AT120392B - Method of superheating ammonia gas. - Google Patents

Method of superheating ammonia gas.

Info

Publication number
AT120392B
AT120392B AT120392DA AT120392B AT 120392 B AT120392 B AT 120392B AT 120392D A AT120392D A AT 120392DA AT 120392 B AT120392 B AT 120392B
Authority
AT
Austria
Prior art keywords
ammonia
ammonia gas
superheating
metals
gas
Prior art date
Application number
Other languages
German (de)
Original Assignee
Ig Farbenindustrie Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ig Farbenindustrie Ag filed Critical Ig Farbenindustrie Ag
Application granted granted Critical
Publication of AT120392B publication Critical patent/AT120392B/en

Links

Landscapes

  • Glass Compositions (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

  

   <Desc/Clms Page number 1> 
 



  Verfahren zum Überhitzen von Ammoniakgas. 



   Bei Reaktionen, welche unter Teilnahme von Ammoniakgas bei höheren Temperaturen verlaufen, ist es oft erforderlich, das Ammoniakgas bzw. das ammoniakhaltige Gasgemisch auf die Reaktionstemperatur vorzuerhitzen. Da das Ammoniak aber oberhalb 400  C im Gleichgewichtszustand bereits weitgehend in seine Komponenten zerfallen ist, müssen die Überhitzerfläehen aus einem Material bestehen, welches die Zersetzungsgeschwindigkeit des Ammoniakgases nicht beschleunigt. Es war bis jetzt bekannt, dass nur hochwertige keramische Materialien, wie Glas, Porzellan, Quarz, keine katalytisch beschleunigende Wirkung auf den Ammoniakzerfall ausüben, und man war bisher gezwungen, Überhitzer für Ammoniak aus diesen Materialien zu bauen.

   Infolge der schlechten Wärmeleitfähigkeit dieser Materialien sind sie als Baustoffe für Gasüberhitzer   oder Wärmeaustauscher wenig geeignet.   



   Es wurde nun gefunden, dass die Metalle mit Ausnahme der der Eisengruppe und solcher Metalle, deren Schmelzpunkte unterhalb 400  C liegen, z. B. Kupfer, Silber, Aluminium, Magnesium, Silizium und ihre Legierungen, sich nahezu ebenso indifferent verhalten wie die genannten keramischen Materialien und daher in hervorragendem Masse geeignet sind, als Baustoffe für   Ammoniakwärmeaustauscher   Verwendung zu finden. 



   Beispiel : Durch eine Kupferschlange von 50 mm lichten Durchmesser und 13 Länge, deren Wand durch Aussenheizung auf 620  C gehalten wird, werden   stündlich   90 m3 eines Gasgemisches aus 
 EMI1.1 
 weisen lässt. 

**WARNUNG** Ende DESC Feld kannt Anfang CLMS uberlappen**.



   <Desc / Clms Page number 1>
 



  Method of superheating ammonia gas.



   In reactions which take place with the participation of ammonia gas at higher temperatures, it is often necessary to preheat the ammonia gas or the ammonia-containing gas mixture to the reaction temperature. However, since the ammonia has already largely decomposed into its components above 400 C in the equilibrium state, the superheater surfaces must be made of a material that does not accelerate the rate of decomposition of the ammonia gas. Up until now it was known that only high-quality ceramic materials, such as glass, porcelain, and quartz, do not have a catalytically accelerating effect on the decomposition of ammonia, and it was previously necessary to build superheaters for ammonia from these materials.

   As a result of the poor thermal conductivity of these materials, they are not very suitable as building materials for gas superheaters or heat exchangers.



   It has now been found that the metals with the exception of those of the iron group and those metals whose melting points are below 400 ° C., e.g. B. copper, silver, aluminum, magnesium, silicon and their alloys behave almost as indifferently as the ceramic materials mentioned and are therefore extremely well suited to be used as building materials for ammonia heat exchangers.



   Example: A copper snake with a clear diameter of 50 mm and a length of 13, the wall of which is kept at 620 C by external heating, produces 90 m3 of a gas mixture per hour
 EMI1.1
 lets show.

** WARNING ** End of DESC field may overlap beginning of CLMS **.

 

Claims (1)

PATENT-ANSPRUCH : Verfahren zum Überhitzen von Ammoniakgas oder Ammoniak enthaltenden Gasgemischen auf Temperaturen über etwa 4000 C, dadurch gekennzeichnet, dass man die Überhitzung an Flächen aus Metallen oder Metallegierungen vornimmt, mit Ausnahme der Metalle der Eisengruppe und solcher Metalle, die unterhalb 4000 C schmelzen. **WARNUNG** Ende CLMS Feld Kannt Anfang DESC uberlappen**. PATENT CLAIM: Process for overheating ammonia gas or gas mixtures containing ammonia to temperatures above about 4000 C, characterized in that the overheating is carried out on surfaces made of metals or metal alloys, with the exception of metals of the iron group and those metals which melt below 4000 C. ** WARNING ** End of CLMS field may overlap beginning of DESC **.
AT120392D 1928-03-14 1929-03-08 Method of superheating ammonia gas. AT120392B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE120392T 1928-03-14

Publications (1)

Publication Number Publication Date
AT120392B true AT120392B (en) 1930-12-27

Family

ID=29277018

Family Applications (1)

Application Number Title Priority Date Filing Date
AT120392D AT120392B (en) 1928-03-14 1929-03-08 Method of superheating ammonia gas.

Country Status (1)

Country Link
AT (1) AT120392B (en)

Similar Documents

Publication Publication Date Title
DE2514355B2 (en) Process for improving the castability of metal alloys
AT246632B (en) Process for the production of porous, glass-like moldings
AT120392B (en) Method of superheating ammonia gas.
DE1112055B (en) Process for cleaning aluminum oxide
DE941370C (en) Process for the manufacture of low bulk weight sodium perborate
DE2307180A1 (en) DEUTERIUM EXTRACTION BY ISOTOPE SEPARATION IN TITANIUM / NICKEL PHASES
CH141521A (en) Method of superheating ammonia gas.
DE1571528A1 (en) Continuous process for producing a vitreous silica
AT200106B (en) Process for the production of the purest silicon
DE506634C (en) Process and device for the production of hydrochloric or hydrobromic acid
DE2524362C2 (en) Binder containing methyl methacrylate for applying metal powder coatings, in particular soldering powder coatings, process for its production and its use
DE752206C (en) Device for heating concentrated nitric acid
AT109384B (en) Process for refining zinc-magnesium-aluminum alloys.
DE819690C (en) Process for obtaining an iron powder for powder metallurgical purposes
DE549966C (en) Conversion of copper nitrate trihydrate into a less hygroscopic form
DE633358C (en) Process for separating copper and bismuth
DE397346C (en) Process for the production of magnesium-silicon alloys
DE519079C (en) Method for introducing mercury into discharge tubes
DE588569C (en) Vacuum switch
DE603574C (en) Process for the production of beryllium alloys in melt flow
DE874665C (en) Copper alloy that can be hardened by heat treatment
AT157913B (en) Process for gilding grids for discharge tubes.
DE330944C (en) Process for the production of Glauber&#39;s salt from bisulfate and common salt
AT142234B (en) Process for the manufacture of sheaths for electrical cables.
DE705645C (en) Process for the production of metallic beryllium