wei et al. Squats and corrugation detection of railway track based on time-frequency analysis by using bogie acceleration measurements
CN105654417A (en) Lorry parking point information obtaining method and system
CN113358380B (en) Rail vehicle snaking motion stability detection and evaluation method
Zhang et al. Multi-bearing defect detection with trackside acoustic signal based on a pseudo time–frequency analysis and Dopplerlet filter
JP2007256153A (en) System for detecting railway vehicle truck abnormality
Zhang et al. A novel Doppler Effect reduction method for wayside acoustic train bearing fault detection systems
Severis et al. Sustainable consumption in mobility from a life cycle assessment perspective
CN113343928A (en) Method and device for detecting corrugation of high-speed railway steel rail on variable-speed road section and computer equipment
Liu et al. An Introduction of a Robust OMA Method: CoS‐SSI and Its Performance Evaluation through the Simulation and a Case Study
Alemi et al. Reconstruction of an informative railway wheel defect signal from wheel–rail contact signals measured by multiple wayside sensors
AT522937A3 (en) Method for the detection of technical irregularities of railway vehicles from the analysis of sound and vibration data
Zhou et al. Wheel flat detection on railway vehicles using the angular domain synchronous averaging method: An experimental study
CN107436363B (en) A kind of rail traffic vehicles speed dynamic measurement method
Komorski et al. Application of Time-Frequency Analysis of Acoustic Signal to Detecting Flat Places on the Rolling Surface of a Tram Wheel
Melnik et al. The selection procedure of diagnostic indicator of suspension fault modes for the rail vehicles monitoring system
RU2537747C1 (en) Acoustic-emission method to diagnose metal structures
KR20240074822A (en) How to identify and characterize noise generated by vehicle braking systems using artificial intelligence
DE102015209939A1 (en) Method and apparatus for evaluating significance of ultrasound signals received by means of a vehicle-mounted ultrasound sensor
Samann et al. Removing noise and overlapping spikes from extracellular recordings using a regularized denoising autoencoder
Erviti et al. Error analysis of the application of combined subspace identification to the modal analysis of railway vehicles