AP652A - Synergistic combinations of zidovudine, 1592U89 and 3tc or Ftc. - Google Patents

Synergistic combinations of zidovudine, 1592U89 and 3tc or Ftc. Download PDF

Info

Publication number
AP652A
AP652A APAP/P/1997/001089A AP9701089A AP652A AP 652 A AP652 A AP 652A AP 9701089 A AP9701089 A AP 9701089A AP 652 A AP652 A AP 652A
Authority
AP
ARIPO
Prior art keywords
cis
amino
zidovudine
pyrimidin
purin
Prior art date
Application number
APAP/P/1997/001089A
Other versions
AP9701089A0 (en
Inventor
David Walter Barry
Clair Martha Heider St
Original Assignee
The Wellcome Foundation Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26306774&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=AP652(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from GBGB9506490.3A external-priority patent/GB9506490D0/en
Priority claimed from GBGB9506489.5A external-priority patent/GB9506489D0/en
Application filed by The Wellcome Foundation Ltd filed Critical The Wellcome Foundation Ltd
Publication of AP9701089A0 publication Critical patent/AP9701089A0/en
Application granted granted Critical
Publication of AP652A publication Critical patent/AP652A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Virology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • AIDS & HIV (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)
  • Cephalosporin Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

The present invention relates to therapeutic combinations of (is,4r)-cis-4-[2-amino-6-(cyclopropylamino)-9h-purin-9-y1]-2-cyclopentene-1-methanol (1592u89), 3'-azido-3'deoxythymidine (zidovudine) and (2r,cis)-4-amino-1-(2-hydroxymethyl-1,3-oxathiolan-5-yl)-(1h)-pyrimidin-2-one (3TC)(or, alternatively to 3TC, (2r,cis)-4-amino-5-fluoro-1-(2-hydroxymethyl-1,3-oxathiolan-5-yl)-(1h)-pyrimidin-2-one (ftc)) which have anti-HIVactivity. The present invention is also concerned with pharmaceutical compositions containing said combinations and their use in the treatment of HIV infections including infections with HIV mutants bearing resistance to nucleoside and/or non-nucleoside inhibitors.

Description

SYNERGISTIC COMBINATIONS
The present invention relates to therapeutic combinations of (lS,4R)-cis-4-[2-amino6-(cyclopropylamino)-9H-purin-9-yl]-2-cyelopentene-1-methanol (1592U89), 3'azido-3'-deoxythymidine (zidovudine) and (2R,cis)-4-amino-1-(2-hydroxymethyl-1,3oxathiolan-5-yl)-(lH)-pyrimidin-2-one (3TC) (or, alternatively to 3TC, (2R,cis)-4amino-5-fluoro-1-(2-hydroxymethyl-1,3-oxathiolan-5-yl)-(lH)-pyrimidin-2-one (FTC)) which have anti-HIV activity. The present invention is also concerned with pharmaceutical compositions containing said combinations and their use in the treatment of HIV infections including infections with HIV mutants bearing resistance to nucleoside and/or non-nucleoside inhibitors.
Zidovudine is now well established as an important and useful chemotherapeutic agent for the treatment and/or prophylaxis of HIV-infections including related clinical conditions such, as AIDS, AIDS-related complex (ARC), AIDS dementia complex (ADC) and also for the treatment of patients who have an asymptomatic HIV infection or who are anti-HIV antibody-positive. Treatment with zidovudine prolongs the diseasefree interval in asymptomatic patients infected with HIV and delays death in symptomatic patients.
Following the widespread clinical use of zidovudine in the treatment of such infections and conditions, it has been observed that in certain instances following prolonged treatment, the virus may develop a certain level of resistance to zidovudine and therefore a loss of sensitivity to the drug.
The therapeutic agent 15921)89 (European Specification EP0434450) is a promising anti-HIV chemotherapeutic candidate (International Conference on Antiviral Research 23rd April 1995) showing potent activity against HIV, low cytotoxicity and excellent penetration into the brain, which is important for the treatment of AIDS and HIV linked central nervous system conditions such as ADC.
AP/P/ 9 7 / 0 1 0 8 9
Nucleoside analogues containing an oxathiolane residue in place of the sugar residue, for example, nucleosides described in European Patent Specification No. 382526 particularly 4-amino-1-(2-hydroxymethyl-1,3-oxathiolan-5-yl)-(lH)pyrimidin-2-one(BCH-189) have been found to have anti-HIV activity. BCH-189 is a racemic mixture and although the enantiomers are equipotent against HIV the (-)enantiomer has considerably lower cytotoxicity than the (+)-enantiomer. The (-)enantiomer has the chemical name (2R,eis)-4-amino-1-(2-hydroxymethyl-1,3oxathiolan-5-yl)-( 1 H)-pyrimidin-2-one, now known as 3TC or lamivudine.
An alternative oxathiolane nucleoside analogue is described in International Specification Number W092/14743 (2R,cis)-4-amino-5-fluoro-1-(2-hydroxymethyl1,3 oxathiolan-5-yl)-(1 H)-pyrimidine-2-one, commonly referred to as FTC or 524W91.
To date the treatment of HIV infection has relied to a large extent upon monotherapy with nucleoside reverse transcriptase inhibitors such as zidovudine, didanosine (ddl), zalcitabine (ddC) and stavudine (D4T). However, these drugs eventually become less effective due either to the emergence of HIV resistant mutants or because of toxicity. Thus, new therapies are needed.
The combination of zidovudine with either ddC or ddl has shown promising results in HIV infected patients (New Eng. J. Med. 1992, 329(9) 581-587, and Program Abstract 1993 9R International Conference on AIDS, abstract US-B25-1). The combination of zidovudine and 3TC has also been studied and widely reported. However, it should be noted that these results are surprising because drugs with the same site of action are frequently antagonistic or additive (Rev Infect. Dis 1982, 4, 255-260).
Unexpectedly, it has now been found that by combining 1592U89, zidovudine and 3TC a synergistic anti-HIV effect is achieved. The result is surprising since all three drugs act upon the same molecule, HIV Reverse Transcript use. It is a feature of this invention that the use of this drug combinations will provide synergistic antiviral effects, more complete viral suppression, viral suppression over a longer period, limit
AP/P/ 9 7 / 0 1 0 8 9
AP.00652 the emergence of drug resistant HIV mutants and allow better management of drugrelated toxicities.
As an alternative to 3TC the compound FTC may be used.
Thus, according to one aspect, the present invention provides a combination comprising 1592U89 or a physiologically functional derivative thereof, zidovudine or a physiologically functional derivative thereof and 3TC (or, alternatively to 3TC, RC) or a physiologically functional derivative thereof.
It will be appreciated that zidovudine may exist in the keto or enol tautomeric form and the use of either tautomeric form is within the scope of this invention. 3TC and 1592U89 will normally be provided substantially free of the corresponding enantiomer, that is to say no more than about 5% w/w of the corresponding enantiomer, preferably no more than about 2% w/w, in particular less than 1% w/w will be present.
As used herein, the term physiologically functional derivative includes any physiologically acceptable salt, ether, ester, salt of such ester of 1592U89, zidovudine or 3TC; or solvates of any thereof and their physiologically functional derivatives; or any other compound which upon administration to the recipient, is capable of providing (directly or indirectly) such a compound or an antivirally active metabolite or residue thereof.
Preferred esters in accordance with the invention are independently selected from the following group: (1) carboxylic acid esters in which the non-carbonyl moiety of the carboxylic acid portion of the ester grouping is selected from straight or branched chain alkyl (for example, methyl, n-propyl, t-butyl, or n-butyl), cycloalkyl, alkoxyalkyl (for example, methoxymethyl), aralkyl (for example, benzyl), aryloxyalkyl (for example, phenoxymethyl), aryl (for example, phenyl optionally substituted by, for example, halogen, C]_4 alkyl, or C-|_4 alkoxy), or amino; (2) sulphonate esters, such as alkyl- or
AP/P/ 97 / 0 1 0 8 9
AP. Ο Ο 6 5 2 aralkylsulphonyl (for example, methanesulphonyl); (3) amino acid esters (for example, L-valyl or L-isoleucyl); and (4) phosphonate esters. In such esters, unless otherwise specified, any alkyl moiety present advantageously contains from 1 to 18 carbon atoms, particularly from 1 to 6 carbon atoms, more particularly from 1 to 4 carbon atoms. Any cycloalkyl moiety present in such esters advantageously contains from 3 to 6 carbon atoms. Any aryl moiety present in such esters advantageously comprises a phenyl group. Any reference to any of the above compounds also includes a reference to a physiologically acceptable salt thereof.
Particularly preferred esters are the mono-, di-, and tri-phosphate esters of zidovudine, 3TC (which may be optionally blocked) or FTC or any other compound which upon administration to a human subject is capable of providing (directly or indirectly) said mono-, di, or triphosphate ester.
A preferred derivative of 1592U89 is the tri-phosphate ester of (-) carbovir.
Examples of physiologically acceptable salts of 1592U89, zidovudine or 3TC and their physiologically acceptable derivatives include salts derived from an appropriate base, such as an alkali metal (for example, sodium), an alkaline earth (for example, magnesium), ammonium and NX4+ (wherein X is Ci_4 alkyl). Physiologically acceptable salts of an hydrogen atom or an amino group include salts of organic carboxylic acids such as acetic, lactic, tartaric, malic, isethionic, lactobionic and succinic acids, organic sulphonic acids, such as methanesulphonic, ethanesulphonic, benzenesulphonic and p-toluenesulphonic acids and inorganic acids, such as hydrochloric, sulphuric, phosphoric and sulphamic acids. Physiologically acceptable salts of a compound of an hydroxy group include the anion of said compound in combination with a suitable cation such as Na+, NH4+ and NX4+ (wherein X is a C14 alkyl group).
For therapeutic use, salts of 1592U89, zidovudine and 3TC will be physiologically acceptable, i.e. they will be salts derived from a physiologically acceptable acid or
AP/P/ 9 7 / 0 1 0 89
AP.00652 base. However, salts of acids or bases which are not physiologically acceptable may also find use, for example, in the preparation or purification of a physiologically acceptable compound. All salts, whether or not derived form a physiologically acceptable acid or base, are within the scope of the present invention.
A preferred salt of 1592U89 is the succinate salt.
Combinations of 1592U89 or a physiologically functional derivative thereof, zidovudine or a physiologically functional derivative thereof and 3TC or a physiologically functional derivative thereof may hereinafter be referred to as combinations according to the invention.
The present invention further provides combinations according to the invention for use in therapy, particularly in the treatment and/or prophylaxis of an HIV infection including infections with HIV mutants bearing resistance to nucleoside inhibitors, particularly zidovudine, 3TC, FTC, ddl, ddC or D4T or combinations thereof and nonnucleoside inhibitors such as Nevirapine (BI-RG-587), Loviride (α-APA) and Delavuridine (BHAP). Furthermore, the combinations according to the invention are especially useful for the treatment of AIDS and related clinical conditions such as AIDS related complex (ARC), progressive generalised lymphadenopathy (PGL), Kaposi's sarcoma, thrombocytopenic purpura, AIDS-related neurological conditions such as AIDS dementia complex, multiple sclerosis or tropical paraperesis, and also anti-HIV antibody-positive and HIV-positive conditions, including such conditions in asymptomatic patients.
According to another aspect, the present invention provides a method for the treatment or prevention of the symptoms or effects of an HIV infection in an infected animal, for example, a mammal including a human, which comprises treating said animal with a therapeutically effective amount of a combination of 1592U89, zidovudine and 3TC (or, alterantively to 3TC, FTC) or a physiologically functional derivative of any thereof.
AP/P/ 9 7 / 0 1 0 89
AP.00652
It will be appreciated that the compounds of the combination may be administered simultaneously, either in the same or different pharmaceutical formulation or sequentially. If there is sequential administration, the delay in administering the second and third active ingredient should not be such as to lose the benefit of a synergistic therapeutic effect of the combination of the active ingredients. It will also be understood that 1592U89, zidovudine and 3TC (or, alternatively to 3TC, FTC), or the physiologically functional derivatives of any thereof, whether presented simultaneously or sequentially, may be administered individually or in multiples or in any combination thereof. 1592U89, zidovudine and 3TC (or, alternatively to 3TC, FTC), are preferably administered simultaneously or sequentially in separate pharmaceutical formulations, most preferably simultaneously.
The present invention also provides the use of 1592U89 in the manufacture of a medicament for administration simultaneously or sequentially with zidovudine and 3TC (or, alternatively to 3TC, FTC), respectively for the treatment and/or prophylaxis of HIV infections and associated clinical conditions hereinbefore described. It will be appreciated that 1592U89, zidovudine or 3TC (or, alternatively to 3TC, FTC), or any combination thereof may be used in the manufacture of the above medicament.
The synergistic effects of the combination of 1592U89, zidovudine and 3TC (or, alternatively to 3TC, FTC), or a physiologically functional derivative of any thereof are seen over a ratio, for example, of 1 to 20: 1 to 20: 1 to 10 (by weight), preferably 1 to 10: 1 to 10: 1 to 5 (by weight), particularly 1 to 3: 1 to 3: 1 to 2 (by weight)
Conveniently each compound will be employed in the combination in an amount at which it exhibits antiviral activity when used alone.
The amount of a combination of 1592U89, zidovudine and 3TC (or, alternatively to 3TC, FTC), required to be effective as an anti-HIV agent will, of course, vary and is ultimately at the discretion of the medical practitioner. The factors to be considered
AP/P/ 9 7 / 0 1 0 8 9
AP. Ο Ο 6 5 2 include the route of administration and nature of the formulation, the animal's body weight, age and general condition and the nature and severity of the disease to be treated.
In general a suitable dose of 1592U89 for administration to a human for treatment of an HIV infection will be in the range of 0.1 to 100 mg per kilogram body weight of the recipient per day, preferably in the range of 0.5 to 50 mg per kilogram body weight per day and most preferably in the range 7 to 30 mg per kilogram body weight per day.
In general a suitable dose of zidovudine will be in the range of 3 to 120 mg per kilogram body weight of the recipient per day, preferably in the range of 6 to 90 mg per kilogram body weight per day and most preferably in the range 10 to 30 mg per kilogram body weight per day.
For 3TC a suitable daily dose will be in the range of from about 0.1 to about 120 mg per kilogram body weight of the recipient per day, preferably in the range of 0.5 to 75 mg per kilogram body weight per day, most preferably in the range of 1 to 40 mg per kilogram body weight per day, such as 5 to 10 mg per kilogram body weight per day.
For FTC a suitable daily dose will be in the range of from about 0.1 to about 120 mg per kilogram body weight of the recipient per day, preferably in the range of 0.5 to 75 mg per kilogram body weight per day, most preferably in the range of 1 to 40 mg per kilogram body weight per day, such as 5 to 10 mg per kilogram body weight per day.
Unless otherwise indicated all weights of active ingredients are calculated in terms of the drug per se. In the case of a physiologically functional derivative of 1592U89, zidovudine, 3TC (or, alternatively to 3TC, FTC), (or, alternatively to 3TC, FTC), or a solvate of any thereof the figures would be increased proportionately. The desired dose is preferably presented as two, three, four, five, six or more sub-doses administered at appropriate intervals throughout the day. These sub-doses may be
AP/P/ 9 7 / 0 1 0 89
AP.00652 administered in unit dosage forms, for example, containing from 1 to 1500 mg, preferably from 5 to 1000 mg, most preferably from 10 to 700 mg of active ingredient per unit dosage form. Alternatively, if the condition of the recipient so requires, the dose may be administered as a continuous infusion.
The components of the combination which may be referred to as active ingredients may be administered for therapy to an animal e.g. a mammal including a human in a conventional manner.
While it is possible for the active ingredients of the combination to be administered as the raw chemical it is preferable to present them as a pharmaceutical formulation. Pharmaceutical formulations · according to the present invention comprise a combination according to the invention together with one or more pharmaceutically acceptable carriers or excipients and optionally other therapeutic agents. The carrier(s) must be acceptable in the sense of being compatible with the other ingredients of the formula and not deleterious to the recipient thereof. When the individual components of the combination are administered separately they are generally each presented as a pharmaceutical formulation. The references hereinafter to formulations refer unless otherwise stated to formulations containing either the combination or a component thereof.
A combination of 1592U89, zidovudine and 3TC (or, alternatively to 3TC, FTC), or a physiologically functional derivative of any thereof may conveniently be presented as a pharmaceutical formulation in a unitary dosage form. A convenient unitary dosage formulation contains the active ingredients in amounts of from 50 mg to 3g each, for example, lOOmg to 2g.
It is also possible to combine any two of the active ingredients in a unitary dosage form for simultaneous or sequential administration with the third active ingredient, for example, a typical unitary dosage may contain 50mg to 3g each of zidovudine and 3TC, preferably 100mg to 2g each of zidovudine and 3TC or 50mg to 3g each of
0 1 0 / Z6 /d/dV
AP. Ο Ο 6 5 2 zidovudine and 1592U8983, preferably lOOmg to 2g each of zidovudine and 1592U8983.
As a further feature of the present invention presented is a unitary dosage form comprising at least two active ingredients selected from zidovudine, 1592U89 and 3TC (or, alternatively to 3TC, FTC) or physiologically functional derivatives of any thereof and a pharmaceutically acceptable carrier therefore.
It will be appreciated that the administration of two active compounds selected from zidovudine, 159U89 and 3TC (or, alternatively to 3TC, FTC), is an essential part of the invention, preferably as a prelude to the remaining third active ingredient being administered. The combinations of 1592U89 and zidovudine, 1592U89 and 3TC, and 1592U89 and FTC are prefered, in particular the combination of 1592U89 and zidovudine.
In addition we have found that when the compounds described above are combined a synergistic effect is also found.
As yet a further feature of the present invention presented is a combination comprising two compounds selected from zidovudine, 1592U89 and 3TC (or, alternatively to 3TC, FTC) provided that the two compounds are not zidovudine and 3TC. Preferably the combination is administered simultaneously or sequentially with the third remaining compound.
More commonly these days pharmaceutical formulations are prescribed to the patient in patient packs containing the whole course of treatment in a single package, usually a blister pack. Patient packs have an advantage over traditional prescriptions, where a pharmacists divides a patients supply of a pharmaceutical from a bulk supply, in that the patient always has access to the package insert contained in the patient pack, normally missing in traditional prescriptions. The inclusion of a package insert has been shown to improve patient compliance with the physicians instructions.
AP/P/ 9 7 / 0 1 0 8 9
AP.00652
It will be understood that the administration of the combination of the invention by means of a single patient pack, or patients packs of each formulation, within a package insert diverting the patient to the correct use of the invention is a desirable additional feature of this invention.
According to a further aspect of the invention provided is a patient pack comprising of at least one active ingredient 1592U89, zidovudine, 3TC or RC of the combination of the invention and an information insert containing directions on the use of the combination of the invention.
According to another aspect the invention provides a triple pack comprising in association for separate administration 1592U89 or a physiologically functional derivative thereof, zidovudine or a physiologically functional derivative thereof and 3TC or a physiologically functional derivative thereof.
Formulations include those suitable for oral, rectal, nasal, topical (including transdermal, bueeal and sublingual), vaginal or parenteral (including subcutaneous, intramuscular, intravenous and intradermal) administration. The formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. Such methods represent a further feature of the present invention and include the step of bringing into association the active ingredients with the carrier which constitutes one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then if necessary shaping the product.
Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules, caplets, cachets or tablets each containing a predetermined amount of the active ingredients; as a powder or granules; as a solution or a suspension in an aqueous or non-aqueous liquid; or as an oil-in-water
8 0 I 0 / L 6 /d/dV
AP . 0 0 6 5 2 liquid emulsion or a water-in-oil liquid emulsion. The active ingredient may also be presented as a bolus, electuary or paste.
A tablet may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing in a suitable machine the active ingredients in a free-flowing form such as a powder or granules, optionally mixed with a binder (e.g. povidone, gelatin, hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (e.g. sodium starch glycollate, cross-linked povidone, cross-linked sodium carboxymethyl cellulose) surface-active or dispersing agent. Molded tablets may be made by molding a mixture of the powdered compound moistened with an inert liquid diluent in a suitable machine. The tablets may optionally be coated or scored and may be formulated so as to provide slow or controlled release of the active ingredients therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile. Tablets may optionally be provided with an enteric coating, to provide release in parts of the gut other than the stomach.
Formulations suitable for topical administration in the mouth include lozenges comprising the active ingredients in a flavored base, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia; and mouthwashes comprising the active ingredient in a suitable liquid carrier. Formulations for rectal administration may be presented as a suppository with a suitable base comprising, for example, cocoa butter or a salicylate.
Topical administration may also be by means of a transdermal iontophoretic device.
Formulations suitable for vaginal administration may be presented as pessaries, tampons, ereams, gels, pastes, foams or spray formulations containing in addition to the active ingredient such carriers as are known in the art to be appropriate.
AP/P/ 9 7 / 0 1 0 89
AP.00652
Pharmaceutical formulations suitable for rectal administration wherein the carrier is a solid are most preferably presented as unit dose suppositories. Suitable carriers include cocoa butter and other materials commonly used in the art. The suppositories may be conveniently formed by admixture of the active combination with the softened or melted carrier(s) followed by chilling and shaping in moulds.
Formulations suitable for parenteral administration include aqueous and nonaqueous isotonic sterile injection solutions which may contain anti-oxidants, buffers, baeteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents; and liposomes or other microparticulate systems which are designed to target the compound to blood components or one or more organs. The formulations may be presented in unit-dose or multi-dose sealed containers, for example, ampoules and vials, and may be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water for injection, immediately prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets of the kind previously described.
Preferred unit dosage formulations are those containing a daily dose or daily subdose of the active ingredients, as hereinbefore recited, or an appropriate fraction thereof.
It should be understood that in addition to the ingredients particularly mentioned above the formulations of this invention may include other agents conventional in the art having regard to the type of formulation in question, for example, those suitable for oral administration may include such further agents as sweeteners, thickeners and flavoring agents.
The compounds of the combination of the present invention may be obtained in a conventional manner. Zidovudine can be prepared, for example, as described in U.S. Patent 4724232, incorporated herein by reference. Zidovudine can also be obtained from Aldrich Chemical Co., Milwaukee, Wl 53233, USA.
AP/P/ 9 7 / 0 1 0 89
AP.00652
1592U89 may be prepared by the method described in European Specification EP0434450 or PCT application PCT/GB/45OO225, which are incorporated herein by reference.
Methods for the preparation of 3TC are described in International Patent Application No. WO91/17159, incorporated herein by reference.
Methods for the preparation of FTC are described in International Patent Application No. WO92/14743 incorporated herein by reference.
The following examples are intended for illustration only and are not intended to limit the scope of the invention in any way. Active ingredient denotes 1592U89, zidovudine, 3TC (or, alternatively to 3TC, FTC), or multiples thereof or a physiologically functional derivative of any of the aforementioned compounds.
Example 1: Tablet Formulation
The following formulations A, B and C are prepared by wet granulation of the ingredients with a solution of povidone, followed by addition of magnesium stearate and compression.
AP/P/ 97/01089
Formulation A mg/tablet
Active Ingredient Lactose B.P. Povidone B.P.
250
210
Sodium Starch Glycollate
AP.00652
Magnesium Stearate 5
500
Formulation B mq/tablet
Active Ingredient 250
Lactose B.P. 150
Avieel PH 101 60
Povidone B.P. 15
Sodium Starch Glycollate 20
Magnesium Stearate 5
500
Formulation C mq/tablet
Active Ingredient 250
Lactose B.P. 200
Starch 50
Povidone 5
Magnesium Stearate 4
359
AP/P/ 9 7 / 0 1 0 89
The following formulations, D and E, are prepared by direct compression of the admixed ingredients. The lactose in formulation E is of the direct compression type (Dairy Crest - Zeparox)14
AP.00652
Formulation D mg/tablet
Active Ingredient Pregelatinized Starch NF1 5
250
150
400
Formulation E mg/tablet
Active Ingredient Lactose B.P. Avieel
250
150
100
500
Formulation F (Controlled Release Formulation)
The formulation is prepared by wet granulation of the ingredients with a solution of povidone followed by the addition of magnesium stearate and compression.
mg/tablet
AP/P/ 9 7 / 0 1 0 8 9
Active Ingredient 500
Hydroxypropylmethylcellulose 112
(Methoeel K4M Premium)
Lactose B.P. 53
Povidone B.P. 28
Magnesium Stearate 7
700
AP.00652
Drug release takes place over a period of about 6-8 hours and is complete after 12 hours.
Example 2: Capsule Formulations
Formulation A
A capsule formulation is prepared by admixing the ingredients of formulation D in Example 1 above and filling into a two-part hard gelatin capsule. Formulation B (infra) is prepared in a similar manner.
Formulation B mq/capsule
Active Ingredient 250
Lactose B.P. 143
Sodium Starch Glycollate 25
Magnesium Stearate 2
420
AP/P/ 9 7 / 0 1 0 8 9
Formulation C mq/capsule
Active Ingredient 250
Macrogel 4000 B.P. 350
600
AP. Ο Ο 6 5 2
Capsules of formulation C are prepared by melting the Macrogel 4000 B.P., dispersing the active ingredient in the melt and filling the melt into a two-part hard gelatin capsule.
Formulation D mq/capsule
Active Ingredient 250
Lecithin 100
ArachisOil 100
450
Capsules of formulation D are prepared by dispersing the active ingredient in the lecithin and arachis oil and filling the dispersion into soft, elastic gelatin capsules.
Formulation E (Controlled Release Capsule)
The following controlled release capsule formulation is prepared by extruding ingredients a, b, and c using an extruder, followed by spheronization of the extrudate and drying. The dried pellets are then coated with release-controlling membrane (d) and filled into a two-piece, hard gelatin capsule.
8 0 I 0 / L 6 /d/dV mq/eapsule
(a) Active Ingredient 250
(b) Microcrystalline Cellulose 125
(c) Lactose B.P. 125
(d) Ethyl Cellulose 13
513
AP.00652
Example 3: Injectable Formulation
Formulation A mg
Active Ingredient
Hydrochloric Acid Solution 0.1 M or Sodium Hydroxide Solution 0.1 M q.s. to pH Sterile water q.s. to
200
4.0 to 7.0 ml
The active ingredient is dissolved in most of the water (35°-40°C) and the pH adjusted to between 4.0 and 7.0 with the hydrochloric acid or the sodium hydroxide as appropriate. The batch is then made up to volume with the water and filtered through a sterile micropore filter into a sterile 10 ml amber glass vial (type 1) and sealed with sterile closures and overseals.
Formulation B
Active Ingredient 125 mg
Sterile, Pyrogen-free, pH 7 Phosphate
Buffer, q. s. to 25 ml
Example 4: Intramuscular injection
Active Ingredient 200 mg
Benzyl Alcohol 0.10 g
Glycofurol 75 1-45 g
Water for injection q.s. to 3.00 ml
The active ingredient is dissolved in the glycofurol. The benzyl alcohol is then added and dissolved, and water added to 3 ml. The mixture is then filtered through a sterile micropore filter and sealed in sterile 3 ml amber glass vials (type 1).
AP/P/ 9 7 / 0 1 0 8 9
AP.00652
Example 5: Syrup
Active Ingredient 250 mg
Sorbitol Solution 1.50 g
Glycerol 2.00 g
Sodium Benzoate 0.005 g
Flavor, Peach 17.42.3169 0.0125 ml
Purified Water q.s. to 5.00 ml
The active ingredient is dissolved in a mixture of the glycerol and most of the purified water. An aqueous solution of the sodium benzoate is then added to the solution, followed by addition of the sorbital solution and finally the flavor. The volume is made up with purified water and mixed well.
Example 6: Suppository mg/capsule suppository
Active Ingredient 250
Hard Fat, B.P. (Witepsol Hl5 - Dynamit Nobel) 1770
AP/P/ 97/01089
2020
One-fifth of the Witepsol Hl5 is melted in a steam-jacketed pan at 45°C maximum. The active ingredient is sifted through a 200μΜ sieve and added to the molten base with mixing, using a Silverson fitted with a cutting head, until a smooth dispersion is achieved. Maintaining the mixture at 45°C, the remaining Witepsol Hl5 is added to the suspension and stirred to ensure a homogenous mix. The entire suspension is passed through a 250μπι stainless steel screen and, with continuous stirring, is allowed to cool to 40°C. At a temperature of 38°C to 40°C, 2.02 g of the mixture is filled into suitable, 2 ml plastic molds. The suppositories are allowed to cool to room temperature.
AP.00652
Example 7: Pessaries mg/pessary
Active Ingredient 250
Anhydrate Dextrose 380
Potato Starch 363
Magnesium Stearate _J_ 1000
The above ingredients are mixed directly and pessaries prepared by direct compression of the resulting mixture.
Biological Test Results
Peak and Trough Plasma Levels
The peak and trough values in micromolar concentrations used in this study came from clinically determined peak and trough plasma levels. These values were meant to reflect actual peak and trough plasma levels achieved in patients when using therapeutic doses of each drug as a single agent.
Drug Peak Level (uM) Trough Level (uM)
AP/P/ 97/01089 zidovudine 5
3TC 9
1592U89 3.5
FTC 10
0.4
0.7
0.1
0.5
AP.00652
Antiviral Activity Alone or in Combination
Anti-HIV assay. The human T-cell lymphotropie virus type 1-transformed cell line MT4 was grown and infected with HIV-1 strain 3B or strain MN (Advanced Biotechnologies Inc., Columbia, Maryland) at 10 times the amount necessary to cause a 50% reduction of MT4 cell growth (10 X TCID5Q, 2 X 104 plaque forming units/cell), unless otherwise indicated. Mock-infected cells were also prepared. Following 1 hour incubation, the cells were pipetted onto 96-well dishes at 1 X 104 cells/well. The wells contained various concentrations of zidovudine, and peak or trough plasma levels of 3TC (or, alternatively to 3TC, FTC), and 1592U8983 as indicated in table 1. The infected Tlymphoblastoid cells were incubated for 5 days to allow for HIV-1 mediated growth inhibition. Plates were then treated with 28 μΙ of 5% Nonidet P-40 (Sigma) in phosphate-buffered saline (PBS) and 60 μΙ samples were transferred to filterbottomed, 96-well plates (Idexx Corp.). Plates were placed in an automated assay instrument (Idexx Screen Machine) which added propidium iodide to each well, performed a series of washes, and determined the resulting fluorescence (E). Fluorescence has been shown to correlate directly with cell number, allowing for the quantitation of HIV-1 mediated cytopathic effect (CPE). Uninfected cells were determined to have 0% CPE and infected untreated cells were determined to have 100% CPE. Percent inhibition of HIV-1 induced CPE and IC95S (95% inhibitory concentration) were determined.
Figure 1 shows graphically the results of the combination of zidovudine, 3TC and 1592U89 against zidovudine and 3TC alone and in combination.

Claims (24)

1. A combination comprising two compounds selected from zidovudine, (1S.4R)cis-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1methanol and (2R,cis)-4-amino-(2-hydroxymethyl-1,3-oxathiolan-5-yl)-( 1H)pyrimidin-2-one provided that the two compounds are not zidovudine and (2R,cis)-4-amino-(2-hydroxymethyl-1,3-oxathiolan-5-yl)-(lH)-pyrimidin-2one.
2. A combination comprising two compounds selected from zidovudine, (1 S,4R)~ cis-4-[2-amino-6-(eyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1methanol and (2R,cis)-4-amino-5-fluoro-1-(2-hydroxymethyl-1,3-oxathiolan5-yl)-( 1 H)-pyrimidin-2-one.
3. A combination according to claiml comprising (lS,4R)-cis-4-[2-amino-6(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol or a physiologically functional derivative thereof, zidovudine or a physiologically functional derivative thereof, and (2R,cis)-4-amino-(2-hydroxYmethyl-1,3oxathiolan-5-yl)-(1 H)-pyrimidin-2-one or a physiologically functional derivative thereof.
4. A combination according to claim 2 comprising (lS,4R)-cis-4-[2-amino-6(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1 -methanol or a physiologically functional derivative thereof, zidovudine or a physiologically functional derivative thereof, and (2R,cis)-4-amino-5-fluoro-1-(2hydroxymethyl-1,3-oxathiolan-5-yl)-(lH)-pyrimidin-2-one or a physiologically functional derivative thereof
5. A combination according to claim 3 wherein the ratio of (1 S,4R)-cis-4-[2amino-6(cyclopropylamino)-9H-purin-9-yl]-2-eyclopentene-1-methanol: zidovudine: (2R,cis)-4-amino-l-(2-hydroxymethyl-1,3-oxathioIa n-5-yl)-( 1 H)pyrimidin-2-one is in the ratio of 1 to 20: 1 to 20: 1 to 10 by weight.
AP/F/ 9 7 / 0 1 0 8 9
AP.00652
6. A combination according to any claim from 1 to 5 for use in medical therapy.
7. A pharmaceutical formulation comprising a combination according to claims 1 or 5 in association with one or more pharmaceutically acceptable carriers therefor.
8. A formulation according to claim 7 in unit dosage.
9. A method for the treatment or prevention of the symptoms or effects of an HIV infection in an infected animal which comprises treating said animal with a therapeutically effective amount of a combination as defined in any claim from 1 to 4.
10. A method according to claim 9 wherein the combination is administered simultaneously.
11. A method according to claims 9 wherein the combination is administered sequentially.
12. A method according to claim 9 wherein the combination is administered as a single combined formulation.
13. A method according to any of claims 9 to 12 in which said animal is a human.
14. Use of (lS,4R)-cis-4-[2-amino-6(cyclopropylamino)-9H-purin-9-yl]-2cyclopentene-1-methanol in the manufacture of a medicament for administration either simultaneously or sequentially with zidovudine and (2R,cis)-4-amino-1-(2-hydroxymethyl-1,3-oxathiolan-5-yl)-(1 H)-pyrimidin-2one, for the treatment and/or prophylaxis of an HIV infection.
AP/P/ 9 7 / 0 1 0 89
AP.00652
15. Use of zidovudine in the manufacture of a medicament for administration simultaneously or sequentially with (lS,4R)-cis-4-[2-amino-6(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol or (2R,cis)-4amino-1-(2-hydroxymethyl-1,3-oxathiolan-5-yl)-(lH)-pyrimidin-2-one for the treatment of an HIV infection.
16. Use of (2Rtcis)-4-amino-1-(2-hydroxymethyl-1,3-oxathiolan-5-yl)-(lH)pyrimidin-2-one in the manufacture of a medicament for administration simultaneously or sequentially with (lS,4R)-cis-4-[2-amino6(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1 -methanol or zidovudine for the treatment of an HIV infection.
17. Use of (2R,cis)-4-amino-1-(2-hydroxymethyl-1,3-oxathiolan-5-yl)-(lH)pyrimidin-2-one in the manufacture of a medicament for administration simultaneously or sequentially with (lS,4R)-cis-4-[2-amino6(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol or zidovudine for the treatment of an HIV infection.
18. Use of (lS,4R)-cis-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2cyclopentene-1-methanol, zidovudine and (2R,cis)-4-amino-1-(2hydroxymethyl-1,3-oxathiolan-5-yl)-(lH)-pyrimidin-2-one in the manufacture of a medicament for the treatment and/or prophylaxis of an HIV infection.
19. Use of (lS,4R)-cis-4-[2-amino-6-(cyelopropylamino)-9H-purin-9-yl]-2cyclopentene-1-methanol, zidovudine and (2R,cis)-4-amino-1-(2hydroxymethyl-1,3-oxathiolan-5-yI)-(lH)-pyrimidin-2-one in the manufacture of a medicament for the treatment and/or prophylaxis of an HIV infection
20. Use as claimed in any claim from 14 to 19 for the treatment and for prophylaxis of an HIV infection resistant to nucleoside or non-nucleoside inhibitors.
AP/P/ 9 7 / 0 1 0 89
AP.00652
21. Use as claimed in any claim from 14 to 19 in the treatment of AIDS.
22. Use as claimed in any claim from 14 to 19 in the treatment of AIDS related conditions or AIDS dementia complex.
23. A patient pack comprising of at least one active ingredient selected from (lS,4R)-cis-4-[2-amino-6-(eyclopropylamino)-9H-purin-9-yl]-2-cyclopentene1-methanol, zidovudine and (2R,cis)-4-amino-l-(2-hydroxymethyl-1,3oxathiolan-5-yl)-(lH)-pyrimidin-2-one and an information insert containing directions on the use of all three active ingredients together in combination.
24. A patient pack comprising of at least one active ingredient selected from (1S,4R)-cis-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene1-methanol, zidovudine and (2R,cis)-4-amino-1~(2-hydroxymethyl-1,3oxathiolan-5-yl)-(lH)-pyrimidin-2-one and an information insert containing directions on the use of all three active ingredients together in combination.
APAP/P/1997/001089A 1995-03-30 1996-03-28 Synergistic combinations of zidovudine, 1592U89 and 3tc or Ftc. AP652A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB9506490.3A GB9506490D0 (en) 1995-03-30 1995-03-30 Antiviral combinations
GBGB9506489.5A GB9506489D0 (en) 1995-03-30 1995-03-30 Antiviral combinations
PCT/EP1996/001352 WO1996030025A1 (en) 1995-03-30 1996-03-28 Synergistic combinations of zidovudine, 1592u89 and 3tc or ftc

Publications (2)

Publication Number Publication Date
AP9701089A0 AP9701089A0 (en) 1997-10-31
AP652A true AP652A (en) 1998-06-19

Family

ID=26306774

Family Applications (1)

Application Number Title Priority Date Filing Date
APAP/P/1997/001089A AP652A (en) 1995-03-30 1996-03-28 Synergistic combinations of zidovudine, 1592U89 and 3tc or Ftc.

Country Status (36)

Country Link
US (1) US6417191B1 (en)
EP (1) EP0817637B1 (en)
JP (1) JP2954357B2 (en)
KR (1) KR100542536B1 (en)
CN (1) CN1103593C (en)
AP (1) AP652A (en)
AT (1) ATE220551T1 (en)
AU (1) AU715213B2 (en)
BR (3) BR9607851B1 (en)
CA (1) CA2216634C (en)
CZ (1) CZ295940B6 (en)
DE (3) DE69622386T2 (en)
DK (1) DK0817637T3 (en)
EA (1) EA000626B3 (en)
EE (1) EE04047B1 (en)
ES (1) ES2179193T3 (en)
FR (1) FR05C0022I2 (en)
GE (1) GEP20022647B (en)
HK (1) HK1009401A1 (en)
HU (1) HU224010B1 (en)
IL (1) IL117727A (en)
LU (1) LU91171I2 (en)
MX (1) MX9707316A (en)
MY (1) MY115461A (en)
NL (1) NL300195I2 (en)
NO (2) NO313787B1 (en)
NZ (1) NZ306419A (en)
OA (1) OA10616A (en)
PL (1) PL187085B1 (en)
PT (1) PT817637E (en)
RO (1) RO117995B1 (en)
SI (1) SI0817637T1 (en)
SK (1) SK283825B6 (en)
TR (1) TR199701074T1 (en)
UA (1) UA60293C2 (en)
WO (1) WO1996030025A1 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ333099A (en) * 1996-06-25 2000-06-23 Glaxo Group Ltd synergistic combinations comprising 141W94, zidovudine and 3TC for use in the treatment of HIV
US6113920A (en) * 1996-10-31 2000-09-05 Glaxo Wellcome Inc. Pharmaceutical compositions
TW536403B (en) * 1997-03-24 2003-06-11 Glaxo Group Ltd An ethanol and ethylenediaminetetraacetic acid free pharmaceutical composition comprising lamivudine and exhibiting antimicrobial preservative efficacy
GB9709945D0 (en) * 1997-05-17 1997-07-09 Glaxo Group Ltd A novel salt
BR9809127A (en) * 1997-05-17 2000-08-01 Glaxo Group Ltd Combination, pharmaceutical formulation, process for treating HIV infection in an infected animal, use of (-) - (1s, 4r) -4- [2-amino-6- (cyclopropyl amino) -9h-purin-9 -il) -2-cyclopentene-1-methanol, and, patient package
AU769660B2 (en) * 1997-05-17 2004-01-29 Glaxo Group Limited Carbocyclic nucleoside hemisulfate and its use in treating viral infections
GB9809213D0 (en) * 1998-04-29 1998-07-01 Glaxo Group Ltd Pharmaceutical compositions
US6875773B1 (en) 1998-05-29 2005-04-05 Ben M. Dunn Combination therapy for treatment of FIV infection
AU4219799A (en) * 1998-05-29 1999-12-13 University Of Florida Combination therapy for treatment of fiv infection
GB9820417D0 (en) * 1998-09-18 1998-11-11 Glaxo Group Ltd Antiviral combinations
US6432966B2 (en) 1999-10-29 2002-08-13 Smithkline Beecham Corporation Antiviral combinations
US7074417B2 (en) * 2000-10-13 2006-07-11 Advancis Pharmaceutical Corporation Multiple-delayed release anti-viral product, use and formulation thereof
AP2220A (en) * 2001-05-11 2011-03-24 Cipla Medpro Pty Ltd Pharmaceutical composition.
AR040242A1 (en) * 2002-06-04 2005-03-23 Glaxo Group Ltd PHARMACEUTICAL COMPOSITIONS
ATE398455T1 (en) 2003-01-14 2008-07-15 Gilead Sciences Inc COMPOSITIONS AND METHODS FOR ANTIVIRAL COMBINATION THERAPY
EP1608629A1 (en) 2003-03-24 2005-12-28 F. Hoffmann-La Roche Ag Benzyl-pyridazinons as reverse transcriptase inhibitors
US20070202119A1 (en) 2003-10-24 2007-08-30 Ashdown Martin L Method Of Therapy
TWI471145B (en) 2005-06-13 2015-02-01 Bristol Myers Squibb & Gilead Sciences Llc Unitary pharmaceutical dosage form
CN101291905A (en) 2005-10-19 2008-10-22 弗·哈夫曼-拉罗切有限公司 Phenyl-acetamide nnrt inhibitors
KR101475091B1 (en) 2006-12-13 2014-12-22 에프. 호프만-라 로슈 아게 2-(piperidin-4-yl)-4-phenoxy- or phenylamino-pyrimidine derivatives as non-nucleoside reverse transcriptase inhibitors
SI2120878T1 (en) * 2007-02-09 2014-12-31 Alphapharm Pty Ltd A dosage form containing two active pharmaceutical ingredients in different physical forms
EP2982978A1 (en) 2009-05-27 2016-02-10 Immunaid Pty Ltd Methods of treating diseases
KR20170078868A (en) 2010-01-27 2017-07-07 비이브 헬쓰케어 컴퍼니 Antibiral therapy
EP3038607A2 (en) 2013-08-29 2016-07-06 Teva Pharmaceutical Industries Ltd. Unit dosage form comprising emtricitabine, tenofovir, darunavir and ritonavir and a monolithic tablet comprising darunavir and ritonavir
CA2942877A1 (en) 2014-04-08 2015-10-15 Nitzan SHAHAR Unit dosage form comprising emtricitabine, tenofovir, darunavir and ritonavir
CN117164657A (en) 2014-08-12 2023-12-05 莫纳什大学 Prodrugs of directed lymphatics
WO2017041139A1 (en) 2015-09-08 2017-03-16 Monash University Lymph directing prodrugs
US11883497B2 (en) 2017-08-29 2024-01-30 Puretech Lyt, Inc. Lymphatic system-directing lipid prodrugs
AU2018324037A1 (en) * 2017-08-29 2020-04-16 Monash University Lymphatic system-directing lipid prodrugs
US11304954B2 (en) 2017-12-19 2022-04-19 Puretech Lyt, Inc. Lipid prodrugs of mycophenolic acid and uses thereof
US11608345B1 (en) 2017-12-19 2023-03-21 Puretech Lyt, Inc. Lipid prodrugs of rapamycin and its analogs and uses thereof
KR20220149534A (en) 2020-02-05 2022-11-08 퓨어테크 엘와이티, 아이엔씨. Lipid prodrugs of neurosteroids

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992015309A1 (en) * 1991-03-06 1992-09-17 The Wellcome Foundation Limited Antiviral nucleoside combination
EP0513917A1 (en) * 1991-05-16 1992-11-19 Glaxo Group Limited Antiviral combinations containing nucleoside analogs
WO1993023021A2 (en) * 1992-05-13 1993-11-25 The Wellcome Foundation Limited Therapeutic combinations

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4724232A (en) * 1985-03-16 1988-02-09 Burroughs Wellcome Co. Treatment of human viral infections
US5047407A (en) 1989-02-08 1991-09-10 Iaf Biochem International, Inc. 2-substituted-5-substituted-1,3-oxathiolanes with antiviral properties
US5122517A (en) 1988-06-10 1992-06-16 Regents Of The University Of Minnesota Antiviral combination comprising nucleoside analogs
GB8815265D0 (en) * 1988-06-27 1988-08-03 Wellcome Found Therapeutic nucleosides
US5204466A (en) 1990-02-01 1993-04-20 Emory University Method and compositions for the synthesis of bch-189 and related compounds
GB9009861D0 (en) 1990-05-02 1990-06-27 Glaxo Group Ltd Chemical compounds
US5723490A (en) 1992-09-08 1998-03-03 Vertex Pharmaceuticals Incorporated THF-containing sulfonamide inhibitors of aspartyl protease
GB9417249D0 (en) 1994-08-26 1994-10-19 Wellcome Found A novel salt
US5869461A (en) 1995-03-16 1999-02-09 Yale University Reducing toxicity of L-nucleosides with D-nucleosides
NZ333099A (en) 1996-06-25 2000-06-23 Glaxo Group Ltd synergistic combinations comprising 141W94, zidovudine and 3TC for use in the treatment of HIV
ATE230267T1 (en) 1996-06-25 2003-01-15 Glaxo Group Ltd COMPOSITIONS CONTAINING VX478, ZIDOVUDINE AND 159U89 FOR USE IN THE TREATMENT OF HIV
DE10226522A1 (en) * 2002-06-14 2003-12-24 Degussa Use of transition metal complexes with nitrogen-containing multidentate ligands as a bleaching catalyst and bleaching agent composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992015309A1 (en) * 1991-03-06 1992-09-17 The Wellcome Foundation Limited Antiviral nucleoside combination
EP0513917A1 (en) * 1991-05-16 1992-11-19 Glaxo Group Limited Antiviral combinations containing nucleoside analogs
WO1993023021A2 (en) * 1992-05-13 1993-11-25 The Wellcome Foundation Limited Therapeutic combinations

Also Published As

Publication number Publication date
HK1009401A1 (en) 1999-09-10
EP0817637B1 (en) 2002-07-17
IL117727A0 (en) 1996-07-23
OA10616A (en) 2001-03-15
JP2954357B2 (en) 1999-09-27
CA2216634C (en) 2004-07-20
ATE220551T1 (en) 2002-08-15
NL300195I2 (en) 2005-11-01
EA199700203A1 (en) 1998-02-26
NL300195I1 (en) 2005-08-01
TR199701074T1 (en) 1998-02-21
RO117995B1 (en) 2002-12-30
DE69622386D1 (en) 2002-08-22
HUP9801571A2 (en) 1999-01-28
AP9701089A0 (en) 1997-10-31
CN1103593C (en) 2003-03-26
HU224010B1 (en) 2005-04-28
LU91171I2 (en) 2005-07-04
FR05C0022I1 (en) 2005-06-10
PL187085B1 (en) 2004-05-31
NO974510L (en) 1997-09-29
DE69622386T2 (en) 2003-02-13
KR100542536B1 (en) 2006-03-23
BR9607851A (en) 1998-07-21
IL117727A (en) 1999-11-30
DK0817637T3 (en) 2002-11-11
DE122005000029I1 (en) 2005-10-06
SK129597A3 (en) 1998-07-08
SK283825B6 (en) 2004-02-03
NO974510D0 (en) 1997-09-29
HUP9801571A3 (en) 2001-04-28
ES2179193T3 (en) 2003-01-16
MX9707316A (en) 1997-11-29
CA2216634A1 (en) 1996-10-03
AU5497296A (en) 1996-10-16
JPH10511682A (en) 1998-11-10
MY115461A (en) 2003-06-30
EP0817637A1 (en) 1998-01-14
EE04047B1 (en) 2003-06-16
NO313787B1 (en) 2002-12-02
BRPI9607851B8 (en) 2019-11-05
NO2005014I1 (en) 2005-06-06
CZ295940B6 (en) 2005-12-14
CN1185110A (en) 1998-06-17
EE9700240A (en) 1998-04-15
PL322532A1 (en) 1998-02-02
GEP20022647B (en) 2002-03-25
SI0817637T1 (en) 2002-10-31
BRPI9612992B1 (en) 2020-08-04
NO2005014I2 (en) 2008-02-11
EA000626B1 (en) 1999-12-29
BR9607851B1 (en) 2009-01-13
FR05C0022I2 (en) 2005-10-21
CZ309097A3 (en) 1998-05-13
EA000626B3 (en) 2016-04-29
WO1996030025A1 (en) 1996-10-03
NZ306419A (en) 2000-01-28
PT817637E (en) 2002-11-29
KR19980703420A (en) 1998-11-05
UA60293C2 (en) 2003-10-15
US6417191B1 (en) 2002-07-09
AU715213B2 (en) 2000-01-20
LU91171I9 (en) 2018-12-28
DE122005000029I2 (en) 2006-04-27

Similar Documents

Publication Publication Date Title
AP652A (en) Synergistic combinations of zidovudine, 1592U89 and 3tc or Ftc.
AU727983B2 (en) Combinations comprising VX478, zidovudine, FTC and/or 3TC for use in the treatment of HIV
EP1113802B1 (en) Antiviral combinations of lamivudine and adefovir
US6486136B1 (en) Combinations comprising VX478, zidovudine and/or 1592U89 for use in the treatment of HIV
US6432966B2 (en) Antiviral combinations
EP1113803A1 (en) Antiviral combinations comprising lamivudine and abacavir
WO2000018383A2 (en) Antiviral combinations comprising (s)-2- ethyl-7- fluoro-3- oxo-3,4- dihydro-2h- quinoxaline-1- carboxylic acid isopropyl ester
AU8017298A (en) Antiviral combinations containing the carbocyclic nucleoside 1592u89
MXPA98010386A (en) Combinations that include vx478, zidovudina and / or 1592u89 for use in the treatment of