AT135115B - Process for utilizing the low-pressure, waste or residual gases that arise when filling and transferring low-boiling, liquefied gases. - Google Patents
Process for utilizing the low-pressure, waste or residual gases that arise when filling and transferring low-boiling, liquefied gases.Info
- Publication number
- AT135115B AT135115B AT135115DA AT135115B AT 135115 B AT135115 B AT 135115B AT 135115D A AT135115D A AT 135115DA AT 135115 B AT135115 B AT 135115B
- Authority
- AT
- Austria
- Prior art keywords
- pressure
- low
- gases
- filling
- boiling
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C9/00—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
- F17C9/02—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0104—Shape cylindrical
- F17C2201/0109—Shape cylindrical with exteriorly curved end-piece
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0104—Shape cylindrical
- F17C2201/0119—Shape cylindrical with flat end-piece
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/03—Orientation
- F17C2201/032—Orientation with substantially vertical main axis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0636—Metals
- F17C2203/0639—Steels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/01—Mounting arrangements
- F17C2205/0123—Mounting arrangements characterised by number of vessels
- F17C2205/013—Two or more vessels
- F17C2205/0134—Two or more vessels characterised by the presence of fluid connection between vessels
- F17C2205/0142—Two or more vessels characterised by the presence of fluid connection between vessels bundled in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/011—Oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/012—Hydrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/014—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
- F17C2221/032—Hydrocarbons
- F17C2221/033—Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0146—Two-phase
- F17C2223/0153—Liquefied gas, e.g. LPG, GPL
- F17C2223/0161—Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/033—Small pressure, e.g. for liquefied gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2225/00—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
- F17C2225/01—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
- F17C2225/0107—Single phase
- F17C2225/0123—Single phase gaseous, e.g. CNG, GNC
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2225/00—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
- F17C2225/03—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
- F17C2225/036—Very high pressure, i.e. above 80 bars
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/01—Propulsion of the fluid
- F17C2227/0128—Propulsion of the fluid with pumps or compressors
- F17C2227/0135—Pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/01—Propulsion of the fluid
- F17C2227/0128—Propulsion of the fluid with pumps or compressors
- F17C2227/0157—Compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0367—Localisation of heat exchange
- F17C2227/0388—Localisation of heat exchange separate
- F17C2227/0393—Localisation of heat exchange separate using a vaporiser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/06—Controlling or regulating of parameters as output values
- F17C2250/0605—Parameters
- F17C2250/0626—Pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/06—Controlling or regulating of parameters as output values
- F17C2250/0605—Parameters
- F17C2250/0636—Flow or movement of content
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Description
<Desc/Clms Page number 1>
EMI1.1
Gegenstand der Erfindung ist ein Verfahren zum Nutzbarmachen der beim Ab-und Umfüllen tiefsiedender, verflüssigter Gase entstehenden Niederdruck-, Verlust-oder Restgase, bei dem die Gasmengen, die nicht durch Selbstkompression in geschlossenen Druckgefässen auf den gewiinsehten Arbeitsdruck übergeführt werden zwecks Verhütung von Verlusten, mit Hilfe mechanischer Kompression, beispielsweise durch Kompressoren auf den Betriebsdruck gebracht werden.
Ausserdem ist der Gegenstand der Erfindung dadurch gekennzeichnet, dass die während der Gasverbrauchspausen in den Flüssigkeitsbehältern sich entwickelnden, unzulässigen'Überdrücke erzeugende
Gasmengen bei Überschreitung eines hinsichtlich des Flüssigkeitsbehälters bestimmten zulässigen Druckes mit Hilfe mechanischer Kompressionsmittel auf hohe Drücke gebracht und in Hochdruckgas-Auf- speicherungsbehälter übergeführt w erden.
Für industrielle Zwecke benutzte, tiefsiedende, verflüssigte, Gase wie Sauerstoff, Stickstoff, Wasserstoff, Methan od. dgl., werden nach gebräuchlichem Verfahren am Erzeugungsorte in Stahlflasehen komprimiert und den davon entfernt liegenden Verbrauchsstellen zugeführt oder auch in Rohrleitungen dorthin geleitet. Beide Arten der Versorgung erfordern grosse Anlagekapitalien, sei es hinsichtlich des Stahltlaschenmaterials, sei es in bezug auf die zu verlegenden Rohrleitungen. Die Stahltlasche mit durchschnittlich 75 kg Gewicht kann beispielsweise nur 0.5 kg Wasserstoff, 8 leg Sauerstoff aufnehmen. Ähnlich sind die Bedingungen des Versandes anderer solcher Gase.
Günstiger gestalten sich die Verhältnisse, wenn man die Gase, wie ebenfalls bereits bekannt, vorher verflüssigt und sie im flüssigen Zustand transportiert und dann am Verbrauchsort in geeigneten Vorrichtungen durch Selbstkompression auf den gewünschten Druck, unter Umständen bis 150 at und mehr, verdichtet.
Darin begegnet man jedoch insofern Schwierigkeiten, als beim Überführen des verflüssigten Gases aus dem Transportbehälter in den Hoehdruckvergaser stets gewisse Umfüllverluste auftreten. Nach der vorliegenden Erfindung werden alle Verdampfungsverluste während der Umfüllperiode und im Betriebe mittels mechanischer Kompression (Kompressoren) restlos nieder nutzbar gemacht.
Während man das verflüssigte Gas direkt von einem Niederdruektank am Verbrauehsort in einen
EMI1.2
Kompressionsarbeit auf einen derartig hohen Druck gebracht, wie er durch Selbstkompression aus praktischen Gründen schwer zu erreichen ist.
Dadurch können verflüssigte Gase auch für längere Zeit völlig verlustlos aufbewahrt werden, weil in den Zeiten des Nichtverbrauehes die entstehenden Verdampfungsprodukte immer wieder mit mechanischen Kompressionsmitteln in entsprechende Druckbehälter an der Verbrauchsstelle gebracht werden und ein Entweichen von Gas ins Freie vermieden wird. Der Leistungsaufwand für einen solchen Kompressor, welcher dann Gas von etwa 75 atü auf 150 atü zu drücken hat, ist sehr gering. In diesem Falle steht der Kompressor am Verbrauehsort.
In der beiliegenden Zeichnung ist eine Ausführungsform des Verfahrens schematisch dargestellt.
1 ist der die Flüssigkeit enthaltende Tank auf einem Transportwagen. 2 ist ein auf dem Fahrzeug angebrachter Kompressor, der beispielsweise durch den Wagenmotor angetrieben wird. Gelegentlich der Belieferung eines Verbrauchers mit verflüssigtem Sauerstoff enthalte der an der Verbrauchsstelle befind-
<Desc/Clms Page number 2>
liehe Vergaser 11 noch eine Restmenge an Gas von zirka 6 at Druck, die nicht weiter herab verbraucht m erden kann. Diese Restmenge wird durch eine zeitweilig kuppelbare Rohrleitung 3 durch das Ventil 5 entnommen, während Ventil 6 geschlossen wird. Das wiederverdichtete Restgas wird durch Druckleitung ? und Ventil 9 entweder in eine leere Stahlflasehe 10 oder in einen andern Niederdruekrezipienten gedrückt, aus welchem heraus gelegentlich ein Verbrauch stattfinden kann.
Auf diese Weise geht die Restmenge nicht verloren. Sie wird nur wieder auf einen entsprechenden Verbrauehsdruck umgepumpt.
Ist der Druck im Vergaser auf Atmosphärendruck gesunken, so macht man die Füllöffnung frei und schliesst die Flüssigkeitsleitung an. Die im Füllvorgang vergasende Menge wird nun in gleicher Weise umgepumpt, so dass hiedureh der Umfüllprozess gänzlich verlustlos bleibt bzw. alles umgefüllte Gas restlos in verbrauchsfähiges Druckgas verwandelt wird.
Die Kompressorarbeit des Umpumpens ist nicht bedeutend, da der Druck nicht höher als zirka 20 at gesteigert zu werden braucht. Die Rohrleitungen 3 und 7 sind als ortsbewegliche Druckschläuche gedacht. Sie werden durch einfache Handgriffe und Momentverschlüsse 4, 8 in die Arbeitslage gebracht.
Nach dem Verfahren gemäss der Erfindung ist mit den beschriebenen Mitteln auch die Auffüllung von Tanks am Verbrauchsorte ohne weiteres durchführbar. Das im Tank befindliche Gas wird abgepumpt, so dass sein Rest an Flüssigkeit nun ohne weiteres frisch aufgefüllt werden kann. Die Nachfüllung des Tanks mit flüssigem Sauerstoff findet also statt, auch ohne dass der Flüssigkeitsinhalt des Tanks beim Verbraucher vollkommen aufgebraucht ist. Auf diese Weise vergrössert man die Leistungsfähigkeit von Hochdruck- und Niederdruckgefässen (Tanks), indem die Auffüllung unabhängig vom jeweiligen Flüssigkeitsinhalte gemacht wird.
Naturgemäss wird dann im Verfahren nichts geändert, wenn der Kompressor nicht fahrbar, sondern ortsfest beim Verbraucher steht.
PATENT-ANSPRÜCHE :
1. Verfahren zum Transport und Aufbewahren sowie zum Ab-und Umfüllen tiefsiedender, verflüssigter Gase, insbesondere für Schweiss- und Schneidzwecke, dadurch gekennzeichnet, dass die während des Transportes, des Lagerns oder des Ab- und Umfüllens verflüssigter Gase ungewollt anfallenden Ver- dampfungsprodukte durch mechanische Kompressionsmittel (Kompressoren, Pumpen od. dgl. ) abge- saugt und auf den gewünschten Druck gebracht werden, während die gewollte Vergasung der verflüssigten Gase durch Selbstkompression erfolgt.
<Desc / Clms Page number 1>
EMI1.1
The subject of the invention is a method for utilizing the low-pressure, loss or residual gases that arise when filling and transferring low-boiling, liquefied gases, in which the gas quantities that are not converted to the intended working pressure by self-compression in closed pressure vessels in order to prevent losses, be brought to the operating pressure with the help of mechanical compression, for example by compressors.
In addition, the subject matter of the invention is characterized in that the "inadmissible" overpressures that develop in the liquid containers during the gas consumption pauses are generated
When a permissible pressure determined with regard to the liquid container is exceeded, gas quantities are brought to high pressures with the help of mechanical compression means and transferred to high-pressure gas storage containers.
Low-boiling, liquefied gases such as oxygen, nitrogen, hydrogen, methane or the like that are used for industrial purposes are compressed in steel bottles according to customary methods at the place of production and fed to the points of use located away from them or also fed there in pipelines. Both types of supply require large investment capital, be it in terms of the steel plate material or in terms of the pipelines to be laid. The steel bag with an average weight of 75 kg can, for example, only hold 0.5 kg of hydrogen and 8 legs of oxygen. The conditions for the shipment of other such gases are similar.
The situation is more favorable if, as is also known, the gases are liquefied beforehand and transported in the liquid state and then compressed at the point of use in suitable devices by self-compression to the desired pressure, possibly up to 150 atm and more.
However, this encounters difficulties insofar as certain transfer losses always occur when transferring the liquefied gas from the transport container into the high-pressure gasifier. According to the present invention, all evaporation losses during the transfer period and during operation are made completely usable by means of mechanical compression (compressors).
While the liquefied gas is fed directly from a low-pressure tank at the place of consumption into a
EMI1.2
Compression work brought to such a high pressure as it is difficult to achieve by self-compression for practical reasons.
As a result, liquefied gases can be stored for a long time without any loss, because when they are not consumed, the evaporation products are repeatedly brought into appropriate pressure containers at the point of use with mechanical compression means, and gas is prevented from escaping into the open. The power outlay for such a compressor, which then has to press gas from about 75 atmospheres to 150 atmospheres, is very low. In this case the compressor is at the place of consumption.
An embodiment of the method is shown schematically in the accompanying drawing.
1 is the tank containing the liquid on a trolley. 2 is a vehicle-mounted compressor driven by the vehicle engine, for example. Occasionally the supply of a consumer with liquefied oxygen contains the at the point of consumption
<Desc / Clms Page number 2>
Lent carburetor 11 still has a residual amount of gas of about 6 atm pressure, which cannot be consumed any further. This residual amount is withdrawn through a temporarily connectable pipe 3 through valve 5 while valve 6 is closed. The recompressed residual gas is through the pressure line? and valve 9 pressed either into an empty steel bottle 10 or into another low-pressure recipient, from which consumption can occasionally take place.
In this way the remaining amount is not lost. It is only pumped back to a corresponding consumption pressure.
If the pressure in the carburetor has dropped to atmospheric pressure, the filling opening is cleared and the liquid line is connected. The amount that is gasified during the filling process is now pumped around in the same way, so that the filling process remains completely lossless or all the gas that has been filled is completely converted into consumable compressed gas.
The compressor work of pumping is not important, since the pressure does not need to be increased more than about 20 atm. The pipes 3 and 7 are intended as portable pressure hoses. They are brought into the working position by simple hand movements and momentary locks 4, 8.
According to the method according to the invention, the filling of tanks at the place of consumption can easily be carried out with the means described. The gas in the tank is pumped out so that the remainder of the liquid can now easily be refilled. The refilling of the tank with liquid oxygen takes place without the liquid content of the tank being completely used up by the consumer. In this way, the capacity of high-pressure and low-pressure vessels (tanks) is increased by making the filling independent of the respective liquid content.
Naturally, nothing is changed in the process if the compressor is not mobile but is stationary at the consumer.
PATENT CLAIMS:
1. A method for transporting and storing as well as for filling and transferring low-boiling, liquefied gases, in particular for welding and cutting purposes, characterized in that the evaporation products accruing inadvertently during transport, storage or filling and transferring of liquefied gases through mechanical compression means (compressors, pumps or the like) are sucked off and brought to the desired pressure, while the desired gasification of the liquefied gases takes place by self-compression.
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE1786159X | 1928-02-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
AT135115B true AT135115B (en) | 1933-10-25 |
Family
ID=7743234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AT135115D AT135115B (en) | 1928-02-16 | 1929-01-15 | Process for utilizing the low-pressure, waste or residual gases that arise when filling and transferring low-boiling, liquefied gases. |
Country Status (4)
Country | Link |
---|---|
US (2) | US1786159A (en) |
AT (1) | AT135115B (en) |
BE (1) | BE357592A (en) |
FR (1) | FR668399A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2722105A (en) * | 1952-10-13 | 1955-11-01 | Little Inc A | Delivery tube for liquefied gases |
US3066495A (en) * | 1958-04-28 | 1962-12-04 | Union Carbide Corp | Apparatus and method for filling manifolded gas container |
US3234745A (en) * | 1962-01-24 | 1966-02-15 | Fisher Governor Co | Multiple tank filling system |
-
0
- US US18774D patent/USRE18774E/en not_active Expired
- BE BE357592D patent/BE357592A/xx unknown
-
1929
- 1929-01-15 AT AT135115D patent/AT135115B/en active
- 1929-01-21 FR FR668399D patent/FR668399A/en not_active Expired
- 1929-02-09 US US338653A patent/US1786159A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
BE357592A (en) | |
US1786159A (en) | 1930-12-23 |
USRE18774E (en) | 1933-03-21 |
FR668399A (en) | 1929-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE684113C (en) | Process and device for generating compressed gases from liquefied gases with a low boiling point | |
DE1053011B (en) | Process for transporting natural gas from remote natural gas fields | |
AT135115B (en) | Process for utilizing the low-pressure, waste or residual gases that arise when filling and transferring low-boiling, liquefied gases. | |
DE102005023036A1 (en) | Hydrogen reservoir has high-pressure tank cooled by cooling device to temperature which lies between ebullition temperature of liquid hydrogen and approximately ebullition temperature of liquid nitrogen | |
SA522441856B1 (en) | Filling device for filling storage tanks with compressed hydrogen, refueling station having the same, and method of filling a storage tank | |
DE60217501T2 (en) | UNLOADING LIQUEFIED GAS IN STANDARD LIQUEFIED GAS STORAGE DEVICES | |
CN207394353U (en) | A kind of differential LNG tank cars charging system | |
DE3003355A1 (en) | METHOD FOR TRANSPORTING AND STORING PERMANENT GASES | |
DE721995C (en) | Device for refueling pressurized liquefied gases | |
DE611695C (en) | Device for the continuous supply of a point of consumption with liquefied gas | |
Tamhankar | Terminal Operations for Tube Trailer and Liquid Tanker Filling: Status, Challenges and R & D Needs | |
AT36105B (en) | Method and device for storing and pushing or filling flammable liquids. | |
US1777040A (en) | Process and apparatus for the liquefaction of gases | |
DE514751C (en) | Device for the storage and consumption of gases supplied in cylinders under high pressure | |
DE342415C (en) | Process and device for supplying industry with oxygen and other liquefiable gases in large quantities | |
CH138016A (en) | Method and device for utilizing the residual gases produced during the transfer of low-boiling, liquefied gases, in particular gases intended for welding and cutting purposes. | |
AT92878B (en) | System for the storage and tapping of flammable liquids. | |
DE638203C (en) | Device for the volumetrically measured filling of liquid gas | |
DE2449442C3 (en) | Process for transporting liquefied natural gas | |
AT122649B (en) | Process for accelerating the regasification of liquefied gases in pressure vessels. | |
AT126276B (en) | Process for reliquefaction of the unavoidable evaporation products that occur when tapping and transferring liquefied gases. | |
DE653955C (en) | Process for the volumetrically measured filling of liquefied propellant gas | |
DE19524800C2 (en) | Process for low-emission separation of a pipeline filled with liquid gas | |
DE185652C (en) | ||
US8347922B2 (en) | Apparatus and method for the vapor recovery of propane vapors during fueling |