AT410982B - Vorrichtung und verfahren zum nachweis verborgener wasserstoffhaltiger objekte - Google Patents

Vorrichtung und verfahren zum nachweis verborgener wasserstoffhaltiger objekte Download PDF

Info

Publication number
AT410982B
AT410982B AT0103800A AT10382000A AT410982B AT 410982 B AT410982 B AT 410982B AT 0103800 A AT0103800 A AT 0103800A AT 10382000 A AT10382000 A AT 10382000A AT 410982 B AT410982 B AT 410982B
Authority
AT
Austria
Prior art keywords
neutron
neutrons
energy
hydrogen
neutron source
Prior art date
Application number
AT0103800A
Other languages
English (en)
Other versions
ATA10382000A (de
Original Assignee
Drosg Manfred Dr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Drosg Manfred Dr filed Critical Drosg Manfred Dr
Priority to AT0103800A priority Critical patent/AT410982B/de
Publication of ATA10382000A publication Critical patent/ATA10382000A/de
Application granted granted Critical
Publication of AT410982B publication Critical patent/AT410982B/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/09Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being neutrons

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description


   <Desc/Clms Page number 1> 
 



   Die Erfindung betrifft eine Vorrichtung zum Nachweis verborgener wasserstoffhaltiger Objekte mit einer einigermassen monoenergetischen Neutronenquelle mit Abschirmung und Kollimator zur Bestrahlung des zu untersuchenden Bereiches, einem Neutronendetektorsystem und einer elektronischen Auswerteeinheit sowie deren Versorgung mit elektrischer Leistung. Sie betrifft weiters ein Verfahren zum Nachweis verborgener wasserstoffhaltiger Objekte, bei dem man der zu überprüfende Bereich mit einer einigermassen monoenergetischen Neutronenquelle mit Abschirmung und Kollimator bestrahlt, die gestreuten Neutronen detektiert und das Ergebnis mit einer elektronischen Auswerteeinheit ausgewertet wird. 



   Solch eine Vorrichtung bzw. solch ein Verfahren ist insbesondere zum Nachweis von Minen, Explosivstoffen, Drogen und allen Arten von Kohlenwasserstoffen, die entweder in einem Medium eingebettet sind oder in einem Behälter verborgen sind, geeignet. Insbesondere soll damit auch das Auffinden von Konterbande sowie vergrabener Plastikminen bewerkstelligt werden. 



   Als Folge von Kriegshandlungen sind derzeit grosse wirtschaftlich nutzbare Flächen mit nichtmetallischen Minen belegt. Aufgrund des sehr geringen Metallanteiles lassen sich solche Minen mit konventionellen Minensuchgeräten praktisch nicht nachweisen. 



   Ausserdem besteht ein dringender Bedarf an Geräten, die das Vorhandensein verbotener Substanzen, wie Rauschgift und Explosivstoffe, in Transportbehältern und Fahrzeugen feststellen können. 



   Für beide Anwendungen sind Vorrichtungen bekannt, die rückgestreute Neutronenstrahlen analysieren. Bisher wurde dabei entweder das Vorhandensein thermalisierter Neutronen   (z. B.   



  DE 19600591   Al)   oder von rückgestreuten Neutronen der anderen Komponenten, insbesondere von Stickstoff bei Explosivstoffen, festgestellt. Beide Methoden arbeiten bisher noch nicht befriedigend, so dass z. B. die Suche von Plastikminen auch heute noch manuell unter Einsatz von so genannten Minennadeln oder von Minensuchhunden erfolgt. 



   In der US 4499380 A ist eine Vorrichtung beschrieben, bei der zunächst schnelle Neutronen erzeugt werden, wonach diese zu thermischen Neutronen moderiert werden. Die thermischen Neutronen werden auf das zu analysierende Medium, nämlich Wasserdampf, gestrahlt, dort gestreut und danach detektiert. Auf diese Weise wird die Qualität des Wasserdampfs bestimmt. Diese Messung basiert also auf thermalisierten Neutronen. 



   Gemäss der US 3492479 A werden schnelle Neutronen auf die zu untersuchende Substanz eingestrahlt und thermalisierte Neutronen detektiert. Aus den thermalisierten Neutronen wird auf den Wasserstoffgehalt geschlossen. 



   Bei den beiden zuletzt genannten Schriften wird also mit thermalisierten Neutronen gearbeitet,   was-wie erwähnt-zum   Auffinden von Explosivstoffen nicht optimal ist. 



   Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung bzw. ein Verfahren der eingangs genannten Art anzugeben, die bzw. das eine ausreichend hohe Nachweisempfindlichkeit für wasserstoffhaltige Objekte bei gleichzeitig tolerierbarer Falschalarmrate aufweist. 



   Diese Aufgabe wird durch eine Vorrichtung der eingangs genannten Art erfindungsgemäss dadurch gelöst, dass das Neutronendetektorsystem in an sich bekannter Weise energiediskriminie- 
 EMI1.1 
 Neutronen im Energiebereich 2, 3 bis 3 MeV oder 7 bis 9 MeV erzeugt. Auf diese Weise können die durch die Wechselwirkungen mit dem Wasserstoff geänderten Eigenschaften des Neutronenenergiespektrums erfasst werden. Diese Aufgabe wird weiters durch ein Verfahren der eingangs genannten Art erfindungsgemäss dadurch gelöst, dass die rückgestreuten Neutronen energiediskriminierend detektiert werden und die Flussdepression im oberen Energiebereich infolge der Wechselwirkungen der Neutronen mit dem Wasserstoff gemessen wird, und daraus auf das Vorhandensein wasserstoffhaltiger Objekte geschlossen wird. 



   Die Erfindung beruht auf dem Umstand, dass sich die Wechselwirkung von (schnellen) Neutronen mit Wasserstoff (Protonium) markant von der mit anderen Isotopen unterscheidet. Folgende Wechselwirkungseigenschaften tragen zum Erfolg dieser Erfindung bei :
Der Wirkungsquerschnitt für schnelle Neutronen ist relativ hoch. 



   Bei Streuung am Wasserstoff wird die Neutronenenergie im Durchschnitt stärker geändert als bei allen anderen Isotopen, so dass die gestreuten Neutronen eine markant andere Energie haben als der Primärstrahl. 

 <Desc/Clms Page number 2> 

 



   Wasserstoff (Protonium) ist das einzige Isotop, bei dem es unter Streuwinkeln, die grösser als 90 Grad sind, keine (einmal) gestreuten Neutronen gibt. 



   Man kann daher wasserstoffhaltige Objekte, bei geeigneter Wahl der Neutronenquelle, sowohl im Durchlicht als auch in Reflexion   als "Schatten" erkennen, d. h.   sowohl hinter als auch vor wasserstoffhaltigen Objekten ist der Neutronenfluss im oberen Energiebereich des Neutronenspektrums messbar kleiner als in der Umgebung dieser Objekte. Bei geeigneter Kollimation enthält die Neutronenintensität sozusagen den Schatten des wasserstoffhaltigen Objektes. Die Neutronen lassen sich mit Hilfe an sich bekannter energiediskriminierender Neutronenmessanordnungen nachweisen, und deren Signale gegebenenfalls durch geeignete bildgebende Massnahmen zur Herstellung eines (Negativ-) Bildes des Objektes verwenden. 



   Bei den bisherigen Verfahren wurde immer versucht, die am Wasserstoff gestreuten Neutronen zu erfassen, was mit verschiedensten Problemen verbunden ist. Die Erfindung geht jedoch den Weg, die nicht am Wasserstoff gestreuten Neutronen zu messen ; bei Vorhandensein von Wasserstoff nimmt die Anzahl dieser Neutronen ab. Dieser Effekt ist signifikant, und auf diese Weise werden all die Schwierigkeiten der bisherigen Verfahren umgangen. 



   Da die Methode darauf beruht, den Unterschied in der Wechselwirkung mit der Umgebung des Objektes zu messen, stört eine einigermassen gleichmässige Kontamination der Umgebung mit Wasserstoff   (z. B.   in Form von Wasser) nicht, solange diese nicht exzessiv ist. Bei der Minensuche wäre   z. B.   ein Regenguss von 3 cm, der eine gleichmässige Durchfeuchtung des Erdreichs bewirkt, noch tolerierbar. Die notwendige Messzeit würde dadurch allerdings erhöht werden. 



   Die besprochene Flussdepression infolge der Wechselwirkung der Neutronen mit Wasserstoff tritt an sich bei allen Neutronenenergien auf. Wegen der Abnahme des Wasserstoffwirkungsquerschnitts mit der Energie nimmt auch der Messeffekt mit zunehmender Neutronenprimärenergie ab. 



  Andererseits muss für eine ausreichende Eindringtiefe der primären Neutronen gesorgt werden, weshalb die Primärenergie nicht zu klein sein darf. Die optimale Neutroneneinschussenergie ergibt sich aus der Energieabhängigkeit der Wirkungsquerschnitte der zu durchstrahlenden Substanzen. 



    Z. B.   gibt es bei der Suche nach wasserstoffhaltigen Objekten, die in der Erde verborgen sind, zwei 
 EMI2.1 
 



   Es ist zweckmässig, wenn das energiediskriminierende Neutronendetektorsystem im Wesentlichen symmetrisch in Bezug auf die mittlere Strahlachse des von der Neutronenquelle emittierten Neutronenstrahles angeordnet ist. Dadurch wird die Auswertung erleichtert, weil das Neutronendetektorsystem nur Neutronen im gleichen Streuwinkelbereich erfasst. Das Neutronendetektorsystem kann dabei aus einem oder aus mehreren Detektoren bestehen. 



   Weiters ist es günstig, wenn die Neutronenquelle eine zeitlich scharf gepulste Neutronenquelle ist. Eine gepulste Neutronenquelle ermöglicht Laufzeitmessungen. 



   Um die Qualität der Identifizierung zu verbessern und damit die Falschalarmrate zu verringern, ist es vorteilhaft, weitere Informationen, die im Spektrum der gestreuten Neutronen enthalten sind, auszuwerten. Es wird daher beim erfindungsgemässen Verfahren bevorzugt, dass koinzident sowohl die Flussdepression durch Wasserstoff als auch die Flusserhöhung durch die elastische Streuung an allfälligen weiteren leichten Bestandteilen des Objekts wie Kohlenstoff, Stickstoff und Sauerstoff im jeweiligen Energiebereich des Neutronenenergiespektrums festgestellt wird und diese Information zur Kontraststeigerung und/oder Verringerung der Falschalarmrate verwendet wird. 



   Diese zusätzlichen Informationen sind umso leichter erfassbar, je grösser der Streuwinkel ist, da bei Streuung der Energieverlust mit dem Winkel zunimmt. Im Rückstreuspektrum wirkt sich, bei Verwendung einer einigermassen monoenergetischen Neutronenquelle, die Flussdepression durch den Wasserstoff im obersten Fünftel des Rückstreuspektrums aus. Energetisch darunter befinden sich die von Sauerstoff und/oder Stickstoff und/oder Kohlenstoff elastisch rückgestreuten Neutronen. Ist also im durchstrahlten Objekt auch irgendeines dieser Elemente vorhanden, so ist im darunter liegenden Energiebereich des Neutronenspektrums die Intensität erhöht.

   Durch die Kombination beider Effekte (Verringerung infolge des Wasserstoffs im hohen Energiebereich, Erhöhung durch andere leichte Elemente im darunter liegenden Bereich) wird nicht nur der Kontrast gegen- über einer Messung in der Umgebung des Objekts verbessert, sondern es besteht im Prinzip auch 

 <Desc/Clms Page number 3> 

 die Möglichkeit, über eine UND-Verknüpfung eine Entscheidung zu fällen, ob und in welchem Ausmass das Objekt weitere leichte Elemente wie Kohlenstoff, Stickstoff und Sauerstoff enthält, und so zur Identifizierung der Art des Objekts (Kohlenwasserstoff, Sprengstoff, Wasser etc. ) beizutragen. 



   Wie bei der erfindungsgemässen Vorrichtung bereits erläutert, ist es zweckmässig, dass der zu überprüfende Bereich mit Neutronen der Energie 2, 3 bis 3 MeV oder 7 bis 9 MeV bestrahlt wird. 



   Es ist zweckmässig, wenn aus der Anordnung der Neutronenquelle und des Neutronendetektorsystems die Koordinaten des Schnittpunkts der Achse des Neutronenstrahls mit der Erdoberfläche berechnet werden, so dass das Messergebnis im Detektorsystem einem Ort auf der Erdoberfläche zugeordnet wird, wodurch der Ort eines verborgenen Objektes in einer Ebene lokalisiert ist. 



  Auf diese Weise wird bekannt, wo die Mine liegt - allerdings nicht wie tief sie liegt. Um auch dies festzustellen, ist nach einer weiteren Ausgestaltung der Erfindung vorgesehen, dass eine zeitlich scharf gepulste Neutronenquelle verwendet wird, um in an sich bekannter Weise die Flugzeit der Neutronen vom Generator zum Detektor zu bestimmen, und aus der Flugzeit der Neutronen auf die Entfernung des verborgenen Objekts zu schliessen, sodass das verborgene Objekt vollständig lokalisiert ist. 



   Eine gepulste Neutronenquelle ermöglicht Laufzeitmessungen, sodass die Entfernung des verborgenen Objekts ermittelt werden kann. Da die Intensität der Neutronenquelle für die Auswertung bekannt sein muss (man misst ja die Abnahme der Intensität infolge des Wasserstoffs), muss die Intensität entweder stabilisiert sein oder gleichzeitig gemessen werden. 



   Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus dem folgenden Ausführungsbeispiel einer erfindungsgemässen Vorrichtung zum Nachweis von im Erdboden verborgener wasserstoffhaltiger Objekte bzw. Strukturen. Andere Anwendungen dieser Methode, wie   z. B.   das Aufspüren verbotener Stoffe in Fahrzeugen und Behältern, verlangen   u. U.   eine andere Optimierung, besonders auch in Hinblick auf die Energie des Neutronenstrahls und damit auf die Quelle. 



  Ausserdem könnte bei einer solchen Aufgabe auch die Durchstreu-statt der Rückstreugeometrie angewendet werden. 



   In Hinblick darauf, dass mit dieser Vorrichtung verdächtige Flächen abgetastet werden sollen, muss diese Vorrichtung transportabel sein. Die benötigten Komponenten : monoenergetische Neutronenquelle mit Kollimator und Abschirmung
Detektorsystem mit Kollimator und Abschirmung, sowie die Steuer- und Auswerteelektronik müssen kompakt angeordnet sein und dürfen nicht zu schwer sein. 



   Eine Neutronenquelle, basierend auf der   H (d, n)-Reaktion (allgemein ais d-D-Queiie bekannt),   liefert unter 0 Grad in Bezug auf die Richtung der einfallenden Deuteronen bei einer Beschleunigungsspannung von 100 bis 150 kV Neutronen mit einer mittleren Energie von 2, 79 bis 2, 87 MeV. 



  Obwohl diese Quelle eine relativ kleine Neutronenausbeute hat, hat sie den Vorteil, dass (trans) portable Quellen dieser Art kommerziell erhältlich sind. Ausserdem ist der Untergrund unerwünschter Strahlung gering, so dass keine massive Abschirmung als Personenschutz erforderlich ist. Die dabei erzeugten Neutronen haben zwar nicht die optimale Durchdringungseigenschaft für das Erdreich, sie befinden sich aber gerade noch in einem der oben angegebenen Energiefenster. 



   Durch scharfe Pulsung des Deuteronenstrahls erhält man die Möglichkeit, die Flugzeitmethode zur Energiediskriminierung anzuwenden. Mit Hilfe eines Kollimators erzeugt man einen (räumlich begrenzten) Neutronenstrahl, mit dem (durch Verschieben der gesamten Vorrichtung) die zu untersuchende Fläche abgetastet wird. Konzentrisch um diesen Kollimator befinden sich, in geeigneter Entfernung von der Erdoberfläche (mehr als etwa 30 cm), herkömmliche Detektoren für schnelle Neutronen   (z. B. Flüssigszintillatoren),   die ebenfalls kollimiert und abgeschirmt sind. Diese dienen der Messung der rückgestreuten schnellen Neutronen. Durch die Kollimation der Detektoren wird sichergestellt, dass die rückgestreuten Neutronen aus dem vom primären Neutronenstrahl durchstrahlten Erdvolumen stammen.

   Neben der Abschirmung können je nach Bedarf alle aus der Experimentiertechnik mit schnellen Neutronen bekannten Methoden zur Optimierung des Sig-   nal/Untergrundverhältnisses   eingesetzt werden, wie   Neutronen-Gamma-Diskrimination,   Vorabsorber gegen thermische Neutronen (Kadmium-Blech) u. dgl. 



   Aus dem Energiespektrum der rückgestreuten Neutronen wird einerseits die   Zählrate   jenes Energiebereiches, der von der Flussdepression durch den Wasserstoff beeinflusst wird, als Funktion der örtlichen Koordinaten registriert. Dadurch werden Strukturen im Erdreich, die konzentriert 

 <Desc/Clms Page number 4> 

 Wasserstoff enthalten und nicht wesentlich tiefer als etwa 20 cm von der Erdoberfläche entfernt sind, als "Schatten" erkennbar. 



   Bei gleichzeitiger Auswertung jener Energiebereiche, in denen die von Stickstoff bzw. Kohlenstoff elastisch zurückgestreuten Neutronen zu liegen kommen, erhält man über einem Objekt, das Stickstoff und/oder Kohlenstoff enthält, eine erhöhte   Zähirate,   also eine "Aufhellung". Die Auswer- 
 EMI4.1 
 der drei) Energiebereiche wird nicht nur die Empfindlichkeit der Messung erhöht, sondern es wird auch die Anzahl der Fehlalarme verringert, da bei allen in Frage kommenden Sprengstoffen auch Signale, die vom Stickstoff stammen, vorhanden sein müssen. 



   Es ist nahe liegend, das   Zählratenverhältnis   im Energiebereich der Flussdepression allein oder gemeinsam mit dem Verhältnis im Bereich der elastischen Streuung zur Auslösung eines Alarms, der auf eine Mine hinweist, zu verwenden. Mit entsprechendem apparativen Aufwand könnten auch durch eine Art Rückstreu-Neutronenradiographie allfällige Objekte im Boden auf einem Sichtgerät abgebildet werden. 



   Da das Ergebnis aus aufeinander folgenden Messungen zustande kommt, muss entweder dafür gesorgt werden, dass die Neutronenausbeute der Quelle keine nennenswerten Schwankungen erleidet bzw. dass beim Vergleich zweier Messungen gleiche eingestrahlte Neutronendosen zugrundegelegt werden. Zu diesem Zwecke kann der emittierte Neutronenfluss entweder direkt mit Hilfe eines (kleinen) Monitors ständig gemessen werden, oder es muss zumindest die Stabilität des   Deuteronenstrahis   überwacht werden. 



   Die Erfindung ist, wie schon oben dargelegt, nicht auf das vorstehend beschriebene Ausführungsbeispiel und Anwendungsgebiet beschränkt. Insbesondere werden bei Anwendungen, bei der   das Gewicht keine grosse Rolle spielt, andere monoenergetische Neutronenquellen, insbesondere der Reaktionen H(p.n),H(t.n), Li (p, n) und B (p, n), die ein Vielfaches an Intensität liefern kön-   nen, und die auch monoenergetische Neutronen niedrigerer Energie liefern können, in Frage kommen. 



   PATENTANSPRÜCHE : 
1. Vorrichtung zum Nachweis verborgener   wasserstoffhaltiger   Objekte mit einer einigerma- ssen monoenergetischen Neutronenquelle mit Abschirmung und Kollimator zur Bestrahlung des zu untersuchenden Bereiches, einem Neutronendetektorsystem und einer elektroni- schen Auswerteeinheit sowie deren Versorgung mit elektrischer Leistung, dadurch ge- kennzeichnet, dass das Neutronendetektorsystem in an sich bekannter Weise energie- diskriminierend und in Rückstreugeometrie ausgebildet ist, wobei die als Neutronengene- rator ausgebildete Neutronenquelle auf Grund einer der Reaktionen   H (d. n), H (p, n),     H (t. n), Li (p. n) und B (p, n)   Neutronen im Energiebereich 2, 3 bis 3 MeV oder 7 bis 9 MeV erzeugt.

Claims (1)

  1. 2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das energiediskriminieren- de Neutronendetektorsystem im Wesentlichen symmetrisch in Bezug auf die mittlere Strahlachse des von der Neutronenquelle emittierten Neutronenstrahies angeordnet ist.
    3. Vorrichtung nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass die Neut- ronenquelle eine zeitlich scharf gepulste Neutronenquelle ist.
    4. Verfahren zum Nachweis verborgener Wasserstoffhaitiger Objekte, bei dem der zu über- prüfende Bereich mit einer einigermassen monoenergetischen Neutronenquelle mit Ab- schirmung und Kollimator bestrahlt wird, die gestreuten Neutronen detektiert werden das Ergebnis mit einer elektronischen Auswerteeinheit ausgewertet wird, dadurch gekenn- zeichnet, dass die rückgestreuten Neutronen energiediskriminierend detektiert werden und die Flussdepression im oberen Energiebereich infolge der Wechselwirkungen der Neutronen mit dem Wasserstoff gemessen wird, und daraus auf das Vorhandensein Was- serstoffhaltiger Objekte geschlossen wird.
    5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass koinzident sowohl die Flussdepression durch Wasserstoff als auch die Flusserhöhung durch die elastische <Desc/Clms Page number 5> Streuung an allfälligen weiteren leichten Bestandteilen des Objekts wie Kohlenstoff, Stick- stoff und Sauerstoff im jeweiligen Energiebereich des Neutronenenergiespektrums festge- stellt wird, und diese Information zur Kontraststeigerung und/oder Verringerung der Falschalarmrate verwendet wird.
    6. Verfahren nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, dass der zu überprüfende Bereich mit Neutronen der Energie 2, 3 bis 3 MeV oder 7 bis 9 MeV bestrahlt wird.
    7. Verfahren nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass aus der Anordnung von Kollimator und des Neutronendetektorsystems die Koordinaten des Schnittpunkts der Achse des Neutronenstrahls mit der Erdoberfläche berechnet werden, so dass das Messergebnis im Detektorsystem einem Ort auf der Erdoberfläche zugeordnet wird, wodurch der Ort eines verborgenen Objektes in einer Ebene lokalisiert ist.
    8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass eine zeitlich scharf gepulste Neutronenquelle verwendet wird, um in an sich bekannter Weise die Flugzeit der Neutro- nen vom Generator zum Detektor zu bestimmen, und aus der Flugzeit der Neutronen auf die Entfernung des verborgenen Objekts zu schliessen, sodass das verborgene Objekt voll- ständig lokalisiert ist.
AT0103800A 2000-06-15 2000-06-15 Vorrichtung und verfahren zum nachweis verborgener wasserstoffhaltiger objekte AT410982B (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT0103800A AT410982B (de) 2000-06-15 2000-06-15 Vorrichtung und verfahren zum nachweis verborgener wasserstoffhaltiger objekte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT0103800A AT410982B (de) 2000-06-15 2000-06-15 Vorrichtung und verfahren zum nachweis verborgener wasserstoffhaltiger objekte

Publications (2)

Publication Number Publication Date
ATA10382000A ATA10382000A (de) 2003-01-15
AT410982B true AT410982B (de) 2003-09-25

Family

ID=3684462

Family Applications (1)

Application Number Title Priority Date Filing Date
AT0103800A AT410982B (de) 2000-06-15 2000-06-15 Vorrichtung und verfahren zum nachweis verborgener wasserstoffhaltiger objekte

Country Status (1)

Country Link
AT (1) AT410982B (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3492479A (en) * 1966-05-02 1970-01-27 Troxler Electronic Lab Inc Apparatus for measuring hydrogenous material utilizing radioactive source
US4499380A (en) * 1982-10-21 1985-02-12 Esso Resources Canada, Ltd. Apparatus and method for determining the hydrogen content of a substance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3492479A (en) * 1966-05-02 1970-01-27 Troxler Electronic Lab Inc Apparatus for measuring hydrogenous material utilizing radioactive source
US4499380A (en) * 1982-10-21 1985-02-12 Esso Resources Canada, Ltd. Apparatus and method for determining the hydrogen content of a substance

Also Published As

Publication number Publication date
ATA10382000A (de) 2003-01-15

Similar Documents

Publication Publication Date Title
DE112008001701B4 (de) Photoneutronenumwandlungstarget und Photoneutronen-Röntgenquelle
DE68915071T2 (de) Verfahren und System zur Detektion von stickstoffhaltigen Sprengstoffen mittels Kernresonanzabsorption.
DE19954663B4 (de) Verfahren und Vorrichtung zur Bestimmung eines Materials eines detektierten Gegenstandes
DE69127412T2 (de) Schmuggelwarenachweissystem unter Benutzung direkter Abbildung mittels pulsierter schneller Neutronen.
DE102006023309B4 (de) Verfahren und Vorrichtung zur Erkennung von Materialen mittels Schnellneutronen und eines kontinuierlichen spektralen Röntgenstrahles
DE19954662B4 (de) Vorrichtung und Verfahren zum Detektieren von unzulässigen Reisegepäckgegenständen
EP1215482B1 (de) Vorrichtung zur Durchleuchtung von Objekten
DE19745669B4 (de) Analysensystem zur zerstörungsfreien Identifikation des Inhalts von Objekten, insbesondere von Sprengstoff und chemischen Kampfstoffen
DE102005056315A1 (de) Verfahren und Vorrichtung zur Flüssigkeitssicherheitsdetektion durch Rückstreuung anhand einer Strahlungsquelle
DE112004002474T5 (de) Verfahren und System zur Detektion von Substanzen wie speziellen nuclearen Materialien
EP3410104B1 (de) Verfahren und vorrichtung zur multielementanalyse basierend auf neutronenaktivierung sowie verwendung
DE1774021A1 (de) Vorrichtung zur Bestimmung der Feuchtigkeit in einem Material,insbesondere fuer Bodenuntersuchungen mit Hilfe von Neutronen
DE19622758A1 (de) Verfahren zur Detektion eines Körpers innerhalb eines Untersuchungsbereichs und Anordnung zur Durchführung des Verfahrens
AT410982B (de) Vorrichtung und verfahren zum nachweis verborgener wasserstoffhaltiger objekte
DE2924638A1 (de) Verfahren zur erstellung eines fluessigkeitsinjektionsprofils
DE2140342A1 (de) Neutronenmeßvorrichtung zur Erforschung von Erdformationen
WO2004104546A2 (de) Verfahren und vorrichtung zum nachweis von gefährlichen gütern in gepäckstücken unter verwendung einer gepulsten neutronenquelle
WO2006063849A1 (de) Anordnung zum messen des impulsübertragungsspektrums von elastisch gestreuten röntgenquanten
DE102017111935B4 (de) Verfahren und Vorrichtung zur Multielementanalyse basierend auf Neutronenaktivierung sowie Computerprogrammprodukt dafür
AT410850B (de) Vorrichtung und verfahren zur strukturanalyse von sauerstoffhaltigen medien mit schnellen neutronen
WO2006125696A1 (de) Verfahren und anordnung zur bestimmung eines flächengewichtes und/oder einer chemischen zusammensetzung einer geförderten materialprobe
DE19600591A1 (de) Vorrichtung zum Nachweis von nichtmetallischen Minen
DE19954661C2 (de) Vorrichtung und Verfahren zur Justage eines Kollimators
DE948898C (de) Verfahren und Vorrichtung zur Untersuchung von durch ein Bohrloch durchteuften Erdformationen mittels einer in das Bohrloch eingebrachten Neutronenquelle
DE102022115069A1 (de) Neutronensondierung im Gleisbereich

Legal Events

Date Code Title Description
ELJ Ceased due to non-payment of the annual fee