JPH075922A - Steering control method for unmanned work vehicle - Google Patents

Steering control method for unmanned work vehicle

Info

Publication number
JPH075922A
JPH075922A JP5169713A JP16971393A JPH075922A JP H075922 A JPH075922 A JP H075922A JP 5169713 A JP5169713 A JP 5169713A JP 16971393 A JP16971393 A JP 16971393A JP H075922 A JPH075922 A JP H075922A
Authority
JP
Japan
Prior art keywords
steering
vehicle
value
vehicle body
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5169713A
Other languages
Japanese (ja)
Other versions
JP3025604B2 (en
Inventor
Shigehiro Yamamoto
重裕 山本
Toshihiro Suzuki
敏弘 鈴木
Kazumasa Furukura
一正 古倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yusoki Co Ltd
Original Assignee
Nippon Yusoki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yusoki Co Ltd filed Critical Nippon Yusoki Co Ltd
Priority to JP5169713A priority Critical patent/JP3025604B2/en
Publication of JPH075922A publication Critical patent/JPH075922A/en
Application granted granted Critical
Publication of JP3025604B2 publication Critical patent/JP3025604B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Refuse-Collection Vehicles (AREA)

Abstract

PURPOSE:To always drive an unmanned work vehicle with desired distances secured to the right and left obstacles of the vehicle by setting the offset value used for the steering amount based on the feedback value due to the deviation of the value detected by a sensor from the relevant traveling course. CONSTITUTION:The unmanned work vehicle 1 calculates its position on a traveling course and then calculates the feedback value of signals to perform the steering control in accordance with the calculated position of the vehicle. Then, the vehicle 1 compares the detected distance (d) between the vehicle and an obstacle 2 with the desired space value D and then calculates the offset value of the feedback value based on the result of comparison. Then, the vehicle 1 calculates a steered variable from the feedback value acquired by the hitherto calculations and the offset value. Then, the steering control of the vehicle 1 is carried out. Thus, it is possible to set a steering amount to secure the space D when the deviation of the vehicle 1 from a prescribed traveling course (x axis) is generated in an optional form. Therefore, a stable distance D is kept in particular to an obstacle in a oblique direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、床面掃除等を行う無人
作業車の操舵制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steering control method for an unmanned work vehicle for cleaning a floor or the like.

【0002】[0002]

【従来の技術】この種の無人作業車の操舵制御方法にお
いては、特に、車体左右に存在する障害物に対して、車
体と障害物との間隔を少なくとも車体の方向転換がいつ
でも可能な状態に保つよう操舵制御することが望まれ
る。これを実現すべく、車体の左右に向けて超音波距離
センサや光センサ等の非接触式距離センサを設置し、左
右の障害物との距離を検出し、この検出値と所定の間隔
値との差に応じて車体の走行経路を平行移動させて障害
物との間隔を保とうとした操舵方法が提案されている。
2. Description of the Related Art In a steering control method for an unmanned work vehicle of this type, particularly with respect to obstacles existing on the left and right of the vehicle body, at least the distance between the vehicle body and the obstacle can be changed at any time. Steering control is desired to keep it. In order to achieve this, non-contact distance sensors such as ultrasonic distance sensors and optical sensors are installed toward the left and right sides of the vehicle body, and the distance between the left and right obstacles is detected. A steering method has been proposed in which the traveling path of the vehicle body is moved in parallel according to the difference between the two to maintain the distance from the obstacle.

【0003】この操舵方法を図10、図11を用いて説
明する。図11に示すように、車体1が進行方向Aから
進行方向Bに方向転換する時、車体1のコーナーの軌跡
は円弧を描くので、車体1と障害物2との間には所定間
隔Dが必要となる。なお、3は距離センサ、4は車輪で
ある。図10は所定の走行経路5の側方に障害物2が存
在した場合の操舵状況を示す。車体1と障害物2との間
隔のセンサ検出値d1が所定間隔Dより小さい時、(D
−d1)だけ走行経路を移動させる。新たな走行経路と
障害物2との間隔の検出値d2が、再び所定間隔Dより
小さくなれば更に走行経路を移動させる。検出値d3が
所定間隔D以上であれば、そのまま走行する。以下、同
様な動作を繰り返す。障害物2がなくなって検出値d4
が(D+α)より大きくなれば(αは横変位の発生量よ
り若干大きな値に選ぶ)、走行距離Lの計測を開始し、
LがLa(ほぼ車体長さ)より大きくなれば、走行経路
をそれ以前の横移動量(D−d1)+(D−d2)だけ
元に戻し、車体1を所定の走行経路5に戻す。
This steering method will be described with reference to FIGS. 10 and 11. As shown in FIG. 11, when the vehicle body 1 changes direction from the traveling direction A to the traveling direction B, since the locus of the corner of the vehicle body 1 draws an arc, a predetermined distance D is provided between the vehicle body 1 and the obstacle 2. Will be needed. In addition, 3 is a distance sensor and 4 is a wheel. FIG. 10 shows a steering situation when the obstacle 2 exists on the side of the predetermined traveling route 5. When the sensor detection value d1 of the distance between the vehicle body 1 and the obstacle 2 is smaller than the predetermined distance D, (D
-D1) move the travel route. When the detected value d2 of the interval between the new travel route and the obstacle 2 becomes smaller than the predetermined interval D again, the travel route is further moved. If the detected value d3 is equal to or greater than the predetermined interval D, the vehicle travels as it is. Hereinafter, the same operation is repeated. Obstacle 2 disappears and detection value d4
Becomes larger than (D + α) (α is set to a value slightly larger than the amount of lateral displacement generated), the measurement of the traveling distance L is started,
When L becomes larger than La (approximately the vehicle body length), the traveling route is returned by the previous lateral movement amount (D-d1) + (D-d2), and the vehicle body 1 is returned to the predetermined traveling route 5.

【0004】[0004]

【発明が解決しようとする課題】ところが、この操舵方
法は、走行経路を平行移動させるため、斜めの障害物2
に対しては、図12に示すように、すぐに障害物に接近
してしまい、不安定な動作となり、方向転換が可能な間
隔を保って走行するという効果がなかった。本発明は、
上記問題を解消するもので、車体左右の障害物に対して
常に所望の間隔を保って走行することができる無人作業
車の操舵制御方法を提供することを目的とする。
However, in this steering method, since the traveling path is moved in parallel, the oblique obstacle 2
On the other hand, as shown in FIG. 12, an obstacle was immediately approached, an unstable operation was performed, and there was no effect of traveling at an interval capable of changing the direction. The present invention is
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems and to provide a steering control method for an unmanned work vehicle that can always travel at desired intervals with respect to obstacles on the left and right of the vehicle body.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明は、無人作業車の車体左右に存在する障害物と
の距離を検出して、車体と障害物との間隔を所望値に保
つように操舵する操舵制御方法であって、走行経路上で
の車体位置を演算するステップと、上記により得られた
車体位置に応じて操舵制御を行うための操舵機構におけ
る信号のフィードバック量を演算するステップと、障害
物と車体との距離の検出値と所望の間隔値との大きさを
比較するステップと、上記の比較結果に応じてフィード
バック量のオフセット値を演算するステップと、上記の
各演算により得られたフィードバック量及びそのオフセ
ット値を用いて操舵量を演算するステップとを有したも
のである。
In order to achieve the above object, the present invention detects the distance to an obstacle existing on the left and right of the body of an unmanned work vehicle and sets the distance between the body and the obstacle to a desired value. A steering control method of steering so as to maintain, a step of calculating a vehicle body position on a travel route, and a signal feedback amount in a steering mechanism for performing steering control according to the vehicle body position obtained above. The step of comparing the magnitude of the detected value of the distance between the obstacle and the vehicle body and the desired distance value, the step of calculating the offset value of the feedback amount according to the comparison result, and the steps of And a step of calculating the steering amount using the feedback amount and the offset value obtained by the calculation.

【0006】[0006]

【作用】上記の方法によれば、走行経路上での車体位置
を演算し、上記により得られた車体位置に応じて操舵制
御を行うためのフィードバック量を演算し、障害物と車
体との距離の検出値と所望の間隔値との大きさを比較
し、上記の比較結果に応じてフィードバック量のオフセ
ット値を演算し、上記の各演算により得られたフィード
バック量及びそのオフセット値を用いて操舵量を演算
し、これにより操舵制御を行う。
According to the above method, the position of the vehicle body on the travel route is calculated, and the feedback amount for steering control is calculated according to the position of the vehicle body obtained above to calculate the distance between the obstacle and the vehicle body. The detected value of the above is compared with the desired interval value, the offset value of the feedback amount is calculated according to the above comparison result, and steering is performed using the feedback amount and the offset value obtained by each of the above calculations. The amount is calculated, and the steering control is performed by this.

【0007】[0007]

【実施例】以下、本発明の一実施例について図面を参照
して説明する。図1は操舵輪により操舵を行う場合の無
人作業車の操舵構成を示し、車体1は、(a)において
は駆動兼操舵輪と従動輪を備え、(b)においては操舵
輪と駆動輪を備える。図2は左右駆動輪により操舵を行
う場合の無人作業車の操舵構成を示し、キャスタ輪と駆
動輪を備える。図3は、本実施例による左右の障害物を
回避するための操舵方法の手順を示す。この手順の各種
演算等を順に以下説明する。まず、下記(1)式を用い
た車体位置の演算(#1)について説明する。図4は所
定の走行経路を座標軸xとした時の座標軸x−y上での
車体位置を示す。図4において、位置演算は次式(1)
により得られる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a steering configuration of an unmanned work vehicle in which steering is performed by steering wheels. The vehicle body 1 includes drive and steering wheels and driven wheels in (a), and steering wheels and drive wheels in (b). Prepare FIG. 2 shows the steering configuration of an unmanned work vehicle when steering is performed by the left and right drive wheels, and includes caster wheels and drive wheels. FIG. 3 shows the procedure of the steering method for avoiding the left and right obstacles according to the present embodiment. Various calculations of this procedure will be described below in order. First, the calculation (# 1) of the vehicle body position using the following equation (1) will be described. FIG. 4 shows the vehicle body position on the coordinate axis xy when the predetermined traveling route is the coordinate axis x. In FIG. 4, the position calculation is the following formula (1).
Is obtained by

【0008】[0008]

【数1】 ΔlL i =(pL i −pL i-1 )・DL /PL ΔlR i =(pR i −pR i-1 )・DR /PR Δθi =(ΔlR i −ΔlL i )/W Δli =(ΔlL i +ΔlR i )/2 xi =xi-1 +Δli ・cos(θi-1 +Δθi /2) yi =yi-1 +Δli ・sin(θi-1 +Δθi /2) θi =θi-1 +Δθi …(1)ΔL L i = (p L i −p L i−1 ) · D L / P L Δl R i = (p R i −p R i−1 ) · D R / P R Δθ i = ( Δl R i −Δl L i ) / W Δl i = (Δl L i + Δl R i ) / 2 x i = x i-1 + Δl i · cos (θ i-1 + Δθ i / 2) y i = y i- 1 + Δl i · sin (θ i-1 + Δθ i / 2) θ i = θ i-1 + Δθ i (1)

【0009】なお、上記(1)式において、 i=演算周期毎の値を示す添字、 PL ,PR =左右各エンコーダの1回転当りのパルス
数、 pL i ,pR i =左右各エンコーダのパルス数積算値
(前進時加算、後進時減算)、 DL ,DR =左右各車輪のエンコーダ1回転当りのころ
がり距離(mm)、 ΔlL i ,ΔlR i =演算周期間の左右各車輪のころが
り距離(mm)、 W=左右車輪のトレッド(mm)、 Δθi =演算周期間の車体の方向変化量(rad)、 Δli =演算周期間の車体の移動距離(mm)、 xi ,yi =車体位置(mm)、 θi =車体方向(rad)−π≦θi ≦πである。 なお、角度値については全て反時計回りを正とする。
In the above equation (1), i is a subscript indicating a value for each operation period, P L and P R are the number of pulses per rotation of the left and right encoders, and p L i and p R i are left and right Encoder pulse count integrated value (addition when moving forward, subtraction when moving backward), D L , D R = rolling distance (mm) per left / right encoder rotation of each wheel, Δl L i , Δl R i = left / right between calculation cycles Rolling distance (mm) of each wheel, W = tread (mm) of left and right wheels, Δθ i = direction change amount (rad) of vehicle body during calculation cycle, Δl i = moving distance (mm) of vehicle body during calculation cycle, x i , y i = vehicle body position (mm), θ i = vehicle body direction (rad) −π ≦ θ i ≦ π. All the angle values are positive in the counterclockwise direction.

【0010】次に、下記(2)式を用いた操舵制御にお
けるフィードバック量演算(#2)について説明する。
図5は所定の走行経路を座標軸xとした時の座標軸x−
y上での車体位置を示し、直線経路走行中におけるフィ
ードバック量演算は次式(2)により得られる。
Next, the feedback amount calculation (# 2) in the steering control using the following equation (2) will be described.
FIG. 5 shows the coordinate axis x- when the predetermined travel route is the coordinate axis x.
The vehicle body position on y is shown, and the feedback amount calculation during traveling on a straight route is obtained by the following equation (2).

【0011】[0011]

【数2】 li =yi ψi = θi ・180/π (前進時) =−θi ・180/π (後進時) φi =バーφi −φ0 (操舵輪による操舵を行う場合のみ) ωi = (Δθi /Δti )・(180/π) (前進時) =−(Δθi /Δti )・(180/π) (後進時) …(2)[Expression 2] l i = y i ψ i = θ i · 180 / π (when moving forward) = −θ i · 180 / π (when moving backward) φ i = bar φ i −φ 0 (steering with steering wheels is performed Only in the case) ω i = (Δθ i / Δt i ) · (180 / π) (when moving forward) = − (Δθ i / Δt i ) · (180 / π) (when moving backward) (2)

【0012】なお、上記(2)式において、 i=演算周期毎の値を示す添字、 yi =車体位置(mm)、 θi =車体の方向(rad)、 Δθi =演算周期間の車体の方向変化量(rad)、 Δti =演算周期(sec)、 li =横変位フィードバック量(mm)、 ψi =姿勢角フィードバック量(deg)、 φi =操舵角フィードバック量(deg)、 バーφi =操舵角検出値(deg)、 φ0 =操舵角検出オフセット値(deg)、 ωi =角速度フィードバック量(deg/sec)であ
る。なお、角度値については全て反時計回りを正とす
る。
In the above equation (2), i = subscript indicating a value for each calculation cycle, y i = vehicle body position (mm), θ i = vehicle body direction (rad), Δθ i = vehicle body during calculation cycle Change amount (rad), Δt i = calculation period (sec), l i = lateral displacement feedback amount (mm), ψ i = posture angle feedback amount (deg), φ i = steering angle feedback amount (deg), Bar φ i = steering angle detection value (deg), φ 0 = steering angle detection offset value (deg), and ω i = angular velocity feedback amount (deg / sec). All the angle values are positive in the counterclockwise direction.

【0013】次に、センサ検出値dと所望間隔Dとを比
較し(#3)、その比較結果に応じて、オフセット値S
0 を決め(#4,#7,#11)、さらに、下記(3)
又は(4)式を用いて操舵指令値を演算し(#5)、得
られた操舵指令値に基づいて操舵出力する(#6)。オ
フセット値S0 を決める手順は後述することとし、先
に、操舵指令値の演算につき説明する。まず、操舵輪に
よる操舵を行う場合を説明する。この場合の、車体位置
に応じて操舵制御を行うための操舵機構における信号の
フィードバック回路構成を図6に示している。
Next, the sensor detection value d and the desired interval D are compared (# 3), and the offset value S is determined according to the comparison result.
Decide 0 (# 4, # 7, # 11), and then (3) below
Alternatively, the steering command value is calculated using the equation (4) (# 5), and the steering output is performed based on the obtained steering command value (# 6). The procedure for determining the offset value S 0 will be described later, and the calculation of the steering command value will be described first. First, a case where the steering wheel is used for steering will be described. FIG. 6 shows a signal feedback circuit configuration in the steering mechanism for performing steering control according to the vehicle body position in this case.

【0014】[0014]

【数3】 バーSi =GS ・(Gl ・li +Gψ・ψi +Gφ・φi +Gω・ωi −S0 ) Si =バーSi (バーSi <Slim の場合) Si =(バーSi /|バーSi |)・Slim (バーSi ≧Slim の場 合) …(3)(3) Bar S i = G S · (G l·l i + G ψ · ψ i + G φ · φ i + G ω · ω i −S 0 ) S i = bar S i (of bar S i <S lim Case) S i = (bar S i / | bar S i |) · S lim (when bar S i ≧ S lim ) (3)

【0015】なお、上記(3)式において、 i=演算周期毎の値を示す添字、 Gs =総合フィードバックゲイン、 Gl =横変位フィードバックゲイン、 Gψ=姿勢角フィードバックゲイン、 Gφ=操舵角フィードバックゲイン、 Gω=角速度フィードバックゲイン、 li =横変位フィードバック量(mm)、 ψi =姿勢角フィードバック量(deg)、 φi =操舵角フィードバック量(deg)、 ωi =角速度フィードバック量(deg/sec)、 So =フィードバック量オフセット値、 Si =操舵指令値(操舵速度指令)、 Slim =操舵指令リミット値である。In the above equation (3), i = subscript indicating a value for each calculation cycle, Gs = total feedback gain, Gl = lateral displacement feedback gain, G ψ = attitude angle feedback gain, G φ = steering angle Feedback gain, = angular velocity feedback gain, l i = lateral displacement feedback amount (mm), ψ i = attitude angle feedback amount (deg), φ i = steering angle feedback amount (deg), ω i = angular velocity feedback amount ( deg / sec), S o = feedback amount offset value, S i = steering command value (steering speed command), and S lim = steering command limit value.

【0016】左右駆動輪による操舵を行う場合を次に説
明する。この場合の、車体位置に応じて操舵制御を行う
ための操舵機構における信号のフィードバック回路構成
を図7に示している。
The case where steering is performed by the left and right driving wheels will be described below. FIG. 7 shows a signal feedback circuit configuration in the steering mechanism for performing steering control according to the vehicle body position in this case.

【0017】[0017]

【数4】 1/Ri =(1/GR )・(Gl ・li +Gψ・ψi +Gω・ωi −So ) ΔTi =Cv ・(W/2)・(1/Ri )・(Δli /Δti ) TL i =Ti +ΔTiR i =Ti −ΔTi …(4)[Number 4] 1 / R i = (1 / G R) · (G l · l i + G ψ · ψ i + G ω · ω i -S o) ΔT i = Cv · (W / 2) · (1 / R i ) · (Δl i / Δt i ) TL i = T i + ΔT i T R i = T i −ΔT i (4)

【0018】なお、上記(4)式において、 i=演算周期毎の値を示す添字、 GR =旋回半径の逆数フィードバックゲイン、 Gl =横変位フィードバックゲイン、 Gψ=姿勢角フィードバックゲイン、 Gω=角速度フィードバックゲイン、 li =横変位フィードバック量(mm)、 ψi =姿勢角フィードバック量(deg)、 ωi =角速度フィードバック量(deg/sec)、 So =フィードバック量オフセット値、 1/R=旋回半径の逆数目標値(1/mm)、 W=左右車輪のトレッド(mm)、 Δli =演算周期間の車体の移動量(mm)…数式
(1)の演算値、 Δti =演算周期(sec)、 Δli /Δti で走行
速度、 Cv =モータ回転速度指令値への変換定数、 ΔTi =操舵指令値(駆動モータ回転速度の増減値)、 TL i ,TR i =左、右駆動モータ回転速度指令値であ
る。
In the above equation (4), i = subscript indicating a value for each operation cycle, G R = reciprocal feedback gain of turning radius, G l = lateral displacement feedback gain, G ψ = posture angle feedback gain, G ω = angular velocity feedback gain, l i = lateral displacement feedback amount (mm), ψ i = attitude angle feedback amount (deg), ω i = angular velocity feedback amount (deg / sec), S o = feedback amount offset value, 1 / R = target value of reciprocal of turning radius (1 / mm), W = tread of right and left wheels (mm), Δl i = amount of movement of vehicle body during calculation cycle (mm) ... Calculated value of formula (1), Δt i = Calculation cycle (sec), traveling speed by Δl i / Δt i , Cv = conversion constant to motor rotation speed command value, ΔT i = steering command value (increase / decrease value of drive motor rotation speed), TL i, T R i = left, a right drive motor speed command value.

【0019】上記(3)又は(4)式により得られた操
舵量に基づいて操舵出力されるが、ここで、(3)又は
(4)式におけるフィードバックオフセット値S0 の決
定処理(#3,#4,#7〜#11)を説明する。ま
ず、センサ検出値dが、d<D+α(αは走行経路上を
走行している時の横変位の発生量より若干大きい適当な
値を選ぶ)であれば、次の処理を行う。
Steering is output based on the steering amount obtained by the above equation (3) or (4). Here, the feedback offset value S 0 in the equation (3) or (4) is determined (# 3). , # 4, # 7 to # 11) will be described. First, if the sensor detection value d is d <D + α (α is an appropriate value that is slightly larger than the amount of lateral displacement generated when traveling on a traveling route), the following processing is performed.

【0020】[0020]

【数5】F=Gl ・li +Gψ・ψi を求める。車体左のセンサ検出値については、 F≧Gl ・(D−d)であれば、S0 =0 F<Gl ・(D−d)であれば、S0 =F−Gl ・(D
−d) とする。車体右のセンサ検出値については、 F≦−Gl ・(D−d)であれば、S0 =0 F>−Gl ・(D−d)であれば、S0 =F+Gl ・(D−d) とする。 …(5)
[Number 5] determine the F = G l · l i + G ψ · ψ i. Regarding the sensor detection value on the left side of the vehicle body, if F ≧ G l · (D−d), then S 0 = 0 F <G 1 · (D−d), then S 0 = F−G l · ( D
-D). Regarding the sensor detection value on the right side of the vehicle body, if F ≦ −G l · (D−d), then S 0 = 0 F> −G l · (D−d), then S 0 = F + G l · ( D-d). … (5)

【0021】上記の繰り返し処理中に、センサ検出値d
が、d≧D+αとなれば、オフセット値S0 はd≧D+
αとなる前の値を維持する(#7)。また、d≧D+α
となれば、その時より走行距離Lの計測を開始し(#
9)、センサ検出値dが、d≧D+αを維持した状態で
の走行距離が、L>Laとなれば(#10でYES)、
0 =0とする(#11)。なお、d≧D+αでなくな
れは、走行距離Lをクリアする(#8)。
During the above repetitive processing, the sensor detection value d
However, if d ≧ D + α, the offset value S 0 is d ≧ D +
The value before becoming α is maintained (# 7). Also, d ≧ D + α
If so, the measurement of the traveling distance L is started from that time (#
9), if the traveling distance while the sensor detection value d maintains d ≧ D + α is L> La (YES in # 10),
S 0 = 0 (# 11). If d ≧ D + α, the travel distance L is cleared (# 8).

【0022】本実施例の操舵方法によれば、走行経路を
移動する必要はない。走行経路からの偏差等によるフィ
ードバック量(li ,ψi )がゼロであれば、必要な間
隔Dを得るために必要な操舵量は、必要な間隔Dとセン
サ検出値dの差に横変位ゲインGl を乗じ、Gl ・(D
−d)で定まる。しかし、実際には、走行経路からの偏
差等によるフィードバック量が発生するため、上記
(5)式では、これを考慮して必要な間隔Dを得るため
の操舵量を定めている。(5)式でオフセット値S 0
0となっている場合があるのは、走行経路からのフィー
ドバック量のみで、必要な操舵量を発生し得る場合であ
る。
According to the steering method of this embodiment, the traveling route is
No need to move. Due to deviations from the travel route,
Amount of feedback (li , Ψi ) Is zero, then
The steering amount required to obtain the distance D is
Lateral displacement gain Gl Multiply by Gl ・ (D
-D). However, in reality, deviation from the travel route
Since the amount of feedback is generated due to differences, etc.,
In the formula (5), in order to obtain the necessary interval D in consideration of this.
The steering amount of is determined. Offset value S in equation (5) 0 =
In some cases, the fee from the travel route may be 0.
When the required steering amount can be generated only by the feedback amount.
It

【0023】図8、図9は、上記による操舵制御を実施
した場合の状況を示す。所定の走行経路(x軸)からの
車体1の偏差がどのような形態で発生しても、必要な所
望間隔Dを得るための操舵量が定められているので、図
9に示すように、斜めの障害物2に対しても、安定して
間隔Dを保つことができる。
8 and 9 show the situation when the above steering control is carried out. Regardless of the form of the deviation of the vehicle body 1 from the predetermined travel route (x-axis), the steering amount for obtaining the desired desired distance D is determined, so as shown in FIG. The distance D can be stably maintained even with respect to the oblique obstacle 2.

【0024】[0024]

【発明の効果】以上のように本発明によれば、フィード
バック操舵制御における操舵量を求める時に用いられる
オフセット値を、センサ検出値とその時の走行経路から
の偏差等によるフィードバック量から設定するようにし
ているので、斜めの障害物に対しても、車体左右の障害
物との間隔をいつでも方向転換等が可能なような所望の
値に保つことができ、従来のように走行経路を移動させ
る必要がなく、しかも走行の安定化が図れる。
As described above, according to the present invention, the offset value used when determining the steering amount in the feedback steering control is set from the sensor detection value and the feedback amount due to the deviation from the traveling route at that time. Therefore, even with diagonal obstacles, the distance between the obstacles on the left and right of the vehicle body can be maintained at a desired value so that the direction can be changed at any time. It is also possible to stabilize the running.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による操舵輪により操舵を行
う場合の無人作業車の操舵構成を示す図である。
FIG. 1 is a diagram showing a steering configuration of an unmanned work vehicle when steering is performed by steered wheels according to an embodiment of the present invention.

【図2】左右駆動輪により操舵を行う場合の無人作業車
の操舵構成を示す図である。
FIG. 2 is a diagram showing a steering configuration of an unmanned work vehicle when steering is performed by left and right drive wheels.

【図3】本実施例による障害物を回避するための操舵方
法の手順を示すフローチャートである。
FIG. 3 is a flowchart showing a procedure of a steering method for avoiding an obstacle according to the present embodiment.

【図4】所定の走行経路を座標軸とした時の車体位置を
示す図である。
FIG. 4 is a diagram showing a vehicle body position when a predetermined traveling route is used as a coordinate axis.

【図5】所定の走行経路を座標軸とした時の車体位置を
示す図である。
FIG. 5 is a diagram showing a vehicle body position when a predetermined traveling route is used as a coordinate axis.

【図6】操舵輪による操舵を行う場合の操舵機構におけ
る信号のフィードバック回路構成図である。
FIG. 6 is a signal feedback circuit configuration diagram of a steering mechanism in the case of performing steering with steered wheels.

【図7】左右駆動輪による操舵を行う場合の操舵機構に
おける信号のフィードバック回路構成図である。
FIG. 7 is a signal feedback circuit configuration diagram of a steering mechanism when steering is performed by the left and right driving wheels.

【図8】本実施例による操舵制御の状況を示す図であ
る。
FIG. 8 is a diagram showing a state of steering control according to the present embodiment.

【図9】本実施例による操舵制御の状況を示す図であ
る。
FIG. 9 is a diagram showing a situation of steering control according to the present embodiment.

【図10】従来方法による操舵制御の状況を示す図であ
る。
FIG. 10 is a diagram showing a situation of steering control by a conventional method.

【図11】車体が方向転換する時の状況を示す図であ
る。
FIG. 11 is a diagram showing a situation when the vehicle body changes direction.

【図12】傾斜した障害物に対して従来方法により操舵
制御したときの状況を示す図である。
FIG. 12 is a diagram showing a situation when steering control is performed on a tilted obstacle by a conventional method.

【符号の説明】[Explanation of symbols]

1 車体 2 障害物 3 センサ 1 vehicle body 2 obstacle 3 sensor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 無人作業車の車体左右に存在する障害物
との距離を検出して、車体と障害物との間隔を所望値に
保つように操舵する操舵制御方法であって、 走行経路上での車体位置を演算するステップと、 上記の演算により得られた車体位置に応じて操舵制御を
行うための操舵機構における信号のフィードバック量を
演算するステップと、 障害物と車体との距離の検出値と所望の間隔値との大き
さを比較するステップと、 上記の比較結果に応じてフィードバック量のオフセット
値を演算するステップと、 上記の各演算により得られたフィードバック量及びその
オフセット値を用いて操舵量を演算するステップとを有
したことを特徴とする無人作業車の操舵制御方法。
1. A steering control method for detecting a distance from an obstacle existing on the left and right of a vehicle body of an unmanned work vehicle and steering the vehicle so as to maintain a distance between the vehicle body and the obstacle at a desired value. Of calculating the vehicle body position in the vehicle, calculating the feedback amount of the signal in the steering mechanism for performing steering control according to the vehicle body position obtained by the above calculation, and detecting the distance between the obstacle and the vehicle body. Using the feedback amount and its offset value obtained by each of the above calculations, the step of comparing the magnitude of the value and the desired interval value, the step of calculating the offset value of the feedback amount according to the above comparison result, And a step of calculating a steering amount by means of a steering control method for an unmanned work vehicle.
JP5169713A 1993-06-15 1993-06-15 Unmanned vehicle steering control method Expired - Fee Related JP3025604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5169713A JP3025604B2 (en) 1993-06-15 1993-06-15 Unmanned vehicle steering control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5169713A JP3025604B2 (en) 1993-06-15 1993-06-15 Unmanned vehicle steering control method

Publications (2)

Publication Number Publication Date
JPH075922A true JPH075922A (en) 1995-01-10
JP3025604B2 JP3025604B2 (en) 2000-03-27

Family

ID=15891490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5169713A Expired - Fee Related JP3025604B2 (en) 1993-06-15 1993-06-15 Unmanned vehicle steering control method

Country Status (1)

Country Link
JP (1) JP3025604B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9811089B2 (en) 2013-12-19 2017-11-07 Aktiebolaget Electrolux Robotic cleaning device with perimeter recording function
US9939529B2 (en) 2012-08-27 2018-04-10 Aktiebolaget Electrolux Robot positioning system
US9946263B2 (en) 2013-12-19 2018-04-17 Aktiebolaget Electrolux Prioritizing cleaning areas
US10045675B2 (en) 2013-12-19 2018-08-14 Aktiebolaget Electrolux Robotic vacuum cleaner with side brush moving in spiral pattern
US10149589B2 (en) 2013-12-19 2018-12-11 Aktiebolaget Electrolux Sensing climb of obstacle of a robotic cleaning device
US10209080B2 (en) 2013-12-19 2019-02-19 Aktiebolaget Electrolux Robotic cleaning device
US10219665B2 (en) 2013-04-15 2019-03-05 Aktiebolaget Electrolux Robotic vacuum cleaner with protruding sidebrush
US10231591B2 (en) 2013-12-20 2019-03-19 Aktiebolaget Electrolux Dust container
US10433697B2 (en) 2013-12-19 2019-10-08 Aktiebolaget Electrolux Adaptive speed control of rotating side brush
US10448794B2 (en) 2013-04-15 2019-10-22 Aktiebolaget Electrolux Robotic vacuum cleaner
US10499778B2 (en) 2014-09-08 2019-12-10 Aktiebolaget Electrolux Robotic vacuum cleaner
US11169533B2 (en) 2016-03-15 2021-11-09 Aktiebolaget Electrolux Robotic cleaning device and a method at the robotic cleaning device of performing cliff detection

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111844072B (en) * 2020-07-21 2022-03-15 上海高仙自动化科技发展有限公司 Automatic garbage dumping method and device for intelligent robot, intelligent robot and medium

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9939529B2 (en) 2012-08-27 2018-04-10 Aktiebolaget Electrolux Robot positioning system
US10219665B2 (en) 2013-04-15 2019-03-05 Aktiebolaget Electrolux Robotic vacuum cleaner with protruding sidebrush
US10448794B2 (en) 2013-04-15 2019-10-22 Aktiebolaget Electrolux Robotic vacuum cleaner
US9811089B2 (en) 2013-12-19 2017-11-07 Aktiebolaget Electrolux Robotic cleaning device with perimeter recording function
US9946263B2 (en) 2013-12-19 2018-04-17 Aktiebolaget Electrolux Prioritizing cleaning areas
US10045675B2 (en) 2013-12-19 2018-08-14 Aktiebolaget Electrolux Robotic vacuum cleaner with side brush moving in spiral pattern
US10149589B2 (en) 2013-12-19 2018-12-11 Aktiebolaget Electrolux Sensing climb of obstacle of a robotic cleaning device
US10209080B2 (en) 2013-12-19 2019-02-19 Aktiebolaget Electrolux Robotic cleaning device
US10433697B2 (en) 2013-12-19 2019-10-08 Aktiebolaget Electrolux Adaptive speed control of rotating side brush
US10231591B2 (en) 2013-12-20 2019-03-19 Aktiebolaget Electrolux Dust container
US10499778B2 (en) 2014-09-08 2019-12-10 Aktiebolaget Electrolux Robotic vacuum cleaner
US11169533B2 (en) 2016-03-15 2021-11-09 Aktiebolaget Electrolux Robotic cleaning device and a method at the robotic cleaning device of performing cliff detection

Also Published As

Publication number Publication date
JP3025604B2 (en) 2000-03-27

Similar Documents

Publication Publication Date Title
JP2572968B2 (en) How to guide autonomous vehicles
JP4165965B2 (en) Autonomous work vehicle
JPH0646364B2 (en) How to guide an autonomous vehicle
JP3025604B2 (en) Unmanned vehicle steering control method
JP2001010518A (en) Vehicle steering control device
JPH096434A (en) Apparatus and method for automatic running control of robot
JPH0895638A (en) Travel controller for mobile working robot
JP4264399B2 (en) Automated guided vehicle
JP2007219960A (en) Position deviation detection device
CN117204771A (en) Self-propelled robot, control device, and control method
JP3034121B2 (en) Unmanned vehicle control device
JP2002108453A (en) Unmanned vehicle
JP4269170B2 (en) Trajectory tracking control method and apparatus
JP2609890B2 (en) Self-propelled work vehicle
JP3952548B2 (en) Method and apparatus for controlling unmanned vehicle
JPH0591607A (en) Controller for wheel drive motor
JPH07101369B2 (en) Automatic steering control system
JP3628405B2 (en) Direction correction method and apparatus for traveling vehicle
JPH0516045B2 (en)
JP4449911B2 (en) Autonomous mobile device
JPH05324057A (en) Unmanned vehicle for autonomous traveling system
JP3846828B2 (en) Steering angle control device for moving body
JPH09185411A (en) Traveling direction detecting method for unmanned vehicle
JP2733924B2 (en) Travel control device for moving objects
JPH11231939A (en) Method and device for controlling steering of unmanned vehicle

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991221

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees