JP2003067053A - Unmanned carriage - Google Patents

Unmanned carriage

Info

Publication number
JP2003067053A
JP2003067053A JP2001261174A JP2001261174A JP2003067053A JP 2003067053 A JP2003067053 A JP 2003067053A JP 2001261174 A JP2001261174 A JP 2001261174A JP 2001261174 A JP2001261174 A JP 2001261174A JP 2003067053 A JP2003067053 A JP 2003067053A
Authority
JP
Japan
Prior art keywords
position correction
vehicle body
detected
traveling
travel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001261174A
Other languages
Japanese (ja)
Inventor
Akira Kondo
晃 近藤
Yoshinori Shiotani
義則 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Forklift KK
Original Assignee
Komatsu Forklift KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Forklift KK filed Critical Komatsu Forklift KK
Priority to JP2001261174A priority Critical patent/JP2003067053A/en
Publication of JP2003067053A publication Critical patent/JP2003067053A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To accurately detect the quantity of lateral deviation of an unmanned carriage by a sensor for travel position correction. SOLUTION: An attitude angel sensor 4 detects the attitude angle of the carriage body 1, which is made to travel according to the detected attitude angle; and a couple of sensors 10a and 10b for travel position correction which are mounted on the carriage body 1 detect a couple of markers 9a and 9b for travel position correction which are installed at specific places on a travel line 8 to detect the quantities Ea and Eb of lateral deviation from the travel line 8 on the front and rear sides of the carriage body 1. The travel of the carriage body 1 is corrected according to the detected quantities, and the actual attitude of the carriage body 1 is calculated. Thus, the quantities Ea and Eb of lateral deviation from the travel line 8 are detected repeatedly by detecting a pair of front and rear markers 9a and 9b for travel position correction repeatedly on the front and rear sides by the couple of front and rear sensor 10a and 10b for travel position correction and the maximum values of the detected values detected repeatedly at respective places are regarded as the quantities Ea and Eb of lateral deviation from the travel line on the front and rear sides of the carriage body 1.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、走行ラインに沿っ
て自動的に走行する無人搬送車に関する。 【0002】 【従来の技術】従来、走行ラインに沿って自動的に走行
する無人搬送車にあっては、車体にジャイロ等の姿勢角
センサを車体に備えて、この姿勢角センサにより車体の
姿勢角を検出し、この姿勢角センサで検出した姿勢角に
基づいて車体に備えたコントローラよって車体を走行さ
せることで、倉庫内や工場内等の床面に設定した走行ラ
インに沿って目的地まで自動的に走行するようにしてい
た。 【0003】この姿勢角センサにあっては、温度や床面
の傾きあるいは車体における駆動系のガタ等の影響を受
け、検出する車体の姿勢角に検出誤差がどうしても生
じ、走行にずれが発生してしまうため、走行ラインに
は、磁石等の走行位置補正用マーカーを所定箇所に前後
一対となるように多数設置すると共に、車体には、走行
ラインに設置した前後一対の走行位置補正用マーカーを
検知する磁気センサ等の走行位置補正用センサを前後一
対となるように備えて、この前後一対の走行位置補正用
センサにより前後一対の走行位置補正用マーカーを検知
して車体の前側と後ろ側とにおける走行ラインに対する
横ずれ量をそれぞれ検出する。そして、コントローラに
おいて、この車体の前側と後ろ側とにおける走行ライン
に対する横ずれ量に基づいて走行ラインに沿うように車
体の走行を修正していた。 【0004】また、車体に備えた前後一対の走行位置補
正用センサにより検出した車体の前側と後ろ側とにおけ
る走行ラインに対する横ずれ量から車体の実姿勢角を算
出していた。これは、前側における横ずれ量と後ろ側に
おける横ずれ量とその前後間隔とから演算して車体の実
姿勢角を算出するもので、この算出した車体の実姿勢角
に基づいて姿勢角センサで検出する車体の姿勢角を補正
するようにしていた。 【0005】一方、車体の前側と後ろ側とにおける走行
ラインに対する横ずれ量を検出する際、前側の走行位置
補正用センサによる前側における横ずれ量の検出と、後
ろ側の走行位置補正用センサによる後ろ側における横ず
れ量の検出とを同時に行っていた。これは、前側の走行
位置補正用センサが走行位置補正用マーカーを検知して
前側における横ずれ量を検出したら、これと同時に後ろ
側の走行位置補正用センサが走行位置補正用マーカーを
検知して後ろ側における横ずれ量を検出するようにして
いた。あるいはこの逆を行っていた。 【0006】 【発明が解決しようとする課題】かかる従来の無人搬送
車にあって、車体の前側と後ろ側とにおける走行ライン
に対する横ずれ量を検出する際、前側の走行位置補正用
センサと後ろ側の走行位置補正用センサとにおいて同時
に検出を行っていたため、車体に備える前後一対の走行
位置補正用センサの前後間隔と、走行ラインに多数設置
する前後一対の走行位置補正用マーカーの前後間隔とを
同一の間隔となるようにしなければならず、車体への前
後一対の走行位置補正用センサの取り付け作業、及び走
行ラインへの前後一対の走行位置補正用マーカーの設置
作業が非常に大変な作業となるという問題があった。し
かも、前後一対の走行位置補正用センサの前後間隔、多
数設置する前後一対の走行位置補正用マーカーの前後間
隔においてどこかにずれが生じると、走行位置補正用セ
ンサにおいて検出する横ずれ量が正確な値とならないと
いった問題があった。 【0007】 【課題を解決するための手段】本発明は、車体に備えた
姿勢角センサにより車体の姿勢角を検出し、これに基づ
いて車体を走行させると共に、車体に備えた前後一対の
走行位置補正用センサにより走行ラインの所定箇所に設
置した前後一対の走行位置補正用マーカーを検知して車
体の前側と後ろ側とにおける走行ラインに対する横ずれ
量をそれぞれ検出し、これに基づいて車体の走行を修
正、かつ車体の実姿勢角を算出する無人搬送車におい
て、前後一対の走行位置補正用センサによる前後一対の
走行位置補正用マーカーの検知を前側と後ろ側とにおい
て複数回行って、走行ラインに対する横ずれ量をそれぞ
れ複数検出し、それぞれの場所において複数検出した値
の最大値を車体の前側と後ろ側とにおける走行ラインに
対する横ずれ量にした無人搬送車である。 【0008】 【作 用】本発明によれば、前後一対の走行位置補正用
センサによる前後一対の走行位置補正用マーカーの検知
をそれぞれ複数回行って、横ずれ量をそれぞれ複数検出
し、この複数検出した値の最大値をそれぞれの横ずれ量
にしたことにより、走行位置補正用マーカーに対してず
れた位置で検出した横ずれ量ではなく、常に走行位置補
正用マーカーの真上あるいは真横(左右方向)において
検出した横ずれ量にすることができ、走行位置補正用セ
ンサにおいて正確に横ずれ量を検出することができる。 【0009】 【発明の実施の形態】本発明による無人搬送車の一実施
の形態について説明する。図1の平面図、図2の前面図
に示すように、無人搬送車は、上部に荷物を積載可能と
する車体1を備え、この車体1の前側の左右に操舵輪2
を取り付けると共に、後ろ側の左右に駆動輪3を取り付
ける。そして、この車体1に車体1の姿勢角を検出する
ジャイロ等の姿勢角センサ4を備える。また、車体1に
走行距離を検出する走行距離センサ5を備え、この走行
距離センサ5は、例えば、車体1の後ろ側に取り付けた
駆動輪3の回転を検知して、これから走行距離を検出す
るものである。さらに、操舵輪2の操舵角を検出する操
舵角センサ6を備え、この操舵角センサ6は、操舵輪2
の近傍に配置して操舵輪2の操舵角を直接検出してい
る。 【0010】そして、車体1にコントローラ7を備え、
このコントローラ7にあっては、姿勢角センサ4で検出
した車体1の姿勢角、走行距離センサ5で検出した走行
距離、操舵角センサ6で検出した操舵輪2の操舵角それ
ぞれをデータとして入力すると共に、この入力したデー
タに基づいて演算して走行位置を求め、この求めた走行
位置に基づいて操舵輪2への操舵指令を求めて、求めた
操舵指令を操舵輪2に出力して車体1の走行させること
で、倉庫内や工場内等の床面に設定した走行ラインに沿
って目的地まで自動的に走行するようにしている。な
お、走行ライン8については、図1の平面図において線
で現されているが、実際はこのような線はなくても良
い。 【0011】図3の概略図に示すように、床面の走行ラ
イン8には、磁石等の走行位置補正用マーカー9a,9
bを所定箇所に前後一対となるように多数設置し、これ
は、例えば走行ライン8に3,4m毎に前後一対の走行
位置補正用マーカー9a,9bを設置するものである。
また、無人搬送車には、その車体1の前側下部と後ろ側
下部とに走行ライン8に設置した前後一対の走行位置補
正用マーカー9a,9bを検知する磁気センサ等の走行
位置補正用センサ10a,10bを前後一対となるよう
に備える。なお、車体1の備える前後一対の走行位置補
正用センサ10a,10bの前後間隔と、走行ライン8
に多数設置する前後一対の走行位置補正用マーカー9
a,9bの前後間隔とは略同一の間隔になるようにして
いる。そして、走行時に走行位置補正用マーカー9a,
9b上を通過する際、この前後一対の走行位置補正用セ
ンサ10a,10bにより前後一対の走行位置補正用マ
ーカー9a,9bを検知して車体1の前側と後ろ側とに
おける走行ライン8に対して車体1中心が横にどれだけ
ずれているかの横ずれ量Ea,Ebをそれぞれ検出す
る。 【0012】そして、コントローラ7において、前後一
対の走行位置補正用センサ10a,10bにより検出し
た前側における横ずれ量Eaと後ろ側における横ずれ量
Ebとをデータとして入力すると共に、この入力したデ
ータに基づいて前側における横ずれ量Eaと後ろ側にお
ける横ずれ量Ebとがそれぞれ0となるような操舵輪2
への操舵指令を求めて、求めた操舵指令を操舵輪2に出
力して走行ライン8に沿うように車体1の走行を修正し
ている。これにより、姿勢角センサ4において、温度や
床面の傾きあるいは車体1における駆動系のガタ等の影
響を受け、検出する車体1の姿勢角に検出誤差が生じ
て、走行にずれが発生しても、これを修正することがで
きる。 【0013】また、車体1に備えた前後一対の走行位置
補正用センサ10a,10bにより検出した車体1の前
側と後ろ側とにおける走行ライン8に対する横ずれ量E
a,Ebから車体1の実姿勢角を算出している。これ
は、前側における横ずれ量Eaと後ろ側における横ずれ
量Ebとその前後間隔とから演算して車体1の実姿勢角
を算出するもので、この算出した車体1の実姿勢角に基
づいて姿勢角センサ4で検出する車体1の姿勢角を補正
するようにしている。 【0014】一方、前後一対の走行位置補正用センサ1
0a,10bにより前後一対の走行位置補正用マーカー
9a,9bを検知して、車体1の前側と後ろ側とにおけ
る走行ライン8に対する横ずれ量Ea,Ebをそれぞれ
検出する際、前側の走行位置補正用センサ10aによる
前側の走行位置補正用マーカー9aの検知を走行方向に
わたって細かく複数回行って、前側における横ずれ量E
aを複数検出する。これは、図4(a)の図表に示すよ
うに、走行時、前側の走行位置補正用センサ10aが前
側の走行位置補正用マーカー9a上を通過する時、走行
位置補正用センサ10aによる走行位置補正用マーカー
9aの検知を細かくサンプリングしながら検知して前側
における横ずれ量Eaを複数検出するものである。これ
と共に、後ろ側の走行位置補正用センサ10bによる後
ろ側の走行位置補正用マーカー9bの検知を走行方向に
わたって細かく複数回行って後ろ側における横ずれ量E
bを複数検出する。これも同様、図4(b)の図表に示
すように、走行時、後ろ側の走行位置補正用センサ10
bが後ろ側の走行位置補正用マーカー9b上を通過する
時、走行位置補正用センサ10bによる走行位置補正用
マーカー9bの検知を細かくサンプリングしながら検知
して後ろ側における横ずれ量Ebを複数検出するもので
ある。 【0015】そして、コントローラ7において、前側の
走行位置補正用センサ10aによる複数回検出した値の
中の最大値を前側における横ずれ量Eaにすると共に、
後ろ側の走行位置補正用センサ10bによる複数回検出
した値の中の最大値を後ろ側における横ずれ量Ebにす
る。 【0016】このようにして検出した車体1の前側と後
ろ側とにおける走行ライン8に対する横ずれ量Ea,E
bに基づいて走行ライン8に沿うように車体1の走行を
修正し、かつ前側と後ろ側とにおける横ずれ量Ea,E
bから車体1の実姿勢角を算出して、姿勢角センサ4で
検出する車体1の姿勢角の検出値を補正する。 【0017】以上のように、走行ライン8に設置する走
行位置補正用マーカー9a,9bの磁界としては、図5
の説明図に示すように、同心円状に広がるようになって
おり、磁力は走行ライン8の左右方向において変化する
と共に、前後方向や斜め方向においても変化している。
そこで、走行位置補正用センサ10a,10bによる走
行位置補正用マーカー9a,9bの検知を走行方向にわ
たって細かく複数回行って、横ずれ量Ea,Ebを複数
検出し、コントローラ7においてその中の最大値を横ず
れ量Ea,Ebにしたことにより、例えば、図5に示す
点線上を走行位置補正用センサ10a,10bが通過し
た場合、走行位置補正用マーカー9a,9bの真横(左
右方向)に位置したときが最大値で、これが横ずれ量E
a,Ebとなり、走行位置補正用マーカー9a,9bに
対して走行方向(前後方向)においてずれた位置で検出
した横ずれ量Ea,Ebではなく、常に走行位置補正用
マーカー9a,9bの真上あるいは真横(左右方向)に
おいて検出した横ずれ量Ea,Ebにすることができ
る。これにより、車体1に備える前後一対の走行位置補
正用センサ10の前後間隔、走行ライン8に多数設置す
る前後一対の走行位置補正用マーカー9a,9bの前後
間隔において、多少ずれが生じたとしても、走行位置補
正用センサ10a,10bにおいて走行ライン8に対し
て車体1中心が横にどれだけずれているかの横ずれ量E
a,Ebを正確に検出する。 【0018】 【発明の効果】本発明は、前後一対の走行位置補正用セ
ンサによる前後一対の走行位置補正用マーカーの検知を
それぞれ複数回行って、横ずれ量をそれぞれ複数検出
し、この複数検出した値の最大値をそれぞれの横ずれ量
にしたことにより、走行位置補正用マーカーに対してず
れた位置で検出した横ずれ量ではなく、常に走行位置補
正用マーカーの真上あるいは真横(左右方向)において
検出した横ずれ量にすることができ、車体に備える前後
一対の走行位置補正用センサの前後間隔、走行ラインに
多数設置する前後一対の走行位置補正用マーカーの前後
間隔において、多少ずれが生じたとしても、走行位置補
正用センサにおいて正確に横ずれ量を検出することがで
きる。 【0019】さらに、このように走行位置補正用センサ
において常に正確に横ずれ量を検出可能となることで、
走行位置補正用センサの車体への取り付け作業、及び走
行位置補正用マーカーの走行ラインへの設置作業も容易
に行うことができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic guided vehicle that travels automatically along a traveling line. 2. Description of the Related Art Conventionally, an automatic guided vehicle that automatically travels along a traveling line is provided with a posture angle sensor such as a gyro on the vehicle body, and the posture of the vehicle body is detected by the posture angle sensor. Detecting the angle, and running the vehicle by the controller provided on the vehicle based on the attitude angle detected by this attitude angle sensor, along the travel line set on the floor surface in the warehouse or factory, etc. to the destination It was going to run automatically. [0003] In this attitude angle sensor, a detection error is inevitably generated in the detected attitude angle of the vehicle body due to the influence of the temperature, the inclination of the floor surface, or the play of the drive system in the vehicle body, and a deviation occurs in traveling. Therefore, a large number of traveling position correction markers, such as magnets, are installed at predetermined locations on the traveling line so as to form a pair of front and rear, and a pair of front and rear traveling position correcting markers installed on the traveling line are mounted on the vehicle body. A pair of front and rear traveling position correction sensors such as magnetic sensors for detecting are provided, and a pair of front and rear traveling position correction markers are detected by the pair of front and rear traveling position correction sensors to detect front and rear sides of the vehicle body. , The amount of lateral displacement with respect to the traveling line is detected. Then, the controller corrects the traveling of the vehicle body along the traveling line based on the amount of lateral displacement of the vehicle body between the front side and the rear side of the traveling line. Further, the actual posture angle of the vehicle body has been calculated from the amount of lateral displacement with respect to the traveling line on the front side and the rear side of the vehicle body detected by a pair of front and rear traveling position correction sensors provided on the vehicle body. This is to calculate the actual posture angle of the vehicle body by calculating from the lateral deviation amount on the front side, the lateral deviation amount on the rear side, and the front-rear interval, and is detected by the posture angle sensor based on the calculated actual posture angle of the vehicle body. The attitude angle of the vehicle was corrected. On the other hand, when detecting the amount of lateral displacement of the vehicle body on the front side and the rear side with respect to the traveling line, detection of the lateral displacement amount on the front side by the front traveling position correction sensor and detection of the rear side displacement by the rear traveling position correction sensor are performed. At the same time. This is because when the front travel position correction sensor detects the travel position correction marker and detects the lateral displacement amount on the front side, at the same time, the rear travel position correction sensor detects the travel position correction marker and The lateral displacement amount on the side is detected. Or the reverse was being done. In such a conventional automatic guided vehicle, when detecting the amount of lateral displacement between the front side and the rear side of the vehicle body with respect to the traveling line, a front traveling position correction sensor and a rear side are used. Since the detection was performed simultaneously with the travel position correction sensor, the front-rear distance between a pair of front and rear travel position correction sensors provided on the vehicle body and the front-rear distance between a pair of front and rear travel position correction markers installed in a large number of travel lines. It is necessary to keep the same interval, and it is very difficult to install a pair of front and rear traveling position correction sensors on the vehicle body and to install a pair of front and rear traveling position correction markers on the traveling line. There was a problem of becoming. In addition, if any deviation occurs in the front-rear interval between the pair of front and rear traveling position correction sensors and the front-rear interval between the pair of front and rear traveling position correction markers, the lateral displacement detected by the traveling position correction sensor is accurate. There was a problem that it did not become a value. SUMMARY OF THE INVENTION The present invention detects an attitude angle of a vehicle body by an attitude angle sensor provided on the vehicle body, and causes the vehicle body to travel based on the detected attitude angle. The position correction sensor detects a pair of front and rear travel position correction markers installed at predetermined locations on the travel line to detect lateral displacement amounts with respect to the travel line on the front side and the rear side of the vehicle body, respectively. In the automatic guided vehicle that calculates the actual posture angle of the vehicle body, the detection of the pair of front and rear traveling position correction markers by the pair of front and rear traveling position correction sensors is performed plural times on the front side and the rear side, and the traveling line And the maximum value of the plurality of values detected at each location is determined with respect to the traveling line on the front side and the rear side of the vehicle body. It is an automatic guided vehicle with a shift amount. According to the present invention, a pair of front and rear travel position correction sensors are respectively detected by a pair of front and rear travel position correction sensors a plurality of times to detect a plurality of lateral displacement amounts, respectively. By setting the maximum value of the values obtained as the lateral displacement amounts, the lateral displacement amount is always detected immediately above or immediately next to the travel position correction marker (in the left-right direction) instead of the lateral displacement amount detected at a position displaced from the travel position correction marker. The detected lateral deviation amount can be used, and the traveling position correction sensor can accurately detect the lateral deviation amount. An embodiment of an automatic guided vehicle according to the present invention will be described. As shown in the plan view of FIG. 1 and the front view of FIG. 2, the automatic guided vehicle is provided with a vehicle body 1 capable of loading luggage on an upper portion thereof,
And drive wheels 3 on the left and right sides on the rear side. The vehicle body 1 includes a posture angle sensor 4 such as a gyro that detects the posture angle of the vehicle body 1. Further, the vehicle body 1 is provided with a travel distance sensor 5 for detecting a travel distance. The travel distance sensor 5 detects, for example, rotation of a driving wheel 3 attached to the rear side of the vehicle body 1 and detects the travel distance therefrom. Things. Further, a steering angle sensor 6 for detecting a steering angle of the steering wheel 2 is provided.
And the steering angle of the steered wheels 2 is directly detected. A controller 7 is provided on the vehicle body 1,
The controller 7 inputs the attitude angle of the vehicle body 1 detected by the attitude angle sensor 4, the travel distance detected by the travel distance sensor 5, and the steering angle of the steered wheels 2 detected by the steering angle sensor 6 as data. At the same time, a travel position is obtained by calculating based on the input data, a steering command to the steered wheels 2 is obtained based on the obtained travel position, and the obtained steering command is output to the steered wheels 2 to output the vehicle body 1. , The vehicle automatically travels to a destination along a traveling line set on a floor surface in a warehouse or a factory. Although the travel line 8 is represented by a line in the plan view of FIG. 1, such a line may not be actually provided. As shown in the schematic diagram of FIG. 3, traveling position correction markers 9a and 9 such as magnets are provided on the traveling line 8 on the floor surface.
A large number of b's are installed at predetermined positions so as to form a pair of front and rear, for example, a pair of front and rear running position correction markers 9a and 9b are installed on the running line 8 every 3 and 4 m.
Further, the automatic guided vehicle has a traveling position correction sensor 10a such as a magnetic sensor for detecting a pair of front and rear traveling position correction markers 9a and 9b installed on the traveling line 8 at the lower front side and the lower rear side of the vehicle body 1. , 10b so as to form a front and rear pair. The distance between the front and rear pair of front and rear traveling position correction sensors 10a and 10b of the vehicle body 1 and the traveling line 8
A pair of front and rear travel position correction markers 9
The front and rear intervals of a and 9b are set to be substantially the same. Then, at the time of traveling, the traveling position correcting marker 9a,
9b, the pair of front and rear traveling position correction sensors 10a and 10b detect a pair of front and rear traveling position correction markers 9a and 9b to detect the traveling line 8 on the front side and the rear side of the vehicle body 1. The lateral displacement amounts Ea and Eb of how much the center of the vehicle body 1 is laterally displaced are detected. The controller 7 inputs the front-side lateral displacement Ea and the rear-side lateral displacement Eb detected by the pair of front and rear traveling position correction sensors 10a and 10b as data, and based on the inputted data. The steered wheels 2 such that the lateral displacement amount Ea on the front side and the lateral displacement amount Eb on the rear side are each 0.
, And outputs the obtained steering command to the steered wheels 2 to correct the traveling of the vehicle body 1 so as to follow the traveling line 8. As a result, the attitude angle sensor 4 is affected by the temperature, the inclination of the floor surface, the play of the drive system in the vehicle body 1, and the like, causing a detection error in the detected attitude angle of the vehicle body 1 and causing a deviation in traveling. Can correct this too. A lateral displacement E with respect to the traveling line 8 on the front side and the rear side of the vehicle body 1 detected by a pair of front and rear traveling position correction sensors 10a and 10b provided on the vehicle body 1.
The actual attitude angle of the vehicle body 1 is calculated from a and Eb. This is to calculate the actual posture angle of the vehicle body 1 by calculating the lateral deviation amount Ea on the front side, the lateral deviation amount Eb on the rear side, and the front-rear interval, and based on the calculated actual posture angle of the vehicle body 1, The attitude angle of the vehicle body 1 detected by the sensor 4 is corrected. On the other hand, a pair of front and rear traveling position correction sensors 1
When a pair of front and rear traveling position correction markers 9a and 9b are detected by 0a and 10b to detect lateral deviation amounts Ea and Eb with respect to the traveling line 8 on the front side and the rear side of the vehicle body 1, respectively, the front traveling position correction markers 9a and 9b are used. The detection of the front-side traveling position correction marker 9a by the sensor 10a is finely performed a plurality of times in the traveling direction, and the lateral displacement amount E on the front side is detected.
a is detected a plurality of times. As shown in the chart of FIG. 4 (a), when the front traveling position correction sensor 10a passes over the front traveling position correction marker 9a during traveling, the traveling position is determined by the traveling position correction sensor 10a. The detection of the correction marker 9a is performed while sampling finely, and a plurality of lateral displacement amounts Ea on the front side are detected. At the same time, detection of the rear-side travel position correction marker 9b by the rear-side travel position correction sensor 10b is performed finely multiple times in the traveling direction, and the lateral displacement amount E on the rear side is detected.
b is detected a plurality of times. Similarly, as shown in the table of FIG. 4B, during traveling, the traveling position correction sensor 10 on the rear side is used.
When “b” passes over the travel position correction marker 9 b on the rear side, the detection of the travel position correction marker 9 b by the travel position correction sensor 10 b is detected while finely sampling, and a plurality of lateral displacement amounts Eb on the rear side are detected. Things. In the controller 7, the maximum value of the values detected a plurality of times by the front traveling position correction sensor 10a is set as the front side lateral displacement Ea.
The maximum value among the values detected a plurality of times by the rear traveling position correction sensor 10b is set as the lateral displacement amount Eb on the rear side. The lateral displacement amounts Ea and E with respect to the traveling line 8 on the front side and the rear side of the vehicle body 1 detected in this manner.
b, the traveling of the vehicle body 1 is corrected so as to follow the traveling line 8, and the lateral deviation amounts Ea, E between the front side and the rear side are corrected.
The actual attitude angle of the vehicle body 1 is calculated from b, and the detected value of the attitude angle of the vehicle body 1 detected by the attitude angle sensor 4 is corrected. As described above, the magnetic field of the travel position correction markers 9a and 9b installed on the travel line 8 is shown in FIG.
As shown in FIG. 2, the magnetic force changes in the left-right direction of the traveling line 8 and also changes in the front-rear direction and the oblique direction.
Therefore, the detection of the travel position correction markers 9a, 9b by the travel position correction sensors 10a, 10b is finely performed a plurality of times in the traveling direction to detect a plurality of lateral deviation amounts Ea, Eb, and the controller 7 determines the maximum value among them. By setting the lateral displacement amounts Ea and Eb, for example, when the traveling position correction sensors 10a and 10b pass on a dotted line shown in FIG. 5, when the traveling position correction markers 9a and 9b are located right beside (left and right direction). Is the maximum value, which is the lateral displacement E
a, Eb, which is not the lateral displacement Ea, Eb detected at a position displaced in the traveling direction (front-back direction) with respect to the traveling position correction markers 9a, 9b, but always immediately above the traveling position correction markers 9a, 9b or The lateral displacement amounts Ea and Eb detected just beside (in the left-right direction) can be obtained. Accordingly, even if a slight difference occurs in the front-rear interval between the pair of front and rear traveling position correction sensors 10 provided on the vehicle body 1 and the front-rear interval between the pair of front and rear traveling position correction markers 9a and 9b installed on the traveling line 8. The lateral displacement amount E indicating how much the center of the vehicle body 1 is laterally displaced from the traveling line 8 in the traveling position correcting sensors 10a and 10b.
a and Eb are accurately detected. According to the present invention, the detection of the pair of front and rear travel position correction markers by the pair of front and rear travel position correction sensors is performed a plurality of times to detect a plurality of lateral displacement amounts, respectively. By setting the maximum value of each lateral deviation amount, the lateral deviation amount detected at the position deviated from the travel position correction marker is always detected directly above or directly beside (right and left direction) the travel position correction marker. Even if there is a slight deviation in the front-rear distance between a pair of front and rear traveling position correction sensors provided on the vehicle body and the front-rear distance between a pair of front and rear traveling position correction markers installed on the traveling line, In addition, the lateral displacement amount can be accurately detected by the traveling position correction sensor. Further, since the lateral displacement amount can always be accurately detected by the traveling position correction sensor,
The work of attaching the travel position correction sensor to the vehicle body and the work of installing the travel position correction marker on the travel line can be easily performed.

【図面の簡単な説明】 【図1】無人搬送車の平面図である。 【図2】無人搬送車の前面図である。 【図3】無人搬送車及び走行ラインを説明する概略図で
ある。 【図4】(a)走行位置補正用マーカーにおける横ずれ
量の検出状態を示す図表である。 (b)走行位置補正用マーカーにおける横ずれ量の検出
状態を示す図表である。 【図5】走行位置補正用マーカーの磁界を示す説明図で
ある。 【符号の説明】 1…車体、2…操舵輪、3…駆動輪、4…姿勢角セン
サ、5…走行距離センサ、6…操舵角センサ、7…コン
トローラ、8…走行ライン、9a,9b…走行位置補正
用マーカー、10a,10b…走行位置補正用センサ。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view of an automatic guided vehicle. FIG. 2 is a front view of the automatic guided vehicle. FIG. 3 is a schematic diagram illustrating an automatic guided vehicle and a traveling line. FIG. 4A is a table showing a detection state of a lateral displacement amount in a travel position correction marker. 6B is a table illustrating a detection state of the amount of lateral displacement in the travel position correction marker. FIG. 5 is an explanatory diagram showing a magnetic field of a travel position correction marker. [Description of Signs] 1 ... body, 2 ... steered wheels, 3 ... drive wheels, 4 ... attitude angle sensor, 5 ... travel distance sensor, 6 ... steering angle sensor, 7 ... controller, 8 ... travel line, 9a, 9b ... Traveling position correction markers, 10a, 10b ... traveling position correction sensors.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3F022 LL07 NN02 NN13 NN32 QQ03 QQ04 5H301 AA01 AA09 BB05 CC06 EE06 GG12 GG17 GG28 HH01 HH02 HH04    ────────────────────────────────────────────────── ─── Continuation of front page    F term (reference) 3F022 LL07 NN02 NN13 NN32 QQ03                       QQ04                 5H301 AA01 AA09 BB05 CC06 EE06                       GG12 GG17 GG28 HH01 HH02                       HH04

Claims (1)

【特許請求の範囲】 【請求項1】 車体1に備えた姿勢角センサ4により車
体1の姿勢角を検出し、これに基づいて車体1を走行さ
せると共に、車体1に備えた前後一対の走行位置補正用
センサ10a,10bにより走行ライン8の所定箇所に
設置した前後一対の走行位置補正用マーカー9a,9b
を検知して車体1の前側と後ろ側とにおける走行ライン
8に対する横ずれ量Ea,Ebをそれぞれ検出し、これ
に基づいて車体1の走行を修正、かつ車体1の実姿勢角
を算出する無人搬送車において、 前後一対の走行位置補正用センサ10a,10bによる
前後一対の走行位置補正用マーカー9a,9bの検知を
前側と後ろ側とにおいて複数回行って、走行ライン8に
対する横ずれ量Ea,Ebをそれぞれ複数検出し、それ
ぞれの場所において複数検出した値の最大値を車体1の
前側と後ろ側とにおける走行ライン8に対する横ずれ量
Ea,Ebにしたことを特徴とする無人搬送車。
Claims: 1. An attitude angle of a vehicle body 1 is detected by an attitude angle sensor 4 provided on the vehicle body 1, and based on the detected attitude angle, the vehicle body 1 travels and a pair of front and rear travels provided on the vehicle body 1 are detected. A pair of front and rear travel position correction markers 9a and 9b installed at predetermined locations on the travel line 8 by the position correction sensors 10a and 10b.
To detect the lateral displacement amounts Ea and Eb of the vehicle body 1 on the front side and the rear side with respect to the travel line 8, respectively, to correct the traveling of the vehicle body 1 based on the detected lateral deviation amounts, and to calculate the actual posture angle of the vehicle body 1. In the vehicle, the detection of the pair of front and rear traveling position correction markers 9a and 9b by the pair of front and rear traveling position correction sensors 10a and 10b is performed plural times on the front side and the rear side, and the lateral displacement amounts Ea and Eb with respect to the traveling line 8 are determined. An automatic guided vehicle characterized by detecting a plurality of each, and setting maximum values of the plurality of detected values at respective locations to lateral displacement amounts Ea and Eb with respect to the traveling line 8 on the front side and the rear side of the vehicle body 1.
JP2001261174A 2001-08-30 2001-08-30 Unmanned carriage Pending JP2003067053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001261174A JP2003067053A (en) 2001-08-30 2001-08-30 Unmanned carriage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001261174A JP2003067053A (en) 2001-08-30 2001-08-30 Unmanned carriage

Publications (1)

Publication Number Publication Date
JP2003067053A true JP2003067053A (en) 2003-03-07

Family

ID=19088257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001261174A Pending JP2003067053A (en) 2001-08-30 2001-08-30 Unmanned carriage

Country Status (1)

Country Link
JP (1) JP2003067053A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20090773A1 (en) * 2009-10-09 2011-04-10 Icam S R L SHUTTLE OF AN AUTOMATED WAREHOUSE, AND METHOD OF CONTROL TO DRIVE THIS SHUTTLE
WO2011128384A1 (en) * 2010-04-15 2011-10-20 Dematic Gmbh System for storing and transporting transporting containers
CN105752574A (en) * 2016-04-07 2016-07-13 吴昊 Automatic guidance type material handling device
JP2017107614A (en) * 2017-03-24 2017-06-15 株式会社豊田自動織機 Method of detecting position of unmanned carrier
WO2019084466A3 (en) * 2017-10-27 2019-05-23 Berkshire Grey, Inc. Mobile carriers for use in systems and methods for processing objects including mobile matrix carrier systems
EP3483688A4 (en) * 2016-07-11 2020-03-25 Aichi Steel Corporation Magnetic marker detection system and magnetic marker detection method
US10649445B2 (en) 2017-03-15 2020-05-12 Berkshire Grey, Inc. Systems and methods for storing, retrieving and processing objects including stackable semicircular towers
US10807795B2 (en) 2017-03-20 2020-10-20 Berkshire Grey, Inc. Systems and methods for processing objects including mobile matrix carrier systems
US11402831B2 (en) 2017-03-23 2022-08-02 Berkshire Grey Operating Company, Inc. Systems and methods for processing objects, including automated mobile matrix bins
US11493910B2 (en) 2017-03-23 2022-11-08 Berkshire Grey Operating Company, Inc. Systems and methods for processing objects, including automated mobile matrix carriers

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2308777A1 (en) * 2009-10-09 2011-04-13 ICAM S.r.l. Wheel assembly of an automated warehouse shuttle and shuttle with said wheel assembly
ITTO20090773A1 (en) * 2009-10-09 2011-04-10 Icam S R L SHUTTLE OF AN AUTOMATED WAREHOUSE, AND METHOD OF CONTROL TO DRIVE THIS SHUTTLE
WO2011128384A1 (en) * 2010-04-15 2011-10-20 Dematic Gmbh System for storing and transporting transporting containers
CN105752574A (en) * 2016-04-07 2016-07-13 吴昊 Automatic guidance type material handling device
EP3483688A4 (en) * 2016-07-11 2020-03-25 Aichi Steel Corporation Magnetic marker detection system and magnetic marker detection method
US11554916B2 (en) 2017-03-15 2023-01-17 Berkshire Grey Operating Company, Inc. Systems and methods for storing, retrieving and processing objects including stackable semicircular towers
US10649445B2 (en) 2017-03-15 2020-05-12 Berkshire Grey, Inc. Systems and methods for storing, retrieving and processing objects including stackable semicircular towers
US11390459B2 (en) 2017-03-20 2022-07-19 Berkshire Grey Operating Company, Inc. Systems and methods for processing objects including mobile matrix carrier systems
US10807795B2 (en) 2017-03-20 2020-10-20 Berkshire Grey, Inc. Systems and methods for processing objects including mobile matrix carrier systems
US11814245B2 (en) 2017-03-20 2023-11-14 Berkshire Grey Operating Company, Inc. Systems and methods for processing objects including mobile matrix carrier systems
US11493910B2 (en) 2017-03-23 2022-11-08 Berkshire Grey Operating Company, Inc. Systems and methods for processing objects, including automated mobile matrix carriers
US11402831B2 (en) 2017-03-23 2022-08-02 Berkshire Grey Operating Company, Inc. Systems and methods for processing objects, including automated mobile matrix bins
JP2017107614A (en) * 2017-03-24 2017-06-15 株式会社豊田自動織機 Method of detecting position of unmanned carrier
US11084660B2 (en) 2017-10-27 2021-08-10 Berkshire Grey, Inc. Bin infeed and removal systems and methods for processing objects including mobile matrix carrier systems
US11161689B2 (en) 2017-10-27 2021-11-02 Berkshire Grey, Inc. Movement systems and method for processing objects including mobile matrix carrier systems
US11148890B2 (en) 2017-10-27 2021-10-19 Berkshire Grey, Inc. Mobile carriers for use in systems and methods for processing objects including mobile matrix carrier systems
US11117760B2 (en) 2017-10-27 2021-09-14 Berkshire Grey, Inc. Systems and methods for processing objects including mobile matrix carrier systems
WO2019084466A3 (en) * 2017-10-27 2019-05-23 Berkshire Grey, Inc. Mobile carriers for use in systems and methods for processing objects including mobile matrix carrier systems
US10988323B2 (en) 2017-10-27 2021-04-27 Berkshire Grey, Inc. Maintenance systems for use in systems and methods for processing objects including mobile matrix carrier systems
US11577920B2 (en) 2017-10-27 2023-02-14 Berkshire Grey Operating Company, Inc. Systems and methods for processing objects including mobile matrix carrier systems
US11597615B2 (en) 2017-10-27 2023-03-07 Berkshire Grey Operating Company, Inc. Discontinuous grid system for use in systems and methods for processing objects including mobile matrix carrier systems
US11661275B2 (en) 2017-10-27 2023-05-30 Berkshire Grey Operating Company, Inc. Maintenance systems for use in systems and methods for processing objects including mobile matrix carrier systems
US11673742B2 (en) 2017-10-27 2023-06-13 Berkshire Grey Operating Company, Inc. Systems and methods for processing objects including mobile matrix carrier systems
US10913612B2 (en) 2017-10-27 2021-02-09 Berkshire Grey, Inc. Discontinuous grid system for use in systems and methods for processing objects including mobile matrix carrier systems
US11814246B2 (en) 2017-10-27 2023-11-14 Berkshire Grey Operating Company, Inc. Bin infeed and removal systems and methods for processing objects including mobile matrix carrier systems
US11866255B2 (en) 2017-10-27 2024-01-09 Berkshire Grey Operating Company, Inc. Discontinuous grid system for use in systems and methods for processing objects including mobile matrix carrier systems

Similar Documents

Publication Publication Date Title
US5073749A (en) Mobile robot navigating method
US6721638B2 (en) AGV position and heading controller
JP2003067053A (en) Unmanned carriage
JP2010117804A (en) Unmanned vehicle of traveling wheel independent steering and travel control method therefor
JP2007219960A (en) Position deviation detection device
JPH0895638A (en) Travel controller for mobile working robot
JPH075922A (en) Steering control method for unmanned work vehicle
JP3378843B2 (en) Correction device for position and direction of automatic guided vehicle
JP2002108453A (en) Unmanned vehicle
JP3361280B2 (en) Three-wheel steering automatic guided vehicle
JPH1195837A (en) Method for determining initial truck position and attitude angle of gyro guide type automated guided vehicle, and method for improving travel stability at position correction
JP2003067052A (en) Actual attitude angle detecting method for unmanned carriage
JP2002108447A (en) Gyroscopic guidance type unmanned carrier device
JP2003058251A (en) Unmanned carrier
JPH01282615A (en) Position correcting system for self-travelling unmanned vehicle
JPS62109105A (en) Magnetic guidance method for vehicle
JP3628405B2 (en) Direction correction method and apparatus for traveling vehicle
JP2823324B2 (en) Self-driving car
JPH10302199A (en) Automatic steering device for vehicle
JPH08202449A (en) Automatic operation controller for carring truck
JPH11231939A (en) Method and device for controlling steering of unmanned vehicle
WO2022131050A1 (en) Automatic steering system
JP3582420B2 (en) Vehicle position detection device
JPH09185411A (en) Traveling direction detecting method for unmanned vehicle
JP2002267411A (en) Conveyance vehicle