WO2024079903A1 - Degree-of-importance assessment system, degree-of-importance assessment device, and degree-of-importance assessment method - Google Patents

Degree-of-importance assessment system, degree-of-importance assessment device, and degree-of-importance assessment method Download PDF

Info

Publication number
WO2024079903A1
WO2024079903A1 PCT/JP2022/038458 JP2022038458W WO2024079903A1 WO 2024079903 A1 WO2024079903 A1 WO 2024079903A1 JP 2022038458 W JP2022038458 W JP 2022038458W WO 2024079903 A1 WO2024079903 A1 WO 2024079903A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
importance
regions
feature
calculates
Prior art date
Application number
PCT/JP2022/038458
Other languages
French (fr)
Japanese (ja)
Inventor
勇人 逸身
浩一 二瓶
昌治 森本
フロリアン バイエ
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2022/038458 priority Critical patent/WO2024079903A1/en
Publication of WO2024079903A1 publication Critical patent/WO2024079903A1/en

Links

Images

Definitions

  • the present invention relates to an importance determination system, an importance determination device, and an importance determination method.
  • Patent Document 1 discloses an image analysis device including a partial image division unit that reprojects the input image in a number of different directions and divides it into a number of partial images, a feature extraction unit that extracts features from each of the partial images, an importance calculation unit that calculates the importance of each position in the input image based on a predetermined regression model from the extracted features, an attention point likelihood distribution calculation unit that calculates the likelihood distribution of attention points based on a predetermined regression model from the calculated importance, and an attention point calculation unit that calculates attention points based on the likelihood distribution of the attention points.
  • Patent Document 1 describes calculating the importance of each position in an input image based on a specified regression model, but it would be useful to provide a technology that determines the importance with greater accuracy.
  • One aspect of the present invention has been made in consideration of the above problems, and one of its objectives is to provide an importance determination system, an importance determination device, and an importance determination method that can determine importance with high accuracy.
  • the importance determination system is an importance determination system that determines the importance of multiple regions in one or more input images, and includes an identification means for identifying multiple regions in the one or more input images, a feature calculation means for calculating features of each region, and a determination means for generating relationship information indicating the relationship between the features of each region based on the features of each region, and determining the importance of each region based on the relationship information.
  • An importance determination device is an importance determination device that determines the importance of multiple regions in one or more input images, and includes an identification unit that identifies multiple regions in the one or more input images, a feature amount calculation unit that calculates feature amounts of each region, feature amount calculation means that calculates the feature amounts of each region, and a determination unit that generates relationship information indicating the relationship between the feature amounts of each region based on the feature amounts of each region, and determines the importance of each region based on the relationship information.
  • the importance determination method is a method for determining the importance of multiple regions in one or more input images, comprising: a feature calculation means for identifying multiple regions in the one or more input images, calculating a feature amount for each region, generating relationship information indicating the relationship between the feature amounts of each region based on the feature amounts of each region, and determining the importance of each region based on the relationship information.
  • FIG. 1 is a block diagram showing an example of the configuration of an importance determination system according to a first embodiment
  • FIG. 2 is a flowchart showing an example of the flow of an importance determination method according to the first embodiment
  • 1 is a block diagram showing an example of the configuration of an importance determination device according to a first embodiment
  • FIG. 11 is a block diagram showing an example of the configuration of an importance judgment control system and a processing system according to a second embodiment
  • 13 is a schematic diagram showing an example of an area identified by an identifying unit in the second embodiment
  • FIG. FIG. 1 is a schematic diagram illustrating an example of a self-attention model.
  • FIG. 1 is a flow diagram illustrating an example of a learning method for generating a trained model.
  • FIG. 1 is a block diagram showing an example of the configuration of an importance determination system for executing a learning method.
  • FIG. 13 is a schematic diagram showing an example of an area identified by an identifying unit in the third embodiment.
  • FIG. 2 is a block diagram illustrating an example of the configuration of a computer.
  • Fig. 1 is a block diagram showing an example of the configuration of an importance determination system 100 according to a first embodiment.
  • the importance determination system 100 includes a specification unit 101, a feature amount calculation unit 102, and a determination unit 103, and determines the importance of multiple regions in one or more input images.
  • the input image may be captured by a camera connected to the importance determination system 100, or may be transmitted to the importance determination system 100 via a network. Furthermore, if the input image is captured by a camera, the number of cameras may be one or more. Furthermore, the camera may be a spherical camera, a panoramic camera, etc.
  • Importance is an index used for a predetermined process based on an input image, and for example, the manner of the process may be changed based on the importance, or the flow of data being processed may be changed based on the importance.
  • the predetermined process based on an input image is not particularly limited, but may be, for example, a process of analyzing an analysis target shown in the input image.
  • the analysis target is not particularly limited, but may be, for example, a worker (person) working at a construction site, work equipment (object), and the behavior (movement) of the worker and work equipment.
  • analysis means detecting the occurrence of an event to be detected in the subject of analysis.
  • the subject of analysis is a worker (person), work equipment (object), or the behavior (movement) of the worker or work equipment working at a construction site
  • the analysis results may include the detection of the occurrence of events such as inefficient work, procedural errors, and dangerous behavior.
  • the importance when the importance is an index used for analyzing an input image, the importance may mean the necessity of performing the analysis.
  • an object that is likely to have an occurrence of an event or the presence of an object to be detected by the analysis may be determined to have a high importance.
  • Such "importance” may also be expressed as "attention level,” “necessity of attention,” “danger level,” etc.
  • Examples of events with high importance include, but are not limited to, actions according to a process, actions that are different from a process, and actions with high danger.
  • objects with high importance include, but are not limited to, people and heavy machinery. The importance may also be determined based on whether or not they can be detected.
  • the importance of a person or object that is very small in the image and difficult to detect may be reduced.
  • the method of expressing the importance is not particularly limited, but may be expressed as a binary value of "0" (low importance) and "1" (high importance), or may be expressed as a multi-value of three or more values (e.g., high, medium, low), or a continuous numerical value.
  • the identification means 101 identifies multiple areas within one or more input images input to the importance determination system 101.
  • the method of identifying multiple regions by the identification means 101 is not particularly limited, and may identify regions corresponding to parts of the input image for which a preset importance is to be determined, may identify regions surrounding objects detected by object detection processing of the input image, or may identify regions obtained by dividing the input image at equal intervals.
  • the feature amount calculation means 102 calculates the feature amount of each area identified by the identification means 101.
  • the method for calculating the feature amount is not particularly limited, and various known algorithms can be used.
  • the determination means 103 generates relationship information indicating the relationship between the feature amounts of each region based on the feature amounts of each region calculated by the feature amount calculation means 102, and determines the importance of each region based on the relationship information.
  • the relationship information indicates the degree to which other regions are related to the importance of each region.
  • the relationship information indicates the relationship between regions such that the relationship is large for regions necessary for determining the importance of the region, and small for regions not necessary for determining the importance of a particular region.
  • An example of such relationship information is the attention weight used in attention mechanisms such as a self-attention mechanism.
  • the importance determination system 100 can determine importance with high accuracy.
  • the importance can be determined using relationship information according to the input image. This allows the importance determination system 100 to determine importance with high accuracy.
  • Flow of importance determination method The flow of the importance determination method S100 according to the present embodiment will be described with reference to Fig. 2.
  • Fig. 2 is a flow diagram showing an example of the flow of the importance determination method S100 according to the first embodiment.
  • an importance determination system 100 executes the importance determination method S100.
  • step S101 the identification means 101 identifies multiple regions in one or more input images.
  • step S102 the feature calculation means 102 calculates the feature amount of each region.
  • step S103 the determination means 103 generates relationship information indicating the relationship between the feature amounts of each region based on the feature amounts of each region, and determines the importance of each region based on the relationship information.
  • the importance of each region is determined using a trained model that generates relationship information based on the features of the input image. This makes it possible to determine the importance using relationship information according to the input image, and therefore makes it possible to determine the importance with high accuracy.
  • Fig. 3 is a block diagram showing the configuration of the importance determination device 200 according to the first embodiment.
  • the importance determination device 100 includes an identification unit 201, a feature amount calculation unit 202, and a determination unit 203, and determines the importance of multiple regions in one or more input images.
  • the identification unit 201 has a function equivalent to the identification means 101, and identifies multiple regions in one or more input images.
  • the feature calculation unit 202 has a function equivalent to the feature calculation means 102, and calculates the feature amount of each region.
  • the judgment unit 203 has a function equivalent to the judgment means 103, and generates relationship information indicating the relationship between the feature amounts of each region based on the feature amounts of each region, and judges the importance of each region based on the relationship information.
  • the identification unit 201, the feature calculation unit 202, and the determination unit 203 may be computer devices in which processing is performed by a processor executing a program stored in a memory.
  • the identification unit 201, the feature calculation unit 202, and the determination unit 203 may be a single computer device, or may be a computer device group in which multiple computer devices operate in cooperation with each other, or a server device group in which multiple server devices operate in cooperation with each other.
  • the importance determination device 200 can achieve the same effects as the importance determination system 100.
  • some functions may be distributed to a cloud server.
  • FIG. 4 is a block diagram showing an example of the configuration of an importance determination system 100 and a processing system 1 according to the second embodiment.
  • the importance determination system 100 includes a specification unit 101, a feature amount calculation unit 102, a determination unit 103, and an analysis method control unit 104.
  • the identification means 101 identifies a plurality of regions whose positions within the input image are preset.
  • FIG. 5 is a schematic diagram showing an example of a region identified by the identification means 101 in this embodiment.
  • the identification means 101 divides one frame F of the input image into predefined regions and identifies a plurality of regions R.
  • the regions R do not need to be of uniform size, and it is not necessary to identify regions from the entire frame F.
  • the identification means 101 does not need to identify as an area a portion that is known in advance not to include the analysis target (e.g., the sky or a building). For example, as shown in FIG. 5, the identification means 101 may identify an area R from a portion other than the portion A corresponding to the sky.
  • the analysis target e.g., the sky or a building.
  • the identification means 101 may change the size of the identified area depending on the characteristics of the input image or the analysis target. For example, as shown in FIG. 5, the identification means 101 may make the size of the lower area R(2) showing the front side larger than the size of the upper area R(1) showing the back side in accordance with the camera's angle of view. Further, for example, the identified area may be larger for areas where a large analysis target may exist, and may be smaller for areas where a small analysis target may exist.
  • the feature calculation means 102 calculates the feature of each region.
  • the method of calculating the feature is not particularly limited, but in one aspect, the feature calculation means 102 may include in the feature of each region an estimation result of the type of object contained in the region.
  • the type of object indicates, for example, whether the object is a person or a machine, a vehicle, heavy machinery, etc.
  • the feature calculation means 102 may include in the feature of each region the position of the region within the input image.
  • the representation format of the feature is not particularly limited, but can be, for example, a fixed-length vector.
  • the feature of each region can be a fixed-length vector that combines position information indicating the position of the region within the input image and class information indicating the estimated type of object contained in the region.
  • the position information may be any information that indicates the position of the region within the input image, and may be calculated based on the pixel position, for example, with the top left corner of the input image being (0,0) and the bottom right corner being (1,1).
  • the position information may also include the size (width and height) of the region.
  • the class information may be any information that indicates the estimated result of the type of object contained in the region, for example, the result of identifying each region using an object identification model (class classification).
  • object identification model for example, an object identification model trained using training data such as ImageNet can be used.
  • the representation format of the class information is not particularly limited, but may be, for example, a vector indicating the reliability that each identifiable type of object is contained in the region. For example, in the case of region R(2) in Figure 5, it may be (car: 0.4, truck 0.1, crane truck 0.5, ..., person: 0).
  • each region calculated by the feature calculation unit 102 is not limited to those described above.
  • features calculated using a learning model with a convolutional layer such as an Auto-Encoder may be used.
  • the determination means 103 determines the importance of each region using the trained model M.
  • the trained model M is a trained model that calculates a first matrix from input data combining features of each region and a first parameter trained by machine learning in advance, calculates a second matrix from the input data and a second parameter trained by machine learning in advance, calculates relationship information based on the first matrix and the second matrix, and calculates the importance of each region based on the relationship information.
  • the trained model M includes one or more layers that calculate a first matrix from input data combining features of each region and a first parameter trained by machine learning in advance, one or more layers that calculate a second matrix from input data and a second parameter trained by machine learning in advance, one or more layers that calculate relationship information based on the first matrix and the second matrix, and one or more layers that calculate the importance of each region based on the relationship information.
  • the trained model M is not limited to this, but in one aspect, a self-attention model may be used.
  • FIG. 6 is a schematic diagram outlining an example of a self-attention model.
  • the example shown in FIG. 6 shows an example in which the number of regions is 9, the number of dimensions of the feature is 1000, and the number of dimensions of the key (first matrix) and query (second matrix) is 4, but both the number of regions and the number of dimensions are not limited to these.
  • X is the input data that combines the features of each region. It is expressed as a (9,1000) matrix in which the features of each of the nine regions, each with a dimension of 1000, are combined.
  • the input data X is multiplied by the attention parameter Wk (first parameter) and the attention parameter Wq (second parameter), respectively, to obtain the key XWk (first matrix) and the query XWqT (second matrix).
  • the attention parameter Wk (first parameter) and the attention parameter Wq (second parameter) are machine-learned parameters as described below, and are expressed as a (1000, 4) matrix.
  • the obtained key XWk is a (9, 4) matrix
  • the query XWqT is a (4, 9) matrix.
  • an attention weight A is generated based on the following formula.
  • d in indicates the number of dimensions of the feature.
  • the attention weight A indicates which feature of each region is related to the importance of each region, and corresponds to relationship information.
  • the importance determination result B(1,9) is calculated by calculating the sum of the attention weights A in the column direction.
  • Each column of the importance determination result B(1,9) indicates the importance of each area.
  • FIG. 7 is a flowchart showing an example of a learning method for generating a trained model M.
  • machine learning for generating the trained model M can be performed using an importance determination system 300 as shown in FIG. 8.
  • the importance determination system 300 includes an identification unit 101, a feature calculation unit 102, a determination unit 103, a learning unit 105, and an analysis engine 106.
  • step S1 learning data is input to the learning means 105.
  • the learning data an image with a label indicating the analysis result can be used.
  • the label may further include a reward value used in reinforcement learning.
  • multiple labels indicating the analysis result may be attached to one piece of learning data.
  • images such as those shown in FIG. 5 labeled with “heavy machinery approaching (10)” and “transportation work (1)” can be used as training data for generating a trained model M to be applied to a construction site.
  • images labeled with "packaging work (1),” “installation work (5),” and “screw tightening work (10)” can be used as training data for generating a trained model M to be applied to factory work.
  • the reward value to be set may be a high reward value for events with a high priority to be detected by analysis.
  • images containing multiple people can be used as learning data, with human detection as the subject of analysis, and the reward value can be set so that if an area containing people is selected, a high reward is given (for example, +1 depending on the number of people contained), and if an empty area is selected, the reward is set to 0.
  • step S2 the learning means 105 initializes parameters of the machine learning model M' (for example, attention parameter W k (first parameter) and attention parameter W q (second parameter)).
  • step S3 the learning means 105 determines whether there is any learning data to be applied next, and ends the learning if there is no learning data to be applied next.
  • step S4 the identification means 101, the feature calculation means 102, and the determination means 103 perform importance determination in the same manner as the importance determination system 100, except that they use learning data instead of the input image and use the machine learning model M' instead of the trained model M.
  • step S5 the learning means 105 performs a process on the learning data to extract only areas of high importance based on the importance of each area obtained, and to give only the areas of high importance high image quality and the other areas low image quality.
  • step S6 the learning means 105 inputs the learning data processed in step S5 to the analysis engine 106 and identifies the analysis result. Note that images of multiple frames may be input to the analysis engine.
  • the learning means 105 then calculates a reward value according to the obtained analysis result. In other words, if the analysis result indicated by the label attached to the learning data is obtained, the learning means 105 may add the reward value set for that label.
  • step S7 the learning means 106 performs reinforcement learning by updating the parameters (attention parameter W k (first parameter) and attention parameter W q (second parameter)) based on the reward value calculated in step S6.
  • the parameter update method may conform to a known reinforcement learning method.
  • a trained model M can be generated.
  • multiple types of trained models M may be generated. For example, different trained models M may be generated and used depending on the scene (construction site, factory work) or time of day (morning, afternoon, night), etc.
  • the analysis method control means 104 controls the method of analysis of each area of the input image according to the importance of that area determined by the determination means 103.
  • the processing system 1 that performs analysis processing of the input image.
  • the processing system 1 includes one or more first processing units 20 and a second processing unit 30.
  • FIG. 4 illustrates a configuration with one first processing unit 20, but there may be multiple first processing units 20.
  • Each of the first processing units 20 is connected to, for example, a camera or a sensor such as LiDAR (Light Detection and Ranging), and acquires one or more input images from the camera or sensor. It is sufficient for the input image to include the analysis target within the field of view of the image.
  • the analysis target is, for example, a worker (person) working at a construction site, work equipment (object), and the behavior (movement) of the worker and work equipment.
  • the first processing unit 20 may also be connected to multiple cameras, sensors, etc., and acquire multiple input images.
  • the first processing unit 20 may also acquire multiple input images from a single camera, etc.
  • the first processing unit 20 and the second processing unit 30 may each be configured with one or more computers.
  • the first processing unit 20 and the second processing unit 30 are capable of communicating via a network NW, and share the analysis processing of the input image.
  • the network NW may be wireless or wired, and if wireless, may be a wireless communication system such as Wi-Fi, LTE, 4G, or 5G.
  • the first processing unit 20 may be an edge processing unit
  • the second processing unit 30 may be a cloud processing unit.
  • edge refers to a place where data is collected.
  • the first processing unit 20, which is an edge processing unit, is an information processing device (computer) or a group of information processing devices installed at or around the location where the analysis target is present (e.g., a construction site, a factory, etc.), and acquires an input image from a camera, a sensor, etc. installed at the location where the analysis target is present.
  • the first processing unit 20 may be integrated with a camera, a sensor, etc.
  • cloud refers to a place where data is processed, stored, etc.
  • the second processing unit 30, which is a cloud processing unit, may be an information processing device (computer) or a group of information processing devices installed at a location that can provide large computational resources, such as a data center or a server farm.
  • the second processing unit 30 may be a processing unit located at a location connected to the first processing unit 20 via a network, and may be a computational resource connected to a base station such as 5G (e.g., MEC (Multi-access Edge Computing)), or a server installed in an office at the site (on-premises server), etc.
  • 5G e.g., MEC (Multi-access Edge Computing)
  • server installed in an office at the site (on-premises server), etc.
  • the first processing unit 20 may perform an analysis process on at least a portion of the one or more acquired input images to generate an analysis result.
  • the first processing unit 20 may also calculate features for at least a portion of the one or more acquired input images and transmit the calculated features to the second processing unit 30 via the network NW.
  • the first processing unit 20 may also transmit at least a portion of the one or more acquired input images to the second processing unit 30 via the network NW.
  • the first processing unit 20 transmits the features or the input image to the second processing unit 30, it may compress or encrypt the features or the input image before transmitting them to the second processing unit 30, or it may transmit the features or the input image to the second processing unit 30 without compressing or encrypting them.
  • the second processing unit 30 receives the features or input image sent from the first processing unit 20, performs restoration processing as necessary, and performs analysis processing.
  • the analysis process is, for example, detection, identification, tracking, and time series analysis of the analysis target (object, person) based on the input image.
  • a learning model may be used for this analysis process.
  • One or both of the first processing unit 20 and the second processing unit 30 may use the learning model.
  • the analysis method control means 104 controls the processing system 1 (i.e., the first processing unit 20 and the second processing unit 30) as follows.
  • the analysis method control means 104 may control the first processing unit 20 to cut out areas of high importance from the input image, deliver them to the second processing unit 30, and discard the rest. This makes it possible to reduce the bit rate by delivering only the parts of high importance when, for example, the communication bandwidth between the first processing unit 20 and the second processing unit 30 is reduced.
  • the analysis method control means 104 may control the first processing unit 20 to cut out areas of high importance from the input image and deliver them to the second processing unit 30, and analyze the remainder in the first processing unit 20. This allows the second processing unit 30 to analyze the areas of high importance from the input image using a high-precision model, and the first processing unit 20 to analyze the remaining areas using a low-precision model.
  • the analysis method control means 104 may control the first processing unit 20 or the second processing unit 30, or both, to analyze only areas of high importance in the input image and discard the remaining areas. This makes it possible to focus the analysis on only the important parts when it is difficult to analyze all areas due to the computational load.
  • the analysis method control means 104 may control the first processing unit 20 or the second processing unit 30, or both, to analyze only areas of high importance in the input image with a high-precision model, and analyze the remaining areas with a low-precision model. In this way, when it is difficult to analyze all areas with a high-precision model due to the computational load, only the areas of high importance can be analyzed with a high-precision model, and the other areas can be analyzed with a low-precision model.
  • the area for determining importance is not limited to a fixed size, and importance can be determined for any size depending on the characteristics of the input image or the subject of analysis.
  • the importance of each region is determined using a trained model that generates relationship information based on the features of the input image, so the importance can be determined using relationship information according to the input image, making it possible to determine the importance with high accuracy.
  • the analysis method control means 104 may control the processing system 1 (i.e., the first processing unit 20 and the second processing unit 30) to divide the analysis of the data to be analyzed between the first processing unit 20 and the second processing unit 30. Note that the analysis method control means 104 may not cause the processing system 1 to analyze data to be analyzed that is determined not to require analysis.
  • the analysis of the data to be analyzed between the first processing unit 20 and the second processing unit 30 can be shared in various ways.
  • the first processing unit 20 that acquires the data to be analyzed performs all of the analysis of the data to be analyzed
  • the first processing unit 20 that acquires the data to be analyzed performs a certain amount of analysis and the second processing unit 30 performs the remaining analysis
  • the first processing unit 20 performs the minimum necessary processing such as compression
  • the second processing unit 30 performs all of the analysis of the data to be analyzed.
  • the sharing method for the analysis of the data to be analyzed may be selected according to the computing power of the first processing unit 20, from among a first sharing method in which the first processing unit 20 generates the analysis results of the data to be analyzed, a second sharing method in which the first processing unit 20 calculates the feature values of the data to be analyzed, the first processing unit 20 transmits the feature values to the second processing unit 30, and the second processing unit 30 generates the analysis results from the feature values, and a third sharing method in which the first processing unit 20 transmits the data to be analyzed to the second processing unit 30, and the second processing unit 30 generates the analysis results from the data to be analyzed.
  • the criteria used to select the sharing method may also be the computational cost, the importance of the data to be analyzed, the risk level indicated by the data to be analyzed, the compression efficiency of each data to be analyzed, communication quality, etc.
  • the analysis method control means 104 may select a sharing method for each of one or more input images acquired by each first processing unit 20, depending on the importance of each input image. For example, an input image with a high importance may be analyzed quickly by being analyzed by the first processing unit 20 that acquired the input image, and an input image with a high importance may be analyzed with high accuracy by being analyzed by the second processing unit 30.
  • the analysis method control means 104 may select a sharing method to switch between the first processing unit 20 and the second processing unit 30 to analyze the analysis target data, based on a prediction of the processing load of the analysis target data in the first processing unit 20 and a prediction of the communication bandwidth between the first processing unit 20 and the second processing unit 30.
  • the analysis method control means 104 may also determine the analysis target data portion to be discarded in the analysis target data, based on the predicted communication bandwidth.
  • the analysis method control means 104 may also cause the first processing unit 20 and the second processing unit 30 to complement frames that were processed before the switching in the unit frame set when switching from a state in which the analysis target data is not being processed to a state in which the analysis target data is being processed.
  • the analysis method control means 104 may also cause the first processing unit 20 and the second processing unit 30, which are not analyzing the analysis target data, to buffer the analysis target data, and when the processing unit that is not processing the analysis target data is switched to processing the analysis target data, to analyze the analysis target data using the buffered data.
  • the process control means 102 may execute the above-mentioned discard process, complement process, and buffering process based on the importance of the data to be analyzed, the reliability of the processing of the data to be analyzed, the communication bandwidth allocated for transmitting the data to be analyzed, etc.
  • the reliability is an index indicating the degree of confidence in the predicted analysis result, and may be, for example, a confidence value output from the trained model that performed the analysis.
  • the importance determination system 100 is independent of each of the first processing units 20 and the second processing units 30, this embodiment is not limited to this.
  • a part or all of the importance determination system 100 may be provided in each of the first processing units 20, the second processing unit 30, or in each of the first processing units 20 and the second processing unit 30 in a distributed manner.
  • the second embodiment has been described above as a process control system 100, but the process control system 100 according to the second embodiment may be mounted on a single device as a process control device. Furthermore, the operation of the process control system 100 according to the second embodiment may be the process control method according to the second embodiment.
  • the identification means 101 detects multiple objects included in one or more input images, and identifies the multiple regions by identifying the regions corresponding to each of the detected objects.
  • FIG. 9 is a schematic diagram showing an example of the regions identified by the identification means 101 in this embodiment.
  • the identification means 101 identifies the multiple regions T1 and T2 by identifying the regions corresponding to the objects detected using an object detection model for one frame F of the input image.
  • the regions corresponding to the objects are, for example, the regions surrounding the objects.
  • the feature amount calculation means 102 calculates the feature amount of each region in the same manner as the feature amount calculation means 102 according to the second embodiment.
  • the feature amount calculation means 102 may use, as class information, the identification result obtained by identifying each region using an object identification model, as in the feature amount calculation means 102 according to the second embodiment.
  • the feature amount calculation means 102 may use, as class information, the identification result obtained when the identification means 101 detects an object in the input image by object detection.
  • the area in which importance is determined can be an area of any size in which an object is detected. This allows the importance to be determined efficiently.
  • the third embodiment has been described above as a process control system 100, but the process control system 100 according to the third embodiment may be mounted on a single device as a process control device. Furthermore, the operation of the process control system 100 according to the third embodiment may be the process control method according to the third embodiment.
  • the identification means 101 identifies multiple regions by identifying one or more regions within multiple input images input from different cameras.
  • the feature calculation means 102 calculates the feature of the region in each input image.
  • the determination means 103 then inputs input data that combines the feature of the regions in the multiple input images into the trained model M, thereby being able to determine the importance of each of the regions in the multiple input images.
  • the fourth embodiment has been described above as a process control system 100, but the process control system 100 according to the fourth embodiment may be mounted on a single device to form a process control device. Furthermore, the operation of the process control system 100 according to the fourth embodiment may be the process control method according to the fourth embodiment.
  • Each of the configurations according to the first to fourth embodiments may be realized by (1) one or more pieces of hardware, (2) one or more pieces of software, (3) a combination of hardware and software, or (4) the second.
  • Each device, function, and process may be realized by at least one computer having at least one processor and at least one memory.
  • An example of such a computer hereinafter referred to as computer C
  • each of the functions described in the first to fourth embodiments may be realized by storing a program for implementing the processing control method described in the first to fourth embodiments in memory C2, and having processor C1 read and execute program P stored in memory C2.
  • the program P includes a set of instructions that, when loaded into the computer C, causes the computer C to execute one or more of the functions described in the first to fourth embodiments.
  • the program P is stored in the memory C2.
  • the processor C1 can be, for example, a CPU (Central Processing Unit).
  • the memory C2 can be, for example, a Read Only Memory (ROM), a Random Access Memory (RAM), a flash memory, a Solid State Drive (SSD), etc.
  • the program P can also be recorded on a non-transitory, tangible recording medium M that can be read by the computer C.
  • a recording medium M can be, for example, a tape, a disk, a card, a semiconductor memory, or a programmable logic circuit.
  • the computer C can obtain the program P via such a recording medium M.
  • the program P can also be transmitted via a transmission medium.
  • a transmission medium can be, for example, a communications network or broadcast waves.
  • the computer C can also obtain the program P via such a transmission medium.
  • An importance determination system for determining importance of a plurality of regions in one or more input images, comprising: means for identifying a plurality of regions within the one or more input images; A feature amount calculation means for calculating a feature amount of each region; An importance determination system comprising: a determination means for generating relationship information indicating a relationship between the feature amounts of each region based on the feature amounts of each region, and determining the importance of each region based on the relationship information.
  • Appendix 2 The importance determination system described in Appendix 1, wherein the determination means calculates a first matrix from input data combining features of each region and a first parameter that has been machine-learned in advance, calculates a second matrix from the input data and a second parameter that has been machine-learned in advance, calculates the relationship information based on the first matrix and the second matrix, and calculates the importance of each region based on the relationship information.
  • the identification means detects a plurality of objects included in the one or more input images, and identifies the plurality of regions by identifying a region corresponding to each of the detected objects.
  • An importance determination device for determining importance of a plurality of regions in one or more input images, comprising: an identification unit for identifying a plurality of regions within the one or more input images; A feature amount calculation unit that calculates a feature amount of each region; A feature amount calculation means for calculating a feature amount of each region; An importance determination device comprising: a determination unit that generates relationship information indicating a relationship between the feature amounts of each region based on the feature amounts of each region, and determines the importance of each region based on the relationship information.
  • Appendix 10 The importance determination device described in Appendix 9, wherein the determination unit calculates a first matrix from input data combining features of each region and a first parameter that has been machine-learned in advance, calculates a second matrix from the input data and a second parameter that has been machine-learned in advance, calculates the relationship information based on the first matrix and the second matrix, and calculates the importance of each region based on the relationship information.
  • Appendix 14 The importance determination device according to any one of appendices 9 to 12, wherein the identification unit detects a plurality of objects included in the one or more input images, and identifies the plurality of regions by identifying a region corresponding to each of the detected objects.
  • the importance determination device according to claim 9, further comprising an analysis method control unit that controls a method of analysis of each area according to the importance of the area.
  • a method for determining importance of a plurality of regions in one or more input images comprising: Identifying a plurality of regions within the one or more input images; Calculate the feature values for each region, A feature amount calculation means for calculating a feature amount of each region; An importance determination method comprising: generating relationship information indicating a relationship between the feature amounts of each region based on the feature amounts of each region; and determining the importance of each region based on the relationship information.
  • Appendix 18 An importance determination method as described in Appendix 17, which calculates a first matrix from input data combining features of each region and a first parameter that has been machine-learned in advance, calculates a second matrix from the input data and a second parameter that has been machine-learned in advance, calculates the relationship information based on the first matrix and the second matrix, and calculates the importance of each region based on the relationship information.
  • Appendix 21 The importance determination method according to any one of appendices 17 to 20, further comprising identifying the plurality of regions having at least two or more sizes, the positions of which within the one or more input images being preset.
  • An importance determination system for determining importance of a plurality of regions in one or more input images, comprising: At least one processor, the processor comprising: an identification process for identifying a plurality of regions within the one or more input images; A feature amount calculation process for calculating a feature amount of each region; An importance determination system that generates relationship information indicating a relationship between the feature amounts of each region based on the feature amounts of each region, and executes a determination process that determines the importance of each region based on the relationship information.
  • the processing control system may further include at least one memory, and this memory may store a program for causing the processor to execute the identification process, the feature calculation process, and the determination process.
  • the program may also be recorded on a computer-readable, non-transitory, tangible recording medium.
  • An importance determination device for determining importance of a plurality of regions in one or more input images, comprising: At least one processor, the processor comprising: an identification process for identifying a plurality of regions within the one or more input images; A feature amount calculation process for calculating a feature amount of each region; an importance determination device that generates relationship information indicating a relationship between the feature amounts of each region based on the feature amounts of each region, and executes a determination process of determining the importance of each region based on the relationship information.
  • the processing control system may further include at least one memory, and this memory may store a program for causing the processor to execute the identification process, the feature calculation process, and the determination process.
  • the program may also be recorded on a computer-readable, non-transitory, tangible recording medium.

Abstract

A degree-of-importance assessment system (100) comprises: an identification means (101) for identifying a plurality of regions in one or more input images; a feature-amount calculation means (102) for calculating a feature amount for each region; and an assessment means (103) for generating, on the basis of the feature amount of each region, relationship information indicative of the relationship between the feature amounts of the regions, and assessing the degree of importance of each region on the basis of the relationship information.

Description

重要度判定システム、重要度判定装置、および重要度判定方法Importance determination system, importance determination device, and importance determination method
本発明は、重要度判定システム、重要度判定装置、および重要度判定方法に関する。 The present invention relates to an importance determination system, an importance determination device, and an importance determination method.
 入力画像の画像分析を行なう際に、入力画像を分割して処理する技術が知られている。例えば、特許文献1には、入力画像を異なる複数の方向に再投影して複数の部分画像に分割する部分画像分割部と、各前記部分画像から特徴量を抽出する特徴量抽出部と、抽出した前記特徴量から所定の回帰モデルに基づいて前記入力画像の位置ごとの重要度を算出する重要度算出部と、算出した前記重要度から所定の回帰モデルに基づいて注目点の尤度分布を算出する注目点尤度分布算出部と、前記注目点の尤度分布に基づいて注目点を算出する注目点算出部とを含む画像解析装置が開示されている。 A technique is known for dividing and processing an input image when performing image analysis of the input image. For example, Patent Document 1 discloses an image analysis device including a partial image division unit that reprojects the input image in a number of different directions and divides it into a number of partial images, a feature extraction unit that extracts features from each of the partial images, an importance calculation unit that calculates the importance of each position in the input image based on a predetermined regression model from the extracted features, an attention point likelihood distribution calculation unit that calculates the likelihood distribution of attention points based on a predetermined regression model from the calculated importance, and an attention point calculation unit that calculates attention points based on the likelihood distribution of the attention points.
日本国公開特許公報特開2018-22360号Japanese Patent Publication No. 2018-22360
 特許文献1には、所定の回帰モデルに基づいて入力画像の位置ごとの重要度を算出することが記載されているが、より精度高く重要度を判定する技術を提供することができれば有用である。 Patent Document 1 describes calculating the importance of each position in an input image based on a specified regression model, but it would be useful to provide a technology that determines the importance with greater accuracy.
 本発明の一態様は、上記の問題に鑑みてなされたものであり、その目的の一例は精度高く重要度を判定することができる重要度判定システム、重要度判定装置、および重要度判定方法を提供することである。 One aspect of the present invention has been made in consideration of the above problems, and one of its objectives is to provide an importance determination system, an importance determination device, and an importance determination method that can determine importance with high accuracy.
 本発明の一側面に係る重要度判定システムは、1以上の入力画像内の複数の領域の重要度を判定する重要度判定システムであって、前記1以上の入力画像内の複数の領域を特定する特定手段と、各領域の特徴量を算出する特徴量算出手段と、各領域の特徴量に基づいて、各領域の特徴量間の関係性を示す関係性情報を生成し、前記関係性情報に基づいて各領域の重要度を判定する判定手段と、を備える。 The importance determination system according to one aspect of the present invention is an importance determination system that determines the importance of multiple regions in one or more input images, and includes an identification means for identifying multiple regions in the one or more input images, a feature calculation means for calculating features of each region, and a determination means for generating relationship information indicating the relationship between the features of each region based on the features of each region, and determining the importance of each region based on the relationship information.
 本発明の一側面に係る重要度判定装置は、1以上の入力画像内の複数の領域の重要度を判定する重要度判定装置であって、前記1以上の入力画像内の複数の領域を特定する特定部と、各領域の特徴量を算出する特徴量算出部と、各領域の特徴量を算出する特徴量算出手段と、各領域の特徴量に基づいて、各領域の特徴量間の関係性を示す関係性情報を生成し、前記関係性情報に基づいて各領域の重要度を判定する判定部と、を備える。 An importance determination device according to one aspect of the present invention is an importance determination device that determines the importance of multiple regions in one or more input images, and includes an identification unit that identifies multiple regions in the one or more input images, a feature amount calculation unit that calculates feature amounts of each region, feature amount calculation means that calculates the feature amounts of each region, and a determination unit that generates relationship information indicating the relationship between the feature amounts of each region based on the feature amounts of each region, and determines the importance of each region based on the relationship information.
 本発明の一側面に係る重要度判定方法は、1以上の入力画像内の複数の領域の重要度を判定する重要度判定方法であって、前記1以上の入力画像内の複数の領域を特定し、各領域の特徴量を算出し、各領域の特徴量を算出する特徴量算出手段と、各領域の特徴量に基づいて、各領域の特徴量間の関係性を示す関係性情報を生成し、前記関係性情報に基づいて各領域の重要度を判定する。 The importance determination method according to one aspect of the present invention is a method for determining the importance of multiple regions in one or more input images, comprising: a feature calculation means for identifying multiple regions in the one or more input images, calculating a feature amount for each region, generating relationship information indicating the relationship between the feature amounts of each region based on the feature amounts of each region, and determining the importance of each region based on the relationship information.
 本発明の一態様によれば、精度高く重要度を判定することができる。 According to one aspect of the present invention, importance can be determined with high accuracy.
第1の実施形態に係る重要度判定システムの構成例を示すブロック図である。1 is a block diagram showing an example of the configuration of an importance determination system according to a first embodiment; 第1の実施形態に係る重要度判定方法の流れの一例を示すフロー図である。FIG. 2 is a flowchart showing an example of the flow of an importance determination method according to the first embodiment. 第1の実施形態に係る重要度判定装置の構成例を示すブロック図である。1 is a block diagram showing an example of the configuration of an importance determination device according to a first embodiment; 第2の実施形態に係る重要度判定制御システムおよび処理システムの構成例を示すブロック図である。FIG. 11 is a block diagram showing an example of the configuration of an importance judgment control system and a processing system according to a second embodiment. 第2の実施形態において特定手段によって特定される領域の一例を示す模式図である。13 is a schematic diagram showing an example of an area identified by an identifying unit in the second embodiment; FIG. 自己注意モデルの一例を概略的に示す模式図である。FIG. 1 is a schematic diagram illustrating an example of a self-attention model. 学習済みモデルを生成するための学習方法の一例を示すフロー図である。FIG. 1 is a flow diagram illustrating an example of a learning method for generating a trained model. 学習方法を実行する重要度判定システムの構成例を示すブロック図である。1 is a block diagram showing an example of the configuration of an importance determination system for executing a learning method. 第3の実施形態において特定手段によって特定される領域の一例を示す模式図である。FIG. 13 is a schematic diagram showing an example of an area identified by an identifying unit in the third embodiment. コンピュータの構成例を示すブロック図である。FIG. 2 is a block diagram illustrating an example of the configuration of a computer.
 〔第1の実施形態〕
 本発明の第1の実施形態について、図面を参照して詳細に説明する。本実施形態は、後述する実施形態の基本となる形態である。
First Embodiment
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described in detail with reference to the accompanying drawings. This embodiment is a basic form of the embodiments described below.
 (重要度判定システムの構成)
 本実施形態に係る重要度判定システムの構成について、図1を参照して説明する。図1は、第1の実施形態に係る重要度判定システム100の構成例を示すブロック図である。重要度判定システム100は、特定手段101、特徴量算出手段102、判定手段103を備え、1以上の入力画像内の複数の領域の重要度を判定する。
(Configuration of Importance Judgment System)
The configuration of an importance determination system according to this embodiment will be described with reference to Fig. 1. Fig. 1 is a block diagram showing an example of the configuration of an importance determination system 100 according to a first embodiment. The importance determination system 100 includes a specification unit 101, a feature amount calculation unit 102, and a determination unit 103, and determines the importance of multiple regions in one or more input images.
 入力画像は、重要度判定システム100に接続されたカメラが撮像したものであってもよいし、ネットワークを介して重要度判定システム100に送信されたものであってもよい。また、入力画像が、カメラが撮像したものである場合、カメラは単数であってもよいし複数であってもよい。また、カメラは、全天球カメラ、パノラマカメラ等であってもよい。 The input image may be captured by a camera connected to the importance determination system 100, or may be transmitted to the importance determination system 100 via a network. Furthermore, if the input image is captured by a camera, the number of cameras may be one or more. Furthermore, the camera may be a spherical camera, a panoramic camera, etc.
 重要度は、入力画像に基づく所定の処理のために使用される指標であり、例えば、重要度に基づいて処理の態様を変化させてもよいし、重要度に基づいて処理中のデータの流れを変化させてもよい。入力画像に基づく所定の処理は、特に限定されないが、例えば、入力画像に映った分析対象を分析する処理であってよい。分析対象は、特に限定されないが、例えば、工事現場で作業する作業者(人)、作業装置(物体)、および作業者、作業装置の挙動(動作)である。 Importance is an index used for a predetermined process based on an input image, and for example, the manner of the process may be changed based on the importance, or the flow of data being processed may be changed based on the importance. The predetermined process based on an input image is not particularly limited, but may be, for example, a process of analyzing an analysis target shown in the input image. The analysis target is not particularly limited, but may be, for example, a worker (person) working at a construction site, work equipment (object), and the behavior (movement) of the worker and work equipment.
 本明細書において、「分析」とは、分析対象において、検知対象となる事象が生じていることを検知することを意味する。例えば、分析対象が工事現場で作業する作業者(人)、作業装置(物体)、および作業者、作業装置の挙動(動作)などである場合には、分析結果としては、効率の悪い作業や、手順のミス、危険な行動などの事象が生じていることの検知結果が挙げられる。 In this specification, "analysis" means detecting the occurrence of an event to be detected in the subject of analysis. For example, if the subject of analysis is a worker (person), work equipment (object), or the behavior (movement) of the worker or work equipment working at a construction site, the analysis results may include the detection of the occurrence of events such as inefficient work, procedural errors, and dangerous behavior.
 一態様において、重要度が、入力画像の分析のために使用される指標である場合、重要度は、分析を行なう必要性を意味するものであってもよい。この場合、分析の検知対象となる事象が発生または物体が存在している可能性が高いものが重要度が高いと判定され得る。このような「重要度」は「注目度」、「注視必要性」、「危険度」などと言い換えることもできる。重要度が高い事象としては、これらに限定するものではないが、例えば、工程通りの動作、工程とは異なる動作、危険性の高い動作などが挙げられる。重要度が高い物体としては、これらに限定するものではないが、人間や重機などが挙げられる。また、検知可否に基づいて判定してもよい。例えば、映像内に非常に小さく映っていて検知が難しい人や物体は、重要度を下げてもよい。重要度の表現方法は特に限定されないが、例えば、「0」(重要度低い)および「1」(重要度高い)の2値で表現されてもよいし、3値以上の多値(例えば、高・中・低)、または、連続的な数値によって表現されてもよい。 In one embodiment, when the importance is an index used for analyzing an input image, the importance may mean the necessity of performing the analysis. In this case, an object that is likely to have an occurrence of an event or the presence of an object to be detected by the analysis may be determined to have a high importance. Such "importance" may also be expressed as "attention level," "necessity of attention," "danger level," etc. Examples of events with high importance include, but are not limited to, actions according to a process, actions that are different from a process, and actions with high danger. Examples of objects with high importance include, but are not limited to, people and heavy machinery. The importance may also be determined based on whether or not they can be detected. For example, the importance of a person or object that is very small in the image and difficult to detect may be reduced. The method of expressing the importance is not particularly limited, but may be expressed as a binary value of "0" (low importance) and "1" (high importance), or may be expressed as a multi-value of three or more values (e.g., high, medium, low), or a continuous numerical value.
 特定手段101は、重要度判定システム101に入力された1以上の入力画像内の複数の領域を特定する。 The identification means 101 identifies multiple areas within one or more input images input to the importance determination system 101.
 特定手段101による複数の領域の特定方法は特に限定されず、入力画像において予め設定された重要度を判定したい部分に対応する領域を特定してもよいし、入力画像に対する物体検出処理によって検出された物体を囲う領域を特定してもよいし、入力画像を等間隔に分割した領域を特定してもよい。 The method of identifying multiple regions by the identification means 101 is not particularly limited, and may identify regions corresponding to parts of the input image for which a preset importance is to be determined, may identify regions surrounding objects detected by object detection processing of the input image, or may identify regions obtained by dividing the input image at equal intervals.
 特徴量算出手段102は、特定手段101によって特定された各領域の特徴量を算出する。特徴量の算出方法は特に限定されず、各種の公知のアルゴリズムを用いることができる。 The feature amount calculation means 102 calculates the feature amount of each area identified by the identification means 101. The method for calculating the feature amount is not particularly limited, and various known algorithms can be used.
 判定手段103は、特徴量算出手段102によって算出された各領域の特徴量に基づいて各領域の特徴量間の関係性を示す関係性情報を生成し、当該関係性情報に基づいて各領域の重要度を判定する。一態様において、関係性情報は、各領域の重要度に関して、当該領域以外の他の領域がどの程度関係しているかを示すものである。換言すれば、関係性情報は、各領域について、当該領域の重要度を判定するために必要な領域については関係性が大きく、特定の領域の重要度を判定するために必要ない領域については関係性が小さくなるように、領域間の関係性を示したものである。このような関係性情報としては、例えば、自己注意(Self-Attention)機構等の注意(Attention)機構において用いられるアテンション重み(Attention Weight)が挙げられる。 The determination means 103 generates relationship information indicating the relationship between the feature amounts of each region based on the feature amounts of each region calculated by the feature amount calculation means 102, and determines the importance of each region based on the relationship information. In one embodiment, the relationship information indicates the degree to which other regions are related to the importance of each region. In other words, the relationship information indicates the relationship between regions such that the relationship is large for regions necessary for determining the importance of the region, and small for regions not necessary for determining the importance of a particular region. An example of such relationship information is the attention weight used in attention mechanisms such as a self-attention mechanism.
 これにより、本実施形態に係る重要度判定システム100によれば、精度高く重要度を判定することができる。すなわち、入力画像の特徴量に基づいて関係性情報を生成するため、入力画像に応じた関係性情報を用いて重要度を判定することができる。これにより、重要度判定システム100は、精度高く重要度を判定することができる。 As a result, the importance determination system 100 according to this embodiment can determine importance with high accuracy. In other words, since relationship information is generated based on the feature amounts of the input image, the importance can be determined using relationship information according to the input image. This allows the importance determination system 100 to determine importance with high accuracy.
 (重要度判定方法の流れ)
 本実施形態に係る重要度判定方法S100の流れについて、図2を参照して説明する。図2は、第1の実施形態に係る重要度判定方法S100の流れの一例を示すフロー図である。図2に示す例では、重要度判定システム100が、重要度判定方法S100を実行する。
(Flow of importance determination method)
The flow of the importance determination method S100 according to the present embodiment will be described with reference to Fig. 2. Fig. 2 is a flow diagram showing an example of the flow of the importance determination method S100 according to the first embodiment. In the example shown in Fig. 2, an importance determination system 100 executes the importance determination method S100.
 ステップS101において、特定手段101は、1以上の入力画像内の複数の領域を特定する。ステップS102において、特徴部算出手段102は、各領域の特徴量を算出する。ステップS103において、判定手段103は、各領域の特徴量に基づいて各領域の特徴量間の関係性を示す関係性情報を生成し、当該関係性情報に基づいて各領域の重要度を判定する。 In step S101, the identification means 101 identifies multiple regions in one or more input images. In step S102, the feature calculation means 102 calculates the feature amount of each region. In step S103, the determination means 103 generates relationship information indicating the relationship between the feature amounts of each region based on the feature amounts of each region, and determines the importance of each region based on the relationship information.
 以上のように、本実施形態に係る処理制御方法S100においては、入力画像の特徴量に基づいて関係性情報を生成する学習済みモデルを用いて各領域の重要度を判定する。これにより、入力画像に応じた関係性情報を用いて重要度を判定することができ、精度高く重要度を判定することができる。 As described above, in the processing control method S100 according to this embodiment, the importance of each region is determined using a trained model that generates relationship information based on the features of the input image. This makes it possible to determine the importance using relationship information according to the input image, and therefore makes it possible to determine the importance with high accuracy.
 (重要度判定装置の構成)
 本実施形態に係る重要度判定装置200の構成について、図3を参照して説明する。図3は、第1の実施形態に係る重要度判定装置200の構成を示すブロック図である。重要度判定装置100は、特定部201、特徴量算出部202、判定部203を備え、1以上の入力画像内の複数の領域の重要度を判定する。
(Configuration of Importance Determination Device)
The configuration of the importance determination device 200 according to this embodiment will be described with reference to Fig. 3. Fig. 3 is a block diagram showing the configuration of the importance determination device 200 according to the first embodiment. The importance determination device 100 includes an identification unit 201, a feature amount calculation unit 202, and a determination unit 203, and determines the importance of multiple regions in one or more input images.
 特定部201は、特定手段101と同等の機能を備え、1以上の入力画像内の複数の領域を特定する。特徴部算出部202は、特徴部算出手段102と同等の機能を備え、各領域の特徴量を算出する。判定部203は、判定手段103と同等の機能を備え、各領域の特徴量に基づいて各領域の特徴量間の関係性を示す関係性情報を生成し、当該関係性情報に基づいて各領域の重要度を判定する。 The identification unit 201 has a function equivalent to the identification means 101, and identifies multiple regions in one or more input images. The feature calculation unit 202 has a function equivalent to the feature calculation means 102, and calculates the feature amount of each region. The judgment unit 203 has a function equivalent to the judgment means 103, and generates relationship information indicating the relationship between the feature amounts of each region based on the feature amounts of each region, and judges the importance of each region based on the relationship information.
 特定部201、特徴量算出部202、判定部203は、プロセッサがメモリに格納されたプログラムを実行することによって処理が実行されるコンピュータ装置であってもよい。例えば、特定部201、特徴量算出部202、判定部203は、単一のコンピュータ装置であってもよく、複数のコンピュータ装置が連携して動作するコンピュータ装置群もしくは複数のサーバ装置が連携して動作するサーバ装置群であってもよい。重要度判定装置200によれば、重要度判定システム100と同等の効果を得ることができる。また、一部の機能は、クラウドサーバに分散配置されていてもよい。 The identification unit 201, the feature calculation unit 202, and the determination unit 203 may be computer devices in which processing is performed by a processor executing a program stored in a memory. For example, the identification unit 201, the feature calculation unit 202, and the determination unit 203 may be a single computer device, or may be a computer device group in which multiple computer devices operate in cooperation with each other, or a server device group in which multiple server devices operate in cooperation with each other. The importance determination device 200 can achieve the same effects as the importance determination system 100. In addition, some functions may be distributed to a cloud server.
 〔第2の実施形態〕
 本発明の第2の実施形態について、図面を参照して詳細に説明する。なお、第1の実施形態にて説明した構成要素と同じ機能を有する構成要素については、同じ符号を付し、その説明を適宜省略する。
Second Embodiment
A second embodiment of the present invention will be described in detail with reference to the drawings. Note that components having the same functions as those described in the first embodiment are given the same reference numerals, and descriptions thereof will be omitted as appropriate.
 図4は、第2の実施形態に係る重要度判定システム100および処理システム1の構成例を示すブロック図である。本実施形態に係る重要度判定システム100は、特定手段101、特徴量算出手段102、判定手段103、分析方法制御手段104を備えている。 FIG. 4 is a block diagram showing an example of the configuration of an importance determination system 100 and a processing system 1 according to the second embodiment. The importance determination system 100 according to this embodiment includes a specification unit 101, a feature amount calculation unit 102, a determination unit 103, and an analysis method control unit 104.
 本実施形態において、特定手段101は、入力画像内における位置が予め設定されている複数の領域を特定する。図5は、本実施形態において特定手段101によって特定される領域の一例を示す模式図である。特定手段101は、入力画像の1フレームFについて、事前に定義された領域に分割して複数の領域Rを特定する。ここで、領域Rは均一のサイズである必要はなく、フレームFの全部から領域を特定する必要もない。 In this embodiment, the identification means 101 identifies a plurality of regions whose positions within the input image are preset. FIG. 5 is a schematic diagram showing an example of a region identified by the identification means 101 in this embodiment. The identification means 101 divides one frame F of the input image into predefined regions and identifies a plurality of regions R. Here, the regions R do not need to be of uniform size, and it is not necessary to identify regions from the entire frame F.
 例えば、特定手段101は、分析対象が含まれないことが予め分かっている部分(例えば、空や建物など)については、特定手段101は領域として特定しなくてもよい。例えば、図5に示すように、特定手段101は、空に対応する部分A以外から領域Rを特定してもよい。 For example, the identification means 101 does not need to identify as an area a portion that is known in advance not to include the analysis target (e.g., the sky or a building). For example, as shown in FIG. 5, the identification means 101 may identify an area R from a portion other than the portion A corresponding to the sky.
 また、例えば、特定手段101は、入力画像または分析対象の特性に応じて特定する領域のサイズを変化させてもよい。例えば、図5に示すように、特定手段101は、カメラの画角に合わせて手前側が映っている下部の領域R(2)のサイズを、奥側が映っている上部の領域R(1)のサイズよりも大きくしてもよい。また、例えば、大きい分析対象が存在する可能性がある部分については特定する領域を大きく、小さい分析対象が存在する可能性がある部分については特定する領域を小さくしてもよい。 Furthermore, for example, the identification means 101 may change the size of the identified area depending on the characteristics of the input image or the analysis target. For example, as shown in FIG. 5, the identification means 101 may make the size of the lower area R(2) showing the front side larger than the size of the upper area R(1) showing the back side in accordance with the camera's angle of view. Further, for example, the identified area may be larger for areas where a large analysis target may exist, and may be smaller for areas where a small analysis target may exist.
 本実施形態において、特徴量算出手段102は、各領域の特徴量を算出する。特徴量の算出方法は特に限定されないが、一態様において、特徴量算出手段102は、各領域の特徴量に、当該領域に含まれる物体の種類の推定結果を含めてもよい。物体の種類とは、例えば、物体が人であるか機械であるか、車、重機等であるか、等を示すものである。また、一態様において、特徴量算出手段102は、各領域の特徴量に、当該領域の前記入力画像内の位置を含めてもよい。また、特徴量の表現形式は特に限定されないが、例えば、固定長のベクトルとすることができる。 In this embodiment, the feature calculation means 102 calculates the feature of each region. The method of calculating the feature is not particularly limited, but in one aspect, the feature calculation means 102 may include in the feature of each region an estimation result of the type of object contained in the region. The type of object indicates, for example, whether the object is a person or a machine, a vehicle, heavy machinery, etc. Also, in one aspect, the feature calculation means 102 may include in the feature of each region the position of the region within the input image. Also, the representation format of the feature is not particularly limited, but can be, for example, a fixed-length vector.
 例えば、各領域の特徴量は、当該領域の前記入力画像内の位置を示す位置情報と、当該領域に含まれる物体の種類の推定結果を示すクラス情報とを結合した固定長のベクトルとすることができる。 For example, the feature of each region can be a fixed-length vector that combines position information indicating the position of the region within the input image and class information indicating the estimated type of object contained in the region.
 位置情報は、領域の入力画像内の位置を示すものであればよく、例えば、入力画像の左上角を(0,0)とし、右下角を(1,1)として、ピクセル位置に応じて算出したものとしてもよい。また、位置情報は、領域の大きさ(幅および高さ)をさらに含んでいてもよい。 The position information may be any information that indicates the position of the region within the input image, and may be calculated based on the pixel position, for example, with the top left corner of the input image being (0,0) and the bottom right corner being (1,1). The position information may also include the size (width and height) of the region.
 クラス情報は、領域に含まれる物体の種類の推定結果を示すものであればよく、例えば、物体識別モデルを用いて各領域を識別した識別結果(クラスの分類)を示すものである。物体識別モデルとしては、例えば、ImageNet等の教師データを用いて学習した物体識別モデルを用いることができる。クラス情報の表現形式は特に限定されないが、例えば、識別可能な各種類の物体について各々が領域に含まれることの信頼度を示したベクトルであってもよい。例えば、図5の領域R(2)であれば、(車:0.4、トラック0.1、クレーン車0.5、…、人:0)としてもよい。 The class information may be any information that indicates the estimated result of the type of object contained in the region, for example, the result of identifying each region using an object identification model (class classification). As the object identification model, for example, an object identification model trained using training data such as ImageNet can be used. The representation format of the class information is not particularly limited, but may be, for example, a vector indicating the reliability that each identifiable type of object is contained in the region. For example, in the case of region R(2) in Figure 5, it may be (car: 0.4, truck 0.1, crane truck 0.5, ..., person: 0).
 なお、特徴量算出部102が算出する各領域の特徴量は上記のものに限定されず、例えば、Auto-Encoderのような畳み込み層を有する学習モデルを用いて算出した特徴量を用いてもよい。 Note that the features of each region calculated by the feature calculation unit 102 are not limited to those described above. For example, features calculated using a learning model with a convolutional layer such as an Auto-Encoder may be used.
 本実施形態において、判定手段103は、学習済みモデルMを用いて、各領域の重要度を判定する。一態様において、学習済みモデルMは、各領域の特徴量を結合した入力データと予め機械学習された第1のパラメータとから第1の行列を算出し、入力データと予め機械学習された第2のパラメータとから第2の行列を算出し、前記第1の行列と前記第2の行列とに基づいて関係性情報を算出し、関係性情報に基づいて各領域の重要度を算出する学習済みモデルである。例えば、学習済みモデルMは、各領域の特徴量を結合した入力データと予め機械学習された第1のパラメータとから第1の行列を算出する1以上の層と、入力データと予め機械学習された第2のパラメータとから第2の行列を算出する1以上の層と、前記第1の行列と前記第2の行列とに基づいて関係性情報を算出する1以上の層と、関係性情報に基づいて各領域の重要度を算出する1以上の層とを備える。学習済みモデルMとしては、これに限定されるものではないが、一態様において、自己注意(Self-Attention)モデルを用いてよい。 In this embodiment, the determination means 103 determines the importance of each region using the trained model M. In one aspect, the trained model M is a trained model that calculates a first matrix from input data combining features of each region and a first parameter trained by machine learning in advance, calculates a second matrix from the input data and a second parameter trained by machine learning in advance, calculates relationship information based on the first matrix and the second matrix, and calculates the importance of each region based on the relationship information. For example, the trained model M includes one or more layers that calculate a first matrix from input data combining features of each region and a first parameter trained by machine learning in advance, one or more layers that calculate a second matrix from input data and a second parameter trained by machine learning in advance, one or more layers that calculate relationship information based on the first matrix and the second matrix, and one or more layers that calculate the importance of each region based on the relationship information. The trained model M is not limited to this, but in one aspect, a self-attention model may be used.
 図6は、自己注意モデルの一例を概略的に示す模式図である。図6に示す例は、領域数が9、特徴量の次元数が1000、キー(第1の行列)およびクエリ(第2の行列)の次元数が4である例について示しているが、領域数、次元数ともにこれに限定されない。 FIG. 6 is a schematic diagram outlining an example of a self-attention model. The example shown in FIG. 6 shows an example in which the number of regions is 9, the number of dimensions of the feature is 1000, and the number of dimensions of the key (first matrix) and query (second matrix) is 4, but both the number of regions and the number of dimensions are not limited to these.
 図6に示す例において、Xは、各領域の特徴量を結合した入力データである。9個の領域のそれぞれの次元数が1000の特徴量が結合された(9,1000)の行列として表される。 In the example shown in Figure 6, X is the input data that combines the features of each region. It is expressed as a (9,1000) matrix in which the features of each of the nine regions, each with a dimension of 1000, are combined.
 まず、学習モデルMでは、入力データXに対して、アテンションパラメータW(第1のパラメータ)およびアテンションパラメータW(第2のパラメータ)をそれぞれ掛け算することによって、キーXW(第1の行列)およびクエリXW (第2の行列)が得られる。アテンションパラメータW(第1のパラメータ)およびアテンションパラメータW(第2のパラメータ)は、後述するように機械学習されたパラメータであり、(1000,4)の行列として表される。得られたキーXWは、(9,4)の行列となり、クエリXW は、(4,9)の行列となる。 First, in the learning model M, the input data X is multiplied by the attention parameter Wk (first parameter) and the attention parameter Wq (second parameter), respectively, to obtain the key XWk (first matrix) and the query XWqT (second matrix). The attention parameter Wk (first parameter) and the attention parameter Wq (second parameter) are machine-learned parameters as described below, and are expressed as a (1000, 4) matrix. The obtained key XWk is a (9, 4) matrix, and the query XWqT is a (4, 9) matrix.
 続いて、学習モデルMでは、以下の式に基づいてアテンション重み(Attention-Weight)Aが生成される。なお、dinは、特徴量の次元数を指す。アテンション重みAは、各領域の重要度に、どの領域の特徴量が関係しているかを示しており、関係性情報に相当する。 Next, in the learning model M, an attention weight A is generated based on the following formula. Here, d in indicates the number of dimensions of the feature. The attention weight A indicates which feature of each region is related to the importance of each region, and corresponds to relationship information.
Figure JPOXMLDOC01-appb-M000001
 そして、アテンション重みAの列方向の総和が算出されることにより、重要度判定結果B(1,9)が算出される。重要度判定結果B(1,9)の各列は、各領域の重要度を示す。
Figure JPOXMLDOC01-appb-M000001
Then, the importance determination result B(1,9) is calculated by calculating the sum of the attention weights A in the column direction. Each column of the importance determination result B(1,9) indicates the importance of each area.
 上述したように、アテンションパラメータW(第1のパラメータ)およびアテンションパラメータW(第2のパラメータ)は、機械学習されたパラメータである。図7は、学習済みモデルMを生成するための学習方法の一例を示すフローチャートである。 As described above, the attention parameter W k (first parameter) and the attention parameter W q (second parameter) are machine-learned parameters. FIG. 7 is a flowchart showing an example of a learning method for generating a trained model M.
 一例において、学習済みモデルMを生成するための機械学習は、図8に示すような重要度判定システム300を用いて行なうことができる。重要度判定システム300は、特定手段101、特徴量算出手段102、判定手段103、学習手段105、分析エンジン106を備えている。 In one example, machine learning for generating the trained model M can be performed using an importance determination system 300 as shown in FIG. 8. The importance determination system 300 includes an identification unit 101, a feature calculation unit 102, a determination unit 103, a learning unit 105, and an analysis engine 106.
 ステップS1において、学習手段105に学習用データが入力される。学習用データとしては、分析結果を示すラベルが付された画像を用いることができる。当該ラベルには、さらに強化学習において用いる報酬値が設定されていてもよい。また、分析結果を示すラベルは、一つの学習用データに複数付されていてもよい。 In step S1, learning data is input to the learning means 105. As the learning data, an image with a label indicating the analysis result can be used. The label may further include a reward value used in reinforcement learning. In addition, multiple labels indicating the analysis result may be attached to one piece of learning data.
 例えば、図5に示すような画像に対して、「重機接近(10)」および「搬送作業(1)」というラベルが付されたものを、建設現場に適用する学習済みモデルMを生成するための学習用データとして用いることができる。また、例えば、工場作業に適用する学習済みモデルMを生成するための学習用データとしては、「梱包作業(1)」、「取付作業(5)」、「ネジ止め作業(10)」というラベルが付された画像などを用いることができる。設定する報酬値としては、分析によって検知する優先度の高い事象について高い報酬値を設定するものであってよい。 For example, images such as those shown in FIG. 5 labeled with "heavy machinery approaching (10)" and "transportation work (1)" can be used as training data for generating a trained model M to be applied to a construction site. Furthermore, for example, images labeled with "packaging work (1)," "installation work (5)," and "screw tightening work (10)" can be used as training data for generating a trained model M to be applied to factory work. The reward value to be set may be a high reward value for events with a high priority to be detected by analysis.
 また、複数の人が含まれる画像を学習用データとして用い、分析対象としては人の検出とし、報酬値としては、人を含む領域を選べたら報酬を高く与え(例えば含まれる人数に応じて+1))、何もない領域を選んだら報酬は0とするように設定してもよい。 In addition, images containing multiple people can be used as learning data, with human detection as the subject of analysis, and the reward value can be set so that if an area containing people is selected, a high reward is given (for example, +1 depending on the number of people contained), and if an empty area is selected, the reward is set to 0.
 ステップS2において、学習手段105は、機械学習モデルM’のパラメータ(例えば、アテンションパラメータW(第1のパラメータ)およびアテンションパラメータW(第2のパラメータ))を初期化する。 In step S2, the learning means 105 initializes parameters of the machine learning model M' (for example, attention parameter W k (first parameter) and attention parameter W q (second parameter)).
 ステップS3において、学習手段105は、次に適用する学習用データが存在するか否かを判定し、次に適用する学習用データが存在しなければ学習を終了する。 In step S3, the learning means 105 determines whether there is any learning data to be applied next, and ends the learning if there is no learning data to be applied next.
 ステップS4において、特定手段101、特徴量算出手段102、判定手段103は、入力画像の替りに学習用データを使用し、学習済みモデルMの替りに機械学習モデルM’を用いることの他は重要度判定システム100と同様に重要度判定を行なう。 In step S4, the identification means 101, the feature calculation means 102, and the determination means 103 perform importance determination in the same manner as the importance determination system 100, except that they use learning data instead of the input image and use the machine learning model M' instead of the trained model M.
 ステップS5において、学習手段105は、学習用データに対して、得られた各領域の重要度に基づき、重要度の高い領域のみを切り出す処理や、重要度の高い領域のみを高画質とし、他の領域を低画質とする処理を行う。 In step S5, the learning means 105 performs a process on the learning data to extract only areas of high importance based on the importance of each area obtained, and to give only the areas of high importance high image quality and the other areas low image quality.
 ステップS6において、学習手段106は、ステップS5において処理を行った学習用データを、分析エンジン106に入力し、分析結果を特定する。なお、分析エンジンに入力するのは複数フレームの画像であってもよい。そして、学習手段105は、得られた分析結果に応じて報酬値を算出する。すなわち、学習手段105は、学習用データに付されたラベルが示す分析結果が得られていれば、当該ラベルに設定された報酬値を加算してよい。 In step S6, the learning means 105 inputs the learning data processed in step S5 to the analysis engine 106 and identifies the analysis result. Note that images of multiple frames may be input to the analysis engine. The learning means 105 then calculates a reward value according to the obtained analysis result. In other words, if the analysis result indicated by the label attached to the learning data is obtained, the learning means 105 may add the reward value set for that label.
 ステップS7において、学習手段106は、ステップS6において算出した報酬値に基づいてパラメータ(アテンションパラメータW(第1のパラメータ)およびアテンションパラメータW(第2のパラメータ))を更新することにより、強化学習を行う。パラメータの更新方法については、公知の強化学習方法に準じてよい。 In step S7, the learning means 106 performs reinforcement learning by updating the parameters (attention parameter W k (first parameter) and attention parameter W q (second parameter)) based on the reward value calculated in step S6. The parameter update method may conform to a known reinforcement learning method.
 以上により、機械学習モデルM’のパラメータを更新することにより、学習済みモデルMを生成することができる。なお、学習済みモデルMは、複数種類生成してもよい。例えば、シーン(建設現場、工場作業)や、時間帯(朝、昼、夜)などに応じて異なる学習済みモデルMを生成し、使い分けてもよい。 As described above, by updating the parameters of the machine learning model M', a trained model M can be generated. Note that multiple types of trained models M may be generated. For example, different trained models M may be generated and used depending on the scene (construction site, factory work) or time of day (morning, afternoon, night), etc.
 続いて、分析方法制御手段104について説明する。分析方法制御手段104は、入力画像の各領域の分析の方法を、判定手段103が判定した当該領域の重要度に応じて制御する。 Next, the analysis method control means 104 will be described. The analysis method control means 104 controls the method of analysis of each area of the input image according to the importance of that area determined by the determination means 103.
 ここで、入力画像の分析処理を行う処理システム1について説明する。図4に示すように、処理システム1は、1以上の第1処理部20、および、第2処理部30を備える。図4では、見易さのために第1処理部20が1つである構成について図示しているが、第1処理部20は複数であってもよい。 Here, we will explain the processing system 1 that performs analysis processing of the input image. As shown in FIG. 4, the processing system 1 includes one or more first processing units 20 and a second processing unit 30. For ease of viewing, FIG. 4 illustrates a configuration with one first processing unit 20, but there may be multiple first processing units 20.
 第1処理部20はそれぞれ、例えば、カメラやLiDAR(Light Detection and Ranging)といったセンサ等に接続されており、カメラやセンサ等から1以上の入力画像を取得する。入力画像は、映像の画角内に分析対象が含まれれば足りる。分析対象は、例えば、工事現場で作業する作業者(人)、作業装置(物体)、および作業者、作業装置の挙動(動作)である。 Each of the first processing units 20 is connected to, for example, a camera or a sensor such as LiDAR (Light Detection and Ranging), and acquires one or more input images from the camera or sensor. It is sufficient for the input image to include the analysis target within the field of view of the image. The analysis target is, for example, a worker (person) working at a construction site, work equipment (object), and the behavior (movement) of the worker and work equipment.
 また、第1処理部20は、複数のカメラやセンサ等に接続され、複数の入力画像を取得してもよい。また、第1処理部20は、単一のカメラ等から、複数の入力画像を取得してもよい。 The first processing unit 20 may also be connected to multiple cameras, sensors, etc., and acquire multiple input images. The first processing unit 20 may also acquire multiple input images from a single camera, etc.
 第1処理部20および第2処理部30は、それぞれ1以上のコンピュータによって構成され得る。第1処理部20と第2処理部30は、ネットワークNWを介して通信可能であり、入力画像の分析処理を分担する。ネットワークNWは、無線、有線であってよく、無線の場合は、Wi-Fi、LTE、4G、5G等の無線通信システムであってもよい。 The first processing unit 20 and the second processing unit 30 may each be configured with one or more computers. The first processing unit 20 and the second processing unit 30 are capable of communicating via a network NW, and share the analysis processing of the input image. The network NW may be wireless or wired, and if wireless, may be a wireless communication system such as Wi-Fi, LTE, 4G, or 5G.
 一態様において、第1処理部20は、エッジ処理部であり、第2処理部30はクラウド処理であってよい。本明細書において「エッジ」とは、データの収集を行なう場所である。エッジ処理部である第1処理部20は、分析対象が存在する場所(例えば、工事現場、工場など)またはその周囲に設置された情報処理装置(コンピュータ)または情報処理装置群であり、分析対象が存在する場所に設置されたカメラやセンサ等から入力画像を取得する。第1処理部20は、カメラやセンサ等と一体であってもよい。また、本明細書において「クラウド」とは、データの処理や保管などを行なう場所である。クラウド処理部である第2処理部30は、データセンターやサーバーファームなど、大きな計算リソースを提供可能な場所に設置された情報処理装置(コンピュータ)または情報処理装置群であってよい。なお、第2処理部30は、第1処理部20とネットワークを介して接続された場所にある処理部であればよく、5G等の基地局に接続された計算資源(例えば、MEC(Multi-access Edge Computing))や、現場の事務所等に設置されたサーバ(オンプレミス(on-premises)サーバ)等であってもよい。 In one embodiment, the first processing unit 20 may be an edge processing unit, and the second processing unit 30 may be a cloud processing unit. In this specification, "edge" refers to a place where data is collected. The first processing unit 20, which is an edge processing unit, is an information processing device (computer) or a group of information processing devices installed at or around the location where the analysis target is present (e.g., a construction site, a factory, etc.), and acquires an input image from a camera, a sensor, etc. installed at the location where the analysis target is present. The first processing unit 20 may be integrated with a camera, a sensor, etc. Also, in this specification, "cloud" refers to a place where data is processed, stored, etc. The second processing unit 30, which is a cloud processing unit, may be an information processing device (computer) or a group of information processing devices installed at a location that can provide large computational resources, such as a data center or a server farm. Note that the second processing unit 30 may be a processing unit located at a location connected to the first processing unit 20 via a network, and may be a computational resource connected to a base station such as 5G (e.g., MEC (Multi-access Edge Computing)), or a server installed in an office at the site (on-premises server), etc.
 第1処理部20は、取得した1以上の入力画像のうち、少なくとも一部について、分析処理を行って分析結果を生成してよい。また、第1処理部20は、取得した1以上の入力画像のうち、少なくとも一部について、特徴量を算出し、算出した特徴量をネットワークNWを介して第2処理部30に送信してもよい。また、第1処理部20は、取得した1以上の入力画像のうち、少なくとも一部について、ネットワークNWを介して第2処理部30に送信してもよい。なお、第1処理部20が、特徴量または入力画像を第2処理部30に送信するときには、特徴量または入力画像に対して、圧縮処理や暗号化処理を施して第2処理部30に送信してもよいし、特徴量または入力画像に対して、圧縮処理や暗号化処理を施さずに第2処理部30に送信してもよい。 The first processing unit 20 may perform an analysis process on at least a portion of the one or more acquired input images to generate an analysis result. The first processing unit 20 may also calculate features for at least a portion of the one or more acquired input images and transmit the calculated features to the second processing unit 30 via the network NW. The first processing unit 20 may also transmit at least a portion of the one or more acquired input images to the second processing unit 30 via the network NW. When the first processing unit 20 transmits the features or the input image to the second processing unit 30, it may compress or encrypt the features or the input image before transmitting them to the second processing unit 30, or it may transmit the features or the input image to the second processing unit 30 without compressing or encrypting them.
 第2処理部30は、第1処理部20から送信された特徴量または入力画像を受信し、必要に応じて復元処理を行い、分析処理を行う。 The second processing unit 30 receives the features or input image sent from the first processing unit 20, performs restoration processing as necessary, and performs analysis processing.
 分析処理は、例えば、入力画像に基づく分析対象(物体、人)の検知、識別、追跡、時系列分析である。この分析処理には、学習モデルを用いてもよい。第1処理部20と第2処理部30の一方または双方が学習モデルを用いてもよい。 The analysis process is, for example, detection, identification, tracking, and time series analysis of the analysis target (object, person) based on the input image. A learning model may be used for this analysis process. One or both of the first processing unit 20 and the second processing unit 30 may use the learning model.
 分析方法制御手段104は、処理システム1(すなわち、第1処理部20、第2処理部30)を、以下のように制御する。 The analysis method control means 104 controls the processing system 1 (i.e., the first processing unit 20 and the second processing unit 30) as follows.
 一例において、分析方法制御手段104は、第1処理部20に対し、入力画像のうち重要度の高い領域を切り取って第2処理部30に配信し、残りは捨てるように制御してもよい。これにより、例えば、第1処理部20と第2処理部30との間の通信帯域が低下したときなどに、重要度の高い部分のみを配信することで、ビットレートを削減することができる。 In one example, the analysis method control means 104 may control the first processing unit 20 to cut out areas of high importance from the input image, deliver them to the second processing unit 30, and discard the rest. This makes it possible to reduce the bit rate by delivering only the parts of high importance when, for example, the communication bandwidth between the first processing unit 20 and the second processing unit 30 is reduced.
 また、一例において、分析方法制御手段104は、第1処理部20に対し、入力画像のうち重要度の高い領域を切り取って第2処理部30に配信し、残りは第1処理部20において分析するように制御してもよい。これにより、入力画像のうち重要度の高い領域においては、第2処理部30において高精度なモデルで分析し、残りの領域については第1処理部20において低精度なモデルで分析することができる。 In one example, the analysis method control means 104 may control the first processing unit 20 to cut out areas of high importance from the input image and deliver them to the second processing unit 30, and analyze the remainder in the first processing unit 20. This allows the second processing unit 30 to analyze the areas of high importance from the input image using a high-precision model, and the first processing unit 20 to analyze the remaining areas using a low-precision model.
 また、一例において、分析方法制御手段104は、第1処理部20もしくは第2処理部30またはその両方に対し、入力画像のうち重要度の高い領域のみを分析し、残りの領域は捨てるように制御してもよい。これにより、計算負荷的にすべての領域を分析することが困難な場合、大事なところだけに絞って分析を行なうことができる。 In one example, the analysis method control means 104 may control the first processing unit 20 or the second processing unit 30, or both, to analyze only areas of high importance in the input image and discard the remaining areas. This makes it possible to focus the analysis on only the important parts when it is difficult to analyze all areas due to the computational load.
 また、一例において、分析方法制御手段104は、第1処理部20もしくは第2処理部30またはその両方に対し、入力画像のうち重要度の高い領域のみを高精度のモデルで分析し、残りの領域は低精度のモデルで分析するように制御してもよい。これにより、計算負荷的に高精度モデルではすべての領域を分析するのが困難な場合、重要度の高い領域だけは高精度モデルで分析し、それ以外の領域は低精度モデルで分析することができる。 In one example, the analysis method control means 104 may control the first processing unit 20 or the second processing unit 30, or both, to analyze only areas of high importance in the input image with a high-precision model, and analyze the remaining areas with a low-precision model. In this way, when it is difficult to analyze all areas with a high-precision model due to the computational load, only the areas of high importance can be analyzed with a high-precision model, and the other areas can be analyzed with a low-precision model.
 以上のように、本実施形態によれば、重要度を判定する領域が固定サイズに限定されず、入力画像または分析対象の特性に応じて任意のサイズに対して重要度を判定することができる。 As described above, according to this embodiment, the area for determining importance is not limited to a fixed size, and importance can be determined for any size depending on the characteristics of the input image or the subject of analysis.
 また、入力画像の特徴量に基づいて関係性情報を生成する学習済みモデルを用いて各領域の重要度を判定するため、入力画像に応じた関係性情報を用いて重要度を判定することができ、精度高く重要度を判定することができる。 In addition, the importance of each region is determined using a trained model that generates relationship information based on the features of the input image, so the importance can be determined using relationship information according to the input image, making it possible to determine the importance with high accuracy.
 また、判定した各領域の重要度に応じて各領域の分析の方法を制御することにより、効率的な分析を行なうことができる。特にカメラが、全天球カメラ、パノラマカメラ等であり、データ量が非常に大きい場合に、重要度の高い領域のみを第1処理部20から第2処理部30に送信するように制御することで、ネットワークの帯域が低下したときにも対応することができる。 Furthermore, by controlling the method of analysis of each area according to the determined importance of each area, it is possible to perform efficient analysis. In particular, when the camera is a spherical camera, panoramic camera, etc. and the amount of data is very large, by controlling so that only areas with high importance are sent from the first processing unit 20 to the second processing unit 30, it is possible to cope with a decrease in the network bandwidth.
 また、一例において、分析方法制御手段104は、処理システム1(すなわち、第1処理部20、第2処理部30)を制御して、第1処理部20と第2処理部30との間で分析対象データの分析の分担をさせてもよい。なお、分析方法制御手段104は、分析が不要であると判断した分析対象データについては、処理システム1に分析させなくてもよい。 In one example, the analysis method control means 104 may control the processing system 1 (i.e., the first processing unit 20 and the second processing unit 30) to divide the analysis of the data to be analyzed between the first processing unit 20 and the second processing unit 30. Note that the analysis method control means 104 may not cause the processing system 1 to analyze data to be analyzed that is determined not to require analysis.
 第1処理部20と第2処理部30との間での分析対象データの分析の分担は、様々な態様で行なうことができる。例えば、分析対象データを取得した第1処理部20において当該分析対象データの分析処理を全て行う態様、分析対象データを取得した第1処理部20においてある程度分析処理を行い、残りの分析処理を第2処理部30で行う態様、第1処理部20で圧縮等の必要最低限の加工を行い、第2処理部30において分析対象データの分析処理を全て行う態様などが挙げられる。例えば、第1処理部20に分析対象データの分析結果を生成させる第1分担方式、第1処理部20に当該分析対象データの特徴量を算出させ、第1処理部20から第2処理部30に特徴量を送信させ、第2処理部30に特徴量から分析結果を生成させる第2分担方式、および第1処理部20から第2処理部30に分析対象データを送信させ、第2処理部30に分析対象データから分析結果を生成させる第3分担方式の中から、第1処理部20の計算能力等に応じて、分析対象データの分析の分担方式を選択してもよい。分担方式の選択に用いる基準としては、計算能力に加えて、計算コスト、分析対象データの重要度、分析対象データが示す危険度、および、各分析対象データの圧縮効率、通信品質等であってもよい。これらの分担方式を使い分けることにより、状況に応じて効率的に分析処理を行うことができる。 The analysis of the data to be analyzed between the first processing unit 20 and the second processing unit 30 can be shared in various ways. For example, the first processing unit 20 that acquires the data to be analyzed performs all of the analysis of the data to be analyzed, the first processing unit 20 that acquires the data to be analyzed performs a certain amount of analysis and the second processing unit 30 performs the remaining analysis, and the first processing unit 20 performs the minimum necessary processing such as compression, and the second processing unit 30 performs all of the analysis of the data to be analyzed. For example, the sharing method for the analysis of the data to be analyzed may be selected according to the computing power of the first processing unit 20, from among a first sharing method in which the first processing unit 20 generates the analysis results of the data to be analyzed, a second sharing method in which the first processing unit 20 calculates the feature values of the data to be analyzed, the first processing unit 20 transmits the feature values to the second processing unit 30, and the second processing unit 30 generates the analysis results from the feature values, and a third sharing method in which the first processing unit 20 transmits the data to be analyzed to the second processing unit 30, and the second processing unit 30 generates the analysis results from the data to be analyzed. In addition to computing power, the criteria used to select the sharing method may also be the computational cost, the importance of the data to be analyzed, the risk level indicated by the data to be analyzed, the compression efficiency of each data to be analyzed, communication quality, etc. By using these sharing methods appropriately, it is possible to perform analysis processing efficiently according to the situation.
 ここで、分析方法制御手段104は、各第1処理部20によって取得された1以上の入力画像の各々に対して、各入力画像の重要度に応じて、分担方式を選択してもよい。例えば、重要度が高い入力画像は、当該入力画像を取得した第1処理部20において分析することにより、迅速に分析を行うようにしてもよいし、重要度が高い入力画像は、第2処理部30において分析することにより、精度高く分析を行なうようにしてもよい。 Here, the analysis method control means 104 may select a sharing method for each of one or more input images acquired by each first processing unit 20, depending on the importance of each input image. For example, an input image with a high importance may be analyzed quickly by being analyzed by the first processing unit 20 that acquired the input image, and an input image with a high importance may be analyzed with high accuracy by being analyzed by the second processing unit 30.
 また、別の一態様において、分析方法制御手段104は、第1処理部20における分析対象データの処理負荷の予測と、第1処理部20と第2処理部30との間の通信帯域の予測に基づいて、分析対象データを、第1処理部20と第2処理部30とのいずれが分析するのかを切替えるように分担方式を選択してもよい。分析方法制御手段104はまた、予測された通信帯域に基づいて、分析対象データ中で破棄する分析対象データ部分を決定してもよい。分析方法制御手段104はまた、第1処理部20および第2処理部30に、分析対象データを処理していない状態から分析対象データを処理するように切り替わったときに、単位フレームセットにおいて当該切り替え前に処理されていたフレームを補完させてもよい。分析方法制御手段104はまた、分析対象データを、第1処理部20および第2処理部30のうち当該分析対象データを分析していない処理部にバッファリングさせ、分析対象データを処理していない処理部が分析対象データを処理するように切り替わったときに、バファリングさせたデータを用いて、分析対象データを分析させてもよい。なお、処理制御手段102は、上述した破棄処理、補完処理、バッファリング処理を、分析対象データの重要度、分析対象データの処理の信頼度、分析対象データの送信用に割り当てられた通信帯域などに基づいて実行してもよい。なお、信頼度は、予測した分析結果にどの程度の確信があるかを示す指標であり、例えば、分析を行なった学習済みモデルから出力されるconfidence値であってよい。 In another embodiment, the analysis method control means 104 may select a sharing method to switch between the first processing unit 20 and the second processing unit 30 to analyze the analysis target data, based on a prediction of the processing load of the analysis target data in the first processing unit 20 and a prediction of the communication bandwidth between the first processing unit 20 and the second processing unit 30. The analysis method control means 104 may also determine the analysis target data portion to be discarded in the analysis target data, based on the predicted communication bandwidth. The analysis method control means 104 may also cause the first processing unit 20 and the second processing unit 30 to complement frames that were processed before the switching in the unit frame set when switching from a state in which the analysis target data is not being processed to a state in which the analysis target data is being processed. The analysis method control means 104 may also cause the first processing unit 20 and the second processing unit 30, which are not analyzing the analysis target data, to buffer the analysis target data, and when the processing unit that is not processing the analysis target data is switched to processing the analysis target data, to analyze the analysis target data using the buffered data. The process control means 102 may execute the above-mentioned discard process, complement process, and buffering process based on the importance of the data to be analyzed, the reliability of the processing of the data to be analyzed, the communication bandwidth allocated for transmitting the data to be analyzed, etc. The reliability is an index indicating the degree of confidence in the predicted analysis result, and may be, for example, a confidence value output from the trained model that performed the analysis.
 なお、以上では、重要度判定システム100が、各第1処理部20および第2処理部30から独立している構成について説明したが、本実施形態はこれに限定されない。例えば、重要度判定システム100の一部または全部が、各第1処理部20、第2処理部30、または、各第1処理部20および第2処理部30に分散して備えられていてもよい。 Note that although the above describes a configuration in which the importance determination system 100 is independent of each of the first processing units 20 and the second processing units 30, this embodiment is not limited to this. For example, a part or all of the importance determination system 100 may be provided in each of the first processing units 20, the second processing unit 30, or in each of the first processing units 20 and the second processing unit 30 in a distributed manner.
 以上、第2の実施形態を処理制御システム100として説明したが、第2の実施形態に係る処理制御システム100を1つの装置に搭載した処理制御装置としてもよい。また、第2の実施形態に係る処理制御システム100の動作は、第2の実施形態に係る処理制御方法であってよい。 The second embodiment has been described above as a process control system 100, but the process control system 100 according to the second embodiment may be mounted on a single device as a process control device. Furthermore, the operation of the process control system 100 according to the second embodiment may be the process control method according to the second embodiment.
 〔第3の実施形態〕
 本発明の第3の実施形態について、図面を参照して詳細に説明する。なお、第1および第2の実施形態にて説明した構成要素と同じ機能を有する構成要素については、同じ符号を付し、その説明を適宜省略する。
Third Embodiment
A third embodiment of the present invention will be described in detail with reference to the drawings. Note that components having the same functions as those described in the first and second embodiments are given the same reference numerals, and the description thereof will be omitted as appropriate.
 本実施形態において、特定手段101は、1以上の入力画像に含まれる複数の物体を検出し、検出した各物体に対応する領域をそれぞれ特定することにより複数の領域を特定する。図9は、本実施形態において特定手段101によって特定される領域の一例を示す模式図である。特定手段101は、入力画像の1フレームFについて、物体検出モデルを用いて検出した物体に対応する領域をそれぞれ特定することにより、複数の領域T1およびT2を特定する。物体に対応する領域は、例えば、物体を囲う領域である。 In this embodiment, the identification means 101 detects multiple objects included in one or more input images, and identifies the multiple regions by identifying the regions corresponding to each of the detected objects. FIG. 9 is a schematic diagram showing an example of the regions identified by the identification means 101 in this embodiment. The identification means 101 identifies the multiple regions T1 and T2 by identifying the regions corresponding to the objects detected using an object detection model for one frame F of the input image. The regions corresponding to the objects are, for example, the regions surrounding the objects.
 本実施形態において、特徴量算出手段102は、第2実施形態に係る特徴量算出手段102と同様に各領域の特徴量を算出する。このとき、特徴量算出手段102は、クラス情報として、第2実施形態に係る特徴量算出手段102と同様に、物体識別モデルを用いて各領域を識別した識別結果を用いてもよい。または、特徴量算出手段102は、クラス情報として、特定手段101が物体検出によって入力画像中の物体を検出したときに得られた識別結果を用いてもよい。 In this embodiment, the feature amount calculation means 102 calculates the feature amount of each region in the same manner as the feature amount calculation means 102 according to the second embodiment. At this time, the feature amount calculation means 102 may use, as class information, the identification result obtained by identifying each region using an object identification model, as in the feature amount calculation means 102 according to the second embodiment. Alternatively, the feature amount calculation means 102 may use, as class information, the identification result obtained when the identification means 101 detects an object in the input image by object detection.
 以上のように、本実施形態によれば、重要度を判定する領域が物体検出された任意のサイズの領域とすることができる。これにより、効率よく重要度を判定することができる。 As described above, according to this embodiment, the area in which importance is determined can be an area of any size in which an object is detected. This allows the importance to be determined efficiently.
 以上、第3の実施形態を処理制御システム100として説明したが、第3の実施形態に係る処理制御システム100を1つの装置に搭載した処理制御装置としてもよい。また、第3の実施形態に係る処理制御システム100の動作は、第3の実施形態に係る処理制御方法であってよい。 The third embodiment has been described above as a process control system 100, but the process control system 100 according to the third embodiment may be mounted on a single device as a process control device. Furthermore, the operation of the process control system 100 according to the third embodiment may be the process control method according to the third embodiment.
 〔第4の実施形態〕
 本発明の第4の実施形態について、図面を参照して詳細に説明する。なお、第1、第2および第3の実施形態にて説明した構成要素と同じ機能を有する構成要素については、同じ符号を付し、その説明を適宜省略する。
Fourth embodiment
A fourth embodiment of the present invention will be described in detail with reference to the drawings. Note that components having the same functions as those described in the first, second and third embodiments are given the same reference numerals, and the description thereof will be omitted as appropriate.
 本実施形態において、特定手段101は、互いに異なるカメラから入力された複数の入力画像内の1以上の領域をそれぞれ特定することにより複数の領域を特定する。 In this embodiment, the identification means 101 identifies multiple regions by identifying one or more regions within multiple input images input from different cameras.
 本実施形態において、特徴量算出手段102は、各入力画像内の領域の特徴量を算出する。そして、判定手段103は、複数の入力画像内の領域の特徴量を結合した入力データを学習済みモデルMに入力することにより、複数の入力画像内の領域の重要度をそれぞれ判定することができる。 In this embodiment, the feature calculation means 102 calculates the feature of the region in each input image. The determination means 103 then inputs input data that combines the feature of the regions in the multiple input images into the trained model M, thereby being able to determine the importance of each of the regions in the multiple input images.
 このように、入力画像ごとに特徴量を学習済みモデルに入力するのではなく、複数の入力画像内の領域の特徴量を結合した入力データを学習済みモデルに入力することで、複数カメラに跨った重要度判定を行なうことができる。 In this way, instead of inputting the features of each input image into the trained model, input data that combines the features of regions within multiple input images is input into the trained model, making it possible to perform importance judgments across multiple cameras.
 以上、第4の実施形態を処理制御システム100として説明したが、第4の実施形態に係る処理制御システム100を1つの装置に搭載した処理制御装置としてもよい。また、第4の実施形態に係る処理制御システム100の動作は、第4の実施形態に係る処理制御方法であってよい。 The fourth embodiment has been described above as a process control system 100, but the process control system 100 according to the fourth embodiment may be mounted on a single device to form a process control device. Furthermore, the operation of the process control system 100 according to the fourth embodiment may be the process control method according to the fourth embodiment.
 本開示は上述した各実施形態に限定されるものではなく、種々の変更が可能であり、異なる実施形態にそれぞれ開示された構成、動作、処理を適宜組み合わせて得られる実施形態についても本開示の技術的範囲に含まれる。また、異なる実施形態にそれぞれ開示された動作、処理の順序を適宜変更したものについても本開示の技術的範囲に含まれる。 This disclosure is not limited to the above-described embodiments, and various modifications are possible. The technical scope of this disclosure also includes embodiments obtained by appropriately combining the configurations, operations, and processes disclosed in the different embodiments. In addition, the technical scope of this disclosure also includes embodiments in which the order of the operations and processes disclosed in the different embodiments is appropriately changed.
 第1から第4の実施形態に係る各構成は、(1)1または複数のハードウェア、(2)1または複数のソフトウェア、(3)ハードウェアとソフトウェアとの組合せ、(4)第2のいずれによって実現されてもよい。各装置、各機能及び各処理を、少なくとも1つのプロセッサ及び少なくとも1つのメモリを有する少なくとも1つのコンピュータにより実現してもよい。このようなコンピュータの一例(以下、コンピュータCと記載する)を図10に示す。例えば、メモリC2に第1から第4の実施形態に記載の処理制御方法を実施するためのプログラムを格納し、メモリC2に格納されたプログラムPをプロセッサC1が読み取って実行することにより、第1から第4の実施形態に記載の各機能を実現してもよい。 Each of the configurations according to the first to fourth embodiments may be realized by (1) one or more pieces of hardware, (2) one or more pieces of software, (3) a combination of hardware and software, or (4) the second. Each device, function, and process may be realized by at least one computer having at least one processor and at least one memory. An example of such a computer (hereinafter referred to as computer C) is shown in FIG. 10. For example, each of the functions described in the first to fourth embodiments may be realized by storing a program for implementing the processing control method described in the first to fourth embodiments in memory C2, and having processor C1 read and execute program P stored in memory C2.
 プログラムPは、コンピュータCに読み込まれた場合に、第1から第4の実施形態に記載の1またはそれ以上の機能をコンピュータCに実行させるさめの命令群を含む。プログラムPは、メモリC2に格納される。プロセッサC1はとしては、例えば、CPU(Central Processing Unit)等を用いることができる。メモリC2としては、例えば、Read Only Memory(ROM)、Random Access Memory(RAM)、フラッシュメモリ、Solid State Drive(SSD)等を用いることができる。 The program P includes a set of instructions that, when loaded into the computer C, causes the computer C to execute one or more of the functions described in the first to fourth embodiments. The program P is stored in the memory C2. The processor C1 can be, for example, a CPU (Central Processing Unit). The memory C2 can be, for example, a Read Only Memory (ROM), a Random Access Memory (RAM), a flash memory, a Solid State Drive (SSD), etc.
 また、プログラムPは、コンピュータCが読み取り可能な、一時的でない有形の記録媒体Mに記録することができる。このような記録媒体Mとしては、例えば、テープ、ディスク、カード、半導体メモリ、又はプログラマブルな論理回路などを用いることができる。コンピュータCは、このような記録媒体Mを介してプログラムPを取得することができる。また、プログラムPは、伝送媒体を介して伝送することができる。このような伝送媒体としては、例えば、通信ネットワーク、又は放送波などを用いることができる。コンピュータCは、このような伝送媒体を介してプログラムPを取得することもできる。 The program P can also be recorded on a non-transitory, tangible recording medium M that can be read by the computer C. Such a recording medium M can be, for example, a tape, a disk, a card, a semiconductor memory, or a programmable logic circuit. The computer C can obtain the program P via such a recording medium M. The program P can also be transmitted via a transmission medium. Such a transmission medium can be, for example, a communications network or broadcast waves. The computer C can also obtain the program P via such a transmission medium.
 本開示は、上述した実施形態には限定されない。即ち、本発明は、本開示のスコープ内において、当業者が理解し得る様々な態様を適用することができる。なお、上述した実施形態の一部又は全部は、以下のようにも記載され得る。ただし、本発明は、以下の記載する態様に限定されるものではない。 The present disclosure is not limited to the above-described embodiments. In other words, the present invention can be applied in various aspects that a person skilled in the art can understand within the scope of the present disclosure. Note that some or all of the above-described embodiments can also be described as follows. However, the present invention is not limited to the aspects described below.
 (付記1)
 1以上の入力画像内の複数の領域の重要度を判定する重要度判定システムであって、
 前記1以上の入力画像内の複数の領域を特定する特定手段と、
 各領域の特徴量を算出する特徴量算出手段と、
 各領域の特徴量に基づいて、各領域の特徴量間の関係性を示す関係性情報を生成し、前記関係性情報に基づいて各領域の重要度を判定する判定手段と、を備える重要度判定システム。
(Appendix 1)
1. An importance determination system for determining importance of a plurality of regions in one or more input images, comprising:
means for identifying a plurality of regions within the one or more input images;
A feature amount calculation means for calculating a feature amount of each region;
An importance determination system comprising: a determination means for generating relationship information indicating a relationship between the feature amounts of each region based on the feature amounts of each region, and determining the importance of each region based on the relationship information.
 (付記2)
 前記判定手段は、各領域の特徴量を結合した入力データと予め機械学習された第1のパラメータとから第1の行列を算出し、前記入力データと予め機械学習された第2のパラメータとから第2の行列を算出し、前記第1の行列と前記第2の行列とに基づいて前記関係性情報を算出し、前記関係性情報に基づいて各領域の重要度を算出する、付記1に記載の重要度判定システム。
(Appendix 2)
The importance determination system described in Appendix 1, wherein the determination means calculates a first matrix from input data combining features of each region and a first parameter that has been machine-learned in advance, calculates a second matrix from the input data and a second parameter that has been machine-learned in advance, calculates the relationship information based on the first matrix and the second matrix, and calculates the importance of each region based on the relationship information.
 (付記3)
 前記特徴量算出手段は、各領域の特徴量に、当該領域に含まれる物体の種類の推定結果を含める、付記1または付記2に記載の重要度判定システム。
(Appendix 3)
3. The importance determination system according to claim 1, wherein the feature calculation means includes an estimation result of a type of object contained in each region in the feature of the region.
 (付記4)
 前記特徴量算出手段は、各領域の特徴量に、当該領域の前記入力画像内の位置を含める、付記1~3のいずれか1つに記載の重要度判定システム。
(Appendix 4)
The importance determination system according to any one of claims 1 to 3, wherein the feature amount calculation means includes in the feature amount of each region the position of the region within the input image.
 (付記5)
 前記特定手段は、前記1以上の入力画像内における位置が予め設定された、少なくとも2種類以上のサイズを有する前記複数の領域を特定する、付記1~4のいずれか1つに記載の重要度判定システム。
(Appendix 5)
The importance determination system according to any one of claims 1 to 4, wherein the identification means identifies the plurality of areas having at least two or more sizes whose positions within the one or more input images are preset.
 (付記6)
 前記特定手段は、前記1以上の入力画像に含まれる複数の物体を検出し、検出した各物体に対応する領域をそれぞれ特定することにより前記複数の領域を特定する、付記1~4のいずれか1つに記載の重要度判定システム。
(Appendix 6)
The identification means detects a plurality of objects included in the one or more input images, and identifies the plurality of regions by identifying a region corresponding to each of the detected objects.
 (付記7)
 前記特定手段は、互いに異なるカメラから入力された複数の入力画像内の1以上の領域をそれぞれ特定することにより前記複数の領域を特定する、付記1~6のいずれか1つに記載の重要度判定システム。
(Appendix 7)
The importance determination system according to any one of claims 1 to 6, wherein the identification means identifies the plurality of regions by identifying one or more regions within a plurality of input images input from different cameras.
 (付記8)
 各領域の分析の方法を当該領域の前記重要度に応じて制御する分析方法制御手段をさらに備える、付記1~7のいずれか1つに記載の重要度判定システム。
(Appendix 8)
8. The importance determination system according to claim 1, further comprising an analysis method control means for controlling a method of analysis of each area in accordance with the importance of the area.
 (付記9)
 1以上の入力画像内の複数の領域の重要度を判定する重要度判定装置であって、
 前記1以上の入力画像内の複数の領域を特定する特定部と、
 各領域の特徴量を算出する特徴量算出部と、
 各領域の特徴量を算出する特徴量算出手段と、
 各領域の特徴量に基づいて、各領域の特徴量間の関係性を示す関係性情報を生成し、前記関係性情報に基づいて各領域の重要度を判定する判定部と、を備える重要度判定装置。
(Appendix 9)
An importance determination device for determining importance of a plurality of regions in one or more input images, comprising:
an identification unit for identifying a plurality of regions within the one or more input images;
A feature amount calculation unit that calculates a feature amount of each region;
A feature amount calculation means for calculating a feature amount of each region;
An importance determination device comprising: a determination unit that generates relationship information indicating a relationship between the feature amounts of each region based on the feature amounts of each region, and determines the importance of each region based on the relationship information.
 (付記10)
 前記判定部は、各領域の特徴量を結合した入力データと予め機械学習された第1のパラメータとから第1の行列を算出し、前記入力データと予め機械学習された第2のパラメータとから第2の行列を算出し、前記第1の行列と前記第2の行列とに基づいて前記関係性情報を算出し、前記関係性情報に基づいて各領域の重要度を算出する、付記9に記載の重要度判定装置。
(Appendix 10)
The importance determination device described in Appendix 9, wherein the determination unit calculates a first matrix from input data combining features of each region and a first parameter that has been machine-learned in advance, calculates a second matrix from the input data and a second parameter that has been machine-learned in advance, calculates the relationship information based on the first matrix and the second matrix, and calculates the importance of each region based on the relationship information.
 (付記11)
 前記特徴量算出部は、各領域の特徴量に、当該領域に含まれる物体の種類の推定結果を含める、付記9または10に記載の重要度判定装置。
(Appendix 11)
11. The importance determination device according to claim 9, wherein the feature amount calculation unit includes an estimation result of a type of object included in each region in the feature amount of the region.
 (付記12)
 前記特徴量算出部は、各領域の特徴量に、当該領域の前記入力画像内の位置を含める、付記9~11のいずれか1項に記載の重要度判定装置。
(Appendix 12)
12. The importance determination device according to claim 9, wherein the feature amount calculation unit includes in the feature amount of each region the position of the region within the input image.
 (付記13)
 前記特定部は、前記1以上の入力画像内における位置が予め設定された、少なくとも2種類以上のサイズを有する前記複数の領域を特定する、付記9~12のいずれか1つに記載の重要度判定装置。
(Appendix 13)
The importance determination device according to any one of claims 9 to 12, wherein the identification unit identifies the plurality of areas having at least two or more sizes whose positions within the one or more input images are preset.
 (付記14)
 前記特定部は、前記1以上の入力画像に含まれる複数の物体を検出し、検出した各物体に対応する領域をそれぞれ特定することにより前記複数の領域を特定する、付記9~12のいずれか1つに記載の重要度判定装置。
(Appendix 14)
The importance determination device according to any one of appendices 9 to 12, wherein the identification unit detects a plurality of objects included in the one or more input images, and identifies the plurality of regions by identifying a region corresponding to each of the detected objects.
 (付記15)
 前記特定部は、互いに異なるカメラから入力された複数の入力画像内の1以上の領域をそれぞれ特定することにより前記複数の領域を特定する、付記9~14のいずれか1つに記載の重要度判定装置。
(Appendix 15)
The importance determination device according to any one of claims 9 to 14, wherein the identification unit identifies the plurality of regions by identifying one or more regions within a plurality of input images input from different cameras.
 (付記16)
 各領域の分析の方法を当該領域の前記重要度に応じて制御する分析方法制御部をさらに備える、付記9~15のいずれか1つに記載の重要度判定装置。
(Appendix 16)
16. The importance determination device according to claim 9, further comprising an analysis method control unit that controls a method of analysis of each area according to the importance of the area.
 (付記17)
 1以上の入力画像内の複数の領域の重要度を判定する重要度判定方法であって、
 前記1以上の入力画像内の複数の領域を特定し、
 各領域の特徴量を算出し、
 各領域の特徴量を算出する特徴量算出手段と、
 各領域の特徴量に基づいて、各領域の特徴量間の関係性を示す関係性情報を生成し、前記関係性情報に基づいて各領域の重要度を判定する、重要度判定方法。
(Appendix 17)
1. A method for determining importance of a plurality of regions in one or more input images, comprising:
Identifying a plurality of regions within the one or more input images;
Calculate the feature values for each region,
A feature amount calculation means for calculating a feature amount of each region;
An importance determination method comprising: generating relationship information indicating a relationship between the feature amounts of each region based on the feature amounts of each region; and determining the importance of each region based on the relationship information.
 (付記18)
 各領域の特徴量を結合した入力データと予め機械学習された第1のパラメータとから第1の行列を算出し、前記入力データと予め機械学習された第2のパラメータとから第2の行列を算出し、前記第1の行列と前記第2の行列とに基づいて前記関係性情報を算出し、前記関係性情報に基づいて各領域の重要度を算出する、付記17に記載の重要度判定方法。
(Appendix 18)
An importance determination method as described in Appendix 17, which calculates a first matrix from input data combining features of each region and a first parameter that has been machine-learned in advance, calculates a second matrix from the input data and a second parameter that has been machine-learned in advance, calculates the relationship information based on the first matrix and the second matrix, and calculates the importance of each region based on the relationship information.
 (付記19)
 各領域の特徴量に、当該領域に含まれる物体の種類の推定結果を含める、付記17または18に記載の重要度判定方法。
(Appendix 19)
19. The importance determination method according to claim 17 or 18, wherein the feature amount of each region includes an estimation result of the type of object contained in the region.
 (付記20)
 各領域の特徴量に、当該領域の前記入力画像内の位置を含める、付記17~19のいずれか1項に記載の重要度判定方法。
(Appendix 20)
20. The method of determining importance according to any one of claims 17 to 19, wherein the feature amount of each region includes the position of the region within the input image.
 (付記21)
 前記1以上の入力画像内における位置が予め設定された、少なくとも2種類以上のサイズを有する前記複数の領域を特定する、付記17~20のいずれか1つに記載の重要度判定方法。
(Appendix 21)
The importance determination method according to any one of appendices 17 to 20, further comprising identifying the plurality of regions having at least two or more sizes, the positions of which within the one or more input images being preset.
 (付記22)
 前記1以上の入力画像に含まれる複数の物体を検出し、検出した各物体に対応する領域をそれぞれ特定することにより前記複数の領域を特定する、付記17~20のいずれか1つに記載の重要度判定方法。
(Appendix 22)
21. The importance determination method according to any one of appendices 17 to 20, further comprising: detecting a plurality of objects included in the one or more input images; and identifying the plurality of regions by identifying a region corresponding to each of the detected objects.
 (付記23)
 互いに異なるカメラから入力された複数の入力画像内の1以上の領域をそれぞれ特定することにより前記複数の領域を特定する、付記17~22のいずれか1つに記載の重要度判定方法。
(Appendix 23)
23. The importance determination method according to any one of appendices 17 to 22, wherein the plurality of regions are identified by identifying one or more regions within each of a plurality of input images input from different cameras.
 (付記24)
 各領域の分析の方法を当該領域の前記重要度に応じて制御する、付記17~23のいずれか1つに記載の重要度判定方法。
(Appendix 24)
24. The importance determination method according to any one of claims 17 to 23, wherein a method of analysis of each area is controlled according to the importance of the area.
 (付記25)
 上述した処理制御システムは、更に、以下のように表現することもできる。
(Appendix 25)
The above-described process control system can also be expressed as follows.
 1以上の入力画像内の複数の領域の重要度を判定する重要度判定システムであって、
 少なくとも1つのプロセッサを備え、前記プロセッサは、
 前記1以上の入力画像内の複数の領域を特定する特定処理と、
 各領域の特徴量を算出する特徴量算出処理と、
 各領域の特徴量に基づいて、各領域の特徴量間の関係性を示す関係性情報を生成し、前記関係性情報に基づいて各領域の重要度を判定する判定処理と、を実行する重要度判定システム。
1. An importance determination system for determining importance of a plurality of regions in one or more input images, comprising:
At least one processor, the processor comprising:
an identification process for identifying a plurality of regions within the one or more input images;
A feature amount calculation process for calculating a feature amount of each region;
An importance determination system that generates relationship information indicating a relationship between the feature amounts of each region based on the feature amounts of each region, and executes a determination process that determines the importance of each region based on the relationship information.
 なお、この処理制御システムは、更に少なくとも1つのメモリを備えていてもよく、このメモリには、前記特定処理と、前記特徴量算出処理と、前記判定処理とを前記プロセッサに実行させるためのプログラムが記憶されていてもよい。また、このプログラムは、コンピュータ読み取り可能な一時的でない有形の記録媒体に記録されていてもよい。 The processing control system may further include at least one memory, and this memory may store a program for causing the processor to execute the identification process, the feature calculation process, and the determination process. The program may also be recorded on a computer-readable, non-transitory, tangible recording medium.
 (付記26)
 上述した処理制御システムは、更に、以下のように表現することもできる。
(Appendix 26)
The above-described process control system can also be expressed as follows.
 1以上の入力画像内の複数の領域の重要度を判定する重要度判定装置であって、
 少なくとも1つのプロセッサを備え、前記プロセッサは、
 前記1以上の入力画像内の複数の領域を特定する特定処理と、
 各領域の特徴量を算出する特徴量算出処理と、
 各領域の特徴量に基づいて、各領域の特徴量間の関係性を示す関係性情報を生成し、前記関係性情報に基づいて各領域の重要度を判定する判定処理と、を実行する重要度判定装置。
An importance determination device for determining importance of a plurality of regions in one or more input images, comprising:
At least one processor, the processor comprising:
an identification process for identifying a plurality of regions within the one or more input images;
A feature amount calculation process for calculating a feature amount of each region;
an importance determination device that generates relationship information indicating a relationship between the feature amounts of each region based on the feature amounts of each region, and executes a determination process of determining the importance of each region based on the relationship information.
 なお、この処理制御システムは、更に少なくとも1つのメモリを備えていてもよく、このメモリには、前記特定処理と、前記特徴量算出処理と、前記判定処理とを前記プロセッサに実行させるためのプログラムが記憶されていてもよい。また、このプログラムは、コンピュータ読み取り可能な一時的でない有形の記録媒体に記録されていてもよい。 The processing control system may further include at least one memory, and this memory may store a program for causing the processor to execute the identification process, the feature calculation process, and the determination process. The program may also be recorded on a computer-readable, non-transitory, tangible recording medium.
1 処理システム
10 カメラ
20 第1処理部
30 第2処理部
100 重要度判定システム
101 特定手段
102 特徴量算出手段
103 判定手段
104 分析方法制御手段104
M 学習済みモデル
REFERENCE SIGNS LIST 1 Processing system 10 Camera 20 First processing unit 30 Second processing unit 100 Importance determination system 101 Identification means 102 Feature amount calculation means 103 Determination means 104 Analysis method control means 104
M Trained model

Claims (20)

  1.  1以上の入力画像内の複数の領域の重要度を判定する重要度判定システムであって、
     前記1以上の入力画像内の複数の領域を特定する特定手段と、
     各領域の特徴量を算出する特徴量算出手段と、
     各領域の特徴量に基づいて、各領域の特徴量間の関係性を示す関係性情報を生成し、前記関係性情報に基づいて各領域の重要度を判定する判定手段と、を備える重要度判定システム。
    1. An importance determination system for determining importance of a plurality of regions in one or more input images, comprising:
    means for identifying a plurality of regions within the one or more input images;
    A feature amount calculation means for calculating a feature amount of each region;
    An importance determination system comprising: a determination means for generating relationship information indicating a relationship between the feature amounts of each region based on the feature amounts of each region, and determining the importance of each region based on the relationship information.
  2.  前記判定手段は、各領域の特徴量を結合した入力データと予め機械学習された第1のパラメータとから第1の行列を算出し、前記入力データと予め機械学習された第2のパラメータとから第2の行列を算出し、前記第1の行列と前記第2の行列とに基づいて前記関係性情報を算出し、前記関係性情報に基づいて各領域の重要度を算出する、請求項1に記載の重要度判定システム。 The importance determination system according to claim 1, wherein the determination means calculates a first matrix from input data combining features of each region and a first parameter that has been machine-learned in advance, calculates a second matrix from the input data and a second parameter that has been machine-learned in advance, calculates the relationship information based on the first matrix and the second matrix, and calculates the importance of each region based on the relationship information.
  3.  前記特徴量算出手段は、各領域の特徴量に、当該領域に含まれる物体の種類の推定結果を含める、請求項1または2に記載の重要度判定システム。 The importance determination system according to claim 1 or 2, wherein the feature calculation means includes in the feature of each region an estimation result of the type of object contained in the region.
  4.  前記特徴量算出手段は、各領域の特徴量に、当該領域の前記入力画像内の位置を含める、請求項1~3のいずれか1項に記載の重要度判定システム。 The importance determination system according to any one of claims 1 to 3, wherein the feature calculation means includes the position of each region within the input image in the feature of the region.
  5.  前記特定手段は、前記1以上の入力画像内における位置が予め設定された、少なくとも2種類以上のサイズを有する前記複数の領域を特定する、請求項1~4のいずれか1項に記載の重要度判定システム。 The importance determination system according to any one of claims 1 to 4, wherein the identification means identifies the plurality of regions having at least two or more sizes whose positions in the one or more input images are preset.
  6.  前記特定手段は、前記1以上の入力画像に含まれる複数の物体を検出し、検出した各物体に対応する領域をそれぞれ特定することにより前記複数の領域を特定する、請求項1~4のいずれか1項に記載の重要度判定システム。 The importance determination system according to any one of claims 1 to 4, wherein the identification means detects a plurality of objects included in the one or more input images, and identifies the plurality of regions by identifying a region corresponding to each of the detected objects.
  7.  前記特定手段は、互いに異なるカメラから入力された複数の入力画像内の1以上の領域をそれぞれ特定することにより前記複数の領域を特定する、請求項1~6のいずれか1項に記載の重要度判定システム。 The importance determination system according to any one of claims 1 to 6, wherein the identification means identifies the multiple regions by identifying one or more regions in multiple input images input from different cameras.
  8.  1以上の入力画像内の複数の領域の重要度を判定する重要度判定装置であって、
     前記1以上の入力画像内の複数の領域を特定する特定部と、
     各領域の特徴量を算出する特徴量算出部と、
     各領域の特徴量を算出する特徴量算出手段と、
     各領域の特徴量に基づいて、各領域の特徴量間の関係性を示す関係性情報を生成し、前記関係性情報と各領域の特徴量とに基づいて各領域の重要度を判定する判定部と、を備える重要度判定装置。
    An importance determination device for determining importance of a plurality of regions in one or more input images, comprising:
    an identification unit for identifying a plurality of regions within the one or more input images;
    A feature amount calculation unit that calculates a feature amount of each region;
    A feature amount calculation means for calculating a feature amount of each region;
    An importance determination device comprising: a determination unit that generates relationship information indicating a relationship between the features of each region based on the features of each region, and determines the importance of each region based on the relationship information and the features of each region.
  9.  前記判定部は、各領域の特徴量を結合した入力データと予め機械学習された第1のパラメータとから第1の行列を算出し、前記入力データと予め機械学習された第2のパラメータとから第2の行列を算出し、前記第1の行列と前記第2の行列とに基づいて前記関係性情報を算出し、前記関係性情報に基づいて各領域の重要度を算出する、請求項8に記載の重要度判定装置。 The importance determination device according to claim 8, wherein the determination unit calculates a first matrix from input data combining features of each region and a first parameter that has been machine-learned in advance, calculates a second matrix from the input data and a second parameter that has been machine-learned in advance, calculates the relationship information based on the first matrix and the second matrix, and calculates the importance of each region based on the relationship information.
  10.  前記特徴量算出部は、各領域の特徴量に、当該領域に含まれる物体の種類の推定結果を含める、請求項8または9に記載の重要度判定装置。 The importance determination device according to claim 8 or 9, wherein the feature amount calculation unit includes in the feature amount of each region an estimation result of the type of object contained in the region.
  11.  前記特徴量算出部は、各領域の特徴量に、当該領域の前記入力画像内の位置を含める、請求項8~10のいずれか1項に記載の重要度判定装置。 The importance determination device according to any one of claims 8 to 10, wherein the feature amount calculation unit includes the position of each region within the input image in the feature amount of the region.
  12.  前記特定部は、前記1以上の入力画像内における位置が予め設定された、少なくとも2種類以上のサイズを有する前記複数の領域を特定する、請求項8~11のいずれか1項に記載の重要度判定装置。 The importance determination device according to any one of claims 8 to 11, wherein the identification unit identifies the multiple regions having at least two or more sizes whose positions in the one or more input images are preset.
  13.  前記特定部は、前記1以上の入力画像に含まれる複数の物体を検出し、検出した各物体に対応する領域をそれぞれ取得することにより前記複数の領域を特定する、請求項8~11のいずれか1項に記載の重要度判定装置。 The importance determination device according to any one of claims 8 to 11, wherein the identification unit detects a plurality of objects included in the one or more input images, and identifies the plurality of regions by acquiring a region corresponding to each of the detected objects.
  14.  1以上の入力画像内の複数の領域の重要度を判定する重要度判定方法であって、
     前記1以上の入力画像内の複数の領域を特定し、
     各領域の特徴量を算出し、
     各領域の特徴量を算出する特徴量算出手段と、
     各領域の特徴量に基づいて、各領域の特徴量間の関係性を示す関係性情報を生成し、前記関係性情報と各領域の特徴量とに基づいて各領域の重要度を判定する、重要度判定方法。
    1. A method for determining importance of a plurality of regions in one or more input images, comprising:
    Identifying a plurality of regions within the one or more input images;
    Calculate the feature values for each region,
    A feature amount calculation means for calculating a feature amount of each region;
    An importance determination method, comprising: generating relationship information indicating a relationship between the feature amounts of each region based on the feature amounts of each region; and determining the importance of each region based on the relationship information and the feature amounts of each region.
  15.  各領域の特徴量を結合した入力データと予め機械学習された第1のパラメータとから第1の行列を算出し、前記入力データと予め機械学習された第2のパラメータとから第2の行列を算出し、前記第1の行列と前記第2の行列とに基づいて前記関係性情報を算出し、前記関係性情報に基づいて各領域の重要度を算出する、請求項14に記載の重要度判定方法。 The importance determination method according to claim 14, which calculates a first matrix from input data combining features of each region and a first parameter that has been machine-learned in advance, calculates a second matrix from the input data and a second parameter that has been machine-learned in advance, calculates the relationship information based on the first matrix and the second matrix, and calculates the importance of each region based on the relationship information.
  16.  各領域の特徴量に、当該領域に含まれる物体の種類の推定結果を含める、請求項14または15に記載の重要度判定方法。 The importance determination method according to claim 14 or 15, in which the feature amount of each region includes an estimation result of the type of object contained in the region.
  17.  各領域の特徴量に、当該領域の前記入力画像内の位置を含める、請求項14~16のいずれか1項に記載の重要度判定方法。 The method for determining importance according to any one of claims 14 to 16, in which the feature amount of each region includes the position of the region within the input image.
  18.  前記1以上の入力画像内における位置が予め設定された、少なくとも2種類以上のサイズを有する前記複数の領域を取得する、請求項14~17のいずれか1項に記載の重要度判定方法。 The method for determining importance according to any one of claims 14 to 17, in which the multiple regions having at least two different sizes and whose positions in the one or more input images are preset are acquired.
  19.  前記1以上の入力画像に含まれる複数の物体を検出し、検出した各物体に対応する領域をそれぞれ取得することにより前記複数の領域を特定する、請求項14~17のいずれか1項に記載の重要度判定方法。 The importance determination method according to any one of claims 14 to 17, wherein a plurality of objects included in the one or more input images are detected, and the plurality of regions are identified by acquiring a region corresponding to each of the detected objects.
  20.  互いに異なるカメラから入力された複数の入力画像内の1以上の領域をそれぞれ特定することにより前記複数の領域を特定する、請求項14~19のいずれか1項に記載の重要度判定方法。

     
    The importance determination method according to any one of claims 14 to 19, further comprising identifying the plurality of regions by identifying one or more regions in each of a plurality of input images input from different cameras.

PCT/JP2022/038458 2022-10-14 2022-10-14 Degree-of-importance assessment system, degree-of-importance assessment device, and degree-of-importance assessment method WO2024079903A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/038458 WO2024079903A1 (en) 2022-10-14 2022-10-14 Degree-of-importance assessment system, degree-of-importance assessment device, and degree-of-importance assessment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/038458 WO2024079903A1 (en) 2022-10-14 2022-10-14 Degree-of-importance assessment system, degree-of-importance assessment device, and degree-of-importance assessment method

Publications (1)

Publication Number Publication Date
WO2024079903A1 true WO2024079903A1 (en) 2024-04-18

Family

ID=90669346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038458 WO2024079903A1 (en) 2022-10-14 2022-10-14 Degree-of-importance assessment system, degree-of-importance assessment device, and degree-of-importance assessment method

Country Status (1)

Country Link
WO (1) WO2024079903A1 (en)

Similar Documents

Publication Publication Date Title
US11610477B2 (en) Traffic assistance system, server, and vehicle-mounted device
JP5693162B2 (en) Image processing system, imaging apparatus, image processing apparatus, control method therefor, and program
US20150312529A1 (en) System and method for video-based determination of queue configuration parameters
CN110176024B (en) Method, device, equipment and storage medium for detecting target in video
CN112232426B (en) Training method, device and equipment of target detection model and readable storage medium
US10616340B2 (en) Distributed computing of large data by selecting a computational resource of a remote server based on selection policies and data information wherein the selections policies are associated with location constraints, time constraints, and data type constraints
US20200272524A1 (en) Method and system for auto-setting of image acquisition and processing modules and of sharing resources in large scale video systems
US10989543B2 (en) Controller
CN111770306A (en) Scene monitoring method and device, computer equipment and storage medium
US20210056774A1 (en) Information processing method and information processing system
JP2019503152A (en) Centralized control server, local terminal, distributed monitoring system, monitoring method, and program
CN111242167B (en) Distributed image labeling method, device, computer equipment and storage medium
CN111860256A (en) Security detection method and device, computer equipment and storage medium
WO2024079903A1 (en) Degree-of-importance assessment system, degree-of-importance assessment device, and degree-of-importance assessment method
JP6807042B2 (en) Information processing equipment, information processing methods and programs
WO2024079904A1 (en) Processing control system, processing control device, and processing control method
WO2024079901A1 (en) Processing control system, processing control device, and processing control method
US11558722B2 (en) Management apparatus, communication apparatus, system, method, and non-transitory computer readable medium
WO2024079902A1 (en) Processing control system, processing control device, and processing control method
CN115345305A (en) Inference system, method, device and related equipment
US11195025B2 (en) Information processing device, information processing method, and storage medium for temporally dividing time-series data for analysis
Wang et al. Real-Time High-Resolution Pedestrian Detection in Crowded Scenes via Parallel Edge Offloading
EP4199495A1 (en) Regulating frame processing rates
JP7151795B2 (en) Data stream allocation method, system and program
US20220357991A1 (en) Information processing apparatus, computer-readable recording medium storing aggregation control program, and aggregation control method