JP6128921B2 - Non-interruptible insulation diagnosis device and non-interruptible insulation diagnosis method - Google Patents

Non-interruptible insulation diagnosis device and non-interruptible insulation diagnosis method Download PDF

Info

Publication number
JP6128921B2
JP6128921B2 JP2013081091A JP2013081091A JP6128921B2 JP 6128921 B2 JP6128921 B2 JP 6128921B2 JP 2013081091 A JP2013081091 A JP 2013081091A JP 2013081091 A JP2013081091 A JP 2013081091A JP 6128921 B2 JP6128921 B2 JP 6128921B2
Authority
JP
Japan
Prior art keywords
transformer
auxiliary element
capacitance
leakage current
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013081091A
Other languages
Japanese (ja)
Other versions
JP2014202686A (en
Inventor
康史 坪坂
康史 坪坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Building Techno-Service Co Ltd
Original Assignee
Mitsubishi Electric Building Techno-Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Building Techno-Service Co Ltd filed Critical Mitsubishi Electric Building Techno-Service Co Ltd
Priority to JP2013081091A priority Critical patent/JP6128921B2/en
Publication of JP2014202686A publication Critical patent/JP2014202686A/en
Application granted granted Critical
Publication of JP6128921B2 publication Critical patent/JP6128921B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

本発明は、変圧器の絶縁診断を非停電で行う非停電絶縁診断装置及び非停電絶縁診断方法に関する。   The present invention relates to an uninterruptible insulation diagnosis apparatus and an uninterruptible insulation diagnosis method that perform an insulation diagnosis of a transformer without an uninterruptible power.

変圧器やケーブルの絶縁診断を非停電で行う装置が知られている。   Devices for performing insulation diagnosis of transformers and cables without power failure are known.

例えば特許文献1には、母線に接続された被診断機器の接地線に磁気誘導セットしたクランプ型変成器と、クランプ型変成器の1次側に商用周波より充分高い周波数の高周波電流を供給する高周波電源とを備え、母線へ給電している電力の引込ケーブルに一括してクランプする電流センサを磁気誘電セットし、高周波電流に起因する漏れ電流を検出し、被診断機器の絶縁抵抗、誘電体損失率及び静電容量を検出結果に従って演算する装置が開示されている。   For example, in Patent Document 1, a clamp-type transformer that is magnetically set to a ground line of a diagnostic device connected to a bus, and a high-frequency current having a frequency sufficiently higher than the commercial frequency is supplied to the primary side of the clamp-type transformer. A high-frequency power supply and a current sensor that clamps the power supply cable that feeds power to the bus at once are magneto-dielectrically set to detect leakage current caused by the high-frequency current, and the insulation resistance and dielectric of the diagnostic device An apparatus for calculating a loss rate and a capacitance according to a detection result is disclosed.

また、特許文献2には、低圧単相電路をクランプする零相変流器のクランプアームの内面に、電路導体の非接地線との間に静電容量を形成するための導電薄板を設け、当該導電薄板から得られる容量性電流を基準電圧ベクトルとして、零相変流器の測定電流から漏洩抵抗又は漏洩抵抗分電流を求める測定器が開示されている。   Further, in Patent Document 2, a conductive thin plate is provided on the inner surface of the clamp arm of a zero-phase current transformer that clamps a low-voltage single-phase circuit, to form a capacitance between the circuit conductor and a non-ground line, There has been disclosed a measuring instrument for obtaining a leakage resistance or a leakage resistance component current from a measurement current of a zero-phase current transformer using a capacitive current obtained from the conductive thin plate as a reference voltage vector.

また、特許文献3には、被測定ケーブルの接地線電流を検出する変流器に近接して誘電電流を打ち消すためのダミー変流器を備えた装置が開示されている。   Patent Document 3 discloses a device including a dummy current transformer for canceling a dielectric current in the vicinity of a current transformer for detecting a ground line current of a cable to be measured.

また、特許文献4には、ケーブル線路の遮断層を接地する接地線に装着される変流器と、変流器の出力電流から損失電流成分を抽出し、ケーブル線路のケーブル絶縁体の誘電正接を測定する誘電正接測定部と、変流器に対して予め設定されたバイアス電流を供給するバイアス電流発生部と、変流器の出力電流からバイアス電流分を差引くバイアス電流減算部と、を備えた装置が開示されている。   Patent Document 4 discloses a current transformer that is attached to a grounding wire that grounds a blocking layer of a cable line, a loss current component extracted from the output current of the current transformer, and a dielectric loss tangent of a cable insulator of the cable line. A bias tangent measuring unit that measures a bias current generating unit that supplies a preset bias current to the current transformer, and a bias current subtracting unit that subtracts the bias current from the output current of the current transformer. An apparatus comprising the same is disclosed.

特許第2577825号公報Japanese Patent No. 2577825 特開2009−25219号公報JP 2009-25219 A 特公平7−52205号公報Japanese Patent Publication No. 7-52205 実公平4−30487号公報No. 4-30487

とこで、変圧器については、静電容量が小さくなるほど正確に絶縁診断を行うことが困難になる。変圧器には油入り変圧器とモールド変圧器とがあるが、モールド変圧器内の主絶縁物である空気は、油入り変圧器の主絶縁物である油に比べて誘電率が半分以下であるため、充電電流が小さくなり、その結果、検出される信号が小さくなる。また、絶縁診断を行う現場によってノイズの大きさにばらつきがあり、モールド変圧器では信号ノイズ比(S/N)が悪くなる場合がある。例えば200kVA未満のモールド変圧器では静電容量が極めて小さくなるため、静電容量が、診断装置によって測定可能な静電容量の下限レベル以下となる場合がある。この場合、測定値が安定せず、誘電正接tanδ等を正確に測定することが困難になる。このことは油入り変圧器についても言えることであり、油入り変圧器についても静電容量が小さくなる場合には測定値が安定せず、誘電正接tanδ等を正確に測定することが困難となる。   With respect to transformers, it is difficult to accurately perform insulation diagnosis as the capacitance decreases. There are two types of transformers: oil-filled transformers and molded transformers. Air, the main insulator in molded transformers, has a dielectric constant less than half that of oil, the main insulator of oil-filled transformers. As a result, the charging current is reduced, resulting in a smaller detected signal. In addition, there is a variation in noise level depending on the site where insulation diagnosis is performed, and the signal-to-noise ratio (S / N) may be deteriorated in a molded transformer. For example, in a molded transformer of less than 200 kVA, the capacitance is extremely small, and thus the capacitance may be below the lower limit level of the capacitance that can be measured by the diagnostic apparatus. In this case, the measured value is not stable, and it is difficult to accurately measure the dielectric loss tangent tan δ and the like. This is also true for oil-filled transformers. For oil-filled transformers, when the capacitance is small, the measured value is not stable, and it is difficult to accurately measure the dielectric loss tangent tan δ and the like. .

本発明の目的は、静電容量が比較的小さい変圧器についても絶縁診断を行うことが可能な非停電絶縁診断装置及び非停電絶縁診断方法を提供することである。   An object of the present invention is to provide an uninterruptible insulation diagnosis device and an uninterruptible insulation diagnosis method capable of performing insulation diagnosis even on a transformer having a relatively small capacitance.

請求項1に係る発明は、補助抵抗と補助コンデンサとを備え、一次側に高圧ケーブルが接続された変圧器に接続される補助素子と、前記変圧器の二次側から前記変圧器と前記補助素子とに試験電圧を印加する試験電圧印加手段と、前記変圧器の一次側から前記高圧ケーブルを介して流れる漏れ電流と前記補助素子に流れる漏れ電流との合計の漏れ電流を検出するクランプ型の電流検出手段と、前記試験電圧と前記合計の漏れ電流とを用いることで、前記変圧器と前記補助素子とによって構成される系全体の静電容量及び誘電正接を求め、前記系全体の静電容量及び誘電正接を用いることで、前記変圧器の静電容量、誘電正接及び絶縁抵抗のうちの少なくとも1つを求める演算手段と、を有し、前記変圧器の二次側には接地線が接続されており、前記試験電圧印加手段は、前記接地線を介して前記変圧器に試験電圧を印加し、前記補助素子の一端は前記試験電圧印加手段と前記変圧器との間にて前記接地線に接続され、前記補助素子の他端には補助素子用ケーブルが接続され、前記試験電圧印加手段によって試験電圧が前記補助素子に印加され、前記電流検出手段は、前記高圧ケーブルを介して流れる漏れ電流と前記補助素子用ケーブルを介して流れる漏れ電流との合計の漏れ電流を検出する、ことを特徴とする非停電絶縁診断装置である。 The invention according to claim 1 is provided with an auxiliary resistor and the auxiliary capacitor, wherein the auxiliary element high-voltage cable is connected to the connected transformer, and the transformer from the secondary side of the transformer to the primary side A test voltage applying means for applying a test voltage to the auxiliary element, and a clamp type for detecting a total leakage current of a leakage current flowing from the primary side of the transformer via the high-voltage cable and a leakage current flowing to the auxiliary element Current detection means, the test voltage and the total leakage current are used to obtain the capacitance and dielectric loss tangent of the entire system constituted by the transformer and the auxiliary element, and by using the electrostatic capacity and dielectric loss tangent, the capacitance of the transformer, possess a calculating means for calculating at least one of the dielectric loss tangent and insulation resistance, the ground lines on the secondary side of the transformer Is connected The test voltage application means applies a test voltage to the transformer via the ground line, and one end of the auxiliary element is connected to the ground line between the test voltage application means and the transformer, An auxiliary element cable is connected to the other end of the auxiliary element, a test voltage is applied to the auxiliary element by the test voltage applying means, and the current detecting means is configured to detect a leakage current flowing through the high voltage cable and the auxiliary current. A non-interruptible insulation diagnostic device characterized by detecting a total leakage current with a leakage current flowing through an element cable .

請求項2に係る発明は、請求項1に記載の非停電絶縁診断装置であって、前記演算手段は、前記系全体の静電容量及び誘電正接から前記補助素子の静電容量及び誘電正接を差引くことで、前記変圧器の静電容量及び誘電正接を求める、ことを特徴とする。   The invention according to claim 2 is the non-interruptible insulation diagnosis apparatus according to claim 1, wherein the calculation means calculates the capacitance and dielectric loss tangent of the auxiliary element from the capacitance and dielectric loss tangent of the entire system. By subtracting, the capacitance and dielectric loss tangent of the transformer are obtained.

請求項3に係る発明は、請求項1又は請求項2に記載の非停電絶縁診断装置であって、相対的に大きい静電容量の変圧器を測定するための第1モードと、相対的に小さい静電容量の変圧器を測定するための第2モードとを切り替えるためのスイッチを更に有し、前記補助素子は、前記スイッチによってモードが前記第2モードに切り替えられると、前記変圧器に接続される、ことを特徴とするとする。 The invention according to claim 3 is the non-interruptible insulation diagnostic apparatus according to claim 1 or 2, wherein the first mode for measuring a transformer having a relatively large capacitance is relatively further comprising a switch for switching a second mode for measuring the transformer small capacitance, the auxiliary element, the mode by the switch is switched to the second mode, contact the transformer It is characterized by being continued.

請求項4に係る発明は、補助抵抗と補助コンデンサとを備えた補助素子を、一次側に高圧ケーブルが接続された変圧器に接続するステップと、試験電圧印加手段によって、前記変圧器の二次側から前記変圧器と前記補助素子とに試験電圧を印加するステップと、前記変圧器の一次側から前記高圧ケーブルを介して流れる漏れ電流と前記補助素子に流れる漏れ電流との合計の漏れ電流を検出するステップと、前記試験電圧と前記合計の漏れ電流とを用いることで、前記変圧器と前記補助素子とによって構成される系全体の静電容量及び誘電正接を求め、前記系全体の静電容量及び誘電正接を用いることで、前記変圧器の静電容量、誘電正接及び絶縁抵抗のうちの少なくとも1つを求めるステップと、を含み、前記変圧器の二次側には接地線が接続されており、前記試験電圧印加手段は、前記接地線を介して前記変圧器に試験電圧を印加し、前記接続するステップによって、前記補助素子の一端は前記試験電圧印加手段と前記変圧器との間にて前記接地線に接続され、前記補助素子の他端には補助素子用ケーブルが接続され、前記試験電圧印加手段によって試験電圧が前記補助素子に印加され、前記検出するステップでは、前記高圧ケーブルを介して流れる漏れ電流と前記補助素子用ケーブルを介して流れる漏れ電流との合計の漏れ電流を検出する、ことを特徴とする非停電絶縁診断方法である。 The invention according to claim 4, the auxiliary device having an auxiliary resistor and the auxiliary capacitor, a step high-voltage cable is connected to the connected transformer on the primary side, by the test voltage applying means, said transformer two A step of applying a test voltage to the transformer and the auxiliary element from the secondary side, and a total leakage current of a leakage current flowing from the primary side of the transformer via the high-voltage cable and a leakage current flowing to the auxiliary element And detecting the electrostatic capacity and dielectric loss tangent of the entire system constituted by the transformer and the auxiliary element by using the test voltage and the total leakage current, by using the electrostatic capacity and dielectric loss tangent, the capacitance of the transformer, it viewed including the steps of obtaining at least one of the dielectric loss tangent and insulation resistance, the ground lines on the secondary side of the transformer Contact The test voltage applying means applies a test voltage to the transformer via the ground line, and one end of the auxiliary element is connected between the test voltage applying means and the transformer by the connecting step. In the meantime, the auxiliary element is connected to the ground line, and an auxiliary element cable is connected to the other end of the auxiliary element, and a test voltage is applied to the auxiliary element by the test voltage applying means. A non-interruptible insulation diagnosis method characterized by detecting a total leakage current of a leakage current flowing through a cable and a leakage current flowing through the auxiliary element cable .

本発明によると、補助抵抗と補助コンデンサとを備えた補助素子を変圧器に対して並列に接続することで、系全体の静電容量を測定可能な範囲に増大させることが可能となる。これにより、変圧器の静電容量が比較的小さい場合であっても、測定値に基づき変圧器の誘電正接tanδ等を求めることができるため、変圧器の絶縁診断を行うことが可能となる。   According to the present invention, the capacitance of the entire system can be increased to a measurable range by connecting an auxiliary element including an auxiliary resistor and an auxiliary capacitor in parallel to the transformer. Thereby, even when the capacitance of the transformer is relatively small, the dielectric loss tangent tan δ and the like of the transformer can be obtained based on the measured value, so that the insulation diagnosis of the transformer can be performed.

本発明の実施形態に係る非停電絶縁診断装置の一例を示すブロック図である。It is a block diagram which shows an example of the non-power failure insulation diagnostic apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る非停電絶縁診断装置の一例を示す模式図である。It is a schematic diagram which shows an example of the non-interruption insulation diagnostic apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る非停電絶縁診断装置の一例を示す模式図である。It is a schematic diagram which shows an example of the non-interruption insulation diagnostic apparatus which concerns on embodiment of this invention. 静電容量と誘電正接tanδとの関係を模式的に示すグラフである。It is a graph which shows typically the relation between electrostatic capacity and dielectric loss tangent tanδ. 変形例に係る非停電絶縁診断装置の一例を示す模式図である。It is a schematic diagram which shows an example of the non-interruption insulation diagnostic apparatus which concerns on a modification.

図1から図3に、本実施形態に係る非停電絶縁診断装置の一例を示す。本実施形態に係る非停電絶縁診断装置は、試験電圧発生器10、電圧注入用RT、電流検出用CT及び測定器20を含み、被診断機器の静電容量や誘電正接tanδ等を求める。   FIG. 1 to FIG. 3 show an example of the non-interruptible insulation diagnostic apparatus according to this embodiment. The uninterruptible insulation diagnostic apparatus according to this embodiment includes a test voltage generator 10, a voltage injection RT, a current detection CT, and a measuring device 20, and obtains the capacitance, dielectric loss tangent tan δ, and the like of the device to be diagnosed.

一例として、変圧器50が被診断機器である。変圧器50は例えば受変電機器として用いられる。変圧器50には、静電容量Cxと絶縁抵抗Rxとが存在する。変圧器50の一次側には高圧の引き込みケーブル60が接続され、変圧器50は引き込みケーブル60から課電される。変圧器50の二次側には接地線12が接続される。なお、変圧器50は、モールド変圧器であってもよいし、油入り変圧器であってもよい。   As an example, the transformer 50 is a device to be diagnosed. The transformer 50 is used as a power receiving / transforming device, for example. The transformer 50 has a capacitance Cx and an insulation resistance Rx. A high voltage lead-in cable 60 is connected to the primary side of the transformer 50, and the transformer 50 is charged from the lead-in cable 60. The ground line 12 is connected to the secondary side of the transformer 50. The transformer 50 may be a molded transformer or an oil-filled transformer.

試験電圧発生器10は交流の試験電圧Vsfを発生させる。電圧注入用RTは電圧注入用変圧器である。変圧器50の二次側に接続された接地線12が電圧注入用RTに挿入され、これにより、電圧注入用RTは、試験電圧Vsfを変圧器50に印加する。図2に示すように、電圧注入用RTと変圧器50との間にて接地線12にVsケーブルの一端が接続され、Vsケーブルの他端は測定器20に接続されている。これにより、試験電圧Vsfが測定器20に入力される。   The test voltage generator 10 generates an alternating test voltage Vsf. The voltage injection RT is a voltage injection transformer. The ground line 12 connected to the secondary side of the transformer 50 is inserted into the voltage injection RT, whereby the voltage injection RT applies the test voltage Vsf to the transformer 50. As shown in FIG. 2, one end of the Vs cable is connected to the ground line 12 between the voltage injection RT and the transformer 50, and the other end of the Vs cable is connected to the measuring device 20. As a result, the test voltage Vsf is input to the measuring instrument 20.

電流検出用CTは電流検出用のクランプ型の変流器であり、引き込みケーブル60や補助素子用ケーブル26をクランプすることで、引き込みケーブル60や補助素子用ケーブル26に流れ込んだ漏れ電流を検出する。   The CT for current detection is a clamp-type current transformer for current detection, and detects leakage current flowing into the lead-in cable 60 and the auxiliary element cable 26 by clamping the lead-in cable 60 and the auxiliary element cable 26. .

例えば、変圧器50の静電容量Cxが比較的小さい場合、後述する補助素子24を用いて変圧器50の絶縁診断が行われる。この場合、図1及び図2に示すように、補助素子24に接続された補助素子用ケーブル26と引き込みケーブル60とが電流検出用CTに挿入され、電流検出用CTは、変圧器50を介して引き込みケーブル60に流れ込んだ漏れ電流と、補助素子24を介して補助素子用ケーブル26に流れ込んだ漏れ電流との合計である漏れ電流Iscを検出する。   For example, when the capacitance Cx of the transformer 50 is relatively small, an insulation diagnosis of the transformer 50 is performed using an auxiliary element 24 described later. In this case, as shown in FIGS. 1 and 2, the auxiliary element cable 26 and the lead-in cable 60 connected to the auxiliary element 24 are inserted into the current detection CT, and the current detection CT passes through the transformer 50. The leakage current Isc, which is the sum of the leakage current flowing into the lead-in cable 60 and the leakage current flowing into the auxiliary element cable 26 via the auxiliary element 24, is detected.

一方、変圧器50の静電容量Cxが比較的大きい場合、補助素子24を用いずに変圧器50の絶縁診断を行う。この場合、図3に示すように、引き込みケーブル60のみが電流検出用CTに挿入され、電流検出用CTは、変圧器50を介して引き込みケーブル60に流れ込んだ漏れ電流Iscを検出する。   On the other hand, when the capacitance Cx of the transformer 50 is relatively large, the insulation diagnosis of the transformer 50 is performed without using the auxiliary element 24. In this case, as shown in FIG. 3, only the lead-in cable 60 is inserted into the current detection CT, and the current detection CT detects the leakage current Isc flowing into the lead-in cable 60 via the transformer 50.

測定器20は、図1に示すように、校正器22、補助素子24、モード切換スイッチ28、演算部30及び表示部32を含み、試験電圧Vsfと漏れ電流Iscとを受け、それらの値を用いることで、変圧器50の静電容量Cx、絶縁抵抗Rx及び誘電正接tanδxを求める。また、測定器20は、検出回路、フィルタ、A/D変換器及びD/A変換器等の処理部を含む。   As shown in FIG. 1, the measuring device 20 includes a calibrator 22, an auxiliary element 24, a mode changeover switch 28, a calculation unit 30 and a display unit 32, receives the test voltage Vsf and the leakage current Isc, and sets the values. By using them, the capacitance Cx, the insulation resistance Rx, and the dielectric loss tangent tan δx of the transformer 50 are obtained. The measuring device 20 includes processing units such as a detection circuit, a filter, an A / D converter, and a D / A converter.

校正器22は、静電容量が異なる複数のコンデンサCaを含み、スイッチSbによってコンデンサCaの切り替えが可能となっている。一例として、コンデンサCaの静電容量は、0.5nF、1nF、10nF、100nFである。   The calibrator 22 includes a plurality of capacitors Ca having different capacitances, and the capacitor Ca can be switched by a switch Sb. As an example, the capacitance of the capacitor Ca is 0.5 nF, 1 nF, 10 nF, and 100 nF.

補助素子24は、並列に接続されたコンデンサCaと補助抵抗Raとを含む。以下の説明において、補助素子24に含まれるコンデンサCaを「補助コンデンサCa」と称することとする。例えば、モード切換スイッチ28をオンすることで、スイッチSaとスイッチSbとがオンになり、補助コンデンサCaと補助抵抗Raとによって補助素子24が形成される。なお、図1に示す例では、校正器22に含まれるコンデンサCaを補助コンデンサCaとして用いているが、この例に限らず、校正器22とは別のコンデンサを補助コンデンサとして用いてもよい。本実施形態では、一例として0.5nFのコンデンサCaが補助コンデンサCaとして選択される。   The auxiliary element 24 includes a capacitor Ca and an auxiliary resistor Ra connected in parallel. In the following description, the capacitor Ca included in the auxiliary element 24 is referred to as “auxiliary capacitor Ca”. For example, when the mode changeover switch 28 is turned on, the switch Sa and the switch Sb are turned on, and the auxiliary element 24 is formed by the auxiliary capacitor Ca and the auxiliary resistor Ra. In the example shown in FIG. 1, the capacitor Ca included in the calibrator 22 is used as the auxiliary capacitor Ca. However, the present invention is not limited to this example, and a capacitor other than the calibrator 22 may be used as the auxiliary capacitor. In the present embodiment, as an example, a 0.5 nF capacitor Ca is selected as the auxiliary capacitor Ca.

補助素子24は、変圧器50に対して並列に接続される。具体的には、補助素子24の一端は電圧注入用RTと変圧器50との間にて接地線12に接続され、他端には補助素子用ケーブル26が接続され、電圧注入用RTによって試験電圧Vsfが補助素子24に印加される。なお、上記のように、補助素子用ケーブル26は電流検出用CTに挿入される。   The auxiliary element 24 is connected in parallel to the transformer 50. Specifically, one end of the auxiliary element 24 is connected to the ground line 12 between the voltage injection RT and the transformer 50, and the auxiliary element cable 26 is connected to the other end, and the test is performed by the voltage injection RT. A voltage Vsf is applied to the auxiliary element 24. As described above, the auxiliary element cable 26 is inserted into the current detection CT.

モード切換スイッチ28は、測定モードを切り替えるためのスイッチである。本実施形態では、一例として3つの測定モードが存在する。例えば、モード切換スイッチ28がオフの場合、スイッチSa,Sbはオフとなる。モード切換スイッチ28が第1のオン状態の場合、スイッチSaはオフでスイッチSbがオンとなる(0.5nF、tanδ=0%の状態)。また、モード切換スイッチ28が第2のオン状態の場合、スイッチSa,Sbともにオンとなる(0.5nF、tanδ=1%の状態)。すなわち、モード切換スイッチ28をオンにするとスイッチSbはオン状態になる。そして、例えばモード切換スイッチ28を第2のオン状態にすると、図1に示す補助抵抗Ra用のスイッチSaと補助コンデンサCa用のスイッチSbとがオンになる。そして、補助コンデンサCaと補助抵抗Raとによって補助素子24が形成される。一方、モード切換スイッチ28をオフするとスイッチSa,Sbがオフとなり、補助素子24は形成されない。例えば、変圧器50の静電容量Cxが比較的小さい場合、モード切換スイッチ28をオンすることで補助素子24を形成し、補助素子24を用いて測定する。一方、変圧器50の静電容量Cxが比較的大きい場合、モード切換スイッチ28をオフすることで補助素子24の機能を解除し、補助素子24を用いずに測定する。   The mode switch 28 is a switch for switching the measurement mode. In the present embodiment, there are three measurement modes as an example. For example, when the mode switch 28 is off, the switches Sa and Sb are off. When the mode changeover switch 28 is in the first on state, the switch Sa is off and the switch Sb is on (0.5 nF, tan δ = 0% state). When the mode switch 28 is in the second on state, both the switches Sa and Sb are on (0.5 nF, tan δ = 1% state). That is, when the mode switch 28 is turned on, the switch Sb is turned on. For example, when the mode changeover switch 28 is set to the second on state, the switch Sa for the auxiliary resistor Ra and the switch Sb for the auxiliary capacitor Ca shown in FIG. 1 are turned on. The auxiliary element 24 is formed by the auxiliary capacitor Ca and the auxiliary resistor Ra. On the other hand, when the mode switch 28 is turned off, the switches Sa and Sb are turned off, and the auxiliary element 24 is not formed. For example, when the capacitance Cx of the transformer 50 is relatively small, the auxiliary element 24 is formed by turning on the mode changeover switch 28, and measurement is performed using the auxiliary element 24. On the other hand, when the electrostatic capacitance Cx of the transformer 50 is relatively large, the function of the auxiliary element 24 is canceled by turning off the mode switch 28, and measurement is performed without using the auxiliary element 24.

演算部30は一例としてCPUであり、試験電圧Vsfと漏れ電流Iscとを用いることで、変圧器50の静電容量Cx、絶縁抵抗Rx及び誘電正接tanδxを求める。例えば、演算部30はベクトル演算を行うことで誘電正接tanδを求める。   The calculation unit 30 is a CPU as an example, and obtains the capacitance Cx, the insulation resistance Rx, and the dielectric loss tangent tan δx of the transformer 50 by using the test voltage Vsf and the leakage current Isc. For example, the calculation unit 30 calculates the dielectric loss tangent tan δ by performing a vector calculation.

表示部32は演算部30の演算結果を表示する。表示部32は、例えば、静電容量、絶縁抵抗、tanδ、試験電圧Vsf、漏れ電流Isc等を表示する。   The display unit 32 displays the calculation result of the calculation unit 30. The display unit 32 displays, for example, capacitance, insulation resistance, tan δ, test voltage Vsf, leakage current Isc, and the like.

次に、図1及び図2を参照して、変圧器50の静電容量Cxが比較的小さい場合の測定方法について説明する。例えば容量が50〜200kVAの変圧器が、静電容量Cxが比較的小さい変圧器に該当する。まず、モード切換スイッチ28をオンすることで、補助抵抗Ra用のスイッチSaと補助コンデンサCa用のスイッチSbとをオンする。これにより、補助コンデンサCaと補助抵抗Raとによって補助素子24が形成される。また、補助素子用ケーブル26を補助素子24の他端に接続し、引き込みケーブル60と補助素子用ケーブル26とを電流検出用CTでクランプする。また、接地線12を電圧注入用RTに挿入する。そして、試験電圧発生器10によって試験電圧Vsfを発生させ、電圧注入用RTによって接地線12を介して変圧器50と補助素子24とに試験電圧Vsfを印加する。これにより、電流検出用CTは、変圧器50を介して引き込みケーブル60に流れ込んだ漏れ電流と、補助素子24を介して補助素子用ケーブル26に流れ込んだ漏れ電流との合計である漏れ電流Iscを検出し、漏れ電流Iscを測定器20に出力する。測定器20の演算部30は、試験電圧Vsfと漏れ電流Iscとを用いることで、変圧器50の静電容量Cx等を求める。   Next, with reference to FIG.1 and FIG.2, the measuring method when the electrostatic capacitance Cx of the transformer 50 is comparatively small is demonstrated. For example, a transformer having a capacity of 50 to 200 kVA corresponds to a transformer having a relatively small capacitance Cx. First, the mode changeover switch 28 is turned on to turn on the switch Sa for the auxiliary resistor Ra and the switch Sb for the auxiliary capacitor Ca. Thereby, the auxiliary element 24 is formed by the auxiliary capacitor Ca and the auxiliary resistor Ra. Further, the auxiliary element cable 26 is connected to the other end of the auxiliary element 24, and the lead-in cable 60 and the auxiliary element cable 26 are clamped by the current detection CT. Further, the ground line 12 is inserted into the voltage injection RT. Then, the test voltage generator 10 generates the test voltage Vsf, and the test voltage Vsf is applied to the transformer 50 and the auxiliary element 24 via the ground line 12 by the voltage injection RT. As a result, the current detection CT uses the leakage current Isc that is the sum of the leakage current flowing into the lead-in cable 60 via the transformer 50 and the leakage current flowing into the auxiliary-element cable 26 via the auxiliary element 24. The leakage current Isc is detected and output to the measuring device 20. The calculation unit 30 of the measuring device 20 obtains the capacitance Cx and the like of the transformer 50 by using the test voltage Vsf and the leakage current Isc.

次に、演算部30での具体的な演算処理について説明する。まず、演算部30は、試験電圧Vsfと漏れ電流Iscとを用い、従来技術と同様にベクトル演算を行うことで、変圧器50と補助素子24とによって構成される系全体の誘電正接tanδm及び静電容量Cmを求める。漏れ電流Iscは、変圧器50を介して流れる漏れ電流と補助素子24を介して流れる漏れ電流との合計であるため、漏れ電流Iscと試験電圧Vsfとを用いることで、変圧器50と補助素子24とによって構成される系全体の誘電正接tanδm及び静電容量Cmを求める。さらに、演算部30は、系全体の誘電正接tanδm及び静電容量Cmから、既知の値である補助素子24の静電容量Ca及び誘電正接tanδaを差引くことで、変圧器50の静電容量Cx及び誘電正接tanδxを求める。以下、演算処理について更に詳しく説明する。   Next, specific calculation processing in the calculation unit 30 will be described. First, the arithmetic unit 30 uses the test voltage Vsf and the leakage current Isc to perform a vector operation in the same manner as in the prior art, so that the dielectric tangent tan δm and static of the entire system constituted by the transformer 50 and the auxiliary element 24 are calculated. Obtain the capacitance Cm. Since the leakage current Isc is the sum of the leakage current flowing through the transformer 50 and the leakage current flowing through the auxiliary element 24, the transformer 50 and the auxiliary element are used by using the leakage current Isc and the test voltage Vsf. 24, the dielectric loss tangent tan δm and the electrostatic capacity Cm of the entire system constituted by. Further, the arithmetic unit 30 subtracts the capacitance Ca and the dielectric loss tangent tanδa of the auxiliary element 24, which are known values, from the dielectric loss tangent tanδm and the electrostatic capacitance Cm of the entire system, so Cx and dielectric loss tangent tan δx are obtained. Hereinafter, the arithmetic processing will be described in more detail.

変圧器50と補助素子24とは並列に接続されているため、系全体の静電容量Cmは以下の(式1)で表され、系全体の合成抵抗Rmは以下の(式2)で表される。
(式1):Cm=Cx+Ca
(式2):Rm=(Rx・Ra)/(Rx+Ra)
ここで、Caは補助コンデンサの静電容量であり、Raは補助抵抗の値であるため、Ca及びRaはそれぞれ既知の値である。
Since the transformer 50 and the auxiliary element 24 are connected in parallel, the electrostatic capacity Cm of the entire system is expressed by the following (formula 1), and the combined resistance Rm of the entire system is expressed by the following (formula 2). Is done.
(Formula 1): Cm = Cx + Ca
(Formula 2): Rm = (Rx · Ra) / (Rx + Ra)
Here, since Ca is the capacitance of the auxiliary capacitor and Ra is the value of the auxiliary resistance, Ca and Ra are known values.

また、系全体の誘電正接tanδmは以下の(式3)で表され、変圧器50の誘電正接tanδxは以下の(式4)で表される。
(式3):tanδm=1/(2π・f・Cm・Rm)
(式4):tanδx=1/(2π・f・Cx・Rx)
ここで、fは試験電圧Vsfの周波数である。
Further, the dielectric loss tangent tan δm of the entire system is expressed by the following (formula 3), and the dielectric loss tangent tan δx of the transformer 50 is expressed by the following (formula 4).
(Formula 3): tan δm = 1 / (2π · f · Cm · Rm)
(Formula 4): tan δx = 1 / (2π · f · Cx · Rx)
Here, f is the frequency of the test voltage Vsf.

従って、測定値である系全体の静電容量Cmと補助コンデンサCaの静電容量とを(式1)に代入することで、変圧器50の静電容量Cx(=Cm−Ca)が求められる。すなわち、系全体の静電容量Cmから補助素子24の静電容量Caを減算する(差引く)ことで、変圧器50の静電容量Cxが求められる。
また、測定値である静電容量Cm及び誘電正接tanδmを(式3)に代入することで、系全体の合成抵抗Rmが求められる。
さらに、抵抗値であるRa及びRmを(式2)に代入することで、変圧器50の絶縁抵抗Rxが求められる。
そして、求められたCx及びRxを(式4)に代入することで、変圧器50の誘電正接tanδxが求められる。
Therefore, the capacitance Cx (= Cm−Ca) of the transformer 50 is obtained by substituting the measured system capacitance Cm of the entire system and the capacitance of the auxiliary capacitor Ca into (Equation 1). . That is, the capacitance Cx of the transformer 50 is obtained by subtracting (subtracting) the capacitance Ca of the auxiliary element 24 from the capacitance Cm of the entire system.
Further, the total resistance Rm of the entire system can be obtained by substituting the measured capacitance Cm and dielectric loss tangent tan δm into (Equation 3).
Furthermore, the insulation resistance Rx of the transformer 50 is calculated | required by substituting Ra and Rm which are resistance values for (Formula 2).
Then, the dielectric loss tangent tan δx of the transformer 50 is obtained by substituting the obtained Cx and Rx into (Equation 4).

また、(式4)に(式1)及び(式2)を代入することで、tanδxは以下の(式5)で表される。
(式5):
tanδx=1/{2π・f・(Cm−Ca)・(Ra・Rm)/(Ra−Rm)}
=(2π・f・Cm・Ra・tanδm−1)/(2π・f・(Cm−Ca)・Ra)
=(Cm・tanδm−Ca・tanδa)/(Cm−Ca)
ここで、Ca及びtanδaは既知の値であり、Cm及びtanδmは計測値であるため、これらの値により、tanδxが求められる。
すなわち、系全体の静電容量Cm及び誘電正接tanδmから、補助素子24の静電容量Ca及び誘電正接tanδaを減算する(差引く)ことで、変圧器50の誘電正接tanδxが求められる。
Further, by substituting (Equation 1) and (Equation 2) into (Equation 4), tan δx is expressed by the following (Equation 5).
(Formula 5):
tan δx = 1 / {2π · f · (Cm−Ca) · (Ra · Rm) / (Ra−Rm)}
= (2π · f · Cm · Ra · tan δm-1) / (2π · f · (Cm-Ca) · Ra)
= (Cm · tan δm-Ca · tan δa) / (Cm-Ca)
Here, since Ca and tan δa are known values, and Cm and tan δm are measured values, tan δx is obtained from these values.
That is, the dielectric loss tangent tan δx of the transformer 50 is obtained by subtracting (subtracting) the electrostatic capacitance Ca and the dielectric loss tangent tan δa of the auxiliary element 24 from the electrostatic capacitance Cm and the dielectric loss tangent tan δm of the entire system.

以上のように、補助抵抗Raと補助コンデンサCaとを備えた補助素子24を変圧器50に対して並列に接続することで、測定器20によって測定される静電容量を増大させることが可能となる。補助素子24を用いない場合、測定器20によって測定される静電容量はCxであるが、補助素子24を用いる場合、測定器20によって測定される静電容量はCm=Cx+Caとなる。従って、補助素子24を用いることで、補助コンデンサCaの値分、測定器20によって測定される静電容量を増加させることができる。例えば図4に示すように、変圧器50の静電容量Cxが小さくて元々診断困難な範囲に含まれている場合(黒丸の印で示す)であっても、補助素子24を変圧器50に対して並列に接続することで、測定器20によって測定される静電容量を診断可能な範囲に増大させることが可能となる(白丸の印で示す)。すなわち、系全体の静電容量Cmが測定器20で測定可能な範囲に含まれるように補助コンデンサCaを用いることで、静電容量を診断可能な範囲に増大させることができる。このように、測定される静電容量が増大するため、検出される信号が増大し、信号ノイズ比(S/N)が向上する。以上のように、静電容量を測定器20で測定可能な範囲に増大させることができるため、変圧器50の静電容量Cxが測定器20によって測定可能な値未満であっても、変圧器50の静電容量Cx、絶縁抵抗Rx及び誘電正接tanδxを求めることが可能となる。従って、静電容量Cxが小さい変圧器50であっても絶縁診断を正確に行うことが可能となる。また、モード切換スイッチ28によって測定モードを切り替えるだけで、静電容量Cxが小さい変圧器50の絶縁診断が可能となるため、作業者の作業負荷が増大せず、簡易な方法により非停電状態で絶縁診断を行うことが可能となる。   As described above, the capacitance measured by the measuring instrument 20 can be increased by connecting the auxiliary element 24 including the auxiliary resistor Ra and the auxiliary capacitor Ca in parallel to the transformer 50. Become. When the auxiliary element 24 is not used, the capacitance measured by the measuring instrument 20 is Cx. However, when the auxiliary element 24 is used, the capacitance measured by the measuring instrument 20 is Cm = Cx + Ca. Therefore, by using the auxiliary element 24, the capacitance measured by the measuring instrument 20 can be increased by the value of the auxiliary capacitor Ca. For example, as shown in FIG. 4, even when the capacitance Cx of the transformer 50 is small and originally included in a range that is difficult to diagnose (indicated by a black circle), the auxiliary element 24 is placed in the transformer 50. By connecting in parallel, the capacitance measured by the measuring instrument 20 can be increased to a diagnostic range (indicated by white circles). That is, by using the auxiliary capacitor Ca so that the capacitance Cm of the entire system is included in the range that can be measured by the measuring device 20, the capacitance can be increased to a range that can be diagnosed. Thus, since the measured capacitance increases, the number of detected signals increases and the signal-to-noise ratio (S / N) improves. As described above, since the capacitance can be increased to a range that can be measured by the measuring instrument 20, even if the capacitance Cx of the transformer 50 is less than a value that can be measured by the measuring instrument 20, the transformer 50 capacitance Cx, insulation resistance Rx and dielectric loss tangent tan δx can be obtained. Therefore, it is possible to accurately perform insulation diagnosis even with the transformer 50 having a small capacitance Cx. Further, since the insulation diagnosis of the transformer 50 having a small electrostatic capacity Cx can be performed only by switching the measurement mode by the mode changeover switch 28, the work load on the worker does not increase, and a simple method can be used in a non-power failure state. Insulation diagnosis can be performed.

次に、図1及び図3を参照して、変圧器50の静電容量Cxが比較的大きい場合の測定方法について説明する。例えば容量が200kVA以上の変圧器が、静電容量Cxが比較的大きい変圧器に該当する。まず、モード切換スイッチ28をオフすることで、補助抵抗Ra用のスイッチSaと補助コンデンサCa用のスイッチSbとをオフする。これにより、補助素子24の機能が解除される。図3に示すように、接地線12を電圧注入用RTに挿入し、補助素子用ケーブル26を用いず、引き込みケーブル60のみを電流検出用CTでクランプする。そして、試験電圧発生器10によって試験電圧Vsfを発生させ、電圧注入用RTによって接地線12を介して変圧器50に試験電圧Vsfを印加する。これにより、電流検出用CTは、変圧器50を介して引き込みケーブル60に流れ込んだ漏れ電流Iscを検出する。演算部30は、補助抵抗Ra及び補助コンデンサCaのそれぞれの値を考慮せずに、従来技術と同じ方法により、試験電圧Vsfと漏れ電流Iscとを用いることで、変圧器50の静電容量Cx、絶縁抵抗Rx及び誘電正接tanδxを求める。なお、変圧器50の静電容量Cxが比較的大きい場合であっても、補助素子24を用いて変圧器50の静電容量Cx等を求めてもよい。この場合、補助素子24に接続される補助素子用ケーブル26を電流検出用CTに挿入し、系全体の静電容量Cm及び誘電正接tanδmを求め、上記の(式1)〜(式5)に従って変圧器50の静電容量Cx等を求めればよい。   Next, with reference to FIG.1 and FIG.3, the measuring method when the electrostatic capacitance Cx of the transformer 50 is comparatively large is demonstrated. For example, a transformer having a capacity of 200 kVA or more corresponds to a transformer having a relatively large capacitance Cx. First, the mode changeover switch 28 is turned off to turn off the switch Sa for the auxiliary resistor Ra and the switch Sb for the auxiliary capacitor Ca. Thereby, the function of the auxiliary element 24 is released. As shown in FIG. 3, the grounding wire 12 is inserted into the voltage injection RT, and the auxiliary cable 26 is not used, and only the lead-in cable 60 is clamped by the current detection CT. Then, the test voltage generator 10 generates the test voltage Vsf, and the test voltage Vsf is applied to the transformer 50 via the ground line 12 by the voltage injection RT. As a result, the current detection CT detects the leakage current Isc flowing into the lead-in cable 60 via the transformer 50. The calculation unit 30 uses the test voltage Vsf and the leakage current Isc by the same method as in the conventional technique without considering the respective values of the auxiliary resistor Ra and the auxiliary capacitor Ca, so that the capacitance Cx of the transformer 50 is obtained. Insulation resistance Rx and dielectric loss tangent tan δx are obtained. Even when the capacitance Cx of the transformer 50 is relatively large, the capacitance Cx of the transformer 50 and the like may be obtained using the auxiliary element 24. In this case, the auxiliary element cable 26 connected to the auxiliary element 24 is inserted into the current detection CT, and the electrostatic capacity Cm and the dielectric loss tangent tan δm of the entire system are obtained, and according to the above (Expression 1) to (Expression 5). What is necessary is just to obtain | require the electrostatic capacitance Cx etc. of the transformer 50. FIG.

以上のように、補助素子24を設け、補助素子24の機能を切換可能とすることで、変圧器50の静電容量Cxが比較的小さい場合と比較的大きい場合との両方に対応して測定することが可能となる。   As described above, the auxiliary element 24 is provided so that the function of the auxiliary element 24 can be switched, so that the measurement is performed for both cases where the capacitance Cx of the transformer 50 is relatively small and relatively large. It becomes possible to do.

次に、具体的な実施例について説明する。上記の実施形態に係る非停電絶縁診断装置について、100kVAのモールドトランスを被診断機器として検証を行った。この検証では、試験電圧発生器10によって、1035Hz、6Vの試験電圧Vsfを印加した。   Next, specific examples will be described. The non-interruptible insulation diagnostic apparatus according to the above-described embodiment was verified using a 100 kVA mold transformer as a diagnosis target device. In this verification, a test voltage Vsf of 1035 Hz and 6 V was applied by the test voltage generator 10.

既知である補助コンデンサCaの静電容量、補助抵抗Raの抵抗値及び誘電正接tanδaは以下の通りである。
Ca=0.5nF
Ra=30.75MΩ
tanδa=1.0%
The known capacitance of the auxiliary capacitor Ca, the resistance value of the auxiliary resistor Ra, and the dielectric loss tangent tan δa are as follows.
Ca = 0.5nF
Ra = 30.75MΩ
tan δa = 1.0%

そして、本実施形態に係る非停電絶縁診断装置を用いて静電容量Cm及び誘電正接tanδmを計測し、静電容量Cm及び誘電正接tanδmを用いることで(式3)から合成抵抗Rmを求めた。静電容量Cm、合成抵抗Rm及び誘電正接tanδmのそれぞれの値は以下の通りであった。
Cm=0.78nF
Rm=28.16MΩ
tanδm=0.7%
Then, the capacitance Cm and the dielectric loss tangent tan δm were measured using the non-interruptible insulation diagnostic apparatus according to the present embodiment, and the combined resistance Rm was obtained from (Equation 3) by using the capacitance Cm and the dielectric loss tangent tan δm. . The values of the capacitance Cm, the combined resistance Rm, and the dielectric loss tangent tan δm were as follows.
Cm = 0.78nF
Rm = 28.16MΩ
tan δm = 0.7%

そして、既知のCaと測定された静電容量Cmとを(式1)に代入することで静電容量Cxを求め、既知の抵抗Raと求められた合成抵抗Rmとを(式2)に代入することで絶縁抵抗Rxを求め、(式4)又は(式5)によって誘電正接tanδxを求めた。静電容量Cx、絶縁抵抗Rx及び誘電正接tanδxのそれぞれの値は以下の通りである。
Cx=0.28nF
Rx=334.29MΩ
tanδx=0.16%
このように、100kVAのモールドトランスのtanδx(=0.16%)を算出することができた。
Then, the capacitance Cx is obtained by substituting the known Ca and the measured capacitance Cm into (Equation 1), and the known resistance Ra and the obtained combined resistance Rm are substituted into (Equation 2). Thus, the insulation resistance Rx was obtained, and the dielectric loss tangent tan δx was obtained by (Expression 4) or (Expression 5). The values of the capacitance Cx, the insulation resistance Rx, and the dielectric loss tangent tan δx are as follows.
Cx = 0.28nF
Rx = 334.29MΩ
tan δx = 0.16%
In this way, tan δx (= 0.16%) of a 100 kVA mold transformer could be calculated.

上記の方法で求められた静電容量Cx及び誘電正接tanδxの値が正しいかどうかを調べるために、変圧器50を停電させてシェーリングブリッジ法にて静電容量Cx及び誘電正接tanδxを測定した。その結果、Cx=0.28nF、tanδx=0.16%が得られた。本実施形態と別手法とで同じ値が得られたため、本実施形態の手法が有効であることが分かった。   In order to check whether the values of the capacitance Cx and the dielectric loss tangent tan δx obtained by the above method are correct, the transformer 50 was subjected to a power failure and the capacitance Cx and the dielectric loss tangent tan δx were measured by the Schering bridge method. As a result, Cx = 0.28 nF and tan δx = 0.16% were obtained. Since the same value was obtained by this embodiment and another method, it turned out that the method of this embodiment is effective.

次に、図5を参照して変形例について説明する。変形例では測定器20内に補助素子24を設けず、測定器20の外部に設置される外部補助素子40を用いる。例えば、変圧器50の静電容量Cxが比較的小さい場合、外部補助素子40を用いて測定し、変圧器50の静電容量Cxが比較的大きい場合、外部補助素子40を用いずに測定する。外部補助素子40は、補助素子24と同様に、並列に接続された補助コンデンサCaと補助抵抗Raとを含む。上述した実施形態と同様に、Ca、Ra及びtanδaの値は既知である。   Next, a modification will be described with reference to FIG. In the modification, the auxiliary element 24 is not provided in the measuring instrument 20, but the external auxiliary element 40 installed outside the measuring instrument 20 is used. For example, when the capacitance Cx of the transformer 50 is relatively small, measurement is performed using the external auxiliary element 40, and when the capacitance Cx of the transformer 50 is relatively large, measurement is performed without using the external auxiliary element 40. . Similarly to the auxiliary element 24, the external auxiliary element 40 includes an auxiliary capacitor Ca and an auxiliary resistor Ra connected in parallel. Similar to the embodiment described above, the values of Ca, Ra and tan δa are known.

変圧器50の静電容量Cxが比較的小さい場合、外部補助素子40を変圧器50に対して並列に接続する。具体的には、外部補助素子40の一端を電圧注入用RTと変圧器50との間にて接地線12に接続し、他端には補助素子用ケーブル26を接続し、補助素子用ケーブル26を、GNDと電圧注入用RTとの間にて接地線12に接続する。また、引き込みケーブル60と補助素子用ケーブル26とを電流検出用CTに挿入する。そして、電圧注入用RTによって接地線12を介して変圧器50と外部補助素子40とに試験電圧Vsfを印加する。これにより、電流検出用CTは、変圧器50を介して引き込みケーブル60に流れ込んだ漏れ電流と、外部補助素子40を介して補助素子用ケーブル26に流れ込んだ漏れ電流との合計である漏れ電流Iscを検出する。そして、上述した実施形態と同様に、測定器20の演算部30は、試験電圧Vsfと漏れ電流Iscとを用いることで、変圧器50の静電容量Cx等を求める。   When the capacitance Cx of the transformer 50 is relatively small, the external auxiliary element 40 is connected to the transformer 50 in parallel. Specifically, one end of the external auxiliary element 40 is connected to the ground wire 12 between the voltage injection RT and the transformer 50, and the auxiliary element cable 26 is connected to the other end. Is connected to the ground line 12 between GND and the voltage injection RT. Further, the lead-in cable 60 and the auxiliary element cable 26 are inserted into the current detection CT. Then, the test voltage Vsf is applied to the transformer 50 and the external auxiliary element 40 via the ground line 12 by the voltage injection RT. Thus, the current detection CT is the sum of the leakage current flowing into the lead-in cable 60 via the transformer 50 and the leakage current flowing into the auxiliary element cable 26 via the external auxiliary element 40. Is detected. As in the above-described embodiment, the calculation unit 30 of the measuring instrument 20 obtains the capacitance Cx and the like of the transformer 50 by using the test voltage Vsf and the leakage current Isc.

変圧器50の静電容量Cxが比較的大きい場合、外部補助素子40及び補助素子用ケーブル26を用いずに、引き込みケーブル60に流れ込んだ漏れ電流Iscを電流検出用CTで検出し、変圧器50の静電容量Cx等を求める。   When the capacitance Cx of the transformer 50 is relatively large, the leakage current Isc flowing into the lead-in cable 60 is detected by the current detection CT without using the external auxiliary element 40 and the auxiliary element cable 26, and the transformer 50 Is obtained.

以上のように、測定器20に補助素子24を設けずに外部補助素子40を用いた場合も、上記の実施形態と同様に、測定器20によって計測される静電容量を増大させることができるので、変圧器50の静電容量Cxが測定器20によって測定可能な値未満であっても、変圧器50の静電容量Cx等を求めることが可能となる。従って、変圧器50の絶縁診断を正確に行うことが可能となる。   As described above, when the external auxiliary element 40 is used without providing the auxiliary element 24 in the measuring instrument 20, the capacitance measured by the measuring instrument 20 can be increased as in the above embodiment. Therefore, even if the capacitance Cx of the transformer 50 is less than a value measurable by the measuring device 20, the capacitance Cx and the like of the transformer 50 can be obtained. Therefore, the insulation diagnosis of the transformer 50 can be accurately performed.

10 試験電圧発生器、12 接地線、20 測定器、22 校正器、24 補助素子、26 補助素子用ケーブル、28 モード切換スイッチ、30 演算部、32 表示部、40 外部補助素子、50 変圧器、60 引き込みケーブル。   10 Test voltage generator, 12 Ground wire, 20 Measuring instrument, 22 Calibrator, 24 Auxiliary element, 26 Auxiliary element cable, 28 Mode selector switch, 30 Arithmetic unit, 32 Display unit, 40 External auxiliary element, 50 Transformer, 60 Lead-in cable.

Claims (4)

補助抵抗と補助コンデンサとを備え、一次側に高圧ケーブルが接続された変圧器に接続される補助素子と、
前記変圧器の二次側から前記変圧器と前記補助素子とに試験電圧を印加する試験電圧印加手段と、
前記変圧器の一次側から前記高圧ケーブルを介して流れる漏れ電流と前記補助素子に流れる漏れ電流との合計の漏れ電流を検出するクランプ型の電流検出手段と、
前記試験電圧と前記合計の漏れ電流とを用いることで、前記変圧器と前記補助素子とによって構成される系全体の静電容量及び誘電正接を求め、前記系全体の静電容量及び誘電正接を用いることで、前記変圧器の静電容量、誘電正接及び絶縁抵抗のうちの少なくとも1つを求める演算手段と、
を有し、
前記変圧器の二次側には接地線が接続されており、
前記試験電圧印加手段は、前記接地線を介して前記変圧器に試験電圧を印加し、
前記補助素子の一端は前記試験電圧印加手段と前記変圧器との間にて前記接地線に接続され、前記補助素子の他端には補助素子用ケーブルが接続され、前記試験電圧印加手段によって試験電圧が前記補助素子に印加され、
前記電流検出手段は、前記高圧ケーブルを介して流れる漏れ電流と前記補助素子用ケーブルを介して流れる漏れ電流との合計の漏れ電流を検出する、
ことを特徴とする非停電絶縁診断装置。
Provided with an auxiliary resistor and the auxiliary capacitor, an auxiliary element which is connected to the transformer high voltage cable is connected to the primary side,
Test voltage application means for applying a test voltage to the transformer and the auxiliary element from the secondary side of the transformer;
A clamp-type current detection means for detecting a total leakage current of a leakage current flowing from the primary side of the transformer via the high-voltage cable and a leakage current flowing to the auxiliary element;
By using the test voltage and the total leakage current, the capacitance and dielectric loss tangent of the whole system constituted by the transformer and the auxiliary element are obtained, and the capacitance and dielectric loss tangent of the whole system are obtained. Calculating means for obtaining at least one of capacitance, dielectric loss tangent and insulation resistance of the transformer,
I have a,
A ground wire is connected to the secondary side of the transformer,
The test voltage application means applies a test voltage to the transformer via the ground line,
One end of the auxiliary element is connected to the ground line between the test voltage applying means and the transformer, and an auxiliary element cable is connected to the other end of the auxiliary element, and the test is applied by the test voltage applying means. A voltage is applied to the auxiliary element;
The current detection means detects a total leakage current of a leakage current flowing through the high-voltage cable and a leakage current flowing through the auxiliary element cable;
Non-interruptible insulation diagnostic device characterized by that.
請求項1に記載の非停電絶縁診断装置であって、
前記演算手段は、前記系全体の静電容量及び誘電正接から前記補助素子の静電容量及び誘電正接を差引くことで、前記変圧器の静電容量及び誘電正接を求める、
ことを特徴とする非停電絶縁診断装置。
The uninterruptible insulation diagnostic device according to claim 1,
The arithmetic means obtains the capacitance and dielectric loss tangent of the transformer by subtracting the electrostatic capacitance and dielectric loss tangent of the auxiliary element from the capacitance and dielectric loss tangent of the entire system.
Non-interruptible insulation diagnostic device characterized by that.
請求項1又は請求項2に記載の非停電絶縁診断装置であって、
相対的に大きい静電容量の変圧器を測定するための第1モードと、相対的に小さい静電容量の変圧器を測定するための第2モードとを切り替えるためのスイッチを更に有し、
前記補助素子は、前記スイッチによってモードが前記第2モードに切り替えられると、前記変圧器に接続される、
ことを特徴とする非停電絶縁診断装置。
The uninterruptible insulation diagnosis device according to claim 1 or 2,
A switch for switching between a first mode for measuring a relatively large capacitance transformer and a second mode for measuring a relatively small capacitance transformer;
The auxiliary device includes a mode by the switch when switched to the second mode, is connected to the transformer,
Non-interruptible insulation diagnostic device characterized by that.
補助抵抗と補助コンデンサとを備えた補助素子を、一次側に高圧ケーブルが接続された変圧器に接続するステップと、
試験電圧印加手段によって、前記変圧器の二次側から前記変圧器と前記補助素子とに試験電圧を印加するステップと、
前記変圧器の一次側から前記高圧ケーブルを介して流れる漏れ電流と前記補助素子に流れる漏れ電流との合計の漏れ電流を検出するステップと、
前記試験電圧と前記合計の漏れ電流とを用いることで、前記変圧器と前記補助素子とによって構成される系全体の静電容量及び誘電正接を求め、前記系全体の静電容量及び誘電正接を用いることで、前記変圧器の静電容量、誘電正接及び絶縁抵抗のうちの少なくとも1つを求めるステップと、
を含み、
前記変圧器の二次側には接地線が接続されており、
前記試験電圧印加手段は、前記接地線を介して前記変圧器に試験電圧を印加し、
前記接続するステップによって、前記補助素子の一端は前記試験電圧印加手段と前記変圧器との間にて前記接地線に接続され、前記補助素子の他端には補助素子用ケーブルが接続され、前記試験電圧印加手段によって試験電圧が前記補助素子に印加され、
前記検出するステップでは、前記高圧ケーブルを介して流れる漏れ電流と前記補助素子用ケーブルを介して流れる漏れ電流との合計の漏れ電流を検出する、
ことを特徴とする非停電絶縁診断方法。
An auxiliary device having a auxiliary resistor and the auxiliary capacitor, a step high-voltage cable is connected to the connected transformer on the primary side,
Applying a test voltage from the secondary side of the transformer to the transformer and the auxiliary element by a test voltage applying means ;
Detecting a total leakage current of a leakage current flowing from the primary side of the transformer via the high-voltage cable and a leakage current flowing to the auxiliary element;
By using the test voltage and the total leakage current, the capacitance and dielectric loss tangent of the whole system constituted by the transformer and the auxiliary element are obtained, and the capacitance and dielectric loss tangent of the whole system are obtained. Using to determine at least one of capacitance, dielectric loss tangent and insulation resistance of the transformer;
Only including,
A ground wire is connected to the secondary side of the transformer,
The test voltage application means applies a test voltage to the transformer via the ground line,
In the connecting step, one end of the auxiliary element is connected to the ground line between the test voltage applying means and the transformer, and an auxiliary element cable is connected to the other end of the auxiliary element, A test voltage is applied to the auxiliary element by a test voltage applying means,
In the detecting step, a total leakage current of a leakage current flowing through the high-voltage cable and a leakage current flowing through the auxiliary element cable is detected.
Non-interruptible insulation diagnostic method characterized by the above.
JP2013081091A 2013-04-09 2013-04-09 Non-interruptible insulation diagnosis device and non-interruptible insulation diagnosis method Active JP6128921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013081091A JP6128921B2 (en) 2013-04-09 2013-04-09 Non-interruptible insulation diagnosis device and non-interruptible insulation diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013081091A JP6128921B2 (en) 2013-04-09 2013-04-09 Non-interruptible insulation diagnosis device and non-interruptible insulation diagnosis method

Publications (2)

Publication Number Publication Date
JP2014202686A JP2014202686A (en) 2014-10-27
JP6128921B2 true JP6128921B2 (en) 2017-05-17

Family

ID=52353225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013081091A Active JP6128921B2 (en) 2013-04-09 2013-04-09 Non-interruptible insulation diagnosis device and non-interruptible insulation diagnosis method

Country Status (1)

Country Link
JP (1) JP6128921B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108828410B (en) * 2018-08-22 2019-06-04 西南交通大学 A kind of detection method that the cable based on VLF voltage spectroscopy radially damages
CN113406407B (en) * 2021-05-10 2022-05-10 中车青岛四方机车车辆股份有限公司 Auxiliary power supply support capacitance monitoring method and system
CN115483025A (en) * 2022-09-30 2022-12-16 安徽锐光电子科技有限公司 Preparation process of mica sheet capacitor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645270Y2 (en) * 1988-06-13 1994-11-16 日新電機株式会社 Insulation resistance measuring device
JP2577825B2 (en) * 1990-11-20 1997-02-05 三菱電機株式会社 Non-power failure insulation diagnostic device
JP3041968B2 (en) * 1990-12-20 2000-05-15 三菱化学株式会社 Monitoring method for insulation deterioration of low-voltage live wires
US8428895B2 (en) * 2008-10-28 2013-04-23 Avo Multi-Amp Corporation System and method for power system parameter measurement
JP5386231B2 (en) * 2009-05-22 2014-01-15 中国電力株式会社 Insulation monitoring device testing apparatus and insulation monitoring device testing method

Also Published As

Publication number Publication date
JP2014202686A (en) 2014-10-27

Similar Documents

Publication Publication Date Title
TWI557412B (en) Leakage current calculation device and leakage current calculation method
WO2015083618A1 (en) Contactless voltage measurement device and method
JP5888421B2 (en) AC power measuring device and AC power measuring method
CN106030738B (en) For monitoring the method and apparatus of the condenser-type terminal for three-phase AC grid
JP7084411B2 (en) Methods and equipment for monitoring the loss factor of condenser bushings
JP6128921B2 (en) Non-interruptible insulation diagnosis device and non-interruptible insulation diagnosis method
JP2020509377A5 (en)
JP2007071774A (en) Insulation measuring method and apparatus therefor
KR101406546B1 (en) Sinusoidal insulation monitoring apparatus having operation frequency setting function
EP3206041A1 (en) A system and a method for monitoring transformer bushings
US20210107367A1 (en) Monitoring device for leakage currents
WO2015133212A1 (en) Voltage measuring apparatus and voltage measuring method
JPH03206976A (en) Diagnosis of insulation
JP6809189B2 (en) Insulation resistance measurement method for DC power supply circuit
CN103460057A (en) Method for the contactless determination of an electrical potential using an oscillating electrode, and device
JP5559638B2 (en) Degradation judgment method for power cables
JP2014202696A (en) Electrical leak detection method
KR101450451B1 (en) A detection device of insulation resistance for non-interruption of electric power and hot-line
JP5679480B2 (en) Indirect AC megger measuring instrument and insulation resistance measuring method
JPH08136597A (en) Insulation diagnostic apparatus of oil-immersed transformer
KR20160121642A (en) Method and apparatus for insulation condition of inverter-fed motor
JP2015137865A (en) Ground fault detection device
JP7396222B2 (en) Partial discharge measuring device
JP7302703B2 (en) Coupling capacitors used in online partial discharge measurement equipment
JP2012042357A (en) Partial discharge discrimination method and partial discharge measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170411

R150 Certificate of patent or registration of utility model

Ref document number: 6128921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250