WO2024079902A1 - Processing control system, processing control device, and processing control method - Google Patents

Processing control system, processing control device, and processing control method Download PDF

Info

Publication number
WO2024079902A1
WO2024079902A1 PCT/JP2022/038457 JP2022038457W WO2024079902A1 WO 2024079902 A1 WO2024079902 A1 WO 2024079902A1 JP 2022038457 W JP2022038457 W JP 2022038457W WO 2024079902 A1 WO2024079902 A1 WO 2024079902A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing unit
target data
analysis target
analysis
processing
Prior art date
Application number
PCT/JP2022/038457
Other languages
French (fr)
Japanese (ja)
Inventor
浩一 二瓶
昌治 森本
勇人 逸身
フロリアン バイエ
孝法 岩井
誠也 柴田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2022/038457 priority Critical patent/WO2024079902A1/en
Publication of WO2024079902A1 publication Critical patent/WO2024079902A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]

Definitions

  • the present invention relates to a processing control system, a processing control device, and a processing control method.
  • Patent Document 1 describes a system consisting of one or more image sensors and one or more operation terminals, in which field operators each use a different operation terminal to access the image sensors and view images of targets acquired by the image sensors and the processing results analyzed by the image sensors.
  • Patent Document 1 describes how the image sensor adaptively changes the resolution of the image sent to the operation terminal depending on the performance of the operation terminal, but does not describe technology to control the analysis process.
  • One aspect of the present invention has been made in consideration of the above problems, and one example of its objective is to provide a process control system, a process control device, and a process control method that can control an analysis process in order to perform an analysis efficiently.
  • a process control system is a process control system that controls one or more first processing units each acquiring one or more pieces of analysis target data, and a second processing unit capable of communicating with each of the first processing units and sharing the analysis of the analysis target data with each of the first processing units, and includes a selection means that selects a sharing method for the analysis of the analysis target data for each of the one or more pieces of analysis target data acquired by each of the first processing units in accordance with the computing capacity of the first processing unit, and a process control means that controls each of the first processing units and the second processing units so that analysis is performed for each piece of analysis target data using the sharing method selected by the selection means.
  • a processing control device is a processing control device that controls one or more first processing units that each acquire one or more pieces of analysis target data, and a second processing unit that is capable of communicating with each of the first processing units and shares the analysis of the analysis target data with each of the first processing units, and is equipped with a selection unit that selects a sharing method for the analysis of the analysis target data for each of the one or more pieces of analysis target data acquired by each of the first processing units in accordance with the computing capacity of the first processing unit, and a processing control unit that controls each of the first processing units and the second processing units so that analysis is performed for each piece of analysis target data using the sharing method selected by the selection unit.
  • a process control method is a process control method for controlling one or more first processing units, each of which acquires one or more pieces of analysis target data, and a second processing unit capable of communicating with each of the first processing units and sharing the analysis of the analysis target data with each of the first processing units, and for each of the one or more pieces of analysis target data acquired by each of the first processing units, a sharing method for the analysis of the analysis target data is selected according to the computing power of the first processing unit, and each of the first processing units and the second processing unit are controlled to perform analysis of each piece of analysis target data using the selected sharing method.
  • the analysis process can be controlled to perform the analysis efficiently.
  • FIG. 1 is a block diagram showing an example of the configuration of a process control system according to a first embodiment.
  • 1 is a block diagram showing an example of the configuration of a processing system controlled by a processing control system.
  • FIG. 2 is a flowchart showing an example of the flow of a process control method according to the first embodiment.
  • 2 is a block diagram showing an example of the configuration of a processing control device according to the first embodiment;
  • FIG. 11 is a block diagram showing an example of the configuration of a process control system and a processing system according to a second embodiment.
  • FIG. 13 is a schematic diagram illustrating an example of extraction of analysis target data.
  • 11 is a table showing an example of information referenced for selecting a sharing method.
  • FIG. 13 is a block diagram showing an example of the configuration of a process control system and a processing system according to a third embodiment.
  • FIG. 13 is a block diagram showing an example of the configuration of a process control system and a processing system according to a fourth embodiment.
  • FIG. 13 is a block diagram showing an example of the configuration of a process control system and a processing system according to a fifth embodiment.
  • FIG. 1 is a block diagram illustrating an example of the configuration of a computer.
  • Fig. 1 is a block diagram showing an example of the configuration of a process control system 100 according to a first embodiment.
  • the process control system 100 includes a selection unit 101 and a process control unit 102, and controls the processing system.
  • FIG. 2 is a block diagram showing an example configuration of a processing system controlled by a processing control system.
  • the processing system 1 includes one or more first processing units 20 and a second processing unit 30.
  • FIG. 2 shows a configuration with one first processing unit 20, but there may be multiple first processing units 20.
  • Each of the first processing units 20 is connected to, for example, a camera or a sensor such as LiDAR (Light Detection and Ranging), and acquires one or more pieces of analysis target data from the camera or sensor.
  • the analysis target data may be video data captured by a camera. It is sufficient for the video data to include the analysis target within the field of view of the video.
  • the analysis target may be, for example, a worker (person) working at a construction site, work equipment (object), and the behavior (movement) of the worker and work equipment.
  • the analysis target data may also be sensing data from a sensor that detects the analysis target.
  • the first processing unit 20 may also be connected to multiple cameras, sensors, etc., and acquire multiple pieces of analysis target data.
  • the first processing unit 20 may also acquire multiple pieces of analysis target data from a single camera, sensor, etc.
  • the first processing unit 20 may acquire multiple pieces of analysis target data by extracting the multiple pieces of analysis target data from data acquired from a single camera, sensor, etc.
  • the first processing unit 20 and the second processing unit 30 may each be configured with one or more computers.
  • the first processing unit 20 and the second processing unit 30 are capable of communicating via a network NW, and share the analysis processing of the data to be analyzed.
  • the network NW may be wireless or wired, and if wireless, may be a wireless communication system such as Wi-Fi, LTE, 4G, or 5G.
  • the first processing unit 20 may be an edge processing unit
  • the second processing unit 30 may be a cloud processing unit.
  • edge refers to a place where data is collected.
  • the first processing unit 20, which is an edge processing unit, is an information processing device (computer) or a group of information processing devices installed at or around the location where the analysis target is present (e.g., a construction site, a factory, etc.), and acquires video data from the imaging device 10 installed at the location where the analysis target is present.
  • the first processing unit 20 may be integrated with a camera, a sensor, etc.
  • cloud refers to a place where data is processed, stored, etc.
  • the second processing unit 30, which is a cloud processing unit, may be an information processing device (computer) or a group of information processing devices installed at a location that can provide large computational resources, such as a data center or a server farm.
  • the second processing unit 30 may be a processing unit located at a location connected to the first processing unit 20 via a network, and may be a computational resource connected to a base station such as 5G (e.g., MEC (Multi-access Edge Computing)), or a server installed in an office at the site (on-premises server), etc.
  • 5G e.g., MEC (Multi-access Edge Computing)
  • server installed in an office at the site (on-premises server), etc.
  • the first processing unit 20 may perform an analysis process on at least a portion of the one or more pieces of analysis target data acquired to generate an analysis result.
  • the first processing unit 20 may also calculate features for at least a portion of the one or more pieces of analysis target data acquired and transmit the calculated features to the second processing unit 30 via the network NW.
  • the first processing unit 20 may also transmit at least a portion of the one or more pieces of analysis target data acquired to the second processing unit 30 via the network NW.
  • the first processing unit 20 transmits the features or analysis target data to the second processing unit 30, it may compress or encrypt the features or analysis target data before transmitting them to the second processing unit 30, or it may transmit the features or analysis target data to the second processing unit 30 without compressing or encrypting them.
  • the second processing unit 30 receives the features or data to be analyzed sent from the first processing unit 20, performs restoration processing as necessary, and performs analysis processing.
  • the analysis process is, for example, detection, identification, tracking, and time series analysis of the analysis target (object, person) based on the analysis target data.
  • a learning model may be used for this analysis process.
  • One or both of the first processing unit 20 and the second processing unit 30 may use the learning model.
  • the processing control system 100 controls the processing system 1 (i.e., the first processing unit 20, the second processing unit 30) to divide the analysis of the data to be analyzed between the first processing unit 20 and the second processing unit 30. Note that the processing control system 100 does not have to cause the processing system 1 to analyze data to be analyzed that is determined not to require analysis.
  • the analysis of the data to be analyzed can be shared between the first processing unit 20 and the second processing unit 30 in various ways.
  • the first processing unit 20 that acquired the data to be analyzed performs all of the analysis processing of the data to be analyzed
  • the first processing unit 20 that acquired the data to be analyzed performs a certain amount of analysis processing and the second processing unit 30 performs the remaining analysis processing
  • the first processing unit 20 performs the minimum necessary processing such as compression and the second processing unit 30 performs all of the analysis processing of the data to be analyzed.
  • the analysis processing can be performed efficiently according to the situation.
  • the selection means 101 selects a sharing method for each of one or more pieces of analysis target data acquired by each first processing unit 20.
  • the selection means 101 can select a sharing method for the analysis of the analysis target data according to the calculation capacity of the first processing unit 20.
  • the selection means 101 may select a sharing method such that the higher the calculation capacity of the first processing unit 20, the more analysis is performed in the first processing unit 20 for the analysis target data acquired by the first processing unit 20.
  • the calculation capacity of the first processing unit 20 is an index of the ability to execute analysis processing, and is based on the calculation resources such as the CPU, GPU, and memory that the first processing unit 20 has.
  • the second processing unit 30 has a much greater computational capacity than the first processing unit 20.
  • the first processing unit 20 can instantly process the acquired data to be analyzed. Therefore, it can be said that it is efficient overall to have the second processing unit 30 process the analysis processing that the first processing unit 20 cannot process. In other words, how to efficiently share the analysis processing depends on the computational capacity of the first processing unit 20. Therefore, an efficient analysis can be realized by having the selection means 101 select a sharing method according to the computational capacity of the first processing unit 20 that acquired the data to be analyzed.
  • the processing control means 102 controls each of the first processing units 20 and the second processing units 30 so that each analysis target data is analyzed using the sharing method selected by the selection means 101.
  • the processing control means 102 may be provided, for example, in the second processing unit 30, and may directly control the second processing unit 30 and may control each first processing unit 20 via communication between the second processing unit 30 and each first processing unit 20.
  • the processing control means 102 may be provided, for example, in a device capable of communicating with the first processing unit 20 and the second processing unit 30, and may control each first processing unit 20 and the second processing unit 30 via communication between the device and each first processing unit 20 and the second processing unit 30.
  • the processing control means 102 may be provided, for example, in each first processing unit 20 and the second processing unit 30, and may directly control each first processing unit 20 and the second processing unit 30.
  • the processing control means 102 may be provided, for example, in each first processing unit 20, and may directly control each first processing unit 20 and the second processing unit 30, and may control the second processing unit 30 via communication between the first processing unit 20 and the second processing unit 30.
  • the process control system 100 selects a sharing method based on the computational capacity of the first processing unit. As a result, the process control system 100 according to this embodiment can efficiently perform analysis processing in the first processing unit 20 and the second processing unit 30.
  • Fig. 3 is a flow diagram showing the flow of the process control method S100 according to the first embodiment.
  • step S101 the selection means 101 selects a sharing method for each of the one or more pieces of analysis target data acquired by each first processing unit 20.
  • the selection means 101 selects a sharing method for the analysis of the one or more pieces of analysis target data acquired by each first processing unit 20 in accordance with the computing capacity of the first processing unit.
  • step S102 the process control means 102 controls each of the first processing units 20 and the second processing unit 30 to analyze each analysis target data using the sharing method selected by the selection means 101.
  • a sharing method is selected based on the computational capacity of the first processing unit.
  • the process control system 100 according to this embodiment can efficiently perform analysis processing in the first processing unit 20 and the second processing unit 30.
  • Fig. 4 is a block diagram showing the configuration of the process control device 200 according to the first embodiment.
  • the process control device 200 has a selection unit 201 and a process control unit 202, and controls the processing system 1 (each of the first processing units 20 and the second processing unit 30).
  • the selection unit 201 has a function equivalent to the selection means 101, and selects a sharing method for each of one or more analysis target data acquired by each first processing unit 20 according to the calculation capacity of the first processing unit 20.
  • the process control unit 202 has a function equivalent to the process control means 102, and controls each first processing unit 20 and second processing unit 30 so that each analysis target data is analyzed using the sharing method selected by the selection unit 201.
  • the selection unit 201 and the processing control unit 202 may be a computer device in which processing is performed by a processor executing a program stored in a memory.
  • the selection unit 201 and the processing control unit 202 may be a single computer device, or may be a computer device group in which multiple computer devices operate in cooperation with each other, or a server device group in which multiple server devices operate in cooperation with each other.
  • the processing control device 200 can provide the same effects as the processing control system 100.
  • FIG. 5 is a block diagram showing an example configuration of a processing control system 100 and a processing system 1 according to the second embodiment.
  • the processing control system 100 controls the processing system 1.
  • the processing system 1 according to this embodiment includes one or more first processing units 20 and a second processing unit 30 connected to the one or more first processing units 20 via a network NW.
  • the first processing unit 20 is connected to one or more cameras 10.
  • the camera 10 is an imaging device that captures the subject of analysis and generates video data.
  • the subject of analysis may be, for example, a worker (person), work equipment (object), and the behavior (movement) of the worker and work equipment working at a construction site, and the camera 10 needs only to be installed so as to be able to capture these.
  • One or more cameras 10 are connected to each first processing unit 20, and one camera 10 is basically connected to only one first processing unit 20.
  • the first processing unit 20 includes an input unit 21, a communication unit 22, and a main control unit 23. Video data captured by each camera 10 connected to the first processing unit 20 is input to the input unit 21.
  • the communication unit 22 exchanges data with the second processing unit 30 and the processing control system 100 via the network NW.
  • the main control unit 23 includes an analysis target data acquisition unit 230, a feature calculation unit 231, an analysis unit 232, and an encoding unit 233.
  • the analysis target data acquisition unit 210 acquires one or more pieces of analysis target data.
  • the analysis target data acquisition unit 210 may acquire the entirety of each piece of video data input to the input unit 21 as the analysis target data, but may also acquire one or more areas extracted from each piece of video data as the analysis target data, as described below.
  • the analysis target data acquisition unit 210 extracts one or more regions from the video data input to the input unit 21, and acquires each region as analysis target data.
  • the analysis target data acquisition unit 210 may perform object detection on the video data and acquire the region in which the object is detected as analysis target data.
  • the analysis target data acquisition unit 210 may perform object detection using a learning model for object detection.
  • the analysis target data acquisition unit 210 may divide the video data into a predetermined grid, and acquire each divided region as analysis target data.
  • FIG. 6 is a diagram showing an example of analysis target data acquired by the analysis target data acquisition unit 210.
  • the analysis target data acquisition unit 210 acquires areas detected by object detection for a frame image F of video data as analysis target data T1 and T2.
  • the areas may be selected to include multiple objects, such as T2.
  • the feature calculation unit 231 calculates the feature of the analysis target data.
  • the method of calculating the feature of the analysis target data is not particularly limited, but in one embodiment, the feature calculation unit 231 may calculate the feature from the analysis target data using a learning model having a convolutional layer.
  • the learning model used by the analysis target data acquisition unit 210 for object detection outputs object identification result information (class information)
  • the identification result information may be used as the feature.
  • tracking of the detected or identified object may be performed, and an identifier indicating whether or not the object is the same as the object shown in the previous or next frame image may be added to the feature.
  • the analysis unit 232 analyzes the data to be analyzed and generates an analysis result.
  • analysis means detecting that an event to be detected has occurred in the analysis target, or that an object to be detected is present.
  • the analysis targets are workers (people), work equipment (objects), and the behavior (motion) of the workers and work equipment working at a construction site
  • the analysis results may include the occurrence of events such as inefficient work, procedural errors, and dangerous behavior, or the detection result of the presence of a specific object such as a specific worker or specific work equipment.
  • the analysis target data T2 shown in Figure 6 may be analyzed as a dangerous behavior of approaching heavy machinery.
  • the analysis unit 232 can perform the analysis, for example, using a learning model that has been trained in advance to output an analysis result.
  • the learning method of the learning model for analysis is not particularly limited, but for example, a pair of an event to be detected and analysis target data that indicates the analysis target when the event occurs may be trained as teacher data, or reinforcement learning may be performed to give a reward when the event to be detected is detected.
  • the analysis target data or the feature calculated by the feature calculation unit 231 may be used as an input to the learning model.
  • the encoding unit 233 performs processes such as compression and encryption on the data (data to be analyzed, features, etc.) sent via the communication unit 22.
  • the second processing unit 30 includes a communication unit 31 and a main control unit 32.
  • the communication unit 31 exchanges data with each of the first processing units 20 and the processing control system 100 via the network NW.
  • the main control unit 32 includes a decoding unit 320, an analysis unit 321, and an output unit 322.
  • the decoding unit 320 performs processing such as expansion and decryption on the data received via the communication unit 31, and provides the data to the analysis unit 321 or the output unit 322.
  • the analysis unit 321 analyzes the analysis target data or feature quantities received via the communication unit 31, and generates an analysis result. Like the analysis unit 232, the analysis unit 321 can perform analysis using, for example, a learning model that has been trained in advance to output an analysis result.
  • the learning model used by the analysis unit 321 may be the same as the learning model used by the analysis unit 232, or it may be different.
  • the output unit 322 performs processing according to the analysis results of the analysis unit 321 or the analysis results of the analysis unit 232 received via the communication unit 31. For example, the output unit 322 may notify a predetermined notification destination of the above-mentioned analysis results via the communication unit 31, or may send a warning signal to the predetermined notification destination via the communication unit 31 if the above-mentioned analysis results indicate a predetermined event.
  • this analysis result may be displayed, for example, on a terminal held by a supervisor (as an example, a site supervisor) or on a large display at a monitoring center, together with the analyzed video, via communication from the first processing unit 20 or the second processing unit 30.
  • a supervisor as an example, a site supervisor
  • the supervisor can check the video of the work site together with the work analysis results, accurately grasp the status of the work, and give accurate instructions to the site.
  • the network NW may be a wireless or wired network.
  • the communication bandwidth in the network NW may be pre-allocated to each first processing unit 20.
  • the network NW may also detect or predict the communication quality between each first processing unit 20 and the second processing unit 30, and provide communication quality information indicating the communication quality to the processing control system 100.
  • the process control system 100 includes a selection unit 101, a process control unit 102, and a communication unit 103, and controls the processing system 1.
  • the communication unit 103 exchanges data with each of the first processing units 20 and the second processing units 30 via the network NW.
  • the selection means 101 includes an importance determination means 1010, a processing cost calculation means 1011, and a communication quality information determination means 1012, and as described above, selects a sharing method for each of one or more pieces of analysis target data acquired by each first processing unit 20. Details of how the selection means 101 selects the sharing method will be described later.
  • the importance determination means 1010 determines the importance of each analysis target data.
  • importance means the necessity of performing an analysis, and an event or object that is likely to occur or exist as a target of the analysis may be determined to be of high importance.
  • "Importance” can also be expressed as "attention” or “necessity of attention”.
  • Events with high importance include, but are not limited to, actions according to a process, actions that are different from a process, and actions that are highly dangerous.
  • Objects with high importance include, but are not limited to, people and heavy machinery. The importance may also be determined based on whether or not they can be detected. For example, the importance of a person or object that is very small in the image and difficult to detect may be reduced.
  • the method of expressing importance is not particularly limited, and may be expressed, for example, as two values of "0" (low importance) and "1" (high importance), or as a multi-value of three or more values (for example, high, medium, low), or as a continuous numerical value.
  • the importance determination means 1010 may determine that the importance is high when the action indicated by the analysis target data indicates the above-mentioned event, for example, but may also perform the determination using a learning model. For example, the importance determination means 1010 may determine the importance using a learning model that inputs the feature amount of each analysis target data and outputs the importance. In this case, the feature amount of each analysis target data may be calculated by the feature amount calculation unit 231 of the first processing unit 20, and the importance determination means 1010 may acquire the feature amount of each analysis target data from the first processing unit 20 via the communication means 103.
  • the learning method of the learning model that inputs the feature amount of each analysis target data and outputs the importance is not particularly limited, but learning may be performed using analysis target data for learning labeled with importance as teacher data.
  • the importance determination means 1010 may determine the importance using a learning model that inputs video data and outputs the importance.
  • the importance determination means 1010 may obtain the analysis target data itself from the first processing unit 20 as video data, but may also obtain from the first processing unit 20 data in which the frame rate of the video of the analysis target data has been lowered or the image quality has been reduced in order to reduce the amount of communication.
  • the importance determination means 1010 may determine the importance of each part by inputting input data in which the feature amounts of each part of the data to be analyzed are calculated and each feature amount is combined into the trained model.
  • the trained model used may receive input data in which the feature amounts of each part are combined, generate relationship information indicating the relationship between the feature amounts of each part based on the input data, and output the importance of each area based on the relationship information and the input data.
  • the relationship information indicates the degree to which areas other than the area are related to the importance of each area.
  • the relationship information indicates the relationship between areas such that the relationship is large for areas necessary for determining the importance of the area and small for areas not necessary for determining the importance of a specific area.
  • Such relationship information includes, for example, attention weights used in attention mechanisms such as self-attention mechanisms.
  • the trained model includes, for example, one or more layers that generate relationship information based on input data, and one or more layers that generate the importance of each region based on the relationship information and the input data.
  • the trained model can be trained, for example, by reinforcement learning using training input images labeled with an analysis result and an analysis engine that analyzes the input images using the importance.
  • the processing cost calculation means 1011 calculates or predicts the calculation cost in the first processing unit 20 and the communication cost between the first processing unit 20 and the second processing unit 30 when each analysis target data is analyzed by each sharing method.
  • the calculation cost in the first processing unit 20 is, for example, a value indicating the ratio of the calculation capacity of the first processing unit 20 used for the analysis target data, and may be expressed as a relative value when the calculation capacity of the first processing unit 20 is set to "1".
  • the communication cost between the first processing unit 20 and the second processing unit 30 is, for example, a value indicating the amount of data transported between the first processing unit 20 and the second processing unit 30, and may be expressed as a data bit rate (Mbps).
  • the communication cost may also be the required resource amount, such as the number of resource blocks in LTE or 5G. In this case, even if the data bit rate is the same, the required resource amount differs between an environment with good communication quality and an environment with poor communication quality.
  • the processing cost calculation means 1011 predicts each cost, it may predict each cost using a learning model that inputs the features of the data to be analyzed and outputs a predicted value of each cost.
  • FIG. 7 is a table showing an example of information that the selection means 101 refers to in order to select an allocation method for each analysis target data acquired by each first processing unit 20, and shows, for each analysis target data, the first processing unit, the importance, and the calculation cost and communication cost when analyzed using each allocation method. How the selection means 101 refers to this table and selects the allocation method will be described later.
  • the communication quality information acquisition means 1012 acquires communication quality information indicating the communication quality between each first processing unit 20 and the second processing unit 30.
  • the communication quality information may be, for example, communication throughput, MCS (Modulation and Coding Scheme) index, SINR (Signal to Interference plus Noise Ratio), etc., or may be a predicted value of these. Furthermore, when a predicted value is used as the communication quality information, the worst value (lowest value) of the predicted fluctuation range may be used.
  • the process control means 102 controls each of the first processing units 20 and the second processing units 30 so that each analysis target data is analyzed using the sharing method selected by the selection means 101.
  • the process control means 102 may perform the above control by transmitting, via the communication means 103, to each of the first processing units 20 and the second processing units 30, information identifying the analysis target data and information indicating the sharing method selected for the identified analysis target data.
  • the processing control means 102 may select a sharing method to switch between the first processing unit 20 and the second processing unit 30 to analyze the data to be analyzed, based on a prediction of the processing load of the data to be analyzed in the first processing unit 20 and a prediction of the communication bandwidth between the first processing unit 20 and the second processing unit 30.
  • the processing control means 102 may also determine a portion of the data to be analyzed to be discarded based on the predicted communication bandwidth.
  • the processing control means 102 may also cause the first processing unit 20 and the second processing unit 30 to complement frames that were processed before the switching in the unit frame set when switching from a state in which the data to be analyzed is not being processed to a state in which the data to be analyzed is being processed.
  • the processing control means 102 may also cause the processing unit that is not analyzing the data to be analyzed, among the first processing unit 20 and the second processing unit 30, to buffer the data to be analyzed, and when the processing unit that is not processing the data to be analyzed is switched to processing the data to be analyzed, the buffered data may be used to analyze the data to be analyzed.
  • the process control means 102 may execute the above-mentioned discard process, complement process, and buffering process based on the importance of the data to be analyzed, the reliability of the processing of the data to be analyzed, the communication bandwidth allocated for transmitting the data to be analyzed, etc.
  • the reliability is an index indicating the degree of confidence in the predicted analysis result, and may be, for example, a confidence value output from the trained model that performed the analysis.
  • the selection unit 101 selects a sharing method from the following sharing methods 1 to 3.
  • the first processing unit 20 acquires the data to be analyzed and generates the analysis results of the data to be analyzed.
  • Sharing method 2 The first processing unit 20 acquires the data to be analyzed and calculates the features of the data to be analyzed. The features are then sent from the first processing unit 20 to the second processing unit 30, which then generates an analysis result for the data to be analyzed from the features.
  • Sharing method 3 The first processing unit 20 acquires the data to be analyzed and transmits the data to the second processing unit 30, which then generates analysis results from the data to be analyzed.
  • sharing methods 1 to 3 differ in how the analysis processing of the analysis target data is shared between the first processing unit 20 and the second processing unit 30 that acquired the analysis target data.
  • sharing method 1 is a method in which the first processing unit 20 that acquired the analysis target data performs all of the analysis processing of the analysis target data.
  • Sharing method 2 is a method in which the first processing unit 20 and the second processing unit 30 that acquired the analysis target data share the analysis processing of the analysis target data.
  • Sharing method 3 is a method in which the first processing unit 20 performs the minimum necessary processing such as compression, and the second processing unit 30 performs all of the analysis processing of the analysis target data.
  • the processing control system 100 may cause the processing system 1 to analyze each piece of analysis target data using an allocation method selected from at least two of allocation methods 1 to 3. That is, the processing control system 100 may cause the processing system 1 to analyze each piece of analysis target data using an allocation method selected from allocation methods 1 to 3, may cause the processing system 1 to analyze each piece of analysis target data using an allocation method selected from allocation methods 1 and 2, may cause the processing system 1 to analyze each piece of analysis target data using an allocation method selected from allocation methods 1 and 3, or may cause the processing system 1 to analyze each piece of analysis target data using an allocation method selected from allocation methods 2 and 3.
  • the selection means 101 selects a sharing method for each of one or more pieces of analysis target data acquired by each first processing unit 20.
  • the selection means 101 selects a sharing method from at least two sharing methods among a first sharing method for causing the first processing unit to generate an analysis result for the analysis target data for each of one or more pieces of analysis target data acquired by each first processing unit 20, a second sharing method for causing the first processing unit to calculate a feature amount of the analysis target data, transmit the feature amount from the first processing unit to the second processing unit, and cause the second processing unit to generate the analysis result from the feature amount, and a third sharing method for causing the first processing unit to transmit the analysis target data to the second processing unit, and cause the second processing unit to generate the analysis result from the analysis target data.
  • the constraints to be considered when selecting the sharing method are as follows: - Because video data is large in size, it is not possible in a large-scale system to transmit all camera footage from the first processing unit 20 to the second processing unit 30 due to limitations on the amount of communication resources.- The amount of communication can be reduced by performing analysis or calculating features in the first processing unit 20 and transmitting the results to the second processing unit 30, but since the amount of computational resources available to the first processing unit 20 is limited, it is not possible for the first processing unit 20 to perform all analyses.- The amount of computational resources required to analyze the data obtained from each camera, the amount of communication resources required to transmit data with image quality that can be analyzed by the second processing unit 30, and the communication quality between the first processing unit 20 and the second processing unit 30 change from moment to moment, so it is necessary to respond as needed.
  • the selection means 101 operates as follows.
  • the selection means 101 collects, for each of the one or more pieces of analysis target data acquired by each first processing unit 20, the importance determined by the importance determination means 1010, as well as the calculation cost and communication cost calculated by the processing cost calculation means 1011 when analyzing using each sharing method.
  • Figure 7 shows an example of information collected by the selection means 101. Note that in Figure 7, in order to distinguish between different first processing units 20, they are written as "first processing unit (1)" and so on.
  • the selection means 101 refers to the collected information and first determines the analysis target data for which the first allocation method is to be selected. At this time, the selection means 101 determines the analysis target data selected to be analyzed using the first allocation method, among one or more analysis target data acquired by each first processing unit 20, such that the total calculation cost of the first processing unit 20 when analyzed using the first allocation method does not exceed the upper limit of the calculation cost based on the calculation capacity of the first processing unit 20. This makes it possible to prevent the first processing unit 20 from being unable to process all the analysis target data.
  • the upper limit of the calculation cost based on the calculation capacity of the first processing unit 20 may be the calculation capacity of the first processing unit 20 itself, or may be a value set with a certain margin.
  • the selection means 101 determines the priority of each analysis target data, and determines the analysis target data for which the first allocation method is to be selected based on the determined priority of each analysis target data. For example, the selection means 101 may select the first allocation method from the analysis target data with high priority, within a range in which the total calculation cost selected as the first allocation method does not exceed the upper limit of the calculation cost based on the calculation capacity of the first processing unit 20. This makes it possible to select the first allocation method within a range that can be processed by the first processing unit 20.
  • the first allocation method performs analysis in the first processing unit 20 that acquires the analysis target data, so that the analysis can be performed quickly, which is advantageous when detecting events with high urgency, etc.
  • the method of determining the priority is not particularly limited, but for example, the selection means 101 may determine a priority for each of one or more analysis target data acquired by each first processing unit 20 based on the calculation cost when the analysis target data is analyzed using the first allocation method and the importance of the analysis target data. For example, the selection means 101 may determine the priority based on the following formula.
  • the selection means 101 will give priority to and select, as the first allocation method, analysis target data 1 among the analysis target data acquired by the "first processing unit (1).” By determining the priority in this manner, it is possible to perform the analysis efficiently by balancing the necessity for analysis with the calculation cost.
  • the selection means 101 selects an allocation method for analysis target data for which the first allocation method was not selected, among the one or more analysis target data acquired by each first processing unit 20.
  • the selection means 101 may select either the second allocation method or the third allocation method based on the communication quality information of each first processing unit 20 acquired by the communication quality information acquisition means 1012.
  • the third sharing method involves a larger amount of communication than the second sharing method
  • selecting the third sharing method for data to be analyzed by a first processing unit 20 with good communication quality it is possible to improve the efficiency of wireless resource utilization.
  • the efficiency of wireless resource utilization can be improved by prioritizing the first processing unit 20 with good communication quality. This allows the analysis process to be efficiently offloaded to the second processing unit 30, making it possible to analyze video data acquired from a greater number of cameras 10.
  • the selection means 101 may, for example, not analyze the analysis target data of low importance.
  • the second embodiment has been described above as a process control system 100, but the process control system 100 according to the second embodiment may be mounted on a single device as a process control device. Furthermore, the operation of the process control system 100 according to the second embodiment may be the process control method according to the second embodiment.
  • FIG. 8 is a block diagram showing an example of the configuration of a process control system 100 and a process system 1 according to the third embodiment.
  • the process control system 100 according to this embodiment differs from the process control system 100 according to the second embodiment in that the selection means 101 includes a risk determination means 1013, so the function of the risk determination means 1013 will be described.
  • the risk assessment means 1013 assesses the risk indicated by each analysis target data.
  • "risk” means the need to perform analysis quickly.
  • a high risk may be determined for a highly likely dangerous event.
  • High risk events include, but are not limited to, people in high risk positions (e.g., people at high altitudes, people working near holes dug at the site, people working near heavy machinery, people near roads, railroad tracks, high-voltage power lines, etc.), areas with high density of people and equipment (high density is judged to be high risk), people who move a lot (higher risk than people who are not moving), etc.
  • There are no particular limitations on the way the risk is expressed but it may be expressed as two values, 0 (low risk) and 1 (high risk), or as multiple values of three or more values, or as continuous numerical values.
  • the risk determination means 1013 may determine that the risk is high when the relationship between the person and the surrounding objects indicated by the analysis target data indicates the above-mentioned event, for example, but may also perform the determination using a learning model like the importance determination means 1010. For example, the risk determination means 1013 may determine the importance using a learning model that inputs the feature amount of each analysis target data and outputs the risk amount.
  • the feature amount of each analysis target data may be calculated by the feature amount calculation unit 231 of the first processing unit 20, and the risk determination means 1013 may obtain the feature amount of each analysis target data from the first processing unit 20 via the communication means 103.
  • the learning method of the learning model that inputs the feature amount of each analysis target data and outputs the risk amount is not particularly limited, but learning may be performed using the analysis target data for learning labeled with the risk amount as teacher data.
  • the selection means 101 collects the importance determined by the importance determination means 1010, the calculation cost and communication cost calculated by the processing cost calculation means 1011 when analyzing using each sharing method, and the risk determined by the risk determination means 1013.
  • the selection means 101 may determine a priority for each of the one or more analysis target data acquired by each first processing unit 20, based on the calculation cost when the analysis target data is analyzed using the first allocation method, the importance of the analysis target data, and the risk level indicated by the analysis target data. For example, the selection means 101 may determine the priority based on the following formula.
  • Priority ( ⁇ 1 ⁇ importance) ⁇ ( ⁇ 2 ⁇ risk)/calculation cost ( ⁇ 1 and ⁇ 2 are predetermined values)
  • the risk determination means 1013 may be provided in each first processing unit 20, independent of the selection means 101. In this case, if the risk determination means 1013 of the first processing unit 20 determines that the risk indicated by certain analysis target data is high, the analysis target data may be analyzed in the first processing unit 20 (using the first sharing method) without being controlled by the processing control means 102.
  • the third embodiment has been described above as a process control system 100, but the process control system 100 according to the third embodiment may be mounted on a single device as a process control device. Furthermore, the operation of the process control system 100 according to the third embodiment may be the process control method according to the third embodiment.
  • FIG. 9 is a block diagram showing an example of the configuration of a processing control system 100 and a processing system 1 according to the fourth embodiment.
  • the processing control system 100 according to this embodiment differs from the processing control system 100 according to the second embodiment in that the selection means 101 includes a compression efficiency calculation means 1014, so the function of the compression efficiency calculation means 1014 will be described.
  • the compression efficiency calculation means 1014 calculates the compression efficiency of each analysis target data.
  • compression efficiency is an index of the degree to which the analysis target data can be compressed by compression processing, and may be a predicted value.
  • the compression efficiency calculation means 1014 determines whether the data to be analyzed corresponds to any of the states of a state in which it is raining or snowing, a state in which an object is moving significantly, or a state in which an object is moving randomly, and if it does not correspond to any of the states, the compression efficiency may be set to, for example, 1, and if it corresponds to the state, the compression efficiency may be set to, for example, a value between 0 and 1 depending on the amount of rain or snow or the amount of movement.
  • the compression efficiency calculation means 1014 may set the compression efficiency to, for example, 1 for data to be analyzed that corresponds to areas showing indoors, depending on the imaging range of the camera 10, and may set the compression efficiency to, for example, a value between 0 and 1 for data to be analyzed that corresponds to areas showing outdoors, by reference to weather information, when it is raining or snowing.
  • the compression efficiency may also be calculated by referring to past actual measurements, etc.
  • the compression efficiency calculation means 1014 may obtain the compressed bit rate in the encoding unit 233 of the first processing unit 20 and predict the compression efficiency.
  • the compression efficiency calculation means 1014 may obtain analysis feasibility information for past analysis target data compressed at an arbitrary compression rate in the analysis unit 321 of the second processing unit 30, and if analysis is not possible, may set a low compression rate and calculate the compression efficiency, assuming that image quality needs to be improved.
  • the selection means 101 collects the importance determined by the importance determination means 1010, the calculation cost and communication cost calculated by the processing cost calculation means 1011 when analyzing using each allocation method, and the compression efficiency determined by the compression efficiency calculation means 1014.
  • the selection means 101 may determine a priority for each of the one or more analysis target data acquired by each first processing unit 20, based on the calculation cost when the analysis target data is analyzed using the first allocation method, and the importance and compression efficiency of the analysis target data. For example, the selection means 101 may determine the priority based on the following formula.
  • Priority ( ⁇ 1 ⁇ importance) ⁇ ( ⁇ 3/compression efficiency)/calculation cost ( ⁇ 1 and ⁇ 3 are predetermined values)
  • the selection means 101 selects an allocation method for analysis target data for which the first allocation method was not selected, among one or more analysis target data acquired by each first processing unit 20.
  • the selection means 101 may select one of the second and third allocation methods based on the compression efficiency of the analysis target data in addition to the communication quality information of each first processing unit 20 described above.
  • the third sharing method involves a larger amount of communication traffic than the second sharing method, but by selecting the third sharing method for data to be analyzed that has high compression efficiency, it is possible to improve the efficiency of wireless resource utilization.
  • the compression efficiency calculation means 1014 may take into account the density of people and objects in the data to be analyzed when calculating the compression efficiency. In one aspect, the compression efficiency calculation means 1014 may increase the value of the compression efficiency the greater the number of people or objects to be analyzed that exist within a range of a predetermined size (number of pixels) in the data to be analyzed. In this way, densely populated areas can be analyzed even with low resolution, and the compression efficiency can be improved by transmitting data corresponding to such areas to the second processing unit 30.
  • the compression efficiency calculation means 1014 may take into account the size (number of pixels) of the person or object being analyzed in the data being analyzed when calculating the compression efficiency. In one aspect, the compression efficiency calculation means 1014 may reduce the value of the compression efficiency the smaller the size (number of pixels) of the person or object being analyzed in the data being analyzed. If a person or object that appears small is compressed and sent to the second processing unit 30 for analysis, there is a high possibility that the analysis accuracy will decrease, so by setting the compression efficiency low, it is possible to perform the analysis in the first processing unit 20 as much as possible.
  • the selection means 101 may further take into account the degree of danger when determining the priority.
  • the selection means 101 according to this embodiment may further include the degree of danger determination means 1013 according to the third embodiment, and may determine the priority based on the following formula:
  • Priority ( ⁇ 1 ⁇ importance) ⁇ ( ⁇ 2 ⁇ risk) ⁇ ( ⁇ 3/compression efficiency)/computation cost ( ⁇ 1, ⁇ 2, and ⁇ 3 are predetermined values)
  • FIG. 10 is a block diagram showing an example of the configuration of a processing control system 100 and a processing system 1 according to the fifth embodiment.
  • the selection means 101 includes an importance determination means 1010, a processing cost calculation means 1011, and an analysis accuracy information acquisition means 1015, and selects a sharing method for each of one or more pieces of analysis target data acquired by each first processing unit 20 in the following manner.
  • the selection means 101 solves a combinatorial optimization problem so as to maximize the objective function and selects an allocation method for each analysis target data.
  • the selection means 101 selects an allocation method for each analysis target data so as to satisfy all of the constraint conditions below and maximize or minimize one of the objective functions below, or decides not to perform analysis. This allows for efficient analysis that takes into account the overall situation.
  • Constraint 1 The total calculation cost in each first processing unit 20 is equal to or less than the upper limit based on the calculation capacity of the first processing unit 20.
  • Constraint 2 For all first processing units 20 sharing the same communication line in communication with the second processing unit 30, the total communication cost of all analysis target data is equal to or less than the communication bandwidth of the communication line.
  • objective function 1 When the sharing method is selected for each analysis target data, maximize the sum of the importance of each analysis target data x analysis accuracy.
  • objective function 2 When the sharing method is selected for each analysis target data, maximize the number of analysis target data whose analysis accuracy is equal to or greater than a specified value (e.g., 80%).
  • the selection means 101 may search all options to find an optimal solution, or may apply a commonly used heuristic algorithm to find an approximate solution.
  • the analysis accuracy of the analysis target data may be obtained by the analysis accuracy information acquisition means 1015.
  • the analysis accuracy information acquisition means 1015 may use, as the analysis accuracy, analysis accuracy information (confidence value) obtained when the analysis is performed using a learning model.
  • the analysis accuracy information acquisition means 1015 may assume that analysis target data corresponding to a specific analysis target is continuously obtained, have the analysis unit 212 of the first processing unit 20 and the analysis unit 311 of the second processing unit 30 analyze the first few pieces of analysis target data corresponding to the specific analysis target, acquire analysis accuracy information (confidence value) of the analysis results, and use the acquired analysis accuracy information as the analysis accuracy information of the analysis target data for the specific analysis target.
  • a model may be created that predicts the analysis accuracy from inputs including the analysis target data and the video compression parameters, and the analysis accuracy information acquisition means 1015 may predict the analysis accuracy using this model.
  • the selection means 101 may not include the analysis target data corresponding to a specific camera 10 in the calculation of the objective function or may weight the analysis target data corresponding to the specific camera 10 less. For example, when a specific camera is covered with water droplets or debris, or when the specific camera is installed in a dark environment where nothing can be seen, for example, by not performing analysis of the analysis target data corresponding to the camera 10 that is likely to produce a specific result even without analysis, resources can be allocated to other analysis target data, resulting in improved efficiency.
  • the method of determining whether a specific camera is in a situation where a specific result is likely to produce a specific result even without analysis is not particularly limited, and may be determined and set by a person, or may be set according to the results of analyzing the captured image, for example.
  • the selection means 101 may switch the objective function depending on the type of behavior to be analyzed. For example, if risky behavior detection is desired, the objective function may be set to importance x analysis accuracy x delay coefficient, and the delay coefficient may be set to decrease when the delay until detection exceeds a preset value. This allows an analysis appropriate for the type of behavior to be analyzed.
  • the analysis accuracy information acquisition means 1015 may also estimate the amount of degradation in analysis accuracy due to a change in processing load and reflect this in the analysis accuracy information. That is, the analysis engines used by each analysis unit include engines that perform analysis based on changes in successive video frames, not just a single video frame. When using such engines, frequent changes in processing load between the first processing unit 20 and the second processing unit 30 will result in a degradation in analysis accuracy. By correcting the analysis accuracy information to take into account such degradation in analysis accuracy, more accurate analysis accuracy information can be obtained.
  • the fifth embodiment has been described above as a process control system 100, but the process control system 100 according to the fifth embodiment may be mounted on a single device to form a process control device. Furthermore, the operation of the process control system 100 according to the fifth embodiment may be the process control method according to the fifth embodiment.
  • each embodiment is not limited to this.
  • a part or all of the processing control system 100 may be provided in each of the first processing units 20, the second processing unit 30, or in each of the first processing units 20 and the second processing unit 30, distributed therein.
  • each component of the selection means 101 may be provided in different devices, and a main part of the selection means 101 that ultimately performs selection for each analysis target data may exist separately from these components.
  • at least one of the importance determination means 1010, processing cost calculation means 1011, communication quality information acquisition means 1012, risk determination means 1013, compression efficiency calculation means 1014, and analysis accuracy information acquisition means 1015 may be provided in each first processing unit 20, and the main part of the selection means 101 may be provided in the second processing unit 30.
  • the selection means 101 may, for example, select the analysis targets to be analyzed by the first processing unit 20 (select the first allocation method) in order (round robin method).
  • the selection means 101 may select the sharing method each time analysis target data is acquired, but may also periodically execute the process of selecting the sharing method and change the processing method in response to changes in communication quality, risk level, video content, etc.
  • the selection means 101 may also make a selection taking into consideration the results of past analysis of analysis target data corresponding to the same analysis target. For example, if there is prior information that a particular behavior X will (is highly likely to) continue for a predetermined period of time or more, once behavior X has been detected as an analysis result, the selection means 101 may decide not to analyze the analysis target data corresponding to the same analysis target for the predetermined period of time.
  • the selection means 101 may lower the importance of the analysis target data corresponding to the same analysis target, and when the analytical accuracy of the analysis results of past analysis target data is low, the selection means 101 may raise the importance of the analysis target data corresponding to the same analysis target. This is because when the analytical accuracy is high, the analysis is performed correctly and it is highly likely that the same analysis result will continue, but when the analytical accuracy is low, the analysis is not performed correctly and it is possible that a different analysis result will be obtained.
  • the encoding unit 213 may generate an image that cuts out only the area in which the analysis target exists and provide it to the communication unit 22, or may generate an image with reduced image quality for areas other than the area in which the analysis target exists and provide it to the communication unit 22.
  • the selection means 101 may predict in advance the number of analysis subjects (e.g., people) that can be processed by the first processing unit 20, and select a sharing method to perform analysis in the first processing unit 20 as much as possible.
  • analysis subjects e.g., people
  • the number of subjects that can be analyzed simultaneously with the computational capabilities (amount of computational resources) of the first processing unit 20 is profiled in advance, and the first processing unit 20 analyzes up to that number (selecting the first sharing method), and the excess is offloaded to the second processing unit 30 (selecting the second or third sharing method).
  • the second processing unit 30 can analyze other camera images or use them for other purposes.
  • Each of the configurations according to the first to fifth embodiments may be realized by (1) one or more pieces of hardware, (2) one or more pieces of software, (3) a combination of hardware and software, or (4) a cloud server.
  • Each device, function, and process may be realized by at least one computer having at least one processor and at least one memory.
  • An example of such a computer hereinafter referred to as computer C
  • each of the functions described in the first to fifth embodiments may be realized by storing a program for implementing the processing control method described in the first to fifth embodiments in memory C2, and having processor C1 read and execute program P stored in memory C2.
  • the program P includes a set of instructions for causing the computer C to execute one or more of the functions described in the first to fifth embodiments when the program P is loaded into the computer C.
  • the program P is stored in the memory C2.
  • the processor C1 may be, for example, a CPU (Central Processing Unit).
  • the memory C2 may be, for example, a Read Only Memory (ROM), a Random Access Memory (RAM), a flash memory, a Solid State Drive (SSD), etc.
  • the program P can also be recorded on a non-transitory, tangible recording medium M that can be read by the computer C.
  • a recording medium M can be, for example, a tape, a disk, a card, a semiconductor memory, or a programmable logic circuit.
  • the computer C can obtain the program P via such a recording medium M.
  • the program P can also be transmitted via a transmission medium.
  • a transmission medium can be, for example, a communications network or broadcast waves.
  • the computer C can also obtain the program P via such a transmission medium.
  • a process control system for controlling one or more first processing units each acquiring one or more pieces of analysis target data, and a second processing unit capable of communicating with each of the first processing units and sharing an analysis of the analysis target data with each of the first processing units, a selection means for selecting, for each of the one or more pieces of analysis target data acquired by each first processing unit, a sharing method for analysis of the analysis target data in accordance with the calculation capacity of the first processing unit; a process control means for controlling each of the first processing means and the second processing means so as to execute analysis for each analysis target data using the sharing method selected by the selection means.
  • the selection means is For each of the one or more pieces of analysis target data acquired by each first processing unit, a first sharing method for causing the first processing unit to generate an analysis result of the analysis target data; a second sharing method in which the first processing unit calculates features of the data to be analyzed, the first processing unit transmits the features to the second processing unit, and the second processing unit generates the analysis result from the features; and a third sharing method in which the first processing unit transmits the data to be analyzed to the second processing unit, and the second processing unit generates the analysis result from the data to be analyzed.
  • Appendix 3 The processing control system described in Appendix 2, wherein the selection means determines the analysis target data for which the first allocation method is to be selected from the one or more analysis target data acquired by each first processing unit, such that the total computational cost in the first processing unit when the analysis target data is analyzed using the first allocation method does not exceed an upper limit of computational cost based on the computational capacity of the first processing unit.
  • Appendix 4 The processing control system described in Appendix 3, wherein the selection means determines a priority for each of the one or more analysis target data acquired by each first processing unit based on the computational cost of the analysis target data and the importance of the analysis target data, and determines the analysis target data for which the first allocation method is selected based on the determined priority of each analysis target data.
  • Appendix 6 The processing control system of any one of Appendices 3 to 5, wherein the selection means selects one of the second sharing method and the third sharing method for analysis target data for which the first sharing method was not selected among the one or more analysis target data acquired by each first processing unit, based on communication quality between the first processing unit and the second processing.
  • Appendix 7 The processing control system described in Appendix 6, wherein the selection means selects one of the second allocation method and the third allocation method for analysis target data other than the analysis target data for which the first allocation method was selected among the one or more analysis target data acquired by each first processing unit, further based on the compression efficiency of the analysis target data.
  • a process control device that controls one or more first processing units that respectively acquire one or more pieces of analysis target data, and a second processing unit that is capable of communicating with each of the first processing units and shares analysis of the analysis target data with each of the first processing units, a selection unit that selects, for each of the one or more pieces of analysis target data acquired by each first processing unit, a sharing method for analysis of the analysis target data in accordance with a calculation capacity of the first processing unit; a processing control unit that controls each of the first processing units and the second processing unit so that analysis is performed for each analysis target data using the sharing method selected by the selection unit.
  • Appendix 10 The processing control device described in Appendix 9, wherein the selection unit determines the analysis target data for which the first allocation method is selected from the one or more analysis target data acquired by each first processing unit, such that the total computational cost in the first processing unit when the analysis target data is analyzed using the first allocation method does not exceed an upper limit of computational cost based on the computational capacity of the first processing unit.
  • Appendix 11 The processing control device described in Appendix 10, wherein the selection unit determines the analysis target data for which the first allocation method is selected from the one or more analysis target data acquired by each first processing unit, such that the total computational cost in the first processing unit when the analysis target data is analyzed using the first allocation method does not exceed an upper limit of computational cost based on the computational capacity of the first processing unit.
  • Appendix 12 The processing control device described in Appendix 11, wherein the selection unit determines a priority for each of the one or more analysis target data acquired by each first processing unit based on the calculation cost of the analysis target data and the importance of the analysis target data, and determines the analysis target data for which the first allocation method is selected based on the determined priority of each analysis target data.
  • Appendix 13 The processing control device described in Appendix 12, wherein the selection unit determines the priority for each of the one or more analysis target data acquired by each first processing unit based further on at least one of the risk level indicated by each analysis target data and the compression efficiency of each analysis target data.
  • Appendix 14 The processing control device according to any one of appendices 9 to 13, wherein the selection unit selects one of the second sharing method and the third sharing method for analysis target data other than the analysis target data for which the first sharing method has been selected among the one or more analysis target data acquired by each first processing unit, based on communication quality between the first processing unit and the second processing.
  • Appendix 15 The processing control device described in Appendix 14, wherein the selection unit selects one of the second allocation method and the third allocation method for analysis target data other than the analysis target data for which the first allocation method was selected among the one or more analysis target data acquired by each first processing unit, further based on the compression efficiency of the analysis target data.
  • Appendix 16 The processing control device described in Appendix 9 or 10, wherein the selection unit selects the allocation method based on the computational cost in the first processing unit, the communication cost between the first processing unit and the second processing, and the analytical accuracy of the analysis target data when each of the one or more analysis target data acquired by each first processing unit is analyzed using each of the at least two allocation methods.
  • a first sharing method for causing the first processing unit to generate an analysis result of the analysis target data; a second sharing method in which the first processing unit calculates features of the data to be analyzed, the first processing unit transmits the features to the second processing unit, and the second processing unit generates the analysis result from the features, and a third sharing method in which the first processing unit transmits the data to be analyzed to the second processing unit, and the second processing unit generates the analysis result from the data to be analyzed.
  • (Appendix 20) 20 The processing control method of claim 19, further comprising: determining a priority for each of the one or more analysis target data acquired by each first processing unit based on the computational cost of the analysis target data and the importance of the analysis target data; and determining the analysis target data for which the first allocation method is to be selected based on the determined priority of each analysis target data.
  • Appendix 21 A processing control method as described in Appendix 20, in which the priority is determined for each of the one or more analysis target data acquired by each first processing unit based further on at least one of the risk level indicated by each analysis target data and the compression efficiency of each analysis target data.
  • Appendix 22 A processing control method according to any one of appendices 19 to 21, in which, for analysis target data other than the analysis target data for which the first allocation method has been selected among the one or more analysis target data acquired by each first processing unit, one of the second allocation method and the third allocation method is selected based on communication quality between the first processing unit and the second processing.
  • Appendix 23 The processing control method described in Appendix 22, wherein for analysis target data other than the analysis target data for which the first allocation method was selected, among the one or more analysis target data acquired by each first processing unit, a allocation method of either the second allocation method or the third allocation method is selected based further on the compression efficiency of the analysis target data.
  • (Appendix 24) 20 The processing control method of claim 18, wherein the allocation method is selected based on the calculation cost in the first processing unit, the communication cost between the first processing unit and the second processing unit, and the analytical accuracy of the analysis target data when each of the one or more analysis target data acquired by each first processing unit is analyzed using each of the at least two allocation methods.
  • a process control system for controlling one or more first processing units each acquiring one or more pieces of analysis target data, and a second processing unit capable of communicating with each of the first processing units and sharing an analysis of the analysis target data with each of the first processing units,
  • the processor comprising: a selection process for selecting, for each of the one or more analysis target data acquired by each first processing unit, a sharing method for analysis of the analysis target data in accordance with the calculation capacity of the first processing unit; and a process control process for controlling each of the first processing units and the second processing unit so as to perform analysis on each analysis target data using the sharing method selected in the selection process.
  • the processing control system may further include at least one memory, and this memory may store a program for causing the processor to execute the selection process and the processing control process.
  • the program may also be recorded on a computer-readable, non-transitory, tangible recording medium.
  • a process control device that controls one or more first processing units that respectively acquire one or more pieces of analysis target data, and a second processing unit that is capable of communicating with each of the first processing units and shares analysis of the analysis target data with each of the first processing units,
  • the processor comprising: a selection process for selecting, for each of the one or more analysis target data acquired by each first processing unit, a sharing method for analysis of the analysis target data in accordance with the calculation capacity of the first processing unit; and a process control process for controlling each of the first processing units and the second processing unit so that analysis is performed on each analysis target data using the sharing method selected in the selection process.
  • the processing control device may further include at least one memory, and this memory may store a program for causing the processor to execute the selection process and the processing control process.
  • the program may also be recorded on a computer-readable, non-transitory, tangible recording medium.
  • Processing system 10 Camera 20 First processing unit 21 Input unit 22 Communication unit 23 Main control unit 30 Second processing unit 31 Communication unit 32 Main control unit 100 Processing control system 101 Selection means 102 Processing control means 103 Communication means 200 Processing control device 201 Selection unit 202 Processing control unit 230 Analysis target data acquisition unit 231 Feature amount calculation unit 232 Analysis unit 233 Encoding unit 320 Decoding unit 321 Analysis unit 322 Output unit 1010 Importance determination means 1011 Processing cost calculation means 1012 Communication quality information acquisition means 1013 Risk determination means 1014 Compression efficiency calculation means 1014 1015 Analysis accuracy information acquisition means

Landscapes

  • Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Hardware Redundancy (AREA)
  • Debugging And Monitoring (AREA)

Abstract

A processing control system (100) includes: a selection means (101) that selects, for each item of data to be analyzed acquired by first processing units, a method for sharing the analysis of the item of data to be analyzed according to the calculation capacity of each of the first processing units; and a processing control means (102) that controls the first processing units and a second processing unit according to the result of selection.

Description

処理制御システム、処理制御装置、および処理制御方法Processing control system, processing control device, and processing control method
 本発明は、処理制御システム、処理制御装置、および処理制御方法に関する。 The present invention relates to a processing control system, a processing control device, and a processing control method.
 カメラやセンサ等で取得した分析対象データを分析して、例えば、遠隔地から、人物、物体等の対象物およびその動きを確認する技術が用いられている。例えば、特許文献1には、1つ以上の画像センサと1つ以上の操作端末から構成されるシステムにおいて、現場オペレータらが、それぞれ異なる操作端末を使用して画像センサにアクセスし、画像センサにおいて取得した対象物の画像や画像センサにおいて分析した処理結果を閲覧することが記載されている。 Technology is being used to analyze data to be analyzed acquired by cameras, sensors, etc., and to confirm targets such as people and objects and their movements, for example from a remote location. For example, Patent Document 1 describes a system consisting of one or more image sensors and one or more operation terminals, in which field operators each use a different operation terminal to access the image sensors and view images of targets acquired by the image sensors and the processing results analyzed by the image sensors.
国際公開公報第WO2021/161647号International Publication No. WO2021/161647
 しかしながら、カメラの解像度の向上により分析対象データのデータ量が増大したり、分析内容の高度化により計算コストが増大したりした場合、分析を十分に行うことができない場合がある。そのため、効率的に分析を行なうために、分析処理を制御する技術が求められている。特許文献1には、画像センサが、操作端末の性能などに応じて操作端末に送る送信画像の解像度などを適応的に変更することが記載されているが、分析処理を制御する技術は記載されていない。 However, when the amount of data to be analyzed increases due to improvements in camera resolution, or when the calculation costs increase due to more advanced analysis content, it may not be possible to perform the analysis adequately. Therefore, there is a demand for technology to control the analysis process in order to perform the analysis efficiently. Patent Document 1 describes how the image sensor adaptively changes the resolution of the image sent to the operation terminal depending on the performance of the operation terminal, but does not describe technology to control the analysis process.
 本発明の一態様は、上記の問題に鑑みてなされたものであり、その目的の一例は効率的に分析を行なうために分析処理を制御することができる処理制御システム、処理制御装置、および処理制御方法を提供することである。 One aspect of the present invention has been made in consideration of the above problems, and one example of its objective is to provide a process control system, a process control device, and a process control method that can control an analysis process in order to perform an analysis efficiently.
 本発明の一側面に係る処理制御システムは、1以上の分析対象データをそれぞれ取得する1以上の第1処理部と、各第1処理部と通信可能であり、前記分析対象データの分析を各第1処理部と分担する第2処理部と、を制御する処理制御システムであって、各第1処理部によって取得された前記1以上の分析対象データの各々に対して、当該第1処理部の計算能力に応じて、当該分析対象データの分析の分担方式を選択する選択手段と、各分析対象データに対し、前記選択手段が選択した分担方式で分析を実行するように各第1処理部および前記第2処理部を制御する処理制御手段とを備える。 A process control system according to one aspect of the present invention is a process control system that controls one or more first processing units each acquiring one or more pieces of analysis target data, and a second processing unit capable of communicating with each of the first processing units and sharing the analysis of the analysis target data with each of the first processing units, and includes a selection means that selects a sharing method for the analysis of the analysis target data for each of the one or more pieces of analysis target data acquired by each of the first processing units in accordance with the computing capacity of the first processing unit, and a process control means that controls each of the first processing units and the second processing units so that analysis is performed for each piece of analysis target data using the sharing method selected by the selection means.
 本発明の一側面に係る処理制御装置は、1以上の分析対象データをそれぞれ取得する1以上の第1処理部と、各第1処理部と通信可能であり、前記分析対象データの分析を各第1処理部と分担する第2処理部と、を制御する処理制御装置であって、各第1処理部によって取得された前記1以上の分析対象データの各々に対して、当該第1処理部の計算能力に応じて、当該分析対象データの分析の分担方式を選択する選択部と、各分析対象データに対し、前記選択部が選択した分担方式で分析を実行するように各第1処理部および前記第2処理部を制御する処理制御部とを備える。 A processing control device according to one aspect of the present invention is a processing control device that controls one or more first processing units that each acquire one or more pieces of analysis target data, and a second processing unit that is capable of communicating with each of the first processing units and shares the analysis of the analysis target data with each of the first processing units, and is equipped with a selection unit that selects a sharing method for the analysis of the analysis target data for each of the one or more pieces of analysis target data acquired by each of the first processing units in accordance with the computing capacity of the first processing unit, and a processing control unit that controls each of the first processing units and the second processing units so that analysis is performed for each piece of analysis target data using the sharing method selected by the selection unit.
 本発明の一側面に係る処理制御方法は、1以上の分析対象データをそれぞれ取得する1以上の第1処理部と、各第1処理部と通信可能であり、前記分析対象データの分析を各第1処理部と分担する第2処理部と、を制御する処理制御方法であって、各第1処理部によって取得された前記1以上の分析対象データの各々に対して、当該第1処理部の計算能力に応じて、当該分析対象データの分析の分担方式を選択し、各分析対象データに対し、選択した分担方式で分析を実行するように各第1処理部および前記第2処理部を制御する。 A process control method according to one aspect of the present invention is a process control method for controlling one or more first processing units, each of which acquires one or more pieces of analysis target data, and a second processing unit capable of communicating with each of the first processing units and sharing the analysis of the analysis target data with each of the first processing units, and for each of the one or more pieces of analysis target data acquired by each of the first processing units, a sharing method for the analysis of the analysis target data is selected according to the computing power of the first processing unit, and each of the first processing units and the second processing unit are controlled to perform analysis of each piece of analysis target data using the selected sharing method.
 本発明の一態様によれば、効率的に分析を行なうために分析処理を制御することができる。 According to one aspect of the present invention, the analysis process can be controlled to perform the analysis efficiently.
第1の実施形態に係る処理制御システムの構成例を示すブロック図である。1 is a block diagram showing an example of the configuration of a process control system according to a first embodiment. 処理制御システムによって制御される処理システムの構成例を示すブロック図である。1 is a block diagram showing an example of the configuration of a processing system controlled by a processing control system. 第1の実施形態に係る処理制御方法の流れの一例を示すフロー図である。FIG. 2 is a flowchart showing an example of the flow of a process control method according to the first embodiment. 第1の実施形態に係る処理制御装置の構成例を示すブロック図である。2 is a block diagram showing an example of the configuration of a processing control device according to the first embodiment; 第2の実施形態に係る処理制御システムおよび処理システムの構成例を示すブロック図である。FIG. 11 is a block diagram showing an example of the configuration of a process control system and a processing system according to a second embodiment. 分析対象データの抽出の一例を表す模式図である。FIG. 13 is a schematic diagram illustrating an example of extraction of analysis target data. 分担方式の選択のために参照される情報の一例を示す表である。11 is a table showing an example of information referenced for selecting a sharing method. 第3の実施形態に係る処理制御システムおよび処理システムの構成例を示すブロック図である。FIG. 13 is a block diagram showing an example of the configuration of a process control system and a processing system according to a third embodiment. 第4の実施形態に係る処理制御システムおよび処理システムの構成例を示すブロック図である。FIG. 13 is a block diagram showing an example of the configuration of a process control system and a processing system according to a fourth embodiment. 第5の実施形態に係る処理制御システムおよび処理システムの構成例を示すブロック図である。FIG. 13 is a block diagram showing an example of the configuration of a process control system and a processing system according to a fifth embodiment. コンピュータの構成例を示すブロック図である。FIG. 1 is a block diagram illustrating an example of the configuration of a computer.
 〔第1の実施形態〕
 本発明の第1の実施形態について、図面を参照して詳細に説明する。本実施形態は、後述する実施形態の基本となる形態である。
First Embodiment
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described in detail with reference to the accompanying drawings. This embodiment is a basic form of the embodiments described below.
 (処理制御システムの構成)
 本実施形態に係る処理制御システムの構成について、図1を参照して説明する。図1は、第1の実施形態に係る処理制御システム100の構成例を示すブロック図である。処理制御システム100は、選択手段101、処理制御手段102を備え、処理システムを制御する。
(Configuration of the Processing Control System)
The configuration of a process control system according to this embodiment will be described with reference to Fig. 1. Fig. 1 is a block diagram showing an example of the configuration of a process control system 100 according to a first embodiment. The process control system 100 includes a selection unit 101 and a process control unit 102, and controls the processing system.
 図2は、処理制御システムによって制御される処理システムの構成例を示すブロック図である。処理システム1は、1以上の第1処理部20、および、第2処理部30を備える。図2では、見易さのために第1処理部20が1つである構成について図示しているが、第1処理部20は複数であってもよい。 FIG. 2 is a block diagram showing an example configuration of a processing system controlled by a processing control system. The processing system 1 includes one or more first processing units 20 and a second processing unit 30. For ease of viewing, FIG. 2 shows a configuration with one first processing unit 20, but there may be multiple first processing units 20.
 第1処理部20はそれぞれ、例えば、カメラやLiDAR(Light Detection and Ranging)といったセンサ等に接続されており、カメラやセンサ等から1以上の分析対象データを取得する。一例において、分析対象データは、カメラによって撮像された映像データであってよい。映像データは、映像の画角内に分析対象が含まれれば足りる。分析対象は、例えば、工事現場で作業する作業者(人)、作業装置(物体)、および作業者、作業装置の挙動(動作)である。また、分析対象データは、分析対象を検知したセンサのセンシングデータであってもよい。 Each of the first processing units 20 is connected to, for example, a camera or a sensor such as LiDAR (Light Detection and Ranging), and acquires one or more pieces of analysis target data from the camera or sensor. In one example, the analysis target data may be video data captured by a camera. It is sufficient for the video data to include the analysis target within the field of view of the video. The analysis target may be, for example, a worker (person) working at a construction site, work equipment (object), and the behavior (movement) of the worker and work equipment. The analysis target data may also be sensing data from a sensor that detects the analysis target.
 また、第1処理部20は、複数のカメラやセンサ等に接続され、複数の分析対象データを取得してもよい。また、第1処理部20は、単一のカメラやセンサ等から、複数の分析対象データを取得してもよい。この場合、第1処理部20は、単一のカメラやセンサ等から取得したデータから複数の分析対象データを抽出することにより、複数の分析対象データを取得してもよい。 The first processing unit 20 may also be connected to multiple cameras, sensors, etc., and acquire multiple pieces of analysis target data. The first processing unit 20 may also acquire multiple pieces of analysis target data from a single camera, sensor, etc. In this case, the first processing unit 20 may acquire multiple pieces of analysis target data by extracting the multiple pieces of analysis target data from data acquired from a single camera, sensor, etc.
 第1処理部20および第2処理部30は、それぞれ1以上のコンピュータによって構成され得る。第1処理部20と第2処理部30は、ネットワークNWを介して通信可能であり、分析対象データの分析処理を分担する。ネットワークNWは、無線、有線であってよく、無線の場合は、Wi-Fi、LTE、4G、5G等の無線通信システムであってもよい。 The first processing unit 20 and the second processing unit 30 may each be configured with one or more computers. The first processing unit 20 and the second processing unit 30 are capable of communicating via a network NW, and share the analysis processing of the data to be analyzed. The network NW may be wireless or wired, and if wireless, may be a wireless communication system such as Wi-Fi, LTE, 4G, or 5G.
 一態様において、第1処理部20は、エッジ処理部であり、第2処理部30はクラウド処理であってよい。本明細書において「エッジ」とは、データの収集を行なう場所である。エッジ処理部である第1処理部20は、分析対象が存在する場所(例えば、工事現場、工場など)またはその周囲に設置された情報処理装置(コンピュータ)または情報処理装置群であり、分析対象が存在する場所に設置された撮像装置10から映像データを取得する。第1処理部20は、カメラやセンサ等と一体であってもよい。また、本明細書において「クラウド」とは、データの処理や保管などを行なう場所である。クラウド処理部である第2処理部30は、データセンターやサーバーファームなど、大きな計算リソースを提供可能な場所に設置された情報処理装置(コンピュータ)または情報処理装置群であってよい。なお、第2処理部30は、第1処理部20とネットワークを介して接続された場所にある処理部であればよく、5G等の基地局に接続された計算資源(例えば、MEC(Multi-access Edge Computing))や、現場の事務所等に設置されたサーバ(オンプレミス(on-premises)サーバ)等であってもよい。 In one embodiment, the first processing unit 20 may be an edge processing unit, and the second processing unit 30 may be a cloud processing unit. In this specification, "edge" refers to a place where data is collected. The first processing unit 20, which is an edge processing unit, is an information processing device (computer) or a group of information processing devices installed at or around the location where the analysis target is present (e.g., a construction site, a factory, etc.), and acquires video data from the imaging device 10 installed at the location where the analysis target is present. The first processing unit 20 may be integrated with a camera, a sensor, etc. Also, in this specification, "cloud" refers to a place where data is processed, stored, etc. The second processing unit 30, which is a cloud processing unit, may be an information processing device (computer) or a group of information processing devices installed at a location that can provide large computational resources, such as a data center or a server farm. Note that the second processing unit 30 may be a processing unit located at a location connected to the first processing unit 20 via a network, and may be a computational resource connected to a base station such as 5G (e.g., MEC (Multi-access Edge Computing)), or a server installed in an office at the site (on-premises server), etc.
 第1処理部20は、取得した1以上の分析対象データのうち、少なくとも一部について、分析処理を行って分析結果を生成してよい。また、第1処理部20は、取得した1以上の分析対象データのうち、少なくとも一部について、特徴量を算出し、算出した特徴量をネットワークNWを介して第2処理部30に送信してもよい。また、第1処理部20は、取得した1以上の分析対象データのうち、少なくとも一部について、ネットワークNWを介して第2処理部30に送信してもよい。なお、第1処理部20が、特徴量または分析対象データを第2処理部30に送信するときには、特徴量または分析対象データに対して、圧縮処理や暗号化処理を施して第2処理部30に送信してもよいし、特徴量または分析対象データに対して、圧縮処理や暗号化処理を施さずに第2処理部30に送信してもよい。 The first processing unit 20 may perform an analysis process on at least a portion of the one or more pieces of analysis target data acquired to generate an analysis result. The first processing unit 20 may also calculate features for at least a portion of the one or more pieces of analysis target data acquired and transmit the calculated features to the second processing unit 30 via the network NW. The first processing unit 20 may also transmit at least a portion of the one or more pieces of analysis target data acquired to the second processing unit 30 via the network NW. When the first processing unit 20 transmits the features or analysis target data to the second processing unit 30, it may compress or encrypt the features or analysis target data before transmitting them to the second processing unit 30, or it may transmit the features or analysis target data to the second processing unit 30 without compressing or encrypting them.
 第2処理部30は、第1処理部20から送信された特徴量または分析対象データを受信し、必要に応じて復元処理を行い、分析処理を行う。 The second processing unit 30 receives the features or data to be analyzed sent from the first processing unit 20, performs restoration processing as necessary, and performs analysis processing.
 分析処理は、例えば、分析対象データに基づく分析対象(物体、人)の検知、識別、追跡、時系列分析である。この分析処理には、学習モデルを用いてもよい。第1処理部20と第2処理部30の一方または双方が学習モデルを用いてもよい。 The analysis process is, for example, detection, identification, tracking, and time series analysis of the analysis target (object, person) based on the analysis target data. A learning model may be used for this analysis process. One or both of the first processing unit 20 and the second processing unit 30 may use the learning model.
 処理制御システム100(選択手段101、処理制御手段102)は、処理システム1(すなわち、第1処理部20、第2処理部30)を制御して、第1処理部20と第2処理部30との間で分析対象データの分析の分担をさせる。なお、処理制御システム100は、分析が不要であると判断した分析対象データについては、処理システム1に分析させなくてもよい。 The processing control system 100 (selection means 101, processing control means 102) controls the processing system 1 (i.e., the first processing unit 20, the second processing unit 30) to divide the analysis of the data to be analyzed between the first processing unit 20 and the second processing unit 30. Note that the processing control system 100 does not have to cause the processing system 1 to analyze data to be analyzed that is determined not to require analysis.
 第1処理部20と第2処理部30との間での分析対象データの分析の分担は、様々な態様で行なうことができる。例えば、分析対象データを取得した第1処理部20において当該分析対象データの分析処理を全て行う態様、分析対象データを取得した第1処理部20においてある程度分析処理を行い、残りの分析処理を第2処理部30で行う態様、第1処理部20で圧縮等の必要最低限の加工を行い、第2処理部30において分析対象データの分析処理を全て行う態様などが挙げられる。これらの分担方式を使い分けることにより、状況に応じて効率的に分析処理を行うことができる。 The analysis of the data to be analyzed can be shared between the first processing unit 20 and the second processing unit 30 in various ways. For example, the first processing unit 20 that acquired the data to be analyzed performs all of the analysis processing of the data to be analyzed, the first processing unit 20 that acquired the data to be analyzed performs a certain amount of analysis processing and the second processing unit 30 performs the remaining analysis processing, or the first processing unit 20 performs the minimum necessary processing such as compression and the second processing unit 30 performs all of the analysis processing of the data to be analyzed. By using these sharing methods appropriately, the analysis processing can be performed efficiently according to the situation.
 ここで、選択手段101は、各第1処理部20によって取得された1以上の分析対象データの各々に対して、分担方式を選択する。詳細には、選択手段101は、第1処理部20の計算能力に応じて、分析対象データの分析の分担方式を選択することができる。例えば、選択手段101は、第1処理部20の計算能力が高いほど、当該第1処理部20によって取得された分析対象データに対して、当該第1処理部20において行う分析が多くなるように、分担方式を選択してもよい。なお、第1処理部20の計算能力とは、分析処理を実行する能力の指標であり、第1処理部20が備えるCPUやGPUやメモリ等の計算リソースに基づく。 Here, the selection means 101 selects a sharing method for each of one or more pieces of analysis target data acquired by each first processing unit 20. In detail, the selection means 101 can select a sharing method for the analysis of the analysis target data according to the calculation capacity of the first processing unit 20. For example, the selection means 101 may select a sharing method such that the higher the calculation capacity of the first processing unit 20, the more analysis is performed in the first processing unit 20 for the analysis target data acquired by the first processing unit 20. Note that the calculation capacity of the first processing unit 20 is an index of the ability to execute analysis processing, and is based on the calculation resources such as the CPU, GPU, and memory that the first processing unit 20 has.
 一般に、第2処理部30は、第1処理部20に比べて非常に大きな計算能力を有している。一方、第1処理部20は、取得した分析対象データを即時に処理することができる。そのため、第1処理部20において処理しきれない分析処理を第2処理部30において処理することが全体として効率的であるといえる。すなわち、分析処理をどのように分担することが効率的であるかは、第1処理部20の計算能力に依存する。よって、選択手段101が、当該分析対象データを取得した第1処理部20の計算能力に応じて分担方式を選択することにより、効率的な分析を実現することができる。 In general, the second processing unit 30 has a much greater computational capacity than the first processing unit 20. On the other hand, the first processing unit 20 can instantly process the acquired data to be analyzed. Therefore, it can be said that it is efficient overall to have the second processing unit 30 process the analysis processing that the first processing unit 20 cannot process. In other words, how to efficiently share the analysis processing depends on the computational capacity of the first processing unit 20. Therefore, an efficient analysis can be realized by having the selection means 101 select a sharing method according to the computational capacity of the first processing unit 20 that acquired the data to be analyzed.
 処理制御手段102は、選択手段101が選択した分担方式で各分析対象データを分析するように各第1処理部20および第2処理部30を制御する。 The processing control means 102 controls each of the first processing units 20 and the second processing units 30 so that each analysis target data is analyzed using the sharing method selected by the selection means 101.
 処理制御手段102は、例えば、第2処理部30に設けられており、第2処理部30を直接制御するとともに、第2処理部30と各第1処理部20との間の通信を介して各第1処理部20を制御してもよい。また、処理制御手段102は、例えば、第1処理部20および第2処理部30と通信可能な装置に設けられており、当該装置と各第1処理部20および第2処理部30との間の通信を介して各第1処理部20および第2処理部30を制御してもよい。また、処理制御手段102は、例えば、各第1処理部20および第2処理部30にそれぞれ設けられており、各第1処理部20および第2処理部30を直接制御してもよい。また、処理制御手段102は、例えば、各第1処理部20にそれぞれ設けられており、各第1処理部20を直接制御するとともに、第1処理部20と第2処理部30との間の通信を介して第2処理部30を制御してもよい。 The processing control means 102 may be provided, for example, in the second processing unit 30, and may directly control the second processing unit 30 and may control each first processing unit 20 via communication between the second processing unit 30 and each first processing unit 20. The processing control means 102 may be provided, for example, in a device capable of communicating with the first processing unit 20 and the second processing unit 30, and may control each first processing unit 20 and the second processing unit 30 via communication between the device and each first processing unit 20 and the second processing unit 30. The processing control means 102 may be provided, for example, in each first processing unit 20 and the second processing unit 30, and may directly control each first processing unit 20 and the second processing unit 30. The processing control means 102 may be provided, for example, in each first processing unit 20, and may directly control each first processing unit 20 and the second processing unit 30, and may control the second processing unit 30 via communication between the first processing unit 20 and the second processing unit 30.
 以上のように、本実施形態に係る処理制御システム100は、第1処理部の計算能力に基づいて、分担方式を選択する。これにより、本実施形態に係る処理制御システム100によれば、第1処理部20と第2処理部30での分析処理を効率的に行うことができる。 As described above, the process control system 100 according to this embodiment selects a sharing method based on the computational capacity of the first processing unit. As a result, the process control system 100 according to this embodiment can efficiently perform analysis processing in the first processing unit 20 and the second processing unit 30.
 (処理制御方法の流れ)
 本実施形態に係る処理制御方法S100の流れについて、図3を参照して説明する。図3は、第1の実施形態に係る処理制御方法S100の流れを示すフロー図である。
(Flow of the processing control method)
The flow of the process control method S100 according to this embodiment will be described with reference to Fig. 3. Fig. 3 is a flow diagram showing the flow of the process control method S100 according to the first embodiment.
 ステップS101において、選択手段101は、各第1処理部20によって取得された1以上の分析対象データの各々に対して、分担方式を選択する。詳細には、選択手段101は、各第1処理部20によって取得された1以上の分析対象データの各々に対して、当該第1処理部の計算能力に応じて、当該分析対象データの分析の分担方式を選択する。 In step S101, the selection means 101 selects a sharing method for each of the one or more pieces of analysis target data acquired by each first processing unit 20. In detail, the selection means 101 selects a sharing method for the analysis of the one or more pieces of analysis target data acquired by each first processing unit 20 in accordance with the computing capacity of the first processing unit.
 ステップS102において、処理制御手段102は、選択手段101が選択した分担方式で各分析対象データを分析するように各第1処理部20および第2処理部30を制御する。 In step S102, the process control means 102 controls each of the first processing units 20 and the second processing unit 30 to analyze each analysis target data using the sharing method selected by the selection means 101.
 以上のように、本実施形態に係る処理制御方法S100においては、第1処理部の計算能力に基づいて、分担方式を選択する。これにより、本実施形態に係る処理制御システム100によれば、第1処理部20と第2処理部30での分析処理を効率的に行うことができる。 As described above, in the process control method S100 according to this embodiment, a sharing method is selected based on the computational capacity of the first processing unit. As a result, the process control system 100 according to this embodiment can efficiently perform analysis processing in the first processing unit 20 and the second processing unit 30.
 (処理制御装置の構成)
 本実施形態に係る処理制御装置200の構成について、図4を参照して説明する。図4は、第1の実施形態に係る処理制御装置200の構成を示すブロック図である。処理制御装置200は、選択部201、処理制御部202を有し、処理システム1(各第1処理部20と第2処理部30)を制御する。
(Configuration of Processing Control Device)
The configuration of the process control device 200 according to this embodiment will be described with reference to Fig. 4. Fig. 4 is a block diagram showing the configuration of the process control device 200 according to the first embodiment. The process control device 200 has a selection unit 201 and a process control unit 202, and controls the processing system 1 (each of the first processing units 20 and the second processing unit 30).
 選択部201は、選択手段101と同等の機能を備え、各第1処理部によって取得された1以上の分析対象データの各々に対して、当該第1処理部20の計算能力に応じて分担方式を選択する。処理制御部202は、処理制御手段102と同等の機能を備え、選択部201が選択した分担方式で各分析対象データを分析するように各第1処理部20および第2処理部30を制御する。 The selection unit 201 has a function equivalent to the selection means 101, and selects a sharing method for each of one or more analysis target data acquired by each first processing unit 20 according to the calculation capacity of the first processing unit 20. The process control unit 202 has a function equivalent to the process control means 102, and controls each first processing unit 20 and second processing unit 30 so that each analysis target data is analyzed using the sharing method selected by the selection unit 201.
 選択部201、処理制御部202は、プロセッサがメモリに格納されたプログラムを実行することによって処理が実行されるコンピュータ装置であってもよい。例えば、選択部201、処理制御部202は、単一のコンピュータ装置であってもよく、複数のコンピュータ装置が連携して動作するコンピュータ装置群もしくは複数のサーバ装置が連携して動作するサーバ装置群であってもよい。処理制御装置200によれば、処理制御システム100と同等の効果を得ることができる。 The selection unit 201 and the processing control unit 202 may be a computer device in which processing is performed by a processor executing a program stored in a memory. For example, the selection unit 201 and the processing control unit 202 may be a single computer device, or may be a computer device group in which multiple computer devices operate in cooperation with each other, or a server device group in which multiple server devices operate in cooperation with each other. The processing control device 200 can provide the same effects as the processing control system 100.
 〔第2の実施形態〕
 本発明の第2の実施形態について、図面を参照して詳細に説明する。なお、第1の実施形態にて説明した構成要素と同じ機能を有する構成要素については、同じ符号を付し、その説明を適宜省略する。
Second Embodiment
A second embodiment of the present invention will be described in detail with reference to the drawings. Note that components having the same functions as those described in the first embodiment are given the same reference numerals, and descriptions thereof will be omitted as appropriate.
 図5は、第2の実施形態に係る処理制御システム100および処理システム1の構成例を示すブロック図である。処理制御システム100は、処理システム1を制御する。本実施形態に係る処理システム1は、1以上の第1処理部20、1以上の第1処理部20とネットワークNWを介して接続された第2処理部30を備える。第1処理部20は、1以上のカメラ10と接続している。 FIG. 5 is a block diagram showing an example configuration of a processing control system 100 and a processing system 1 according to the second embodiment. The processing control system 100 controls the processing system 1. The processing system 1 according to this embodiment includes one or more first processing units 20 and a second processing unit 30 connected to the one or more first processing units 20 via a network NW. The first processing unit 20 is connected to one or more cameras 10.
 カメラ10は、分析対象を撮像し、映像データを生成する撮像装置である。上述したように、分析対象は、例えば、工事現場で作業する作業者(人)、作業装置(物体)、および作業者、作業装置の挙動(動作)であり、カメラ10はこれらを撮像可能なように設置されていればよい。各第1処理部20には、1以上のカメラ10が接続されており、一つのカメラ10は、基本的には、1つの第1処理部20にのみ接続される。 The camera 10 is an imaging device that captures the subject of analysis and generates video data. As described above, the subject of analysis may be, for example, a worker (person), work equipment (object), and the behavior (movement) of the worker and work equipment working at a construction site, and the camera 10 needs only to be installed so as to be able to capture these. One or more cameras 10 are connected to each first processing unit 20, and one camera 10 is basically connected to only one first processing unit 20.
 (第1処理部)
 第1処理部20は、入力部21、通信部22、主制御部23を備える。入力部21には、第1処理部20に接続された各カメラ10が撮像した映像データが入力される。通信部22は、ネットワークNWを介して、第2処理部30および処理制御システム100とデータのやり取りを行う。
(First Processing Section)
The first processing unit 20 includes an input unit 21, a communication unit 22, and a main control unit 23. Video data captured by each camera 10 connected to the first processing unit 20 is input to the input unit 21. The communication unit 22 exchanges data with the second processing unit 30 and the processing control system 100 via the network NW.
 主制御部23は、分析対象データ取得部230、特徴量算出部231、分析部232、エンコード部233を備える。 The main control unit 23 includes an analysis target data acquisition unit 230, a feature calculation unit 231, an analysis unit 232, and an encoding unit 233.
 分析対象データ取得部210は、1以上の分析対象データを取得する。分析対象データ取得部210は、入力部21に入力された各映像データ全体を分析対象データとして取得してもよいが、以下のように、各映像データから抽出した1以上の領域をそれぞれ分析対象データとして取得してよい。 The analysis target data acquisition unit 210 acquires one or more pieces of analysis target data. The analysis target data acquisition unit 210 may acquire the entirety of each piece of video data input to the input unit 21 as the analysis target data, but may also acquire one or more areas extracted from each piece of video data as the analysis target data, as described below.
 一態様において、分析対象データ取得部210は、入力部21に入力された映像データから1以上の領域を抽出し、それぞれの領域を分析対象データとして取得する。映像データから1以上の領域を抽出する方法は特に限定されないが、例えば、分析対象データ取得部210は、映像データに対して物体検出を行い、物体が検出された領域を分析対象データとして取得してもよい。このとき、分析対象データ取得部210は、物体検出のための学習モデルを用いて物体検出を行なってもよい。また、分析対象データ取得部210は、映像データを所定のグリッドに分割し、分割された各領域を分析対象データとして取得してもよい。 In one aspect, the analysis target data acquisition unit 210 extracts one or more regions from the video data input to the input unit 21, and acquires each region as analysis target data. There are no particular limitations on the method for extracting one or more regions from the video data, but for example, the analysis target data acquisition unit 210 may perform object detection on the video data and acquire the region in which the object is detected as analysis target data. At this time, the analysis target data acquisition unit 210 may perform object detection using a learning model for object detection. Furthermore, the analysis target data acquisition unit 210 may divide the video data into a predetermined grid, and acquire each divided region as analysis target data.
 図6は、分析対象データ取得部210によって取得される分析対象データの一例を示す図である。図6に示す例では、分析対象データ取得部210は、映像データのフレーム画像Fに対する物体検出によって検出された領域をそれぞれ分析対象データT1およびT2として取得する。前記領域は、T2のように複数の物体を含むように選択してもよい。 FIG. 6 is a diagram showing an example of analysis target data acquired by the analysis target data acquisition unit 210. In the example shown in FIG. 6, the analysis target data acquisition unit 210 acquires areas detected by object detection for a frame image F of video data as analysis target data T1 and T2. The areas may be selected to include multiple objects, such as T2.
 特徴量算出部231は、分析対象データの特徴量を算出する。分析対象データの特徴量を算出する方法は特に限定されないが、一態様において、特徴量算出部231は、畳み込み層を有する学習モデルを用いて、分析対象データから特徴量を算出してよい。また、一態様において、分析対象データ取得部210が物体検出のために用いた学習モデルが、物体の識別結果情報(クラス情報)を出力する場合、当該識別結果情報を特徴量として用いてもよい。また、検出または識別した物体のトラッキングを行い、前後のフレーム画像に映った物体と
同一か否かを表す識別子を特徴量に加えてもよい。
The feature calculation unit 231 calculates the feature of the analysis target data. The method of calculating the feature of the analysis target data is not particularly limited, but in one embodiment, the feature calculation unit 231 may calculate the feature from the analysis target data using a learning model having a convolutional layer. In one embodiment, when the learning model used by the analysis target data acquisition unit 210 for object detection outputs object identification result information (class information), the identification result information may be used as the feature. In addition, tracking of the detected or identified object may be performed, and an identifier indicating whether or not the object is the same as the object shown in the previous or next frame image may be added to the feature.
 分析部232は、分析対象データを分析し、分析結果を生成する。本明細書において、「分析」とは、分析対象において、検知対象となる事象が生じていること、または、検知対象となる物体が存在していることを検知することを意味する。例えば、分析対象が工事現場で作業する作業者(人)、作業装置(物体)、および作業者、作業装置の挙動(動作)などである場合には、分析結果としては、効率の悪い作業や、手順のミス、危険な行動などの事象が生じていること、または、特定の作業者、特定の作業装置などの特定の物体が存在していることの検知結果が挙げられる。例えば、図6に示す分析対象データT2について、重機に接近する危険な行動と分析してもよい。 The analysis unit 232 analyzes the data to be analyzed and generates an analysis result. In this specification, "analysis" means detecting that an event to be detected has occurred in the analysis target, or that an object to be detected is present. For example, if the analysis targets are workers (people), work equipment (objects), and the behavior (motion) of the workers and work equipment working at a construction site, the analysis results may include the occurrence of events such as inefficient work, procedural errors, and dangerous behavior, or the detection result of the presence of a specific object such as a specific worker or specific work equipment. For example, the analysis target data T2 shown in Figure 6 may be analyzed as a dangerous behavior of approaching heavy machinery.
 分析部232は、例えば、分析結果を出力するように予め学習された学習モデルを用いて分析を行なうことができる。分析のための学習モデルの学習方法は特に限定されないが、例えば、検知対象となる事象と、当該事象が生じているときの分析対象を示す分析対象データとの組を教師データとして学習させてもよいし、検知対象となる事象を検知できたときに報酬を付与するように強化学習させてもよい。また、当該学習モデルの入力としては、分析対象データを用いてもよいし、特徴量算出部231が算出した特徴量を用いてもよい。 The analysis unit 232 can perform the analysis, for example, using a learning model that has been trained in advance to output an analysis result. The learning method of the learning model for analysis is not particularly limited, but for example, a pair of an event to be detected and analysis target data that indicates the analysis target when the event occurs may be trained as teacher data, or reinforcement learning may be performed to give a reward when the event to be detected is detected. Furthermore, as an input to the learning model, the analysis target data or the feature calculated by the feature calculation unit 231 may be used.
 エンコード部233は、通信部22を介して送信するデータ(分析対象データ、特徴量等)に対して、圧縮処理、暗号化処理等の処理を行う。 The encoding unit 233 performs processes such as compression and encryption on the data (data to be analyzed, features, etc.) sent via the communication unit 22.
 (第2処理部)
 第2処理部30は、通信部31、主制御部32を備える。通信部31は、ネットワークNWを介して、各第1処理部20および処理制御システム100とデータのやり取りを行う。
(Second Processing Section)
The second processing unit 30 includes a communication unit 31 and a main control unit 32. The communication unit 31 exchanges data with each of the first processing units 20 and the processing control system 100 via the network NW.
 主制御部32は、デコード部320、分析部321、出力部322を備える。 The main control unit 32 includes a decoding unit 320, an analysis unit 321, and an output unit 322.
 デコード部320は、通信部31を介して受信したデータに対して、展開処理、復号処理等の処理を行い、分析部321または出力部322に提供する。 The decoding unit 320 performs processing such as expansion and decryption on the data received via the communication unit 31, and provides the data to the analysis unit 321 or the output unit 322.
 分析部321は、通信部31を介して受信した分析対象データまたは特徴量を分析し、分析結果を生成する。分析部321は、分析部232と同様、例えば、分析結果を出力するように予め学習された学習モデルを用いて分析を行なうことができる。分析部321が用いる学習モデルは、分析部232が用いる学習モデルと同じであってもよいし、異なっていてもよい。 The analysis unit 321 analyzes the analysis target data or feature quantities received via the communication unit 31, and generates an analysis result. Like the analysis unit 232, the analysis unit 321 can perform analysis using, for example, a learning model that has been trained in advance to output an analysis result. The learning model used by the analysis unit 321 may be the same as the learning model used by the analysis unit 232, or it may be different.
 出力部322は、分析部321の分析結果、または、通信部31を介して受信した分析部232の分析結果に応じた処理を行う。例えば、出力部322は、上述した分析結果を、通信部31を介して所定の通知先に通知してもよいし、上述した分析結果が所定の事象を指す場合に、通信部31を介して所定の通知先に警告信号を送ってもよい。 The output unit 322 performs processing according to the analysis results of the analysis unit 321 or the analysis results of the analysis unit 232 received via the communication unit 31. For example, the output unit 322 may notify a predetermined notification destination of the above-mentioned analysis results via the communication unit 31, or may send a warning signal to the predetermined notification destination via the communication unit 31 if the above-mentioned analysis results indicate a predetermined event.
 また、この分析結果(作業内容)は、分析された映像と共に、第1処理部20または第2処理部30からの通信等によって、例えば、監督者(一例として、現場監督)が保持する端末上に表示してもよいし、監視センターの大型ディスプレイに表示してもよい。この結果、監督者は、作業現場の映像を作業の分析結果と共に確認し、作業の状況を的確に把握し、現場に的確な指示を与えることができる。 Furthermore, this analysis result (work content) may be displayed, for example, on a terminal held by a supervisor (as an example, a site supervisor) or on a large display at a monitoring center, together with the analyzed video, via communication from the first processing unit 20 or the second processing unit 30. As a result, the supervisor can check the video of the work site together with the work analysis results, accurately grasp the status of the work, and give accurate instructions to the site.
 ネットワークNWは、無線、または、有線のネットワークであってよい。ネットワークNWにおける通信帯域は、第1処理部20ごとに予め割り当てられていてもよい。また、ネットワークNWは、各第1処理部20と第2処理部30との間の通信品質を検出または予測し、当該通信品質を示す通信品質情報を処理制御システム100に提供してもよい。 The network NW may be a wireless or wired network. The communication bandwidth in the network NW may be pre-allocated to each first processing unit 20. The network NW may also detect or predict the communication quality between each first processing unit 20 and the second processing unit 30, and provide communication quality information indicating the communication quality to the processing control system 100.
 (処理制御システム)
 処理制御システム100は、選択手段101、処理制御手段102、通信手段103を備え、処理システム1を制御する。通信手段103は、ネットワークNWを介して、各第1処理部20および第2処理部30とデータのやり取りを行う。
(Processing Control System)
The process control system 100 includes a selection unit 101, a process control unit 102, and a communication unit 103, and controls the processing system 1. The communication unit 103 exchanges data with each of the first processing units 20 and the second processing units 30 via the network NW.
 選択手段101は、重要度判定手段1010、処理コスト算出手段1011、通信品質情報判定手段1012を備え、上述したように、各第1処理部20によって取得された1以上の分析対象データの各々に対して、分担方式を選択する。選択手段101が分担方式をどのように選択するかの詳細については後述する。 The selection means 101 includes an importance determination means 1010, a processing cost calculation means 1011, and a communication quality information determination means 1012, and as described above, selects a sharing method for each of one or more pieces of analysis target data acquired by each first processing unit 20. Details of how the selection means 101 selects the sharing method will be described later.
 重要度判定手段1010は、各分析対象データの重要度を判定する。本明細書において、「重要度」とは、分析を行なう必要性を意味しており、分析の検知対象となる事象が発生または物体が存在している可能性が高いものが重要度が高いと判定され得る。「重要度」は「注目度」、「注視必要性」などと言い換えることもできる。重要度が高い事象としては、これらに限定するものではないが、例えば、工程通りの動作、工程とは異なる動作、危険性の高い動作などが挙げられる。重要度が高い物体としては、これらに限定するものではないが、人間や重機などが挙げられる。また、検知可否に基づいて判定してもよい。例えば、映像内に非常に小さく映っていて検知が難しい人や物体は、重要度を下げてもよい。重要度の表現方法は特に限定されないが、例えば、「0」(重要度低い)および「1」(重要度高い)の2値で表現されてもよいし、3値以上の多値(例えば、高・中・低)、または、連続的な数値によって表現されてもよい。 The importance determination means 1010 determines the importance of each analysis target data. In this specification, "importance" means the necessity of performing an analysis, and an event or object that is likely to occur or exist as a target of the analysis may be determined to be of high importance. "Importance" can also be expressed as "attention" or "necessity of attention". Events with high importance include, but are not limited to, actions according to a process, actions that are different from a process, and actions that are highly dangerous. Objects with high importance include, but are not limited to, people and heavy machinery. The importance may also be determined based on whether or not they can be detected. For example, the importance of a person or object that is very small in the image and difficult to detect may be reduced. The method of expressing importance is not particularly limited, and may be expressed, for example, as two values of "0" (low importance) and "1" (high importance), or as a multi-value of three or more values (for example, high, medium, low), or as a continuous numerical value.
 重要度判定手段1010は、例えば、分析対象データが示す動作が、上述した事象を示している場合に重要度が高いと判定してもよいが、学習モデルを用いて判定を行ってもよい。例えば、重要度判定手段1010は、各分析対象データの特徴量を入力とし、重要度を出力する学習モデルを用いて重要度を判定してよい。この場合、各分析対象データの特徴量は、第1処理部20の特徴量算出部231が算出したものであってよく、重要度判定手段1010は、各分析対象データの特徴量を、通信手段103を介して第1処理部20から取得してよい。各分析対象データの特徴量を入力とし、重要度を出力する学習モデルの学習方法は特に限定されないが、重要度がラベル付けされた学習用の分析対象データを教師データとして学習を行ってもよい。また、重要度判定手段1010は、映像データを入力とし、重要度を出力する学習モデルを用いて重要度を判定してよい。この場合、重要度判定手段1010は、映像データとして、第1処理部20から分析対象データそのものを取得してもよいが、通信量を低減するために分析対象データの映像のフレームレートを下げたり、画質を下げたりしたものを第1処理部20から取得してもよい。 The importance determination means 1010 may determine that the importance is high when the action indicated by the analysis target data indicates the above-mentioned event, for example, but may also perform the determination using a learning model. For example, the importance determination means 1010 may determine the importance using a learning model that inputs the feature amount of each analysis target data and outputs the importance. In this case, the feature amount of each analysis target data may be calculated by the feature amount calculation unit 231 of the first processing unit 20, and the importance determination means 1010 may acquire the feature amount of each analysis target data from the first processing unit 20 via the communication means 103. The learning method of the learning model that inputs the feature amount of each analysis target data and outputs the importance is not particularly limited, but learning may be performed using analysis target data for learning labeled with importance as teacher data. Also, the importance determination means 1010 may determine the importance using a learning model that inputs video data and outputs the importance. In this case, the importance determination means 1010 may obtain the analysis target data itself from the first processing unit 20 as video data, but may also obtain from the first processing unit 20 data in which the frame rate of the video of the analysis target data has been lowered or the image quality has been reduced in order to reduce the amount of communication.
 また、例えば、重要度判定手段1010は分析対象データの各部分の特徴量を算出した、各特徴量を結合した入力データを学習済みモデルに入力することにより、各部分の重要度を判定してもよい。使用する学習済みモデルは、各部分の特徴量を結合した入力データが入力され、当該入力データに基づいて各部分の特徴量間の関係性を示す関係性情報を生成し、当該関係性情報と入力データとに基づいて各領域の重要度を出力するものであってもよい。一態様において、関係性情報は、各領域の重要度に関して、当該領域以外の他の領域がどの程度関係しているかを示すものである。換言すれば、関係性情報は、各領域について、当該領域の重要度を判定するために必要な領域については関係性が大きく、特定の領域の重要度を判定するために必要ない領域については関係性が小さくなるように、領域間の関係性を示したものである。このような関係性情報としては、例えば、自己注意(Self-Attention)機構等の注意(Attention)機構において用いられるアテンション重み(Attention Weight)が挙げられる。学習済みモデルは、例えば、入力データに基づいて関係性情報を生成する1以上の層と、関係性情報と入力データとに基づいて各領域の重要度を生成する1以上の層とを含む。学習済みモデルは、例えば、分析結果を示すラベルが付された学習用の入力画像と、重要度を用いて入力画像の分析を行う分析エンジンとを用いた強化学習によって学習させることができる。 Also, for example, the importance determination means 1010 may determine the importance of each part by inputting input data in which the feature amounts of each part of the data to be analyzed are calculated and each feature amount is combined into the trained model. The trained model used may receive input data in which the feature amounts of each part are combined, generate relationship information indicating the relationship between the feature amounts of each part based on the input data, and output the importance of each area based on the relationship information and the input data. In one aspect, the relationship information indicates the degree to which areas other than the area are related to the importance of each area. In other words, the relationship information indicates the relationship between areas such that the relationship is large for areas necessary for determining the importance of the area and small for areas not necessary for determining the importance of a specific area. Such relationship information includes, for example, attention weights used in attention mechanisms such as self-attention mechanisms. The trained model includes, for example, one or more layers that generate relationship information based on input data, and one or more layers that generate the importance of each region based on the relationship information and the input data. The trained model can be trained, for example, by reinforcement learning using training input images labeled with an analysis result and an analysis engine that analyzes the input images using the importance.
 処理コスト算出手段1011は、各分析対象データを各分担方式で分析した場合における、第1処理部20における計算コスト、および、第1処理部20と第2処理部30との間の通信コストをそれぞれ計算または予測する。第1処理部20における計算コストは、例えば、当該第1処理部20の計算能力に対する、当該分析対象データに対して使用される割合を示す値であり、第1処理部20の計算能力を「1」としたときの相対値で表現してもよい。第1処理部20と第2処理部30との間の通信コストは、例えば、第1処理部20と第2処理部30との間を搬送されるデータの量を示す値であり、データのビットレート(Mbps)で表現してもよい。また、通信コストは、LTEや5Gにおけるリソースブロック数といった必要リソース量であってもよい。この場合、データのビットレートが同一であっても、通信品質の良好な環境と劣悪な環境では、必要リソース量は異なる。処理コスト算出手段1011が各コストを予測する場合には、分析対象データの特徴量を入力とし、各コストの予測値を出力する学習モデルを用いて各コストを予測してもよい。 The processing cost calculation means 1011 calculates or predicts the calculation cost in the first processing unit 20 and the communication cost between the first processing unit 20 and the second processing unit 30 when each analysis target data is analyzed by each sharing method. The calculation cost in the first processing unit 20 is, for example, a value indicating the ratio of the calculation capacity of the first processing unit 20 used for the analysis target data, and may be expressed as a relative value when the calculation capacity of the first processing unit 20 is set to "1". The communication cost between the first processing unit 20 and the second processing unit 30 is, for example, a value indicating the amount of data transported between the first processing unit 20 and the second processing unit 30, and may be expressed as a data bit rate (Mbps). The communication cost may also be the required resource amount, such as the number of resource blocks in LTE or 5G. In this case, even if the data bit rate is the same, the required resource amount differs between an environment with good communication quality and an environment with poor communication quality. When the processing cost calculation means 1011 predicts each cost, it may predict each cost using a learning model that inputs the features of the data to be analyzed and outputs a predicted value of each cost.
 図7は、選択手段101が、各第1処理部20によって取得された各分析対象データについて、分担方式を選択するために参照する情報の例を示す表であり、各分析対象データ毎に、第1処理部、重要度、各分担方式で分析した場合の計算コストおよび通信コストが示されている。選択手段101が、この表を参照して、どのように分担方式を選択するかについては後述する。 FIG. 7 is a table showing an example of information that the selection means 101 refers to in order to select an allocation method for each analysis target data acquired by each first processing unit 20, and shows, for each analysis target data, the first processing unit, the importance, and the calculation cost and communication cost when analyzed using each allocation method. How the selection means 101 refers to this table and selects the allocation method will be described later.
 通信品質情報取得手段1012は、各第1処理部20と第2処理部30との間の通信品質を示す通信品質情報を取得する。通信品質情報は、例えば、通信スループット、MCS(Modulation and Coding Scheme)インデックス、SINR(Signal to Interference plus Noise Ratio)等などであってよく、これらの予測値であってもよい。また、通信品質情報として予測値を用いる場合、予測される変動幅の最悪値(最低値)を用いてもよい。 The communication quality information acquisition means 1012 acquires communication quality information indicating the communication quality between each first processing unit 20 and the second processing unit 30. The communication quality information may be, for example, communication throughput, MCS (Modulation and Coding Scheme) index, SINR (Signal to Interference plus Noise Ratio), etc., or may be a predicted value of these. Furthermore, when a predicted value is used as the communication quality information, the worst value (lowest value) of the predicted fluctuation range may be used.
 処理制御手段102は、選択手段101が選択した分担方式で各分析対象データを分析するように各第1処理部20および第2処理部30を制御する。一態様において、処理制御手段102は、通信手段103を介して各第1処理部20および第2処理部30に、分析対象データを特定する情報と、特定した分析対象データに対して選択した分担方式を示す情報とを送信することにより、上記制御を行なってよい。 The process control means 102 controls each of the first processing units 20 and the second processing units 30 so that each analysis target data is analyzed using the sharing method selected by the selection means 101. In one embodiment, the process control means 102 may perform the above control by transmitting, via the communication means 103, to each of the first processing units 20 and the second processing units 30, information identifying the analysis target data and information indicating the sharing method selected for the identified analysis target data.
 また、別の一態様において、処理制御手段102は、第1処理部20における分析対象データの処理負荷の予測と、第1処理部20と第2処理部30との間の通信帯域の予測に基づいて、分析対象データを、第1処理部20と第2処理部30とのいずれが分析するのかを切替えるように分担方式を選択してもよい。処理制御手段102はまた、予測された通信帯域に基づいて、分析対象データ中で破棄する分析対象データ部分を決定してもよい。処理制御手段102はまた、第1処理部20および第2処理部30に、分析対象データを処理していない状態から分析対象データを処理するように切り替わったときに、単位フレームセットにおいて当該切り替え前に処理されていたフレームを補完させてもよい。処理制御手段102はまた、分析対象データを、第1処理部20および第2処理部30のうち当該分析対象データを分析していない処理部にバッファリングさせ、分析対象データを処理していない処理部が分析対象データを処理するように切り替わったときに、バファリングさせたデータを用いて、分析対象データを分析させてもよい。なお、処理制御手段102は、上述した破棄処理、補完処理、バッファリング処理を、分析対象データの重要度、分析対象データの処理の信頼度、分析対象データの送信用に割り当てられた通信帯域などに基づいて実行してもよい。なお、信頼度は、予測した分析結果にどの程度の確信があるかを示す指標であり、例えば、分析を行なった学習済みモデルから出力されるconfidence値であってよい。 In another embodiment, the processing control means 102 may select a sharing method to switch between the first processing unit 20 and the second processing unit 30 to analyze the data to be analyzed, based on a prediction of the processing load of the data to be analyzed in the first processing unit 20 and a prediction of the communication bandwidth between the first processing unit 20 and the second processing unit 30. The processing control means 102 may also determine a portion of the data to be analyzed to be discarded based on the predicted communication bandwidth. The processing control means 102 may also cause the first processing unit 20 and the second processing unit 30 to complement frames that were processed before the switching in the unit frame set when switching from a state in which the data to be analyzed is not being processed to a state in which the data to be analyzed is being processed. The processing control means 102 may also cause the processing unit that is not analyzing the data to be analyzed, among the first processing unit 20 and the second processing unit 30, to buffer the data to be analyzed, and when the processing unit that is not processing the data to be analyzed is switched to processing the data to be analyzed, the buffered data may be used to analyze the data to be analyzed. The process control means 102 may execute the above-mentioned discard process, complement process, and buffering process based on the importance of the data to be analyzed, the reliability of the processing of the data to be analyzed, the communication bandwidth allocated for transmitting the data to be analyzed, etc. The reliability is an index indicating the degree of confidence in the predicted analysis result, and may be, for example, a confidence value output from the trained model that performed the analysis.
 (分担方式の選択)
 続いて、選択手段101による分担方式の選択の詳細について説明する。本実施形態における選択手段101は、以下の分担方式1~3から、分担方式を選択する。
(Selection of sharing method)
Next, a detailed description will be given of the selection of the sharing method by the selection unit 101. The selection unit 101 in this embodiment selects a sharing method from the following sharing methods 1 to 3.
 分担方式1:分析対象データを取得した第1処理部20が当該分析対象データの分析結果を生成する。  Sharing method 1: The first processing unit 20 acquires the data to be analyzed and generates the analysis results of the data to be analyzed.
 分担方式2:分析対象データを取得した第1処理部20が当該分析対象データの特徴量を算出し、当該第1処理部20から第2処理部30に当該特徴量が送信され、第2処理部30が当該特徴量から当該分析対象データの分析結果を生成する。  Sharing method 2: The first processing unit 20 acquires the data to be analyzed and calculates the features of the data to be analyzed. The features are then sent from the first processing unit 20 to the second processing unit 30, which then generates an analysis result for the data to be analyzed from the features.
 分担方式3:分析対象データを取得した第1処理部20から第2処理部に分析対象データが送信され、第2処理部30が当該分析対象データから分析結果を生成する。  Sharing method 3: The first processing unit 20 acquires the data to be analyzed and transmits the data to the second processing unit 30, which then generates analysis results from the data to be analyzed.
 一つの観点において、分担方式1~3は、分析対象データを取得した第1処理部20と第2処理部30との間で、分析対象データの分析処理をどのように分担するかの態様を異ならせたものである。すなわち、分担方式1は、分析対象データを取得した第1処理部20において当該分析対象データの分析処理を全て行う態様である。分担方式2は、分析対象データを取得した第1処理部20および第2処理部30で分担して当該分析対象データの分析処理を行う態様である。分担方式3は、第1処理部20で圧縮等の必要最低限の加工を行い、第2処理部30において分析対象データの分析処理を全て行う態様である。これらの分担方式を使い分けることにより、状況に応じて効率的に分析処理を行うことができる。 From one perspective, sharing methods 1 to 3 differ in how the analysis processing of the analysis target data is shared between the first processing unit 20 and the second processing unit 30 that acquired the analysis target data. In other words, sharing method 1 is a method in which the first processing unit 20 that acquired the analysis target data performs all of the analysis processing of the analysis target data. Sharing method 2 is a method in which the first processing unit 20 and the second processing unit 30 that acquired the analysis target data share the analysis processing of the analysis target data. Sharing method 3 is a method in which the first processing unit 20 performs the minimum necessary processing such as compression, and the second processing unit 30 performs all of the analysis processing of the analysis target data. By using these sharing methods appropriately, analysis processing can be performed efficiently according to the situation.
 一実施形態において、処理制御システム100は、処理システム1に、分担方式1~3のうちの少なくとも2つの分担方式から選択される分担方式によって各分析対象データの分析を行なわせてよい。すなわち、処理制御システム100は、処理システム1に、分担方式1~3から選択される分担方式によって各分析対象データの分析を行なわせてよいし、処理システム1に、分担方式1および2から選択される分担方式によって各分析対象データの分析を行なわせてよいし、処理システム1に、分担方式1および3から選択される分担方式によって各分析対象データの分析を行なわせてよいし、処理システム1に、分担方式2および3から選択される分担方式によって各分析対象データの分析を行なわせてよい。 In one embodiment, the processing control system 100 may cause the processing system 1 to analyze each piece of analysis target data using an allocation method selected from at least two of allocation methods 1 to 3. That is, the processing control system 100 may cause the processing system 1 to analyze each piece of analysis target data using an allocation method selected from allocation methods 1 to 3, may cause the processing system 1 to analyze each piece of analysis target data using an allocation method selected from allocation methods 1 and 2, may cause the processing system 1 to analyze each piece of analysis target data using an allocation method selected from allocation methods 1 and 3, or may cause the processing system 1 to analyze each piece of analysis target data using an allocation method selected from allocation methods 2 and 3.
 選択手段101は、各第1処理部20によって取得された1以上の分析対象データの各々に対して、分担方式を選択する。詳細には、選択手段101は、各第1処理部20によって取得された1以上の分析対象データの各々に対して、当該第1処理部に当該分析対象データの分析結果を生成させる第1分担方式、当該第1処理部に当該分析対象データの特徴量を算出させ、当該第1処理部から前記第2処理部に前記特徴量を送信させ、前記第2処理部に前記特徴量から前記分析結果を生成させる第2分担方式、および当該第1処理部から前記第2処理部に当該分析対象データを送信させ、前記第2処理部に当該分析対象データから前記分析結果を生成させる第3分担方式のうちの少なくとも2つの分担方式から分担方式を選択する。 The selection means 101 selects a sharing method for each of one or more pieces of analysis target data acquired by each first processing unit 20. In detail, the selection means 101 selects a sharing method from at least two sharing methods among a first sharing method for causing the first processing unit to generate an analysis result for the analysis target data for each of one or more pieces of analysis target data acquired by each first processing unit 20, a second sharing method for causing the first processing unit to calculate a feature amount of the analysis target data, transmit the feature amount from the first processing unit to the second processing unit, and cause the second processing unit to generate the analysis result from the feature amount, and a third sharing method for causing the first processing unit to transmit the analysis target data to the second processing unit, and cause the second processing unit to generate the analysis result from the analysis target data.
 ここで、分担方式の選択に当たって考慮すべき制約条件は以下のとおりである。
・映像データはサイズが大きいため、通信リソース量の制限により大規模なシステムでは全カメラ映像を第1処理部20から第2処理部30へ送信することは不可能
・第1処理部20において分析または特徴量の算出を行い、その結果を第2処理部30へ送信することにより、通信量を低減することができるが、第1処理部20の計算リソース量には制限があるため、第1処理部20においてすべての分析を実行するのは不可能
・各カメラから得られたデータの分析に必要な計算リソース量、第2処理部30で分析可能な画質でデータを送信するために必要な通信リソース量、第1処理部20と第2処理部30との間の通信品質は時々刻々と変化するため、随時対応する必要がある。
The constraints to be considered when selecting the sharing method are as follows:
- Because video data is large in size, it is not possible in a large-scale system to transmit all camera footage from the first processing unit 20 to the second processing unit 30 due to limitations on the amount of communication resources.- The amount of communication can be reduced by performing analysis or calculating features in the first processing unit 20 and transmitting the results to the second processing unit 30, but since the amount of computational resources available to the first processing unit 20 is limited, it is not possible for the first processing unit 20 to perform all analyses.- The amount of computational resources required to analyze the data obtained from each camera, the amount of communication resources required to transmit data with image quality that can be analyzed by the second processing unit 30, and the communication quality between the first processing unit 20 and the second processing unit 30 change from moment to moment, so it is necessary to respond as needed.
 以上の制約条件を考慮して分担方式の選択を行なうために、一態様において、選択手段101は、以下のように動作する。 In order to select a sharing method taking into account the above constraints, in one embodiment, the selection means 101 operates as follows.
 まず、選択手段101は、各第1処理部20によって取得された1以上の分析対象データの各々について、重要度判定手段1010が判定した重要度、ならびに、処理コスト算出手段1011が算出した各分担方式で分析する場合における計算コストおよび通信コストを収集する。図7に、選択手段101が収集した情報の一例を示す。なお、図7では、異なる第1処理部20を区別するために、「第1処理部(1)」などと記載している。 First, the selection means 101 collects, for each of the one or more pieces of analysis target data acquired by each first processing unit 20, the importance determined by the importance determination means 1010, as well as the calculation cost and communication cost calculated by the processing cost calculation means 1011 when analyzing using each sharing method. Figure 7 shows an example of information collected by the selection means 101. Note that in Figure 7, in order to distinguish between different first processing units 20, they are written as "first processing unit (1)" and so on.
 そして、一態様において、選択手段101は、収集した情報を参照して、まず、第1分担方式を選択する分析対象データを決定する。このとき、選択手段101は、各第1処理部20によって取得された1以上の分析対象データのうち、第1分担方式で分析すると選択した分析対象データを、第1分担方式で分析させた場合の当該第1処理部20における計算コストの合計が、当該第1処理部20の計算能力に基づく計算コストの上限を超えないように決定する。これにより、第1処理部20において分析対象データの処理がしきれないことを防ぐことができる。なお、第1処理部20の計算能力に基づく計算コストの上限は、第1処理部20の計算能力そのものとしてもよいし、ある程度マージンを取って設定した値であってもよい。 In one embodiment, the selection means 101 refers to the collected information and first determines the analysis target data for which the first allocation method is to be selected. At this time, the selection means 101 determines the analysis target data selected to be analyzed using the first allocation method, among one or more analysis target data acquired by each first processing unit 20, such that the total calculation cost of the first processing unit 20 when analyzed using the first allocation method does not exceed the upper limit of the calculation cost based on the calculation capacity of the first processing unit 20. This makes it possible to prevent the first processing unit 20 from being unable to process all the analysis target data. Note that the upper limit of the calculation cost based on the calculation capacity of the first processing unit 20 may be the calculation capacity of the first processing unit 20 itself, or may be a value set with a certain margin.
 また、一態様において、選択手段101は、各分析対象データの優先度を決定し、決定した各分析対象データの優先度に基づいて、第1分担方式を選択する分析対象データを決定する。例えば、選択手段101は、第1分担方式として選択した計算コストの合計が第1処理部20の計算能力に基づく計算コストの上限を超えない範囲で、優先度が高い分析対象データから第1分担方式として選択してもよい。これにより、第1処理部20において処理可能な範囲で第1分担方式を選択することができる。第1分担方式は、分析対象データを取得した第1処理部20において分析を行うため、分析を速やかに行うことができ、緊急性の高い事象等を検知する際に有利である。 In one embodiment, the selection means 101 determines the priority of each analysis target data, and determines the analysis target data for which the first allocation method is to be selected based on the determined priority of each analysis target data. For example, the selection means 101 may select the first allocation method from the analysis target data with high priority, within a range in which the total calculation cost selected as the first allocation method does not exceed the upper limit of the calculation cost based on the calculation capacity of the first processing unit 20. This makes it possible to select the first allocation method within a range that can be processed by the first processing unit 20. The first allocation method performs analysis in the first processing unit 20 that acquires the analysis target data, so that the analysis can be performed quickly, which is advantageous when detecting events with high urgency, etc.
 優先度の決定方法は特に限定されないが、例えば、選択手段101は、各第1処理部20によって取得された1以上の分析対象データの各々に対して、当該分析対象データの第1分担方式で分析させた場合の計算コストおよび当該分析対象データの重要度に基づいて優先度を決定してもよい。例えば、選択手段101は、以下の式に基づいて優先度を決定してもよい。 The method of determining the priority is not particularly limited, but for example, the selection means 101 may determine a priority for each of one or more analysis target data acquired by each first processing unit 20 based on the calculation cost when the analysis target data is analyzed using the first allocation method and the importance of the analysis target data. For example, the selection means 101 may determine the priority based on the following formula.
 優先度=(α1×重要度)/計算コスト(α1は、予め定められた値)
 例えば、図7の例では、選択手段101は、「第1処理部(1)」によって取得されて分析対象データのうち、分析対象データ1を優先して第1分担方式として選択することになる。このように優先度を決定することにより、分析の必要性と計算コストとのバランスをとって効率的に分析を行うことができる。
Priority=(α1×importance)/calculation cost (α1 is a predetermined value)
7, the selection means 101 will give priority to and select, as the first allocation method, analysis target data 1 among the analysis target data acquired by the "first processing unit (1)." By determining the priority in this manner, it is possible to perform the analysis efficiently by balancing the necessity for analysis with the calculation cost.
 続いて、選択手段101は、各第1処理部20によって取得された1以上の分析対象データのうち、第1分担方式を選択しなかった分析対象データに対して、分担方式を選択する。一態様において、選択手段101は、通信品質情報取得手段1012が取得した各第1処理部20の通信品質情報に基づいて、第2分担方式および第3分担方式のうちのいずれかの分担方式を選択してよい。 Then, the selection means 101 selects an allocation method for analysis target data for which the first allocation method was not selected, among the one or more analysis target data acquired by each first processing unit 20. In one aspect, the selection means 101 may select either the second allocation method or the third allocation method based on the communication quality information of each first processing unit 20 acquired by the communication quality information acquisition means 1012.
 すなわち、第3分担方式は、第2分担方式よりも通信量が大きくなるが、通信品質の良好な第1処理部20の分析対象データに対して第3分担方式を選択することにより、無線リソースの利用効率を高めることができる。特に、例えば、複数の第1処理部20が、カメラ10から入力された映像データの1以上の領域をそれぞれ分析対象データとして取得し、そのうち各第1処理部20において処理しきれなかったデータを、第2処理部30にオフロードするときに、通信品質の良好な第1処理部20を優先することで、無線リソースの利用効率を高めることができる。これにより、第2処理部30に効率的に分析処理をオフロードすることができるため、より多くのカメラ10から取得された映像データを分析することができる。 In other words, although the third sharing method involves a larger amount of communication than the second sharing method, by selecting the third sharing method for data to be analyzed by a first processing unit 20 with good communication quality, it is possible to improve the efficiency of wireless resource utilization. In particular, for example, when multiple first processing units 20 each acquire one or more areas of video data input from a camera 10 as data to be analyzed, and data that could not be fully processed by each first processing unit 20 is offloaded to the second processing unit 30, the efficiency of wireless resource utilization can be improved by prioritizing the first processing unit 20 with good communication quality. This allows the analysis process to be efficiently offloaded to the second processing unit 30, making it possible to analyze video data acquired from a greater number of cameras 10.
 なお、選択手段101は、各第1処理部20によって取得された1以上の分析対象データのうち、第1分担方式を選択しなかった分析対象データにおける通信コストの合計が、当該第1処理部20と第2処理部30との間の通信帯域を超える場合には、例えば、重要度の低い分析対象データの分析を行わないようにしてもよい。 In addition, when the total communication cost of the analysis target data for which the first allocation method was not selected, among one or more analysis target data acquired by each first processing unit 20, exceeds the communication bandwidth between the first processing unit 20 and the second processing unit 30, the selection means 101 may, for example, not analyze the analysis target data of low importance.
 以上、第2の実施形態を処理制御システム100として説明したが、第2の実施形態に係る処理制御システム100を1つの装置に搭載した処理制御装置としてもよい。また、第2の実施形態に係る処理制御システム100の動作は、第2の実施形態に係る処理制御方法であってよい。 The second embodiment has been described above as a process control system 100, but the process control system 100 according to the second embodiment may be mounted on a single device as a process control device. Furthermore, the operation of the process control system 100 according to the second embodiment may be the process control method according to the second embodiment.
 〔第3の実施形態〕
 本発明の第3の実施形態について、図面を参照して詳細に説明する。なお、第1および第2の実施形態にて説明した構成要素と同じ機能を有する構成要素については、同じ符号を付し、その説明を適宜省略する。
Third Embodiment
A third embodiment of the present invention will be described in detail with reference to the drawings. Note that components having the same functions as those described in the first and second embodiments are given the same reference numerals, and the description thereof will be omitted as appropriate.
 図8は、第3の実施形態に係る処理制御システム100および処理システム1の構成例を示すブロック図である。本実施形態に係る処理制御システム100は、選択手段101が危険度判定手段1013を備えている点において、第2の実施形態に係る処理制御システム100と異なっているため、危険度判定手段1013の機能について説明する。 FIG. 8 is a block diagram showing an example of the configuration of a process control system 100 and a process system 1 according to the third embodiment. The process control system 100 according to this embodiment differs from the process control system 100 according to the second embodiment in that the selection means 101 includes a risk determination means 1013, so the function of the risk determination means 1013 will be described.
 危険度判定手段1013は、各分析対象データが示す危険度を判定する。本明細書において、「危険度」とは、分析を迅速に行なう必要性を意味している。例えば、危険な事象が生じている可能性が高いものについて危険度が高いと判定され得る。危険度が高い事象としては、これらに限定するものではないが、例えば、危険性の高い位置にいる人(例えば、高所にいる人、現場に掘った穴の近くで作業中の人、重機の近くで作業中の人、道路、線路、高圧電線の近くの人など)、人や機材の密集度が高い領域(密集している方が危険度が高いと判断)、動きの大きな人(動いていない人よりも危険度が高いと判断)などが挙げられる。危険度の表現方法は特に限定されないが、例えば、0(危険度低い)および1(危険度高い)の2値で表現されてもよいし、3値以上の多値、または、連続的な数値によって表現されてもよい。 The risk assessment means 1013 assesses the risk indicated by each analysis target data. In this specification, "risk" means the need to perform analysis quickly. For example, a high risk may be determined for a highly likely dangerous event. High risk events include, but are not limited to, people in high risk positions (e.g., people at high altitudes, people working near holes dug at the site, people working near heavy machinery, people near roads, railroad tracks, high-voltage power lines, etc.), areas with high density of people and equipment (high density is judged to be high risk), people who move a lot (higher risk than people who are not moving), etc. There are no particular limitations on the way the risk is expressed, but it may be expressed as two values, 0 (low risk) and 1 (high risk), or as multiple values of three or more values, or as continuous numerical values.
 危険度判定手段1013は、例えば、分析対象データが示す人と周囲の物体との関係が、上述した事象を示している場合に危険度が高いと判定してもよいが、重要度判定手段1010のように、学習モデルを用いて判定を行ってもよい。例えば、危険度判定手段1013は、各分析対象データの特徴量を入力とし、危険度を出力する学習モデルを用いて重要度を判定してよい。この場合、各分析対象データの特徴量は、第1処理部20の特徴量算出部231が算出したものであってよく、危険度判定手段1013は、各分析対象データの特徴量を、通信手段103を介して第1処理部20から取得してよい。各分析対象データの特徴量を入力とし、危険度を出力する学習モデルの学習方法は特に限定されないが、危険度がラベル付けされた学習用の分析対象データを教師データとして学習を行ってもよい。 The risk determination means 1013 may determine that the risk is high when the relationship between the person and the surrounding objects indicated by the analysis target data indicates the above-mentioned event, for example, but may also perform the determination using a learning model like the importance determination means 1010. For example, the risk determination means 1013 may determine the importance using a learning model that inputs the feature amount of each analysis target data and outputs the risk amount. In this case, the feature amount of each analysis target data may be calculated by the feature amount calculation unit 231 of the first processing unit 20, and the risk determination means 1013 may obtain the feature amount of each analysis target data from the first processing unit 20 via the communication means 103. The learning method of the learning model that inputs the feature amount of each analysis target data and outputs the risk amount is not particularly limited, but learning may be performed using the analysis target data for learning labeled with the risk amount as teacher data.
 そして、選択手段101は、各第1処理部20によって取得された1以上の分析対象データの各々について、重要度判定手段1010が判定した重要度、ならびに、処理コスト算出手段1011が算出した各分担方式で分析する場合における計算コストおよび通信コストに加えて、危険度判定手段1013が判定した危険度を収集する。 Then, for each of the one or more pieces of analysis target data acquired by each first processing unit 20, the selection means 101 collects the importance determined by the importance determination means 1010, the calculation cost and communication cost calculated by the processing cost calculation means 1011 when analyzing using each sharing method, and the risk determined by the risk determination means 1013.
 さらに、選択手段101は、各第1処理部20によって取得された1以上の分析対象データの各々に対して、当該分析対象データの第1分担方式で分析させた場合の計算コストおよび当該分析対象データの重要度および当該分析対象データが示す危険度に基づいて優先度を決定してもよい。例えば、選択手段101は、以下の式に基づいて優先度を決定してもよい。 Furthermore, the selection means 101 may determine a priority for each of the one or more analysis target data acquired by each first processing unit 20, based on the calculation cost when the analysis target data is analyzed using the first allocation method, the importance of the analysis target data, and the risk level indicated by the analysis target data. For example, the selection means 101 may determine the priority based on the following formula.
 優先度=(α1×重要度)×(α2×危険度)/計算コスト(α1、α2は、予め定められた値)
 このように優先度を決定することにより、即座に本人や管理者にアラートを上げる必要がある危険行動を第1処理部20において検知することで、通信遅延を防ぎ、例えばアラート発出までの遅延を低減することができる。
Priority=(α1×importance)×(α2×risk)/calculation cost (α1 and α2 are predetermined values)
By determining the priority in this manner, the first processing unit 20 can detect risky behavior that requires an immediate alert to the person in question or an administrator, thereby preventing communication delays and, for example, reducing the delay until an alert is issued.
 なお、上述したように、危険度判定手段1013は、選択手段101から独立して、各第1処理部20に備えられていてもよい。その場合、第1処理部20の危険度判定手段1013においてある分析対象データが示す危険度が高いと判定した場合に、処理制御手段102の制御によらず、当該分析対象データを第1処理部20において(第1分担方式で)分析してもよい。 As mentioned above, the risk determination means 1013 may be provided in each first processing unit 20, independent of the selection means 101. In this case, if the risk determination means 1013 of the first processing unit 20 determines that the risk indicated by certain analysis target data is high, the analysis target data may be analyzed in the first processing unit 20 (using the first sharing method) without being controlled by the processing control means 102.
 以上、第3の実施形態を処理制御システム100として説明したが、第3の実施形態に係る処理制御システム100を1つの装置に搭載した処理制御装置としてもよい。また、第3の実施形態に係る処理制御システム100の動作は、第3の実施形態に係る処理制御方法であってよい。 The third embodiment has been described above as a process control system 100, but the process control system 100 according to the third embodiment may be mounted on a single device as a process control device. Furthermore, the operation of the process control system 100 according to the third embodiment may be the process control method according to the third embodiment.
 〔第4の実施形態〕
 本発明の第4の実施形態について、図面を参照して詳細に説明する。なお、第1、第2および第3の実施形態にて説明した構成要素と同じ機能を有する構成要素については、同じ符号を付記し、その説明を繰り返さない。
Fourth embodiment
A fourth embodiment of the present invention will be described in detail with reference to the drawings. Note that components having the same functions as those described in the first, second and third embodiments are denoted by the same reference numerals and will not be described repeatedly.
 図9は、第4の実施形態に係る処理制御システム100および処理システム1の構成例を示すブロック図である。本実施形態に係る処理制御システム100は、選択手段101が圧縮効率算出手段1014を備えている点において、第2の実施形態に係る処理制御システム100と異なっているため、圧縮効率算出手段1014の機能について説明する。 FIG. 9 is a block diagram showing an example of the configuration of a processing control system 100 and a processing system 1 according to the fourth embodiment. The processing control system 100 according to this embodiment differs from the processing control system 100 according to the second embodiment in that the selection means 101 includes a compression efficiency calculation means 1014, so the function of the compression efficiency calculation means 1014 will be described.
 圧縮効率算出手段1014は、各分析対象データの圧縮効率を算出する。本明細書において、「圧縮効率」とは、圧縮処理によってどの程度分析対象データを圧縮できるかの指標であり、予測値であってよい。 The compression efficiency calculation means 1014 calculates the compression efficiency of each analysis target data. In this specification, "compression efficiency" is an index of the degree to which the analysis target data can be compressed by compression processing, and may be a predicted value.
 例えば、分析対象データが示す映像が、雨や雪が降っている状態を映している場合、物体が大きく動いている状態を映している場合、物体がランダムに動いている状態を映している場合、圧縮効率は低下する傾向にある。そこで、一態様において、圧縮効率算出手段1014は、分析対象データが、雨や雪が降っている状態、物体が大きく動いている状態、物体がランダムに動いている状態のいずれかに該当するか否かを判定し、該当しない場合には、圧縮効率を例えば1とし、該当する場合には、雨や雪の量または動きの量に応じて圧縮効率を例えば0から1の間の値としてもよい。 For example, if the image represented by the data to be analyzed shows a state in which it is raining or snowing, a state in which an object is moving significantly, or a state in which an object is moving randomly, the compression efficiency tends to decrease. Therefore, in one aspect, the compression efficiency calculation means 1014 determines whether the data to be analyzed corresponds to any of the states of a state in which it is raining or snowing, a state in which an object is moving significantly, or a state in which an object is moving randomly, and if it does not correspond to any of the states, the compression efficiency may be set to, for example, 1, and if it corresponds to the state, the compression efficiency may be set to, for example, a value between 0 and 1 depending on the amount of rain or snow or the amount of movement.
 また、屋外を映している分析対象データについては、気象情報を参照して雨や雪が降っている状態か否かを判定してもよい。一態様において、圧縮効率算出手段1014は、カメラ10の撮像範囲に応じて、屋内を映している領域に対応する分析対象データについては圧縮効率を例えば1とし、屋外を映している領域に対応する分析対象データについては、気象情報を参照して、降雨、降雪時には、圧縮効率を例えば0から1の間の値としてもよい。 Furthermore, for data to be analyzed that shows outdoors, weather information may be referenced to determine whether it is raining or snowing. In one aspect, the compression efficiency calculation means 1014 may set the compression efficiency to, for example, 1 for data to be analyzed that corresponds to areas showing indoors, depending on the imaging range of the camera 10, and may set the compression efficiency to, for example, a value between 0 and 1 for data to be analyzed that corresponds to areas showing outdoors, by reference to weather information, when it is raining or snowing.
 また、過去の実測値等を参照して圧縮効率を算出してもよい。一態様において、圧縮効率算出手段1014は、第1処理部20のエンコード部233における圧縮済みのビットレートを取得し、圧縮効率を予測してもよい。また、一態様において、圧縮効率算出手段1014は、第2処理部30の分析部321における任意の圧縮率で圧縮された過去の分析対象データについての分析可否情報を取得し、分析が不可であった場合にはより画質を向上させる必要があるとして、圧縮率を低く設定して圧縮効率を算出してもよい。 The compression efficiency may also be calculated by referring to past actual measurements, etc. In one embodiment, the compression efficiency calculation means 1014 may obtain the compressed bit rate in the encoding unit 233 of the first processing unit 20 and predict the compression efficiency. In another embodiment, the compression efficiency calculation means 1014 may obtain analysis feasibility information for past analysis target data compressed at an arbitrary compression rate in the analysis unit 321 of the second processing unit 30, and if analysis is not possible, may set a low compression rate and calculate the compression efficiency, assuming that image quality needs to be improved.
 そして、選択手段101は、各第1処理部20によって取得された1以上の分析対象データの各々について、重要度判定手段1010が判定した重要度、ならびに、処理コスト算出手段1011が算出した各分担方式で分析する場合における計算コストおよび通信コストに加えて、圧縮効率算出手段1014が判定した圧縮効率を収集する。 Then, for each of the one or more analysis target data acquired by each first processing unit 20, the selection means 101 collects the importance determined by the importance determination means 1010, the calculation cost and communication cost calculated by the processing cost calculation means 1011 when analyzing using each allocation method, and the compression efficiency determined by the compression efficiency calculation means 1014.
 さらに、選択手段101は、各第1処理部20によって取得された1以上の分析対象データの各々に対して、当該分析対象データの第1分担方式で分析させた場合の計算コストおよび当該分析対象データの重要度および圧縮効率に基づいて優先度を決定してもよい。例えば、選択手段101は、以下の式に基づいて優先度を決定してもよい。 Furthermore, the selection means 101 may determine a priority for each of the one or more analysis target data acquired by each first processing unit 20, based on the calculation cost when the analysis target data is analyzed using the first allocation method, and the importance and compression efficiency of the analysis target data. For example, the selection means 101 may determine the priority based on the following formula.
 優先度=(α1×重要度)×(α3/圧縮効率)/計算コスト(α1、α3は、予め定められた値)
 このように優先度を決定することにより、圧縮効率が高く、第2処理部30へのデータの送信のコストが小さい分析対象データを優先して第2処理部30へ送信させることができ、効率的に分析を行うことができる。
Priority=(α1×importance)×(α3/compression efficiency)/calculation cost (α1 and α3 are predetermined values)
By determining the priority in this manner, data to be analyzed that has a high compression efficiency and a low cost of transmitting the data to the second processing unit 30 can be sent to the second processing unit 30 preferentially, thereby enabling analysis to be performed efficiently.
 さらに、選択手段101は、各第1処理部20によって取得された1以上の分析対象データのうち、第1分担方式を選択しなかった分析対象データに対して、分担方式を選択する。一態様において、選択手段101は、上述した各第1処理部20の通信品質情報に加えて、分析対象データの圧縮効率に更に基づいて、第2分担方式および第3分担方式のうちのいずれかの分担方式を選択してよい。 Furthermore, the selection means 101 selects an allocation method for analysis target data for which the first allocation method was not selected, among one or more analysis target data acquired by each first processing unit 20. In one aspect, the selection means 101 may select one of the second and third allocation methods based on the compression efficiency of the analysis target data in addition to the communication quality information of each first processing unit 20 described above.
 すなわち、第3分担方式は、第2分担方式よりも通信量が大きくなるが、圧縮効率が高い分析対象データに対して第3分担方式を選択することにより、無線リソースの利用効率を高めることができる。 In other words, the third sharing method involves a larger amount of communication traffic than the second sharing method, but by selecting the third sharing method for data to be analyzed that has high compression efficiency, it is possible to improve the efficiency of wireless resource utilization.
 なお、圧縮効率算出手段1014は、圧縮効率を算出する際に、分析対象データにおける人や物体の密集度合いを考慮してもよい。一態様において、圧縮効率算出手段1014は、分析対象データにおいて、所定のサイズ(ピクセル数)の範囲内に存在する分析対象の人または物体の数が多いほど、圧縮効率の値を大きくしてもよい。これにより、密集している領域は、解像度が低くても分析が可能であるため、そのような領域に対応するデータを第2処理部30に送信することにより、圧縮効率を向上させることができる。 In addition, the compression efficiency calculation means 1014 may take into account the density of people and objects in the data to be analyzed when calculating the compression efficiency. In one aspect, the compression efficiency calculation means 1014 may increase the value of the compression efficiency the greater the number of people or objects to be analyzed that exist within a range of a predetermined size (number of pixels) in the data to be analyzed. In this way, densely populated areas can be analyzed even with low resolution, and the compression efficiency can be improved by transmitting data corresponding to such areas to the second processing unit 30.
 また、圧縮効率算出手段1014は、圧縮効率を算出する際に、分析対象データにおける分析対象の人や物体のサイズ(ピクセル数)を考慮してもよい。一態様において、圧縮効率算出手段1014は、分析対象データにおいて、分析対象の人または物体のサイズ(ピクセル数)が小さいほど、圧縮効率の値を小さくしてもよい。小さく映っている人や物体は、圧縮して第2処理部30に送信して分析を行った場合、分析精度が低下する可能性が高いため、圧縮効率を低く設定することで、なるべく第1処理部20において分析を行うことができる。 In addition, the compression efficiency calculation means 1014 may take into account the size (number of pixels) of the person or object being analyzed in the data being analyzed when calculating the compression efficiency. In one aspect, the compression efficiency calculation means 1014 may reduce the value of the compression efficiency the smaller the size (number of pixels) of the person or object being analyzed in the data being analyzed. If a person or object that appears small is compressed and sent to the second processing unit 30 for analysis, there is a high possibility that the analysis accuracy will decrease, so by setting the compression efficiency low, it is possible to perform the analysis in the first processing unit 20 as much as possible.
 なお、選択手段101は、さらに危険度を考慮して優先度を決定してもよい。一態様において、本実施形態に係る選択手段101は、第3の実施形態に係る危険度判定手段1013をさらに備え、以下の式に基づいて優先度を決定してもよい。 The selection means 101 may further take into account the degree of danger when determining the priority. In one aspect, the selection means 101 according to this embodiment may further include the degree of danger determination means 1013 according to the third embodiment, and may determine the priority based on the following formula:
 優先度=(α1×重要度)×(α2×危険度)×(α3/圧縮効率)/計算コスト(α1、α2、α3は、予め定められた値)
 以上、第4の実施形態を処理制御システム100として説明したが、第4の実施形態に係る処理制御システム100を1つの装置に搭載した処理制御装置としてもよい。また、第4の実施形態に係る処理制御システム100の動作は、第4の実施形態に係る処理制御方法であってよい。
Priority=(α1×importance)×(α2×risk)×(α3/compression efficiency)/computation cost (α1, α2, and α3 are predetermined values)
Although the fourth embodiment has been described above as the process control system 100, the process control system 100 according to the fourth embodiment may be mounted on a single device to form a process control device. Furthermore, the operation of the process control system 100 according to the fourth embodiment may be the process control method according to the fourth embodiment.
 〔第5の実施形態〕
 本発明の第5の実施形態について、図面を参照して詳細に説明する。なお、第1の実施形態にて説明した構成要素と同じ機能を有する構成要素については、同じ符号を付記し、その説明を繰り返さない。
Fifth embodiment
A fifth embodiment of the present invention will be described in detail with reference to the drawings. Note that components having the same functions as those described in the first embodiment are denoted by the same reference numerals, and the description thereof will not be repeated.
 図10は、第5の実施形態に係る処理制御システム100および処理システム1の構成例を示すブロック図である。本実施形態に係る選択手段101は、重要度判定手段1010、処理コスト算出手段1011、分析精度情報取得手段1015を備え、各第1処理部20によって取得された1以上の分析対象データの各々に対して、以下のような方法で分担方式を選択する。 FIG. 10 is a block diagram showing an example of the configuration of a processing control system 100 and a processing system 1 according to the fifth embodiment. The selection means 101 according to this embodiment includes an importance determination means 1010, a processing cost calculation means 1011, and an analysis accuracy information acquisition means 1015, and selects a sharing method for each of one or more pieces of analysis target data acquired by each first processing unit 20 in the following manner.
 本実施形態に係る選択手段101は、目的関数が最大になるように組み合わせ最適化問題を解いて各分析対象データに対する分担方式を選択する。詳細には、選択手段101は、下記の制約条件を全て満たし、下記の目的関数のいずれかが最大または最小になるように、各分析対象データに対して、分担方式を選択するか、または、分析を行わないことを決定する。これにより、全体の状況を考慮した効率的な分析を行うことができる。 The selection means 101 according to this embodiment solves a combinatorial optimization problem so as to maximize the objective function and selects an allocation method for each analysis target data. In detail, the selection means 101 selects an allocation method for each analysis target data so as to satisfy all of the constraint conditions below and maximize or minimize one of the objective functions below, or decides not to perform analysis. This allows for efficient analysis that takes into account the overall situation.
 (制約条件1)各第1処理部20における計算コストの合計が、当該第1処理部20の計算能力に基づく上限値以下
 (制約条件2)第2処理部30との通信において同一の通信回線を共用する全第1処理部20について、全ての分析対象データの通信コストの合計が当該通信回線の通信帯域以下
 (目的関数1)各分析対象データに対して分担方式を選択した場合の、各分析対象データの重要度×分析精度の合計を最大化
 (目的関数2)各分析対象データに対して分担方式を選択した場合の、分析精度が規定値 (例えば80%)以上になる分析対象データの数を最大化
 選択手段101は、全ての選択肢を探索して最適解を求めてもよいし、一般的に使われるヒューリスティックアルゴリズムを適用して近似解を求めてよい。なお、分析対象データの分析精度は、分析精度情報取得手段1015によって取得されたものを使用することができる。
(Constraint 1) The total calculation cost in each first processing unit 20 is equal to or less than the upper limit based on the calculation capacity of the first processing unit 20. (Constraint 2) For all first processing units 20 sharing the same communication line in communication with the second processing unit 30, the total communication cost of all analysis target data is equal to or less than the communication bandwidth of the communication line. (Objective function 1) When the sharing method is selected for each analysis target data, maximize the sum of the importance of each analysis target data x analysis accuracy. (Objective function 2) When the sharing method is selected for each analysis target data, maximize the number of analysis target data whose analysis accuracy is equal to or greater than a specified value (e.g., 80%). The selection means 101 may search all options to find an optimal solution, or may apply a commonly used heuristic algorithm to find an approximate solution. The analysis accuracy of the analysis target data may be obtained by the analysis accuracy information acquisition means 1015.
 一態様において、分析精度情報取得手段1015は、分析精度として、学習モデルによって分析を行ったときの分析精度情報(Confidence値)を用いることができる。例えば、分析精度情報取得手段1015は、特定の分析対象に対応する分析対象データが継続的に得られることを想定し、特定の分析対象に対応する最初のいくつかの分析対象データを第1処理部20の分析部212および第2処理部30の分析部311に分析させ、その分析結果の分析精度情報(Confidence値)を取得し、得られた分析精度情報を、当該特定の分析対象に対する分析対象データの分析精度情報として用いてよい。あるいは、分析対象データ、映像圧縮パラメータを含む入力から分析精度を予測するモデルを作成しておき、分析精度情報取得手段1015は、このモデルを使って分析精度を予測してもよい。 In one embodiment, the analysis accuracy information acquisition means 1015 may use, as the analysis accuracy, analysis accuracy information (confidence value) obtained when the analysis is performed using a learning model. For example, the analysis accuracy information acquisition means 1015 may assume that analysis target data corresponding to a specific analysis target is continuously obtained, have the analysis unit 212 of the first processing unit 20 and the analysis unit 311 of the second processing unit 30 analyze the first few pieces of analysis target data corresponding to the specific analysis target, acquire analysis accuracy information (confidence value) of the analysis results, and use the acquired analysis accuracy information as the analysis accuracy information of the analysis target data for the specific analysis target. Alternatively, a model may be created that predicts the analysis accuracy from inputs including the analysis target data and the video compression parameters, and the analysis accuracy information acquisition means 1015 may predict the analysis accuracy using this model.
 なお、一態様において、選択手段101は、特定のカメラ10に対応する分析対象データを、目的関数の計算に含めないか、重み付けを小さくしてもよい。例えば、特定のカメラが、水滴やゴミなどに覆われていている場合や、暗くて何も映らない環境に設置されている場合、などにおいて、分析しなくても特定の結果となる可能性が高いカメラ10に対応する分析対象データの分析を実行しないことで、他の分析対象データにリソースを割り振ることができ、結果として効率化を図ることができる。なお、特定のカメラが、分析しなくても特定の結果となる可能性が高い状況にあるか否かの判断方法は特に限定されず、例えば、人が判定して設定してもよいし、撮像画像を解析した結果に応じて設定してもよい。 In one embodiment, the selection means 101 may not include the analysis target data corresponding to a specific camera 10 in the calculation of the objective function or may weight the analysis target data corresponding to the specific camera 10 less. For example, when a specific camera is covered with water droplets or debris, or when the specific camera is installed in a dark environment where nothing can be seen, for example, by not performing analysis of the analysis target data corresponding to the camera 10 that is likely to produce a specific result even without analysis, resources can be allocated to other analysis target data, resulting in improved efficiency. The method of determining whether a specific camera is in a situation where a specific result is likely to produce a specific result even without analysis is not particularly limited, and may be determined and set by a person, or may be set according to the results of analyzing the captured image, for example.
 また、一態様において、選択手段101は、分析したい行動種別によって、目的関数を切り替えてもよい。例えば、危険行動検知をしたい場合には目的関数を、重要度×分析精度×遅延係数とし、遅延係数は検出までの遅延が既定値以上になったら下がるようにするなど行ってもよい。これにより、分析したい行動種別に適した分析を行うことができる。 In one embodiment, the selection means 101 may switch the objective function depending on the type of behavior to be analyzed. For example, if risky behavior detection is desired, the objective function may be set to importance x analysis accuracy x delay coefficient, and the delay coefficient may be set to decrease when the delay until detection exceeds a preset value. This allows an analysis appropriate for the type of behavior to be analyzed.
 また、分析精度情報取得手段1015は、処理分担の変更による分析精度の低下量を推定して分析精度情報に反映させてもよい。すなわち、各分析部が使用する分析エンジンには、単一の映像フレームだけでなく、連続した映像フレームの変化に基づいて分析を行うエンジンが含まれる。このようなエンジンを用いる場合、第1処理部20および第2処理部30の間で処理分担を頻繁に変更すると分析精度が低下してしまう。このような、分析精度の低下を考慮して分析精度情報を補正することで、より正確分析精度情報を得ることができる。 The analysis accuracy information acquisition means 1015 may also estimate the amount of degradation in analysis accuracy due to a change in processing load and reflect this in the analysis accuracy information. That is, the analysis engines used by each analysis unit include engines that perform analysis based on changes in successive video frames, not just a single video frame. When using such engines, frequent changes in processing load between the first processing unit 20 and the second processing unit 30 will result in a degradation in analysis accuracy. By correcting the analysis accuracy information to take into account such degradation in analysis accuracy, more accurate analysis accuracy information can be obtained.
 以上、第5の実施形態を処理制御システム100として説明したが、第5の実施形態に係る処理制御システム100を1つの装置に搭載した処理制御装置としてもよい。また、第5の実施形態に係る処理制御システム100の動作は、第5の実施形態に係る処理制御方法であってよい。 The fifth embodiment has been described above as a process control system 100, but the process control system 100 according to the fifth embodiment may be mounted on a single device to form a process control device. Furthermore, the operation of the process control system 100 according to the fifth embodiment may be the process control method according to the fifth embodiment.
 〔変形例〕
 以下に、第1~第5の実施形態に共通して適用可能な変形例について説明する。
[Modifications]
Below, modified examples that can be commonly applied to the first to fifth embodiments will be described.
 以上では、処理制御システム100が、各第1処理部20および第2処理部30から独立している構成について説明したが、各実施形態はこれに限定されない。例えば、処理制御システム100の一部または全部が、各第1処理部20、第2処理部30、または、各第1処理部20および第2処理部30に分散して備えられていてもよい。 Although the above describes a configuration in which the processing control system 100 is independent of each of the first processing units 20 and the second processing units 30, each embodiment is not limited to this. For example, a part or all of the processing control system 100 may be provided in each of the first processing units 20, the second processing unit 30, or in each of the first processing units 20 and the second processing unit 30, distributed therein.
 また、例えば、選択手段101が備える各構成(例えば、重要度判定手段1010、処理コスト算出手段1011、通信品質情報取得手段1012、危険度判定手段1013、圧縮効率算出手段1014、分析精度情報取得手段1015など)は、互いに異なる装置に設けられていてもよく、また、これらの構成とは別に、最終的に各分析対象データに対する選択を行う選択手段101の主要部が別途存在していてもよい。例えば、重要度判定手段1010、処理コスト算出手段1011、通信品質情報取得手段1012、危険度判定手段1013、圧縮効率算出手段1014、分析精度情報取得手段1015のうちの少なくとも一つが、各第1処理部20に備えられ、選択手段101の主要部は、第2処理部30に備えられていてもよい。 Furthermore, for example, each component of the selection means 101 (e.g., importance determination means 1010, processing cost calculation means 1011, communication quality information acquisition means 1012, risk determination means 1013, compression efficiency calculation means 1014, analysis accuracy information acquisition means 1015, etc.) may be provided in different devices, and a main part of the selection means 101 that ultimately performs selection for each analysis target data may exist separately from these components. For example, at least one of the importance determination means 1010, processing cost calculation means 1011, communication quality information acquisition means 1012, risk determination means 1013, compression efficiency calculation means 1014, and analysis accuracy information acquisition means 1015 may be provided in each first processing unit 20, and the main part of the selection means 101 may be provided in the second processing unit 30.
 また、選択手段101は、各分析対象データに対する分担方式を一意に選択できない場合(例えば、同じ優先度の分析対象データが多数存在した場合など)には、例えば、第1処理部20で分析する(第1分担方式を選択する)分析対象を順番に選択するようにしてもよい(ラウンドロビン方式)。 In addition, when the selection means 101 cannot uniquely select an allocation method for each analysis target data (for example, when there is a large amount of analysis target data with the same priority), the selection means 101 may, for example, select the analysis targets to be analyzed by the first processing unit 20 (select the first allocation method) in order (round robin method).
 また、選択手段101は、分析対象データが取得されるごとに分担方式の選択を行ってもよいが、分担方式を選択する処理を定期的に実行して、通信品質、危険度、映像内容などの変化に応じて、処理方法を変更するようにしてもよい。 The selection means 101 may select the sharing method each time analysis target data is acquired, but may also periodically execute the process of selecting the sharing method and change the processing method in response to changes in communication quality, risk level, video content, etc.
 また、選択手段101は、同じ分析対象に対応する過去の分析対象データの分析結果を考慮した選択を行ってもよい。例えば、特定の行動Xは所定時間以上継続する(可能性が高い)という事前情報が存在していた場合、一度、分析結果として行動Xが検知された場合に、選択手段101は、同じ分析対象に対応する分析対象データについては、所定時間分析を行わないと決定してもよい。 The selection means 101 may also make a selection taking into consideration the results of past analysis of analysis target data corresponding to the same analysis target. For example, if there is prior information that a particular behavior X will (is highly likely to) continue for a predetermined period of time or more, once behavior X has been detected as an analysis result, the selection means 101 may decide not to analyze the analysis target data corresponding to the same analysis target for the predetermined period of time.
 また、例えば、選択手段101は、過去の分析対象データの分析結果の分析精度(Confidence値)が高かった場合には、同じ分析対象に対応する分析対象データについて、重要度を下げ、過去の分析対象データの分析結果の分析精度が低かった場合には、同じ分析対象に対応する分析対象データについて、重要度を上げてもよい。分析精度が高かった場合には、正しく分析しており、同じ分析結果が続く可能性が高いが、分析精度が低かった場合には、正しく分析できておらず、異なる分析結果が得られる可能性があるためである。 Furthermore, for example, when the analytical accuracy (confidence value) of the analysis results of past analysis target data is high, the selection means 101 may lower the importance of the analysis target data corresponding to the same analysis target, and when the analytical accuracy of the analysis results of past analysis target data is low, the selection means 101 may raise the importance of the analysis target data corresponding to the same analysis target. This is because when the analytical accuracy is high, the analysis is performed correctly and it is highly likely that the same analysis result will continue, but when the analytical accuracy is low, the analysis is not performed correctly and it is possible that a different analysis result will be obtained.
 また、エンコード部213は、第3分担方式が選択された分析対象データについて、分析対象が存在する領域だけを切り出した映像を生成して通信部22に提供してもよいし、分析対象が存在する領域以外の領域の画質を下げた映像を生成して通信部22に提供してもよい。 In addition, for analysis target data for which the third sharing method has been selected, the encoding unit 213 may generate an image that cuts out only the area in which the analysis target exists and provide it to the communication unit 22, or may generate an image with reduced image quality for areas other than the area in which the analysis target exists and provide it to the communication unit 22.
 また、一態様において、選択手段101は、第1処理部20において処理可能な分析対象(例えば、人)の数をあらかじめ予測し、可能な限り、第1処理部20において分析を行うように分担方式を選択してもよい。 In one embodiment, the selection means 101 may predict in advance the number of analysis subjects (e.g., people) that can be processed by the first processing unit 20, and select a sharing method to perform analysis in the first processing unit 20 as much as possible.
 例えば、第1処理部20の計算能力(計算リソース量)で同時に分析対象を何人まで分析できるかを事前にプロファイリングしておき、その人数までは第1処理部20において分析し(第1分担方式を選択し)、超えた分を第2処理部30にオフロードする(第2分担方式または第3分担方式を選択する)。 For example, the number of subjects that can be analyzed simultaneously with the computational capabilities (amount of computational resources) of the first processing unit 20 is profiled in advance, and the first processing unit 20 analyzes up to that number (selecting the first sharing method), and the excess is offloaded to the second processing unit 30 (selecting the second or third sharing method).
 このように、可能な限り多くの分析対象を第1処理部20において分析することで、第2処理部30の処理量を低減し、第2処理部30において他のカメラ映像を分析したり、他の用途に使ったりできる。 In this way, by analyzing as many analysis targets as possible in the first processing unit 20, the amount of processing by the second processing unit 30 can be reduced, and the second processing unit 30 can analyze other camera images or use them for other purposes.
 本開示は上述した各実施形態に限定されるものではなく、種々の変更が可能であり、異なる実施形態にそれぞれ開示された構成、動作、処理を適宜組み合わせて得られる実施形態についても本開示の技術的範囲に含まれる。また、異なる実施形態にそれぞれ開示された動作、処理の順序を適宜変更したものについても本開示の技術的範囲に含まれる。 This disclosure is not limited to the above-described embodiments, and various modifications are possible. The technical scope of this disclosure also includes embodiments obtained by appropriately combining the configurations, operations, and processes disclosed in the different embodiments. In addition, the technical scope of this disclosure also includes embodiments in which the order of the operations and processes disclosed in the different embodiments is appropriately changed.
 第1から第5の実施形態に係る各構成は、(1)1または複数のハードウェア、(2)1または複数のソフトウェア、(3)ハードウェアとソフトウェアとの組合せ、(4)クラウドサーバのいずれによって実現されてもよい。各装置、各機能及び各処理を、少なくとも1つのプロセッサ及び少なくとも1つのメモリを有する少なくとも1つのコンピュータにより実現してもよい。このようなコンピュータの一例(以下、コンピュータCと記載する)を図11に示す。例えば、メモリC2に第1から第5の実施形態に記載の処理制御方法を実施するためのプログラムを格納し、メモリC2に格納されたプログラムPをプロセッサC1が読み取って実行することにより、第1から第5の実施形態に記載の各機能を実現してもよい。 Each of the configurations according to the first to fifth embodiments may be realized by (1) one or more pieces of hardware, (2) one or more pieces of software, (3) a combination of hardware and software, or (4) a cloud server. Each device, function, and process may be realized by at least one computer having at least one processor and at least one memory. An example of such a computer (hereinafter referred to as computer C) is shown in FIG. 11. For example, each of the functions described in the first to fifth embodiments may be realized by storing a program for implementing the processing control method described in the first to fifth embodiments in memory C2, and having processor C1 read and execute program P stored in memory C2.
 プログラムPは、コンピュータCに読み込まれた場合に、第1から第5の実施形態に記載の1またはそれ以上の機能をコンピュータCに実行させるための命令群を含む。プログラムPは、メモリC2に格納される。プロセッサC1はとしては、例えば、CPU(Central Processing Unit)等を用いることができる。メモリC2としては、例えば、Read Only Memory(ROM)、Random Access Memory(RAM)、フラッシュメモリ、Solid State Drive(SSD)等を用いることができる。 The program P includes a set of instructions for causing the computer C to execute one or more of the functions described in the first to fifth embodiments when the program P is loaded into the computer C. The program P is stored in the memory C2. The processor C1 may be, for example, a CPU (Central Processing Unit). The memory C2 may be, for example, a Read Only Memory (ROM), a Random Access Memory (RAM), a flash memory, a Solid State Drive (SSD), etc.
 また、プログラムPは、コンピュータCが読み取り可能な、一時的でない有形の記録媒体Mに記録することができる。このような記録媒体Mとしては、例えば、テープ、ディスク、カード、半導体メモリ、又はプログラマブルな論理回路などを用いることができる。コンピュータCは、このような記録媒体Mを介してプログラムPを取得することができる。また、プログラムPは、伝送媒体を介して伝送することができる。このような伝送媒体としては、例えば、通信ネットワーク、又は放送波などを用いることができる。コンピュータCは、このような伝送媒体を介してプログラムPを取得することもできる。 The program P can also be recorded on a non-transitory, tangible recording medium M that can be read by the computer C. Such a recording medium M can be, for example, a tape, a disk, a card, a semiconductor memory, or a programmable logic circuit. The computer C can obtain the program P via such a recording medium M. The program P can also be transmitted via a transmission medium. Such a transmission medium can be, for example, a communications network or broadcast waves. The computer C can also obtain the program P via such a transmission medium.
 本開示は、上述した実施形態には限定されない。即ち、本発明は、本開示のスコープ内において、当業者が理解し得る様々な態様を適用することができる。なお、上述した実施形態の一部又は全部は、以下のようにも記載され得る。ただし、本発明は、以下の記載する態様に限定されるものではない。 The present disclosure is not limited to the above-described embodiments. In other words, the present invention can be applied in various aspects that a person skilled in the art can understand within the scope of the present disclosure. Note that some or all of the above-described embodiments can also be described as follows. However, the present invention is not limited to the aspects described below.
 (付記1)
 1以上の分析対象データをそれぞれ取得する1以上の第1処理部と、各第1処理部と通信可能であり、前記分析対象データの分析を各第1処理部と分担する第2処理部と、を制御する処理制御システムであって、
 各第1処理部によって取得された前記1以上の分析対象データの各々に対して、当該第1処理部の計算能力に応じて、当該分析対象データの分析の分担方式を選択する選択手段と、
 各分析対象データに対し、前記選択手段が選択した分担方式で分析を実行するように各第1処理部および前記第2処理部を制御する処理制御手段とを備える、処理制御システム。
(Appendix 1)
A process control system for controlling one or more first processing units each acquiring one or more pieces of analysis target data, and a second processing unit capable of communicating with each of the first processing units and sharing an analysis of the analysis target data with each of the first processing units,
a selection means for selecting, for each of the one or more pieces of analysis target data acquired by each first processing unit, a sharing method for analysis of the analysis target data in accordance with the calculation capacity of the first processing unit;
a process control means for controlling each of the first processing means and the second processing means so as to execute analysis for each analysis target data using the sharing method selected by the selection means.
 (付記2)
 前記選択手段は、
 各第1処理部によって取得された前記1以上の分析対象データの各々に対して、
  当該第1処理部に当該分析対象データの分析結果を生成させる第1分担方式、
  当該第1処理部に当該分析対象データの特徴量を算出させ、当該第1処理部から前記第2処理部に前記特徴量を送信させ、前記第2処理部に前記特徴量から前記分析結果を生成させる第2分担方式、および
  当該第1処理部から前記第2処理部に当該分析対象データを送信させ、前記第2処理部に当該分析対象データから前記分析結果を生成させる第3分担方式
 のうちの少なくとも2つから分担方式を選択する、付記1に記載の処理制御システム。
(Appendix 2)
The selection means is
For each of the one or more pieces of analysis target data acquired by each first processing unit,
a first sharing method for causing the first processing unit to generate an analysis result of the analysis target data;
a second sharing method in which the first processing unit calculates features of the data to be analyzed, the first processing unit transmits the features to the second processing unit, and the second processing unit generates the analysis result from the features; and a third sharing method in which the first processing unit transmits the data to be analyzed to the second processing unit, and the second processing unit generates the analysis result from the data to be analyzed.
 (付記3)
 前記選択手段は、各第1処理部によって取得された前記1以上の分析対象データのうち、前記第1分担方式を選択する分析対象データを、当該分析対象データを前記第1分担方式で分析させた場合の当該第1処理部における計算コストの合計が、当該第1処理部の計算能力に基づく計算コストの上限を超えないように決定する、付記2に記載の処理制御システム。
(Appendix 3)
The processing control system described in Appendix 2, wherein the selection means determines the analysis target data for which the first allocation method is to be selected from the one or more analysis target data acquired by each first processing unit, such that the total computational cost in the first processing unit when the analysis target data is analyzed using the first allocation method does not exceed an upper limit of computational cost based on the computational capacity of the first processing unit.
 (付記4)
 前記選択手段は、各第1処理部によって取得された前記1以上の分析対象データの各々に対して、当該分析対象データの前記計算コストおよび当該分析対象データの重要度に基づいて優先度を決定し、決定した各分析対象データの優先度に基づいて、前記第1分担方式を選択する分析対象データを決定する、付記3に記載の処理制御システム。
(Appendix 4)
The processing control system described in Appendix 3, wherein the selection means determines a priority for each of the one or more analysis target data acquired by each first processing unit based on the computational cost of the analysis target data and the importance of the analysis target data, and determines the analysis target data for which the first allocation method is selected based on the determined priority of each analysis target data.
 (付記5)
 前記選択手段は、各第1処理部によって取得された前記1以上の分析対象データの各々に対して、各分析対象データが示す危険度、および、各分析対象データの圧縮効率の少なくとも一方にさらに基づいて前記優先度を決定する、付記4に記載の処理制御システム。
(Appendix 5)
The processing control system of claim 4, wherein the selection means determines the priority for each of the one or more analysis target data acquired by each first processing unit based further on at least one of the risk level indicated by each analysis target data and the compression efficiency of each analysis target data.
 (付記6)
 前記選択手段は、各第1処理部によって取得された前記1以上の分析対象データのうち、前記第1分担方式を選択しなかった分析対象データに対して、当該第1処理部と前記第2処理との間の通信品質に基づいて、前記第2分担方式および前記第3分担方式のうちのいずれかの分担方式を選択する、付記3~5のいずれか1つに記載の処理制御システム。
(Appendix 6)
The processing control system of any one of Appendices 3 to 5, wherein the selection means selects one of the second sharing method and the third sharing method for analysis target data for which the first sharing method was not selected among the one or more analysis target data acquired by each first processing unit, based on communication quality between the first processing unit and the second processing.
 (付記7)
 前記選択手段は、各第1処理部によって取得された前記1以上の分析対象データのうち、前記第1分担方式を選択した分析対象データ以外の分析対象データに対して、当該分析対象データの圧縮効率にさらに基づいて、前記第2分担方式および前記第3分担方式のうちのいずれかの分担方式を選択する、付記6に記載の処理制御システム。
(Appendix 7)
The processing control system described in Appendix 6, wherein the selection means selects one of the second allocation method and the third allocation method for analysis target data other than the analysis target data for which the first allocation method was selected among the one or more analysis target data acquired by each first processing unit, further based on the compression efficiency of the analysis target data.
 (付記8)
 前記選択手段は、各第1処理部によって取得された前記1以上の分析対象データの各々に対して、前記少なくとも2つの分担方式の各々で分析させたときの、当該第1処理部における計算コスト、当該第1処理部と前記第2処理との間の通信コスト、および、当該分析対象データの分析精度に基づいて、前記分担方式を選択する、付記2または3に記載の処理制御システム。
(Appendix 8)
The processing control system of claim 2 or 3, wherein the selection means selects the sharing method based on the computational cost in the first processing unit, the communication cost between the first processing unit and the second processing unit, and the analytical accuracy of the analysis target data when each of the one or more analysis target data acquired by each first processing unit is analyzed using each of the at least two sharing methods.
 (付記9)
 1以上の分析対象データをそれぞれ取得する1以上の第1処理部と、各第1処理部と通信可能であり、前記分析対象データの分析を各第1処理部と分担する第2処理部と、を制御する処理制御装置であって、
 各第1処理部によって取得された前記1以上の分析対象データの各々に対して、当該第1処理部の計算能力に応じて、当該分析対象データの分析の分担方式を選択する選択部と、
 各分析対象データに対し、前記選択部が選択した分担方式で分析を実行するように各第1処理部および前記第2処理部を制御する処理制御部とを備える、処理制御装置。
(Appendix 9)
A process control device that controls one or more first processing units that respectively acquire one or more pieces of analysis target data, and a second processing unit that is capable of communicating with each of the first processing units and shares analysis of the analysis target data with each of the first processing units,
a selection unit that selects, for each of the one or more pieces of analysis target data acquired by each first processing unit, a sharing method for analysis of the analysis target data in accordance with a calculation capacity of the first processing unit;
a processing control unit that controls each of the first processing units and the second processing unit so that analysis is performed for each analysis target data using the sharing method selected by the selection unit.
 (付記10)
 前記選択部は、各第1処理部によって取得された前記1以上の分析対象データのうち、前記第1分担方式を選択する分析対象データを、当該分析対象データを前記第1分担方式で分析させた場合の当該第1処理部における計算コストの合計が、当該第1処理部の計算能力に基づく計算コストの上限を超えないように決定する、付記9に記載の処理制御装置。
(Appendix 10)
The processing control device described in Appendix 9, wherein the selection unit determines the analysis target data for which the first allocation method is selected from the one or more analysis target data acquired by each first processing unit, such that the total computational cost in the first processing unit when the analysis target data is analyzed using the first allocation method does not exceed an upper limit of computational cost based on the computational capacity of the first processing unit.
 (付記11)
 前記選択部は、各第1処理部によって取得された前記1以上の分析対象データのうち、前記第1分担方式を選択する分析対象データを、当該分析対象データを前記第1分担方式で分析させた場合の当該第1処理部における計算コストの合計が、当該第1処理部の計算能力に基づく計算コストの上限を超えないように決定する、付記10に記載の処理制御装置。
(Appendix 11)
The processing control device described in Appendix 10, wherein the selection unit determines the analysis target data for which the first allocation method is selected from the one or more analysis target data acquired by each first processing unit, such that the total computational cost in the first processing unit when the analysis target data is analyzed using the first allocation method does not exceed an upper limit of computational cost based on the computational capacity of the first processing unit.
 (付記12)
 前記選択部は、各第1処理部によって取得された前記1以上の分析対象データの各々に対して、当該分析対象データの前記計算コストおよび当該分析対象データの重要度に基づいて優先度を決定し、決定した各分析対象データの優先度に基づいて、前記第1分担方式を選択する分析対象データを決定する、付記11に記載の処理制御装置。
(Appendix 12)
The processing control device described in Appendix 11, wherein the selection unit determines a priority for each of the one or more analysis target data acquired by each first processing unit based on the calculation cost of the analysis target data and the importance of the analysis target data, and determines the analysis target data for which the first allocation method is selected based on the determined priority of each analysis target data.
 (付記13)
 前記選択部は、各第1処理部によって取得された前記1以上の分析対象データの各々に対して、各分析対象データが示す危険度、および、各分析対象データの圧縮効率の少なくとも一方にさらに基づいて前記優先度を決定する、付記12に記載の処理制御装置。
(Appendix 13)
The processing control device described in Appendix 12, wherein the selection unit determines the priority for each of the one or more analysis target data acquired by each first processing unit based further on at least one of the risk level indicated by each analysis target data and the compression efficiency of each analysis target data.
 (付記14)
 前記選択部は、各第1処理部によって取得された前記1以上の分析対象データのうち、前記第1分担方式を選択した分析対象データ以外の分析対象データに対して、当該第1処理部と前記第2処理との間の通信品質に基づいて、前記第2分担方式および前記第3分担方式のうちのいずれかの分担方式を選択する、付記9~13のいずれか1つに記載の処理制御装置。
(Appendix 14)
The processing control device according to any one of appendices 9 to 13, wherein the selection unit selects one of the second sharing method and the third sharing method for analysis target data other than the analysis target data for which the first sharing method has been selected among the one or more analysis target data acquired by each first processing unit, based on communication quality between the first processing unit and the second processing.
 (付記15)
 前記選択部は、各第1処理部によって取得された前記1以上の分析対象データのうち、前記第1分担方式を選択した分析対象データ以外の分析対象データに対して、当該分析対象データの圧縮効率にさらに基づいて、前記第2分担方式および前記第3分担方式のうちのいずれかの分担方式を選択する、付記14に記載の処理制御装置。
(Appendix 15)
The processing control device described in Appendix 14, wherein the selection unit selects one of the second allocation method and the third allocation method for analysis target data other than the analysis target data for which the first allocation method was selected among the one or more analysis target data acquired by each first processing unit, further based on the compression efficiency of the analysis target data.
 (付記16)
 前記選択部は、各第1処理部によって取得された前記1以上の分析対象データの各々に対して、前記少なくとも2つの分担方式の各々で分析させたときの、当該第1処理部における計算コスト、当該第1処理部と前記第2処理との間の通信コスト、および、当該分析対象データの分析精度に基づいて、前記分担方式を選択する、付記9または10に記載の処理制御装置。
(Appendix 16)
The processing control device described in Appendix 9 or 10, wherein the selection unit selects the allocation method based on the computational cost in the first processing unit, the communication cost between the first processing unit and the second processing, and the analytical accuracy of the analysis target data when each of the one or more analysis target data acquired by each first processing unit is analyzed using each of the at least two allocation methods.
 (付記17)
 1以上の分析対象データをそれぞれ取得する1以上の第1処理部と、各第1処理部と通信可能であり、前記分析対象データの分析を各第1処理部と分担する第2処理部と、を制御する処理制御方法であって、
 各第1処理部によって取得された前記1以上の分析対象データの各々に対して、当該第1処理部の計算能力に応じて、当該分析対象データの分析の分担方式を選択し、
 各分析対象データに対し、選択した分担方式で分析を実行するように各第1処理部および前記第2処理部を制御する、処理制御方法。
(Appendix 17)
A process control method for controlling one or more first processing units each acquiring one or more pieces of analysis target data, and a second processing unit capable of communicating with each of the first processing units and sharing an analysis of the analysis target data with each of the first processing units, comprising:
selecting a sharing method for analysis of the one or more pieces of analysis target data acquired by each first processing unit in accordance with the computing capacity of the first processing unit;
A process control method for controlling each of the first processing units and the second processing unit so as to execute analysis for each analysis target data in a selected sharing method.
 (付記18)
 各第1処理部によって取得された前記1以上の分析対象データの各々に対して、
  当該第1処理部に当該分析対象データの分析結果を生成させる第1分担方式、
  当該第1処理部に当該分析対象データの特徴量を算出させ、当該第1処理部から前記第2処理部に前記特徴量を送信させ、前記第2処理部に前記特徴量から前記分析結果を生成させる第2分担方式、および
  当該第1処理部から前記第2処理部に当該分析対象データを送信させ、前記第2処理部に当該分析対象データから前記分析結果を生成させる第3分担方式
 のうちの少なくとも2つから分担方式を選択する、付記17に記載の処理制御方法。
(Appendix 18)
For each of the one or more pieces of analysis target data acquired by each first processing unit,
a first sharing method for causing the first processing unit to generate an analysis result of the analysis target data;
a second sharing method in which the first processing unit calculates features of the data to be analyzed, the first processing unit transmits the features to the second processing unit, and the second processing unit generates the analysis result from the features, and a third sharing method in which the first processing unit transmits the data to be analyzed to the second processing unit, and the second processing unit generates the analysis result from the data to be analyzed.
 (付記19)
 各第1処理部によって取得された前記1以上の分析対象データのうち、前記第1分担方式を選択する分析対象データを、当該分析対象データを前記第1分担方式で分析させた場合の当該第1処理部における計算コストの合計が、当該第1処理部の計算能力に基づく計算コストの上限を超えないように決定する、付記18に記載の処理制御方法。
(Appendix 19)
The processing control method described in Appendix 18, wherein, among the one or more pieces of analysis target data acquired by each first processing unit, analysis target data for which the first allocation method is selected is determined such that the total calculation cost in the first processing unit when the analysis target data is analyzed using the first allocation method does not exceed an upper limit of the calculation cost based on the calculation capacity of the first processing unit.
 (付記20)
 各第1処理部によって取得された前記1以上の分析対象データの各々に対して、当該分析対象データの前記計算コストおよび当該分析対象データの重要度に基づいて優先度を決定し、決定した各分析対象データの優先度に基づいて、前記第1分担方式を選択する分析対象データを決定する、付記19に記載の処理制御方法。
(Appendix 20)
20. The processing control method of claim 19, further comprising: determining a priority for each of the one or more analysis target data acquired by each first processing unit based on the computational cost of the analysis target data and the importance of the analysis target data; and determining the analysis target data for which the first allocation method is to be selected based on the determined priority of each analysis target data.
 (付記21)
 各第1処理部によって取得された前記1以上の分析対象データの各々に対して、各分析対象データが示す危険度、および、各分析対象データの圧縮効率の少なくとも一方にさらに基づいて前記優先度を決定する、付記20に記載の処理制御方法。
(Appendix 21)
A processing control method as described in Appendix 20, in which the priority is determined for each of the one or more analysis target data acquired by each first processing unit based further on at least one of the risk level indicated by each analysis target data and the compression efficiency of each analysis target data.
 (付記22)
 各第1処理部によって取得された前記1以上の分析対象データのうち、前記第1分担方式を選択した分析対象データ以外の分析対象データに対して、当該第1処理部と前記第2処理との間の通信品質に基づいて、前記第2分担方式および前記第3分担方式のうちのいずれかの分担方式を選択する、付記19~21のいずれか1つに記載の処理制御方法。
(Appendix 22)
A processing control method according to any one of appendices 19 to 21, in which, for analysis target data other than the analysis target data for which the first allocation method has been selected among the one or more analysis target data acquired by each first processing unit, one of the second allocation method and the third allocation method is selected based on communication quality between the first processing unit and the second processing.
 (付記23)
 各第1処理部によって取得された前記1以上の分析対象データのうち、前記第1分担方式を選択した分析対象データ以外の分析対象データに対して、当該分析対象データの圧縮効率にさらに基づいて、前記第2分担方式および前記第3分担方式のうちのいずれかの分担方式を選択する、付記22に記載の処理制御方法。
(Appendix 23)
The processing control method described in Appendix 22, wherein for analysis target data other than the analysis target data for which the first allocation method was selected, among the one or more analysis target data acquired by each first processing unit, a allocation method of either the second allocation method or the third allocation method is selected based further on the compression efficiency of the analysis target data.
 (付記24)
 各第1処理部によって取得された前記1以上の分析対象データの各々に対して、前記少なくとも2つの分担方式の各々で分析させたときの、当該第1処理部における計算コスト、当該第1処理部と前記第2処理との間の通信コスト、および、当該分析対象データの分析精度に基づいて、前記分担方式を選択する、付記18または19に記載の処理制御方法。
(Appendix 24)
20. The processing control method of claim 18, wherein the allocation method is selected based on the calculation cost in the first processing unit, the communication cost between the first processing unit and the second processing unit, and the analytical accuracy of the analysis target data when each of the one or more analysis target data acquired by each first processing unit is analyzed using each of the at least two allocation methods.
 (付記25)
 上述した処理制御システムは、更に、以下のように表現することもできる。
(Appendix 25)
The above-described process control system can also be expressed as follows.
 1以上の分析対象データをそれぞれ取得する1以上の第1処理部と、各第1処理部と通信可能であり、前記分析対象データの分析を各第1処理部と分担する第2処理部と、を制御する処理制御システムであって、
 少なくとも1つのプロセッサを備え、前記プロセッサは、
 各第1処理部によって取得された前記1以上の分析対象データの各々に対して、当該第1処理部の計算能力に応じて、当該分析対象データの分析の分担方式を選択する選択処理と、
 各分析対象データに対し、前記選択処理において選択した分担方式で分析を実行するように各第1処理部および前記第2処理部を制御する処理制御処理とを実行する、処理制御方法。
A process control system for controlling one or more first processing units each acquiring one or more pieces of analysis target data, and a second processing unit capable of communicating with each of the first processing units and sharing an analysis of the analysis target data with each of the first processing units,
At least one processor, the processor comprising:
a selection process for selecting, for each of the one or more analysis target data acquired by each first processing unit, a sharing method for analysis of the analysis target data in accordance with the calculation capacity of the first processing unit;
and a process control process for controlling each of the first processing units and the second processing unit so as to perform analysis on each analysis target data using the sharing method selected in the selection process.
 なお、この処理制御システムは、更に少なくとも1つのメモリを備えていてもよく、このメモリには、前記選択処理と、前記処理制御処理とを前記プロセッサに実行させるためのプログラムが記憶されていてもよい。また、このプログラムは、コンピュータ読み取り可能な一時的でない有形の記録媒体に記録されていてもよい。 The processing control system may further include at least one memory, and this memory may store a program for causing the processor to execute the selection process and the processing control process. The program may also be recorded on a computer-readable, non-transitory, tangible recording medium.
 (付記26)
 上述した処理制御装置は、更に、以下のように表現することもできる。
(Appendix 26)
The above-mentioned processing control device can also be expressed as follows.
 1以上の分析対象データをそれぞれ取得する1以上の第1処理部と、各第1処理部と通信可能であり、前記分析対象データの分析を各第1処理部と分担する第2処理部と、を制御する処理制御装置であって、
 少なくとも1つのプロセッサを備え、前記プロセッサは、
 各第1処理部によって取得された前記1以上の分析対象データの各々に対して、当該第1処理部の計算能力に応じて、当該分析対象データの分析の分担方式を選択する選択処理と、
 各分析対象データに対し、前記選択処理において選択した分担方式で分析を実行するように各第1処理部および前記第2処理部を制御する処理制御処理とを実行する、処理制御装置。
A process control device that controls one or more first processing units that respectively acquire one or more pieces of analysis target data, and a second processing unit that is capable of communicating with each of the first processing units and shares analysis of the analysis target data with each of the first processing units,
At least one processor, the processor comprising:
a selection process for selecting, for each of the one or more analysis target data acquired by each first processing unit, a sharing method for analysis of the analysis target data in accordance with the calculation capacity of the first processing unit;
and a process control process for controlling each of the first processing units and the second processing unit so that analysis is performed on each analysis target data using the sharing method selected in the selection process.
 なお、この処理制御装置は、更に少なくとも1つのメモリを備えていてもよく、このメモリには、前記選択処理と、前記処理制御処理とを前記プロセッサに実行させるためのプログラムが記憶されていてもよい。また、このプログラムは、コンピュータ読み取り可能な一時的でない有形の記録媒体に記録されていてもよい。 The processing control device may further include at least one memory, and this memory may store a program for causing the processor to execute the selection process and the processing control process. The program may also be recorded on a computer-readable, non-transitory, tangible recording medium.
1 処理システム
10 カメラ
20 第1処理部
21 入力部
22 通信部
23 主制御部
30 第2処理部
31 通信部
32 主制御部
100 処理制御システム
101 選択手段
102 処理制御手段
103 通信手段
200 処理制御装置
201 選択部
202 処理制御部
230 分析対象データ取得部
231 特徴量算出部
232 分析部
233 エンコード部
320 デコード部
321 分析部
322 出力部
1010 重要度判定手段
1011 処理コスト算出手段
1012 通信品質情報取得手段
1013 危険度判定手段
1014 圧縮効率算出手段1014
1015 分析精度情報取得手段
1 Processing system 10 Camera 20 First processing unit 21 Input unit 22 Communication unit 23 Main control unit 30 Second processing unit 31 Communication unit 32 Main control unit 100 Processing control system 101 Selection means 102 Processing control means 103 Communication means 200 Processing control device 201 Selection unit 202 Processing control unit 230 Analysis target data acquisition unit 231 Feature amount calculation unit 232 Analysis unit 233 Encoding unit 320 Decoding unit 321 Analysis unit 322 Output unit 1010 Importance determination means 1011 Processing cost calculation means 1012 Communication quality information acquisition means 1013 Risk determination means 1014 Compression efficiency calculation means 1014
1015 Analysis accuracy information acquisition means

Claims (20)

  1.  1以上の分析対象データをそれぞれ取得する1以上の第1処理部と、各第1処理部と通信可能であり、前記分析対象データの分析を各第1処理部と分担する第2処理部と、を制御する処理制御システムであって、
     各第1処理部によって取得された前記1以上の分析対象データの各々に対して、当該第1処理部の計算能力に応じて、当該分析対象データの分析の分担方式を選択する選択手段と、
     各分析対象データに対し、前記選択手段が選択した分担方式で分析を実行するように各第1処理部および前記第2処理部を制御する処理制御手段とを備える、処理制御システム。
    A process control system for controlling one or more first processing units each acquiring one or more pieces of analysis target data, and a second processing unit capable of communicating with each of the first processing units and sharing an analysis of the analysis target data with each of the first processing units,
    a selection means for selecting, for each of the one or more pieces of analysis target data acquired by each first processing unit, a sharing method for analysis of the analysis target data in accordance with the calculation capacity of the first processing unit;
    a process control means for controlling each of the first processing means and the second processing means so as to execute analysis for each analysis target data using the sharing method selected by the selection means.
  2.  前記選択手段は、
     各第1処理部によって取得された前記1以上の分析対象データの各々に対して、
      当該第1処理部に当該分析対象データの分析結果を生成させる第1分担方式、
      当該第1処理部に当該分析対象データの特徴量を算出させ、当該第1処理部から前記第2処理部に前記特徴量を送信させ、前記第2処理部に前記特徴量から前記分析結果を生成させる第2分担方式、および
      当該第1処理部から前記第2処理部に当該分析対象データを送信させ、前記第2処理部に当該分析対象データから前記分析結果を生成させる第3分担方式
     のうちの少なくとも2つから分担方式を選択する、請求項1に記載の処理制御システム。
    The selection means is
    For each of the one or more pieces of analysis target data acquired by each first processing unit,
    a first sharing method for causing the first processing unit to generate an analysis result of the analysis target data;
    2. The processing control system according to claim 1, wherein the allocation method is selected from at least two of: a second allocation method in which the first processing unit calculates features of the data to be analyzed, the first processing unit transmits the features to the second processing unit, and the second processing unit generates the analysis result from the features; and a third allocation method in which the first processing unit transmits the data to be analyzed to the second processing unit, and the second processing unit generates the analysis result from the data to be analyzed.
  3.  前記選択手段は、各第1処理部によって取得された前記1以上の分析対象データのうち、前記第1分担方式を選択する分析対象データを、当該分析対象データを前記第1分担方式で分析させた場合の当該第1処理部における計算コストの合計が、当該第1処理部の計算能力に基づく計算コストの上限を超えないように決定する、請求項2に記載の処理制御システム。 The processing control system according to claim 2, wherein the selection means determines the analysis target data for which the first sharing method is selected from the one or more analysis target data acquired by each first processing unit such that the total calculation cost in the first processing unit when the analysis target data is analyzed using the first sharing method does not exceed an upper limit of the calculation cost based on the calculation capacity of the first processing unit.
  4.  前記選択手段は、各第1処理部によって取得された前記1以上の分析対象データの各々に対して、当該分析対象データの前記計算コストおよび当該分析対象データの重要度に基づいて優先度を決定し、決定した各分析対象データの優先度に基づいて、前記第1分担方式を選択する分析対象データを決定する、請求項3に記載の処理制御システム。 The processing control system according to claim 3, wherein the selection means determines a priority for each of the one or more analysis target data acquired by each first processing unit based on the calculation cost of the analysis target data and the importance of the analysis target data, and determines the analysis target data for which the first sharing method is to be selected based on the determined priority of each analysis target data.
  5.  前記選択手段は、各第1処理部によって取得された前記1以上の分析対象データの各々に対して、各分析対象データが示す危険度、および、各分析対象データの圧縮効率の少なくとも一方にさらに基づいて前記優先度を決定する、請求項4に記載の処理制御システム。 The processing control system according to claim 4, wherein the selection means determines the priority for each of the one or more analysis target data acquired by each first processing unit based on at least one of the risk level indicated by each analysis target data and the compression efficiency of each analysis target data.
  6.  前記選択手段は、各第1処理部によって取得された前記1以上の分析対象データのうち、前記第1分担方式を選択しなかった分析対象データに対して、当該第1処理部と前記第2処理部との間の通信品質に基づいて、前記第2分担方式および前記第3分担方式のうちのいずれかの分担方式を選択する、請求項3~5のいずれか1項に記載の処理制御システム。 The processing control system according to any one of claims 3 to 5, wherein the selection means selects one of the second and third sharing methods for analysis target data for which the first sharing method has not been selected among the one or more analysis target data acquired by each first processing unit, based on the communication quality between the first processing unit and the second processing unit.
  7.  前記選択手段は、各第1処理部によって取得された前記1以上の分析対象データのうち、前記第1分担方式を選択した分析対象データ以外の分析対象データに対して、当該分析対象データの圧縮効率にさらに基づいて、前記第2分担方式および前記第3分担方式のうちのいずれかの分担方式を選択する、請求項6に記載の処理制御システム。 The processing control system according to claim 6, wherein the selection means selects one of the second and third sharing methods for analysis target data other than the analysis target data for which the first sharing method has been selected among the one or more analysis target data acquired by each first processing unit, based further on the compression efficiency of the analysis target data.
  8.  1以上の分析対象データをそれぞれ取得する1以上の第1処理部と、各第1処理部と通信可能であり、前記分析対象データの分析を各第1処理部と分担する第2処理部と、を制御する処理制御装置であって、
     各第1処理部によって取得された前記1以上の分析対象データの各々に対して、当該第1処理部の計算能力に応じて、当該分析対象データの分析の分担方式を選択する選択部と、
     各分析対象データに対し、前記選択部が選択した分担方式で分析を実行するように各第1処理部および前記第2処理部を制御する処理制御部とを備える、処理制御装置。
    A process control device that controls one or more first processing units that respectively acquire one or more pieces of analysis target data, and a second processing unit that is capable of communicating with each of the first processing units and shares analysis of the analysis target data with each of the first processing units,
    a selection unit that selects, for each of the one or more pieces of analysis target data acquired by each first processing unit, a sharing method for analysis of the analysis target data in accordance with a calculation capacity of the first processing unit;
    a processing control unit that controls each of the first processing units and the second processing unit so that analysis is performed for each analysis target data using the sharing method selected by the selection unit.
  9.  前記選択部は、
     各第1処理部によって取得された前記1以上の分析対象データの各々に対して、
      当該第1処理部に当該分析対象データの分析結果を生成させる第1分担方式、
      当該第1処理部に当該分析対象データの特徴量を算出させ、当該第1処理部から前記第2処理部に前記特徴量を送信させ、前記第2処理部に前記特徴量から前記分析結果を生成させる第2分担方式、および
      当該第1処理部から前記第2処理部に当該分析対象データを送信させ、前記第2処理部に当該分析対象データから前記分析結果を生成させる第3分担方式
     のうちの少なくとも2つから分担方式を選択する、請求項8に記載の処理制御装置。
    The selection unit is
    For each of the one or more pieces of analysis target data acquired by each first processing unit,
    a first sharing method for causing the first processing unit to generate an analysis result of the analysis target data;
    9. The processing control device according to claim 8, wherein the allocation method is selected from at least two of: a second allocation method in which the first processing unit calculates features of the data to be analyzed, the first processing unit transmits the features to the second processing unit, and the second processing unit generates the analysis result from the features; and a third allocation method in which the first processing unit transmits the data to be analyzed to the second processing unit, and the second processing unit generates the analysis result from the data to be analyzed.
  10.  前記選択部は、各第1処理部によって取得された前記1以上の分析対象データのうち、前記第1分担方式を選択する分析対象データを、当該分析対象データを前記第1分担方式で分析させた場合の当該第1処理部における計算コストの合計が、当該第1処理部の計算能力に基づく計算コストの上限を超えないように決定する、請求項9に記載の処理制御装置。 The processing control device according to claim 9, wherein the selection unit determines the analysis target data for which the first sharing method is selected from among the one or more analysis target data acquired by each first processing unit, such that the total calculation cost in the first processing unit when the analysis target data is analyzed using the first sharing method does not exceed an upper limit of the calculation cost based on the calculation capacity of the first processing unit.
  11.  前記選択部は、各第1処理部によって取得された前記1以上の分析対象データの各々に対して、当該分析対象データの前記計算コストおよび当該分析対象データの重要度に基づいて優先度を決定し、決定した各分析対象データの優先度に基づいて、前記第1分担方式を選択する分析対象データを決定する、請求項10に記載の処理制御装置。 The processing control device according to claim 10, wherein the selection unit determines a priority for each of the one or more analysis target data acquired by each first processing unit based on the calculation cost of the analysis target data and the importance of the analysis target data, and determines the analysis target data for which the first sharing method is to be selected based on the determined priority of each analysis target data.
  12.  前記選択部は、各第1処理部によって取得された前記1以上の分析対象データの各々に対して、各分析対象データが示す危険度、および、各分析対象データの圧縮効率の少なくとも一方にさらに基づいて前記優先度を決定する、請求項11に記載の処理制御装置。 The processing control device according to claim 11, wherein the selection unit determines the priority for each of the one or more analysis target data acquired by each first processing unit based on at least one of the risk level indicated by each analysis target data and the compression efficiency of each analysis target data.
  13.  前記選択部は、各第1処理部によって取得された前記1以上の分析対象データのうち、前記第1分担方式を選択した分析対象データ以外の分析対象データに対して、当該第1処理部と前記第2処理部との間の通信品質に基づいて、前記第2分担方式および前記第3分担方式のうちのいずれかの分担方式を選択する、請求項9~12のいずれか1項に記載の処理制御装置。 The processing control device according to any one of claims 9 to 12, wherein the selection unit selects one of the second and third sharing methods for analysis target data other than the analysis target data for which the first sharing method has been selected, among the one or more analysis target data acquired by each first processing unit, based on the communication quality between the first processing unit and the second processing unit.
  14.  1以上の分析対象データをそれぞれ取得する1以上の第1処理部と、各第1処理部と通信可能であり、前記分析対象データの分析を各第1処理部と分担する第2処理部と、を制御する処理制御方法であって、
     各第1処理部によって取得された前記1以上の分析対象データの各々に対して、当該第1処理部の計算能力に応じて、当該分析対象データの分析の分担方式を選択し、
     各分析対象データに対し、選択した分担方式で分析を実行するように各第1処理部および前記第2処理部を制御する、処理制御方法。
    A process control method for controlling one or more first processing units each acquiring one or more pieces of analysis target data, and a second processing unit capable of communicating with each of the first processing units and sharing an analysis of the analysis target data with each of the first processing units, comprising:
    selecting a sharing method for analysis of the one or more pieces of analysis target data acquired by each first processing unit in accordance with the computing capacity of the first processing unit;
    A process control method for controlling each of the first processing units and the second processing unit so as to execute analysis for each analysis target data in a selected sharing method.
  15.  各第1処理部によって取得された前記1以上の分析対象データの各々に対して、
      当該第1処理部に当該分析対象データの分析結果を生成させる第1分担方式、
      当該第1処理部に当該分析対象データの特徴量を算出させ、当該第1処理部から前記第2処理部に前記特徴量を送信させ、前記第2処理部に前記特徴量から前記分析結果を生成させる第2分担方式、および
      当該第1処理部から前記第2処理部に当該分析対象データを送信させ、前記第2処理部に当該分析対象データから前記分析結果を生成させる第3分担方式
     のうちの少なくとも2つから分担方式を選択する、請求項14に記載の処理制御方法。
    For each of the one or more pieces of analysis target data acquired by each first processing unit,
    a first sharing method for causing the first processing unit to generate an analysis result of the analysis target data;
    15. The process control method according to claim 14, further comprising selecting a sharing method from at least two of a second sharing method in which the first processing unit calculates features of the data to be analyzed, the first processing unit transmits the features to the second processing unit, and the second processing unit generates the analysis result from the features, and a third sharing method in which the first processing unit transmits the data to be analyzed to the second processing unit, and the second processing unit generates the analysis result from the data to be analyzed.
  16.  各第1処理部によって取得された前記1以上の分析対象データのうち、前記第1分担方式を選択する分析対象データを、当該分析対象データを前記第1分担方式で分析させた場合の当該第1処理部における計算コストの合計が、当該第1処理部の計算能力に基づく計算コストの上限を超えないように決定する、請求項15に記載の処理制御方法。 The processing control method according to claim 15, wherein the analysis target data for which the first sharing method is selected is determined from among the one or more analysis target data acquired by each first processing unit such that the total calculation cost in the first processing unit when the analysis target data is analyzed using the first sharing method does not exceed an upper limit of the calculation cost based on the calculation capacity of the first processing unit.
  17.  各第1処理部によって取得された前記1以上の分析対象データの各々に対して、当該分析対象データの前記計算コストおよび当該分析対象データの重要度に基づいて優先度を決定し、決定した各分析対象データの優先度に基づいて、前記第1分担方式を選択する分析対象データを決定する、請求項16に記載の処理制御方法。 The process control method according to claim 16, further comprising: determining a priority for each of the one or more analysis target data acquired by each first processing unit based on the calculation cost of the analysis target data and the importance of the analysis target data; and determining the analysis target data for which the first allocation method is to be selected based on the determined priority of each analysis target data.
  18.  各第1処理部によって取得された前記1以上の分析対象データの各々に対して、各分析対象データが示す危険度、および、各分析対象データの圧縮効率の少なくとも一方にさらに基づいて前記優先度を決定する、請求項17に記載の処理制御方法。 The process control method according to claim 17, further comprising determining the priority for each of the one or more analysis target data acquired by each first processing unit based on at least one of the risk level indicated by each analysis target data and the compression efficiency of each analysis target data.
  19.  各第1処理部によって取得された前記1以上の分析対象データのうち、前記第1分担方式を選択した分析対象データ以外の分析対象データに対して、当該第1処理部と前記第2処理部との間の通信品質に基づいて、前記第2分担方式および前記第3分担方式のうちのいずれかの分担方式を選択する、請求項16~18のいずれか1項に記載の処理制御方法。 The processing control method according to any one of claims 16 to 18, wherein for analysis target data other than the analysis target data for which the first sharing method has been selected among the one or more analysis target data acquired by each first processing unit, one of the second sharing method and the third sharing method is selected based on the communication quality between the first processing unit and the second processing unit.
  20.  各第1処理部によって取得された前記1以上の分析対象データのうち、前記第1分担方式を選択した分析対象データ以外の分析対象データに対して、当該分析対象データの圧縮効率にさらに基づいて、前記第2分担方式および前記第3分担方式のうちのいずれかの分担方式を選択する、請求項19に記載の処理制御方法。

     
    20. The processing control method according to claim 19, further comprising the step of selecting one of the second and third sharing methods for analysis target data other than the analysis target data for which the first sharing method has been selected among the one or more analysis target data acquired by each first processing unit, further based on the compression efficiency of the analysis target data.

PCT/JP2022/038457 2022-10-14 2022-10-14 Processing control system, processing control device, and processing control method WO2024079902A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/038457 WO2024079902A1 (en) 2022-10-14 2022-10-14 Processing control system, processing control device, and processing control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/038457 WO2024079902A1 (en) 2022-10-14 2022-10-14 Processing control system, processing control device, and processing control method

Publications (1)

Publication Number Publication Date
WO2024079902A1 true WO2024079902A1 (en) 2024-04-18

Family

ID=90669327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038457 WO2024079902A1 (en) 2022-10-14 2022-10-14 Processing control system, processing control device, and processing control method

Country Status (1)

Country Link
WO (1) WO2024079902A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004380A1 (en) * 2018-06-27 2020-01-02 日本電気株式会社 Allocation device, system, task allocation method, and program
WO2021260839A1 (en) * 2020-06-24 2021-12-30 日本電信電話株式会社 Information processing device, information processing method, and program
WO2022064656A1 (en) * 2020-09-25 2022-03-31 日本電信電話株式会社 Processing system, processing method, and processing program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004380A1 (en) * 2018-06-27 2020-01-02 日本電気株式会社 Allocation device, system, task allocation method, and program
WO2021260839A1 (en) * 2020-06-24 2021-12-30 日本電信電話株式会社 Information processing device, information processing method, and program
WO2022064656A1 (en) * 2020-09-25 2022-03-31 日本電信電話株式会社 Processing system, processing method, and processing program

Similar Documents

Publication Publication Date Title
CN111208748B (en) Linkage control method and system based on Internet of things and computer equipment
CN108667870A (en) A kind of methods, devices and systems that IoT data report
CN110177398A (en) Frequency band for low-power equipment guides
WO2012095867A4 (en) An integrated intelligent server based system and method/systems adapted to facilitate fail-safe integration and /or optimized utilization of various sensory inputs
CN105684397A (en) Filter method for adapting a computing load
CN111860256A (en) Security detection method and device, computer equipment and storage medium
CN115393781A (en) Video monitoring data processing method and device
CN110545258A (en) Streaming media server resource allocation method and device and server
WO2024079902A1 (en) Processing control system, processing control device, and processing control method
CN102355575A (en) Distributed video monitoring device with pre-warning function
KR20100064462A (en) Method for transmitting data to gathering node using data correlation
CN110913172A (en) Management method and device of video analysis equipment
Dhaya et al. IoT based urban flooding high definition surveillance using concurrent multipath wireless system
JP6807042B2 (en) Information processing equipment, information processing methods and programs
US9515911B2 (en) Method and a processing device for distributed network monitoring
JP2015070528A (en) Network management system, network device, and control device
WO2024079903A1 (en) Degree-of-importance assessment system, degree-of-importance assessment device, and degree-of-importance assessment method
US11810029B2 (en) Predictive forecasting of food allocation
KR102027431B1 (en) Gateway Platform
CN109885116B (en) Internet of things platform monitoring system and method based on cloud computing
CN114283373A (en) Crowd situation acquisition method, device, storage medium and system
CN114338974A (en) Multi-channel activity path determination method, device, equipment and storage medium
CN114245067A (en) Data transmission control method, device, equipment and readable storage medium
WO2024079901A1 (en) Processing control system, processing control device, and processing control method
WO2024079904A1 (en) Processing control system, processing control device, and processing control method