WO2024062653A1 - Live wire diagnostic system and live wire diagnostic method - Google Patents

Live wire diagnostic system and live wire diagnostic method Download PDF

Info

Publication number
WO2024062653A1
WO2024062653A1 PCT/JP2023/009569 JP2023009569W WO2024062653A1 WO 2024062653 A1 WO2024062653 A1 WO 2024062653A1 JP 2023009569 W JP2023009569 W JP 2023009569W WO 2024062653 A1 WO2024062653 A1 WO 2024062653A1
Authority
WO
WIPO (PCT)
Prior art keywords
current transformer
frequency characteristic
live line
diagnostic system
current
Prior art date
Application number
PCT/JP2023/009569
Other languages
French (fr)
Japanese (ja)
Inventor
淳 額賀
深大 佐藤
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2024062653A1 publication Critical patent/WO2024062653A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/16Measuring impedance of element or network through which a current is passing from another source, e.g. cable, power line
    • G01R27/18Measuring resistance to earth, i.e. line to ground
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/56Testing of electric apparatus

Definitions

  • the present invention relates to a live line diagnostic system and a live line diagnostic method.
  • High-voltage equipment such as switchboards, switchgear, and switching equipment are used for a long period of time after being installed, and as a result, deterioration over time such as a decline in insulation performance may occur. It is generally known that partial discharge occurs when the insulation performance of power equipment deteriorates. If electrical discharge (hereinafter also referred to as partial discharge) repeatedly occurs inside power equipment, it may lead to insulation breakdown, which may lead to disasters such as fire. Therefore, in order to safely operate power equipment, it is important to detect the insulation performance of equipment.
  • the load electrical equipment
  • a power outage is assumed, and an insulation tester is installed in the circuit to measure the resistance.
  • Patent Document 1 discloses a technique for detecting insulation resistance shown below. Specifically, a low-frequency signal is injected into the ground wire of the device using an injection transformer, and this signal voltage flows through the insulation resistance and ground capacitance, and the current that returns to the ground wire is detected by the current transformer. A method is used in which the insulation resistance of the electrical circuit is measured by extracting only the leakage current component of the measurement low-frequency signal using a filter and then detecting only the insulation resistance component using a synchronous rectifier.
  • the measurable insulation resistance value is determined by the noise voltage of the filter following the current transformer and the magnitude of the noise voltage included within the passband.
  • the method of injecting a low frequency signal using a transformer in order to measure in a live line state as disclosed in Patent Document 1 has a problem in that the measurable resistance value is limited by noise in the filter section.
  • an object of the present invention is to provide a live line diagnostic system that can detect the insulation state inside a device with high accuracy in a live line state.
  • a live line diagnostic system is a live line diagnostic system for diagnosing the state of ground insulation of equipment in a live line state, the system including a first current transformer provided on the input side of a power line of the equipment. and a second current transformer provided on the output side of the power line of the device, and a processing section that is connected to the first current transformer and the second current transformer and performs a predetermined process.
  • a diagnostic device, and the processing unit measures the outputs of the first current transformer and the second current transformer, respectively, at the start of operation of the device, and determines the output of the first current transformer.
  • a first frequency characteristic and a second frequency characteristic of the second current transformer are obtained, a first ratio of the first frequency characteristic and the second frequency characteristic is determined as an initial value, and the process After operation of the device, the section measures the outputs of the first current transformer and the second current transformer, and determines the third frequency characteristic of the first current transformer and the third frequency characteristic of the second current transformer.
  • Obtain each fourth frequency characteristic of the current transformer determine a second ratio of the third frequency characteristic and the fourth frequency characteristic, and calculate the amount of change of the second ratio from the first ratio.
  • the method is characterized in that deterioration of the ground insulation of the device is detected when the value exceeds a predetermined threshold value.
  • the insulation state inside a device can be detected with high accuracy in a live line state.
  • FIG. 2 is a schematic diagram showing the device configuration of the live line diagnostic system of the present embodiment.
  • FIG. 3 is a vector diagram showing components of leakage current of the device. It is a figure which shows the calibration of a current transformer.
  • FIG. 3 is a schematic diagram showing changes in output characteristics of a current transformer.
  • FIG. 3 is a schematic diagram showing a direct comparison of frequency characteristics.
  • FIG. 5 is a diagram showing a diagnostic algorithm corresponding to FIG. 4;
  • FIG. 3 is a schematic diagram showing diagnosis using differential signals.
  • FIG. 6 is a diagram showing a diagnostic algorithm corresponding to FIG. 5;
  • a current transformer 2 is provided on the entrance side of an electric circuit on a panel 1 such as a switchboard.
  • a variable impedance 3 and a variable capacitor 4 are arranged in parallel in the current transformer 2.
  • a current transformer 5 is provided on the outlet side of the electrical circuit of the panel 1.
  • a variable impedance 6 and a variable capacitor 7 are also arranged in parallel with the current transformer 5.
  • a voltage divider 13 is arranged on the entrance side of the electric circuit of the panel 1.
  • Diagnostic device 100 which includes a processing unit that performs predetermined processing.
  • the processing unit has a Fourier transform unit 8, a signal storage and comparison operation unit 9, a calibration circuit 10, a difference processing unit 12, and switches 15 and 16.
  • the processing section switches the switches 15 and 16 to output the output signals of the current transformer 2 and the current transformer 5 to the calibration circuit 10 or the Fourier transform section 8, the signal storage/comparison calculation section 9, and the difference processing section 12, respectively. control so that
  • the current transformer 2 and the current transformer 5 are installed outside the power line 11 so as to be electrically insulated from the internal wiring of the device.
  • the processing unit of the diagnostic device 100 detects deterioration of the ground insulation of the equipment in a live line state.
  • the equipment in the panel 1 can be divided into resistance Ra and capacitance Ca. If the equipment in the panel 1 is in a normal state, the leakage current ⁇ Ia from the equipment is extremely small, and the earth insulation resistance of the equipment is several G ⁇ or more.
  • the leakage current ⁇ Ia is represented by a composite vector ofInvent and Iac.
  • the leakage current ⁇ Ia increases and the vector angle ⁇ decreases.
  • the leakage current is a very small current
  • noise that flows into the signal detected by the current transformer has a significant effect on the measurement accuracy.
  • common mode noise flows into both current transformer 2 and current transformer 5
  • theoretically the leakage current component can be extracted by calculating the difference between the output signals of current transformer 2 and current transformer 5.
  • each current transformer has its own output characteristics, and due to differences in output characteristics, the output signal will differ even for the same input signal. Therefore, when extracting a minute signal, there is a high possibility that the signal will be buried in error components if only the difference processing is performed.
  • the current transformers 2 and 5 are calibrated at at least two types of current values (I1, I2) smaller than the rated current at the time of starting up the equipment. to match the output characteristics of current transformer 2 and current transformer 5. This minimizes the influence of noise on the differential signal.
  • I1, I2 the horizontal axis is the input current I
  • V the transformer output V.
  • the current transformer is Calibration of current transformer 2 and current transformer 5 is performed using a plurality of current values to make the output characteristics of current transformer 2 and current transformer 5 uniform.
  • the frequency characteristics of each individual signal are held as initial values at the start of operation.
  • the impedance of the panel 1 changes and the ground resistance value decreases.
  • board 1 exhibits characteristics close to a low-pass filter (LPF). Therefore, the frequency characteristics of the output signal of the current transformer 2 and the frequency characteristics of the current transformer 5 differ due to the insertion of the panel 1 between them. Specifically, in the current transformer 5, the high frequency component decreases (see FIG. 4).
  • LPF low-pass filter
  • the determination method in FIG. 4 is based on the ratio of the frequency characteristics of current transformer 2 and the frequency characteristics of current transformer 5 at the initial value at the start of operation, and the ratio of the frequency characteristics of current transformer 2 and the frequency characteristic of current transformer 5 after the start of operation. This method compares the ratio of frequency characteristics.
  • the advantage of this determination method is that by using the ratio as an evaluation function and comparing the ratio of frequency characteristics at the start of operation and after the start of operation, changes in the absolute amount of the signal due to factors other than deterioration factors can be offset.
  • the current transformers 2 and 5 are calibrated to align the output characteristics of the current transformers 2 and 5 at a current value smaller than the rated current (step 601 ).
  • the outputs of current transformer 2 and current transformer 5 are measured to obtain frequency characteristics (step 602). Specifically, the frequency characteristics of the output signals of the current transformers 2 and 5 are acquired by the Fourier transform unit 8 and the signal storage/comparison calculation unit 9, and the output signals of the current transformers 2 and 5 are obtained by obtaining the frequency characteristics of the output signals of the current transformers 2 and 5. is stored as a frequency component.
  • step 603 the ratio of the frequency characteristics of current transformer 2 and current transformer 5 is calculated (step 603), and the above ratio is set as an initial value (step 604).
  • the signals of current transformer 2 and current transformer 5 are acquired to acquire frequency characteristics (step 605).
  • the ratio of the frequency characteristics of current transformer 2 and current transformer 5 is calculated (step 606).
  • step 607 it is determined whether the amount of change in the above ratio (after operation has started) from its initial value exceeds a threshold value (step 607). If the amount of change in the above ratio from its initial value exceeds the threshold value, a warning of a drop in resistance is issued (step 608). If the amount of change in the above ratio from its initial value does not exceed the threshold value, the process returns to step 605.
  • the fundamental frequency of the power line 11 is a commercial frequency wave, it also contains harmonic components.
  • the ground resistance is so large that it can be considered almost infinite. Therefore, the frequency components of the currents flowing through current transformer 2 and current transformer 5 are equal.
  • the high frequency component of the intensity is small, changes in the high frequency component can also be evaluated by taking the ratio.
  • the ratio of the frequency characteristics of current transformer 2 and current transformer 5 is close to 1. This ratio is stored as an initial value.
  • the grounding resistance decreases.
  • the impedance of the equipment changes, and high-frequency components leak through the capacitive components of the equipment, causing the equipment to act as an LPF. This reduces the high-frequency components in the frequency characteristics of current transformer 5.
  • a change also appears in the ratio between current transformer 2 and current transformer 5, and if the value of current transformer 5 is used as the numerator, the high-frequency components of the ratio value will decrease.
  • a comparison is made with the initial value of the ratio, and if frequency components exceeding the threshold value are generated, an alarm is issued to warn of an abnormality in the insulation resistance.
  • the current transformer 2 and the current transformer 5 are installed outside the power line 11, and are electrically insulated from the wiring inside the panel 1, so that the current transformer 2 and the current transformer 5 are connected even when the line is live.
  • the output signal of is detectable. By analyzing this output signal, the state of insulation deterioration of the panel 1 in the live wire state can be determined with high accuracy.
  • the determination method shown in FIG. 5 is a method of directly comparing the initial frequency characteristics (at the start of operation) and the frequency characteristics after an elapsed time (after the start of operation) of the same current transformer 5.
  • current transformer 2 and current transformer 5 are calibrated to make the output characteristics of current transformer 2 and current transformer 5 the same at a current value smaller than the rated current (step 801 ).
  • the output of the current transformer 5 is measured to obtain frequency characteristics (step 802). Specifically, the frequency characteristics of the output signal of the current transformer 5 are acquired by the Fourier transform section 8 and the signal storage/comparison calculation section 9, and the output signal of the current transformer 5 is stored as a frequency component.
  • the output of the current transformer 5 is set to an initial value (step 803).
  • the signal of the current transformer 5 is acquired and the frequency characteristics are acquired (step 804).
  • step 805 it is determined whether the amount of change from the initial value of the frequency characteristic (after the start of operation) exceeds a threshold value (step 805). If the amount of change from the initial value of the frequency characteristic exceeds the threshold value, a warning of a decrease in resistance is issued (step 806). If the amount of change from the initial value of the frequency characteristic does not exceed the threshold, the process returns to step 804.
  • Example 2 will be described with reference to FIG.
  • the difference signal between the current transformer 2 and the current transformer 5 is acquired by the difference processing section 12 (see FIG. 1), and this difference signal is used.
  • the frequency characteristics at the start are held as initial values.
  • insulation deterioration is measured by comparing the frequency characteristics of the output signal after the start of operation and detecting that the amount of change exceeds a threshold value.
  • the live line diagnostic system is capable of highly accurately detecting the insulation state inside the device in a live line state.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

This diagnostic device compares the frequency characteristics of a current transformer at the start of the operation and the frequency characteristics of the current transformer after the start of the operation, and, when an amount of change thereof has exceeded a prescribed threshold value, detects deterioration of ground insulation of a device.

Description

活線診断システム及び活線診断方法Live line diagnostic system and live line diagnostic method
 本発明は、活線診断システム及び活線診断方法に関する。 The present invention relates to a live line diagnostic system and a live line diagnostic method.
 配電盤、スイッチギヤ、開閉機器等の高電圧機器は、設置されてから長期間使用され、それに伴い絶縁性能の低下等の経年劣化が生じ得る。電力設備の絶縁性能が低下すると、部分放電が発生することが一般的に知られている。電力設備内部で放電(以下、部分放電ともいう)が繰返し発生すると絶縁破壊に至り、火災等の災害につながる可能性がある。したがって、電力設備を安全に運用するには、機器の絶縁性能を検出することが重要である。 High-voltage equipment such as switchboards, switchgear, and switching equipment are used for a long period of time after being installed, and as a result, deterioration over time such as a decline in insulation performance may occur. It is generally known that partial discharge occurs when the insulation performance of power equipment deteriorates. If electrical discharge (hereinafter also referred to as partial discharge) repeatedly occurs inside power equipment, it may lead to insulation breakdown, which may lead to disasters such as fire. Therefore, in order to safely operate power equipment, it is important to detect the insulation performance of equipment.
 通常、絶縁抵抗を測定する際には負荷(電気機器)を切り離した状態、つまり停電状態として絶縁抵抗計を回路に設置し、抵抗を計測している。 Normally, when measuring insulation resistance, the load (electrical equipment) is disconnected, i.e., a power outage is assumed, and an insulation tester is installed in the circuit to measure the resistance.
 また、特許文献1には、下記に示す絶縁抵抗を検出する技術が開示されている。具体的には、注入用変圧器により機器に低周波信号を接地線に注入し、この信号電圧により絶縁抵抗および対地静電容量を流れ、接地線に帰還する電流を変流器で検出し、フィルターで測定用低周波信号の漏洩電流成分のみを取り出した後、同期整流部で絶縁抵抗成分のみを検出することで電路の絶縁抵抗を測定する方法が用いられる。 Further, Patent Document 1 discloses a technique for detecting insulation resistance shown below. Specifically, a low-frequency signal is injected into the ground wire of the device using an injection transformer, and this signal voltage flows through the insulation resistance and ground capacitance, and the current that returns to the ground wire is detected by the current transformer. A method is used in which the insulation resistance of the electrical circuit is measured by extracting only the leakage current component of the measurement low-frequency signal using a filter and then detecting only the insulation resistance component using a synchronous rectifier.
 この方法では、測定可能な絶縁抵抗値は変流器に続くフィルターのノイズ電圧と通過帯域内に含まれるノイズ電圧の大きさにより決まる。 In this method, the measurable insulation resistance value is determined by the noise voltage of the filter following the current transformer and the magnitude of the noise voltage included within the passband.
特開平3-209177号公報Japanese Patent Application Publication No. 3-209177
 従来の絶縁抵抗測定では,機器を停電状態として抵抗計測するため、その期間は設備が稼働できなくなり,設備稼働率が低下する問題がある。 In conventional insulation resistance measurements, resistance is measured while the equipment is in a power outage state, which causes the equipment to be unable to operate during that period, resulting in a reduction in equipment availability.
 また、特許文献1の活線状態で計測するために変圧器により低周波信号を注入する方法では、フィルター部でのノイズにより計測可能な抵抗値が制限される問題がある。 Furthermore, the method of injecting a low frequency signal using a transformer in order to measure in a live line state as disclosed in Patent Document 1 has a problem in that the measurable resistance value is limited by noise in the filter section.
 そこで、本発明の目的は、活線診断システムであって、活線状態で機器内部の絶縁状態を高精度に検出することにある。 Therefore, an object of the present invention is to provide a live line diagnostic system that can detect the insulation state inside a device with high accuracy in a live line state.
 本発明の一態様の活線診断システムは、活線状態で機器の対地絶縁の状態を診断する活線診断システムであって、前記機器の電力線の入力側に設けられた第1の変流器と、前記機器の前記電力線の出力側に設けられた第2の変流器と、前記第1の変流器と前記第2の変流器に接続され、所定の処理を行う処理部を含む診断装置とを有し、前記処理部は、前記機器の運用開始時に、前記第1の変流器と前記第2の変流器の出力をそれぞれ計測して、前記第1の変流器の第1の周波数特性と前記第2の変流器の第2の周波数特性をそれぞれ取得し、前記第1の周波数特性と前記第2の周波数特性の第1の比を初期値として求め、前記処理部は、前記機器の運用後に、前記第1の変流器と前記第2の変流器の出力をそれぞれ計測して、前記第1の変流器の第3の周波数特性と前記第2の変流器の第4の周波数特性をそれぞれ取得し、前記第3の周波数特性と前記第4の周波数特性の第2の比を求め、前記第2の比の前記第1の比からの変化量が所定の閾値を超えた場合に、前記機器の前記対地絶縁の劣化を検出することを特徴とする。 A live line diagnostic system according to one aspect of the present invention is a live line diagnostic system for diagnosing the state of ground insulation of equipment in a live line state, the system including a first current transformer provided on the input side of a power line of the equipment. and a second current transformer provided on the output side of the power line of the device, and a processing section that is connected to the first current transformer and the second current transformer and performs a predetermined process. a diagnostic device, and the processing unit measures the outputs of the first current transformer and the second current transformer, respectively, at the start of operation of the device, and determines the output of the first current transformer. A first frequency characteristic and a second frequency characteristic of the second current transformer are obtained, a first ratio of the first frequency characteristic and the second frequency characteristic is determined as an initial value, and the process After operation of the device, the section measures the outputs of the first current transformer and the second current transformer, and determines the third frequency characteristic of the first current transformer and the third frequency characteristic of the second current transformer. Obtain each fourth frequency characteristic of the current transformer, determine a second ratio of the third frequency characteristic and the fourth frequency characteristic, and calculate the amount of change of the second ratio from the first ratio. The method is characterized in that deterioration of the ground insulation of the device is detected when the value exceeds a predetermined threshold value.
 本発明の一態様によれば、活線診断システムにおいて、活線状態で機器内部の絶縁状態を高精度に検出することができる。 According to one aspect of the present invention, in a live line diagnostic system, the insulation state inside a device can be detected with high accuracy in a live line state.
本実施例の活線診断システムの装置構成を示す模式図である。FIG. 2 is a schematic diagram showing the device configuration of the live line diagnostic system of the present embodiment. 機器の漏れ電流の成分を示すベクトル図である。FIG. 3 is a vector diagram showing components of leakage current of the device. 変流器のキャリブレーションを示す図である。It is a figure which shows the calibration of a current transformer. 変流器の出力特性の変化を示す模式図である。FIG. 3 is a schematic diagram showing changes in output characteristics of a current transformer. 周波数特性の直接比較を示す模式図である。FIG. 3 is a schematic diagram showing a direct comparison of frequency characteristics. 図4に対応する診断アルゴリズムを示す図である。FIG. 5 is a diagram showing a diagnostic algorithm corresponding to FIG. 4; 差分信号による診断を示す模式図である。FIG. 3 is a schematic diagram showing diagnosis using differential signals. 図5に対応する診断アルゴリズムを示す図である。FIG. 6 is a diagram showing a diagnostic algorithm corresponding to FIG. 5;
 以下、図面を用いて本発明の実施例を説明する。なお、各図面において、同一の構成については同一の符号を付し、重複する部分についてはその詳細な説明は省略する。 Embodiments of the present invention will be described below with reference to the drawings. Note that in each drawing, the same components are designated by the same reference numerals, and detailed explanations of overlapping parts will be omitted.
 図1を参照して、実施例1の活線診断システムの装置構成について説明する。
  配電盤などの盤1の電路の入り口側には変流器2が設けられている。変流器2には並列に可変インピーダンス3と可変容量4が配置されている。盤1の電路の出口側には変流器5を設けられている。変流器5にも並列に可変インピーダンス6と可変容量7が配置されている。盤1の電路の入り口側には、分圧器13が配置されている。
Referring to FIG. 1, the device configuration of the live line diagnostic system of Example 1 will be described.
A current transformer 2 is provided on the entrance side of an electric circuit on a panel 1 such as a switchboard. A variable impedance 3 and a variable capacitor 4 are arranged in parallel in the current transformer 2. A current transformer 5 is provided on the outlet side of the electrical circuit of the panel 1. A variable impedance 6 and a variable capacitor 7 are also arranged in parallel with the current transformer 5. A voltage divider 13 is arranged on the entrance side of the electric circuit of the panel 1.
 変流器2と変流器5には、所定の処理を行う処理部を含む診断装置100が接続されている。ここで、処理部は、フーリエ変換部8、信号記憶・比較演算部9、キャリブレーション回路10、差分処理部12及びスイッチ15、16を有する。 Current transformer 2 and current transformer 5 are connected to diagnostic device 100, which includes a processing unit that performs predetermined processing. Here, the processing unit has a Fourier transform unit 8, a signal storage and comparison operation unit 9, a calibration circuit 10, a difference processing unit 12, and switches 15 and 16.
 処理部は、スイッチ15、16を切り替えて、変流器2と変流器5の出力信号がキャリブレーション回路10又はフーリエ変換部8、信号記憶・比較演算部9及び差分処理部12にそれぞれ出力されるように制御する。 The processing section switches the switches 15 and 16 to output the output signals of the current transformer 2 and the current transformer 5 to the calibration circuit 10 or the Fourier transform section 8, the signal storage/comparison calculation section 9, and the difference processing section 12, respectively. control so that
 変流器2と変流器5は、機器の内部配線とは電気的に絶縁されるように電力線11の外部に設置されている。診断装置100の処理部は、活線状態で機器の対地絶縁の劣化を検出する。 The current transformer 2 and the current transformer 5 are installed outside the power line 11 so as to be electrically insulated from the internal wiring of the device. The processing unit of the diagnostic device 100 detects deterioration of the ground insulation of the equipment in a live line state.
 盤1内の機器は抵抗分Raと静電容量Caに分けて考えることができる。盤1内の機器が正常な状態であれば機器からの漏れ電流ΔIaは極めて小さく、機器の対地絶縁抵抗は数GΩ以上である。機器の抵抗分Raを流れる電流Iarと静電容量Caを流れるIacを図2に示すベクトル図で示すと漏れ電流ΔIaはIarとIacの合成ベクトルで表される。 The equipment in the panel 1 can be divided into resistance Ra and capacitance Ca. If the equipment in the panel 1 is in a normal state, the leakage current ΔIa from the equipment is extremely small, and the earth insulation resistance of the equipment is several GΩ or more. When the current Iar flowing through the resistance Ra of the device and Iac flowing through the capacitance Ca are shown in the vector diagram shown in FIG. 2, the leakage current ΔIa is represented by a composite vector of Iar and Iac.
 この際、機器の劣化や汚れにより絶縁抵抗Raが低下すると、漏れ電流ΔIaが大きくなり、ベクトルの角度δが小さくなる。盤1の電路の入り口部への流入電流をIaとし,出口部からの流出電流をIa’とすると,漏れ電流ΔIaは、ΔIa=Ia-Ia’で表される。このため、変流器2と変流器5の出力信号の差分から漏れ電流ΔIaを検出することが可能である。 At this time, if the insulation resistance Ra decreases due to equipment deterioration or dirt, the leakage current ΔIa increases and the vector angle δ decreases. When the inflow current to the entrance of the electric circuit of the panel 1 is Ia, and the outflow current from the outlet is Ia', the leakage current ΔIa is expressed as ΔIa=Ia-Ia'. Therefore, it is possible to detect leakage current ΔIa from the difference between the output signals of current transformer 2 and current transformer 5.
 しかしながら、漏れ電流が微小電流であるため変流器で検出する信号に流入するノイズが測定精度に大きく影響する。この微小電流を検出するためにはノイズの影響を極力低減する必要がある。コモンモードのノイズは変流器2と変流器5共に流入するため、理論的には変流器2と変流器5の出力信号を差分することで漏れ電流成分が抽出できる。 However, because the leakage current is a very small current, noise that flows into the signal detected by the current transformer has a significant effect on the measurement accuracy. In order to detect this very small current, it is necessary to reduce the effects of noise as much as possible. Because common mode noise flows into both current transformer 2 and current transformer 5, theoretically the leakage current component can be extracted by calculating the difference between the output signals of current transformer 2 and current transformer 5.
 しかし、実際には変流器個々には出力特性があり、出力特性の違いにより同一の入力信号でも出力信号が異なることになる。そのため、微小信号の抽出において単純に差分処理のみでは誤差成分に埋もれてしまう可能性が高い。 However, in reality, each current transformer has its own output characteristics, and due to differences in output characteristics, the output signal will differ even for the same input signal. Therefore, when extracting a minute signal, there is a high possibility that the signal will be buried in error components if only the difference processing is performed.
 そこで、本実施例1では、図3に示すように、機器の立ち上げ時に定格電流よりも小さく、少なくとも2種類以上の電流値(I1、I2)で変流器2と変流器5をキャリブレーションし、変流器2と変流器5の出力特性を揃える。これにより差分信号におけるノイズの影響を最小限とする。ここで、図3において、横軸は入力電流Iであり、縦軸は変圧器出力Vである。 Therefore, in the first embodiment, as shown in FIG. 3, the current transformers 2 and 5 are calibrated at at least two types of current values (I1, I2) smaller than the rated current at the time of starting up the equipment. to match the output characteristics of current transformer 2 and current transformer 5. This minimizes the influence of noise on the differential signal. Here, in FIG. 3, the horizontal axis is the input current I, and the vertical axis is the transformer output V.
 このように、実施例1では、変流器2に配置された可変インピーダンス3と可変容量4及び変流器5に配置された可変インピーダンス6と可変容量7をそれぞれ調整することにより、変流器2と変流器5のキャリブレーションを複数の電流値で実施して変流器2と変流器5の出力特性を揃える。 In this way, in the first embodiment, the current transformer is Calibration of current transformer 2 and current transformer 5 is performed using a plurality of current values to make the output characteristics of current transformer 2 and current transformer 5 uniform.
 次に、図4、図5を参照して、機器の絶縁抵抗の変化の判定方法について説明する。 Next, a method for determining a change in insulation resistance of a device will be described with reference to FIGS. 4 and 5.
 上記キャリブレーションにより出力特性を揃えた変流器2と変流器5からの出力信号について、それぞれ個々の信号について周波数特性を運用開始時に初期値として保持する。機器の盤1の内部において絶縁劣化により漏れ電流が生じるようになると、盤1のインピーダンスは変化して対地抵抗値が低下するようになる。 For the output signals from current transformer 2 and current transformer 5 whose output characteristics have been made uniform through the above calibration, the frequency characteristics of each individual signal are held as initial values at the start of operation. When a leakage current occurs inside the panel 1 of the device due to insulation deterioration, the impedance of the panel 1 changes and the ground resistance value decreases.
 これにより、盤1はローパスフィルター(LPF)に近い特性を示す。そのため、変流器2での出力信号の周波数特性と変流器5での周波数特性では、間に盤1が入ることで違いが生じる。具体的には変流器5では高周波成分が低下していくこととなる(図4参照)。 As a result, board 1 exhibits characteristics close to a low-pass filter (LPF). Therefore, the frequency characteristics of the output signal of the current transformer 2 and the frequency characteristics of the current transformer 5 differ due to the insertion of the panel 1 between them. Specifically, in the current transformer 5, the high frequency component decreases (see FIG. 4).
 最初に、図4及び図6を参照して、機器の絶縁抵抗の変化の判定方法について説明する。 First, a method for determining a change in insulation resistance of a device will be described with reference to FIGS. 4 and 6.
 図4の判定方法は、運用開始時の初期値における変流器2の周波数特性と変流器5の周波数特性の比と、運用開始後の変流器2の周波数特性と変流器5の周波数特性の比とを比較する方法である。 The determination method in FIG. 4 is based on the ratio of the frequency characteristics of current transformer 2 and the frequency characteristics of current transformer 5 at the initial value at the start of operation, and the ratio of the frequency characteristics of current transformer 2 and the frequency characteristic of current transformer 5 after the start of operation. This method compares the ratio of frequency characteristics.
 この判定方法の利点は、比を評価関数として用いて、運用開始時と運用開始後の周波数特性の比を比較することにより、劣化要因以外での信号の絶対量の変化を相殺できることである。 The advantage of this determination method is that by using the ratio as an evaluation function and comparing the ratio of frequency characteristics at the start of operation and after the start of operation, changes in the absolute amount of the signal due to factors other than deterioration factors can be offset.
 図6を参照して、評価アルゴリズムについて説明する。
  最初に、運用開始前に、変流器2と変流器5のキャリブレーションを実施して、定格電流よりも小さい電流値で変流器2と変流器5の出力特性を揃える(ステップ601)。
The evaluation algorithm will be explained with reference to FIG.
First, before starting operation, the current transformers 2 and 5 are calibrated to align the output characteristics of the current transformers 2 and 5 at a current value smaller than the rated current (step 601 ).
 次に、運用開始時に、変流器2と変流器5の出力を計測して周波数特性を取得する(ステップ602)。具体的には、変流器2と変流器5の出力信号の周波数特性をフーリエ変換部8と信号記憶・比較演算部9で取得して、変流器2と変流器5の出力信号を周波数成分として記憶する。 Next, at the start of operation, the outputs of current transformer 2 and current transformer 5 are measured to obtain frequency characteristics (step 602). Specifically, the frequency characteristics of the output signals of the current transformers 2 and 5 are acquired by the Fourier transform unit 8 and the signal storage/comparison calculation unit 9, and the output signals of the current transformers 2 and 5 are obtained by obtaining the frequency characteristics of the output signals of the current transformers 2 and 5. is stored as a frequency component.
 次に、変流器2と変流器5のそれぞれの周波数特性の比をとり(ステップ603)、上記の比を初期値とする(ステップ604)。 Next, the ratio of the frequency characteristics of current transformer 2 and current transformer 5 is calculated (step 603), and the above ratio is set as an initial value (step 604).
 次に、運用開始後に、変流器2と変流器5の信号を取得して周波数特性を取得する(ステップ605)。次に、変流器2と変流器5のそれぞれの周波数特性の比をとる(ステップ606)。 Next, after the start of operation, the signals of current transformer 2 and current transformer 5 are acquired to acquire frequency characteristics (step 605). Next, the ratio of the frequency characteristics of current transformer 2 and current transformer 5 is calculated (step 606).
 次に、上記の比(運用開始後)の初期値からの変化量が閾値を超えているかを判定する(ステップ607)。上記の比の初期値からの変化量が閾値を超えている場合は、抵抗低下の警告を行う(ステップ608)。上記の比の初期値からの変化量が閾値を超えていない場合は、ステップ605に戻る。 Next, it is determined whether the amount of change in the above ratio (after operation has started) from its initial value exceeds a threshold value (step 607). If the amount of change in the above ratio from its initial value exceeds the threshold value, a warning of a drop in resistance is issued (step 608). If the amount of change in the above ratio from its initial value does not exceed the threshold value, the process returns to step 605.
 電力線11の基本周波数は商用周波数の波であるが、高調波成分も含まれている。機器の絶縁抵抗が劣化していない状態では接地抵抗はほぼ無限大とみなせる程大きい。このため、変流器2と変流器5に流れる電流の周波数成分は等しい。強度は高周波成分が小さいが比をとることによって高周波成分の変化についても評価できる。 Although the fundamental frequency of the power line 11 is a commercial frequency wave, it also contains harmonic components. When the insulation resistance of equipment has not deteriorated, the ground resistance is so large that it can be considered almost infinite. Therefore, the frequency components of the currents flowing through current transformer 2 and current transformer 5 are equal. Although the high frequency component of the intensity is small, changes in the high frequency component can also be evaluated by taking the ratio.
 初期状態では変流器2と変流器5の周波数特性の比は1近傍となる。この比を初期値として記憶する。機器の絶縁抵抗が劣化し漏れ電流が発生した場合には接地抵抗が低下する。 In the initial state, the ratio of the frequency characteristics of current transformer 2 and current transformer 5 is close to 1. This ratio is stored as an initial value. When the insulation resistance of equipment deteriorates and leakage current occurs, the grounding resistance decreases.
 機器のインピーダンスは変化し、機器の容量成分を通過して高周波成分が漏洩することになり機器はLPFとして作用する。これにより、変流器5の周波数特性では高周波成分が低下する。同時に変流器2と変流器5の比においても変化が現れ、変流器5の値を分子とすれば比の値は高周波成分が低下する。比の初期値との比較を行い、閾値を超える周波数成分が生じた場合に絶縁抵抗の異常を警告する。 The impedance of the equipment changes, and high-frequency components leak through the capacitive components of the equipment, causing the equipment to act as an LPF. This reduces the high-frequency components in the frequency characteristics of current transformer 5. At the same time, a change also appears in the ratio between current transformer 2 and current transformer 5, and if the value of current transformer 5 is used as the numerator, the high-frequency components of the ratio value will decrease. A comparison is made with the initial value of the ratio, and if frequency components exceeding the threshold value are generated, an alarm is issued to warn of an abnormality in the insulation resistance.
 変流器2と変流器5は電力線11の外部に設置するものであり、盤1の内部の配線とは電気的に絶縁されており、活線状態でも変流器2と変流器5の出力信号は検出可能である。この出力信号を分析することにより活線状態での盤1の絶縁劣化状況を高精度に判定できる。 The current transformer 2 and the current transformer 5 are installed outside the power line 11, and are electrically insulated from the wiring inside the panel 1, so that the current transformer 2 and the current transformer 5 are connected even when the line is live. The output signal of is detectable. By analyzing this output signal, the state of insulation deterioration of the panel 1 in the live wire state can be determined with high accuracy.
 次に、図5及び図8を参照して、機器の絶縁抵抗の変化の他の判定方法について説明する。 Next, with reference to FIGS. 5 and 8, another method for determining a change in insulation resistance of a device will be described.
 図5の判定方法は、同じ変流器5の初期周波数特性(運用開始時)と経過時間後(運用開始後)の周波数特性を直接比較する方法である。 The determination method shown in FIG. 5 is a method of directly comparing the initial frequency characteristics (at the start of operation) and the frequency characteristics after an elapsed time (after the start of operation) of the same current transformer 5.
 図8を参照して、評価アルゴリズムについて説明する。
  最初に、運用開始前に、変流器2と変流器5のキャリブレーションを実施して、定格電流よりも小さい電流値で変流器2と変流器5の出力特性を揃える(ステップ801)。
The evaluation algorithm will be explained with reference to FIG.
First, before starting operation, current transformer 2 and current transformer 5 are calibrated to make the output characteristics of current transformer 2 and current transformer 5 the same at a current value smaller than the rated current (step 801 ).
 次に、運用開始時に、変流器5の出力を計測して周波数特性を取得する(ステップ802)。具体的には、変流器5の出力信号の周波数特性をフーリエ変換部8と信号記憶・比較演算部9で取得して、変流器5の出力信号を周波数成分として記憶する。 Next, at the start of operation, the output of the current transformer 5 is measured to obtain frequency characteristics (step 802). Specifically, the frequency characteristics of the output signal of the current transformer 5 are acquired by the Fourier transform section 8 and the signal storage/comparison calculation section 9, and the output signal of the current transformer 5 is stored as a frequency component.
 次に、変流器5の出力を初期値とする(ステップ803)。次に、運用開始後に、変流器5の信号を取得して周波数特性を取得する(ステップ804)。 Next, the output of the current transformer 5 is set to an initial value (step 803). Next, after the start of operation, the signal of the current transformer 5 is acquired and the frequency characteristics are acquired (step 804).
 次に、上記の周波数特性(運用開始後)の初期値からの変化量が閾値を超えているかを判定する(ステップ805)。上記の周波数特性の初期値からの変化量が閾値を超えている場合は、抵抗低下の警告を行う(ステップ806)。上記の周波数特性の初期値からの変化量が閾値を超えていない場合は、ステップ804に戻る。 Next, it is determined whether the amount of change from the initial value of the frequency characteristic (after the start of operation) exceeds a threshold value (step 805). If the amount of change from the initial value of the frequency characteristic exceeds the threshold value, a warning of a decrease in resistance is issued (step 806). If the amount of change from the initial value of the frequency characteristic does not exceed the threshold, the process returns to step 804.
 図7を参照して、実施例2について説明する。
  図7に示すように、実施例2では、実施例1の構成において、変流器2と変流器5の差分信号を差分処理部12(図1参照)で取得し、この差分信号の運用開始時の周波数特性を初期値として保持する。
Example 2 will be described with reference to FIG.
As shown in FIG. 7, in the second embodiment, in the configuration of the first embodiment, the difference signal between the current transformer 2 and the current transformer 5 is acquired by the difference processing section 12 (see FIG. 1), and this difference signal is used. The frequency characteristics at the start are held as initial values.
 そして、運用開始後の出力信号の周波数特性と比較し、変化量が閾値を超えることを検出することにより絶縁劣化を計測する。 Then, insulation deterioration is measured by comparing the frequency characteristics of the output signal after the start of operation and detecting that the amount of change exceeds a threshold value.
 上記実施例によれば、活線診断システムであって、活線状態で機器内部の絶縁状態を高精度に検出することができる。 According to the above embodiment, the live line diagnostic system is capable of highly accurately detecting the insulation state inside the device in a live line state.
1 盤
2 電力入力側の変流器
3 可変インピーダンス
4 可変容量
5 電力出力側の変流器
6 可変インピーダンス
7 可変容量
8 フーリエ変換部
9 信号記憶・比較演算部
10 キャリブレーション回路
11 電力線
12 差分処理部
13 分圧器
14 スイッチ
15 スイッチ
100 診断装置
1 Panel 2 Current transformer on the power input side 3 Variable impedance 4 Variable capacitance 5 Current transformer on the power output side 6 Variable impedance 7 Variable capacitance 8 Fourier transform section 9 Signal storage/comparison calculation section 10 Calibration circuit 11 Power line 12 Difference processing Section 13 Voltage divider 14 Switch 15 Switch 100 Diagnosis device

Claims (10)

  1.  活線状態で機器の対地絶縁の状態を診断する活線診断システムであって、
     前記機器の電力線の入力側に設けられた第1の変流器と、
     前記機器の前記電力線の出力側に設けられた第2の変流器と、
     前記第1の変流器と前記第2の変流器に接続され、所定の処理を行う処理部を含む診断装置と、を有し、
     前記処理部は、
     前記機器の運用開始時に、前記第1の変流器と前記第2の変流器の出力をそれぞれ計測して、前記第1の変流器の第1の周波数特性と前記第2の変流器の第2の周波数特性をそれぞれ取得し、
     前記第1の周波数特性と前記第2の周波数特性の第1の比を初期値として求め、
     前記処理部は、
     前記機器の運用開始後に、前記第1の変流器と前記第2の変流器の出力をそれぞれ計測して、前記第1の変流器の第3の周波数特性と前記第2の変流器の第4の周波数特性をそれぞれ取得し、
     前記第3の周波数特性と前記第4の周波数特性の第2の比を求め、
     前記第2の比の前記第1の比からの変化量が所定の閾値を超えた場合に、前記機器の前記対地絶縁の劣化を検出することを特徴とする活線診断システム。
    A live line diagnostic system that diagnoses the condition of ground insulation of equipment in a live line state,
    a first current transformer provided on the input side of the power line of the device;
    a second current transformer provided on the output side of the power line of the device;
    a diagnostic device that is connected to the first current transformer and the second current transformer and includes a processing section that performs predetermined processing;
    The processing unit includes:
    When the device starts operating, the outputs of the first current transformer and the second current transformer are measured, and the first frequency characteristic of the first current transformer and the second current transformer are determined. obtain the second frequency characteristics of the device,
    Determining a first ratio of the first frequency characteristic and the second frequency characteristic as an initial value,
    The processing unit includes:
    After the equipment starts operating, the outputs of the first current transformer and the second current transformer are measured, and the third frequency characteristic of the first current transformer and the second current transformer are determined. obtain the fourth frequency characteristic of the device,
    determining a second ratio between the third frequency characteristic and the fourth frequency characteristic;
    A live line diagnostic system, wherein deterioration of the ground insulation of the device is detected when the amount of change of the second ratio from the first ratio exceeds a predetermined threshold.
  2.  前記処理部は、
     前記機器の運用開始前に、前記第1の変流器と前記第2の変流器のキャリブレーションを実施して、前記第1の変流器の第1の出力特性と前記第2の変流器の第2の出力特性とを整合させることを特徴とする請求項1に記載の活線診断システム。
    The processing unit includes:
    Before starting the operation of the equipment, the first current transformer and the second current transformer are calibrated so that the first output characteristic of the first current transformer and the second current transformer are calibrated. The live line diagnostic system according to claim 1, wherein the live line diagnostic system matches the second output characteristic of the flow device.
  3.  前記処理部は、
     定格電流よりも小さい複数の電流値を用いて前記キャリブレーションを実施して、前記第1の出力特性と前記第2の出力特性とを整合させることを特徴とする請求項2に記載の活線診断システム。
    The processing unit includes:
    The live wire according to claim 2, wherein the calibration is performed using a plurality of current values smaller than a rated current to match the first output characteristic and the second output characteristic. Diagnostic system.
  4.  前記第1の変流器には、並列に第1の可変インピーダンスと第1の可変容量が配置されており、
     前記第2の変流器には、並列に第2の可変インピーダンスと第2の可変容量が配置されており、
     前記処理部は、
     前記第1の可変インピーダンス、前記第1の可変容量、前記第2の可変インピーダンス及び前記第2の可変容量をそれぞれ調整することにより、複数の前記電流値を用いて前記キャリブレーションを実施することを特徴とする請求項3に記載の活線診断システム。
    A first variable impedance and a first variable capacitor are arranged in parallel in the first current transformer,
    A second variable impedance and a second variable capacitor are arranged in parallel in the second current transformer,
    The processing unit includes:
    Performing the calibration using a plurality of the current values by adjusting the first variable impedance, the first variable capacitor, the second variable impedance, and the second variable capacitor, respectively. The live line diagnostic system according to claim 3.
  5.  前記処理部は、
     前記第1の変流器と前記第2の変流器の出力の差分信号を用いて、前記第1の周波数特性、前記第2の周波数特性、前記第3の周波数特性及び前記第4の周波数特性をそれぞれ求めることを特徴とする請求項1に記載の活線診断システム。
    The processing unit includes:
    The first frequency characteristic, the second frequency characteristic, the third frequency characteristic, and the fourth frequency are determined using a difference signal between the outputs of the first current transformer and the second current transformer. The live line diagnostic system according to claim 1, characterized in that the characteristics are determined respectively.
  6.  前記第1の変流器と前記第2の変流器は、
     前記機器の内部配線とは電気的に絶縁されるように前記電力線の外部に設置されており、
     前記処理部は、
     前記活線状態で前記機器の前記対地絶縁の劣化を検出することを特徴とする請求項1に記載の活線診断システム。
    The first current transformer and the second current transformer are
    installed outside the power line so as to be electrically insulated from internal wiring of the device;
    The processing unit includes:
    The live line diagnostic system according to claim 1, wherein deterioration of the ground insulation of the device is detected in the live line state.
  7.  活線状態で機器の対地絶縁の状態を診断する活線診断システムであって、
     前記機器の電力線に設けられた変流器と、
     前記変流器に接続され、所定の処理を行う処理部を含む診断装置と、を有し、
     前記処理部は、
     前記機器の運用開始時に、前記変流器の出力を計測して前記変流器の第1の周波数特性を初期値として求め、
     前記処理部は、
     前記機器の運用開始後に、前記変流器の出力を計測して前記変流器の第2の周波数特性を求め、
     前記第2の周波数特性の前記第1の周波数特性からの変化量が所定の閾値を超えた場合に、前記機器の前記対地絶縁の劣化を検出することを特徴とする活線診断システム。
    A live line diagnostic system that diagnoses the condition of ground insulation of equipment in a live line state,
    a current transformer provided in the power line of the device;
    a diagnostic device that is connected to the current transformer and includes a processing section that performs predetermined processing;
    The processing unit includes:
    When the device starts operating, the output of the current transformer is measured to determine a first frequency characteristic of the current transformer as an initial value,
    The processing unit includes:
    After the start of operation of the device, measure the output of the current transformer to determine a second frequency characteristic of the current transformer,
    A live line diagnostic system, wherein deterioration of the ground insulation of the device is detected when the amount of change of the second frequency characteristic from the first frequency characteristic exceeds a predetermined threshold.
  8.  前記変流器は、
     前記機器の内部配線とは電気的に絶縁されるように前記電力線の外部に設置されており、
     前記処理部は、
     前記活線状態で前記機器の前記対地絶縁の劣化を検出することを特徴とする請求項7に記載の活線診断システム。
    The current transformer is
    installed outside the power line so as to be electrically insulated from internal wiring of the device;
    The processing unit includes:
    8. The live line diagnostic system according to claim 7, wherein deterioration of the ground insulation of the device is detected in the live line state.
  9.  活線状態で機器の対地絶縁の状態を診断する活線診断方法であって、
     前記機器の電力線の入力側に第1の変流器を設け、
     前記機器の前記電力線の出力側に第2の変流器を設け、
     前記機器の運用開始時に、前記第1の変流器と前記第2の変流器の出力をそれぞれ計測して、前記第1の変流器の第1の周波数特性と前記第2の変流器の第2の周波数特性をそれぞれ取得するステップと、
     前記第1の周波数特性と前記第2の周波数特性の第1の比を初期値として求めるステップと、
     前記機器の運用開始後に、前記第1の変流器と前記第2の変流器の出力をそれぞれ計測して、前記第1の変流器の第3の周波数特性と前記第2の変流器の第4の周波数特性をそれぞれ取得するステップと、
     前記第3の周波数特性と前記第4の周波数特性の第2の比を求めるステップと、
     前記第2の比の前記第1の比からの変化量が所定の閾値を超えた場合に、前記機器の前記対地絶縁の劣化を検出するステップと、
     を有することを特徴とする活線診断方法。
    A live line diagnostic method for diagnosing the state of ground insulation of equipment in a live line state, the method comprising:
    A first current transformer is provided on the input side of the power line of the device,
    a second current transformer is provided on the output side of the power line of the device;
    When the device starts operating, the outputs of the first current transformer and the second current transformer are measured, and the first frequency characteristic of the first current transformer and the second current transformer are determined. respectively obtaining second frequency characteristics of the device;
    determining a first ratio between the first frequency characteristic and the second frequency characteristic as an initial value;
    After the equipment starts operating, the outputs of the first current transformer and the second current transformer are measured, and the third frequency characteristic of the first current transformer and the second current transformer are determined. obtaining respective fourth frequency characteristics of the device;
    determining a second ratio between the third frequency characteristic and the fourth frequency characteristic;
    detecting deterioration of the ground insulation of the device when the amount of change of the second ratio from the first ratio exceeds a predetermined threshold;
    A live wire diagnostic method characterized by having the following.
  10.  前記機器の運用開始前に、前記第1の変流器と前記第2の変流器のキャリブレーションを実施するステップと、
     前記キャリブレーションにより前記第1の変流器の第1の出力特性と前記第2の変流器の第2の出力特性とを整合させるステップと、
     を更に有することを特徴とする請求項9に記載の活線診断方法。
    Calibrating the first current transformer and the second current transformer before starting operation of the device;
    matching a first output characteristic of the first current transformer with a second output characteristic of the second current transformer by the calibration;
    10. The live-line diagnostic method according to claim 9, further comprising:
PCT/JP2023/009569 2022-09-22 2023-03-13 Live wire diagnostic system and live wire diagnostic method WO2024062653A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-151878 2022-09-22
JP2022151878A JP2024046467A (en) 2022-09-22 2022-09-22 Live line diagnosis system and live line diagnosis method

Publications (1)

Publication Number Publication Date
WO2024062653A1 true WO2024062653A1 (en) 2024-03-28

Family

ID=90454274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009569 WO2024062653A1 (en) 2022-09-22 2023-03-13 Live wire diagnostic system and live wire diagnostic method

Country Status (2)

Country Link
JP (1) JP2024046467A (en)
WO (1) WO2024062653A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020020611A (en) * 2018-07-30 2020-02-06 株式会社日立製作所 Insulation diagnosing device, insulation diagnosing method, and insulation diagnosing program
JP2021103099A (en) * 2019-12-25 2021-07-15 パナソニックIpマネジメント株式会社 Deterioration detection method, program, and deterioration detection system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020020611A (en) * 2018-07-30 2020-02-06 株式会社日立製作所 Insulation diagnosing device, insulation diagnosing method, and insulation diagnosing program
JP2021103099A (en) * 2019-12-25 2021-07-15 パナソニックIpマネジメント株式会社 Deterioration detection method, program, and deterioration detection system

Also Published As

Publication number Publication date
JP2024046467A (en) 2024-04-03

Similar Documents

Publication Publication Date Title
RU2599910C2 (en) Method and device for online detection of deterioration of electric motor insulation
US20160103157A1 (en) Ratio metric current measurement
US20120130663A1 (en) On-line diagnostic method for health monitoring of a transformer
CN109596956B (en) DC series arc detection method and device
Islam et al. Detection of mechanical deformation in old aged power transformer using cross correlation co-efficient analysis method
KR102231150B1 (en) Bushing diagnostic system
Sun et al. Diagnosis of winding fault in three-winding transformer using lightning impulse voltage
EP3206041A1 (en) A system and a method for monitoring transformer bushings
KR100937363B1 (en) Power distributing board having function of real-time insulation sensing and error point detecting for power equipment
Yousof et al. FRA indicator limit for faulty winding assessment in rotating machine
WO2024062653A1 (en) Live wire diagnostic system and live wire diagnostic method
KR101959454B1 (en) a method and apparatus for diagnosing insulation degradation and dielective power factor using leakage current
US9075099B2 (en) Method for adaptation of ground fault detection
US20230053450A1 (en) Method for Detecting a Series Resistance Fault in a Digital-Electricity Transmission System
JP6128921B2 (en) Non-interruptible insulation diagnosis device and non-interruptible insulation diagnosis method
JP3109633B2 (en) Insulation degradation detector
JPH0727812A (en) Insulation diagnosing device
JP2578766B2 (en) Live tan δ measuring device
JP2002311080A (en) Insulation degradation detector for electric motor
EP2678699A1 (en) Method and device for enhancing the reliability of generator ground fault detection on a rotating electrical machine
Bucci et al. Online SFRA characterization of a batch of induction motors for predictive maintenance
KR200318656Y1 (en) Power Condensor Diagnostic System Using Neutral Current
US20230194630A1 (en) Method for evaluating the degradation level of capacitors of a power filter, adjustable speed drive and power converter provided for performing the method
JPH01257279A (en) Cable diagnosing apparatus
KR20240006294A (en) Defect determination method and apparatus of power equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867785

Country of ref document: EP

Kind code of ref document: A1