JP2005047312A - Omnidirectional moving vehicle - Google Patents

Omnidirectional moving vehicle Download PDF

Info

Publication number
JP2005047312A
JP2005047312A JP2003203645A JP2003203645A JP2005047312A JP 2005047312 A JP2005047312 A JP 2005047312A JP 2003203645 A JP2003203645 A JP 2003203645A JP 2003203645 A JP2003203645 A JP 2003203645A JP 2005047312 A JP2005047312 A JP 2005047312A
Authority
JP
Japan
Prior art keywords
wheels
pair
floor frame
wheel
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003203645A
Other languages
Japanese (ja)
Inventor
Hideki Torita
秀樹 取田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Jidosha Kogyo KK
Toyota Motor Corp
Toyota Motor East Japan Inc
Original Assignee
Kanto Jidosha Kogyo KK
Toyota Motor Corp
Kanto Auto Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Jidosha Kogyo KK, Toyota Motor Corp, Kanto Auto Works Ltd filed Critical Kanto Jidosha Kogyo KK
Priority to JP2003203645A priority Critical patent/JP2005047312A/en
Publication of JP2005047312A publication Critical patent/JP2005047312A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an omnidirectional moving vehicle of four-wheel drive type in which the torque and the rotating direction are independent of each other based upon the use of a universal direction wheel of non-revolution type equipped with a rotor rotating perpendicularly to the rotating direction of the wheel in straight running rotation and forming a circular arc of the wheel peripheral circumference, capable of assuring safe running by suppressing the idling. <P>SOLUTION: A pair of front wheels 1 and a pair of rear wheels 5 are each arranged in plane symmetry about a vertical plane, wherein the front wheels 1 are inclined with respect to the plane of symmetry in such a way that the mutual spacing narrows toward the front while the rear wheels 5 are inclined with respect to the plane of symmetry in such a way that the mutual spacing narrows toward the rear, and the lower floor frame 2a where the front wheels 1 are installed and the upper floor frame 2b where the rear wheels 5 are installed, are coupled together in such a way as rotatable independently of each other round the horizontal rotational axis included in the plane of symmetry. The rotors 10 are supported in such a way as rotatable round the rotational axis intersecting the radial direction centering on the vehicle axle, and the diameter of the forefront part is made smaller than that of the base end so that its peripheral surface forms a circular arc of the wheel peripheral circumference. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、直進方向に対して直交方向へ回転する複数個の回転体が車輪の周囲に配列されている回転体付き車輪を4輪備えて、進行方向が全方向に可変される全方向移動車に関するものである。
【0002】
【従来の技術】
特許文献1、特許文献2等により、直進方向に対して斜めに傾斜した回転軸線を有する回転体、即ちローラがハブの周囲に配列された車輪を用いて、その4輪駆動により横方向を含めて360°に移動し得る全方向移動車が実現されることは周知となっている。この種の車輪を用いた場合、進行方向への車輪自体の旋回を要さずに自在に転向することができるが、隣合う回転体間に自ずと隙間を生じ、スムーズな走行は困難である。
【0003】
そこで、特許文献3により、車輪の外周に直進方向と直角方向に回転するローラと緩衝部材を交互に配列した無旋回式自在車輪が開示され、4輪駆動車椅子も実現される旨記載されている。これにより、ローラのベクトル分力に応じた回転により旋回領域を不要にして斜めに走行することができる。
【0004】
【特許文献1】
特開昭47−12461号公報
【特許文献2】
特開平2−158460号公報
【特許文献3】
特開平11−227404号公報
【特許文献4】
特開2002−137602号公報
【0005】
【発明が解決しようとする課題】
しかしながら、特許文献3による無旋回式自在車輪の場合も、ローラが円筒状に形成され、したがって外周が回転方向に直線状になるために、振動を生じてスムーズな走行は困難であり、またゴム等の緩衝部材の変形により特に横方向回転時にロスを生じ、ローラは直線状シャフトにベアリングを介して支持することは不可能である。要するに、特に高速走行には不適であり、また前後輪の単なる平行配置では横方向の自動走行は不可能である。そこで、本願出願人は、文献4により、各回転体が、車軸を中心とする半径方向に対して交差する回転軸線を中心に回転自在に支持され、各回転体は、その先端部の直径を基端部の直径よりも小さくして周面により車輪外周円の円弧、例えば半紡錘形状に形成されることにより、各回転体同士が円周を形成して接近可能になる回転体付き車輪を提案した。このような回転体付き車輪を用いると、ガタツキ無く全方向へ4輪駆動が可能になるが、段差面の走行時にいずれかの車輪が走行面から浮くと、スムーズな移動が行われなくなる問題が残される。特に、4輪をモータ駆動して自動走行させる場合、空転を生じ、スムーズな走行或は正確な方向制御が行われなくなる。
【0006】
本発明は、このような点に鑑みて、前述した車直進回転の回転方向と直角に回転し、かつ車輪外周円の円弧を形成する回転体を備えた非旋回式の自在方向輪の使用を前提に、空転を抑制して安定して走行し得る4輪駆動式の全方向移動車を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、この目的を達成するために、請求項1により、直進方向に対して直交方向へ回転する複数個の回転体が周囲に配列されている回転体付き車輪を4輪備え、この4輪のトルク及び回転方向が互いに独立に駆動される全方向移動車において、4輪中の一対の前輪及び一対の後輪が、垂直の対称面に対してそれぞれ面対称に配置されると共に、一対の前輪は前方へ向けて互いの間隔が狭くなるように対称面に対して傾斜し、一対の後輪は対称面に対して後方へ向けて互いの間隔が狭くなるように傾斜し、一対の前輪が設けられる前輪用フロアフレーム及び一対の後輪が設けられる後輪用フロアフレームが、対称面に含まれる水平の回転軸線を中心に互いに独立に回転自在に連結され、各回転体が、車軸を中心とする半径方向に対して交差する回転軸線を中心に回転自在に支持されると共に、各回転体は、その先端部の直径を基端部の直径よりも小さくして周面により車輪外周円の円弧を形成する形状に形成されていることを特徴とする。
【0008】
全方向移動車は、前輪及び後輪自体のそれぞれの直進方向に生じる速度をベクトル合成した方向を進行方向として移動し、その際前輪及び後輪の各回転体は、その進行方向の全方向移動車の進行力に対するベクトル分力に応じて回転する。したがって、4輪に付属のモータの個々の回転数調整及び回転方向の切換により、進行方向を360°の範囲で可変でき、少なくとも前輪又は後輪の一方の対の傾斜配置により左右方向の移動も可能である。前輪又は後輪の一方の対のうちの左右いずれかが起伏面を走行すると、相手側の一対の後輪又は前輪に対して相対的に回転軸線を中心に回転してそのまま起伏面に追従して走行する。請求項2により、一対の前輪及び一対の後輪が対称面に対して45°にそれぞれ傾斜すると共に、これらの4輪の中心位置が同一円上に位置すると、前後左右の移動が各車輪の速度を同一にして、その回転方向の組合せにより移動可能となり、同一円の中心点を中心にスピン回転による移動が可能になる。45°からずれると、対応して前後方向及び左右方向のトルク特性が変化し、平行もしくは直交状態に近づくと、左右方向又は前後方向の移動に必要なトルクが極端に大きくなる。請求項3により、一対の前輪及び一対の後輪の一方が、対称面に対して、傾斜するのに代えて、平行であると、その間に利用し易い方形状のスペースが形成されるが、左右方向の移動が相手方の対のみのトルクに依存することになる。
【0009】
【発明の実施の形態】
図1乃至図5を基に本発明の実施の形態の一例による全方向移動車を説明する。この全方向移動車9は、図1に示すように、フロアフレーム2が空間部を置いて部分的に上下に重ねられた下側フロアフレーム2a及び上側フロアフレーム2bを備えると共に、前輪用フロアフレームとしての下側フロアフレーム2aにモータ駆動の一対の前輪1、後輪用フロアフレームとしての上側フロアフレーム2bにモータ駆動の一対の後輪5を設けて構成されている。
【0010】
これらの一対の前輪1及び後輪5は、図2に示すように、それぞれの中心位置がフロア2の略中央の4輪中心位置Pを中心として同一円上に位置し、かつこの4輪中心位置Pを通過する前後方向の垂直な対称面Sに対して45°で傾斜した面対称位置をそれぞれ占めるように配置されている。即ち、前輪1は前方へ幅狭、後輪5は前方へ幅広になるハの字形であり、それぞれの車軸4の延長線が4輪中心位置Pで直交している。
【0011】
前輪1の車軸4は、減速機付きのモータをハウジングに収納してブラケット3aにより下側フロアフレーム2aのハの字形突出部分に搭載されたモータ駆動ユニット3により回転駆動される。同様に、後輪5の車軸4は、上側フロアフレーム2bのハの字形突出部分に下設されるモータ駆動ユニット7で回転駆動される。
【0012】
上側フロアフレーム2bの対称面Sに位置する前部及び中間部には連結脚30がそれぞれ下設され、これらの下端部が、対応する下側フロアフレーム2aの前部及び後部に設けられたヒンジブラケット31に支持されるピン32で枢着されることにより、下側フロアフレーム2a及び上側フロアフレーム2bを対称面Sに含まれる水平な回転軸線を中心に左右に回転自在に連結する連結部が構成されている。
【0013】
対称面Sの左右方向の両側である後側の連結脚30の両側には、サスペンションアーム34が下設され、その先端部に弾性を呈する緩衝材として下側フロアフレーム2aに弾接するばね33が取付けられてサスペンションを構成し、例えばロボットを搭載する上側フロアフレーム2bの左右回転時の衝撃を吸収するようになっている。尚、緩衝材としてはゴムを用いることも考えられる。
【0014】
前輪1及び後輪5はそれぞれ同一車輪構造であり、図3に示すように、走行面の段差を容易に乗り越え得る程度に大きな直径を有し、中心部に車軸4を備えたリム29の周囲に、車輪直進方向に対して直交方向へ回転する複数個の同一形状の回転体10を配列して構成されている。この回転体は、車軸4の回転軸線Oを中心とする半径R1の方向に対してその半径円、即ち回転軸線Oの直交面と同一面状で、かつ半径R1に交差する回転軸線X1上に位置する回転軸26に回転自在に支持されている。各回転体10の直径は、半径R1に沿った基端部11から先端部12に向けて連続的に小さく変化し、かつ周面19が車輪外周円C1への回転位置でその円弧を形成している。したがって、各回転体10は、図示のように例えば半紡錘形状に形成される。
【0015】
また、先端部12が隣合う回転体10の基端部11に形成された円錐面状の凹部25の外周側半分に部分的に侵入して、車輪外周円C1に回転した周面19が僅かな隙間19aで隣合う回転体10の基端部11に近接し得るようになっている。さらに、リム29の周面には軸受アーム20の基端部が取付けられ、凹部25のリム29側の周壁25a及びリム29側の周面19間の隙間27に侵入し、さらに先端部12間の隙間に侵入して隣合う回転軸26に対して直交方向へ順に曲げられている。これにより、軸受アーム20の途中位置21で回転軸26の基部側端部を支持し、先端位置22で隣合う回転体10の回転軸26の先端側端部を支持している。
【0016】
全方向移動車9はリモートコントローラで運転され、フロアフレーム2には、図4に示すように、4個の車軸4に付属のモータ駆動ユニット3に収納されたモータを駆動するモータ駆動部41〜44、その駆動制御信号を供給する制御部40及びこれらの駆動源となるバッテリ49等が設けられている(取付け状態は図示せず)。即ち、制御部40はアンテナ48で受信したリモートコントローラのディジタルの送信信号に応答して、全方向移動車9のスタート・停止、前進・後退、操舵及び速度指令用の制御信号を出力し、各モータ駆動部41〜44は入力した制御信号に応答して、指令された速度及び移動方向に対応したレベルの駆動入力を所属のモータに供給する。
【0017】
このように構成された全方向移動車の動作は次の通りである。上側フロアフレーム2bに例えばロボットを搭載し、リモートコントローラの操作により、運転を開始する。その操作に応答して、制御部40は一直線の前進時には両側の前輪1及び後輪5を指令された速度に応じたトルクで互いに等速でモータを正転させる(図5A参照)。一直線の後退時にはモータ回転を反転させる。旋回時には前輪1同士及び後輪5同士を互いに逆転させて、その回転方向に応じて円周上でスピン回転させる(図5B参照)。右折又は左折する場合には、右側の前輪1と後輪5又は左側の前輪1と後輪5を相対的に減速させる。左又は右の横方向へ移動させる場合には、左側の前輪1と右側の後輪5又は右側の前輪1と左側の後輪5の回転方向を直進時に対して反転させる(図5C参照)。
【0018】
このように、全方向移動車9は、前輪1及び後輪5の4輪の速度をベクトル合成した方向へ進行し、その際前輪1及び後輪5に所属の回転体10は全方向移動車9の進行力のベクトル分力に応じて回転軸26を中心に回転する。
【0019】
前輪1の一方又は後輪5の一方が凸部に乗り上げたり或は凹部で下降すると、下側フロアフレーム2a及び上側フロアフレーム2bが連結部のピン32を中心に横方向へ回転してそのまま起伏面を追従走行し、凹凸変動した車輪自体もしくは相手対の車輪の空転が或は車輪の回転速度のバラツキが回避され、スムーズな走行もしくは忠実な操舵が可能となる。その際、下側フロアフレーム2a及び上側フロアフレーム2b間に介在するばね33の緩衝作用により、所属の又は相手方の下側フロアフレーム2a及び上側フロアフレーム2bに加わる衝撃が伸縮ストロークの範囲内で抑制される。さらに、車輪の外周を形成する回転体10の外周が円弧状であることにより、自動走行による高速回転時のガタツキが抑制され、回転体10間の隙間に異物も挟まりにくくなる。
【0020】
図6は別の実施の形態による全方向移動車の前輪及び後輪の配列状態を示すもので、同図Aの場合、前輪1及び後輪5の傾斜角が45°より小さくなることにより、所定のモータ出力に対して前後方向のトルクもしくは速度が得やすくなる。反面、横もしくは斜め方向の方向のトルクは相対的に減少する。同図Bの場合、一対の後輪5が平行になり、車輪間のスペースを方形状にしてフロア部分が利用し易くなるが、左又は右の横方向の移動は前輪1のみに依存して後輪5の駆動を停止させるために、その方向のトルクは減少し、逆に前後方向の移動のトルクは増加する。尚、後輪5に代えて、一対の前輪1を平行にすることもできる。
【0021】
尚、前輪用フロアフレーム及び後輪用フロアフレームは、前述のように上下2段でなく、場合により、同一面状で左右に回転可能に連結することもできる。その際、同一面状のフロアフレームを連結部を含めて前後対称構造に構成し、前輪1又は後輪5の傾斜角も同一にすることにより、前後輪を区別しない前後対称の4輪駆動の全方向移動車として構成することもできる。
【0022】
【発明の効果】
請求項1の発明によれば、車輪周囲を円状にする直交回転式の回転体によりガタツキ無くスムーズに走行し、走行面に起伏があっても前輪用フロアフレーム及び後輪用フロアフレームの左又は右側への相対的な回転により車輪の回転変動或は空転を生じることなく、安定して全方向へ走行できる4輪駆動の全方向移動車が実現される。その際、請求項2の発明によれば前後方向及び左右方向に同一トルクが発生可能になり、請求項3の発明によれば平行な車輪間のフロア領域を広くすることができる。請求項4の発明によれば、簡単な構成で搭載物の載置面を広くでき、凹凸面を走行時の横回転方向の衝撃を抑制できる。請求項5の発明によれば、各回転体の先端部が相手方の基端部の凹部に侵入することにより、各回転体の隙間を一層小さくすることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態による全方向移動車の斜視図である。
【図2】同全方向移動車の平面図である。
【図3】同全方向移動車の車輪の部分断面図である。
【図4】同全方向移動車の駆動回路を説明する図である。
【図5】同全方向移動車の走行態様を説明する原理図である。
【図6】別の実施の形態による車輪の配列状態を説明する図である。
【符号の説明】
1 前輪
2 フロアフレーム
2a 下側フロアフレーム
2b 上側フロアフレーム
4 車軸
5 後輪
9 全方向移動車
10 回転体
30 連結脚
31 ヒンジブラケット
33 ばね
34 サスペンションアーム
[0001]
BACKGROUND OF THE INVENTION
The present invention includes four wheels with a rotating body in which a plurality of rotating bodies rotating in a direction orthogonal to the straight traveling direction are arranged around the wheel, and the traveling direction is variable in all directions. It is about cars.
[0002]
[Prior art]
According to Patent Document 1, Patent Document 2, etc., a rotating body having a rotation axis inclined obliquely with respect to the straight traveling direction, that is, a wheel in which rollers are arranged around the hub, is included in the lateral direction by the four-wheel drive. It is well known that an omnidirectional vehicle that can move 360 ° is realized. When this type of wheel is used, the wheel can turn freely without turning the wheel itself in the traveling direction, but a gap is naturally formed between adjacent rotating bodies, and smooth running is difficult.
[0003]
Therefore, Patent Document 3 discloses a non-turnable universal wheel in which rollers and buffer members that rotate in the direction perpendicular to the straight direction are arranged on the outer periphery of the wheel, and describes that a four-wheel drive wheelchair is also realized. . Thereby, it can drive | work diagonally by making the rotation area according to the vector component force of a roller unnecessary a turning area | region.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 47-12461 [Patent Document 2]
Japanese Patent Laid-Open No. 2-158460 [Patent Document 3]
Japanese Patent Laid-Open No. 11-227404 [Patent Document 4]
Japanese Patent Application Laid-Open No. 2002-137602
[Problems to be solved by the invention]
However, even in the case of the non-turnable universal wheel according to Patent Document 3, the roller is formed in a cylindrical shape, and therefore the outer periphery is linear in the rotational direction. Such a deformation of the buffer member causes a loss especially in the case of lateral rotation, and the roller cannot be supported on the linear shaft via a bearing. In short, it is not particularly suitable for high-speed running, and automatic running in the lateral direction is impossible with a simple parallel arrangement of the front and rear wheels. Therefore, the applicant of the present application, according to Document 4, each rotating body is supported so as to be rotatable about a rotation axis intersecting with the radial direction centered on the axle, and each rotating body has a diameter at its tip. A wheel with a rotating body that is smaller than the diameter of the base end portion and formed into a circular arc of the wheel outer periphery circle by the peripheral surface, for example, a semi-spindle shape, so that each rotating body forms a circumference and can be accessed. Proposed. When such a wheel with a rotating body is used, four-wheel drive is possible in all directions without rattling, but if any wheel floats off the running surface when running on a stepped surface, there is a problem that smooth movement cannot be performed. Left behind. In particular, when the four wheels are driven automatically by motor driving, idling occurs and smooth running or accurate direction control is not performed.
[0006]
In view of such a point, the present invention uses a non-turning universal directional wheel provided with a rotating body that rotates at right angles to the rotation direction of the straight rotation of the vehicle described above and that forms an arc of a wheel outer circumference circle. It is an object of the present invention to provide a four-wheel drive omnidirectional vehicle that can run stably while suppressing idling.
[0007]
[Means for Solving the Problems]
In order to achieve this object, the present invention comprises four wheels with rotating bodies in which a plurality of rotating bodies rotating in a direction orthogonal to the straight traveling direction are arranged around the four wheels. In an omnidirectional vehicle in which the torque and rotational direction of the wheels are driven independently of each other, a pair of front wheels and a pair of rear wheels in the four wheels are arranged in plane symmetry with respect to a vertical symmetry plane, respectively. The front wheels of the pair are inclined with respect to the symmetry plane so that the distance between each other is narrowed toward the front, and the pair of rear wheels are inclined with respect to the symmetry plane so that the distance between each pair is narrowed toward the rear. A front wheel floor frame provided with a front wheel and a rear wheel floor frame provided with a pair of rear wheels are connected to each other independently of each other about a horizontal rotation axis included in a symmetry plane. Intersects in the radial direction around Each rotating body is formed in a shape that forms a circular arc of a wheel outer circumference circle with a peripheral surface by making the diameter of the distal end portion smaller than the diameter of the base end portion. It is characterized by.
[0008]
The omnidirectional vehicle moves in the direction of travel, which is a vector synthesis of the speeds generated in the straight traveling directions of the front wheels and the rear wheels themselves. At that time, the rotating bodies of the front wheels and rear wheels move in all directions in the traveling direction. It rotates according to the vector component force with respect to the traveling force of the car. Therefore, by adjusting the number of rotations of the motors attached to the four wheels and switching the rotation direction, the traveling direction can be varied in the range of 360 °, and at least one pair of the front wheels or the rear wheels can be moved in the left-right direction by the inclined arrangement. Is possible. When either left or right of one pair of front wheels or rear wheels travels on the undulating surface, it rotates relative to the other pair of rear wheels or front wheels around the rotation axis and follows the undulating surface as it is. And run. According to claim 2, when the pair of front wheels and the pair of rear wheels are inclined at 45 ° with respect to the plane of symmetry, and the center positions of these four wheels are located on the same circle, the movement of the front, rear, left and right is It is possible to move by combining the rotation directions with the same speed, and it is possible to move by spin rotation around the center point of the same circle. When deviating from 45 °, the torque characteristics in the front-rear direction and the left-right direction change correspondingly, and when approaching a parallel or orthogonal state, the torque required for movement in the left-right direction or the front-rear direction becomes extremely large. According to claim 3, when one of the pair of front wheels and the pair of rear wheels is parallel to the plane of symmetry instead of being inclined, a rectangular space that is easy to use is formed between them. The movement in the left-right direction depends on the torque of only the opponent's pair.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
An omnidirectional vehicle according to an example of an embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the omnidirectional vehicle 9 includes a lower floor frame 2a and an upper floor frame 2b in which a floor frame 2 is partially overlapped with a space, and a front wheel floor frame. A pair of motor-driven front wheels 1 is provided on a lower floor frame 2a, and a pair of motor-driven rear wheels 5 is provided on an upper floor frame 2b serving as a rear wheel floor frame.
[0010]
As shown in FIG. 2, the pair of front wheels 1 and rear wheels 5 are located on the same circle with their center positions centered on a center position P of the center of the four wheels on the floor 2, and the center of the four wheels. They are arranged so as to occupy plane symmetry positions inclined at 45 ° with respect to the vertical symmetry plane S in the front-rear direction passing through the position P. That is, the front wheel 1 has a letter C shape that is narrow forward and the rear wheel 5 is wide forward, and the extension lines of the axles 4 are orthogonal at the center position P of the four wheels.
[0011]
The axle 4 of the front wheel 1 is rotationally driven by a motor drive unit 3 which is housed in a housing with a motor with a speed reducer and mounted on a C-shaped projecting portion of the lower floor frame 2a by a bracket 3a. Similarly, the axle 4 of the rear wheel 5 is rotationally driven by a motor drive unit 7 provided below the C-shaped projecting portion of the upper floor frame 2b.
[0012]
Connecting legs 30 are respectively provided at the front and middle portions located on the symmetry plane S of the upper floor frame 2b, and lower ends thereof are hinges provided at the front and rear portions of the corresponding lower floor frame 2a. By being pivotally attached by a pin 32 supported by the bracket 31, there is a connecting portion that connects the lower floor frame 2 a and the upper floor frame 2 b so as to be rotatable left and right around a horizontal rotation axis included in the symmetry plane S. It is configured.
[0013]
Suspension arms 34 are provided on both sides of the rear connecting leg 30 which is both sides of the symmetry plane S in the left-right direction, and springs 33 elastically contact with the lower floor frame 2a as elastic cushioning materials at the front ends thereof. The suspension is attached to form a suspension, for example, so as to absorb an impact when the upper floor frame 2b on which the robot is mounted is rotated left and right. Note that rubber may be used as the buffer material.
[0014]
The front wheel 1 and the rear wheel 5 have the same wheel structure, as shown in FIG. 3, have a diameter large enough to easily get over the step on the running surface, and around the rim 29 having the axle 4 at the center. In addition, a plurality of rotating bodies 10 having the same shape rotating in a direction orthogonal to the straight traveling direction of the wheel are arranged. This rotating body is on the rotational axis X1 that is flush with the radius R1, centered on the rotational axis O of the axle 4, that is, the same plane as the plane orthogonal to the rotational axis O and intersects the radius R1. The rotary shaft 26 is rotatably supported. The diameter of each rotating body 10 continuously decreases from the base end portion 11 toward the tip end portion 12 along the radius R1, and the peripheral surface 19 forms an arc at the rotational position to the wheel outer peripheral circle C1. ing. Therefore, each rotating body 10 is formed in a semi-spindle shape, for example, as illustrated.
[0015]
Further, the peripheral surface 19 that slightly enters the outer peripheral side half of the conical surface-shaped concave portion 25 formed at the base end portion 11 of the adjacent rotating body 10 with the distal end portion 12 rotated to the wheel outer peripheral circle C1 is slightly present. It can come close to the base end part 11 of the adjacent rotary body 10 with a small gap 19a. Further, the base end portion of the bearing arm 20 is attached to the peripheral surface of the rim 29, and enters the gap 27 between the peripheral wall 25 a on the rim 29 side of the recess 25 and the peripheral surface 19 on the rim 29 side, and further between the distal end portions 12. Are bent sequentially in the orthogonal direction with respect to the adjacent rotating shaft 26. As a result, the base side end of the rotating shaft 26 is supported at the midway position 21 of the bearing arm 20, and the tip side end of the rotating shaft 26 of the adjacent rotating body 10 is supported at the tip position 22.
[0016]
The omnidirectional vehicle 9 is operated by a remote controller. As shown in FIG. 4, the omnidirectional vehicle 9 has motor drive units 41 to 41 that drive motors housed in motor drive units 3 attached to the four axles 4. 44, a control unit 40 for supplying the drive control signal, a battery 49 serving as a drive source thereof, and the like are provided (the mounting state is not shown). That is, in response to the digital transmission signal of the remote controller received by the antenna 48, the control unit 40 outputs control signals for start / stop, forward / reverse, steering and speed command of the omnidirectional mobile vehicle 9, In response to the input control signal, the motor drive units 41 to 44 supply drive input at a level corresponding to the commanded speed and movement direction to the motor to which the motor belongs.
[0017]
The operation of the omnidirectional vehicle configured as described above is as follows. For example, a robot is mounted on the upper floor frame 2b, and the operation is started by operating a remote controller. In response to the operation, the control unit 40 causes the front wheels 1 and the rear wheels 5 on both sides to rotate forward at a constant speed with a torque corresponding to the commanded speed when moving forward in a straight line (see FIG. 5A). When reversing straight, the motor rotation is reversed. At the time of turning, the front wheels 1 and the rear wheels 5 are reversely rotated with each other and spin-rotated on the circumference according to the rotation direction (see FIG. 5B). When making a right turn or a left turn, the right front wheel 1 and the rear wheel 5 or the left front wheel 1 and the rear wheel 5 are relatively decelerated. When moving left or right laterally, the rotational directions of the left front wheel 1 and right rear wheel 5 or the right front wheel 1 and left rear wheel 5 are reversed with respect to straight travel (see FIG. 5C).
[0018]
In this way, the omnidirectional vehicle 9 proceeds in a direction in which the speeds of the four wheels of the front wheel 1 and the rear wheel 5 are vector-combined. At this time, the rotating body 10 belonging to the front wheel 1 and the rear wheel 5 is the omnidirectional vehicle. 9 rotates around the rotation shaft 26 in accordance with the vector component of the advancing force.
[0019]
When one of the front wheels 1 or one of the rear wheels 5 rides on the convex portion or descends at the concave portion, the lower floor frame 2a and the upper floor frame 2b rotate laterally around the pin 32 of the connecting portion and undulate as it is By following the surface, it is possible to avoid the wheel itself having irregularities or the slipping of the opponent's wheel or the variation in the rotational speed of the wheel, and smooth running or faithful steering is possible. At that time, the shock applied to the lower floor frame 2a and the upper floor frame 2b of the other party or the other party is suppressed within the range of the expansion / contraction stroke by the buffering action of the spring 33 interposed between the lower floor frame 2a and the upper floor frame 2b. Is done. Furthermore, since the outer periphery of the rotating body 10 that forms the outer periphery of the wheel has an arc shape, rattling at the time of high-speed rotation due to automatic traveling is suppressed, and foreign objects are less likely to be caught in the gaps between the rotating bodies 10.
[0020]
FIG. 6 shows an arrangement state of front wheels and rear wheels of an omnidirectional vehicle according to another embodiment. In the case of FIG. A, the inclination angles of the front wheels 1 and the rear wheels 5 are smaller than 45 °. A torque or speed in the front-rear direction can be easily obtained for a predetermined motor output. On the other hand, the torque in the lateral or oblique direction decreases relatively. In the case of FIG. B, the pair of rear wheels 5 are parallel and the space between the wheels is squared so that the floor portion is easy to use, but the left or right lateral movement depends only on the front wheels 1. In order to stop the driving of the rear wheel 5, the torque in that direction decreases, and conversely, the torque for movement in the front-rear direction increases. Instead of the rear wheel 5, the pair of front wheels 1 can be parallel.
[0021]
Note that the front wheel floor frame and the rear wheel floor frame may be connected to each other so as to be rotatable to the left and right in the same plane depending on the case, instead of the upper and lower stages as described above. At that time, the same plane floor frame including the connecting portion is configured in a front-rear symmetrical structure, and the inclination angle of the front wheel 1 or the rear wheel 5 is also made the same, so that the front-rear symmetrical four-wheel drive that does not distinguish the front and rear wheels. It can also be configured as an omnidirectional vehicle.
[0022]
【The invention's effect】
According to the first aspect of the present invention, it is possible to travel smoothly without rattling by the orthogonally rotating rotary body having a circular shape around the wheel. Alternatively, a four-wheel drive omnidirectional vehicle that can travel stably in all directions without causing wheel rotation fluctuations or idling due to relative rotation to the right is realized. In that case, according to the invention of claim 2, the same torque can be generated in the front-rear direction and the left-right direction, and according to the invention of claim 3, the floor area between the parallel wheels can be widened. According to invention of Claim 4, the mounting surface of a load can be made wide with simple structure, and the impact of the horizontal rotation direction at the time of driving | running | working an uneven surface can be suppressed. According to the fifth aspect of the present invention, the gap between the rotating bodies can be further reduced by the distal end portion of each rotating body entering the concave portion of the proximal end portion of the counterpart.
[Brief description of the drawings]
FIG. 1 is a perspective view of an omnidirectional vehicle according to an embodiment of the present invention.
FIG. 2 is a plan view of the omnidirectional vehicle.
FIG. 3 is a partial sectional view of a wheel of the omnidirectional vehicle.
FIG. 4 is a diagram illustrating a drive circuit for the omnidirectional vehicle.
FIG. 5 is a principle diagram illustrating a traveling mode of the omnidirectional vehicle.
FIG. 6 is a diagram illustrating an arrangement state of wheels according to another embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Front wheel 2 Floor frame 2a Lower floor frame 2b Upper floor frame 4 Axle 5 Rear wheel 9 Omnidirectional moving vehicle 10 Rotating body 30 Connecting leg 31 Hinge bracket 33 Spring 34 Suspension arm

Claims (5)

直進方向に対して直交方向へ回転する複数個の回転体が周囲に配列されている回転体付き車輪を4輪備え、この4輪のトルク及び回転方向が互いに独立に駆動される全方向移動車において、
4輪中の一対の前輪及び一対の後輪が、垂直の対称面に対してそれぞれ面対称に配置されると共に、一対の前記前輪は前方へ向けて互いの間隔が狭くなるように前記対称面に対して傾斜し、一対の前記後輪は前記対称面に対して後方へ向けて互いの間隔が狭くなるように傾斜し、
一対の前記前輪が設けられる前輪用フロアフレーム及び一対の前記後輪が設けられる後輪用フロアフレームが、前記対称面に含まれる水平の回転軸線を中心に互いに独立に回転自在に連結され、
各回転体が、車軸を中心とする半径方向に対して交差する回転軸線を中心に回転自在に支持されると共に、前記各回転体は、その先端部の直径を基端部の直径よりも小さくして周面により車輪外周円の円弧を形成する形状に形成されていることを特徴とする全方向移動車。
An omnidirectional vehicle equipped with four wheels with a rotating body in which a plurality of rotating bodies rotating in a direction orthogonal to the straight traveling direction are arranged around, and the torque and rotation direction of the four wheels are driven independently of each other In
The pair of front wheels and the pair of rear wheels in the four wheels are arranged in plane symmetry with respect to the vertical symmetry plane, and the pair of front wheels are symmetrically arranged so that the distance between them becomes narrower toward the front. And the pair of rear wheels are inclined so that the distance between the rear wheels is narrower toward the rear with respect to the plane of symmetry.
A front wheel floor frame provided with a pair of front wheels and a rear wheel floor frame provided with a pair of rear wheels are connected to each other independently of each other around a horizontal rotation axis included in the symmetry plane;
Each rotating body is supported so as to be rotatable about a rotation axis intersecting with a radial direction centering on the axle, and each rotating body has a diameter at a tip end portion smaller than a diameter at a base end portion. An omnidirectional vehicle characterized in that it is formed in a shape that forms an arc of a wheel outer periphery circle by a peripheral surface.
一対の前輪及び一対の後輪が対称面に対して45°にそれぞれ傾斜すると共に、一対の前記前輪及び一対の前記後輪のそれぞれの中心位置が同一円上に位置することを特徴とする請求項1記載の全方向移動車。The pair of front wheels and the pair of rear wheels are inclined at 45 ° with respect to the symmetry plane, and the center positions of the pair of front wheels and the pair of rear wheels are located on the same circle. Item 2. An omnidirectional vehicle according to item 1. 一対の前輪及び一対の後輪の一方が、対称面に対して、傾斜するのに代えて、平行であることを特徴とする請求項1記載の全方向移動車。The omnidirectional vehicle according to claim 1, wherein one of the pair of front wheels and the pair of rear wheels is parallel to the plane of symmetry instead of being inclined. 前輪用フロアフレーム及び後輪用フロアフレームが、空間部を置いて少なくとも部分的に上下に重ねられると共に、前記前輪用フロアフレーム及び前記後輪用フロアフレームを回転自在に連結する連結部が前記空間部に設けられ、さらに前記前輪用フロアフレーム及び前記後輪用フロアフレームにおける対称面の両側に、上下方向に弾性を呈する緩衝材が介在させられたことを特徴とする請求項1乃至請求項3のいずれか記載の全方向移動車。The front wheel floor frame and the rear wheel floor frame are at least partially overlapped with each other with a space portion, and a connecting portion that rotatably connects the front wheel floor frame and the rear wheel floor frame is the space. 4. A cushioning material that is elastic in the vertical direction is interposed on both sides of a symmetry plane in the front wheel floor frame and the rear wheel floor frame. An omnidirectional vehicle according to any one of the above. 各回転体の先端部が隣合う前記回転体の基端部に近接し得るように、前記各回転体の前記先端部が、隣合う前記回転体の前記基端部に形成された凹部に部分的に侵入していることを特徴とする請求項1乃至請求項4のいずれか記載の全方向移動車。The distal end portions of the respective rotating bodies are partly formed in recesses formed in the proximal end portions of the adjacent rotating bodies so that the distal end portions of the respective rotating bodies can approach the proximal end portions of the adjacent rotating bodies. The omnidirectional vehicle according to any one of claims 1 to 4, wherein the omnidirectional vehicle is invaded.
JP2003203645A 2003-07-30 2003-07-30 Omnidirectional moving vehicle Pending JP2005047312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003203645A JP2005047312A (en) 2003-07-30 2003-07-30 Omnidirectional moving vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003203645A JP2005047312A (en) 2003-07-30 2003-07-30 Omnidirectional moving vehicle

Publications (1)

Publication Number Publication Date
JP2005047312A true JP2005047312A (en) 2005-02-24

Family

ID=34262924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003203645A Pending JP2005047312A (en) 2003-07-30 2003-07-30 Omnidirectional moving vehicle

Country Status (1)

Country Link
JP (1) JP2005047312A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006051838A (en) * 2004-08-09 2006-02-23 Toyota Motor Corp Omnidirectional moving vehicle
EP1875888A2 (en) 2006-07-05 2008-01-09 Kanto Auto Works, Ltd. Differential steering type motorized vehicle
JP2009040166A (en) * 2007-08-07 2009-02-26 Kanto Auto Works Ltd Amphibious vehicle
JP2010030328A (en) * 2008-07-24 2010-02-12 Kanto Auto Works Ltd Controller for traveling device movable in all direction
JP2010089554A (en) * 2008-10-03 2010-04-22 Kanto Auto Works Ltd Omnidirectional movement vehicle
JP2010143409A (en) * 2008-12-18 2010-07-01 Kanto Auto Works Ltd Rotor-attached wheel, and omnidirectional movable vehicle equipped therewith
KR100977881B1 (en) 2009-02-10 2010-08-24 경남대학교 산학협력단 A car-like robot with wheel arrangement variable structure
JP2010235082A (en) * 2009-03-31 2010-10-21 Kanto Auto Works Ltd Truck for automatic guided vehicle, and automatic guided vehicle
KR101019661B1 (en) 2010-08-09 2011-03-07 한국생산기술연구원 Composite recline carrier having driving axis of omni wheel arranged in diagonal direction
JP2011111048A (en) * 2009-11-26 2011-06-09 Kanto Auto Works Ltd Inverted pendulum type four-wheeled traveling device
JP2011183909A (en) * 2010-03-05 2011-09-22 Kanto Auto Works Ltd Wheel with all-driving type rotary body
JP2011184004A (en) * 2010-03-10 2011-09-22 Kanto Auto Works Ltd Wheel with all-driving type rotary body
JP2011184003A (en) * 2010-03-10 2011-09-22 Kanto Auto Works Ltd Wheel with all-driving type rotary body
CN105276348A (en) * 2015-10-19 2016-01-27 中山大学 Paralleling stabilization enhancing omnidirectional moving platform
WO2018190388A1 (en) 2017-04-12 2018-10-18 Whill株式会社 Electric mobility apparatus

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4583834B2 (en) * 2004-08-09 2010-11-17 トヨタ自動車株式会社 Omnidirectional vehicle
JP2006051838A (en) * 2004-08-09 2006-02-23 Toyota Motor Corp Omnidirectional moving vehicle
US7552784B2 (en) 2006-07-05 2009-06-30 Kanto Auto Works, Ltd. Differential steering type motorized vehicle
EP1875888A2 (en) 2006-07-05 2008-01-09 Kanto Auto Works, Ltd. Differential steering type motorized vehicle
JP2009040166A (en) * 2007-08-07 2009-02-26 Kanto Auto Works Ltd Amphibious vehicle
JP2010030328A (en) * 2008-07-24 2010-02-12 Kanto Auto Works Ltd Controller for traveling device movable in all direction
JP2010089554A (en) * 2008-10-03 2010-04-22 Kanto Auto Works Ltd Omnidirectional movement vehicle
JP4737262B2 (en) * 2008-10-03 2011-07-27 関東自動車工業株式会社 Omnidirectional vehicle
JP2010143409A (en) * 2008-12-18 2010-07-01 Kanto Auto Works Ltd Rotor-attached wheel, and omnidirectional movable vehicle equipped therewith
KR100977881B1 (en) 2009-02-10 2010-08-24 경남대학교 산학협력단 A car-like robot with wheel arrangement variable structure
JP2010235082A (en) * 2009-03-31 2010-10-21 Kanto Auto Works Ltd Truck for automatic guided vehicle, and automatic guided vehicle
JP2011111048A (en) * 2009-11-26 2011-06-09 Kanto Auto Works Ltd Inverted pendulum type four-wheeled traveling device
JP2011183909A (en) * 2010-03-05 2011-09-22 Kanto Auto Works Ltd Wheel with all-driving type rotary body
JP2011184003A (en) * 2010-03-10 2011-09-22 Kanto Auto Works Ltd Wheel with all-driving type rotary body
JP2011184004A (en) * 2010-03-10 2011-09-22 Kanto Auto Works Ltd Wheel with all-driving type rotary body
KR101019661B1 (en) 2010-08-09 2011-03-07 한국생산기술연구원 Composite recline carrier having driving axis of omni wheel arranged in diagonal direction
CN105276348A (en) * 2015-10-19 2016-01-27 中山大学 Paralleling stabilization enhancing omnidirectional moving platform
WO2018190388A1 (en) 2017-04-12 2018-10-18 Whill株式会社 Electric mobility apparatus
EP3611085A4 (en) * 2017-04-12 2021-01-20 Whill, Inc. Electric mobility apparatus
US11511564B2 (en) * 2017-04-12 2022-11-29 Whill, Inc Electromobility vehicle
US11827053B2 (en) 2017-04-12 2023-11-28 WHILL, Inc. Electromobility vehicle

Similar Documents

Publication Publication Date Title
JP2005047312A (en) Omnidirectional moving vehicle
US8028775B2 (en) Spherical mobility mechanism
JP5396398B2 (en) Friction type driving device and omnidirectional moving body using the same
JP4208090B2 (en) Differential steering electric car
EP1942046A2 (en) Drive type of spherical roller
JPH07257422A (en) Omnidirectional drive wheel and omnidirectional traveling vehicle providing the same
JP6493342B2 (en) Traveling device
JPH06171562A (en) Running device
US10513145B2 (en) Omnidirectionally moving wheel and robot using same
CN108032920B (en) Soft ground crawling robot
JPH0966855A (en) Crawler vehicle
JP4446484B2 (en) Electric wheelchair
JP2017121822A (en) Travelling mechanism
JP2007153271A (en) Vehicular active suspension device
WO2011152274A1 (en) Travel toy
JP2007112184A (en) Toe-in angle/camber angle variable mechanism
CN212529860U (en) Robot moving platform
KR20180070925A (en) Spherical wheel being capable to move to free direction and segway including the spherical wheel
JP2003154802A (en) Wheel with rotor
KR20230019651A (en) Independent steering apparatus
KR102597420B1 (en) Modular dual swivel wheel and platform including the same
KR100299622B1 (en) Omnidirectional Mobile Robot
JP4904600B2 (en) Wheel with rotating body and omnidirectional vehicle equipped with the same
JP4427956B2 (en) Mobile device
JP3741432B2 (en) Omni-directional wheels and moving vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080604

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081015