AR128530A2 - Sistemas y métodos para entrenar redes generativas antagónicas y uso de redes generativas antagónicas entrenadas - Google Patents
Sistemas y métodos para entrenar redes generativas antagónicas y uso de redes generativas antagónicas entrenadasInfo
- Publication number
- AR128530A2 AR128530A2 ARP230100352A ARP230100352A AR128530A2 AR 128530 A2 AR128530 A2 AR 128530A2 AR P230100352 A ARP230100352 A AR P230100352A AR P230100352 A ARP230100352 A AR P230100352A AR 128530 A2 AR128530 A2 AR 128530A2
- Authority
- AR
- Argentina
- Prior art keywords
- networks
- antagonical
- generative
- training
- interest
- Prior art date
Links
- 238000000034 method Methods 0.000 title abstract 2
- 238000001514 detection method Methods 0.000 abstract 5
- 238000012795 verification Methods 0.000 abstract 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2413—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00004—Operational features of endoscopes characterised by electronic signal processing
- A61B1/00009—Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00004—Operational features of endoscopes characterised by electronic signal processing
- A61B1/00009—Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
- A61B1/000096—Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope using artificial intelligence
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00043—Operational features of endoscopes provided with output arrangements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00043—Operational features of endoscopes provided with output arrangements
- A61B1/00055—Operational features of endoscopes provided with output arrangements for alerting the user
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/273—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the upper alimentary canal, e.g. oesophagoscopes, gastroscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/273—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the upper alimentary canal, e.g. oesophagoscopes, gastroscopes
- A61B1/2736—Gastroscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/31—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the rectum, e.g. proctoscopes, sigmoidoscopes, colonoscopes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
- G06F18/2148—Generating training patterns; Bootstrap methods, e.g. bagging or boosting characterised by the process organisation or structure, e.g. boosting cascade
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/217—Validation; Performance evaluation; Active pattern learning techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/40—Software arrangements specially adapted for pattern recognition, e.g. user interfaces or toolboxes therefor
- G06F18/41—Interactive pattern learning with a human teacher
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0475—Generative networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/088—Non-supervised learning, e.g. competitive learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/094—Adversarial learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10016—Video; Image sequence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10068—Endoscopic image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30028—Colon; Small intestine
- G06T2207/30032—Colon polyp
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30096—Tumor; Lesion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/03—Recognition of patterns in medical or anatomical images
- G06V2201/031—Recognition of patterns in medical or anatomical images of internal organs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/03—Recognition of patterns in medical or anatomical images
- G06V2201/032—Recognition of patterns in medical or anatomical images of protuberances, polyps nodules, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Surgery (AREA)
- General Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Medical Informatics (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Public Health (AREA)
- Pathology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Veterinary Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Optics & Photonics (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Computational Linguistics (AREA)
- Gastroenterology & Hepatology (AREA)
- Quality & Reliability (AREA)
- Signal Processing (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Databases & Information Systems (AREA)
- Human Computer Interaction (AREA)
- Image Analysis (AREA)
Abstract
La presente invención se refiere a sistemas y métodos implementados por computadora para el entrenamiento y uso de redes generativas antagónicas. En una implementación, un sistema para entrenar una red generativa antagónica puede incluir al menos un procesador que puede proveer una pluralidad de imágenes que incluyen representaciones de una característica de interés e indicadores de ubicación de la característica de interés y el uso de la primera pluralidad de indicadores para entrenar una red de detección de objetos. Además, el o los procesadores pueden proveer una segunda pluralidad de imágenes que incluye representaciones de la característica de interés, y aplicar la red de detección de objetos entrenada a la segunda pluralidad para producir una pluralidad de detecciones de la característica de interés. Adicionalmente, el o los procesadores pueden proveer verificaciones establecidas manualmente de verdaderos positivos y falsos positivos con respecto a la pluralidad de detecciones, usar las verificaciones para entrenar una red generativa antagónica, y volver a entrenar la red generativa antagónica usando por lo menos un conjunto adicional de imágenes, detecciones adicionales y otras verificaciones establecidas manualmente.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/008,006 US10810460B2 (en) | 2018-06-13 | 2018-06-13 | Systems and methods for training generative adversarial networks and use of trained generative adversarial networks |
EP18180570.6A EP3582143A1 (en) | 2018-06-13 | 2018-06-28 | Systems and methods for training generative adversarial networks and use of trained generative adversarial networks |
Publications (1)
Publication Number | Publication Date |
---|---|
AR128530A2 true AR128530A2 (es) | 2024-05-15 |
Family
ID=62816460
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ARP190101604A AR115522A1 (es) | 2018-06-13 | 2019-06-11 | Sistemas y métodos para entrenar redes generativas antagónicas y uso de redes generativas antagónicas entrenadas |
ARP230100352A AR128530A2 (es) | 2018-06-13 | 2023-02-15 | Sistemas y métodos para entrenar redes generativas antagónicas y uso de redes generativas antagónicas entrenadas |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ARP190101604A AR115522A1 (es) | 2018-06-13 | 2019-06-11 | Sistemas y métodos para entrenar redes generativas antagónicas y uso de redes generativas antagónicas entrenadas |
Country Status (15)
Country | Link |
---|---|
US (4) | US10810460B2 (es) |
EP (2) | EP3582143A1 (es) |
JP (2) | JP7455821B2 (es) |
KR (1) | KR20210032951A (es) |
CN (2) | CN118736374A (es) |
AR (2) | AR115522A1 (es) |
AU (2) | AU2019286544B2 (es) |
BR (1) | BR112020025390A8 (es) |
CA (1) | CA3103316A1 (es) |
IL (1) | IL279416A (es) |
MX (2) | MX2020013412A (es) |
SG (1) | SG11202012374WA (es) |
TW (1) | TWI793337B (es) |
WO (1) | WO2019238712A1 (es) |
ZA (1) | ZA202007745B (es) |
Families Citing this family (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110868907B (zh) * | 2017-04-28 | 2022-05-17 | 奥林巴斯株式会社 | 内窥镜诊断辅助系统、存储介质和内窥镜诊断辅助方法 |
US11100633B2 (en) | 2018-06-13 | 2021-08-24 | Cosmo Artificial Intelligence—Al Limited | Systems and methods for processing real-time video from a medical image device and detecting objects in the video |
US10810460B2 (en) | 2018-06-13 | 2020-10-20 | Cosmo Artificial Intelligence—AI Limited | Systems and methods for training generative adversarial networks and use of trained generative adversarial networks |
US10929708B2 (en) | 2018-12-10 | 2021-02-23 | International Business Machines Corporation | Deep learning network for salient region identification in images |
EP3671660A1 (en) * | 2018-12-20 | 2020-06-24 | Dassault Systèmes | Designing a 3d modeled object via user-interaction |
CA3076646A1 (en) * | 2019-03-22 | 2020-09-22 | Royal Bank Of Canada | System and method for generation of unseen composite data objects |
US11210769B2 (en) | 2019-05-03 | 2021-12-28 | Amazon Technologies, Inc. | Video enhancement using a recurrent image date of a neural network |
US11017506B2 (en) * | 2019-05-03 | 2021-05-25 | Amazon Technologies, Inc. | Video enhancement using a generator with filters of generative adversarial network |
US11216917B2 (en) | 2019-05-03 | 2022-01-04 | Amazon Technologies, Inc. | Video enhancement using a neural network |
US11037025B2 (en) * | 2019-05-30 | 2021-06-15 | Baidu Usa Llc | Systems and methods for adversarially robust object detection |
US10671934B1 (en) * | 2019-07-16 | 2020-06-02 | DOCBOT, Inc. | Real-time deployment of machine learning systems |
US11080889B2 (en) * | 2019-09-24 | 2021-08-03 | Shanghai United Imaging Intelligence Co., Ltd. | Methods and systems for providing guidance for adjusting an object based on similarity |
US11596807B2 (en) * | 2019-11-25 | 2023-03-07 | Accuray Incorporated | Partial deformation maps for reconstructing motion-affected treatment dose |
US11551652B1 (en) | 2019-11-27 | 2023-01-10 | Amazon Technologies, Inc. | Hands-on artificial intelligence education service |
CN111000633B (zh) * | 2019-12-20 | 2020-11-03 | 山东大学齐鲁医院 | 一种内镜诊疗操作过程的监控方法及系统 |
CN113128316B (zh) * | 2020-01-15 | 2024-08-02 | 北京四维图新科技股份有限公司 | 目标检测方法及装置 |
US11620745B2 (en) * | 2020-01-17 | 2023-04-04 | Ping An Technology (Shenzhen) Co., Ltd. | Method and system for harvesting lesion annotations |
MX2022004757A (es) * | 2020-02-03 | 2022-06-08 | Cosmo Artificial Intelligence Ai Ltd | Sistemas y metodos para el analisis de imagenes contextual. |
CN113313133A (zh) * | 2020-02-25 | 2021-08-27 | 武汉Tcl集团工业研究院有限公司 | 一种生成对抗网络的训练方法、动画图像生成方法 |
US11200462B2 (en) * | 2020-03-04 | 2021-12-14 | Matroid, Inc. | Detecting content in a real-time video stream recorded by a detection unit |
US20210279841A1 (en) * | 2020-03-09 | 2021-09-09 | Nvidia Corporation | Techniques to use a neural network to expand an image |
KR102476334B1 (ko) * | 2020-04-22 | 2022-12-09 | 인하대학교 산학협력단 | 딥러닝 기반 일기 생성 방법 및 장치 |
US11113525B1 (en) | 2020-05-18 | 2021-09-07 | X Development Llc | Using empirical evidence to generate synthetic training data for plant detection |
CN113743398B (zh) * | 2020-05-29 | 2023-11-17 | 富泰华工业(深圳)有限公司 | 图像标识方法、装置、计算机装置及存储介质 |
US11640711B2 (en) * | 2020-06-05 | 2023-05-02 | Advanced Micro Devices, Inc. | Automated artifact detection |
US11398028B2 (en) * | 2020-06-08 | 2022-07-26 | X Development Llc | Generating and using synthetic training data for plant disease detection |
EP4120186A1 (en) * | 2021-07-12 | 2023-01-18 | Cosmo Artificial Intelligence - AI Limited | Computer-implemented systems and methods for object detection and characterization |
CN111881956B (zh) * | 2020-07-15 | 2023-05-12 | 北京市商汤科技开发有限公司 | 网络训练方法及装置、目标检测方法及装置和电子设备 |
US11961225B2 (en) | 2020-07-21 | 2024-04-16 | Iterative Scopes, Inc. | Systems and methods for detecting potential malignancies |
US11604947B2 (en) * | 2020-08-26 | 2023-03-14 | X Development Llc | Generating quasi-realistic synthetic training data for use with machine learning models |
US11670072B2 (en) | 2020-10-02 | 2023-06-06 | Servicenow Canada Inc. | Systems and computer-implemented methods for identifying anomalies in an object and training methods therefor |
US11100373B1 (en) | 2020-11-02 | 2021-08-24 | DOCBOT, Inc. | Autonomous and continuously self-improving learning system |
CN112308038B (zh) * | 2020-11-25 | 2022-09-27 | 哈尔滨工业大学 | 基于课堂式生成对抗网络模型的机械设备故障信号识别方法 |
US20220253714A1 (en) * | 2021-01-25 | 2022-08-11 | International Business Machines Corporation | Generating unsupervised adversarial examples for machine learning |
US11763135B2 (en) * | 2021-03-01 | 2023-09-19 | Robert Bosch Gmbh | Concept-based adversarial generation method with steerable and diverse semantics |
US12106550B2 (en) * | 2021-04-05 | 2024-10-01 | Nec Corporation | Cell nuclei classification with artifact area avoidance |
KR102513394B1 (ko) * | 2021-05-10 | 2023-03-23 | 주식회사 씨앤에이아이 | Gan을 이용한 합성 내시경 이미지 생성 장치 및 방법 |
CN113329000B (zh) * | 2021-05-17 | 2023-01-10 | 山东大学 | 一种基于智能家居环境下的隐私保护和安全监测一体化系统 |
EP4341889A1 (en) | 2021-05-17 | 2024-03-27 | Stryker Corporation | Medical imaging |
KR20220157833A (ko) | 2021-05-21 | 2022-11-29 | (주)엔도아이 | 병변 검출을 위한 영상 학습 장치 및 방법 |
WO2022245191A1 (en) * | 2021-05-21 | 2022-11-24 | Endoai Co., Ltd. | Method and apparatus for learning image for detecting lesions |
TWI795787B (zh) * | 2021-05-24 | 2023-03-11 | 鴻海精密工業股份有限公司 | 自編碼器的訓練方法、細胞數量檢測方法及相關設備 |
US12001512B2 (en) | 2021-05-25 | 2024-06-04 | Mineral Earth Sciences Llc | Generating labeled synthetic training data |
KR20220161672A (ko) * | 2021-05-31 | 2022-12-07 | 자이메드 주식회사 | 설명 가능한 생체 이미지 판독 지원 장치 및 방법 |
EP4109463A1 (en) * | 2021-06-24 | 2022-12-28 | Siemens Healthcare GmbH | Providing a second result dataset |
CN113283849B (zh) * | 2021-07-26 | 2021-11-02 | 山东建筑大学 | 基于视频上下文联系的物流异常智能检测方法 |
CN113658174B (zh) * | 2021-09-02 | 2023-09-19 | 北京航空航天大学 | 基于深度学习和图像处理算法的微核组学图像检测方法 |
KR102477632B1 (ko) * | 2021-11-12 | 2022-12-13 | 프로메디우스 주식회사 | 적대적 생성 신경망을 이용한 영상 학습 장치 및 방법 |
CN114298222A (zh) * | 2021-12-29 | 2022-04-08 | 北京天融信网络安全技术有限公司 | 对象标注方法、装置、设备及介质 |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7680307B2 (en) | 2005-04-05 | 2010-03-16 | Scimed Life Systems, Inc. | Systems and methods for image segmentation with a multi-stage classifier |
WO2008024419A1 (en) | 2006-08-21 | 2008-02-28 | Sti Medical Systems, Llc | Computer aided analysis using video from endoscopes |
EP2068281A1 (en) * | 2007-11-28 | 2009-06-10 | Dublin City University | A method for detecting flat polyps in the colon |
US10013638B2 (en) | 2008-08-14 | 2018-07-03 | Ping Zhang | Cancer diagnostic method and system |
US8868985B2 (en) * | 2009-09-17 | 2014-10-21 | Siemens Aktiengesellschaft | Supervised fault learning using rule-generated samples for machine condition monitoring |
US20110301447A1 (en) | 2010-06-07 | 2011-12-08 | Sti Medical Systems, Llc | Versatile video interpretation, visualization, and management system |
US20150374210A1 (en) * | 2013-03-13 | 2015-12-31 | Massachusetts Institute Of Technology | Photometric stereo endoscopy |
US9700219B2 (en) * | 2013-10-17 | 2017-07-11 | Siemens Healthcare Gmbh | Method and system for machine learning based assessment of fractional flow reserve |
KR20150049585A (ko) | 2013-10-30 | 2015-05-08 | 삼성전자주식회사 | 용종 검출 장치 및 그 동작방법 |
WO2016033506A1 (en) | 2014-08-29 | 2016-03-03 | Google Inc. | Processing images using deep neural networks |
US9700213B2 (en) | 2014-09-12 | 2017-07-11 | Mayo Foundation For Medical Education And Research | System and method for automatic polyp detection using global geometric constraints and local intensity variation patterns |
US10360673B2 (en) * | 2015-03-26 | 2019-07-23 | Eyekor, Llc | Image analysis |
WO2016161115A1 (en) | 2015-03-31 | 2016-10-06 | Mayo Foundation For Medical Education And Research | System and methods for automatic polyp detection using convolutional neural networks |
CN108292366B (zh) | 2015-09-10 | 2022-03-18 | 美基蒂克艾尔有限公司 | 在内窥镜手术中检测可疑组织区域的系统和方法 |
US9959468B2 (en) | 2015-11-06 | 2018-05-01 | The Boeing Company | Systems and methods for object tracking and classification |
US10007867B2 (en) | 2016-04-04 | 2018-06-26 | Google Llc | Systems and methods for identifying entities directly from imagery |
EP3427193A1 (en) | 2016-04-13 | 2019-01-16 | Google LLC | Wide and deep machine learning models |
US10395356B2 (en) * | 2016-05-25 | 2019-08-27 | Kla-Tencor Corp. | Generating simulated images from input images for semiconductor applications |
US10346740B2 (en) * | 2016-06-01 | 2019-07-09 | Kla-Tencor Corp. | Systems and methods incorporating a neural network and a forward physical model for semiconductor applications |
US10380429B2 (en) | 2016-07-11 | 2019-08-13 | Google Llc | Methods and systems for person detection in a video feed |
WO2018053340A1 (en) * | 2016-09-15 | 2018-03-22 | Twitter, Inc. | Super resolution using a generative adversarial network |
JP2018063504A (ja) | 2016-10-12 | 2018-04-19 | 株式会社リコー | 生成モデル学習方法、装置及びプログラム |
US10074038B2 (en) * | 2016-11-23 | 2018-09-11 | General Electric Company | Deep learning medical systems and methods for image reconstruction and quality evaluation |
JP6833870B2 (ja) | 2016-12-07 | 2021-02-24 | オリンパス株式会社 | 画像処理装置 |
WO2018159461A1 (ja) * | 2017-03-03 | 2018-09-07 | 富士フイルム株式会社 | 内視鏡システム、プロセッサ装置、及び、内視鏡システムの作動方法 |
WO2018179991A1 (ja) | 2017-03-30 | 2018-10-04 | 富士フイルム株式会社 | 内視鏡システム及びその作動方法 |
JP6840846B2 (ja) | 2017-06-02 | 2021-03-10 | 富士フイルム株式会社 | 医療画像処理装置、内視鏡システム、診断支援装置、並びに医療業務支援装置 |
CN107256552B (zh) | 2017-06-14 | 2020-08-18 | 成都微识医疗设备有限公司 | 息肉图像识别系统及方法 |
US11055843B2 (en) * | 2017-06-14 | 2021-07-06 | Electronics And Telecommunications Research Institute | Capsule endoscope for determining lesion area and receiving device |
CN107451994A (zh) | 2017-07-25 | 2017-12-08 | 宸盛科华(北京)科技有限公司 | 基于生成对抗网络的物体检测方法及装置 |
CN107451619A (zh) | 2017-08-11 | 2017-12-08 | 深圳市唯特视科技有限公司 | 一种基于感知生成对抗网络的小目标检测方法 |
WO2019102043A1 (en) * | 2017-11-27 | 2019-05-31 | Deciphex | Automated screening of histopathology tissue samples via analysis of a normal model |
US10540578B2 (en) * | 2017-12-21 | 2020-01-21 | International Business Machines Corporation | Adapting a generative adversarial network to new data sources for image classification |
US11011275B2 (en) | 2018-02-12 | 2021-05-18 | Ai.Skopy, Inc. | System and method for diagnosing gastrointestinal neoplasm |
US10841514B2 (en) | 2018-03-20 | 2020-11-17 | Endovigilant Inc | Endoscopy video feature enhancement platform |
US10810460B2 (en) * | 2018-06-13 | 2020-10-20 | Cosmo Artificial Intelligence—AI Limited | Systems and methods for training generative adversarial networks and use of trained generative adversarial networks |
US11100633B2 (en) | 2018-06-13 | 2021-08-24 | Cosmo Artificial Intelligence—Al Limited | Systems and methods for processing real-time video from a medical image device and detecting objects in the video |
-
2018
- 2018-06-13 US US16/008,006 patent/US10810460B2/en active Active
- 2018-06-28 EP EP18180570.6A patent/EP3582143A1/en not_active Withdrawn
-
2019
- 2019-06-11 EP EP19749184.8A patent/EP3762868A1/en active Pending
- 2019-06-11 CN CN202410766944.3A patent/CN118736374A/zh active Pending
- 2019-06-11 CA CA3103316A patent/CA3103316A1/en active Pending
- 2019-06-11 MX MX2020013412A patent/MX2020013412A/es unknown
- 2019-06-11 AR ARP190101604A patent/AR115522A1/es active IP Right Grant
- 2019-06-11 SG SG11202012374WA patent/SG11202012374WA/en unknown
- 2019-06-11 AU AU2019286544A patent/AU2019286544B2/en active Active
- 2019-06-11 WO PCT/EP2019/065256 patent/WO2019238712A1/en unknown
- 2019-06-11 BR BR112020025390A patent/BR112020025390A8/pt unknown
- 2019-06-11 US US17/251,773 patent/US20210133507A1/en active Granted
- 2019-06-11 CN CN201980052903.5A patent/CN112543941A/zh active Pending
- 2019-06-11 TW TW108120187A patent/TWI793337B/zh active
- 2019-06-11 JP JP2021518989A patent/JP7455821B2/ja active Active
- 2019-06-11 KR KR1020217000806A patent/KR20210032951A/ko not_active Application Discontinuation
-
2020
- 2020-03-27 US US16/833,451 patent/US11195052B2/en active Active
- 2020-12-09 MX MX2024004583A patent/MX2024004583A/es unknown
- 2020-12-11 ZA ZA2020/07745A patent/ZA202007745B/en unknown
- 2020-12-13 IL IL279416A patent/IL279416A/en unknown
-
2023
- 2023-02-15 AR ARP230100352A patent/AR128530A2/es unknown
-
2024
- 2024-03-13 JP JP2024039030A patent/JP2024075635A/ja active Pending
- 2024-05-01 US US18/652,226 patent/US20240303299A1/en active Pending
- 2024-08-14 AU AU2024205765A patent/AU2024205765A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US20240303299A1 (en) | 2024-09-12 |
CN118736374A (zh) | 2024-10-01 |
TWI793337B (zh) | 2023-02-21 |
AU2024205765A1 (en) | 2024-09-12 |
CN112543941A (zh) | 2021-03-23 |
US20210133507A1 (en) | 2021-05-06 |
WO2019238712A1 (en) | 2019-12-19 |
IL279416A (en) | 2021-01-31 |
US10810460B2 (en) | 2020-10-20 |
JP2024075635A (ja) | 2024-06-04 |
JP2021527549A (ja) | 2021-10-14 |
MX2020013412A (es) | 2021-04-13 |
AU2019286544B2 (en) | 2024-10-10 |
BR112020025390A2 (pt) | 2021-03-09 |
AU2019286544A1 (en) | 2021-01-14 |
EP3762868A1 (en) | 2021-01-13 |
JP7455821B2 (ja) | 2024-03-26 |
KR20210032951A (ko) | 2021-03-25 |
MX2024004583A (es) | 2024-04-30 |
TW202018586A (zh) | 2020-05-16 |
CA3103316A1 (en) | 2019-12-19 |
EP3582143A1 (en) | 2019-12-18 |
US20200226423A1 (en) | 2020-07-16 |
SG11202012374WA (en) | 2021-01-28 |
AR115522A1 (es) | 2021-01-27 |
BR112020025390A8 (pt) | 2022-03-08 |
ZA202007745B (en) | 2022-03-30 |
US11195052B2 (en) | 2021-12-07 |
US20190385018A1 (en) | 2019-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AR128530A2 (es) | Sistemas y métodos para entrenar redes generativas antagónicas y uso de redes generativas antagónicas entrenadas | |
AR116766A1 (es) | Técnicas de aprendizaje automático para identificar nubes y sombras de nubes en imágenes satelitales | |
BR112018076704A2 (pt) | método, dispositivo sem fio, e, nó de rede | |
CL2019003229A1 (es) | Método y sistema de obtención de imágenes hiperespectrales subacuáticas de peces. | |
CL2017003461A1 (es) | Sistema y método para la identificación de animales individuales a base de imágenes del dorso. | |
BR112015016147A2 (pt) | protocolo de agressor ativo para despacho de emergência | |
CO2018005172A2 (es) | Sistema para el control integral de pasajeros y equipaje | |
ES2981005T3 (es) | Método, aparato y medio legible por ordenador para el posicionamiento virtual de un participante remoto en un espacio de sonido | |
AR112451A1 (es) | Concepto para generar una descripción mejorada de campo de sonido o un campo de sonido modificado utilizando una descripción de campo de sonido multi-punto | |
CL2017000272A1 (es) | Servicio de descubrimiento de radiobaliza | |
BR112019006961A2 (pt) | informe de realimentação de informação de estado de canal (csi) por um equipamento de usuário | |
SV2016005275A (es) | Codificación de video en base a gamas de colores | |
WO2016172731A8 (en) | Targeted venue message distribution | |
BR112016029087A2 (pt) | sistema e método | |
BR112018009155A8 (pt) | sistema e método para transmissões de único tom de enlace ascendente de banda estreita | |
MX2016008890A (es) | Sistema y metodo de evaluacion de estructura de aeronave no tripulada. | |
BR112016025115A2 (pt) | procedimento bssid múltiplo com codificação tim | |
WO2015200110A3 (en) | Techniques for machine language translation of text from an image based on non-textual context information from the image | |
BR112016024233A8 (pt) | informações de janela de conformidade na criptografia de múltiplas camadas | |
AR083806A1 (es) | Medios legibles por computadora e interfaz para facilitar la presentacion de acciones y de proveedores asociados con entidades | |
CL2018001576A1 (es) | Sistemas y métodos para analizar colores de una plataforma de medios sociales | |
AR114217A1 (es) | Prioridad de selección de haz | |
GB2566651A (en) | Systems and methods of providing decision support to first responders | |
GT201600202A (es) | Métodos y aparato para la coordinación de la selección del sistema entre un conjunto de nodos | |
BR112017023607A2 (pt) | sinalização de união de canais a dispositivos dentro de alcance |