WO2024075805A1 - Writing implement - Google Patents

Writing implement Download PDF

Info

Publication number
WO2024075805A1
WO2024075805A1 PCT/JP2023/036319 JP2023036319W WO2024075805A1 WO 2024075805 A1 WO2024075805 A1 WO 2024075805A1 JP 2023036319 W JP2023036319 W JP 2023036319W WO 2024075805 A1 WO2024075805 A1 WO 2024075805A1
Authority
WO
WIPO (PCT)
Prior art keywords
writing
ink
pore
resin
writing instrument
Prior art date
Application number
PCT/JP2023/036319
Other languages
French (fr)
Japanese (ja)
Inventor
俊史 神谷
Original Assignee
三菱鉛筆株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022161797A external-priority patent/JP2024055129A/en
Priority claimed from JP2022161798A external-priority patent/JP2024055130A/en
Application filed by 三菱鉛筆株式会社 filed Critical 三菱鉛筆株式会社
Publication of WO2024075805A1 publication Critical patent/WO2024075805A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B43WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES
    • B43KIMPLEMENTS FOR WRITING OR DRAWING
    • B43K8/00Pens with writing-points other than nibs or balls
    • B43K8/02Pens with writing-points other than nibs or balls with writing-points comprising fibres, felt, or similar porous or capillary material
    • B43K8/03Ink reservoirs; Ink cartridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B43WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES
    • B43KIMPLEMENTS FOR WRITING OR DRAWING
    • B43K8/00Pens with writing-points other than nibs or balls
    • B43K8/02Pens with writing-points other than nibs or balls with writing-points comprising fibres, felt, or similar porous or capillary material
    • B43K8/04Arrangements for feeding ink to writing-points
    • B43K8/06Wick feed from within reservoir to writing-points
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/16Writing inks
    • C09D11/17Writing inks characterised by colouring agents

Definitions

  • This specification relates to a writing instrument that can reliably supply ink to the pen tip and improve ink diffusion.
  • This reservoir is equivalent to the so-called batting used in writing instruments, and by making the fiber bulk density of the batting "coarse/dense batting," the ink supplied into the batting can spread, allowing ink to be reliably supplied to both pen tips at both ends of the barrel for writing.
  • This coarse/dense batting is characterized by having a dense fiber section in the radial center of the batting and a sparse fiber section around the circumference, and when ink is filled into the coarse/dense batting, the dense section preferentially absorbs the ink, and ink is quickly supplied to both ends of the batting, enhancing the ink diffusibility of the batting.
  • a marking pen (see Patent Document 2 by the present applicant) is known that is characterized by having a barrel, a batting housed inside the barrel and located toward the axis in a cross section perpendicular to the longitudinal direction, the batting being made up of a dense portion with a relatively low porosity and a sparse portion located around the dense portion and having a relatively high porosity, an aqueous ink impregnated into the batting and having a static surface tension value of 35 mN/m or less, and a writing tip that is connected to the dense portion and guides the aqueous ink to the tip by capillary force.
  • Patent Documents 1 and 2 describe a new writing instrument padding and a writing instrument using the same, there are still cases where Patent Document 1 does not allow ink to be efficiently supplied to the pen tip, and there is currently a demand for Patent Documents 1 and 2 to have even better ink diffusibility.
  • JP 2022-501226 A (claims, FIG. 1, etc.)
  • JP 2021-66043 A (Claims, FIG. 7, etc.)
  • the present disclosure seeks to address the issues and current state of the prior art described above, and aims to provide a writing instrument that can more efficiently supply ink to the pen tip and further improve ink diffusibility.
  • the writing instrument of the present disclosure is characterized by having a filling having two or more types of pore size distribution. It is preferable that the frequency of particles smaller than 90 ⁇ m is high in a region having a radius of 0.5 mm from the center of the padding, as determined by cross-sectional image analysis.
  • the ink composition stored in the filling material is preferably an ink composition containing a resin fine particle pigment including a dye.
  • a writing instrument that can more efficiently supply ink to the pen tip and further improve ink diffusibility.
  • FIG. 1A and 1B are drawings of a writing instrument showing an example of an embodiment of the present disclosure, in which (a) is a front view, (b) is a plan view, (c) is a vertical cross-sectional view as seen from the front, and (d) is a vertical cross-sectional view of (b).
  • 2A to 2E are drawings showing the writing instrument of FIG. 1 with the cap removed, where (a) is a plan view, (b) is a front view, (c) is a bottom view, (d) is a vertical cross-sectional view of (b), and (e) is a vertical cross-sectional view of (c).
  • 2A and 2B are enlarged views showing the pen tip side of the writing instrument of FIG. 1, in which FIG.
  • FIG. 2A is a front view and FIG. 2B is a longitudinal sectional view thereof.
  • 4A is a perspective view of the pen tip of the writing implement of FIG. 3 as seen from the front side
  • FIG. 4B is a perspective view of the pen tip as seen from the rear side.
  • FIG. 1A is a front view showing an example of a filling for a writing instrument according to the present disclosure
  • FIG. 1B is an X-X line cross-sectional view of the filling in (a), showing a schematic diagram of a state in which the pore size distribution has two or more types.
  • FIGS. 1A and 1B are drawings showing an example of a holder having a visible portion of a pen tip used in a writing instrument, in which (a) is an oblique view seen from the front side, (b) is a plan view, (c) is an oblique view seen from the rear side, (d) is a left side view, (e) is a front view, (f) is a right side view, (g) is an oblique view seen from above the front side, (h) is a vertical cross-sectional view, (i) is an oblique view seen from above the rear side, and (j) is a bottom view.
  • FIGS. 7A to 7D are diagrams showing an example of a writing part attached to the pen tip of Figure 6, where (a) is a plan view, (b) is a perspective view, (c) is a front view, and (d) is a right side view.
  • 1A and 1B are drawings of an optical microscope cross-sectional observation of an image analysis pattern of Production Example 1 (Sample A) and a binarized image (image resolution is about 1.27 ⁇ m/pixel), respectively.
  • 1A and 1B are drawings of an optical microscope cross-sectional observation of an image analysis pattern of Production Example 2 (sample B) and a binarized image (image resolution is about 1.28 ⁇ m/pixel), respectively.
  • FIG. 1 is a pore distribution diagram (the largest circle inscribed in the pore portion) of Production Example 1 (Sample A).
  • the numerous circular gray (yellow) circles represent pores with diameters of 90 ⁇ m or more
  • the white dots represent pores
  • the black dots represent fibers.
  • the dark gray (green) region that is the entire area other than the circular gray, white dots, and black dots represents pores with diameters of less than 90 ⁇ m
  • the dark gray (green) and circular gray (yellow) circles represent an almost uniform pore distribution diagram overall.
  • FIG. 13 is a pore distribution diagram (the largest circle inscribed in the pore portion) of Production Example 2 (Sample B).
  • the numerous gray (yellow) circles represent pores with diameters of 90 ⁇ m or more
  • the white dots represent pores
  • the black dots represent fibers.
  • the entire area other than the circular gray, white dots, and black dots is dark gray (green), with more dark gray (green) in the central portion and fewer circular gray (yellow) in the central portion.
  • 13(c) is a graph showing the pore size distribution (the distribution of the largest circle inscribed in the pore portion) of Production Examples 1 and 2 (Samples A and B) [horizontal axis: pore diameter ( ⁇ m), vertical axis: areal frequency (moving average value: %)], where the areal frequency is calculated using the moving average value for each data point, and the measurement area is the semicircular portion shown in FIG. 13(c).
  • FIG. 1 is a graph showing the pore diameter and area frequency plotted with threshold values of 50 ⁇ m, 90 ⁇ m, and 100 ⁇ m in the pore distribution (the maximum circular distribution inscribed in the pore portion) of Production Examples 1 and 2 (Samples A and B).
  • FIG. 1 is a diagram of the pore distribution (the largest circle inscribed in the pore portion) at a threshold value of 100 ⁇ m for Production Example 1 (Sample A).
  • dark gray (green) represents pores with a diameter of 0 to less than 100 ⁇ m
  • circular gray yellow
  • white dots represent pores
  • black dots red
  • FIG. 1 is a diagram of the pore distribution (the largest circle inscribed in the pore portion) at a threshold value of 90 ⁇ m for Production Example 1 (Sample A).
  • dark gray (green) represents pores with a diameter of 0 to less than 90 ⁇ m
  • circular gray (yellow) represents pores with a diameter of 90 ⁇ m or more
  • white dots represent pores
  • black dots (red) represent fibers.
  • the dark gray (green) and circular gray (yellow) represent an almost uniform pore distribution diagram overall.
  • FIG. 1 is a diagram of the pore distribution (the largest circle inscribed in the pore portion) at a threshold value of 90 ⁇ m for Production Example 1 (Sample A).
  • dark gray (green) represents pores with a diameter of 0 to less than 90 ⁇ m
  • circular gray (yellow) represents pores with a diameter of 90 ⁇ m or more
  • white dots represent pores
  • black dots (red) represent fibers.
  • FIG. 1 is a diagram of the pore distribution (the largest circle inscribed in the pore portion) at a threshold value of 50 ⁇ m for Production Example 1 (Sample A).
  • dark gray (green) represents pores with a diameter of 0 to less than 50 ⁇ m
  • circular gray (yellow) represents pores with a diameter of 50 ⁇ m or more
  • white dots represent pores
  • black dots represent fibers.
  • the dark gray (green) and circular gray (yellow) represent an almost uniform pore distribution diagram overall.
  • FIG. 1 is a drawing of the pore distribution (the largest circle inscribed in the pore portion) at a threshold value of 100 ⁇ m for Production Example 2 (Sample B).
  • dark gray represents pores with a diameter of 0 to less than 100 ⁇ m
  • circular gray represents pores with a diameter of 100 ⁇ m or more
  • white dots represent pores
  • black dots represent fibers.
  • FIG. 1 is a drawing of the pore distribution (the largest circle inscribed in the pore portion) at a threshold value of 90 ⁇ m for Production Example 2 (Sample B).
  • dark gray represents pores with a diameter of 0 to less than 90 ⁇ m
  • circular gray represents pores with a diameter of 90 ⁇ m or more
  • white dots represent pores
  • black dots represent fibers.
  • FIG. 1 is a drawing of the pore distribution (the largest circle inscribed in the pore portion) at a threshold value of 50 ⁇ m for Production Example 2 (Sample B).
  • dark gray represents pores with a diameter of 0 to less than 50 ⁇ m
  • circular gray represents pores with a diameter of 50 ⁇ m or more
  • white dots represent pores
  • black dots represent fibers.
  • FIGS. 1A to 1C are drawings showing the relationship between the distance from the circle center (pore diameter 0 to less than 100 ⁇ m, pore diameter 100 ⁇ m or more) and the pore diameter frequency for Production Examples 1 and 2 (samples A and B), and drawings showing the measurement method, in which (a) is a graph for pore diameters of 0 to less than 100 ⁇ m (horizontal axis: radius from the center ( ⁇ m), vertical axis: frequency), (b) is a graph for pore diameters of 100 ⁇ m or more (horizontal axis: radius from the center ( ⁇ m), vertical axis: frequency), and (c) is an explanatory diagram explaining the measurement method for the radius from the center and the number frequency.
  • FIGS. 1A to 1C are drawings showing the relationship between the distance from the circle center (pore diameter 0 to less than 90 ⁇ m, pore diameter 90 ⁇ m or more) and the pore diameter frequency for Production Examples 1 and 2 (samples A and B), and drawings showing the measurement method, in which (a) is a graph for pore diameters of 0 to less than 90 ⁇ m (horizontal axis: radius from the center ( ⁇ m), vertical axis: frequency), (b) is a graph for pore diameters of 90 ⁇ m or more (horizontal axis: radius from the center ( ⁇ m), vertical axis: frequency), and (c) is an explanatory diagram explaining the measurement method for the radius from the center and the number frequency.
  • FIGS. 1A to 1C are drawings showing the relationship between the distance from the circle center (pore diameter 0 to less than 50 ⁇ m, pore diameter 50 ⁇ m or more) and the pore diameter frequency for Production Examples 1 and 2 (samples A and B), and drawings showing the measurement method, in which (a) is a graph for pore diameters of 0 to less than 50 ⁇ m [horizontal axis: radius from the center ( ⁇ m), vertical axis: frequency], (b) is a graph for pore diameters of 50 ⁇ m or more [horizontal axis: radius from the center ( ⁇ m), vertical axis: frequency], and (c) is an explanatory diagram explaining the measurement method for the radius from the center and the number frequency.
  • Graphs (a) to (d) show the relationship between the distance from the circle center and the pore diameter frequency for Production Examples 1 and 2 (samples A and B).
  • Graph (a) shows the pore diameters (50 ⁇ m, 90 ⁇ m, 100 ⁇ m) of Production Example 1 (sample A) below the threshold [horizontal axis: radius from the center ( ⁇ m), vertical axis: frequency].
  • Graph (b) shows the pore diameters (50 ⁇ m, 90 ⁇ m, 100 ⁇ m) of Production Example 1 (sample A) above the threshold [horizontal axis: radius from the center ( ⁇ m), vertical axis: frequency].
  • Graph (c) shows the pore diameters (50 ⁇ m, 90 ⁇ m, 100 ⁇ m) of Production Example 2 (sample B) below the threshold [horizontal axis: radius from the center ( ⁇ m), vertical axis: frequency].
  • Graph (d) shows the pore diameters (50 ⁇ m, 90 ⁇ m, 100 ⁇ m) of Production Example 2 (sample B) above the threshold [horizontal axis: radius from the center ( ⁇ m), vertical axis: frequency].
  • the technical scope of the present disclosure is not limited to the embodiments described in detail below, but covers the inventions described in the claims and their equivalents.
  • the "front” of the writing instrument A and its components indicates the direction of the tip of the writing instrument A
  • the "rear” indicates the opposite direction
  • the "axial direction” indicates the direction of the axis that passes through the writing instrument body (barrel) from the front to the rear
  • the "transverse direction” indicates the direction perpendicular to the axial direction.
  • the reference numerals commonly used in each drawing represent the same configuration or members even if not specifically mentioned in the description of each drawing.
  • FIGS. 1 to 7 are drawings illustrating a marking pen-type writing instrument A according to a first embodiment of the present disclosure, a filling 17 having two or more types of pore size distribution that is a component used in the writing instrument, a pen tip 20, and an example of a writing part 25.
  • the writing instrument A of this embodiment is a twin-type writing instrument that includes a pen tip 20 having a visible portion that guides ink supplied from a writing instrument body (barrel) 10 and allows the writing direction to be visually confirmed, and also includes a rod-shaped polyacetal pen tip 40 on the opposite side of the pen tip 20.
  • a cap 50 that protects the pen tip 20 and that is detachable, and a cap 60 that protects the pen tip 40 are attached to both sides of the writing instrument body 10.
  • the cap 50 has a clip portion 51, a friction body 53, and an air hole 54.
  • the writing instrument body 10 of this embodiment is composed of a rear barrel 11 and a front barrel 16.
  • the rear barrel 11 is composed of a cylindrical body and contains a padding 17 impregnated with writing instrument ink, and one end side, which is the right side in the drawings, is a reduced-diameter holding portion 13 having a fitting portion 12 for fixing a holder 45 that holds a rod-shaped fine-point pen tip 40 by fitting, and a cap 60 is removably attached to the large-diameter outer periphery 13a of this holding portion 13.
  • a front barrel 16 for fixing a pen tip 20 having a visible portion that allows the writing direction to be visually confirmed is fixed by fitting or the like to an opening at the other end, which is the left side of the rear barrel 11. Furthermore, flat portions 14, 14 are formed on the upper and lower surfaces of the outer periphery on the axial front side of the rear barrel 11, and as described below, when these flat portions 14, 14 are held with the fingers, writing (marking) can be performed immediately without changing the grip, that is, they serve as a gripping indication surface that makes it easy to understand the direction of the flat-shaped pen tip 20.
  • front barrel 16 is configured as a generally circular tubular body and is provided with at least flange 16a near the rear of the center, rear portion 16b having a fitting step on the rear side of flange 16a, front portion 16c having a fitting step on the front side, and an inclined opening 16d on the tip side of front portion 16c, and within inclined opening 16d, a protrusion (not shown) for reliably directing ink guide portion 26 to the center of padding 17 which serves as an occlusion body, and an annular abutment portion (not shown) for abutting the rear end portion of holder 30.
  • reference numeral 16a1 in the figure denotes an inclined surface portion that corresponds slightly to flat surface 14 of rear barrel 11 on the rear end surface of flange 16a for the purpose of alignment with rear barrel 11.
  • the writing instrument body 10 which is composed of the front barrel 16 and the rear barrel 11, is formed from a thermoplastic resin, a thermosetting resin, or the like, and is molded into the above-mentioned configuration using a resin such as polypropylene, and functions as the writing instrument body (shaft body).
  • the writing instrument body 10 is molded to be opaque or transparent (and translucent), but either may be adopted from the viewpoint of appearance and practicality.
  • the padding 17 serves as an ink storage body and is impregnated with an ink composition for a writing instrument, such as a water-based ink, an oil-based ink, or a thermochromic ink.
  • the padding is composed of padding having two or more types of pore size distribution.
  • FIG. 5(a) is a front view showing an example of the filling 17, and (b) is a longitudinal cross-sectional view of the filling 17 in (a), which is a schematic diagram showing a state in which the pore size distribution has two or more types.
  • This filling 17 is a filling having two or more types of pore size distribution, and has an outer skin 17a made of a resin film on the outer circumferential side, 17b being a first pore size portion, and the outer circumferential side of the first pore size portion 17b being a second pore size portion 17c. Whether or not the filling 17 has two or more types of pore size distribution can be verified, for example, by (1) different pore distributions measured by a mercury porosimeter, (2) different distributions of inscribed circle diameters measured by cross-sectional image analysis, or (3) different distributions of equivalent pore diameters measured by cross-sectional image analysis.
  • the measurement using a mercury porosimeter can be confirmed by measuring the pores in the filling with a mercury porosimeter and determining the difference in their distribution.
  • Normal batting with no pore size distribution has a pore distribution with approximately one peak, whereas batting with two or more pore size distributions has two peaks, i.e., the pore distribution can be considered to have two peaks.
  • This pore distribution with two peaks means that the pores in the batting have fine and coarse parts. It only represents the distribution of the pore state, and is different from conventional batting that has sparse and dense states.
  • the conventional sparse and dense states represent the difference in the volume ratio of pores to fibers (the same applies to the cross-sectional area ratio).
  • the capillary force generated between the filling and the ink is determined by the fineness and coarseness of the pores.
  • the presence or absence of a pore size distribution in the filling can be measured by calculating the number of peaks in the pore distribution described below.
  • the number of peaks in the pore distribution is determined by pressing mercury into the padding to impregnate it, and the distribution of the equivalent diameter of the pores is calculated from the pressure and the impregnated volume.
  • the resulting graph of the equivalent diameter of the pores and their frequency is then peak-separated. Peak separation is a common method, but in this study, the peak separation method proposed by the Japan Society of Energy was used. The above analysis separates the peaks of the pore size distribution of the filling.
  • the separated peak positions are displayed logarithmically, so they are returned to the original values. From this result, the distance between the peaks is calculated, half the half-width of the component peaks is calculated, and the sum of these is calculated. If the distance between the peaks is smaller than the sum of half the peak widths, and the two peaks cannot be observed separately, there is no pore distribution. In contrast, for fillings having two or more types of pore size distributions, the number of peaks in the pore distribution can be calculated in the same manner as described above, i.e., using the results of peak separation, it can be confirmed from the relationship between the distance between the component peaks and each line width that the filling has two peaks, i.e., that it has two pore size distributions.
  • the filling has a pore size distribution.
  • the presence or absence of pore size distribution can be determined by image analysis of the cross section of the filling, specifically, by observing a cut surface of the filling and analyzing the image to determine the pore sizes (inscribed circle diameter distribution).
  • the measurement method was to inject a curable resin (en-thiol resin-based photocurable adhesive: manufactured by Nichika Co., Ltd.) into the obtained batting and harden it.
  • the frequency of pores smaller than 90 ⁇ m is higher in the sample (dense part) in the region with a radius of 0.5 mm from the center, and the frequency of pores larger than 90 ⁇ m is lower in the region with a radius of 0.5 mm from the center. From the above analysis, it was found that the batting with a pore size distribution has a distribution of pore sizes when the frequency of pores smaller than 90 ⁇ m is high.
  • the frequency of pores smaller than 90 ⁇ m is high in the region with a radius of 0.5 mm from the center, and in the batting with a pore size distribution, the frequency of pores (fine parts) smaller than 90 ⁇ m is high in the radial center, but the location of these fine parts may be the circumferential part.
  • the batting has a pore size distribution when there is a difference in the diameter distribution of the inscribed circle of the pores in the batting in a certain region.
  • batting with two or more pore size distributions can be verified.
  • the cut surface of the filling is observed, and the distribution of the equivalent diameter of the pores is obtained by image analysis.
  • the resolution of the cross-sectional image of the above measurement method is increased, and the fiber circumference (l) and the area of the space (s) within a certain space (for example, a square area of 1 x 1 mm) are obtained.
  • the pores are not circular but have irregular shapes, the diameter (2r: equivalent diameter) can be calculated from the circumference and area using the following formula when considered as a circle.
  • the equivalent diameter is small in "fine” (dense) regions and large in "coarse” (sparse) regions.
  • capillary force is expressed as l/s x ⁇ (surface tension) x cos ⁇ (contact angle) and is determined by the circumference of the pores and their area.
  • the filling can be produced, for example, by using fibers having different fiber bulk densities, fiber diameters, fiber materials, fiber morphologies, fiber surface tensions, and capillary forces, or by suitably combining two or more of these.
  • fibers that can be used include natural fibers, animal hair fibers, polyacetal resins, acrylic resins, polyester resins, polyamide resins, polyurethane resins, polyolefin resins, polyvinyl resins, polycarbonate resins, polyether resins, and polyphenylene resins, either alone or in combination.
  • the yarn bundle having the second pore size distribution was inserted into the center of the yarn bundle having the first pore size distribution, and a polypropylene cylinder having a length of 80 mm and an inner diameter of 6 mm was used as a shaft tube, which was filled with the batting of each of the following Examples and Comparative Examples, and subjected to the following experiments.
  • the yarn bundle was made by compressing and bundling polyester fibers, and the weight was measured so as to obtain a predetermined dense part ratio. By filling the polypropylene cylinder, it is possible to obtain a batting for a writing instrument having the above pore size distribution characteristics with two or more pore size distributions.
  • the composition of the ink for the writing instrument used is not particularly limited, and a suitable formulation such as water-based ink, oil-based ink, thermochromic ink, etc. can be used depending on the application of the writing instrument, etc.
  • the ink can contain a fluorescent dye such as Basic Violet 11, Basic Yellow 40, or a thermochromic microcapsule pigment.
  • a pigment ink composition containing resin fine particles containing a dye is preferable.
  • resin microparticle pigment inks containing dyes include those containing a dispersion of colored resin microparticles in water, the colored resin microparticles being composed of at least a cyclohexyl (meth)acrylate monomer and a basic dye or an oil-soluble dye, wherein the content of the cyclohexyl (meth)acrylate monomer is 30 mass% or more relative to the total polymer components constituting the colored resin microparticles and the content of the basic dye or oil-soluble dye is 15 mass% or more relative to the total polymer components, a water-soluble organic solvent, and water.
  • ink viscosity 25°C: Complate type viscometer
  • surface tension 30 to 60 mN/m.
  • amount of ink flowing out from the marking pen-type writing instrument nib 20 and nib 40 it is possible to easily set the amount of ink flowing out from the marking pen-type writing instrument nib 20 and nib 40 to a preferred range, in this embodiment, 5 to 20 mg/m.
  • thermochromic microcapsule pigment-containing ink composition when used, for example, as shown in Figures 1(c) and (d), a cylindrical friction body 53 made of a thermoplastic elastomer with an erasability (erasability rate) of pencil lines as specified in JIS S 6050-2002 of less than 70% can be fixed to the recess 52 of the cap 50.
  • the rubbing action of this friction body 53 makes it easy to generate frictional heat and has low wear, which reduces the generation of eraser dust during friction and prevents stains on the surrounding area.
  • the ventilation hole 54 is a ventilation hole for making it easier to attach and remove the friction body 53.
  • the pen tip 20 has at least a writing portion 25, an ink guide portion 26 that guides ink in the writing instrument body 10 to the writing portion 25, and a holder 30 having a visible portion, and the writing portion 25 and the ink guide portion 26 are attached to the holder 30 by adhesive bonding, welding, fitting, etc.
  • the writing part 25 has an inclined (knife-cut) shape so that the upper side of the rectangular parallelepiped base is inclined to make writing easier. The inclination of the writing part 25 is appropriately set according to the ease of use of writing, etc. As shown in Figs.
  • the writing part 25 has a writing part 25a with a large line width W1 and a writing part 25b with a small line width W2 so that the line width can be adjusted, and the line widths W1 and W2 can be adjusted (selected) by inclining the shaft.
  • the ratio of W1:W2 is 2 or more:1.
  • the line width W1 is 2.0 to 5.0 mm, and the line width W2 is 1.0 to 2.5 mm.
  • the writing part 25 may be made of a porous material having air holes, such as a sponge, a sintered body, a fiber bundle, a foam, a spongy body, a felt body, or a porous body.
  • Materials for forming these porous bodies include, for example, natural fibers, animal hair fibers, polyacetal resins, polyethylene resins, acrylic resins, polyester resins, polyamide resins, polyurethane resins, polyolefin resins, polyvinyl resins, polycarbonate resins, polyether resins, and polyphenylene resins.
  • the writing part 25 of this embodiment is made of a sintered core made of sintered plastic powder (e.g., PE) to improve the writing feel.
  • the ink guide portion 26 is thin plate-like and has an inclined portion 26a on the rear side, and the cross section thereof is preferably rectangular or elliptical in order to maximize (widen) the area of the visible portion. In this embodiment, the cross section is rectangular.
  • the ink guide portion 26 is not particularly limited as long as it efficiently guides (supplies) the ink in the padding 17 absorbed in the writing instrument body 10 to the writing portion 25 via the ink guide portion 26, and examples of the ink guide portion 26 include those made of fabrics such as nonwoven fabrics, woven fabrics or knitted fabrics, fiber bundle cores, or liquid-permeable materials such as liquid-permeable foams and sintered bodies.
  • the writing portion 25 and the ink guide portion 26 can be integrally formed from one type of material, but it is preferable to form the ink guide portion 26 by connecting or bonding separate members to each other, or by connecting or bonding via a holder as described later, in order to further exert the effects of the present disclosure, efficiently supply ink, and further improve the writing feel at the writing portion.
  • nonwoven fabric refers to a cloth-like structure formed by not weaving a mass of one or more layers of fibers.
  • synthetic fibers, natural fibers, animal hair fibers, inorganic fibers, etc. are used as the fiber material.
  • synthetic fiber material used for example, one or a combination of two or more of polyacetal resin, polyethylene resin, acrylic resin, polyester resin, polyamide resin, polyurethane resin, polyolefin resin, polyvinyl resin, polycarbonate resin, polyether resin, polyphenylene resin, etc. can be mentioned.
  • the fibers constituting the fabric can be obtained by known methods such as melt spinning, dry spinning, wet spinning, direct spinning (melt blowing, spunbonding, electrostatic spinning, etc.), a method of extracting fibers having a small fiber diameter by adsorbing one or more resin components from composite fibers, and a method of beating fibers to obtain split fibers.
  • the fibers constituting the fabric may be composed of one or more types of resin components, and composite fibers generally called composite fibers, such as core-sheath type, sea-island type, side-by-side type, orange type, etc., can be used.
  • the fineness of the fibers constituting the fabric is not particularly limited, but the fineness is preferably 0.1 to 500 dtex, and more preferably 2 to 5 dtex.
  • the length of the fibers is also not particularly limited, but short fibers, long fibers, or continuous fibers can be used.
  • the fabric is a woven or knitted fabric, it can be prepared by weaving or knitting the fibers prepared as described above.
  • a method for preparing a fiber web capable of producing a nonwoven fabric can be, for example, a dry method or a wet method.
  • a method for entangling and/or integrating the fibers constituting the fiber web to form a nonwoven fabric for example, a method for entangling with a needle or a water flow, a method for integrating the fibers with a binder, or, when the fiber web contains a thermoplastic resin, a method for melting the thermoplastic resin by heat-treating the fiber web to integrate the fibers can be mentioned.
  • a method for heat-treating the fiber web for example, a method for heating and pressurizing with a calendar roll, a method for heating with a hot air dryer, a method for melting the thermoplastic resin fibers by irradiating infrared rays under no pressure, etc. can be used.
  • a nonwoven fabric can be prepared by collecting fibers spun using a direct spinning method.
  • fiber bundle cores include parallel fiber bundles made of the above-mentioned fiber materials (synthetic fibers, natural fibers, animal hair fibers, inorganic fibers, polyphenylene resins, etc., one or a combination of two or more of them) that have been processed or resin-processed.
  • the sintered body can be composed of a porous body (sintered core) obtained by sintering a plastic powder such as a polyacetal resin, a polyethylene resin, an acrylic resin, a polyester resin, a polyamide resin, a polyurethane resin, a polyolefin resin, a polyvinyl resin, a polycarbonate resin, a polyether resin, or a polyphenylene resin.
  • a plastic powder such as a polyacetal resin, a polyethylene resin, an acrylic resin, a polyester resin, a polyamide resin, a polyurethane resin, a polyolefin resin, a polyvinyl resin, a polycarbonate resin, a polyether resin, or a polyphenylene resin.
  • the shape, thickness, etc. of the ink guide portion 26 are set based on the manner of attachment to the holder 30, the shape of the writing portion 25, maximizing the visible area of the visible portion, efficiently flowing (supplying) ink to the writing portion 25, etc., and preferably the widthwise length and the lengthwise length are approximately the widthwise length and approximately the lengthwise length of the attachment surface of the holder 30 described later to which the thin plate-like ink guide portion 26 is fixed, respectively, and suitable lengths are set to efficiently flow ink to the writing portion 25.
  • the thickness t of the thin plate-like ink guide portion 26 is preferably less than 1.5 mm, more preferably 1.2 mm or less, and particularly preferably 0.8 mm or less, as shown in Fig. 4(b), from the viewpoint of maximizing the visible area of the visible portion, etc., and the lower limit is preferably 0.5 mm or more from the viewpoints of suitable supply of ink amount, productivity, etc.
  • the ink guide section 26 is made of a fiber bundle core made of PET and has a rectangular cross-section, which allows ink to flow efficiently with a small cross-sectional area, and has a longitudinal length of 20 mm, a width length of 2 mm, and a thickness t of 0.8 mm.
  • the rear end 26a of the ink guide 26 is inserted inside the tip end of the inner fiber 17, and the tip end 26b is in contact with the writing part 25 via the holder 30. With this configuration, a suitable amount of ink in the inner fiber 17 is efficiently supplied to the writing part 25 via the ink guide 26 by capillary force.
  • the holding body 30 fixes the writing portion 25 and ink guide portion 26, and has its rear end fixed within the inclined opening 16d of the tip shaft 16 of the writing instrument body 10.
  • the holding body 30 has a bulging main body portion 31, a flange portion 32 on the front side of the main body portion 31 that abuts against the end face of the writing instrument body 10, and a visible portion 33 that allows the writing direction to be visually confirmed.
  • the holding body 30 also has front holding portions 34a, 34b that hold the tip side (end face) of the writing portion 25 on the tip side of the visible portion 33, and anti-slip portions 34c, 34d that receive the end face of the writing portion 25 provided at one end of each holding portion.
  • a rear holding portion 35 is provided on the bottom surface side of the rear side of the main body portion 31, and is connected to the main body portion 31.
  • a structure is formed on the entire bottom surface side in the longitudinal direction of the holder 30 composed of these members, in order to maximize the visible area of the visible portion 33, and is attached (disposed) to the bottom surface of the holder 30.
  • a concave holding groove 36 is formed on the entire longitudinal bottom surface of the holder 30, into which the thin plate-like (rectangular cross-sectional shape) ink guide portion 26 is fitted and held.
  • a concave fitting portion 31a is formed on the outer circumferential surface in the width direction of the main body portion 31.
  • ribs 37, 37..., 38, 38... are formed at predetermined intervals in a direction perpendicular to the axis on the surfaces where the writing part 25 and the ink guide part 26 come into contact, so that the fragile legs and the like of the writing part 25 and the ink guide part 26, which may cause dimensional variations due to molding, can be stably assembled to the holder 30.
  • the width direction length of the mounting surface 36a of the holding groove 36 is set to be slightly shorter than the width direction length of the tip side 26b of the ink guide part 26, so that the tip side 26b of the ink guide part 26 is pressed against the holding groove 36a to be fitted and held therein, thereby increasing the fixing force and reliably holding the connection with the writing part 25.
  • the thin plate-like ink guide portion 26 is fixed to the mounting surfaces 36 a , 36 b of the holding groove 36 of the holding body 30 by bonding with an adhesive, welding, or the like, and is thus fixed to the writing portion 25 .
  • the writing part 25 is fixed (attached) to the holding body 30 by fitting the writing part 25 between the front holding parts 34a, 34b, and further, in order to ensure the fixing (prevention of falling off) of the writing part 25, adhesive bonding, welding, etc. may be used.
  • air circulation grooves 39, 39 are formed on the outer longitudinal surface of the main body 31, so that even if the air pressure inside the writing instrument expands, the air circulation grooves 39, 39 can adjust the expansion and prevent ink leakage, etc.
  • the ink guide portion 26 is made of a fiber bundle core having a rectangular or elliptical cross section, and in this embodiment has a rectangular cross section, and the writing portion 25 is made of a sintered resin body, and the writing portion 25 and the ink guide portion 26 are fixed to the holding groove 36 and mounting surfaces 36a and 36b of the holding body 30, and the ink guide portion 26 and the writing portion 25 are pressed against each other and fixed, so that ink from the padding 17 is supplied well to the writing portion 25 via the ink guide portion 26.
  • the entire holder 30 thus constructed is made of a hard material, and is made of, for example, a hard material having visibility, such as glass or a resin having no rubber elasticity.
  • a hard material having visibility such as glass or a resin having no rubber elasticity.
  • resins having no rubber elasticity that are visible include PP, PE, PET, PEN, nylon (including amorphous nylon in addition to general nylons such as nylon 6 and nylon 12), acrylic, polymethylpentene, polystyrene, ABS, and other materials having a visible light transmittance of 50% or more, so that characters written in the writing direction can be effectively viewed in the visible portion 33.
  • Note that only the visible portion 33 may be made of a material having visibility.
  • the visible light transmittance can be obtained by measuring the reflectance with a multi-light source spectrophotometer (manufactured by Suga Test Instruments Co., Ltd., (MSC-5N)).
  • the holder 30 may be constructed using one of the above materials, or two or more of the materials in terms of further improving durability and visibility, and can be molded by various molding methods such as injection molding and blow molding.
  • the visible portion 33 of the holder 30 has a minimum width S in the width direction of 3.7 mm or more, and the length Y of the visible portion 33 is set to 7.4 mm or more.
  • the width S of the visible portion 33 of the holder 30 is configured to increase from the front end side to the rear side, and the minimum width S is the length in the width direction of the front end side of the visible portion 33 of the holder 30, and the width (parallel to the pen tip) is 3.7 mm or more.
  • the maximum width of the visible portion 33 in the width direction is 4.5 mm.
  • the length Y of the visible portion 33 is twice the minimum width S, i.e., 7.4 mm or more.
  • the minimum width S of the visible portion 33 can be set to 3.7 mm or more and its length Y to 7.4 mm or more.
  • the structure, shape, etc. of each part of the pen tip 20 can be configured (specified) as described above and appropriately combined, thereby setting these.
  • the width t of the ink guide portion 26 (the length as viewed from the perpendicular direction to the surface of the visible portion 33) is less than 1.5 mm, more preferably 1.2 mm or less, and particularly preferably 0.8 mm or less.
  • the ink guide portion 26 is fixed by being fitted and held in the concave retaining groove 36 and the mounting surfaces 36a, 36b, and furthermore, from the standpoint of efficient assembly and productivity, the side surface is not structured to cover the entire ink guide portion 26 but is open to the outside air, so that the overall width length including the width t of the ink guide portion 26 is kept to the minimum necessary, with the width S of the visible portion 33 being maximized.
  • the visible portion 33 can be seen clearly regardless of the character in the direction of writing, even when a natural writing angle is used. If the ink guide portion 26 were arranged on the rear side (upper side) rather than on the front side when writing, the mechanism of action of the visible portion 33 would be different in that it would cross the character in the direction of writing (marking) and hide part of it.
  • the pen tip 40 for fine writing is a rod-shaped pen tip for fine writing, as shown in Figures 1 (c) and (d), with a circular cross section.
  • the rear end (the middle cotton side) of the pen tip 40 is inserted into the middle cotton 17, and the ink in the middle cotton 17 is supplied to the pen tip 40 by capillary force.
  • the pen tip 40 is constructed from a porous material, such as parallel fiber bundles made of one or a combination of two or more types of natural fibers, animal hair fibers, polyacetal resin, polyethylene resin, acrylic resin, polyester resin, polyamide resin, polyurethane resin, polyolefin resin, polyvinyl resin, polycarbonate resin, polyether resin, polyphenylene resin, etc.; a fiber core obtained by processing fiber bundles such as felt or resin-processing such fiber bundles; or a porous body (sintered core) obtained by sintering plastic powder of thermoplastic resins such as polyolefin resin, acrylic resin, polyester resin, polyamide resin, polyurethane resin, etc.
  • a porous material such as parallel fiber bundles made of one or a combination of two or more types of natural fibers, animal hair fibers, polyacetal resin, polyethylene resin, acrylic resin, polyester resin, polyamide resin, polyurethane resin, polyolefin resin, polyvinyl resin, polycarbonate resin, polyether resin,
  • Preferred pen tips 40 are fiber bundle cores, fiber cores, sintered cores, felt cores, sponge cores, and inorganic porous cores, and fiber cores are particularly preferred from the viewpoints of deformation moldability and productivity.
  • the porosity, size, hardness, etc. of the pen tip 40 used vary depending on the type of ink, the type of writing implement, etc., and for example, the porosity is preferably 30 to 60%.
  • the "porosity" of the writing core is calculated as follows. First, a writing core having a known mass and apparent volume is immersed in water, and after the writing core is sufficiently saturated with water, the mass is measured in a state where it is taken out of the water.
  • the volume of water soaked into the writing core is derived from the measured mass.
  • the writing instrument batting of the present disclosure that absorbs the writing instrument ink is inserted into the writing instrument body 10, that is, the batting 17 having two or more types of pore diameter distribution, the first pore diameter being 50 to 300 ⁇ m, and the second pore diameter being 50 to 90% of the first pore diameter, is inserted and held in place, and the pen tip 20 (writing portion 25, ink guide portion 26, holder 30) configured as described above is fixed to the tip side by sequentially fitting the tip 20 (writing portion 25, ink guide portion 26, holder 30) via the tip barrel 16.
  • the other end of the pen can be fitted with a holder 45 to which the pen tip 40 is attached, allowing the twin-type writing instrument A to be easily produced.
  • the ink absorbed in the writing instrument batting 17 of the present disclosure can be efficiently supplied to the writing part 25 and the pen tip 40 through the thin ink guide part 26 in the pen tip 20 by capillary force, resulting in a writing instrument batting that can further enhance ink diffusibility, and a writing instrument using the same.
  • the pen tip 40 is the same as a conventional general-purpose pen tip, so the function of the pen tip 20 will be explained below.
  • the pen tip 20 of this writing instrument A has a visible portion (window portion) 33 that allows the writing direction to be visually confirmed, as shown in Figures 1 to 4, and the ink in the writing instrument inner batting 17 of the present disclosure reaches the writing portion 25 and the pen tip 40 by the capillary force of the inner batting 17, and is used for writing.
  • the visible portion (window portion) 33 When writing, by looking at the visible side through the visible portion (window portion) 33, it becomes easier to align the starting position of the stroke, and it is possible to stop the stroke exactly where you want it to end, preventing overstroking or overflowing.
  • the pen tip in the above embodiment has at least a writing section 25 with two selectable line widths, a holder 30 with a visible section 33, and an ink guide section 26 that guides the ink in the writing instrument body 10 to the writing section.
  • the visible section 33 By configuring the visible section 33 to have a minimum width (S) of 3.7 mm or more and a length (Y) of 7.4 mm or more (hereinafter, this configuration will be referred to as "Configuration 1"), or by configuring the ink guide section 26 to be provided on the near side during writing, that is, by configuring the ink guide section 26 to be positioned on the near side during writing (the side where the pen tip 20 forms an obtuse angle with respect to the ink guide section 26) when fixed to the holder 30 (hereinafter, this configuration will be referred to as "Configuration 2”), it is possible to achieve a high degree of both maximization of the effective area of the visible section 33 that allows the writing direction to be visually confirmed, ease of visibility, and ease of writing
  • the ink guide portion 26 provides a better view of the visible portion 33 regardless of the character in the direction of travel. If the ink guide portion 26 is placed at the back (upper side) rather than the front side when writing, or if it is U-shaped or C-shaped with two ink guide portions placed on either side of the writing portion, the mechanism of action of the visible portion 33 is different in that it crosses the character in the direction of travel and hides part of it when writing (marking). Even in this form, it is possible to maximize the effective area of the visible portion 33, while also achieving a high level of visibility and ease of writing, and the wider visible portion 33 makes the writing direction even clearer, further improving ease of writing.
  • the width t of the ink guide portion 26 By configuring the width t of the ink guide portion 26 to be 1.2 mm or less when viewed from the perpendicular plane of the visible portion 33 (hereinafter, this configuration will be referred to as "configuration 3"), the area of the visible portion can be further maximized, thereby enabling the effects of the present disclosure to be achieved to an even greater extent.
  • the cross section is formed from a fiber bundle core having a rectangular or elliptical shape
  • the writing portion 25 is formed from a sintered resin body
  • the ink guide portion 26 and the writing portion 25 are fixed to the holding body 30 and the ink guide portion 26 and the end portion of the writing portion 25 abut each other (hereinafter, this configuration will be referred to as "configuration 4"), whereby the ink guide portion 26 can efficiently flow (supply) ink to the writing portion 25 with a small cross-sectional area, resulting in a good writing feel and enabling the effects of the present disclosure to be achieved to an even higher degree.
  • this writing instrument A has a distribution of two or more pore sizes, with the first pore size being 50 to 300 ⁇ m and the second pore size being 50 to 90% of the first pore size, and due to the writing instrument inner batting 17 of the present disclosure, ink outflow is favorable, so that even when writing is performed with the pen tip 20 (or pen tip 40) moving at a high speed, the ink supply follows favorably, and a writing instrument is obtained that does not cause smearing of handwriting, etc.
  • the writing instrument of the present embodiment is not limited to the above-mentioned configurations, and can be further modified in various ways.
  • the writing implement may be provided with a fiber bundle core having no window, or may be loaded with oil-based ink.
  • a ballpoint pen tip may be provided instead of a marking pen tip.
  • each writing instrument is configured with the above configuration 1 or configuration 2, but each writing instrument may also be configured with a configuration that combines configurations 1 and 2, and a configuration that combines configuration 1 or 2 with the above configuration 3 and/or configuration 4.
  • the ink guide portion 26 is provided on one side of the visible portion 33; however, the effects of the present disclosure can also be achieved in the configuration of configuration 1 having two ink guide portions on the top and bottom surfaces of the visible portion 33 (even if the ink guide portions 26, 26 are U-shaped or C-shaped and have two ink guide portions 26, 26, which are either integral with or separate from the writing portion 25, on both sides of the writing portion 25, they may cross the characters in the direction of travel during writing (marking), but the visible portion 33 may have an unprecedentedly wide configuration, i.e., a configuration in which the minimum width (S) of the visible portion 33 is 3.7 mm or more and the length (Y) is 7.4 mm or more).
  • the methods of bonding the holding body 30 to the writing part 25 and the ink guiding part 26 include bonding by fitting them to the holding body 30, bonding by a hot melt adhesive, bonding by solvent penetration, bonding by ultrasonic welding, bonding by a reactive adhesive (moisture curing, UV curing, oxygen curing, two-component curing), bonding by a solvent-based adhesive (soluble synthetic resin, emulsion, rubber), bonding by tape, and bonding by double-sided tape.
  • a reactive adhesive moisture curing, UV curing, oxygen curing, two-component curing
  • a solvent-based adhesive soluble synthetic resin, emulsion, rubber
  • bonding by tape and bonding by double-sided tape.
  • the porosity of the writing portion 25 be within the following range.
  • the porosity is preferably 30 to 80%, and more preferably 40 to 70%.
  • the writing instrument A of the present disclosure is a twin-type writing instrument
  • the pen tip 40 may be omitted (the shaft body being a cylindrical shaft body with a bottom) to make it a single-type writing instrument equipped with the pen tip 20, and it may also be a writing instrument in which the pen tip 20 appears and retracts by a knock mechanism.
  • the cross section of the shaft of the writing implement body is formed into a circular shaft, but it may be triangular, rectangular, or other irregular shape, such as an elliptical shape.
  • the pen tip 20 may be made of at least a transparent material, and the main body part 31 side to be attached inside the writing implement body may be a two-color molded product made of a resin material other than a transparent material.
  • the ink water-based ink, oil-based ink, thermochromic ink
  • the ink may also be any liquid such as liquid cosmetics, liquid medicines, coating fluids, and correction fluids.
  • the filling A was filled into a polypropylene cylinder to produce two types of pore size distributions, which were the first porosity, the second porosity, and the porosity ratio.
  • the filling B was made by bundling 15,300 3 denier fibers manufactured by Toray Industries, Inc., and then subjecting the bundle to the following experiment using a polypropylene cylinder with a length of 80 mm and an inner diameter of 6 mm as a shaft tube. The polyester fibers were compressed and bundled to obtain a bundle, and the weight was measured so as to obtain a predetermined dense portion ratio. The bundle was filled into a polypropylene cylinder to produce filling B having one pore size distribution with a first porosity.
  • the presence or absence of pore size distribution was determined by image analysis of the cross section of the filling A, specifically, the cut surface of the filling A was observed, and the pore sizes (inscribed circle diameter distribution) were determined by image analysis.
  • the measurement method was to inject a curable resin (en-thiol resin-based optical evaluation adhesive: manufactured by Nichika Co., Ltd.) into the obtained padding A and B, and harden them. Next, they were cut perpendicular to the axis, the cross section was polished, and observed and photographed with an optical microscope (VHX-8000 manufactured by Keyence Co., Ltd.). The fiber part and the pore part (impregnated resin part) were separated by image analysis (material development comprehensive package software GeoDic manufactured by Math2Market Co., Ltd.). The maximum circle distribution inscribed in the pore part was obtained for both samples A and B, and the results shown in Figures 8 to 24 were obtained.
  • FIGS. 8 and 9 are drawings of optical microscope cross-section observations and binarized images of the filling of Production Examples 1 and 2 (samples A and B), and Figs. 10 and 11 are pore distribution diagrams (maximum circle inscribed in the pore portion) of Production Examples 1 and 2 (samples A and B).
  • the optical microscope cross-section observation diagram in Fig. 10 is displayed in black and white, but the original optical microscope cross-section is displayed in four colors: green, yellow, white, and red, and in Figs. 10, 11, and 15 to 20, "yellow” represents a circular gray, "white” represents a white dot, "red” represents a black dot, and "green” represents the entire area other than the above "yellow, white, and red”.
  • FIG. 12 is a graph of the pore size distribution (the largest circle inscribed in the pore portion) of Production Examples 1 and 2 (samples A and B)
  • FIG. 13 is a graph showing the relationship between the spatial distribution of pores (the distance from the circle center and the pore area frequency) of Production Examples 1 and 2 (samples A and B) and a drawing explaining the measurement method
  • FIG. 12 is a graph of the pore size distribution (the largest circle inscribed in the pore portion) of Production Examples 1 and 2 (samples A and B)
  • FIG. 13 is a graph showing the relationship between the spatial distribution of pores (the distance from the circle center and the pore area frequency) of Production Examples 1 and 2 (samples A and B) and a drawing explaining the measurement method
  • FIG. 14 is a graph showing the pore diameter and area frequency plotted with thresholds of 50 ⁇ m, 90 ⁇ m, and 100 ⁇ m in the pore distribution (the largest circle inscribed in the pore portion) of Production Examples 1 and 2 (samples A and B)
  • FIGS. 15 to 20 are drawings of the pore distribution (the largest circle inscribed in the pore portion) of Production Examples 1 and 2 (samples A and B) with thresholds of 100 ⁇ m, 90 ⁇ m, and 50 ⁇ m
  • FIG. 21 is a graph showing the relationship between the spatial distribution of pores (the distance from the circle center and the pore area frequency) of Production Examples 1 and 2 (samples A and B) and a drawing explaining the measurement method
  • FIG. 22 is each drawing showing the relationship between the distance from the circle center (pore diameter 0 to less than 90 ⁇ m, pore diameter 90 ⁇ m or more) and the pore diameter frequency for Production Examples 1 and 2 (samples A and B) and a drawing showing the measurement method;
  • FIG. 23 is each drawing showing the relationship between the distance from the circle center (pore diameter 0 to less than 50 ⁇ m, pore diameter 50 ⁇ m or more) and the pore diameter frequency for Production Examples 1 and 2 (samples A and B) and a drawing showing the measurement method;
  • FIG. 24 is each graph showing the relationship between the distance from the circle center and the pore diameter frequency for Production Examples 1 and 2 (samples A and B).
  • the frequency distribution is analyzed by dividing the inscribed circle into less than 90 ⁇ m and 90 ⁇ m or more, the frequency of pores smaller than 90 ⁇ m is higher (dense part) in the padding of Production Example 1 in the region with a radius of 0.5 mm from the center, and the frequency of pores larger than 90 ⁇ m is lower in Sample A of Production Example 1 in the region with a radius of 0.5 mm from the center. From the above analysis, it was found that the padding (sample A) of Production Example 1 has a distribution of pore diameters, while the padding (sample B) of Production Example 2 has no distribution of pore diameters.
  • Example 1 and Comparative Example 1 The padding (samples) A and B obtained in Production Examples 1 and 2, a writing instrument having the following configuration and a pen tip conforming to Figures 1 to 7, and a writing instrument ink having the following composition were used.
  • the padding A to B ( ⁇ 6 ⁇ 80 mm) obtained in Production Examples 1 and 2 above were used.
  • Outer cover PET film Writing instrument body 10, caps 50, 60: Made of polypropylene (PP)
  • Pen tip 40 Polyester fiber bundle core, porosity 60%, ⁇ 2 ⁇ 40 mm
  • Friction body 52 a styrene-based elastomer selected from the group consisting of styrene-ethylene-propylene-styrene (SEPS), styrene-ethylene-ethylene-propylene-styrene (SEEPS), and styrene-ethylene-butadiene-styrene (SEBS).
  • SEPS styrene-ethylene-propylene-styrene
  • SEEPS styrene-ethylene-ethylene-propylene-styrene
  • SEBS styrene-ethylene-butadiene-styrene
  • the inner batting A has a distribution of two or more types of pore diameters, so that ink can be reliably supplied to the pen tip 20, 40 and ink diffusibility can be improved.
  • the ink from the inner batting A is guided to the writing part 25 by an open type ink guide part 26 in a thin plate shape with flowability
  • the writing part 25 is composed of a resin sintered core
  • the ink guide part 26 is composed of a fiber bundle core, so that the capillary force is strong relative to the porosity, and the thickness can be made extremely thin, so that the ink flowability is good, and there is no need to design the ink guide part to be thick
  • the minimum width S of the visible part 33 is 3.7 mm or more, and the length Y is 7.4 mm or more, so that the effective area of the visible part 33 where the writing direction can be visually recognized, the ease of visibility, and the ease of writing can be highly simultaneously achieved.
  • the ink guide portion 26 is positioned on the front side when writing, even when a natural writing angle is used, the visibility of the visible portion 33 is improved regardless of the direction of the ink guide portion 26, and when a right-handed person writes from left to right, the user can draw a line with the writing portion 25 while visually checking the writing direction with the visible portion 33, and the ink outflow is also good, and it was confirmed that a writing instrument that can achieve significantly easier visibility and writing of the visible portion 33 without impairing the outflow of ink is obtained. It was also confirmed that writing can be done without smearing even after being dropped from a height of 1m onto a cedar board.
  • this writing instrument was set in an automatic writing device, and a straight line was written on high-quality paper at a writing angle of 65°, a writing load of 1N, and a speed of 7cm/s according to the test method compliant with JIS S6037.
  • the condition of the written line was then visually checked, and it was found that, because the above-mentioned preferred ink composition was used, the ink flow rate (10mg/m) of the pen tip 20 was good, and while the drying of the pen tip was suppressed, the ink had excellent drying properties and low-temperature stability, and the lines were free of bleeding or bleed-through.
  • the writing implement batting of this embodiment can be suitably used as batting for marking-type writing implements such as Underline (registered trademark) pens, oil-based markers, and water-based markers.
  • marking-type writing implements such as Underline (registered trademark) pens, oil-based markers, and water-based markers.

Abstract

Provided is a writing implement that can reliably supply ink to the tip of a pen and can improve ink diffusion properties. A writing implement A according to the present disclosure is characterized by comprising a cotton wadding 17 having two or more fine pore size distributions. The cotton wadding 17 is preferably such that a frequency of occurrence of less than 90 µm is high in a region having a radius of 0.5 mm from the center as determined through cross-sectional image analysis.

Description

筆記具Writing implements
 本明細書は、ペン先に対して確実にインクを供給でき、インク拡散性を高めることができる筆記具に関する。 This specification relates to a writing instrument that can reliably supply ink to the pen tip and improve ink diffusion.
 従来より、ペン先に対し確実にインクを供給させる目的で、インク拡散性を高めた筆記具用中綿、それを用いた筆記具などが知られている。
 例えば、繊維を有するコア構成要素と、繊維を有する周囲構成要素とを有するロッドを有するリザーバーであって、前記コア構成要素は第1の特性を有し、前記周囲構成要素は、前記第1の特性とは異なる第2の特性を有する、リザーバー、このリザーバーにおいて、前記第1の特性および前記第2の特性は、繊維嵩密度、繊維直径、繊維材料、繊維形態、繊維表面張力、毛細管力、流体吸収能力、色、およびこれらの組み合わせからなる群から独立して選択される、リザーバー、また、上記リザーバーにおいて、前記繊維嵩密度が約0.01g/cm~約0.4g/cmの範囲であること、前記繊維直径が、約0.5μm~約50μmの範囲であることなどの油性マーカー、ハイライトマーカーなどの筆記具に用いられる不均一繊維流体のリザーバー(例えば、特許文献1参照)が知られている。
2. Description of the Related Art Conventionally, there have been known writing implement batting having enhanced ink diffusibility for the purpose of reliably supplying ink to a pen tip, and writing implements using the same.
For example, a reservoir having a rod having a core component having fibers and a surrounding component having fibers, the core component having a first property and the surrounding component having a second property different from the first property, the first property and the second property being independently selected from the group consisting of fiber bulk density, fiber diameter, fiber material, fiber morphology, fiber surface tension, capillary force, fluid absorption capacity, color, and combinations thereof, and a reservoir for a non-uniform fiber fluid used in a writing instrument such as an oil-based marker or a highlighter, the fiber bulk density being in the range of about 0.01 g/cm 3 to about 0.4 g/cm 3 and the fiber diameter being in the range of about 0.5 μm to about 50 μm (see, for example, Patent Document 1).
 このリザーバーは、所謂筆記具用中綿に相当するものであって、中綿の繊維嵩密度等を「粗密中綿」とすることで、中綿内に供給されたインクが拡散でき、軸筒の両端部にある両ペン先に確実にインクを供給して筆記できるようにしたものである。この粗密中綿は、中綿の径方向中心部に繊維が密状態の部分と、円周部に繊維が疎状態の部分を有していることを特徴としており、粗密中綿にインクを充填すると、密状態の部分が優先的にインクを吸い上げ、中綿両端面に速やかにインクが供給されることにより中綿のインク拡散性が高められているものである。 This reservoir is equivalent to the so-called batting used in writing instruments, and by making the fiber bulk density of the batting "coarse/dense batting," the ink supplied into the batting can spread, allowing ink to be reliably supplied to both pen tips at both ends of the barrel for writing. This coarse/dense batting is characterized by having a dense fiber section in the radial center of the batting and a sparse fiber section around the circumference, and when ink is filled into the coarse/dense batting, the dense section preferentially absorbs the ink, and ink is quickly supplied to both ends of the batting, enhancing the ink diffusibility of the batting.
 更に、他の文献では、例えば、軸筒と、前記軸筒の内部に収容されるとともに長手方向に対し垂直な断面において軸心寄りに位置し気孔率が比較的低い密部及び前記密部の周囲に位置し気孔率が比較的高い疎部から成る中綿と、前記中綿に含浸されるとともに静的表面張力値が35mN/m以下である水性インクと、前記密部に接続し毛管力で前記水性インクを先端へ誘導する筆記先端と、を備えることを特徴とするマーキングペン(例えば、本出願人による特許文献2参照)が知られている。 Furthermore, in other documents, for example, a marking pen (see Patent Document 2 by the present applicant) is known that is characterized by having a barrel, a batting housed inside the barrel and located toward the axis in a cross section perpendicular to the longitudinal direction, the batting being made up of a dense portion with a relatively low porosity and a sparse portion located around the dense portion and having a relatively high porosity, an aqueous ink impregnated into the batting and having a static surface tension value of 35 mN/m or less, and a writing tip that is connected to the dense portion and guides the aqueous ink to the tip by capillary force.
 しかしながら、上記特許文献1、2は、従来にない筆記具用中綿、それを用いた筆記具であるが、上記特許文献1では未だペン先に対し効率良くインクを供給させることができない場合などがあり、また、上記特許文献1、2に対してはインク拡散性を更に高めることが求められているのが現状である。 However, although the above-mentioned Patent Documents 1 and 2 describe a new writing instrument padding and a writing instrument using the same, there are still cases where Patent Document 1 does not allow ink to be efficiently supplied to the pen tip, and there is currently a demand for Patent Documents 1 and 2 to have even better ink diffusibility.
特表2022-501226号公報(特許請求の範囲、図1等)JP 2022-501226 A (claims, FIG. 1, etc.) 特開2021-66043号公報(特許請求の範囲、図7等)JP 2021-66043 A (Claims, FIG. 7, etc.)
 本開示は、上記従来技術の課題や現状などに鑑み、これを解消しようとするものであり、ペン先に対し更に効率良くインクを供給させることができ、インク拡散性を更に高めることができる筆記具を提供することを目的とする。 The present disclosure seeks to address the issues and current state of the prior art described above, and aims to provide a writing instrument that can more efficiently supply ink to the pen tip and further improve ink diffusibility.
 本開示者は、上記従来の課題等を解決するために鋭意検討した結果、繊維束から構成される中綿を特定の構成とすることにより、上記目的の筆記具が得られることを見出し、本開示を完成するに至ったのである。 As a result of extensive research into solving the above-mentioned problems, the present inventor discovered that a writing instrument that satisfies the above-mentioned objectives can be obtained by giving the filling made of fiber bundles a specific configuration, which led to the completion of this disclosure.
 すなわち、本開示の筆記具は、細孔径分布が2種以上の分布を持つ中綿を有することを特徴とする。
 前記中綿は、断面画像解析により90μm未満の頻度が、中心から半径が0.5mmの領域で高いことが好ましい。
 前記中綿に吸蔵するインク組成物は、染料を含む樹脂微粒子顔料を含有するインク組成物であることが好ましい。
That is, the writing instrument of the present disclosure is characterized by having a filling having two or more types of pore size distribution.
It is preferable that the frequency of particles smaller than 90 μm is high in a region having a radius of 0.5 mm from the center of the padding, as determined by cross-sectional image analysis.
The ink composition stored in the filling material is preferably an ink composition containing a resin fine particle pigment including a dye.
 本開示によれば、ペン先に対し更に効率良くインクを供給させることができ、インク拡散性を更に高めることができる筆記具が提供される。
 本開示の目的及び効果は、特に請求項において指摘される構成要素及び組み合わせを用いることによって認識され且つ得られるものである。上述の一般的な説明及び後述の詳細な説明の両方は、例示的及び説明的なものであり、特許請求の範囲に記載されている本開示を制限するものではない。
According to the present disclosure, a writing instrument is provided that can more efficiently supply ink to the pen tip and further improve ink diffusibility.
The objects and advantages of the disclosure will be realized and obtained by means of the elements and combinations particularly pointed out in the claims. Both the foregoing general description and the following detailed description are exemplary and explanatory and are not restrictive of the disclosure as claimed.
本開示の実施形態の一例を示す筆記具の図面であり、(a)は正面図、(b)は平面図、(c)は正面視の縦断面図、(d)は(b)の縦断面図である。1A and 1B are drawings of a writing instrument showing an example of an embodiment of the present disclosure, in which (a) is a front view, (b) is a plan view, (c) is a vertical cross-sectional view as seen from the front, and (d) is a vertical cross-sectional view of (b). 図1の筆記具からキャップを取り外した状態を示す図面であり、(a)は平面図、(b)は正面図、(c)は底面図、(d)は(b)の縦断面図、(e)は(c)の縦断面図である。2A to 2E are drawings showing the writing instrument of FIG. 1 with the cap removed, where (a) is a plan view, (b) is a front view, (c) is a bottom view, (d) is a vertical cross-sectional view of (b), and (e) is a vertical cross-sectional view of (c). 図1の筆記具におけるペン先側を示す部分拡大図面であり、(a)は正面図、(b)はその縦断面図である。2A and 2B are enlarged views showing the pen tip side of the writing instrument of FIG. 1, in which FIG. 2A is a front view and FIG. 2B is a longitudinal sectional view thereof. (a)は図3の筆記具のペン先を前方側から見た斜視図、(b)はそのペン先を後方側から見た斜視図である。4A is a perspective view of the pen tip of the writing implement of FIG. 3 as seen from the front side, and FIG. 4B is a perspective view of the pen tip as seen from the rear side. (a)は本開示の筆記具用中綿の一例を示す正面図、(b)は(a)の中綿のX―X線断面図であり、細孔径分布が2種以上の分布を持つ状態の模式図である。FIG. 1A is a front view showing an example of a filling for a writing instrument according to the present disclosure, and FIG. 1B is an X-X line cross-sectional view of the filling in (a), showing a schematic diagram of a state in which the pore size distribution has two or more types. 筆記具に用いるペン先の可視部を有する保持体の一例を示す各図面であり、(a)は前方側から見た斜視図、(b)は平面図、(c)は後方側から見た斜視図、(d)は左側面図、(e)は正面図、(f)は右側面図、(g)は前方側の上方から見た斜視図、(h)縦断面図、(i)は後方側の上方から見た斜視図、(j)は底面図である。1A and 1B are drawings showing an example of a holder having a visible portion of a pen tip used in a writing instrument, in which (a) is an oblique view seen from the front side, (b) is a plan view, (c) is an oblique view seen from the rear side, (d) is a left side view, (e) is a front view, (f) is a right side view, (g) is an oblique view seen from above the front side, (h) is a vertical cross-sectional view, (i) is an oblique view seen from above the rear side, and (j) is a bottom view. 図6のペン先に取り付けられる筆記部の一例を示す各図面であり、(a)は平面図、(b)は斜視図、(c)は正面図、(d)は右側面図である。7A to 7D are diagrams showing an example of a writing part attached to the pen tip of Figure 6, where (a) is a plan view, (b) is a perspective view, (c) is a front view, and (d) is a right side view. (a)及び(b)は、製造例1(サンプルA)の画像解析図形の光学顕微鏡断面観察と2値化像(画像の分解能は、約1.27μm/pixelである。)の各図面である。1A and 1B are drawings of an optical microscope cross-sectional observation of an image analysis pattern of Production Example 1 (Sample A) and a binarized image (image resolution is about 1.27 μm/pixel), respectively. (a)及び(b)は、製造例2(サンプルB)の画像解析図形の光学顕微鏡断面観察と2値化像(画像の分解能は、約1.28μm/pixelである。)の各図面である。1A and 1B are drawings of an optical microscope cross-sectional observation of an image analysis pattern of Production Example 2 (sample B) and a binarized image (image resolution is about 1.28 μm/pixel), respectively. 製造例1(サンプルA)の空孔分布図(空孔部分の内接する最大円)であり、空孔分布図中、多数ある円形状の灰色(黄色)は空孔直径90μm以上、白い点(白色)は空孔、黒い点(赤色)はファイバーであり、この円形状の灰色、白い点、黒い点以外の全体領域となる濃灰色(緑色)は空孔直径90μm未満であり、濃灰色(緑色)と円形状の灰色(黄色)が全体でほぼ一様の空孔分布図である。1 is a pore distribution diagram (the largest circle inscribed in the pore portion) of Production Example 1 (Sample A). In the pore distribution diagram, the numerous circular gray (yellow) circles represent pores with diameters of 90 μm or more, the white dots represent pores, and the black dots represent fibers. The dark gray (green) region that is the entire area other than the circular gray, white dots, and black dots represents pores with diameters of less than 90 μm, and the dark gray (green) and circular gray (yellow) circles represent an almost uniform pore distribution diagram overall. 製造例2(サンプルB)の空孔分布図(空孔部分の内接する最大円)であり、空孔分布図中、多数ある円形状の灰色(黄色)は空孔直径90μm以上、白い点(白色)は空孔、黒い点(赤色)はファイバーであり、この円形状の灰色、白い点、黒い点以外の全体領域が濃灰色(緑色)であり、中心部分に濃灰色(緑色)が多く、中心部分に円形状の灰色(黄色)が少ない空孔分布図である。FIG. 13 is a pore distribution diagram (the largest circle inscribed in the pore portion) of Production Example 2 (Sample B). In the pore distribution diagram, the numerous gray (yellow) circles represent pores with diameters of 90 μm or more, the white dots represent pores, and the black dots represent fibers. The entire area other than the circular gray, white dots, and black dots is dark gray (green), with more dark gray (green) in the central portion and fewer circular gray (yellow) in the central portion. 製造例1、2(サンプルA、B)の空孔径分布(空孔部分の内接する最大の円分布)のグラフ〔横軸:空孔直径(μm)、縦軸:面積頻度(移動平均値:%)〕であり、面積頻度は、各データ点に対し移動平均値を用いており、測定領域は、図13(c)に示す半円部である。13(c) is a graph showing the pore size distribution (the distribution of the largest circle inscribed in the pore portion) of Production Examples 1 and 2 (Samples A and B) [horizontal axis: pore diameter (μm), vertical axis: areal frequency (moving average value: %)], where the areal frequency is calculated using the moving average value for each data point, and the measurement area is the semicircular portion shown in FIG. 13(c). (a)~(c)は、製造例1、2(サンプルA、B)の空孔の空間分布(円中心からの距離と空孔面積頻度)の関係を示す各グラフと計測法を説明する各図面であり、(a)は空孔直径90μm未満におけるグラフ〔横軸:中心からの半径(μm)、縦軸:面積頻度(移動平均値)〕であり、(b)は空孔直径90μm以上におけるグラフ〔横軸:中心からの半径(μm)、縦軸:面積頻度(移動平均値)〕であり、(c)は中心からの半径と面積頻度の計測法を説明する説明図であり、任意の中心からの半径で計測(黄色矢印の半径に対して黄色実線上を計測)であり、面積頻度は、各データ点に対し移動平均値を用いている。Graphs showing the relationship between the spatial distribution of pores (distance from the center of a circle and pore area frequency) in Production Examples 1 and 2 (Samples A and B) and drawings explaining the measurement method, in which (a) is a graph for pore diameters of less than 90 μm (horizontal axis: radius from the center (μm), vertical axis: area frequency (moving average value)), (b) is a graph for pore diameters of 90 μm or more (horizontal axis: radius from the center (μm), vertical axis: area frequency (moving average value)), and (c) is an explanatory diagram explaining the measurement method of the radius from the center and the area frequency, in which measurements are taken at an arbitrary radius from the center (measurements are taken on the yellow solid line for the radius of the yellow arrow), and the area frequency is calculated using the moving average value for each data point. 製造例1、2(サンプルA、B)の空孔分布(空孔部分に内接する最大の円分布)における閾値を50μm、90μm、100μmとし作図を実施した空孔直径と面積頻度を示すグラフである。1 is a graph showing the pore diameter and area frequency plotted with threshold values of 50 μm, 90 μm, and 100 μm in the pore distribution (the maximum circular distribution inscribed in the pore portion) of Production Examples 1 and 2 (Samples A and B). 製造例1(サンプルA)の閾値100μmの空孔分布(空孔部分に内接する最大の円)の図面であり、空孔分布図中、濃灰色(緑色)は直径0~100μm未満の空孔、円形状の灰色(黄色)は直径100μm以上の空孔、白い点(白色)は空孔、黒い点(赤色)はファイバーであり、濃灰色(緑色)と円形状の灰色(黄色)が全体でほぼ一様の空孔分布図である。FIG. 1 is a diagram of the pore distribution (the largest circle inscribed in the pore portion) at a threshold value of 100 μm for Production Example 1 (Sample A). In the pore distribution diagram, dark gray (green) represents pores with a diameter of 0 to less than 100 μm, circular gray (yellow) represents pores with a diameter of 100 μm or more, white dots represent pores, and black dots (red) represent fibers. The dark gray (green) and circular gray (yellow) represent an almost uniform pore distribution diagram overall. 製造例1(サンプルA)の閾値90μmの空孔分布(空孔部分に内接する最大の円)の図面であり、空孔分布図中、濃灰色(緑色)は直径0~90μm未満の空孔、円形状の灰色(黄色)は直径90μm以上の空孔、白い点(白色)は空孔、黒い点(赤色)はファイバーであり、濃灰色(緑色)と円形状の灰色(黄色)が全体でほぼ一様の空孔分布図である。FIG. 1 is a diagram of the pore distribution (the largest circle inscribed in the pore portion) at a threshold value of 90 μm for Production Example 1 (Sample A). In the pore distribution diagram, dark gray (green) represents pores with a diameter of 0 to less than 90 μm, circular gray (yellow) represents pores with a diameter of 90 μm or more, white dots represent pores, and black dots (red) represent fibers. The dark gray (green) and circular gray (yellow) represent an almost uniform pore distribution diagram overall. 製造例1(サンプルA)の閾値50μmの空孔分布(空孔部分に内接する最大の円)の図面であり、空孔分布図中、濃灰色(緑色)は直径0~50μm未満の空孔、円形状の灰色(黄色)は直径50μm以上の空孔、白い点(白色)は空孔、黒い点(赤色)はファイバーであり、濃灰色(緑色)と円形状の灰色(黄色)が全体でほぼ一様の空孔分布図である。FIG. 1 is a diagram of the pore distribution (the largest circle inscribed in the pore portion) at a threshold value of 50 μm for Production Example 1 (Sample A). In the pore distribution diagram, dark gray (green) represents pores with a diameter of 0 to less than 50 μm, circular gray (yellow) represents pores with a diameter of 50 μm or more, white dots represent pores, and black dots (red) represent fibers. The dark gray (green) and circular gray (yellow) represent an almost uniform pore distribution diagram overall. 製造例2(サンプルB)の閾値100μmの空孔分布(空孔部分に内接する最大の円)の図面であり、空孔分布図中、濃灰色(緑色)は直径0~100μm未満の空孔、円形状の灰色(黄色)は直径100μm以上の空孔、白い点(白色)は空孔、黒い点(赤色)はファイバーであり、中心部分に濃灰色(緑色)が多く、中心部分に円形状の灰色(黄色)が少ない空孔分布図である。FIG. 1 is a drawing of the pore distribution (the largest circle inscribed in the pore portion) at a threshold value of 100 μm for Production Example 2 (Sample B). In the pore distribution diagram, dark gray (green) represents pores with a diameter of 0 to less than 100 μm, circular gray (yellow) represents pores with a diameter of 100 μm or more, white dots represent pores, and black dots (red) represent fibers. This is a pore distribution diagram with more dark gray (green) in the center and fewer circular gray (yellow) in the center. 製造例2(サンプルB)の閾値90μmの空孔分布(空孔部分に内接する最大の円)の図面であり、空孔分布図中、濃灰色(緑色)は直径0~90μm未満の空孔、円形状の灰色(黄色)は直径90μm以上の空孔、白い点(白色)は空孔、黒い点(赤色)はファイバーであり、中心部分に濃灰色(緑色)が多く、中心部分に円形状の灰色(黄色)が少ない空孔分布図である。FIG. 1 is a drawing of the pore distribution (the largest circle inscribed in the pore portion) at a threshold value of 90 μm for Production Example 2 (Sample B). In the pore distribution diagram, dark gray (green) represents pores with a diameter of 0 to less than 90 μm, circular gray (yellow) represents pores with a diameter of 90 μm or more, white dots represent pores, and black dots (red) represent fibers. This is a pore distribution diagram with more dark gray (green) in the center and fewer circular gray (yellow) in the center. 製造例2(サンプルB)の閾値50μmの空孔分布(空孔部分に内接する最大の円)の図面であり、空孔分布図中、濃灰色(緑色)は直径0~50μm未満の空孔、円形状の灰色(黄色)は直径50μm以上の空孔、白い点(白色)は空孔、黒い点(赤色)はファイバーであり、中心部分に濃灰色(緑色)が多く、中心部分に円形状の灰色(黄色)が少ない空孔分布図である。FIG. 1 is a drawing of the pore distribution (the largest circle inscribed in the pore portion) at a threshold value of 50 μm for Production Example 2 (Sample B). In the pore distribution diagram, dark gray (green) represents pores with a diameter of 0 to less than 50 μm, circular gray (yellow) represents pores with a diameter of 50 μm or more, white dots represent pores, and black dots (red) represent fibers. This is a pore distribution diagram with more dark gray (green) in the center and fewer circular gray (yellow) in the center. (a)~(c)は、製造例1、2(サンプルA、B)の円中心からの距離(空孔直径0~100μm未満、空孔直径100μm以上)と空孔直径頻度の関係を示す各図面と計測法を示す図面であり、(a)は空孔直径0~100μm未満におけるグラフ〔横軸:中心からの半径(μm)、縦軸:頻度〕であり、(b)は空孔直径100μm以上におけるグラフ〔横軸:中心からの半径(μm)、縦軸:頻度〕であり、(c)は中心からの半径と個数頻度の計測法を説明する説明図である。1A to 1C are drawings showing the relationship between the distance from the circle center (pore diameter 0 to less than 100 μm, pore diameter 100 μm or more) and the pore diameter frequency for Production Examples 1 and 2 (samples A and B), and drawings showing the measurement method, in which (a) is a graph for pore diameters of 0 to less than 100 μm (horizontal axis: radius from the center (μm), vertical axis: frequency), (b) is a graph for pore diameters of 100 μm or more (horizontal axis: radius from the center (μm), vertical axis: frequency), and (c) is an explanatory diagram explaining the measurement method for the radius from the center and the number frequency. (a)~(c)は、製造例1、2(サンプルA、B)の円中心からの距離(空孔直径0~90μm未満、空孔直径90μm以上)と空孔直径頻度の関係を示す各図面と計測法を示す図面であり、(a)は空孔直径0~90μm未満におけるグラフ〔横軸:中心からの半径(μm)、縦軸:頻度〕であり、(b)は空孔直径90μm以上におけるグラフ〔横軸:中心からの半径(μm)、縦軸:頻度〕であり、(c)は中心からの半径と個数頻度の計測法を説明する説明図である。1A to 1C are drawings showing the relationship between the distance from the circle center (pore diameter 0 to less than 90 μm, pore diameter 90 μm or more) and the pore diameter frequency for Production Examples 1 and 2 (samples A and B), and drawings showing the measurement method, in which (a) is a graph for pore diameters of 0 to less than 90 μm (horizontal axis: radius from the center (μm), vertical axis: frequency), (b) is a graph for pore diameters of 90 μm or more (horizontal axis: radius from the center (μm), vertical axis: frequency), and (c) is an explanatory diagram explaining the measurement method for the radius from the center and the number frequency. (a)~(c)は、製造例1、2(サンプルA、B)の円中心からの距離(空孔直径0~50μm未満、空孔直径50μm以上)と空孔直径頻度の関係を示す各図面と計測法を示す図面であり、(a)は空孔直径0~50μm未満におけるグラフ〔横軸:中心からの半径(μm)、縦軸:頻度〕であり、(b)は空孔直径50μm以上におけるグラフ〔横軸:中心からの半径(μm)、縦軸:頻度〕であり、(c)は中心からの半径と個数頻度の計測法を説明する説明図である。1A to 1C are drawings showing the relationship between the distance from the circle center (pore diameter 0 to less than 50 μm, pore diameter 50 μm or more) and the pore diameter frequency for Production Examples 1 and 2 (samples A and B), and drawings showing the measurement method, in which (a) is a graph for pore diameters of 0 to less than 50 μm [horizontal axis: radius from the center (μm), vertical axis: frequency], (b) is a graph for pore diameters of 50 μm or more [horizontal axis: radius from the center (μm), vertical axis: frequency], and (c) is an explanatory diagram explaining the measurement method for the radius from the center and the number frequency. (a)~(d)は、製造例1、2(サンプルA、B)の円中心からの距離と空孔直径頻度の関係を示す各グラフであり、(a)は製造例1(サンプルA)の空孔直径(50μm、90μm、100μm)閾値未満のグラフ〔横軸:中心からの半径(μm)、縦軸:頻度〕であり、(b)は製造例1(サンプルA)の空孔直径(50μm、90μm、100μm)閾値以上のグラフ〔横軸:中心からの半径(μm)、縦軸:頻度〕であり、(c)は製造例2(サンプルB)の空孔直径(50μm、90μm、100μm)閾値未満のグラフ〔横軸:中心からの半径(μm)、縦軸:頻度〕であり、(d)は製造例2(サンプルB)の空孔直径(50μm、90μm、100μm)閾値以上のグラフ〔横軸:中心からの半径(μm)、縦軸:頻度〕である。Graphs (a) to (d) show the relationship between the distance from the circle center and the pore diameter frequency for Production Examples 1 and 2 (samples A and B). Graph (a) shows the pore diameters (50 μm, 90 μm, 100 μm) of Production Example 1 (sample A) below the threshold [horizontal axis: radius from the center (μm), vertical axis: frequency]. Graph (b) shows the pore diameters (50 μm, 90 μm, 100 μm) of Production Example 1 (sample A) above the threshold [horizontal axis: radius from the center (μm), vertical axis: frequency]. Graph (c) shows the pore diameters (50 μm, 90 μm, 100 μm) of Production Example 2 (sample B) below the threshold [horizontal axis: radius from the center (μm), vertical axis: frequency]. Graph (d) shows the pore diameters (50 μm, 90 μm, 100 μm) of Production Example 2 (sample B) above the threshold [horizontal axis: radius from the center (μm), vertical axis: frequency].
 以下に、本開示の実施形態について図面を参照しながら詳しく説明する。但し、本開示の技術的範囲は下記で詳述する実施の形態に限定されず、特許請求の範囲に記載された発明とその均等物に及ぶ点に留意されたい。
 なお、各図において、筆記具A及びその構成部品についての「前方」とは、筆記具Aの先端の方向を示し、「後方」とはその反対側の方向を示し、「軸方向」とは、筆記具本体(軸筒)の前方から後方までを貫く軸の方向を示し、「横断方向」とは、軸方向に直交する方向を示すものとする。また、各図面間で共通して付されている符号は、特に各図面の説明において言及がなくとも、同じ構成又は部材を表している。
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. However, it should be noted that the technical scope of the present disclosure is not limited to the embodiments described in detail below, but covers the inventions described in the claims and their equivalents.
In each drawing, the "front" of the writing instrument A and its components indicates the direction of the tip of the writing instrument A, the "rear" indicates the opposite direction, the "axial direction" indicates the direction of the axis that passes through the writing instrument body (barrel) from the front to the rear, and the "transverse direction" indicates the direction perpendicular to the axial direction. Also, the reference numerals commonly used in each drawing represent the same configuration or members even if not specifically mentioned in the description of each drawing.
(第1の実施の形態:全体構成)
 図1~図7は、本開示の第1の実施形態のマーキングペンタイプの筆記具Aと、その筆記具に用いる構成部品となる細孔径分布が2種以上の分布を持つ中綿17、並びに、ペン先20、筆記部25の一例などを説明する各図面である。
 本実施形態の筆記具Aは、図1(a)~(d)に示すように、筆記具本体(軸筒)10から供給されるインクを誘導し、かつ筆記方向を視認することができる可視部を有するペン先20を備えると共に、このペン先20の反対側にも棒状のポリアセタール製のペン先40を備えたツインタイプの筆記具となっている。また、筆記具本体10の両側には、着脱自在となるペン先20を保護するキャップ50と、ペン先40を保護するキャップ60とが取り付けられている。キャップ50には、クリップ部51、摩擦体53、通気孔54を有している。
(First embodiment: overall configuration)
1 to 7 are drawings illustrating a marking pen-type writing instrument A according to a first embodiment of the present disclosure, a filling 17 having two or more types of pore size distribution that is a component used in the writing instrument, a pen tip 20, and an example of a writing part 25.
1(a) to 1(d), the writing instrument A of this embodiment is a twin-type writing instrument that includes a pen tip 20 having a visible portion that guides ink supplied from a writing instrument body (barrel) 10 and allows the writing direction to be visually confirmed, and also includes a rod-shaped polyacetal pen tip 40 on the opposite side of the pen tip 20. In addition, a cap 50 that protects the pen tip 20 and that is detachable, and a cap 60 that protects the pen tip 40 are attached to both sides of the writing instrument body 10. The cap 50 has a clip portion 51, a friction body 53, and an air hole 54.
(筆記具本体10、後軸11)
 本実施形態の筆記具本体10は、図1~図4に示すように、後軸11と先軸16とにより構成されている。後軸11は、筒状体から構成され、筆記具用インクを含浸した中綿17を収容するものであり、図面上、右側となる一端側は細字タイプの棒状のペン先40を保持する保持具45を嵌合により固着するための嵌合部12を有する縮径状の保持部13となっており、この保持部13の大径の外周部13aにはキャップ60を着脱自在に取り付ける構成となっている。
 また、後軸11の左側となる他端の開口部には、筆記方向を視認することができる可視部を有するペン先20を固着する先軸16が嵌合などにより固着される構成となっている。更に、後軸11の軸方向前方側の外周の上下面には、平面部14、14が形成されており、後述するように、この平面部14、14を指に把持した場合に、持ち替えることなく直ぐに筆記(マーキング)できる構成、すなわち、扁平形状のペン先20の向きを判りやすくするための把持用指示面となっている。
(Writing instrument body 10, rear barrel 11)
As shown in Figures 1 to 4, the writing instrument body 10 of this embodiment is composed of a rear barrel 11 and a front barrel 16. The rear barrel 11 is composed of a cylindrical body and contains a padding 17 impregnated with writing instrument ink, and one end side, which is the right side in the drawings, is a reduced-diameter holding portion 13 having a fitting portion 12 for fixing a holder 45 that holds a rod-shaped fine-point pen tip 40 by fitting, and a cap 60 is removably attached to the large-diameter outer periphery 13a of this holding portion 13.
A front barrel 16 for fixing a pen tip 20 having a visible portion that allows the writing direction to be visually confirmed is fixed by fitting or the like to an opening at the other end, which is the left side of the rear barrel 11. Furthermore, flat portions 14, 14 are formed on the upper and lower surfaces of the outer periphery on the axial front side of the rear barrel 11, and as described below, when these flat portions 14, 14 are held with the fingers, writing (marking) can be performed immediately without changing the grip, that is, they serve as a gripping indication surface that makes it easy to understand the direction of the flat-shaped pen tip 20.
(先軸16)
 先軸16は、図1~図4に示すように、略円形状の筒状体から構成されており、少なくとも、中央部後部よりに鍔部16aと、該鍔部16aの後方側に嵌合段部を有する後部16bと、前方側に嵌合段部を有する前部16cと、該前部16cの先端側には傾斜状開口部16dと、該傾斜状開口部16d内には、インク誘導部26を吸蔵体となる中綿17の中央部へ確実に向けるための突起(図示せず)と、保持体30の後端部を当接するための環状当接部(図示せず)などを備えている。なお、図示符号16a1は、後軸11との位置合わせのために、鍔部16a後端面に僅かに後軸11の平面14に対応した傾斜面部である。
 この先軸16と前記後軸11とにより構成される筆記具本体10は、それぞれ熱可塑性樹脂、熱硬化性樹脂等で形成されるものであり、例えば、ポリプロピレン等からなる樹脂を使用して上記構成に成形され、筆記具本体(軸体)として機能する。筆記具本体10は不透明又は透明(及び半透明)に成形されるが、外観上や実用上の観点からいずれを採用しても良い。
(Front shaft 16)
1 to 4, front barrel 16 is configured as a generally circular tubular body and is provided with at least flange 16a near the rear of the center, rear portion 16b having a fitting step on the rear side of flange 16a, front portion 16c having a fitting step on the front side, and an inclined opening 16d on the tip side of front portion 16c, and within inclined opening 16d, a protrusion (not shown) for reliably directing ink guide portion 26 to the center of padding 17 which serves as an occlusion body, and an annular abutment portion (not shown) for abutting the rear end portion of holder 30. Note that reference numeral 16a1 in the figure denotes an inclined surface portion that corresponds slightly to flat surface 14 of rear barrel 11 on the rear end surface of flange 16a for the purpose of alignment with rear barrel 11.
The writing instrument body 10, which is composed of the front barrel 16 and the rear barrel 11, is formed from a thermoplastic resin, a thermosetting resin, or the like, and is molded into the above-mentioned configuration using a resin such as polypropylene, and functions as the writing instrument body (shaft body). The writing instrument body 10 is molded to be opaque or transparent (and translucent), but either may be adopted from the viewpoint of appearance and practicality.
(中綿17)
 中綿17は、インク吸蔵体となるものであり、水性インク、油性インク、熱変色性インクなどの筆記具用インク組成物を含浸するものであり、本開示では、細孔径分布が2種以上の分布を持つ中綿から構成されている。
 図5(a)は、中綿17の一例を示す正面図、(b)は(a)の中綿17を縦断面態様で示すものであり、細孔径分布が2種以上の分布を持つ状態の模式図である。
 この中綿17は、細孔径分布が2種以上の分布を持つ中綿であり、外周側に樹脂フィルムから構成される外皮17aを有し、17bが第一の細孔径部分であり、第一の細孔径部分17bの外周側が第二の細孔径部分17cである。
 この中綿17が2種以上の細孔径分布の有無の検証は、例えば、(1)水銀ポロシメーターによる細孔分布が異なっている、(2)断面の画像解析による内接円直径の分布が異なっている、(3)断面の画像解析による細孔の等価直径の分布が異なっている、ことなどにより検証等することができる。
(Padding 17)
The padding 17 serves as an ink storage body and is impregnated with an ink composition for a writing instrument, such as a water-based ink, an oil-based ink, or a thermochromic ink. In the present disclosure, the padding is composed of padding having two or more types of pore size distribution.
FIG. 5(a) is a front view showing an example of the filling 17, and (b) is a longitudinal cross-sectional view of the filling 17 in (a), which is a schematic diagram showing a state in which the pore size distribution has two or more types.
This filling 17 is a filling having two or more types of pore size distribution, and has an outer skin 17a made of a resin film on the outer circumferential side, 17b being a first pore size portion, and the outer circumferential side of the first pore size portion 17b being a second pore size portion 17c.
Whether or not the filling 17 has two or more types of pore size distribution can be verified, for example, by (1) different pore distributions measured by a mercury porosimeter, (2) different distributions of inscribed circle diameters measured by cross-sectional image analysis, or (3) different distributions of equivalent pore diameters measured by cross-sectional image analysis.
 水銀ポロシメーターによる測定は、中綿内の細孔を水銀ポロシメーターで測定し、その分布の違いを求めることにより確認等することができる。
 細孔径分布のない通常の中綿は、細孔分布がほぼ1ピークであるのに対し、2種以上の細孔径分布を有する中綿は、2ピーク、すなわち、細孔分布が2ピークあるとみなせる。この細孔分布が2ピークであるとは、中綿内の細孔で、細かい部分と粗い部分があるということである。あくまで細孔の状態の分布を表しているのであって、従来における中綿に、疎、密があるものとは異なる。従来の疎および密の状態とは、細孔と繊維との容積比(断面の面積比でも同じこと)の違いを表している。
 一方、中綿とインクで発生する毛細管力とは、細孔の細かさ、粗さによって決まっている。インク拡散性を高めるためには、中綿内に毛細管力が低い部分と高い部分を設ける必要があり、それは(粗密ではなく、本質的には)細孔の粗さ、細かさによって得られる。
The measurement using a mercury porosimeter can be confirmed by measuring the pores in the filling with a mercury porosimeter and determining the difference in their distribution.
Normal batting with no pore size distribution has a pore distribution with approximately one peak, whereas batting with two or more pore size distributions has two peaks, i.e., the pore distribution can be considered to have two peaks. This pore distribution with two peaks means that the pores in the batting have fine and coarse parts. It only represents the distribution of the pore state, and is different from conventional batting that has sparse and dense states. The conventional sparse and dense states represent the difference in the volume ratio of pores to fibers (the same applies to the cross-sectional area ratio).
On the other hand, the capillary force generated between the filling and the ink is determined by the fineness and coarseness of the pores. In order to increase the ink diffusion, it is necessary to create areas with low and high capillary forces within the filling, which is achieved (not by density, but essentially) by the coarseness and fineness of the pores.
 水銀ポロシメーターによる測定で、中綿に細孔径分布の有無は、下記細孔分布のピーク数を算出することにより測定することができる。
 細孔分布のピーク数は、水銀ポロシメーターでは、中綿内に水銀を押圧することで含浸させ、その圧力と含浸体積から、細孔の等価直径の分布を求める。得られた、細孔の等価直径とその頻度のグラフを、ピーク分離する。ピーク分離は一般的な方法であるが、本検討においては、「日本エネルギー学会」によるピーク分離を用いた。
 上記解析により、中綿の細孔径分布をピーク分離する。分離したピーク位置は対数表示にしているので、元の値に戻す。この結果から、ピーク間の距離を求め、成分ピークの半値幅の半分を求め、その和を求める。ピーク幅の半分の和よりもピーク間距離が小さいので、2つのピークは分離して観測できない場合は、細孔分布がないものとなる。
 これに対して、2種以上の細孔径分布を有する中綿も、上記と同様に細孔分布のピーク数を算出することにより、すなわち、ピーク分離の結果を用いて、成分ピーク間の距離と各線幅の関係から、中綿では2ピーク存在すること、すなわち、細孔径分布が2つ有することが確認することができる。
In the measurement using a mercury porosimeter, the presence or absence of a pore size distribution in the filling can be measured by calculating the number of peaks in the pore distribution described below.
In the mercury porosimeter, the number of peaks in the pore distribution is determined by pressing mercury into the padding to impregnate it, and the distribution of the equivalent diameter of the pores is calculated from the pressure and the impregnated volume. The resulting graph of the equivalent diameter of the pores and their frequency is then peak-separated. Peak separation is a common method, but in this study, the peak separation method proposed by the Japan Society of Energy was used.
The above analysis separates the peaks of the pore size distribution of the filling. The separated peak positions are displayed logarithmically, so they are returned to the original values. From this result, the distance between the peaks is calculated, half the half-width of the component peaks is calculated, and the sum of these is calculated. If the distance between the peaks is smaller than the sum of half the peak widths, and the two peaks cannot be observed separately, there is no pore distribution.
In contrast, for fillings having two or more types of pore size distributions, the number of peaks in the pore distribution can be calculated in the same manner as described above, i.e., using the results of peak separation, it can be confirmed from the relationship between the distance between the component peaks and each line width that the filling has two peaks, i.e., that it has two pore size distributions.
 また、断面の画像解析による内接円直径の分布を測定することにより、中綿に細孔径分布の有無を測定することができる。
 中綿の断面を画像解析により、細孔径分布の有無、具体的には、中綿の切断面を観察し、その画像分析より細孔径(内接円の直径分布)を求めることができる。
 測定方法は、得られた中綿に硬化性樹脂(エン・チオール系樹脂系光硬化接着剤:ニチカ社製)を注入し、硬化させた。次に、軸垂直方向に切断し、その断面を研磨し、光学顕微鏡(キーエンス社製 VHX-8000)により、その切断面を観察、撮影した。これを画像解析(材料開発総合パッケージソフトウェア Math2Market製 GeoDict)により、繊維部と空孔部(含浸樹脂部)とを、分解した。空孔部分に内接する最大の円分布を求めると、空孔直径90μmを境に、特徴が表れていると考えた。
 細孔径分布がある中綿は90μmより小さい細孔の頻度が高い。内接円90μm未満と90μm以上とに分けて頻度分布を解析すると、90μm未満の頻度は、中心からの半径が0.5mmの領域で、サンプルのほうが頻度が高く(密な部分)、90μm以上の頻度は、中心からの半径が0.5mmの領域で、サンプルの頻度が低い。以上の解析より、細孔径分布のある中綿は、90μmより小さい細孔の頻度が高い場合、細孔径に分布があることが判明した。90μm未満の頻度が、中心から半径が0.5mmの領域で高いことが好ましく、細孔径分布のある中綿では、径方向中心部に、90μm未満の細孔(細かい部分)の頻度が多いが、この細かい部分の場所は、円周部でも構わない。以上のように、中綿内細孔の内接円の直径分布が、ある領域において差がある場合、細孔径分布がある中綿であることが判った。
In addition, by measuring the distribution of inscribed circle diameters through cross-sectional image analysis, it is possible to determine whether or not the filling has a pore size distribution.
The presence or absence of pore size distribution can be determined by image analysis of the cross section of the filling, specifically, by observing a cut surface of the filling and analyzing the image to determine the pore sizes (inscribed circle diameter distribution).
The measurement method was to inject a curable resin (en-thiol resin-based photocurable adhesive: manufactured by Nichika Co., Ltd.) into the obtained batting and harden it. Next, it was cut in the direction perpendicular to the axis, the cross section was polished, and the cut surface was observed and photographed using an optical microscope (VHX-8000 manufactured by Keyence Co., Ltd.). This was decomposed into the fiber part and the pore part (impregnated resin part) using image analysis (material development comprehensive package software GeoDict manufactured by Math2Market). When the maximum circular distribution inscribed in the pore part was obtained, it was thought that the characteristics were expressed at the boundary of the pore diameter of 90 μm.
The batting with a pore size distribution has a high frequency of pores smaller than 90 μm. When the frequency distribution is analyzed by dividing the inscribed circle into less than 90 μm and 90 μm or more, the frequency of pores smaller than 90 μm is higher in the sample (dense part) in the region with a radius of 0.5 mm from the center, and the frequency of pores larger than 90 μm is lower in the region with a radius of 0.5 mm from the center. From the above analysis, it was found that the batting with a pore size distribution has a distribution of pore sizes when the frequency of pores smaller than 90 μm is high. It is preferable that the frequency of pores smaller than 90 μm is high in the region with a radius of 0.5 mm from the center, and in the batting with a pore size distribution, the frequency of pores (fine parts) smaller than 90 μm is high in the radial center, but the location of these fine parts may be the circumferential part. As described above, it was found that the batting has a pore size distribution when there is a difference in the diameter distribution of the inscribed circle of the pores in the batting in a certain region.
 さらに断面の画像解析による細孔の等価直径の分布を測定することにより、2種以上の細孔径分布を持つ中綿を検証することができる。
 中綿の切断面を観察し、その画像分析より細孔の等価直径の分布を求める。上記測定方法の断面画像の解像度を高め、ある一定空間(例えば1x1mmの正方形面積)内での、繊維周長(l)と空間の面積(s)を求めた。細孔は、円形状ではなく異形状であるが、その周長と面積より、下記式より円とみなした場合の直径(2r:等価直径)を求めることができる。
 円周長/円面積=2πr/πr=2/r=l/s=繊維周長/空間の面積
 上記微小領域における細孔の等価直径を求めると、「細かい」(密)領域は、等価直径が小さく、「粗い」(疎)領域は、等価直径が大きくなる。そもそも、毛細管力は、l/s×γ(表面張力)×cosθ(接触角)で、表され、細孔の周長とその面積によって、決定される。中綿内の「細かい」(密)領域は、等価直径が小さく、「粗い」(疎)領域は大きく、この微小領域における細孔の内接円の直径分布が、ある領域において差がある場合、細孔径分布がある中綿でることが判った。本解析が、中綿内の毛細管力分布という観点においては、本質的ものである。
 上記(1)~(3)のいずれかにより、細孔径分布が2種以上の分布を持つ中綿を検証することができる。
 好ましくは、操作性、測定精度、測定工数〔上記(2)は(3)より、観察画像が少なくて済む。解像度が低くても視度が落ちない〕などにより、上記(2)の断面の画像解析による内接円直径の分布を測定することにより、中綿に細孔径分布の有無を測定することが望ましい。
Furthermore, by measuring the distribution of equivalent pore diameters by cross-sectional image analysis, batting with two or more pore size distributions can be verified.
The cut surface of the filling is observed, and the distribution of the equivalent diameter of the pores is obtained by image analysis. The resolution of the cross-sectional image of the above measurement method is increased, and the fiber circumference (l) and the area of the space (s) within a certain space (for example, a square area of 1 x 1 mm) are obtained. Although the pores are not circular but have irregular shapes, the diameter (2r: equivalent diameter) can be calculated from the circumference and area using the following formula when considered as a circle.
Circumference/area of circle = 2πr/ πr2 = 2/r = l/s = fiber circumference/area of space When calculating the equivalent diameter of the pores in the above-mentioned micro-region, the equivalent diameter is small in "fine" (dense) regions and large in "coarse" (sparse) regions. In the first place, capillary force is expressed as l/s x γ (surface tension) x cos θ (contact angle) and is determined by the circumference of the pores and their area. It was found that "fine" (dense) regions in the batting have small equivalent diameters and "coarse" (sparse) regions have large equivalent diameters, and when the diameter distribution of the inscribed circles of the pores in this micro-region differs in a certain region, the batting has a pore size distribution. This analysis is essential in terms of the capillary force distribution in the batting.
Any of the above (1) to (3) can be used to verify a filling having two or more types of pore size distribution.
It is preferable to measure the presence or absence of a pore size distribution in the filling by measuring the distribution of the inscribed circle diameter by image analysis of the cross section of the above (2) in view of operability, measurement accuracy, and measurement man-hours (the above (2) requires fewer observation images than the above (3). Visibility does not decrease even if the resolution is low).
 上記細孔径分布が2種以上の分布を持つ中綿を得るには、例えば、中綿に用いる繊維の繊維嵩密度、繊維直径、繊維材料、繊維形態、繊維表面張力、毛細管力が異なる繊維を用いて、または、これらを2種以上好適に組み合わせることにより、作製することができる。
 用いることができる繊維としては、例えば、天然繊維、獣毛繊維、ポリアセタール系樹脂、アクリル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂、ポリオレフィン系樹脂、ポリビニル系樹脂、ポリカーボネート系樹脂、ポリエーテル系樹脂、ポリフェニレン系樹脂などの1種又は2種以上の組み合わせなどが挙げられる。
To obtain a filling having two or more types of pore size distributions, the filling can be produced, for example, by using fibers having different fiber bulk densities, fiber diameters, fiber materials, fiber morphologies, fiber surface tensions, and capillary forces, or by suitably combining two or more of these.
Examples of fibers that can be used include natural fibers, animal hair fibers, polyacetal resins, acrylic resins, polyester resins, polyamide resins, polyurethane resins, polyolefin resins, polyvinyl resins, polycarbonate resins, polyether resins, and polyphenylene resins, either alone or in combination.
 具体的には、一例として下記により作製することができる。
 それぞれを収束後、第1の細孔径分布を持つ糸束の中央に、第2の細孔径分布を持つ糸束を挿入して、長さ80mm、内径6mmのポリプロピレン製円筒を軸筒に擬して、これに下記の各実施例及び各比較例の中綿を充填し、下記の実験に供した。糸束はポリエステル繊維を圧縮し束ね、所定の密部の割合となるように重量を量り取った。ポリプロピレン製円筒に充填することにより細孔径分布が2種以上の分布を持つ上記細孔径分布の特性の筆記具用中綿を得ることができる。
Specifically, as an example, it can be produced as follows.
After each of them was converged, the yarn bundle having the second pore size distribution was inserted into the center of the yarn bundle having the first pore size distribution, and a polypropylene cylinder having a length of 80 mm and an inner diameter of 6 mm was used as a shaft tube, which was filled with the batting of each of the following Examples and Comparative Examples, and subjected to the following experiments. The yarn bundle was made by compressing and bundling polyester fibers, and the weight was measured so as to obtain a predetermined dense part ratio. By filling the polypropylene cylinder, it is possible to obtain a batting for a writing instrument having the above pore size distribution characteristics with two or more pore size distributions.
(筆記具用インク)
 用いる筆記具用インクの組成は、特に限定されず、筆記具の用途等に応じて、水性インク、油性インク、熱変色性インクなどの好適な配合処方とすることができ、例えば、アンダーラインペン等ではインクに蛍光色素、例えば、ベーシックバイオレット11、ベーシックイエロー40、熱変色性マイクロカプセル顔料などを含有させることできる。
 好ましくは、染料を含む樹脂微粒子顔料インク組成物が望ましい。
 染料を含む樹脂微粒子顔料インクとしては、少なくとも、(メタ)アクリル酸シクロヘキシルモノマーと、塩基性染料又は油溶性染料とで構成される着色樹脂微粒子であって、前記(メタ)アクリル酸シクロヘキシルモノマーの含有量が着色樹脂微粒子を構成する全ポリマー成分に対して、30質量%以上であると共に、前記塩基性染料又は油溶性染料の含有量が全ポリマー成分に対して、15質量%以上である着色樹脂微粒子が水に分散された着色樹脂微粒子の分散液と、水溶性有機溶剤と、水とを含有するものが挙げられる。
 また、これらのインク組成物は、インク配合成分種、各配合量を調整することなどにより、インク粘度(25℃:コンプレート型粘度計)1~5mPa・s、表面張力30~60mN/mを設定することができ、しかも、本開示の筆記具用中綿の特性と相俟ってマーキングペンタイプの筆記具ペン先20及びペン先40からのインク流出量を好ましい範囲、本実施形態では、5~20mg/mに設定することが簡単にできることとなる。
(Ink for writing instruments)
The composition of the ink for the writing instrument used is not particularly limited, and a suitable formulation such as water-based ink, oil-based ink, thermochromic ink, etc. can be used depending on the application of the writing instrument, etc. For example, in the case of an underline pen, the ink can contain a fluorescent dye such as Basic Violet 11, Basic Yellow 40, or a thermochromic microcapsule pigment.
A pigment ink composition containing resin fine particles containing a dye is preferable.
Examples of resin microparticle pigment inks containing dyes include those containing a dispersion of colored resin microparticles in water, the colored resin microparticles being composed of at least a cyclohexyl (meth)acrylate monomer and a basic dye or an oil-soluble dye, wherein the content of the cyclohexyl (meth)acrylate monomer is 30 mass% or more relative to the total polymer components constituting the colored resin microparticles and the content of the basic dye or oil-soluble dye is 15 mass% or more relative to the total polymer components, a water-soluble organic solvent, and water.
Furthermore, by adjusting the types of ink formulation components and the amounts of each component, it is possible to set the ink viscosity (25°C: Complate type viscometer) of these ink compositions to 1 to 5 mPa·s and the surface tension to 30 to 60 mN/m. Furthermore, in combination with the properties of the writing instrument batting disclosed herein, it is possible to easily set the amount of ink flowing out from the marking pen-type writing instrument nib 20 and nib 40 to a preferred range, in this embodiment, 5 to 20 mg/m.
 また、熱変色性マイクロカプセル顔料含有インク組成物を用いた場合には、例えば、図1(c)及び(d)に示すように、JIS S 6050-2002に規定する鉛筆描線の消し能力(消字率)が70%未満の、円柱状の熱可塑性エラストマーからなる摩擦体53をキャップ50の凹部52に固着することができる。この摩擦体53の擦過動作により摩擦熱を発生容易かつ低摩耗な摩擦体となることで、摩擦時に消しカスの発生を少なくすることで周囲への汚れを防ぐことができる。また、通気孔54は、摩擦体53の取り付け、取り外しを容易化するための通気孔である。 In addition, when a thermochromic microcapsule pigment-containing ink composition is used, for example, as shown in Figures 1(c) and (d), a cylindrical friction body 53 made of a thermoplastic elastomer with an erasability (erasability rate) of pencil lines as specified in JIS S 6050-2002 of less than 70% can be fixed to the recess 52 of the cap 50. The rubbing action of this friction body 53 makes it easy to generate frictional heat and has low wear, which reduces the generation of eraser dust during friction and prevents stains on the surrounding area. The ventilation hole 54 is a ventilation hole for making it easier to attach and remove the friction body 53.
(ペン先20)
 ペン先20は、図1~図7に示すように、少なくとも、筆記部25と、筆記具本体10のインクを筆記部25へ誘導するインク誘導部26と、可視部を有する保持体30とを有し、筆記部25、インク誘導部26は、保持体30に接着、溶着、嵌合等により取り付けられるものである。
 筆記部25は、直方体形状の台部の上方側が筆記しやすい傾きとなるように、傾斜状(ナイフカット状)となっている。この筆記部25の傾き等は、筆記等の使い勝手に合わせて適宜設定される。また、この筆記部25は、図7(a)~(d)に示すように、描線幅が調整可能となるように描線幅が大きい目W1となる筆記部25aと、描線幅が小さめ目W2となる筆記部25bを有し、軸の傾斜により描線幅W1とW2の調整(選択)ができるものとなっている。本形態では、W1:W2が2以上:1の割合となっている。描線幅W1は2.0~5.0mm、描線幅W2は1.0~2.5mmmとなっている。
(Pen tip 20)
As shown in Figures 1 to 7, the pen tip 20 has at least a writing portion 25, an ink guide portion 26 that guides ink in the writing instrument body 10 to the writing portion 25, and a holder 30 having a visible portion, and the writing portion 25 and the ink guide portion 26 are attached to the holder 30 by adhesive bonding, welding, fitting, etc.
The writing part 25 has an inclined (knife-cut) shape so that the upper side of the rectangular parallelepiped base is inclined to make writing easier. The inclination of the writing part 25 is appropriately set according to the ease of use of writing, etc. As shown in Figs. 7(a) to 7(d), the writing part 25 has a writing part 25a with a large line width W1 and a writing part 25b with a small line width W2 so that the line width can be adjusted, and the line widths W1 and W2 can be adjusted (selected) by inclining the shaft. In this embodiment, the ratio of W1:W2 is 2 or more:1. The line width W1 is 2.0 to 5.0 mm, and the line width W2 is 1.0 to 2.5 mm.
 この筆記部25の材質等としては、例えば、気孔を有する多孔質で形成されたものが挙げられ、具体的には、スポンジ体、焼結体、繊維束体、発泡体、海綿体、フェルト体、ポーラス体などを挙げることができる。これらの多孔質体等を形成する材料としては、例えば、天然繊維、獣毛繊維、ポリアセタール系樹脂、ポリエチレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂、ポリオレフィン系樹脂、ポリビニル系樹脂、ポリカーボネート系樹脂、ポリエーテル系樹脂、ポリフェニレン系樹脂などを用いることができる。本実施形態の筆記部25は、書き味を更に良好とするために、プラスチック粉末(例えば、PE)を焼結した焼結芯から構成されている。 The writing part 25 may be made of a porous material having air holes, such as a sponge, a sintered body, a fiber bundle, a foam, a spongy body, a felt body, or a porous body. Materials for forming these porous bodies include, for example, natural fibers, animal hair fibers, polyacetal resins, polyethylene resins, acrylic resins, polyester resins, polyamide resins, polyurethane resins, polyolefin resins, polyvinyl resins, polycarbonate resins, polyether resins, and polyphenylene resins. The writing part 25 of this embodiment is made of a sintered core made of sintered plastic powder (e.g., PE) to improve the writing feel.
 インク誘導部26は、薄板状で、後方側に傾斜部26aを有するものであり、その断面は可視部の面積を最大化(広く)する点から、矩形形状または楕円形状とすることが好ましい。本実施形態では、断面は矩形形状となっている。
 このインク誘導部26は、筆記具本体10内に吸蔵される中綿17のインクを該インク誘導部26を介して筆記部25にインクを効率良く誘導(供給)するものであれば特に限定されず、例えば、不織布、織物あるいは編物などの布帛、繊維束芯、あるいは、通液性発泡体、焼結体などの通液性を有する素材から構成されるものが挙げられる。なお、筆記部25とインク誘導部26とは、一種類の素材から一体構成することもできるが、好ましくは、更に本開示の効果を発揮せしめる点、効率的なインクの供給、筆記部での書き味を更に良好等とする点から、別部材同士で連結や結合、または、後述するように保持体を介して連結や結合等して構成することが望ましい。
 本実施形態において、「不織布」とは、一層以上の繊維の塊を編織しないで布状構造としたものをいう。繊維の素材としては、合成繊維、天然繊維、獣毛繊維、無機繊維等が用いられる。用いる合成繊維の材料としては、例えば、ポリアセタール系樹脂、ポリエチレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂、ポリオレフィン系樹脂、ポリビニル系樹脂、ポリカーボネート系樹脂、ポリエーテル系樹脂、ポリフェニレン系樹脂などの1種又は2種以上の組み合わせなどが挙げられる。
The ink guide portion 26 is thin plate-like and has an inclined portion 26a on the rear side, and the cross section thereof is preferably rectangular or elliptical in order to maximize (widen) the area of the visible portion. In this embodiment, the cross section is rectangular.
The ink guide portion 26 is not particularly limited as long as it efficiently guides (supplies) the ink in the padding 17 absorbed in the writing instrument body 10 to the writing portion 25 via the ink guide portion 26, and examples of the ink guide portion 26 include those made of fabrics such as nonwoven fabrics, woven fabrics or knitted fabrics, fiber bundle cores, or liquid-permeable materials such as liquid-permeable foams and sintered bodies. Note that the writing portion 25 and the ink guide portion 26 can be integrally formed from one type of material, but it is preferable to form the ink guide portion 26 by connecting or bonding separate members to each other, or by connecting or bonding via a holder as described later, in order to further exert the effects of the present disclosure, efficiently supply ink, and further improve the writing feel at the writing portion.
In this embodiment, the term "nonwoven fabric" refers to a cloth-like structure formed by not weaving a mass of one or more layers of fibers. As the fiber material, synthetic fibers, natural fibers, animal hair fibers, inorganic fibers, etc. are used. As the synthetic fiber material used, for example, one or a combination of two or more of polyacetal resin, polyethylene resin, acrylic resin, polyester resin, polyamide resin, polyurethane resin, polyolefin resin, polyvinyl resin, polycarbonate resin, polyether resin, polyphenylene resin, etc. can be mentioned.
 布帛を構成する繊維は、例えば、溶融紡糸法、乾式紡糸法、湿式紡糸法、直接紡糸法(メルトブロー法、スパンボンド法、静電紡糸法など)、複合繊維から一種類以上の樹脂成分を吸着することで繊維径が細い繊維を抽出する方法、繊維を叩解して分割された繊維を得る方法など公知の方法により得ることができる。
 また、布帛を構成する繊維は、一種類あるいは複数種類の樹脂成分から構成されてなるものでも構わず、一般的に複合繊維と称される、例えば、芯鞘型、海島型、サイドバイサイド型、オレンジ型などの複合繊維を使用することができる。
The fibers constituting the fabric can be obtained by known methods such as melt spinning, dry spinning, wet spinning, direct spinning (melt blowing, spunbonding, electrostatic spinning, etc.), a method of extracting fibers having a small fiber diameter by adsorbing one or more resin components from composite fibers, and a method of beating fibers to obtain split fibers.
The fibers constituting the fabric may be composed of one or more types of resin components, and composite fibers generally called composite fibers, such as core-sheath type, sea-island type, side-by-side type, orange type, etc., can be used.
 布帛を構成する繊維の繊度は、特に限定するものではないが、前記繊度は0.1~500dtex(デシテックス)であるのが好ましく、2~5dtex(デシテックス)であるのがより好ましい。また、繊維長も特に限定するものではないが、短繊維や長繊維あるいは連続繊維を使用することができる。
 布帛が織物や編物である場合、上述のようにして調製した繊維を、織るあるいは編むことで調製することができる。
The fineness of the fibers constituting the fabric is not particularly limited, but the fineness is preferably 0.1 to 500 dtex, and more preferably 2 to 5 dtex. The length of the fibers is also not particularly limited, but short fibers, long fibers, or continuous fibers can be used.
When the fabric is a woven or knitted fabric, it can be prepared by weaving or knitting the fibers prepared as described above.
 布帛が不織布である場合、不織布を製造可能な繊維ウェブの調製方法として、例えば、乾式法、湿式法などを用いることができる。そして、繊維ウェブを構成する繊維同士を絡合および/または一体化して不織布にする方法として、例えば、ニードルや水流によって絡合する方法、繊維同士をバインダで一体化する方法、あるいは、繊維ウェブが熱可塑性樹脂を含んでいる場合には、繊維ウェブを加熱処理することで前記熱可塑性樹脂を溶融して、繊維同士を一体化する方法を挙げることができる。なお、繊維ウェブを加熱処理する方法として、例えば、カレンダーロールにより加熱加圧する方法、熱風乾燥機により加熱する方法、無圧下で赤外線を照射して熱可塑性樹脂繊維を溶融させる方法などを用いることができる。また、直接紡糸法を用いて紡糸された繊維を捕集することで、不織布を調製してもよい。
 繊維束芯としては、上記繊維の素材(合成繊維、天然繊維、獣毛繊維、無機繊維、ポリフェニレン系樹脂などの1種又は2種以上の組み合わせなど)からなる平行繊維束等を加工又はこれらの繊維束を樹脂加工したものが挙げられる。
 通液性発泡体である場合、例えば、溶融状態の樹脂を型に流し込み成型、発泡処理するなど、公知の方法で調製することができる。また、焼結体では、ポリアセタール系樹脂、ポリエチレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂、ポリオレフィン系樹脂、ポリビニル系樹脂、ポリカーボネート系樹脂、ポリエーテル系樹脂、ポリフェニレン系樹脂などのプラスチック粉末などを焼結したポーラス体(焼結芯)などから構成することができる。
When the fabric is a nonwoven fabric, a method for preparing a fiber web capable of producing a nonwoven fabric can be, for example, a dry method or a wet method. As a method for entangling and/or integrating the fibers constituting the fiber web to form a nonwoven fabric, for example, a method for entangling with a needle or a water flow, a method for integrating the fibers with a binder, or, when the fiber web contains a thermoplastic resin, a method for melting the thermoplastic resin by heat-treating the fiber web to integrate the fibers can be mentioned. In addition, as a method for heat-treating the fiber web, for example, a method for heating and pressurizing with a calendar roll, a method for heating with a hot air dryer, a method for melting the thermoplastic resin fibers by irradiating infrared rays under no pressure, etc. can be used. In addition, a nonwoven fabric can be prepared by collecting fibers spun using a direct spinning method.
Examples of fiber bundle cores include parallel fiber bundles made of the above-mentioned fiber materials (synthetic fibers, natural fibers, animal hair fibers, inorganic fibers, polyphenylene resins, etc., one or a combination of two or more of them) that have been processed or resin-processed.
In the case of a liquid-permeable foam, it can be prepared by a known method, for example, by pouring a molten resin into a mold, forming, and foaming, etc. In addition, the sintered body can be composed of a porous body (sintered core) obtained by sintering a plastic powder such as a polyacetal resin, a polyethylene resin, an acrylic resin, a polyester resin, a polyamide resin, a polyurethane resin, a polyolefin resin, a polyvinyl resin, a polycarbonate resin, a polyether resin, or a polyphenylene resin.
 インク誘導部26の形状、厚さなどは、保持体30への取り付け態様、筆記部25の形状、可視部の可視部面積の最大化、インクを効率よく筆記部25へ流出(供給)せしめる点等から設定されるものであり、好ましくは、幅方向長さ、長手方向長さは薄板状のインク誘導部26を固着する後述する保持体30の取付面の略幅方向長さ、略長手方向の長さとなるものであり、インクを効率よく筆記部25へ流出せしめる好適な長さがそれぞれ設定される。また、薄板状のインク誘導部26の厚さ(可視部面の垂直方向から見ての幅)tは、図4(b)に示すように、可視部の可視部面積を最大化する点などから、好ましくは、1.5mm未満、更に好ましくは、1.2mm以下、特に好ましくは0.8mm以下が望ましく、好適なインク量の供給、生産性などの点から、下限値は0.5mm以上が望ましい。
 本実施形態では、インク誘導部26は、少ない断面積で効率的にインクを流動できる点などから、断面矩形形状のPET製からなる繊維束芯から構成されており、その長手方向長さは20mm、幅方向長さは2mm、厚さtは0.8mmとなっている。
 このインク誘導部26の後端側26aは、中綿17の先端側内部に挿入され、先端側26bは保持体30を介して筆記部25に当接されている。この構成により、中綿17内のインクはインク誘導部26を介して毛管力により筆記部25へ好適な量が効率的に供給される構成となっている。
The shape, thickness, etc. of the ink guide portion 26 are set based on the manner of attachment to the holder 30, the shape of the writing portion 25, maximizing the visible area of the visible portion, efficiently flowing (supplying) ink to the writing portion 25, etc., and preferably the widthwise length and the lengthwise length are approximately the widthwise length and approximately the lengthwise length of the attachment surface of the holder 30 described later to which the thin plate-like ink guide portion 26 is fixed, respectively, and suitable lengths are set to efficiently flow ink to the writing portion 25. Furthermore, the thickness t of the thin plate-like ink guide portion 26 (the width as viewed from the perpendicular direction to the visible portion surface) is preferably less than 1.5 mm, more preferably 1.2 mm or less, and particularly preferably 0.8 mm or less, as shown in Fig. 4(b), from the viewpoint of maximizing the visible area of the visible portion, etc., and the lower limit is preferably 0.5 mm or more from the viewpoints of suitable supply of ink amount, productivity, etc.
In this embodiment, the ink guide section 26 is made of a fiber bundle core made of PET and has a rectangular cross-section, which allows ink to flow efficiently with a small cross-sectional area, and has a longitudinal length of 20 mm, a width length of 2 mm, and a thickness t of 0.8 mm.
The rear end 26a of the ink guide 26 is inserted inside the tip end of the inner fiber 17, and the tip end 26b is in contact with the writing part 25 via the holder 30. With this configuration, a suitable amount of ink in the inner fiber 17 is efficiently supplied to the writing part 25 via the ink guide 26 by capillary force.
(保持体30)
 保持体30は、図2~図7に示すように、上記筆記部25,インク誘導部26を固定して、その後端側が筆記具本体10の先軸16の傾斜開口部16d内に固着されるものであり、膨出状の本体部31と、該本体部31の前方側に、筆記具本体10の端面と当接するフランジ部32と、筆記方向を視認することができる可視部33とを有すると共に、可視部33の先端側に筆記部25の先端側(端面)を保持する前方保持部34a、34bと、この各保持部の一方の端部に設けた筆記部25の端面を受け止める抜け止め部34c、34dとを有するものである。
 また、上記本体部31の後方側の底面側に、上記本体部31に連設される後方保持部35とを備えたものである。これらの部材から構成される保持体30の長手方向の底面側全体には、可視部33の視認面積の最大化を図る点から、保持体30の底面に装着(配置)される構造、具体的には、保持体30の長手方向底面全体には、上記薄板状(断面矩形形状)のインク誘導部26を嵌入保持する凹状の保持溝36が形成されている。更に、本体部31の幅方向外周面には、凹状の嵌合部31aが形成されている。
(Holding body 30)
As shown in Figures 2 to 7, the holding body 30 fixes the writing portion 25 and ink guide portion 26, and has its rear end fixed within the inclined opening 16d of the tip shaft 16 of the writing instrument body 10. The holding body 30 has a bulging main body portion 31, a flange portion 32 on the front side of the main body portion 31 that abuts against the end face of the writing instrument body 10, and a visible portion 33 that allows the writing direction to be visually confirmed. The holding body 30 also has front holding portions 34a, 34b that hold the tip side (end face) of the writing portion 25 on the tip side of the visible portion 33, and anti-slip portions 34c, 34d that receive the end face of the writing portion 25 provided at one end of each holding portion.
Further, a rear holding portion 35 is provided on the bottom surface side of the rear side of the main body portion 31, and is connected to the main body portion 31. A structure is formed on the entire bottom surface side in the longitudinal direction of the holder 30 composed of these members, in order to maximize the visible area of the visible portion 33, and is attached (disposed) to the bottom surface of the holder 30. Specifically, a concave holding groove 36 is formed on the entire longitudinal bottom surface of the holder 30, into which the thin plate-like (rectangular cross-sectional shape) ink guide portion 26 is fitted and held. Furthermore, a concave fitting portion 31a is formed on the outer circumferential surface in the width direction of the main body portion 31.
 更に、筆記部25が固着される凹状の保持溝36と、インク誘導部26が固着される凹状の保持溝36との両側面には、筆記部25,インク誘導部26が接触する表面に軸線と垂直方向に所定間隔毎にリブ37、37…、38、38…を形成されており、これにより、成形加工により寸法バラツキ等を起こす筆記部25、インク誘導部26の脆い足部等を安定的に保持体30に組み付けることができるものとなる。本実施形態では、保持溝36の取付面36aの幅方向の長さは、インク誘導部26の先端側26bの幅方向の長さより若干短く設定されており、これによりインク誘導部26の先端側26bが保持溝36aに押し付けて嵌入保持せしめることにより固着力が増し、筆記部25との接続が確実に保持されている。
 この保持体30の保持溝36の取付面36a、36bに薄板状のインク誘導部26が接着剤による接着、溶着等により固着され、筆記部25に固着されている。
 この筆記具Aにおいて、上記筆記部25の保持体30への固着(装着)は、前方保持部34a,34b間に上記筆記部25を嵌入保持、更に、筆記部25の固着(抜け止め)を確実にするために、接着剤による接着、溶着などを更に用いても良いものである。
 また、本体部31の長手方向外周面には、空気流通溝39、39が形成されており、筆記具内の空気圧等が膨張しても空気流通溝39、39により調整ができインクの漏れ等を解消できる構成となっている。
Furthermore, on both sides of the concave holding groove 36 to which the writing part 25 is fixed and the concave holding groove 36 to which the ink guide part 26 is fixed, ribs 37, 37..., 38, 38... are formed at predetermined intervals in a direction perpendicular to the axis on the surfaces where the writing part 25 and the ink guide part 26 come into contact, so that the fragile legs and the like of the writing part 25 and the ink guide part 26, which may cause dimensional variations due to molding, can be stably assembled to the holder 30. In this embodiment, the width direction length of the mounting surface 36a of the holding groove 36 is set to be slightly shorter than the width direction length of the tip side 26b of the ink guide part 26, so that the tip side 26b of the ink guide part 26 is pressed against the holding groove 36a to be fitted and held therein, thereby increasing the fixing force and reliably holding the connection with the writing part 25.
The thin plate-like ink guide portion 26 is fixed to the mounting surfaces 36 a , 36 b of the holding groove 36 of the holding body 30 by bonding with an adhesive, welding, or the like, and is thus fixed to the writing portion 25 .
In this writing instrument A, the writing part 25 is fixed (attached) to the holding body 30 by fitting the writing part 25 between the front holding parts 34a, 34b, and further, in order to ensure the fixing (prevention of falling off) of the writing part 25, adhesive bonding, welding, etc. may be used.
In addition, air circulation grooves 39, 39 are formed on the outer longitudinal surface of the main body 31, so that even if the air pressure inside the writing instrument expands, the air circulation grooves 39, 39 can adjust the expansion and prevent ink leakage, etc.
 前記インク誘導部26は、断面が矩形形状又は楕円形状、本実施形態では断面が矩形形状の繊維束芯から構成され、前記筆記部25は樹脂焼結体から構成されており、該筆記部25とインク誘導部26は前記保持体30の保持溝36、取付面36a、36bに固着されると共に、該インク誘導部26と筆記部25とが押し付けつけられて固定されているので、中綿17からのインクがインク誘導部26を介して筆記部25へと良好に供給されるものとなっている。 The ink guide portion 26 is made of a fiber bundle core having a rectangular or elliptical cross section, and in this embodiment has a rectangular cross section, and the writing portion 25 is made of a sintered resin body, and the writing portion 25 and the ink guide portion 26 are fixed to the holding groove 36 and mounting surfaces 36a and 36b of the holding body 30, and the ink guide portion 26 and the writing portion 25 are pressed against each other and fixed, so that ink from the padding 17 is supplied well to the writing portion 25 via the ink guide portion 26.
 このように構成される保持体30全体は、硬質材料で構成されており、例えば、視認性を有する硬質材料、例えば、ガラス、ゴム弾性を有しない樹脂などから構成されるものである。視認可能となるゴム弾性を有しない樹脂としては、例えば、PP、PE、PET、PEN、ナイロン(6ナイロン、12ナイロン等の一般的なナイロン以外に非晶質ナイロン等を含む)、アクリル、ポリメチルペンテン、ポリスチレン、ABS等の可視光線透過率が50%以上の材料から成形により構成することにより、可視部33で筆記方向に書いてある文字を有効に視認できることとなる。なお、可視部33だけを視認性を有する材料で構成してもよい。なお、可視光線透過率は多光源分光測色計〔スガ試験機社製、(MSC-5N)〕にて反射率を測定することで求めることができる。
 また、保持体30は、上記各材料の一種類、または、耐久性、視認性の更なる向上の点などから、2種類以上の材料を用いて構成してもよく、射出成形、ブロー成形などの各種成形法により成形することができる。
The entire holder 30 thus constructed is made of a hard material, and is made of, for example, a hard material having visibility, such as glass or a resin having no rubber elasticity. Examples of resins having no rubber elasticity that are visible include PP, PE, PET, PEN, nylon (including amorphous nylon in addition to general nylons such as nylon 6 and nylon 12), acrylic, polymethylpentene, polystyrene, ABS, and other materials having a visible light transmittance of 50% or more, so that characters written in the writing direction can be effectively viewed in the visible portion 33. Note that only the visible portion 33 may be made of a material having visibility. Note that the visible light transmittance can be obtained by measuring the reflectance with a multi-light source spectrophotometer (manufactured by Suga Test Instruments Co., Ltd., (MSC-5N)).
In addition, the holder 30 may be constructed using one of the above materials, or two or more of the materials in terms of further improving durability and visibility, and can be molded by various molding methods such as injection molding and blow molding.
 本実施形態では、前記保持体30の可視部33は、図3(b)に示すように、その幅方向の最小幅Sが3.7mm以上となっており、また、可視部33の長さYが7.4mm以上に設定されている。本実施形態では、保持体30の可視部33の前端側から後方側へ行くほどその幅Sが拡張する構成となっており、その最小幅Sは、保持体30の可視部33の前端側の幅方向の長さであり、その幅(ペン先と並行)が3.7mm以上となっている。なお、本実施形態では可視部33の幅方向の最大幅は4.5mmとなっている。
 この最小幅Sを3.7mm以上とすることにより、書面に印字される10.5ポイント(五号活字)を可視部33でしっかり視認することができる構成となっている。通常、日本では一般的な公文書などでは五号活字を基準として使われることが多い。
 また、可視部33の長さYは、上記最少幅Sの2倍の構成、すなわち、7.4mm以上となっている。例えば、筆記角度60°において、上から 見ても、上記3.7mm幅の文字が可視部33内に収まる構成となっている(3.7mm/cos60°=7.4mm)。
 上記可視部33の最小幅Sを3.7mm以上、その長さYを7.4mm以上とするためには、上記ペン先20の各部品(筆記部25、インク誘導部26、保持体30)の構造、形状等を上述の如く構成(特定)し、好適に組み合わせることにより、設定することができるものとなる。
In this embodiment, as shown in Fig. 3(b), the visible portion 33 of the holder 30 has a minimum width S in the width direction of 3.7 mm or more, and the length Y of the visible portion 33 is set to 7.4 mm or more. In this embodiment, the width S of the visible portion 33 of the holder 30 is configured to increase from the front end side to the rear side, and the minimum width S is the length in the width direction of the front end side of the visible portion 33 of the holder 30, and the width (parallel to the pen tip) is 3.7 mm or more. In this embodiment, the maximum width of the visible portion 33 in the width direction is 4.5 mm.
By setting the minimum width S to 3.7 mm or more, 10.5 point (No. 5 type) printed on the document can be clearly seen in the visible portion 33. Generally, in Japan, No. 5 type is often used as the standard for general official documents.
The length Y of the visible portion 33 is twice the minimum width S, i.e., 7.4 mm or more. For example, when the writing angle is 60°, the 3.7 mm wide character fits within the visible portion 33 even when viewed from above (3.7 mm/cos 60°=7.4 mm).
In order to set the minimum width S of the visible portion 33 to 3.7 mm or more and its length Y to 7.4 mm or more, the structure, shape, etc. of each part of the pen tip 20 (writing portion 25, ink guide portion 26, holder 30) can be configured (specified) as described above and appropriately combined, thereby setting these.
 更に、本実施形態では、筆記部25への必要十分のインク流量の誘導を確保する点、更なる視認できる可視部33の面積を広範とする点等から、インク誘導部26の幅(可視部33面の垂直方向から見ての長さ)tが1.5mm未満、更に好ましくは、1.2mm以下、特に好ましくは0.8mm以下となっている。
 また、インク誘導部26は凹状の保持溝36、取付面36a、36bに嵌入保持等されることにより固着され、しかもその側面は効率的な組立性、生産性などの点から、インク誘導部26全体を被覆する構造でなく、外気面に開放した形状であるので、そのインク誘導部26部分の幅tを含む全体の幅長さは必要最小限となっており可視部33の幅Sを最大限とする構成となっている。
Furthermore, in this embodiment, in order to ensure that a necessary and sufficient ink flow rate is guided to the writing portion 25 and to increase the area of the visible portion 33 that can be further viewed, the width t of the ink guide portion 26 (the length as viewed from the perpendicular direction to the surface of the visible portion 33) is less than 1.5 mm, more preferably 1.2 mm or less, and particularly preferably 0.8 mm or less.
In addition, the ink guide portion 26 is fixed by being fitted and held in the concave retaining groove 36 and the mounting surfaces 36a, 36b, and furthermore, from the standpoint of efficient assembly and productivity, the side surface is not structured to cover the entire ink guide portion 26 but is open to the outside air, so that the overall width length including the width t of the ink guide portion 26 is kept to the minimum necessary, with the width S of the visible portion 33 being maximized.
 また、前記インク誘導部26を、図3(b)に示すように、可視部33の片側に1本有すること、すなわち、インク誘導部26を筆記の際に手前側(インク誘導部26に対して、ペン先20が鈍角となる側)に配置することにより、自然な筆記角度をつけたときにも、インク誘導部26が進行方向の文字にかかわらず、可視部33の見通しがよいものとなる。インク誘導部26が筆記の際に手前側でなく、奥側(上側)に配置されるものであると、筆記(マーキング)の際に、進行方向の文字を横切り、一部を隠してしまう点で可視部33の作用機構等が異なるものである。 Furthermore, by having one ink guide portion 26 on one side of the visible portion 33 as shown in FIG. 3(b), that is, by arranging the ink guide portion 26 on the front side when writing (the side where the pen tip 20 forms an obtuse angle with respect to the ink guide portion 26), the visible portion 33 can be seen clearly regardless of the character in the direction of writing, even when a natural writing angle is used. If the ink guide portion 26 were arranged on the rear side (upper side) rather than on the front side when writing, the mechanism of action of the visible portion 33 would be different in that it would cross the character in the direction of writing (marking) and hide part of it.
 次に、細字筆記するためのペン先40は、図1(c)及び(d)に示すように、細字タイプの棒状のペン先であり、断面が円形形状となるものであり、ペン先40の後端部(中綿側)が中綿17内に挿入されており、毛管力により中綿17のインクがペン先40に供給されるものである。
 このペン先40は、多孔質部材から構成されるものであり、例えば、天然繊維、獣毛繊維、ポリアセタール系樹脂、ポリエチレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂、ポリオレフィン系樹脂、ポリビニル系樹脂、ポリカーボネート系樹脂、ポリエーテル系樹脂、ポリフェニレン系樹脂などの1種又は2種以上の組み合わせからなる並行繊維束、フェルト等の繊維束を加工又はこれらの繊維束を樹脂加工した繊維芯、または、ポリオレフィン系樹脂、アクリル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂等の熱可塑性樹脂などのプラスチック粉末などを焼結したポーラス体(焼結芯)などからなるものである。
 好ましいペン先40としては、繊維束芯、繊維芯、焼結芯、フェルト芯、スポンジ芯、無機多孔体芯であり、特に好ましくは、変形成形性の点、生産性の点から、繊維芯が望ましい。また、用いるペン先40の気孔率、大きさ、硬度などは、インク種、筆記具の種類等により、変動するものであり、例えば、気孔率では30~60%とすることが好ましい。また、本開示において、筆記芯の「気孔率」は、下記のようにして算出される。まず、既知の質量及び見掛け体積を有する筆記芯を水中に浸し、十分に水を浸み込ませた後、水中から取り出した状態で質量を測定する。測定した質量から、筆記芯に浸み込ませた水の体積が導出される。この水の体積を筆記芯の気孔体積と同一として、下記式から、気孔率が算出される。
  気孔率(単位:%)=(水の体積)/(ペン先40の見掛け体積)×100
Next, the pen tip 40 for fine writing is a rod-shaped pen tip for fine writing, as shown in Figures 1 (c) and (d), with a circular cross section. The rear end (the middle cotton side) of the pen tip 40 is inserted into the middle cotton 17, and the ink in the middle cotton 17 is supplied to the pen tip 40 by capillary force.
The pen tip 40 is constructed from a porous material, such as parallel fiber bundles made of one or a combination of two or more types of natural fibers, animal hair fibers, polyacetal resin, polyethylene resin, acrylic resin, polyester resin, polyamide resin, polyurethane resin, polyolefin resin, polyvinyl resin, polycarbonate resin, polyether resin, polyphenylene resin, etc.; a fiber core obtained by processing fiber bundles such as felt or resin-processing such fiber bundles; or a porous body (sintered core) obtained by sintering plastic powder of thermoplastic resins such as polyolefin resin, acrylic resin, polyester resin, polyamide resin, polyurethane resin, etc.
Preferred pen tips 40 are fiber bundle cores, fiber cores, sintered cores, felt cores, sponge cores, and inorganic porous cores, and fiber cores are particularly preferred from the viewpoints of deformation moldability and productivity. The porosity, size, hardness, etc. of the pen tip 40 used vary depending on the type of ink, the type of writing implement, etc., and for example, the porosity is preferably 30 to 60%. In addition, in this disclosure, the "porosity" of the writing core is calculated as follows. First, a writing core having a known mass and apparent volume is immersed in water, and after the writing core is sufficiently saturated with water, the mass is measured in a state where it is taken out of the water. The volume of water soaked into the writing core is derived from the measured mass. The porosity is calculated from the following formula, assuming that the volume of this water is the same as the pore volume of the writing core.
Porosity (unit: %)=(volume of water)/(apparent volume of pen tip 40)×100
 このように構成される筆記具Aでは、筆記具本体10内に筆記具用インクを吸蔵した本開示の筆記具用中綿、すなわち、細孔径が2種以上の分布を持ち、第一の細孔径は、50~300μmであり、第二の細孔径は、第一の細孔径の50~90%である特性の中綿17を挿入して保持せしめ、先端側は先軸16を介して上記構成のペン先20(筆記部25,インク誘導部26、保持体30)を順次嵌合等により固着せしめ、他端側はペン先40を固着せしめた保持具45を嵌合により固着せしめることにより、簡単にツインタイプの筆記具Aを作製することができ、本開示の筆記具用中綿17に吸蔵されたインクは毛管力によりペン先20では薄板状のインク誘導部26を介して筆記部25、並びに、ペン先40に効率的に供給することができ、インク拡散性を更に高めることができる筆記具用中綿、これを用いた筆記具が得られることとなる。 In the writing instrument A configured in this manner, the writing instrument batting of the present disclosure that absorbs the writing instrument ink is inserted into the writing instrument body 10, that is, the batting 17 having two or more types of pore diameter distribution, the first pore diameter being 50 to 300 μm, and the second pore diameter being 50 to 90% of the first pore diameter, is inserted and held in place, and the pen tip 20 (writing portion 25, ink guide portion 26, holder 30) configured as described above is fixed to the tip side by sequentially fitting the tip 20 (writing portion 25, ink guide portion 26, holder 30) via the tip barrel 16. The other end of the pen can be fitted with a holder 45 to which the pen tip 40 is attached, allowing the twin-type writing instrument A to be easily produced. The ink absorbed in the writing instrument batting 17 of the present disclosure can be efficiently supplied to the writing part 25 and the pen tip 40 through the thin ink guide part 26 in the pen tip 20 by capillary force, resulting in a writing instrument batting that can further enhance ink diffusibility, and a writing instrument using the same.
 この筆記具Aでは、ペン先40は従来の汎用のペン先と同様であるので、ペン先20の機能等を以下に説明する。
 この筆記具Aのペン先20は、図1~図4などに示すように、筆記方向を視認することができる可視部(窓部)33を有するものであり、本開示の筆記具用中綿17のインクは中綿17の毛細力により筆記部25、ペン先40にそれぞれ到達し、筆記に供されるものとなる。筆記の際に、可視部(窓部)33で視認側を見れば、ひき始めの位置を合わせやすくなり、また、引き終わりの止めたい部分でピタッと止めることができ、引きすぎや、はみ出しを防ぐことができるものとなる。
In this writing instrument A, the pen tip 40 is the same as a conventional general-purpose pen tip, so the function of the pen tip 20 will be explained below.
The pen tip 20 of this writing instrument A has a visible portion (window portion) 33 that allows the writing direction to be visually confirmed, as shown in Figures 1 to 4, and the ink in the writing instrument inner batting 17 of the present disclosure reaches the writing portion 25 and the pen tip 40 by the capillary force of the inner batting 17, and is used for writing. When writing, by looking at the visible side through the visible portion (window portion) 33, it becomes easier to align the starting position of the stroke, and it is possible to stop the stroke exactly where you want it to end, preventing overstroking or overflowing.
 上記実施形態におけるペン先は、少なくとも、描線幅が2種に選択できる筆記部25と、可視部33を有する保持体30と、筆記具本体10のインクを筆記部へ誘導するインク誘導部26とを有するものであり、前記可視部33の最小幅(S)を3.7mm以上とし、可視部33の長さ(Y)を7.4mm以上とする構成(以下、この構成を「構成1」という)により、または、インク誘導部26を筆記時の手前側に備える構成、すなわち、保持体30に固着する際に、インク誘導部26を筆記の際に手前側(インク誘導部26に対して、ペン先20が鈍角となる側)に配置する構成(以下、この構成を「構成2」という)とすることにより、筆記方向を視認することができる可視部33の有効面積の最大化と見やすさ、並びに、筆記のしやすさを高度に両立できるものとなる。 The pen tip in the above embodiment has at least a writing section 25 with two selectable line widths, a holder 30 with a visible section 33, and an ink guide section 26 that guides the ink in the writing instrument body 10 to the writing section. By configuring the visible section 33 to have a minimum width (S) of 3.7 mm or more and a length (Y) of 7.4 mm or more (hereinafter, this configuration will be referred to as "Configuration 1"), or by configuring the ink guide section 26 to be provided on the near side during writing, that is, by configuring the ink guide section 26 to be positioned on the near side during writing (the side where the pen tip 20 forms an obtuse angle with respect to the ink guide section 26) when fixed to the holder 30 (hereinafter, this configuration will be referred to as "Configuration 2"), it is possible to achieve a high degree of both maximization of the effective area of the visible section 33 that allows the writing direction to be visually confirmed, ease of visibility, and ease of writing.
 上記構成2では、自然な筆記角度をつけたときにも、インク誘導部26が進行方向の文字にかかわらず、可視部33の見通しが更によいものとなる。インク誘導部26が筆記の際に手前側でなく、奥側(上側)に配置されるもの、または、筆記部の両側からインク誘導部が2本配置されるコ字状又はU字状のものであると、筆記(マーキング)の際に、進行方向の文字を横切り、一部を隠してしまう点で可視部33の作用機構等が異なるものである。この形態においても、可視部33の有効面積を最大化と見やすさ、並びに、筆記のしやすさを高度に両立でき、その広くなった可視部33により、筆記方向が更にクリアとなり、筆記のしやすさが更に向上するものとなる。 In the above configuration 2, even when a natural writing angle is used, the ink guide portion 26 provides a better view of the visible portion 33 regardless of the character in the direction of travel. If the ink guide portion 26 is placed at the back (upper side) rather than the front side when writing, or if it is U-shaped or C-shaped with two ink guide portions placed on either side of the writing portion, the mechanism of action of the visible portion 33 is different in that it crosses the character in the direction of travel and hides part of it when writing (marking). Even in this form, it is possible to maximize the effective area of the visible portion 33, while also achieving a high level of visibility and ease of writing, and the wider visible portion 33 makes the writing direction even clearer, further improving ease of writing.
 前記インク誘導部26の幅tを可視部33垂直面から見て、1.2mm以下とする構成(以下、この構成を「構成3」という)により、更に可視部の面積を最大化でき、本開示の効果を更に高度に両立できるものとなる。
 また、前記インク誘導部26において、その断面を矩形形状又は楕円形状の繊維束芯から構成すると共に、前記筆記部25を樹脂製の焼結体から構成し、かつ、該インク誘導部26と筆記部25を前記保持体30に固着せしめると共に、該インク誘導部26と筆記部25の端部とが当接する構成(以下、この構成を「構成4」という)とすることにより、インク誘導部26は少ない断面積で効率的にインクを筆記部25へ流動(供給)でき、良好な書き味となって、本開示の効果を更に高度に両立できるものとなる。
 更に、この筆記具Aは、細孔径が2種以上の分布を持ち、第一の細孔径は、50~300μmであり、第二の細孔径は、第一の細孔径の50~90%である本開示の筆記具用中綿17により、インク流出性が良好であるので、ペン先20(又はペン先40)の移動速度を速くして筆記しても、インクの供給は良好に追従し、筆跡のカスレ等を生じることがない筆記具が得られることとなる。
By configuring the width t of the ink guide portion 26 to be 1.2 mm or less when viewed from the perpendicular plane of the visible portion 33 (hereinafter, this configuration will be referred to as "configuration 3"), the area of the visible portion can be further maximized, thereby enabling the effects of the present disclosure to be achieved to an even greater extent.
Furthermore, in the ink guide portion 26, the cross section is formed from a fiber bundle core having a rectangular or elliptical shape, the writing portion 25 is formed from a sintered resin body, and the ink guide portion 26 and the writing portion 25 are fixed to the holding body 30 and the ink guide portion 26 and the end portion of the writing portion 25 abut each other (hereinafter, this configuration will be referred to as "configuration 4"), whereby the ink guide portion 26 can efficiently flow (supply) ink to the writing portion 25 with a small cross-sectional area, resulting in a good writing feel and enabling the effects of the present disclosure to be achieved to an even higher degree.
Furthermore, this writing instrument A has a distribution of two or more pore sizes, with the first pore size being 50 to 300 μm and the second pore size being 50 to 90% of the first pore size, and due to the writing instrument inner batting 17 of the present disclosure, ink outflow is favorable, so that even when writing is performed with the pen tip 20 (or pen tip 40) moving at a high speed, the ink supply follows favorably, and a writing instrument is obtained that does not cause smearing of handwriting, etc.
 本実施形態の筆記具は、上記各形態などに限定されることなく、更に種々変更することができる。
 例えば、上記形態の筆記具用中綿において窓部を有さない繊維束芯を備えたり、油性のインクを搭載してもよい。また、マーキングペン先でなく、ボールペンチップを備えてもよい。
The writing instrument of the present embodiment is not limited to the above-mentioned configurations, and can be further modified in various ways.
For example, the writing implement may be provided with a fiber bundle core having no window, or may be loaded with oil-based ink. Also, a ballpoint pen tip may be provided instead of a marking pen tip.
 上記実施形態の筆記具では、上記構成1又は構成2で各筆記具を構成したが、構成1と2とを組み合わせた構成、並びに、構成1又は2の構成に、上記構成3及び/又は構成4とを組み合わせた構成で各筆記具を構成してもよいものである。
 また、上記実施形態において、構成1の筆記具では、好ましい態様として、インク誘導部26を可視部33の片側に有する構成としたが、構成1の構成であって、更に、可視部33の上下面に2本有する構成(筆記部25の両側に、一体又は別部材となるインク誘導部26,26を2本有するコ字状又はU字状のものであっても、筆記(マーキング)の際に、進行方向の文字を横切りことがあるが、今までにない広範な可視部33の構成、すなわち、可視部33の最小幅(S)が3.7mm以上とし、その長さ(Y)が7.4mm以上とする構成)においても本開示の効果を発揮することができる。
 また、保持体30と、筆記部25、インク誘導部26との固着方法は、保持体30への嵌合等による固着以外に、ホットメルト型接着剤による固着、溶剤浸透による固着、超音波溶着による固着、反応系接着剤による固着(湿気硬化、UV硬化、酸素硬化、2液硬化)、溶剤系接着剤による固着(可溶型合成樹脂、エマルション、ゴム)、テープ、両面テープによる固着により行うことができる。
 筆記部25の気孔率については、以下の範囲とすることが好ましい。
 気孔率は、30~80%とすることが好ましく、さらに好ましくは、40~70%とすることが好ましい。
In the writing instruments of the above embodiments, each writing instrument is configured with the above configuration 1 or configuration 2, but each writing instrument may also be configured with a configuration that combines configurations 1 and 2, and a configuration that combines configuration 1 or 2 with the above configuration 3 and/or configuration 4.
Furthermore, in the above embodiment, in the writing instrument of configuration 1, as a preferred embodiment, the ink guide portion 26 is provided on one side of the visible portion 33; however, the effects of the present disclosure can also be achieved in the configuration of configuration 1 having two ink guide portions on the top and bottom surfaces of the visible portion 33 (even if the ink guide portions 26, 26 are U-shaped or C-shaped and have two ink guide portions 26, 26, which are either integral with or separate from the writing portion 25, on both sides of the writing portion 25, they may cross the characters in the direction of travel during writing (marking), but the visible portion 33 may have an unprecedentedly wide configuration, i.e., a configuration in which the minimum width (S) of the visible portion 33 is 3.7 mm or more and the length (Y) is 7.4 mm or more).
In addition, the methods of bonding the holding body 30 to the writing part 25 and the ink guiding part 26 include bonding by fitting them to the holding body 30, bonding by a hot melt adhesive, bonding by solvent penetration, bonding by ultrasonic welding, bonding by a reactive adhesive (moisture curing, UV curing, oxygen curing, two-component curing), bonding by a solvent-based adhesive (soluble synthetic resin, emulsion, rubber), bonding by tape, and bonding by double-sided tape.
It is preferable that the porosity of the writing portion 25 be within the following range.
The porosity is preferably 30 to 80%, and more preferably 40 to 70%.
 更に、本開示の筆記具Aでは、ツインタイプの筆記具を示したが、ペン先40を省略(軸体を有底筒状の軸体と)して、ペン先20を備えたシングルタイプの筆記具としてもよいものであり、また、ノック式によりペン先20が出没する筆記具であってもよいものである。
 上記各実施形態の筆記具Aでは、筆記具本体の軸体などの断面を円形軸に形成したが、三角形状、四角形以上の方形状などの異形形状、楕円形状にしてもよいものである。また、ペン先20全体を透明な部材で構成する場合を示したが、少なくとも可視部33が透明な部材で構成され、筆記具本体内の取り付けられる本体部31側を透明な部材以外の樹脂部材で二色成形品となったものを用いてペン先20を構成してもよいものである。
 更に、上記各実施形態では、筆記具用のインク(水性インク、油性インク、熱変色性インク)で説明したが、液状化粧料、液状薬剤、塗布液、修正液などの液状体としてもよいものである。
Furthermore, although the writing instrument A of the present disclosure is a twin-type writing instrument, the pen tip 40 may be omitted (the shaft body being a cylindrical shaft body with a bottom) to make it a single-type writing instrument equipped with the pen tip 20, and it may also be a writing instrument in which the pen tip 20 appears and retracts by a knock mechanism.
In the writing implement A of each of the above embodiments, the cross section of the shaft of the writing implement body is formed into a circular shaft, but it may be triangular, rectangular, or other irregular shape, such as an elliptical shape. Also, although the case has been shown in which the entire pen tip 20 is made of a transparent material, the pen tip 20 may be made of at least a transparent material, and the main body part 31 side to be attached inside the writing implement body may be a two-color molded product made of a resin material other than a transparent material.
Furthermore, in each of the above embodiments, the ink (water-based ink, oil-based ink, thermochromic ink) for writing instruments is described, but the ink may also be any liquid such as liquid cosmetics, liquid medicines, coating fluids, and correction fluids.
 次に、製造例、実施例及び比較例により、本開示を更に詳述するが、下記製造例等に限定されるものではない。 Next, the present disclosure will be described in further detail with reference to manufacturing examples, examples, and comparative examples, but is not limited to the manufacturing examples below.
〔製造例1:中綿(サンプル)Aの製造〕
 中綿Aは、東レ社製の5d(デニール、以下同様)、650本と、3d、460本とを用いて、収束後、第1の細孔径分布を持つ糸束の中央に、第2の細孔径分布を持つ糸束を挿入して、長さ80mm、内径6mmのポリプロピレン製円筒を軸筒に擬して、これに下記の各実施例及び各比較例の中綿を充填し、下記の実験に供した。糸束はポリエステル繊維を圧縮し束ね、所定の密部の割合となるように重量を量り取った。ポリプロピレン製円筒に充填して、第1の気孔率、第二の気孔率、その気孔率比となる2種の細孔径分布を持つ中綿Aを製造した。
 中綿Bは、東レ社製の3デニール、15300本を収束後、長さ80mm、内径6mmのポリプロピレン製円筒を軸筒に擬して、下記の実験に供した。糸束はポリエステル繊維を圧縮し束ね、所定の密部の割合となるように重量を量り取った。ポリプロピレン製円筒に充して、第1の気孔率となる1種の細孔径分布を持つ中綿Bを製造した。
[Production Example 1: Production of Filling (Sample) A]
The filling A was made by using 5d (denier, hereinafter the same) 650 threads and 3d 460 threads manufactured by Toray Industries, Inc., and after converging, the yarn bundle having the second pore size distribution was inserted into the center of the yarn bundle having the first pore size distribution, and a polypropylene cylinder with a length of 80 mm and an inner diameter of 6 mm was used as a shaft tube, which was filled with the filling of each of the following Examples and Comparative Examples, and subjected to the following experiments. The yarn bundle was compressed and bundled with polyester fibers, and the weight was measured so that the ratio of the dense parts was set. The filling A was filled into a polypropylene cylinder to produce two types of pore size distributions, which were the first porosity, the second porosity, and the porosity ratio.
The filling B was made by bundling 15,300 3 denier fibers manufactured by Toray Industries, Inc., and then subjecting the bundle to the following experiment using a polypropylene cylinder with a length of 80 mm and an inner diameter of 6 mm as a shaft tube. The polyester fibers were compressed and bundled to obtain a bundle, and the weight was measured so as to obtain a predetermined dense portion ratio. The bundle was filled into a polypropylene cylinder to produce filling B having one pore size distribution with a first porosity.
 上記製造例1~2で得られた中綿(サンプル)A、Bについて、細孔径分布の有無を下記測定方法により、検証した。 The presence or absence of pore size distribution for the padding (samples) A and B obtained in Production Examples 1 and 2 above was verified using the following measurement method.
〔測定方法:断面の画像解析による内接円直径の分布の測定〕
 供試試料となる中綿(サンプル)A、Bの光学顕微鏡観察結果を基に、空孔分布を測定した。用いた装置及び測定条件は、以下の通りである。
 装置名:材料開発総合パッケージソフトウェア Math2Market製 GeoDict 日産アーク開発プログラム(図13に適用)
測定項目:空孔に対する最大内接円の直径
測定条件:光学顕微鏡写真を画像解析装置に入力し、2値化処理することにより繊維と空孔を分離した。その後、空孔に対して、最大内接円の直径を測定した。空孔径分布は、データ点数の関係から、移動平均値を用いた。
[Measurement method: Measurement of the distribution of inscribed circle diameters by image analysis of cross sections]
The pore distribution was measured based on the results of optical microscope observation of the test specimens, fillings (samples) A and B. The apparatus and measurement conditions used are as follows.
Equipment name: Material development comprehensive package software Math2Market GeoDict Nissan Arc development program (applied to Fig. 13)
Measurement item: diameter of maximum inscribed circle for pores Measurement conditions: Optical microscope photographs were input to an image analyzer and binarized to separate fibers and pores. Then, the diameter of maximum inscribed circle for pores was measured. For the pore size distribution, a moving average value was used due to the number of data points.
 中綿Aの断面を画像解析により、細孔径分布の有無、具体的には、中綿Aの切断面を観察し、その画像分析より細孔径(内接円の直径分布)を求めた。
 測定方法は、得られた中綿A、Bに硬化性樹脂(エン・チオール系樹脂系光考課接着剤:ニチカ社製)を注入し、硬化させた。次に、軸垂直方向に切断し、その断面を研磨し、光学顕微鏡(キーエンス社製VHX-8000)を観察、撮影した。これを画像解析(材料開発総合パッケージソフトウェア Math2Market社製 GeoDic)により、繊維部と空孔部(含浸樹脂部)とを分解した。空孔部分に内接する最大の円分布を、サンプルA、Bともに求めて、図8~図24に示す各結果を得た。
The presence or absence of pore size distribution was determined by image analysis of the cross section of the filling A, specifically, the cut surface of the filling A was observed, and the pore sizes (inscribed circle diameter distribution) were determined by image analysis.
The measurement method was to inject a curable resin (en-thiol resin-based optical evaluation adhesive: manufactured by Nichika Co., Ltd.) into the obtained padding A and B, and harden them. Next, they were cut perpendicular to the axis, the cross section was polished, and observed and photographed with an optical microscope (VHX-8000 manufactured by Keyence Co., Ltd.). The fiber part and the pore part (impregnated resin part) were separated by image analysis (material development comprehensive package software GeoDic manufactured by Math2Market Co., Ltd.). The maximum circle distribution inscribed in the pore part was obtained for both samples A and B, and the results shown in Figures 8 to 24 were obtained.
 図8及び図9は、製造例1、2(サンプルA、B)の中綿の光学顕微鏡断面観察と2値化像の各図面、図10及び図11は、製造例1、2(サンプルA、B)の空孔分布図(空孔部分の内接する最大円)である。図10中の光学顕微鏡断面観察図面は白黒表示であるが、原本は光学顕微鏡断面は緑色、黄色、白色、赤色の四色のカラー表示であり、図10、図11、図15~図20中では「黄色」が円形状の灰色、「白色」が白い点、「赤色」が黒い点、「緑色」は上記「黄、白、赤」以外の全体領域を表す。以下の実施例12~20においても上記と同様に白黒表示であり、原本は光学顕微鏡断面は緑色、黄色、白色、赤色の四色のカラー表示である。
 次に、図12は製造例1、2(サンプルA、B)の空孔径分布(空孔部分の内接する最大の円分布)のグラフ、図13は、製造例1、2(サンプルA、B)の空孔の空間分布(円中心からの距離と空孔面積頻度)の関係を示す各グラフと計測法を説明する図面、図14は製造例1、2(サンプルA、B)の空孔分布(空孔部分に内接する最大の円分布)における閾値を50μm、90μm、100μmとし作図を実施した空孔直径と面積頻度を示すグラフ、図15~図20は製造例1、2(サンプルA、B)の閾値100μm、90μm、50μmの空孔分布(空孔部分に内接する最大の円)の図面、図21は、製造例1、2(サンプルA、B)の円中心からの距離(空孔直径0~100μm未満、空孔直径100μm以上)と空孔直径頻度の関係を示す各図面と計測法を示す図面、図22は、製造例1、2(サンプルA、B)の円中心からの距離(空孔直径0~90μm未満、空孔直径90μm以上)と空孔直径頻度の関係を示す各図面と計測法を示す図面、図23は、製造例1、2(サンプルA、B)の円中心からの距離(空孔直径0~50μm未満、空孔直径50μm以上)と空孔直径頻度の関係を示す各図面と計測法を示す図面、図24は製造例1、2(サンプルA、B)の円中心からの距離と空孔直径頻度の関係を示す各グラフである。
8 and 9 are drawings of optical microscope cross-section observations and binarized images of the filling of Production Examples 1 and 2 (samples A and B), and Figs. 10 and 11 are pore distribution diagrams (maximum circle inscribed in the pore portion) of Production Examples 1 and 2 (samples A and B). The optical microscope cross-section observation diagram in Fig. 10 is displayed in black and white, but the original optical microscope cross-section is displayed in four colors: green, yellow, white, and red, and in Figs. 10, 11, and 15 to 20, "yellow" represents a circular gray, "white" represents a white dot, "red" represents a black dot, and "green" represents the entire area other than the above "yellow, white, and red". The following Examples 12 to 20 are also displayed in black and white as above, and the original optical microscope cross-section is displayed in four colors: green, yellow, white, and red.
Next, FIG. 12 is a graph of the pore size distribution (the largest circle inscribed in the pore portion) of Production Examples 1 and 2 (samples A and B), FIG. 13 is a graph showing the relationship between the spatial distribution of pores (the distance from the circle center and the pore area frequency) of Production Examples 1 and 2 (samples A and B) and a drawing explaining the measurement method, FIG. 14 is a graph showing the pore diameter and area frequency plotted with thresholds of 50 μm, 90 μm, and 100 μm in the pore distribution (the largest circle inscribed in the pore portion) of Production Examples 1 and 2 (samples A and B), FIGS. 15 to 20 are drawings of the pore distribution (the largest circle inscribed in the pore portion) of Production Examples 1 and 2 (samples A and B) with thresholds of 100 μm, 90 μm, and 50 μm, and FIG. 21 is a graph showing the relationship between the spatial distribution of pores (the distance from the circle center and the pore area frequency) of Production Examples 1 and 2 (samples A and B) and a drawing explaining the measurement method, FIG. 22 is each drawing showing the relationship between the distance from the circle center (pore diameter 0 to less than 90 μm, pore diameter 90 μm or more) and the pore diameter frequency for Production Examples 1 and 2 (samples A and B) and a drawing showing the measurement method; FIG. 23 is each drawing showing the relationship between the distance from the circle center (pore diameter 0 to less than 50 μm, pore diameter 50 μm or more) and the pore diameter frequency for Production Examples 1 and 2 (samples A and B) and a drawing showing the measurement method; and FIG. 24 is each graph showing the relationship between the distance from the circle center and the pore diameter frequency for Production Examples 1 and 2 (samples A and B).
 図8~図24の各結果を綜合的に評価すると、空孔直径90μmを境に、製造例1、2の中綿(サンプルA、B)の特徴が表れている。すなわち、図12~14、図21~図24の各結果などを比較考すると、製造例2の中綿(サンプルB)は、90μmより小さい細孔の頻度が高い。内接円90μm未満と90μm以上とに分けて頻度分布を解析すると、90μm未満の頻度は、中心からの半径が0.5mmの領域で、製造例1の中綿(サンプルA)のほうが頻度が高く(密な部分)、90μm以上の頻度は、中心からの半径が0.5mmの領域で、製造例1のサンプルAの頻度が低い。以上の解析より、製造例1の中綿(サンプルA)は、その細孔径に分布があることが判明し、製造例2の中綿(サンプルB)は、その細孔径に分布がないことが判明した。製造例1の中綿(サンプルA)では、径方向中心部に、90μm未満の細孔(細かい部分)の頻度が多いが、この細かい部分の場所は、円周部でも構わない。以上のように、中綿内細孔の内接円の直径分布が、ある領域において差がある場合、細孔径分布があることが確認できた。  When the results of Figures 8 to 24 are evaluated comprehensively, the characteristics of the padding (samples A and B) of Production Examples 1 and 2 are evident at the pore diameter of 90 μm. In other words, when the results of Figures 12 to 14 and Figures 21 to 24 are compared, the padding (sample B) of Production Example 2 has a high frequency of pores smaller than 90 μm. When the frequency distribution is analyzed by dividing the inscribed circle into less than 90 μm and 90 μm or more, the frequency of pores smaller than 90 μm is higher (dense part) in the padding of Production Example 1 in the region with a radius of 0.5 mm from the center, and the frequency of pores larger than 90 μm is lower in Sample A of Production Example 1 in the region with a radius of 0.5 mm from the center. From the above analysis, it was found that the padding (sample A) of Production Example 1 has a distribution of pore diameters, while the padding (sample B) of Production Example 2 has no distribution of pore diameters. In the padding of Production Example 1 (Sample A), there are many pores (fine parts) smaller than 90 μm in the radial center, but the location of these fine parts can also be on the circumference. As described above, it was confirmed that there is a pore size distribution when there is a difference in the diameter distribution of the inscribed circle of the pores in the padding in a certain region.
〔実施例1及び比較例1〕
 製造例1~2で得た中綿(サンプル)A、B、下記構成及び図1~図7に準拠するペン先を有する筆記具、下記組成の筆記具用インクを使用した。ペン先の寸法等は下記に示す大きさ等を使用した。
[Example 1 and Comparative Example 1]
The padding (samples) A and B obtained in Production Examples 1 and 2, a writing instrument having the following configuration and a pen tip conforming to Figures 1 to 7, and a writing instrument ink having the following composition were used. The pen tip dimensions, etc., were as shown below.
〔ペン先20(筆記部25,インク誘導部26、保持体30)の構成〕
 筆記部25:ポリエチレン製焼結芯、気孔率:50%、4×3×6mm、T=3mm、W1=4mm、W2=1.5mm
 インク誘導部26:PET製繊維芯、幅方向長さ:2mm、長手方向長さ:20mm、厚さt:0.8mm
[Configuration of the pen tip 20 (writing part 25, ink guide part 26, holder 30)]
Writing part 25: Sintered polyethylene core, porosity: 50%, 4 x 3 x 6 mm, T = 3 mm, W1 = 4 mm, W2 = 1.5 mm
Ink guide portion 26: PET fiber core, width direction length: 2 mm, length direction length: 20 mm, thickness t: 0.8 mm
 保持体30:アクリル樹脂製、可視光線透過率85%〔スガ試験機社製、多光源分光測色計(MSC-5N)にて反射率を測定し、可視光線透過率とした。〕
 可視部(窓部)33(四角形)の大きさ:S=3.8mm(最大4.5mm)×Y=8mm×幅(厚さ)2.5mm
Holder 30: Made of acrylic resin, visible light transmittance 85% (reflectance was measured with a multi-light source spectrophotometer (MSC-5N) manufactured by Suga Test Instruments Co., Ltd., and the visible light transmittance was determined.)
Size of visible portion (window portion) 33 (rectangle): S = 3.8 mm (maximum 4.5 mm) x Y = 8 mm x width (thickness) 2.5 mm
 筆記具用中綿:上記製造例1~2で得た中綿A~B(φ6×80mm)を用いた。
 外皮:PET製フィルム
 筆記具本体10、キャップ50、60:ポリプロピレン(PP)製
 ペン先40:ポリエステル製繊維束芯、気孔率60%、φ2×40mm
 摩擦体52:スチレン-エチレン-プロピレン-スチレン(SEPS)、スチレン-エチレン-エチレン-プロピレン-スチレン(SEEPS)及びスチレン-エチレン-ブタジエン-スチレン(SEBS)からなる群から選択されるスチレン系エラストマー
Writing implement padding: The padding A to B (φ6×80 mm) obtained in Production Examples 1 and 2 above were used.
Outer cover: PET film Writing instrument body 10, caps 50, 60: Made of polypropylene (PP) Pen tip 40: Polyester fiber bundle core, porosity 60%, φ2×40 mm
Friction body 52: a styrene-based elastomer selected from the group consisting of styrene-ethylene-propylene-styrene (SEPS), styrene-ethylene-ethylene-propylene-styrene (SEEPS), and styrene-ethylene-butadiene-styrene (SEBS).
(筆記具用インク組成:インク色:蛍光桃色)
 筆記具用インクとして、下記組成のインク(合計100質量%)を使用した。
 分散液:         50質量%
 トリエタノールアミン:   2質量%
 エチレングリコール:    5質量%
 界面活性剤:      0.5質量%
 蒸留水:       42.5質量%
 pH:4.0
 粘度(25℃):3.5mPa・s(コンプレート型粘度計、TOKIMEC社製、TV-20)
 表面張力(25℃):35mN/m(自動表面張力計、協和界面科学社製、DY-300)
(Writing ink composition: Ink color: fluorescent pink)
As the ink for the writing instrument, an ink having the following composition (total 100% by mass) was used.
Dispersion: 50% by weight
Triethanolamine: 2% by mass
Ethylene glycol: 5% by mass
Surfactant: 0.5% by mass
Distilled water: 42.5% by mass
pH: 4.0
Viscosity (25°C): 3.5 mPa·s (Complate type viscometer, TOKIMEC, TV-20)
Surface tension (25°C): 35 mN/m (automatic surface tensiometer, Kyowa Interface Science Co., Ltd., DY-300)
 この図1~図7準拠の実施例1のペン先20を用いた筆記具では、中綿Aは、細孔径が2種以上の分布を持つものであるので、ペン先20、40に対して確実にインクを供給でき、インク拡散性を高めることができものとなっている。また、中綿Aからのインクの誘導を流出性のある薄板状の開放型のインク誘導部26で筆記部25まで誘導するものであり、この筆記部25は樹脂製焼結芯、インク誘導部26は繊維束芯から構成されおり、気孔率に対する毛管力の強さが大きく、しかも、その厚さは極めて薄くでき、インク流出性が良好であり、インク誘導部を太く設計する必要がなく、可視部33の最小幅Sが3.7mm以上であり、その長さYが7.4mm以上であるので、筆記方向を視認することができる可視部33の有効面積の最大化と見やすさ、並びに、筆記のしやすさを高度に両立できるものとなっている。
 また、インク誘導部26が筆記の際に手前側に配置されるので、自然な筆記角度をつけたときにも、インク誘導部26が進行方向の文字にかかわらず、可視部33の見通しが更によいものとなり、右利きで左から右方向に筆記する際に、可視部33で筆記方向を視認しながら筆記部25で描線を引くことなどができ、インク流出性も良好で有り、インクの流出性を損なうことなく、可視部33の格段の見やすさ、筆記のしやすさを達成することができる筆記具が得られることが確認された。また、杉板の上から1mの高さから落下させた後でも、掠れることなく筆記できることが確認できた。
In the writing implement using the pen tip 20 of Example 1 based on Figures 1 to 7, the inner batting A has a distribution of two or more types of pore diameters, so that ink can be reliably supplied to the pen tip 20, 40 and ink diffusibility can be improved. In addition, the ink from the inner batting A is guided to the writing part 25 by an open type ink guide part 26 in a thin plate shape with flowability, the writing part 25 is composed of a resin sintered core, and the ink guide part 26 is composed of a fiber bundle core, so that the capillary force is strong relative to the porosity, and the thickness can be made extremely thin, so that the ink flowability is good, and there is no need to design the ink guide part to be thick, and the minimum width S of the visible part 33 is 3.7 mm or more, and the length Y is 7.4 mm or more, so that the effective area of the visible part 33 where the writing direction can be visually recognized, the ease of visibility, and the ease of writing can be highly simultaneously achieved.
In addition, since the ink guide portion 26 is positioned on the front side when writing, even when a natural writing angle is used, the visibility of the visible portion 33 is improved regardless of the direction of the ink guide portion 26, and when a right-handed person writes from left to right, the user can draw a line with the writing portion 25 while visually checking the writing direction with the visible portion 33, and the ink outflow is also good, and it was confirmed that a writing instrument that can achieve significantly easier visibility and writing of the visible portion 33 without impairing the outflow of ink is obtained. It was also confirmed that writing can be done without smearing even after being dropped from a height of 1m onto a cedar board.
 更に、自動筆記装置にこの筆記具をセットして、JIS S6037に準拠した試験方法に従い、上質紙面上で筆記角度65°、筆記荷重1N、速度7cm/sで直線筆記後、筆記した描線状態を目視にて確認したところ、上記好ましいインク組成のものを使用しているため、ペン先20のインク流量(10mg/m)も良好で、ペン先の乾燥を抑えながらも、描線の乾燥性、インクの低温安定性に優れ、描線に滲みや裏抜けのない機能を発現することが判った。 Furthermore, this writing instrument was set in an automatic writing device, and a straight line was written on high-quality paper at a writing angle of 65°, a writing load of 1N, and a speed of 7cm/s according to the test method compliant with JIS S6037.The condition of the written line was then visually checked, and it was found that, because the above-mentioned preferred ink composition was used, the ink flow rate (10mg/m) of the pen tip 20 was good, and while the drying of the pen tip was suppressed, the ink had excellent drying properties and low-temperature stability, and the lines were free of bleeding or bleed-through.
 これに対して、細孔径分布を持たない中綿Bを搭載した比較例1の筆記具では、ペン先20、40に対して、インク供給に1時間以上も時間を要し、また100本中5本は、1日後もペン先にインクが含浸しておらず、インクを供給できないものもあった。 In contrast, in the writing instrument of Comparative Example 1, which is equipped with padding B that does not have a pore size distribution, it took more than an hour to supply ink to nibs 20 and 40, and in five of the 100 nibs, the nib was not saturated with ink even after one day, and in some cases ink could not be supplied.
 本実施形態の筆記具用中綿は、アンダーライン(登録商標)ペン、油性マーカー、水性マーカーと呼ばれるマーキングタイプの筆記具用の中綿として好適に適用することができる。 The writing implement batting of this embodiment can be suitably used as batting for marking-type writing implements such as Underline (registered trademark) pens, oil-based markers, and water-based markers.
 10 筆記具本体
 11 後軸
 16 先軸
 17 中綿(インク吸蔵体)
 20 ペン先
 25 筆記部
 26 インク誘導部
 30 保持体
 33 可視部
10 Writing instrument body 11 Rear barrel 16 Front barrel 17 Filling (ink occluding body)
20 Pen tip 25 Writing part 26 Ink guide part 30 Holder 33 Visible part

Claims (3)

  1.  細孔径分布が2種以上の分布を持つ中綿を有することを特徴とする筆記具。 A writing instrument characterized by having a filling with two or more types of pore size distribution.
  2.  前記中綿は、断面画像解析により90μm未満の頻度が、中心から半径が0.5mmの領域で高いことを特徴とする請求項1記載の筆記具。 The writing implement of claim 1, characterized in that the frequency of particles smaller than 90 μm in the filling is high in an area with a radius of 0.5 mm from the center, as determined by cross-sectional image analysis.
  3.  前記中綿に吸蔵するインク組成物は、染料を含む樹脂微粒子顔料を含有するインク組成物であることを特徴とする請求項1又は2記載の筆記具。 The writing instrument according to claim 1 or 2, characterized in that the ink composition absorbed in the padding is an ink composition containing a resin fine particle pigment containing a dye.
PCT/JP2023/036319 2022-10-06 2023-10-05 Writing implement WO2024075805A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022161797A JP2024055129A (en) 2022-10-06 2022-10-06 Writing implement padding
JP2022-161797 2022-10-06
JP2022-161798 2022-10-06
JP2022161798A JP2024055130A (en) 2022-10-06 2022-10-06 Writing implements

Publications (1)

Publication Number Publication Date
WO2024075805A1 true WO2024075805A1 (en) 2024-04-11

Family

ID=90608110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036319 WO2024075805A1 (en) 2022-10-06 2023-10-05 Writing implement

Country Status (1)

Country Link
WO (1) WO2024075805A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53104318A (en) * 1977-02-23 1978-09-11 Daicel Ltd Interna lead for writing felt pen
US20060163152A1 (en) * 2005-01-21 2006-07-27 Ward Bennett C Porous composite materials comprising a plurality of bonded fiber component structures
JP2015120257A (en) * 2013-12-20 2015-07-02 三菱鉛筆株式会社 Writing utensil using inner cotton for preventing spout of ink
JP2017094526A (en) * 2015-11-19 2017-06-01 株式会社パイロットコーポレーション Thermochromic writing instrument
JP2020059213A (en) * 2018-10-10 2020-04-16 三菱鉛筆株式会社 Writing instrument
JP2021115761A (en) * 2020-01-24 2021-08-10 テイボー株式会社 Pen point, relay core, and liquid applicator including the pen point or relay core

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53104318A (en) * 1977-02-23 1978-09-11 Daicel Ltd Interna lead for writing felt pen
US20060163152A1 (en) * 2005-01-21 2006-07-27 Ward Bennett C Porous composite materials comprising a plurality of bonded fiber component structures
JP2015120257A (en) * 2013-12-20 2015-07-02 三菱鉛筆株式会社 Writing utensil using inner cotton for preventing spout of ink
JP2017094526A (en) * 2015-11-19 2017-06-01 株式会社パイロットコーポレーション Thermochromic writing instrument
JP2020059213A (en) * 2018-10-10 2020-04-16 三菱鉛筆株式会社 Writing instrument
JP2021115761A (en) * 2020-01-24 2021-08-10 テイボー株式会社 Pen point, relay core, and liquid applicator including the pen point or relay core

Similar Documents

Publication Publication Date Title
JP6132900B2 (en) Writing instrument
JP7011893B2 (en) Stationery
CN112533765B (en) Writing implement
US20130064595A1 (en) Writing instrument
US9566818B2 (en) Writing instrument
TW202126499A (en) Writing implement
WO2024075805A1 (en) Writing implement
US11427027B2 (en) Writing implement
JP2024055130A (en) Writing implements
JP6655386B2 (en) Writing implement
JP2024055129A (en) Writing implement padding
JP7258978B2 (en) Pen core for applicator
JP2014050970A (en) Writing instrument
JP2018134736A (en) Writing instrument
JP6143429B2 (en) Writing instrument
JP7040956B2 (en) Stationery
JP7042556B2 (en) Stationery
JP7224136B2 (en) writing instrument
WO2021029255A1 (en) Writing implement
JP7418199B2 (en) writing implements
JP2017124544A (en) Writing instrument
JP2017185828A (en) Writing instrument
JP7100461B2 (en) Stationery
JP2019135093A (en) Pen tip and writing instrument with the pen tip
JP2020062780A (en) Writing utensil