WO2024053611A1 - Light-emitting device and electronic equipment - Google Patents

Light-emitting device and electronic equipment Download PDF

Info

Publication number
WO2024053611A1
WO2024053611A1 PCT/JP2023/032254 JP2023032254W WO2024053611A1 WO 2024053611 A1 WO2024053611 A1 WO 2024053611A1 JP 2023032254 W JP2023032254 W JP 2023032254W WO 2024053611 A1 WO2024053611 A1 WO 2024053611A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
structures
electrode
layer
emitting device
Prior art date
Application number
PCT/JP2023/032254
Other languages
French (fr)
Japanese (ja)
Inventor
究 三浦
尚司 豊田
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2024053611A1 publication Critical patent/WO2024053611A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/06Electrode terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present disclosure relates to a light emitting device and an electronic device including the same.
  • Light-emitting devices including a plurality of light-emitting elements in a light-emitting region are widely used.
  • a contact electrode is provided in a peripheral region located around a light-emitting region, and a common electrode (for example, a common cathode) common to a plurality of light-emitting elements is provided extending from the light-emitting region to the peripheral region.
  • a light emitting device connected to a contact electrode is known.
  • a technique has been proposed in which a concave portion or a convex portion is provided in the contact electrode in order to increase the contact area between the common electrode and the contact electrode (see, for example, Patent Document 1).
  • the common electrode when a concave or convex portion is provided on a contact electrode, the common electrode may be cut due to the step of the concave or convex portion, or the thickness of the common electrode may be reduced due to the step of the concave or convex portion. be.
  • the common electrode When the common electrode is in such a state due to a step difference, it may become difficult to secure a carrier path in the direction away from the light emitting region.
  • An object of the present disclosure is to provide a light emitting device that can secure a carrier path in a direction away from a light emitting region while increasing the contact area between a first electrode and a contact electrode, and an electronic device equipped with the same.
  • a first light emitting device includes: A light emitting device including a plurality of light emitting elements in a light emitting region, a contact electrode provided in a peripheral region located around the light emitting region; a first electrode extending from the light emitting region to the peripheral region and connected to the contact electrode; The contact electrode has a plurality of first structures in a portion connected to the first electrode, The plurality of first structures extend in a direction away from the light emitting region.
  • the second light emitting device includes: A light emitting device including a plurality of light emitting elements in a light emitting region, a contact electrode provided in a peripheral region located around the light emitting region; a first electrode extending from the light emitting region to the peripheral region and connected to the contact electrode; The contact electrode has a plurality of structure groups in a portion connected to the first electrode, The plurality of structure groups are arranged at least in the circumferential direction of the outer periphery of the light emitting region, Each structure group includes multiple structures, Structure groups adjacent in the circumferential direction are separated from each other.
  • An electronic device includes the first light emitting device or the second light emitting device.
  • FIG. 1 is a plan view of a display device for explaining the outline.
  • FIG. 2 is a plan view of the display device according to the first embodiment.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 2.
  • FIG. 4 is an enlarged plan view of a part of the surrounding area.
  • FIG. 5 is a plan view of a display device according to the second embodiment.
  • FIG. 6 is a cross-sectional view taken along line VI-VI in FIG.
  • FIG. 7 is a plan view of a display device according to a third embodiment.
  • FIG. 8 is an enlarged plan view of a part of the surrounding area.
  • FIG. 9 is a cross-sectional view taken along line IX-IX in FIG. 7.
  • FIG. 9 is a cross-sectional view taken along line IX-IX in FIG. 7.
  • FIG. 10 is a cross-sectional view of a display device according to a fourth embodiment.
  • FIG. 11 is a cross-sectional view of a display device according to the fifth embodiment.
  • FIG. 12 is a plan view of a display device according to Modification 1.
  • FIG. 13 is a cross-sectional view of a display device according to modification example 2.
  • FIG. 14 is a plan view of a display device according to modification example 3.
  • FIG. 15 is a cross-sectional view of a display device according to modification example 4.
  • FIG. 16 is a cross-sectional view of a display device according to modification example 5.
  • FIG. 17 is a cross-sectional view of a display device according to modification 6.
  • FIG. 19 is a conceptual diagram for explaining the relationship between a normal line LN passing through the center of the light emitting section, a normal line LN' passing through the center of the lens member, and a normal line LN'' passing through the center of the wavelength selection section. .
  • FIGS. 20A and 20B are diagrams for explaining the relationships between the normal line LN passing through the center of the light emitting section, the normal line LN' passing through the center of the lens member, and the normal line LN'' passing through the center of the wavelength selection section, respectively. It is a conceptual diagram.
  • FIG. 21 is a conceptual diagram for explaining the relationship between a normal line LN passing through the center of the light emitting section, a normal line LN' passing through the center of the lens member, and a normal line LN'' passing through the center of the wavelength selection section.
  • FIG. 22A is a schematic cross-sectional view for explaining a first example of the resonator structure.
  • FIG. 22B is a schematic cross-sectional view for explaining a second example of the resonator structure.
  • FIG. 23A is a schematic cross-sectional view for explaining a third example of the resonator structure.
  • FIG. 23B is a schematic cross-sectional view for explaining a fourth example of the resonator structure.
  • FIG. 24A is a schematic cross-sectional view for explaining a fifth example of the resonator structure.
  • FIG. 24B is a schematic cross-sectional view for explaining a sixth example of the resonator structure.
  • FIG. 25 is a schematic cross-sectional view for explaining the seventh example of the resonator structure.
  • FIG. 26A is a front view of the digital still camera.
  • FIG. 26B is a rear view of the digital still camera.
  • FIG. 27 is a perspective view of the head mounted display.
  • FIG. 28 is a perspective view of the television device.
  • FIG. 29 is a perspective view of a see-through head mounted display.
  • FIG. 30 is a perspective view of the smartphone.
  • FIG. 31A is a diagram showing the inside of the vehicle from the rear to the front of the vehicle.
  • FIG. 31B is a diagram showing the inside of the vehicle from diagonally rearward to diagonally forwardly.
  • the light emitting device according to the present disclosure may be a display device, a lighting device, or a device other than these.
  • the display device may be an OLED (Organic Light Emitting Diode) display device.
  • the first electrode may be the anode or cathode of the light emitting element, or may be a common electrode connected to the anode or cathode of each of the plurality of light emitting elements.
  • the light emitting device may be an OLED device.
  • the plurality of light emitting elements when the first electrode is an anode and the second electrode is a cathode, the plurality of light emitting elements include the plurality of anodes provided in the light emitting region and the plurality of anodes extending from the light emitting region to the peripheral region.
  • the organic light-emitting layer may include one cathode connected to a contact electrode, and an organic light-emitting layer provided between the plurality of anodes and one cathode.
  • the plurality of light emitting elements when the first electrode is a cathode and the second electrode is an anode, the plurality of light emitting elements include a plurality of cathodes provided in the light emitting region and a plurality of cathodes extending from the light emitting region to the peripheral region.
  • the organic light emitting layer may include one anode connected to a contact electrode, and an organic light emitting layer provided between the plurality of cathodes and the one anode.
  • the plurality of light-emitting elements when the first electrode is a common electrode connected to the anode or cathode of each of the plurality of light-emitting elements, the plurality of light-emitting elements include a plurality of types of light-emitting elements, and the plurality of light-emitting elements include a plurality of types of light-emitting elements.
  • Each light emitting element may be capable of emitting light of a different color.
  • the plurality of types of light emitting elements include a first light emitting element that can emit red light, a second light emitting element that can emit green light, and a third light emitting element that can emit blue light. May include.
  • the plurality of types of light emitting elements include an anode, a cathode, and an organic light emitting layer, and the organic light emitting layer may be provided between the anode and the cathode.
  • the anode, cathode, and organic light emitting layer in the plurality of types of light emitting elements are individually provided for each light emitting element.
  • the first light emitting device may include an anode, a cathode, and a first organic light emitting layer, and the first organic light emitting layer may be capable of emitting red light.
  • the second light emitting device may include an anode, a cathode, and a second organic light emitting layer, and the second organic light emitting layer may emit green light.
  • the third light emitting device may include an anode, a cathode, and a third organic light emitting layer, and the third organic light emitting layer may be capable of emitting blue light.
  • the cathode 623 extends from the effective pixel region RE3 to the peripheral region RE4, and is connected to a contact electrode (not shown).
  • the contact electrode is connected to the wiring 615 through a plurality of contact parts (not shown).
  • the contact electrode has a plurality of protrusions 691 at the portion where the cathode 623 is connected to increase the contact area between the peripheral edge of the cathode 623 and the contact electrode.
  • the plurality of convex portions 691 extend along the circumferential direction of the outer periphery of the effective pixel region RE3, and form a plurality of examples that are lined up in the direction away from the effective pixel region RE3.
  • the peripheral edge of the cathode 623 may be cut due to the step of the convex portion 691, or the peripheral edge of the cathode 623 may become thin due to the step of the convex portion 691.
  • the resistance value of the cathode 623 in the direction away from the effective pixel area RE3 increases. Therefore, it becomes difficult to secure a current path in the direction away from the effective pixel area RE3.
  • an arrow 31 represents an image of a current path that is not obstructed by the convex portion 691
  • an arrow 32 represents an image of a current path that is obstructed by the convex portion 691. Note that in the following description, arrows 31 and 32 each represent an image of a current path.
  • the present inventors have conducted extensive studies to increase the contact area between the peripheral edge of the cathode 623 and the contact electrode while ensuring a current path (carrier path) in the direction away from the effective pixel area RE3. went.
  • a configuration was found in which the contact electrode is provided with a plurality of convex portions extending in a direction away from the effective pixel region RE3.
  • FIG. 2 is a plan view of the display device 101 according to the first embodiment.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 2.
  • the display device 101 has an effective pixel region RE1 and a peripheral region RE2 located around the effective pixel region RE1.
  • the effective pixel area RE1 is an example of a light emitting area in the claims.
  • a plurality of sub-pixels 10R, 10G, and 10B are two-dimensionally arranged in a prescribed arrangement pattern within the effective pixel region RE1.
  • the prescribed arrangement pattern may be, for example, a stripe arrangement, a delta arrangement, a square arrangement, a mosaic arrangement, or an arrangement other than these.
  • a pad section, a video display driver, etc. (not shown) may be provided in the peripheral region RE2.
  • a flexible printed circuit (FPC) (not shown) may be connected to the pad portion.
  • the subpixel 10R can emit red light (first light).
  • the subpixel 10G can emit green light (second light).
  • the subpixel 10B can emit blue light (third light).
  • the sub-pixels 10R, 10G, and 10B may be referred to collectively as the sub-pixel 10 without any particular distinction.
  • One pixel is composed of, for example, a plurality of adjacent sub-pixels 10R, 10G, 10B, or a plurality of adjacent sub-pixels 10R, 10G, 10B, 10B.
  • the display device 101 is an example of a light emitting device.
  • the display device 101 may be a top emission type OLED display device.
  • Display device 101 may be a microdisplay.
  • the display device 101 may be included in an eyewear device such as a VR (Virtual Reality) device, an MR (Mixed Reality) device, an AR (Augmented Reality) device, or an electronic view finder (EVF) or a small device. It may be provided in a projector or the like.
  • the display device 101 includes a driving substrate 11, a plurality of light emitting elements 12W, an insulating layer 13, a protective layer 14, a color filter 15, a filled resin layer 16, and a sealing part 17. , a cover glass 18 and a contact electrode 19.
  • the surface that is the top side (display surface side) of the display device 101 is referred to as the first surface
  • the bottom side (opposite to the display surface) of the display device 101 is referred to as the first surface.
  • the side) is sometimes referred to as the second side.
  • the periphery of the first surface refers to an area having a predetermined width from the periphery of the first surface inward
  • the periphery of the second surface refers to an area inward from the periphery of the second surface. A region having a predetermined width towards the end.
  • the drive board 11 is a so-called backplane and can drive a plurality of light emitting elements 12W.
  • the drive substrate 11 includes, for example, a substrate 111 and an insulating layer 112 in this order.
  • the substrate 111 may be, for example, a semiconductor substrate on which a transistor or the like can be easily formed, or may be a glass substrate or a resin substrate with low moisture and oxygen permeability.
  • the semiconductor substrate includes, for example, amorphous silicon, polycrystalline silicon, single crystal silicon, or the like.
  • the glass substrate includes, for example, high strain point glass, soda glass, borosilicate glass, forsterite, lead glass, or quartz glass.
  • the resin substrate includes, for example, at least one selected from the group consisting of polymethyl methacrylate, polyvinyl alcohol, polyvinylphenol, polyether sulfone, polyimide, polycarbonate, polyethylene terephthalate, polyethylene naphthalate, and the like.
  • the insulating layer 112 may be provided on the first surface of the substrate 111 to cover and planarize the plurality of drive circuits, the plurality of wirings 113, 115, and the like.
  • the insulating layer 112 may insulate between the plurality of drive circuits, the plurality of wirings 113, 115, etc. provided on the first surface of the substrate 111, and the plurality of light emitting elements 12W.
  • the wiring 115 may be connected to a pad portion (not shown).
  • the insulating layer 112 may be an organic insulating layer, an inorganic insulating layer, or a laminate of these.
  • the organic insulating layer contains, for example, at least one selected from the group consisting of polyimide resin, acrylic resin, novolak resin, and the like.
  • the inorganic insulating layer includes, for example, at least one selected from the group consisting of silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), and the like.
  • the insulating layer 112 includes a plurality of contact portions 114 and 116 therein.
  • the contact portion 114 electrically connects the light emitting element 12W and the wiring 113.
  • the contact portion 116 electrically connects the contact electrode 19 and the wiring 115.
  • the contact portions 114 and 116 include, for example, at least one metal selected from the group consisting of copper (Cu), titanium (Ti), and the like.
  • the light emitting element 12W can emit white light under the control of a drive circuit or the like.
  • the light emitting element 12W is an OLED element.
  • the OLED element may be a Micro-OLED (M-OLED) element.
  • the light emitting element 12W is included in each color subpixel 10R, 10G, and 10B.
  • the plurality of light emitting elements 12W are two-dimensionally arranged on the first surface of the drive substrate 11 in a prescribed arrangement pattern.
  • the prescribed arrangement pattern is as described as the prescribed arrangement pattern of the plurality of sub-pixels 10.
  • the light emitting element 12W includes an anode 121, an OLED layer 122, and a cathode 123.
  • An anode 121, an OLED layer 122, and a cathode 123 are stacked on the first surface of the drive substrate 11.
  • the anode 121 is an example of the second electrode in the claims
  • the cathode 123 is an example of the first electrode in the claims.
  • the anode 121 is provided on the second surface side of the OLED layer 122.
  • the anode 121 is an individual electrode provided individually for the plurality of light emitting elements 12W within the effective pixel region RE1. That is, the anode 121 is divided between the light emitting elements 12W adjacent to each other in the in-plane direction of the first surface of the drive substrate 11 within the effective pixel region RE1.
  • a voltage is applied between the anode 121 and the cathode 123, holes are injected from the anode 121 into the OLED layer 122.
  • the anode 121 may be composed of, for example, a metal layer, or a metal layer and a transparent conductive oxide layer.
  • the anode 121 is composed of a metal layer and a transparent conductive oxide layer, from the viewpoint of placing a layer having a high work function adjacent to the OLED layer 122, the transparent conductive oxide layer is placed on the OLED layer 122 side.
  • the transparent conductive oxide layer is placed on the OLED layer 122 side.
  • the metal layer also has a function as a reflective layer that reflects the light emitted by the OLED layer 122.
  • the metal layer include chromium (Cr), gold (Au), platinum (Pt), nickel (Ni), copper (Cu), molybdenum (Mo), titanium (Ti), tantalum (Ta), and aluminum (Al). , magnesium (Mg), iron (Fe), tungsten (W), and silver (Ag).
  • the metal layer may contain the at least one metal element described above as a constituent element of an alloy. Specific examples of alloys include aluminum alloys and silver alloys. Specific examples of aluminum alloys include AlNd and AlCu.
  • a base layer may be provided adjacent to the second surface side of the metal layer.
  • the base layer may be capable of improving the crystal orientation of the metal layer during film formation of the metal layer.
  • the base layer contains, for example, at least one metal element selected from the group consisting of titanium (Ti) and tantalum (Ta).
  • the base layer may contain the above-mentioned at least one metal element as a constituent element of the alloy.
  • the transparent conductive oxide layer contains a transparent conductive oxide.
  • Transparent conductive oxides include, for example, transparent conductive oxides containing indium (hereinafter referred to as “indium-based transparent conductive oxides”) and transparent conductive oxides containing tin (hereinafter referred to as “tin-based transparent conductive oxides”). ) and transparent conductive oxides containing zinc (hereinafter referred to as “zinc-based transparent conductive oxides").
  • Indium-based transparent conductive oxides include, for example, indium tin oxide (ITO), indium zinc oxide (IZO), indium gallium oxide (IGO), indium gallium zinc oxide (IGZO), or fluorine-doped indium oxide (IFO).
  • ITO indium tin oxide
  • ITO indium tin oxide
  • the tin-based transparent conductive oxide includes, for example, tin oxide, antimony-doped tin oxide (ATO), or fluorine-doped tin oxide (FTO).
  • Zinc-based transparent conductive oxides include, for example, zinc oxide, aluminum-doped zinc oxide (AZO), boron-doped zinc oxide, or gallium-doped zinc oxide (GZO).
  • OLED layer 122 can emit white light.
  • OLED layer 122 is provided between a plurality of anodes 121 and one cathode 123.
  • the OLED layer 122 is connected between adjacent light emitting elements 12W within the effective pixel region RE1, and is a layer common to the plurality of light emitting elements 12W within the effective pixel region RE1.
  • the OLED layer 122 may be composed of a laminate including an organic light-emitting layer, and in that case, some layers (for example, an electron injection layer) in the laminate may be inorganic layers.
  • the OLED layer 122 may be an OLED layer including a single layer of light emitting units, an OLED layer including two layers of light emitting units (tandem structure), or an OLED layer with a structure other than these. It's okay.
  • an OLED layer including a single-layer light emitting unit includes a hole injection layer, a hole transport layer, a red light emitting layer, a light emitting separation layer, a blue light emitting layer, a green light emitting layer, and an electron transporting layer from the anode 121 to the cathode 123.
  • the electron injection layer has a structure in which the electron injection layer and the electron injection layer are stacked in this order.
  • an OLED layer including a two-layer light emitting unit includes a hole injection layer, a hole transport layer, a blue light emitting layer, an electron transport layer, a charge generation layer, a hole transport layer, and a yellow layer from the anode 121 to the cathode 123. It has a structure in which a light emitting layer, an electron transport layer, and an electron injection layer are stacked in this order.
  • the hole injection layer can increase the efficiency of hole injection into each light emitting layer and can suppress leakage.
  • the hole transport layer can increase hole transport efficiency to each light emitting layer.
  • the electron injection layer can increase the efficiency of electron injection into each light emitting layer.
  • the electron transport layer can increase electron transport efficiency to each light emitting layer.
  • the light emitting separation layer is a layer for adjusting the injection of carriers into each light emitting layer, and the light emission balance of each color is adjusted by injecting electrons and holes into each light emitting layer through the light emitting separation layer.
  • the charge generation layer can supply electrons and holes to two light emitting layers provided to sandwich the charge generation layer, respectively.
  • red light emitting layer green light emitting layer, blue light emitting layer, and yellow light emitting layer
  • holes injected from the anode 121 or the charge generation layer and electrons injected from the cathode 123 or the charge generation layer are combined. Recombination occurs and emits red, green, blue, and yellow light.
  • the cathode 123 is provided on the first surface side of the OLED layer 122.
  • the cathode 123 is connected between adjacent light emitting elements 12W within the effective pixel region RE1, and is a common electrode for the plurality of light emitting elements 12W within the effective pixel region RE1.
  • the cathode 123 extends from the effective pixel region RE1 to the peripheral region RE2.
  • a peripheral portion of the second surface of the cathode 123 is connected to the first surface of the contact electrode 19 .
  • the cathode 123 is transparent to white light emitted from the OLED layer 122.
  • the cathode 123 is preferably a transparent electrode that is transparent to visible light. In this specification, visible light refers to light in a wavelength range of 360 nm or more and 830 nm.
  • the cathode 123 is composed of, for example, at least one of a metal layer and a transparent conductive oxide layer. More specifically, the cathode 123 is composed of a single layer film of a metal layer or a transparent conductive oxide layer, or a laminated film of a metal layer and a transparent conductive oxide layer.
  • a metal layer may be provided on the OLED layer 122 side, or a transparent conductive oxide layer may be provided on the OLED layer 122 side. From the viewpoint of making the layer adjacent to the OLED layer 122, it is preferable that the metal layer is provided on the OLED layer 122 side.
  • the metal layer contains, for example, at least one metal element selected from the group consisting of magnesium (Mg), aluminum (Al), silver (Ag), calcium (Ca), and sodium (Na).
  • the metal layer may contain the at least one metal element described above as a constituent element of an alloy. Specific examples of the alloy include MgAg alloy, MgAl alloy, and AlLi alloy.
  • the transparent conductive oxide layer includes a transparent conductive oxide. Examples of the transparent conductive oxide include the same materials as the transparent conductive oxide of the anode 121 described above.
  • Contact electrode 19 is provided on the first surface of drive substrate 11 in peripheral region RE2. Contact electrode 19 may have a layered structure. Contact electrode 19 is an auxiliary electrode that connects cathode 123 and wiring 115. The first surface of the contact electrode 19 is electrically connected to the peripheral edge of the second surface of the cathode 123. On the other hand, the second surface of the contact electrode 19 is connected to the wiring 115 via a plurality of contact parts 116 and the like.
  • the contact electrode 19 may have a closed loop shape that surrounds the entire outer periphery of the effective pixel region RE1 in plan view, or may have a partially divided loop shape that partially surrounds the outer periphery of the effective pixel region RE1. may have.
  • a planar view means a planar view when the object is viewed from a direction perpendicular to the first surface.
  • the contact electrode 19 has a plurality of protrusions 191 on the first surface connected to the peripheral edge of the cathode 123.
  • the convex portion 191 is an example of a structure.
  • the peripheral portion of the cathode 123 may be provided on the first surface of the contact electrode 19 so as to follow the plurality of convex portions 191 .
  • the peripheral edge of the cathode 123 refers to a region having a predetermined width from the peripheral edge of the cathode 123 toward the inside.
  • the plurality of convex portions 191 extend in a direction away from the effective pixel region RE1 in plan view.
  • the plurality of convex portions 191 may be provided radially around the effective pixel region RE1.
  • the direction away from the effective pixel area RE1 refers to a direction perpendicular to the outer periphery of the effective pixel area RE1 (see FIG. 2) and a direction oblique to the outer periphery of the effective pixel area RE1 in plan view. (See FIG. 4).
  • a plurality of convex portions 191 extend in a direction perpendicular to the outer circumference of the effective pixel region RE1, and a plurality of convex portions 191 extend in a diagonal direction with respect to the outer circumference of the effective pixel region RE1.
  • the convex portion 191 may also be included.
  • the plurality of convex portions 191 include a plurality of convex portions 191 extending in a diagonal direction with respect to the outer periphery of the effective pixel region RE1, even if the direction of extension of the plurality of convex portions 191 is the same, Alternatively, the direction may be two or more different directions.
  • the angle ⁇ (see FIG. 4) formed by the perpendicular line L1 perpendicular to the outer periphery of the effective pixel region RE1 and the central axis L2 of the convex portion 191 extending in a direction oblique to the outer periphery of the effective pixel region RE1 is preferably is ⁇ 10° or less, more preferably ⁇ 8° or less, or ⁇ 6° or less, more preferably ⁇ 5° or less, ⁇ 4° or less, ⁇ 3° or less, ⁇ 2° or less, ⁇ 1° or less, ⁇ 0. It is 5° or less or ⁇ 0.1° or less.
  • the "+" angle represents an angle in the clockwise direction with respect to the perpendicular line L1 perpendicular to the outer periphery of the effective pixel area RE1
  • the "-" angle represents an angle perpendicular to the outer periphery of the effective pixel area RE1. It represents the angle in the counterclockwise direction with respect to the perpendicular L1 .
  • the central axis L2 of the convex portion 191 represents a straight line extending in the direction in which the convex portion 191 extends.
  • the plurality of convex portions 191 have, for example, an elongated shape in plan view.
  • the elongated shape may be, for example, a linear shape, a rectangular shape, an oval shape, or the like, or a shape other than these.
  • the oval shape includes shapes such as an elliptical shape, an elliptical shape, and an egg shape.
  • the plurality of convex portions 191 are arranged at intervals in the circumferential direction of the outer periphery of the effective pixel region RE1, that is, in the circumferential direction of the contact electrode 19.
  • the distance between adjacent protrusions 191 in the circumferential direction of the outer periphery of the effective pixel region RE1 may be constant or may vary.
  • the contact electrode 19 is composed of, for example, at least one of a metal layer and a metal oxide layer. More specifically, for example, the contact electrode 19 is composed of a single layer film of a metal layer or a metal oxide layer, or a laminated film of a metal layer and a metal oxide layer. It is preferable that the contact electrode 19 has the same configuration as the anode 121 described above. In this case, since the contact electrode 19 can be formed at the same time as the anode 121, the manufacturing process of the display device 101 can be simplified.
  • the same material as the anode 121 described above can be exemplified.
  • the materials contained in the metal layer of the contact electrode 19 include the same materials as the metal layer of the anode 121 described above, and the materials contained in the metal oxide layer of the contact electrode 19 include: , the same material as the metal oxide layer of the anode 121 described above can be used.
  • a base layer (not shown) may be provided adjacent to the second surface side of the metal layer.
  • the same material as the base layer of the anode 121 described above can be exemplified.
  • the insulating layer 13 is provided in a portion of the first surface of the drive substrate 11 between the spaced apart anodes 121 . Insulating layer 13 provides insulation between adjacent anodes 121 .
  • the insulating layer 13 has a plurality of first openings. Each of the plurality of first openings is provided corresponding to each light emitting element 12W. A plurality of first openings may be provided on the first surface (the surface on the OLED layer 122 side) of each anode 121, respectively. The anode 121 and the OLED layer 122 are in contact with each other through the first opening.
  • the insulating layer 13 is also provided between the anode 121 and the contact electrode 19 on the first surface of the drive substrate 11 .
  • Insulating layer 13 insulates between anode 121 and contact electrode 19 .
  • Insulating layer 13 has a second opening.
  • the second opening is provided corresponding to the contact electrode 19.
  • the second opening may be provided on the first surface of the contact electrode 19 (the surface connected to the peripheral edge of the cathode 123).
  • the contact electrode 19 and the peripheral edge of the cathode 123 are electrically connected through the second opening.
  • the second opening may have a closed loop shape similar to the contact electrode 19.
  • the insulating layer 13 may be an organic insulating layer, an inorganic insulating layer, or a laminate of these.
  • the organic insulating layer contains, for example, at least one selected from the group consisting of polyimide resin, acrylic resin, novolak resin, and the like.
  • the inorganic insulating layer includes, for example, at least one selected from the group consisting of silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), and the like.
  • the protective layer 14 is provided on the first surface of the cathode 123.
  • the protective layer 14 is transparent to white light emitted from the light emitting element 12W. It is preferable that the protective layer 14 has transparency to visible light.
  • the protective layer 14 can protect the plurality of light emitting elements 12W and the like.
  • the protective layer 14 can isolate the plurality of light emitting elements 12W from the outside air, and can suppress moisture intrusion into the plurality of light emitting elements 12W from the external environment.
  • the cathode 123 is formed of a metal layer, the protective layer 14 may have a function of suppressing oxidation of this metal layer.
  • the protective layer 14 includes, for example, an inorganic material or a polymer resin with low hygroscopicity.
  • the protective layer 14 may have a single layer structure or a multilayer structure. When increasing the thickness of the protective layer 14, it is preferable to have a multilayer structure. This is to relieve internal stress in the protective layer 14.
  • the inorganic material is selected from the group consisting of silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), titanium oxide (TiO x ), aluminum oxide (AlO x ), etc. Contains at least one species.
  • the polymer resin includes, for example, at least one selected from the group consisting of thermosetting resins, ultraviolet curable resins, and the like. Specifically, the polymer resin includes at least one selected from the group consisting of acrylic resin, polyimide resin, novolak resin, epoxy resin, norbornene resin, parylene resin, and the like.
  • the protective layer 14 may include an ALD (Atomic Layer Deposition) layer.
  • ALD Atomic Layer Deposition
  • the ALD layer includes, for example, aluminum oxide (AlO x ) or titanium oxide (TiO x ).
  • the color filter 15 is provided above the plurality of light emitting elements 12W. More specifically, the color filter 15 is provided on the first surface of the protective layer 14 in the effective pixel region RE1.
  • the color filter 15 is, for example, an on-chip color filter (OCCF).
  • the color filter 15 includes, for example, a plurality of red filter sections 15FR, a plurality of green filter sections 15FG, and a plurality of blue filter sections 15FB.
  • a filter section 15F when the red filter section 15FR, the green filter section 15FG, and the blue filter section 15FB are collectively referred to without particular distinction, they may be referred to as a filter section 15F.
  • the plurality of filter parts 15F are two-dimensionally arranged on the first surface of the protective layer 14 in a prescribed arrangement pattern.
  • the prescribed arrangement pattern is as described as the prescribed arrangement pattern of the plurality of sub-pixels 10.
  • Each filter section 15F is provided above the light emitting element 12W.
  • the subpixel 10R includes a light emitting element 12W and a red filter section 15FR provided above the light emitting element 12W.
  • the subpixel 10G includes a light emitting element 12W and a green filter section 15FG provided above the light emitting element 12W.
  • the subpixel 10B is composed of a light emitting element 12W and a blue filter section 15FB provided above the light emitting element 12W.
  • the red filter section 15FR transmits red light among the white light emitted from the light emitting element 12W, but can absorb light other than red light.
  • the green filter section 15FG transmits green light among the white light emitted from the light emitting element 12W, but can absorb light other than green light.
  • the blue filter section 15FB transmits blue light among the white light emitted from the light emitting element 12W, but can absorb light other than blue light.
  • the red filter section 15FR includes, for example, a red color resist.
  • the green filter section 15FG includes, for example, a green color resist.
  • the blue filter section 15FB includes, for example, a blue color resist.
  • the filled resin layer 16 is filled between the color filter 15 and the cover glass 18. Filled resin layer 16 is provided inside seal portion 17 .
  • the filled resin layer 16 is transparent to each color of light emitted from the color filter 15 . It is preferable that the filled resin layer 16 has transparency to visible light.
  • the filled resin layer 16 may function as an adhesive layer for bonding the color filter 15 and the cover glass 18 together.
  • the filled resin layer 16 contains, for example, a curable resin.
  • the curable resin includes at least one selected from the group consisting of thermosetting resins, ultraviolet curable resins, and the like. Note that the filled resin layer 16 is not limited to thermosetting resins and ultraviolet curable resins, and may include other types of curable resins than thermosetting resins and ultraviolet curable resins.
  • the seal portion 17 is provided between the peripheral edge of the first surface of the protective layer 14 and the peripheral edge of the second surface of the cover glass 18 .
  • the seal portion 17 adheres the peripheral edge of the first surface of the protective layer 14 and the peripheral edge of the second surface of the cover glass 18 and seals between the peripheral edge of the protective layer 14 and the peripheral edge of the cover glass 18 .
  • the seal portion 17 includes, for example, a curable resin.
  • the curable resin includes, for example, at least one selected from the group consisting of thermosetting resins, ultraviolet curable resins, and the like. More specifically, for example, the curable resin includes at least one selected from the group consisting of epoxy resins, acrylic resins, and the like. Note that the curable resin is not limited to thermosetting resins and ultraviolet curable resins, and may include types of curable resins other than thermosetting resins and ultraviolet curable resins.
  • the cover glass 18 is provided on the first surface of the filled resin layer 16 and the first surface of the seal portion 17 .
  • the cover glass 18 seals the first surface of the drive substrate 11 on which members such as the plurality of light emitting elements 12W are provided.
  • the cover glass 18 is transparent to each color of light emitted from the color filter 15. It is preferable that the cover glass 18 has transparency to visible light.
  • the cover glass 18 is, for example, a glass substrate.
  • a metal layer and a metal oxide layer are sequentially formed on the first surface of the drive substrate 11 by, for example, sputtering, and then the metal layer and metal oxide layer are patterned by, for example, photolithography.
  • a plurality of anodes 121 and contact electrodes 19 are formed on the first surface of the drive substrate 11.
  • a plurality of convex portions 191 are formed on the first surface of the contact electrode 19 using, for example, photolithography technology.
  • the insulating layer 13 is formed on the first surface of the drive substrate 11 so as to cover the plurality of anodes 121 and the contact electrodes 19 by, for example, a CVD (Chemical Vapor Deposition) method.
  • a plurality of first openings and one second opening are formed in the insulating layer 13 by, for example, photolithography. As a result, the first surface of each anode 121 is exposed through the first opening, and the first surface of the contact electrode 19 is exposed through the second opening.
  • Formation process of OLED layer 122 Next, for example, by vapor deposition, a hole transport layer, a red light emitting layer, a light emitting separation layer, a blue light emitting layer, a green light emitting layer, an electron transport layer, and an electron injection layer are formed on the drive substrate 11 so as to cover the plurality of anodes 121.
  • the OLED layer 122 is formed by sequentially stacking layers on one surface.
  • a cathode 123 is formed on the first surface of the OLED layer 122 and the first surface of the contact electrode 19 by, for example, a vapor deposition method or a sputtering method. As a result, a plurality of light emitting elements 12W are formed on the first surface of the drive substrate 11, and the peripheral portion of the second surface of the cathode 123 is connected to the first surface of the contact electrode 19.
  • the protective layer 14 is formed on the first surface of the cathode 123 by, for example, a CVD method or a vapor deposition method.
  • a colored composition for forming green filter portions is applied on the first surface of the protective layer 14, and after pattern exposure is performed by irradiating ultraviolet rays through a photomask and developed, a plurality of green filter portions 15FG are formed. form.
  • a colored composition for forming a red filter portion is applied onto the first surface of the protective layer 14, and after pattern exposure is performed by irradiating ultraviolet rays through a photomask and then developed, a plurality of red filter portions 15FR are formed. form.
  • a colored composition for forming a blue filter portion is applied on the first surface of the protective layer 14, and after pattern exposure is performed by irradiating ultraviolet rays through a photomask and developing, a plurality of blue filter portions 15FB are formed. form. As a result, the color filter 15 is formed on the first surface of the protective layer 14.
  • a sealant is applied on the peripheral edge of the first surface of the protective layer 14 in a closed loop surrounding the display area R1 to form a frame, and then a filling resin is applied inside the frame.
  • the cover glass 18 is placed on top of the filled resin and sealant.
  • the sealant and the filled resin are cured, for example, by at least one of heat treatment and ultraviolet irradiation treatment.
  • the peripheral edge of the first surface of the protective layer 14 and the peripheral edge of the second surface of the cover glass 18 are bonded together by the sealing part 17, and the filled resin layer 16 is formed inside the sealing part 17.
  • the method of curing the filled resin and sealant is not limited to heat treatment and ultraviolet irradiation treatment, and may be a curing method other than heat treatment and ultraviolet irradiation treatment.
  • the contact electrode 19 has a plurality of convex portions 191 on the first surface connected to the peripheral edge of the cathode 123. These plurality of convex portions 191 extend in a direction away from the effective pixel region RE1 in a plan view, and are spaced apart from each other in the circumferential direction of the outer periphery of the effective pixel region RE1. Thereby, as shown by the arrow 31 in FIG. 2, a current path (carrier path) can be formed in a portion between the protrusions 191 adjacent in the circumferential direction on the outer periphery of the effective pixel region RE1.
  • the frame of the display device 101 can be made narrower, and the display device 101 can be made smaller.
  • FIG. 5 is a plan view of the display device 102 according to the second embodiment.
  • FIG. 6 is a cross-sectional view taken along line VI-VI in FIG.
  • the display device 102 differs from the display device 101 according to the first embodiment in that the contact electrode 19 has a plurality of protrusion groups 192 instead of the plurality of protrusions 191.
  • the convex portion group 192 is an example of a structure group in the claims.
  • the plurality of convex portion groups 192 are arranged at intervals in the circumferential direction of the outer periphery of the effective pixel region RE1, that is, in the circumferential direction of the contact electrode 19, in plan view.
  • the distance between the convex portion groups 192 adjacent in the circumferential direction of the outer periphery of the effective pixel region RE1 may be constant or may vary.
  • Each protrusion group 192 includes a plurality of first protrusions 192a and a plurality of second protrusions 192b.
  • each convex group 192 includes a plurality of first convex portions 192a and a plurality of second convex portions 192b. and one second convex portion 192b.
  • the plurality of first convex portions 192a are provided closer to the effective pixel region RE1 than the plurality of second convex portions 192b.
  • the first convex portion 192a is an example of a first structure in the claims.
  • the first convex portion 192a is similar to the convex portion 191 in the first embodiment. However, the length of the first convex portion 192a may be shorter than the length of the convex portion 191 in the first embodiment.
  • the plurality of second convex portions 192b are provided closer to the peripheral edge of the display device 101 than the plurality of first convex portions 192a.
  • the second convex portion 192b is an example of a second structure in the claims.
  • the second convex portion 192b extends in a direction substantially perpendicular to the extending direction of the first convex portion 192a (that is, substantially the same direction as the circumferential direction of the effective pixel region RE1) in plan view.
  • a direction substantially perpendicular to the extension direction refers to a direction in which the angle with the extension direction is 80° or more and 100° or less.
  • the angle between the extension direction and a direction substantially perpendicular to the extension direction is, for example, 82° or more and 98° or less, 84° or more and 96° or less, 85° or more and 95° or less, 86° or more and 94° or less, and 87°.
  • the angle may be greater than or equal to 93 degrees, less than or equal to 92 degrees, greater than or equal to 89 degrees and less than or equal to 91 degrees, greater than or equal to 89.5 degrees and less than or equal to 90.5 degrees, or greater than or equal to 89.9 degrees and less than or equal to 90.1 degrees.
  • the plurality of second convex portions 192b have, for example, an elongated shape in plan view. As a specific example of the elongated shape, a shape similar to the convex portion 191 in the first embodiment can be cited.
  • the plurality of second convex portions 192b are spaced apart from each other in a direction moving away from the effective pixel region RE1.
  • the convex part group 192 includes three or more second convex parts 192b, the distance between the second convex parts 192b adjacent to each other in the direction away from the effective pixel area RE1 may be constant or may vary. Good too.
  • the second protrusion 192b closest to the effective pixel area RE1 among the plurality of second protrusions 192b may be separated from one end of the plurality of first protrusions 192a, or may be separated from one end of the plurality of first protrusions 192a. It may be connected to FIG. 5 shows an example in which the second protrusion 192b closest to the effective pixel area RE1 among the plurality of second protrusions 192b is separated from the plurality of first protrusions.
  • the plurality of convex portion groups 192 are arranged at intervals in the circumferential direction of the outer periphery of the effective pixel region RE1.
  • the plurality of first convex portions 192a included in the plurality of convex portion groups 192 extend in a direction away from the effective pixel region RE1 in plan view, and are spaced apart in the circumferential direction of the outer periphery of the effective pixel region RE1. are placed apart.
  • a current path carrier path
  • the plurality of second convex portions 192b included in the plurality of convex portion groups 192 are arranged in a direction substantially perpendicular to the extending direction of the first convex portions 192a (i.e., They extend in a direction substantially the same as the circumferential direction of the effective pixel region RE1, and are spaced apart from each other in a direction moving away from the effective pixel region RE1.
  • a current path carrier path
  • a current path in the circumferential direction of the effective pixel region RE1 can be secured.
  • FIG. 7 is a plan view of the display device 103 according to the third embodiment.
  • FIG. 8 is a plan view showing a part of the peripheral region RE2 in FIG. 7 in an enlarged manner.
  • FIG. 9 is a cross-sectional view taken along line IX-IX in FIG.
  • the display device 103 differs from the display device 101 according to the first embodiment (see FIG. 2) in that the contact electrode 19 has a plurality of protrusion groups 193 instead of the plurality of protrusions 191.
  • the convex portion group 193 is an example of a structure group in the claims.
  • the plurality of convex portion groups 193 are arranged at intervals in the circumferential direction of the outer periphery of the effective pixel region RE1, that is, in the circumferential direction of the contact electrode 19, in plan view.
  • the distance D between the convex portion groups 193 adjacent in the circumferential direction of the outer periphery of the effective pixel region RE1 may be constant or may vary.
  • Each convex group 193 includes a plurality of convex portions 193a.
  • the plurality of convex portions 193a may be two-dimensionally arranged on the first surface of the contact electrode 19 in a prescribed arrangement pattern.
  • the prescribed arrangement pattern may be a matrix shape, a checkerboard pattern, or the like, or may be an arrangement pattern other than these.
  • the plurality of convex portions 193a may be arranged at intervals D21 in the circumferential direction of the outer periphery of the effective pixel region RE1 in plan view.
  • the distance D21 between adjacent convex portions 193a in the circumferential direction of the outer periphery of the effective pixel region RE1 may be constant or may vary.
  • the plurality of convex portions 193a may be arranged at intervals D22 in a direction moving away from the effective pixel region RE1 in plan view.
  • the distance D22 between adjacent convex portions 193a in the direction away from the effective pixel area RE1 may be constant or may vary.
  • the heights of the plurality of protrusions 193a may be substantially the same or may be different.
  • the convex portion 193a may have a dot shape in plan view, for example.
  • the dot shape may have, for example, a circular shape, an elliptical shape, or a polygonal shape in plan view, or may have a shape other than these.
  • the convex portion 193a may have, for example, a substantially columnar shape, a substantially truncated pyramid shape, a substantially conical shape, or a substantially dome shape, or may have a shape other than these.
  • the plurality of protrusions 193a may include two or more types of protrusions 193a.
  • the distance D 11 between the protrusions 193 adjacent in the circumferential direction on the outer periphery of the effective pixel region RE1 is larger than the distance D 21 between the protrusions 193a adjacent in the circumferential direction on the outer periphery of the effective pixel region RE1. is preferred.
  • the current flow in the portion between the convex portion groups 193 adjacent in the circumferential direction on the outer periphery of the effective pixel region RE1 is changed from the current flow in the portion between the convex portions 193a adjacent in the circumferential direction on the outer periphery of the effective pixel region RE1.
  • the flow is better than that of
  • the distance D 11 between the convex portion groups 193 adjacent in the circumferential direction on the outer periphery of the effective pixel region RE1 and the distance D 21 between the convex portions 193a adjacent in the circumferential direction on the outer periphery of the effective pixel region RE1 are the effective pixel region. From the viewpoint of ensuring a current path in the direction away from RE1, preferably 1.5 ⁇ D 21 ⁇ D 11 , more preferably 2 ⁇ D 21 ⁇ D 11 , even more preferably 3 ⁇ D 21 ⁇ D 11 , 4 ⁇ D 21 ⁇ D 11 , 5 ⁇ D 21 ⁇ D 11 or 6 ⁇ D 21 ⁇ D 11 .
  • the distance D 11 between the protrusions 193 adjacent in the circumferential direction on the outer periphery of the effective pixel region RE1 and the distance D 21 between the protrusions 193a adjacent in the circumferential direction on the outer periphery of the effective pixel region RE1 are From the viewpoint of suppressing a decrease in the contact area between the peripheral edge portion and the contact electrode 19, D 11 ⁇ 10 ⁇ D 21 is preferably satisfied.
  • the distance D 22 between the protrusions 193a adjacent in the direction away from the effective pixel area RE1 may be the same as or different from the distance D 21 between the protrusions 193a adjacent in the circumferential direction of the outer periphery of the effective pixel area RE1. You can leave it there. It is preferable that the distance D 22 between the convex portions 193a adjacent to each other in the direction away from the effective pixel region RE1 is smaller than the distance D 11 between the convex portion groups 193 adjacent in the circumferential direction of the outer periphery of the effective pixel region RE1. Thereby, it is possible to suppress a decrease in the number of the plurality of protrusion groups 193 included in each protrusion group 193, and to suppress a decrease in the contact area between the peripheral edge of the cathode 123 and the contact electrode 19.
  • the contact electrode 19 has a group of convex portions 193 on the first surface. Thereby, the contact area between the cathode 123 and the contact electrode 19 can be increased.
  • the plurality of convex portion groups 193 are arranged at intervals in the circumferential direction of the outer periphery of the effective pixel region RE1. Thereby, a current path can be secured in the portion between the convex portion groups 193 adjacent in the circumferential direction on the outer periphery of the effective pixel region RE1. Therefore, in the display device 103 according to the third embodiment, it is possible to increase the contact area between the cathode 123 and the contact electrode 19 while ensuring a current path in the direction away from the effective pixel region RE1.
  • FIG. 10 is a cross-sectional view of a display device 104 according to the fourth embodiment.
  • the display device 104 includes a drive substrate 11, a plurality of light emitting elements (first light emitting element) 12R, a plurality of light emitting elements (second light emitting element) 12G, and a plurality of light emitting elements (third light emitting element) 12B. It includes an electrode 124, a first protective layer 21, a second protective layer 22, and a contact electrode 19. Note that in the fourth embodiment, the same parts as in the first embodiment are given the same reference numerals, and the description thereof will be omitted.
  • the common electrode 124 is an example of the first electrode in the claims.
  • the colors of the emitted light of the light emitting element 12R, the light emitting element 12G, and the light emitting element 12B are different.
  • the light emitting element 12R can emit red light under control of a drive circuit or the like.
  • the light emitting element 12G can emit green light under control of a drive circuit or the like.
  • the light emitting element 12B can emit blue light under control of a drive circuit or the like.
  • the light emitting element 12 is an OLED (Organic Light Emitting Diode) element.
  • the light emitting element 12R is composed of a subpixel 10R.
  • the light emitting element 12G is composed of a subpixel 10G.
  • the light emitting element 12B is composed of a subpixel 10B.
  • the plurality of light emitting elements 12 are two-dimensionally arranged on the first surface of the drive substrate 11 in a prescribed arrangement pattern.
  • the prescribed arrangement pattern is the same as that described as the prescribed arrangement pattern of the plurality of sub-pixels 10 in the first embodiment.
  • the light emitting element 12R includes an anode 121, an OLED layer 122R, and a cathode 126 on the first surface of the drive substrate 11 in this order.
  • the light emitting element 12G includes an anode 121, an OLED layer 122G, and a cathode 126 on the first surface of the drive substrate 11 in this order.
  • the light emitting element 12B includes an anode 121, an OLED layer 122B, and a cathode 126 on the first surface of the drive substrate 11 in this order.
  • one of the anode 121 and the cathode 126 is an example of the third electrode in the claims, and the other is an example of the fourth electrode in the claims.
  • OLED layers 122R, 122G, 122B The OLED layer 122R can emit red light.
  • the OLED layer 122G can emit green light.
  • OLED layer 122B can emit blue light.
  • the OLED layer 122R includes an organic light emitting layer (hereinafter referred to as “red organic light emitting layer”) capable of emitting red light.
  • the OLED layer 122R includes an organic light emitting layer (hereinafter referred to as “green organic light emitting layer”) capable of emitting green light.
  • the OLED layer 122B includes an organic light-emitting layer (hereinafter referred to as "blue organic light-emitting layer”) that can emit blue light.
  • red organic light-emitting layer when a red organic light-emitting layer, a green organic light-emitting layer, and a blue organic light-emitting layer are collectively referred to without particular distinction, they may be simply referred to as an organic light-emitting layer.
  • the OLED layers 122R, 122G, and 112B may be composed of a laminate including an organic light-emitting layer, and in that case, some layers (for example, an electron injection layer) of the laminate may be an inorganic layer.
  • the OLED layer 122R includes, for example, a hole injection layer, a hole transport layer, a red organic light emitting layer, an electron transport layer, and an electron injection layer in this order from the anode 121 to the cathode 126.
  • the OLED layer 122G includes, for example, a hole injection layer, a hole transport layer, a green organic light emitting layer, an electron transport layer, and an electron injection layer in this order from the anode 121 to the cathode 126.
  • the OLED layer 122G includes, for example, a hole injection layer, a hole transport layer, a blue organic light emitting layer, an electron transport layer, and an electron injection layer in this order from the anode 121 to the cathode 126.
  • the red organic light-emitting layer can emit red light by recombining holes injected from the anode 121 and electrons injected from the cathode 126.
  • the green organic light emitting layer can emit green light due to the same phenomenon as the red organic light emitting layer described above.
  • the blue organic light emitting layer can emit blue light due to the same phenomenon as the red organic light emitting layer described above.
  • the cathode 126 is an individual electrode provided individually for the plurality of light emitting elements 12W within the effective pixel region RE1. That is, the anode 121 is divided between the light emitting elements 12 adjacent to each other in the in-plane direction of the first surface of the drive substrate 11 within the effective pixel region RE1. Cathode 126 is otherwise similar to cathode 123 in the first embodiment.
  • the first protective layer 21 and the second protective layer 22 are transparent to each color of light emitted from the light emitting elements 12R, 12G, and 12B. It is preferable that the first protective layer 21 and the second protective layer 22 have transparency to visible light.
  • the first protective layer 21 and the second protective layer 22 can protect the plurality of light emitting elements 12 and the like.
  • the first protective layer 21 and the second protective layer 22 can isolate the plurality of light emitting elements 12 from the outside air, and can suppress moisture intrusion into the plurality of light emitting elements 12 from the external environment.
  • the first protective layer 21 is provided on the first surface of the drive substrate 11 so as to cover the plurality of light emitting elements 12.
  • the first protective layer 21 has a plurality of contact holes 21H passing through the first protective layer 21 in the thickness direction.
  • the contact hole 21H may be provided within the light emitting region of the light emitting element 12 in plan view, or may be provided outside the light emitting region of the light emitting element 12 in plan view.
  • FIG. 10 shows an example in which the contact hole 21H is provided outside the light emitting region of the light emitting element 12 in plan view.
  • the second protective layer 22 is provided on the first surface of the common electrode 124.
  • Examples of the materials included in the first protective layer 21 and the second protective layer 22 include the same materials as the protective layer 14 in the first embodiment.
  • the materials contained in the first protective layer 21 and the second protective layer 22 may be the same or different.
  • the common electrode 124 is provided on the first surface of the first protective layer 21 .
  • the common electrode 124 is connected between adjacent light emitting elements 12 in the effective pixel area RE1, and is a common electrode for the plurality of light emitting elements 12 provided in the display area 110A.
  • the common electrode 124 is transparent to each light emitted from the light emitting elements 12R, 12G, and 12B.
  • the common electrode 124 is preferably transparent to visible light.
  • the common electrode 124 extends from the effective pixel region RE1 to the peripheral region RE2.
  • a peripheral portion of the second surface of the common electrode 124 is connected to the first surface of the contact electrode 19 .
  • the peripheral edge portion of the common electrode 124 may be provided on the first surface of the contact electrode 19 so as to follow the plurality of convex portions 191 .
  • the common electrode 124 is connected to each cathode 126 separated for each subpixel 10.
  • the common electrode 124 has a plurality of contact parts 125, and each of the plurality of contact parts 125 is provided in the contact hole 21H of the first protective layer 1.
  • the tips of the plurality of contact portions 125 are respectively connected to the first surface of the cathode 126 separated for each sub-pixel 10.
  • the peripheral portion of the common electrode 124 is connected to the contact electrode 19.
  • the contact electrode 19 has the plurality of convex portions 191 described in the first embodiment on the first surface. Therefore, it is possible to increase the contact area between the peripheral portion of the common electrode 124 and the contact electrode 19, and to ensure a current path in the direction away from the effective pixel region RE1.
  • FIG. 11 is a cross-sectional view of a display device 105 according to the fifth embodiment.
  • the display device 105 differs from the display device 101 according to the first embodiment (see FIG. 3) in that it further includes a flattening layer 23 and a lens array 24.
  • the planarization layer 23 is provided on the first surface of the color filter 15.
  • the planarization layer 23 has a flat first surface.
  • the flattening layer 23 can fill in the unevenness of the first surface of the color filter 15 and form a flat first surface above the color filter 15 .
  • the planarization layer 23 includes, for example, an inorganic material or a polymer resin. Examples of the inorganic material include the same materials as the inorganic material of the protective layer 14. As the polymer resin, the same material as the polymer resin of the protective layer 14 can be exemplified.
  • Lens array 24 is provided on the first surface of planarization layer 23 .
  • Lens array 24 includes a plurality of lenses 241.
  • the lens 241 can condense the light emitted upward from the light emitting element 12W in the front direction.
  • the plurality of lenses 241 are so-called on-chip microlenses (OCL), and are two-dimensionally arranged on the first surface of the planarization layer 23 in a prescribed arrangement pattern.
  • One lens 241 may be provided above one light emitting element 12W, or two or more lenses 241 may be provided above one light emitting element 12W.
  • FIG. 11 shows an example in which one lens 241 is provided above one light emitting element 12W.
  • the lens 241 may have a curved surface on the exit surface side that outputs the light incident from the light emitting element 12W.
  • the curved surface may be a convex curved surface protruding in a direction away from the light emitting element 12W, or a concave curved surface concave in a direction approaching the light emitting element 12W.
  • Examples of the curved surface include a substantially paraboloidal shape, a substantially hemispherical shape, a substantially semiellipsoidal shape, and the like, but the shape is not limited to these shapes.
  • the lens array 24 includes, for example, an inorganic material or a polymer resin that is transparent to visible light.
  • Inorganic materials include, for example, silicon oxide (SiO x ).
  • the polymer resin includes, for example, an ultraviolet curing resin.
  • the filled resin layer 16 covers the lens array 24.
  • the refractive index of the filled resin layer 16 is different from the refractive index of the lens array 24.
  • the refractive index of the filled resin layer 16 may be higher or lower than the refractive index of the lens array 24.
  • the refractive index of the filled resin layer 16 is preferably lower than the refractive index of the lens array 24 from the viewpoint of improving front brightness.
  • the refractive index of the filled resin layer 16 is preferably higher than the refractive index of the lens array 24 from the viewpoint of improving front brightness.
  • a lens array 24 is provided above the plurality of light emitting elements 12. Thereby, the light emitted upward from the light emitting element 12W can be focused in the front direction by the lens array 24. Therefore, the front brightness of the display device 105 can be improved.
  • the display device 101 may include a plurality of convex portions 191 having the following configuration. That is, as shown in FIG. 12, the distance D between adjacent convex portions 191 on the inner circumferential side of the peripheral region RE2 is smaller than the distance D between adjacent convex portions 191 on the outer circumferential side of the peripheral region RE2. It may be wider. The distance D between adjacent convex portions 191 may gradually widen from the outer periphery of the peripheral region RE2 toward the inner periphery of the peripheral region RE2.
  • the convex portion 191 may have a side surface that is inclined with respect to the outer periphery of the effective pixel region RE1 in plan view.
  • the width of the convex portion 191 may be gradually narrowed from the outer periphery of the peripheral region RE2 toward the inner periphery of the peripheral region RE2 in plan view.
  • the width of the protrusion 191 refers to the dimension of the protrusion 191 in the direction perpendicular to the direction in which the protrusion 191 extends.
  • the convex portion 191 may have a triangular shape or a trapezoidal shape in a plan view, or may have a shape other than these.
  • the triangular shape may be, for example, an isosceles triangle.
  • the convex portion 191 has a triangular shape in a plan view, even if one vertex of the triangular shape is located on the inner circumferential side of the peripheral region RE2 and the remaining two vertices are located on the outer peripheral side of the peripheral region RE2. good.
  • the convex portion 191 has a trapezoidal shape in plan view, the upper base of the trapezoid may be located on the inner peripheral side of the peripheral region RE2, and the lower base may be located on the outer peripheral side of the peripheral region RE2.
  • the distance D between adjacent convex portions 191 on the inner circumferential side of the peripheral region RE2 is smaller than the distance D between adjacent convex portions 191 on the outer circumferential side of the peripheral region RE2. It's getting wider. This makes it easier for the current flowing from the effective pixel region RE1 toward the peripheral region RE2 to flow into the portion between the protrusions 191 adjacent in the circumferential direction on the outer periphery of the effective pixel region RE1. Therefore, a good current path (carrier path) can be formed in the portion between the circumferentially adjacent convex portions 191 on the outer periphery of the effective pixel region RE1.
  • the display device 102 according to the second embodiment may have a plurality of convex portions 192a having the same configuration as the plurality of convex portions 191 described in the first modification above.
  • the display devices 104 and 105 according to the fourth and fifth embodiments may have the plurality of convex portions 191 described in the first modification example above.
  • the contact electrode 19 has a plurality of convex portions 191 as a plurality of structures on the first surface, but as shown in FIG.
  • the contact electrode 19 may have a plurality of concave portions 194 as a plurality of structures on the first surface, or may have a plurality of convex portions 191 and a plurality of concave portions 194 as a plurality of structures.
  • the concave portion 194 is a structural portion in which the convex portion 191 is inverted.
  • the contact electrode 19 has a plurality of convex portion groups 192 as a plurality of structure groups on the first surface.
  • a group may be provided on the first surface, or a plurality of convex portion groups 192 and a plurality of concave portion groups may be provided on the first surface as a plurality of structure groups.
  • the concave group is a structure group in which the convex group 192 is inverted.
  • the structure group includes a plurality of first convex portions 192a and a plurality of second convex portions 192b.
  • the structure group may include a plurality of second recesses instead of the plurality of second protrusions 192b.
  • the first concave portion is a structural portion in which the first convex portion 192a is inverted
  • the second concave portion is a structural portion in which the second convex portion 192b is inverted.
  • the structure group includes a plurality of first protrusions 192a as a plurality of first structures. It may include one convex portion 192a and a plurality of first concave portions. As described above, the first concave portion is a structural portion in which the first convex portion 192a is inverted.
  • the structure group includes a plurality of second convex portions 192b as a plurality of second structures.
  • the convex portion 192b and a plurality of second concave portions may be included.
  • the second concave portion is a structure obtained by inverting the second convex portion 192b.
  • the contact electrode 19 has a plurality of convex groups 193 as a plurality of structure groups on the first surface, but the contact electrode 19 has a plurality of concave groups as a plurality of structure groups. It may be provided on the first surface, or a plurality of convex portion groups 193 and a plurality of recessed portion groups may be provided on the first surface as a plurality of structure groups.
  • the concave portion group is a structure group in which the convex portion group 193 is inverted. The depths of the plurality of recesses included in the recess group may be substantially the same or may be different.
  • the structure group includes a plurality of convex portions 193a
  • the structure group may also include a plurality of convex portions 193a and a plurality of concave portions.
  • the concave portion is a structural portion in which the convex portion 193a is inverted.
  • the convex portion group 193 may be arranged two-dimensionally. Specifically, the plurality of convex portion groups 193 may be arranged at intervals in the circumferential direction of the outer periphery of the effective pixel region RE1, and may be arranged at intervals in the direction moving away from the effective pixel region RE1.
  • the distance D11 between the convex portion groups 193 adjacent in the circumferential direction of the outer periphery of the effective pixel region RE1 may be constant or may vary.
  • the distance D12 between the protrusion group 193 adjacent in the direction away from the effective pixel area RE1 may be constant or may vary.
  • the distance D 12 between the protrusions 193 adjacent in the direction away from the effective pixel area RE1 is larger than the distance D 22 between the protrusions 193a adjacent in the direction away from the effective pixel area RE1.
  • the current flow in the portion between the convex portion groups 193 adjacent in the direction away from the effective pixel region RE1 is compared to the current flow in the portion between the convex portions 193a adjacent in the direction away from the effective pixel region RE1. It gets better.
  • an arrow 34 represents an image of a current path formed in a portion between adjacent convex portion groups 193 in a direction moving away from the effective pixel region RE1.
  • the distance D 12 between the protrusion groups 193 adjacent in the direction away from the effective pixel area RE1 and the distance D 22 between the protrusions 193a adjacent in the direction away from the effective pixel area RE1 are based on the outer circumference of the effective pixel area RE1. From the viewpoint of ensuring a current path in the circumferential direction, preferably 1.5 ⁇ D 22 ⁇ D 12 , more preferably 2 ⁇ D 22 ⁇ D 12 , even more preferably 3 ⁇ D 22 ⁇ D 12 , 4 ⁇ D 22 ⁇ D 12 , 5 ⁇ D 22 ⁇ D 12 or 6 ⁇ D 22 ⁇ D 12 .
  • the distance D 12 between the protrusions 193 adjacent in the direction away from the effective pixel area RE1 and the distance D 22 between the protrusions 193a adjacent in the direction away from the effective pixel area RE1 are in contact with the peripheral edge of the cathode 123. From the viewpoint of suppressing a decrease in the contact area of the electrode 19, D 12 ⁇ 10 ⁇ D 22 is preferably satisfied.
  • the height of the plurality of convex portions 193a provided on the inner circumferential side of the peripheral region RE2 is the same as that of the plurality of convex portions 193a provided on the outer circumferential side of the peripheral region RE2, as shown in FIG.
  • the height may be lower than the height of the convex portion 193a. More specifically, for example, the height of the plurality of convex portions 193a may gradually decrease from the outer periphery of the peripheral region RE2 toward the inner periphery of the peripheral region RE2.
  • the depth may be shallower than the depth of the plurality of recesses provided on the outer circumferential side of the peripheral region RE2. More specifically, for example, the depth of the plurality of recesses may gradually become shallower from the outer periphery of the peripheral region RE2 toward the inner periphery of the peripheral region RE2.
  • the plurality of convex portions 193a may have at least one step, as shown in FIG. 16.
  • the heights of the plurality of protrusions 193a may be the same or different.
  • the number of stages of the plurality of protrusions 193a provided on the inner circumferential side of the peripheral region RE2 may be greater than the number of stages of the plurality of protrusions 193a provided on the outer circumferential side of the peripheral region RE2.
  • the number of stages of the plurality of convex portions 193a may gradually increase from the outer periphery of the peripheral region RE2 toward the inner periphery of the peripheral region RE2. Thereby, the step difference between the plurality of convex portions 193a can be gradually reduced from the outer periphery of the peripheral region RE2 toward the inner periphery of the peripheral region RE2.
  • the inclination angles ⁇ of the side surfaces of the plurality of convex portions 193a may be different, as shown in FIG. 17.
  • the inclination angle ⁇ of the side surface of the plurality of convex portions 193a provided on the inner circumferential side of the peripheral region RE2 is smaller than the inclination angle ⁇ of the plurality of convex portions 193a provided on the outer circumferential side of the peripheral region RE2.
  • the inclination angle ⁇ of the plurality of convex portions 193a may gradually become smaller from the outer circumference of the peripheral region RE2 toward the inner circumference of the peripheral region RE2.
  • the contact electrode 19 has a plurality of recess groups as a plurality of structure groups on the first surface, even if the inclination angles ⁇ of the side surfaces of the plurality of recesses are different. good.
  • the inclination angle ⁇ of the side surfaces of the plurality of recesses provided on the inner circumferential side of the peripheral region RE2 may be smaller than the inclination angle ⁇ of the plurality of recesses provided on the outer circumferential side of the peripheral region RE2. More specifically, for example, the inclination angle ⁇ of the plurality of recesses may gradually become smaller from the outer periphery of the peripheral region RE2 toward the inner periphery of the peripheral region RE2.
  • the light emitting element is an OLED element
  • the light emitting element is not limited to this example, and may be an LED (Light Emitting Diode), an inorganic
  • a self-luminous light emitting element such as an electroluminescence (IEL) element or a semiconductor laser element may be used.
  • a display device may be equipped with two or more types of light emitting elements.
  • the display device 101 according to the first embodiment includes a plurality of light emitting elements 12R, 12G, and 12B instead of the plurality of light emitting elements 12W and the color filter 15. .
  • the present disclosure is not limited to this example, and for example, in the display devices 102, 103, and 104 according to the second, third, and fourth embodiments, the plurality of light emitting elements 12W and the color filter 15 may be replaced with Therefore, a plurality of light emitting elements 12R, 12G, and 12B may be provided.
  • the anode 121 and the cathode 123 are an individual electrode (second electrode) and a common electrode (first electrode), respectively, and the peripheral portion of the cathode 123 is a contact.
  • the anode 121 and the cathode 123 are a common electrode (first electrode) and an individual electrode (second electrode), respectively, and the peripheral part of the anode 121 is connected to the contact electrode 19. Good too. In this case, the positions of the anode 121 and cathode 123 may be interchanged.
  • the anode 121 and the cathode 126 are individual electrodes (third electrode) and individual electrodes (fourth electrode), respectively, and a plurality of cathodes 126 are connected to the common electrode 124.
  • the anode 121 and the cathode 126 may be an individual electrode (third electrode) and an individual electrode (fourth electrode), respectively, and a plurality of anodes 121 may be connected to the common electrode 124.
  • the positions of the anode 121 and cathode 126 may be interchanged.
  • the first convex portion 192a is the same as the convex portion 191 in the first embodiment. It doesn't have to be the same.
  • the first convex portion 192a may have a dot shape in plan view.
  • the plurality of first convex portions 192a may be arranged one-dimensionally or two-dimensionally. In the case of one-dimensional arrangement, the plurality of first convex portions 192a may be spaced apart from each other and lined up in the circumferential direction of the outer periphery of the effective pixel region RE1. In the case of a two-dimensional arrangement, the plurality of first protrusions 192a may be arranged in a two-dimensional manner similar to the plurality of protrusions 193a in the third embodiment.
  • the display device 104 may further include a filled resin layer 16, a seal portion 17, and a cover glass 18.
  • the filled resin layer 16 and the seal portion 17 may be provided on the first surface of the second protective layer 22.
  • a quantum dot layer may be provided in place of the color filter 15, or a quantum dot layer may be provided together with the color filter 15.
  • a dot layer may also be provided.
  • the quantum dot layer includes quantum dots (semiconductor particles) and can convert the color of light emitted from the plurality of light emitting elements.
  • a plurality of light emitting elements 20B may be provided instead of the plurality of light emitting elements 20W.
  • a light emitting device including a plurality of light emitting elements in a light emitting region, a contact electrode provided in a peripheral region located around the light emitting region; a first electrode extending from the light emitting region to the peripheral region and connected to the contact electrode; The contact electrode has a plurality of first structures in a portion connected to the first electrode, The plurality of first structures extend in a direction away from the light emitting region, Light emitting device.
  • the plurality of first structures include at least one of a plurality of first recesses and a plurality of first protrusions. The light emitting device according to (1) or (2).
  • the contact electrode has a loop shape surrounding the light emitting region, The light emitting device according to (1) or (2).
  • the direction away from the light emitting region is a direction perpendicular to the outer periphery of the light emitting region or a direction oblique to the outer periphery of the light emitting region.
  • the plurality of first structures are arranged in a circumferential direction around the outer periphery of the light emitting region, The distance between the adjacent first structures on the inner circumferential side of the peripheral area is wider than the distance between the adjacent first structures on the outer circumferential side of the peripheral area.
  • the contact electrode further includes a plurality of second structures in a portion connected to the first electrode, The plurality of second structures extend in a direction substantially perpendicular to the direction in which the first structures extend, The plurality of first structures are provided closer to the light emitting region than the plurality of second structures, The light emitting device according to any one of (1) to (5).
  • the light emitting area is an effective pixel area, the first electrode is a cathode, The light emitting device according to any one of (1) to (6).
  • a plurality of second electrodes provided in the light emitting region; further comprising: an organic light emitting layer provided between the plurality of second electrodes and the first electrode; The light emitting device according to any one of (1) to (7).
  • a light emitting device including a plurality of light emitting elements in a light emitting region, a contact electrode provided in a peripheral region located around the light emitting region; a first electrode extending from the light emitting region to the peripheral region and connected to the contact electrode;
  • the contact electrode has a plurality of structure groups in a portion connected to the first electrode, The plurality of structure groups are arranged at least in the circumferential direction of the outer periphery of the light emitting region, Each of the structure groups includes a plurality of structures, The structures adjacent to each other in the circumferential direction are separated from each other, Light emitting device.
  • the plurality of structures include at least one of a plurality of recesses and a plurality of protrusions.
  • the plurality of structure groups are two-dimensionally arranged in the circumferential direction and in a direction substantially perpendicular to the circumferential direction, The structure groups adjacent to each other in a direction substantially perpendicular to the circumferential direction are separated from each other, The light emitting device according to (10) or (11).
  • the plurality of structures are two-dimensionally arranged in the circumferential direction and in a direction substantially perpendicular to the circumferential direction, The distance between the structures adjacent in the circumferential direction is greater than the distance between the structures adjacent in the circumferential direction, A distance between the structures adjacent in a direction substantially perpendicular to the circumferential direction is greater than a distance between the structures adjacent in a direction substantially perpendicular to the circumferential direction.
  • the light emitting device (14).
  • the plurality of structures are two-dimensionally arranged, The plurality of recesses become shallower from the outer periphery toward the inner periphery of the peripheral region, The plurality of convex portions become lower from the outer periphery toward the inner periphery of the peripheral region, The light emitting device according to (11).
  • the plurality of structures are two-dimensionally arranged, The plurality of structures have at least one step, The number of stages of the plurality of structures increases from the outer periphery to the inner periphery of the peripheral area, The light emitting device according to any one of (10) to (15).
  • the plurality of structures are two-dimensionally arranged, The angle of inclination of the side surfaces of the plurality of structures decreases from the outer periphery toward the inner periphery of the peripheral region,
  • the plurality of structures have a dot shape in plan view,
  • An electronic device comprising the light emitting device according to any one of (1) to (19).
  • the light emitting section is For example, they are the light emitting element 12W, the light emitting element 12R, the light emitting element 12G, or the light emitting element 12B.
  • the lens member is, for example, the lens 241 of the lens array 24.
  • the wavelength selection section is, for example, the filter section 15F.
  • the size of the wavelength selection section may be changed as appropriate depending on the light emitted by the light emitting section, or a light absorption section (for example, a black matrix section) may be provided between the wavelength selection sections of adjacent light emitting sections. is provided, the size of the light absorbing section may be changed as appropriate depending on the light emitted by the light emitting section. Further, the size of the wavelength selection section may be changed as appropriate depending on the distance (offset amount) d 0 between the normal line passing through the center of the light emitting section and the normal line passing through the center of the wavelength selection section.
  • the planar shape of the wavelength selection section may be the same as, similar to, or different from the planar shape of the lens member.
  • the normal line LN passing through the center of the light emitting section 51, the normal line LN'' passing through the center of the wavelength selection section 52, and the normal line LN' passing through the center of the lens member 53 coincide.
  • D 0 0
  • d 0 0.
  • D 0 is the normal line LN passing through the center of the light emitting part 51 and the normal line LN' passing through the center of the lens member 53.
  • d0 represents the distance (offset amount) between the normal line LN passing through the center of the light emitting section 51 and the normal line LN'' passing through the center of the wavelength selection section 52. .
  • the normal line LN passing through the center of the light emitting section 51 and the normal line LN'' passing through the center of the wavelength selection section 52 are the same, but the normal line passing through the center of the light emitting section 51
  • the normal LN passing through the center of the light emitting section 51, the normal LN'' passing through the center of the wavelength selection section 52, and the normal LN' passing through the center of the lens member 53 coincide.
  • the normal LN passing through the center of the light emitting section 51, the normal LN'' passing through the center of the wavelength selection section 52, and the normal LN' passing through the center of the lens member 53 are all In other words, D 0 >0, d 0 >0, and D 0 ⁇ d 0 may be configured.
  • the center of the light emitting section 51 and the center of the lens member 53 in FIG. 19 It is preferable that the center of the wavelength selection section 52 (the position indicated by a black square in FIG. 19) be located on the straight line LL connecting the center of the light emitting section 51 and the wavelength The distance in the thickness direction (vertical direction in FIG.
  • the thickness direction refers to the thickness direction of the light emitting section 51, the wavelength selection section 52, and the lens member 53.
  • the normal LN passing through the center of the light emitting section 51, the normal LN'' passing through the center of the wavelength selection section 52, and the normal LN' passing through the center of the lens member 53 coincide.
  • the normal LN passing through the center of the light emitting section 51, the normal LN'' passing through the center of the wavelength selection section 52, and the normal LN' passing through the center of the lens member 53 are coincident with each other.
  • the normal LN passing through the center of the light emitting section 51, the normal LN'' passing through the center of the wavelength selection section 52, and the normal LN' passing through the center of the lens member 53 are all
  • the center of the lens member 53 (the position indicated by the black square in FIG. 21) is preferably located.
  • the distance between the center of the light emitting part 51 and the center of the lens member 53 in the thickness direction (in the vertical direction in FIG. 21) is preferably located.
  • the thickness direction refers to the thickness direction of the light emitting section 51, the wavelength selection section 52, and the lens member 53.
  • a pixel used in the display device according to the present disclosure described above can be configured to include a resonator structure that resonates light generated by a light emitting element.
  • the resonator structure will be explained with reference to the drawings.
  • the first surface of each layer may be referred to as an upper surface.
  • FIG. 22A is a schematic cross-sectional view for explaining a first example of the resonator structure.
  • the light emitting elements provided corresponding to the subpixels 10R, 10G, and 10B when collectively referred to without particular distinction, they may be referred to as the light emitting elements 12.
  • the light emitting elements 12R , 12G , and 12B When distinguishing the light emitting elements provided corresponding to the subpixels 10R, 10G, and 10B, they may be referred to as light emitting elements 12R , 12G , and 12B .
  • Portions of the OLED layer 122 corresponding to the subpixels 10R, 10G, and 10B are sometimes referred to as an OLED layer 122R , an OLED layer 122G , and an OLED layer 122B .
  • the anode 121 and cathode 123 may be referred to as a first electrode 121 and a second electrode 123, respectively.
  • the light emitting element may be the light emitting element 12W in the first, second, third, or fifth embodiment, or may be the light emitting element 12R, 12G, or 12B in the fourth embodiment.
  • the first electrode 121 is formed to have a common thickness in each light emitting element 12. The same applies to the second electrode 123.
  • a reflective plate 71 is disposed below the first electrode 121 of the light emitting element 12 with an optical adjustment layer 72 sandwiched therebetween.
  • a resonator structure is formed between the reflection plate 71 and the second electrode 123 to resonate the light generated by the OLED layer 122.
  • the optical adjustment layers 72 provided corresponding to the sub-pixels 10R, 10G, and 10B may be referred to as optical adjustment layers 72R , 72G , and 72B .
  • the reflecting plate 71 is formed to have a common thickness in each light emitting element 12.
  • the thickness of the optical adjustment layer 72 varies depending on the color that the pixel should display. By having the optical adjustment layers 72R , 72G , and 72B having different thicknesses, it is possible to set an optical distance that produces optimal resonance for the wavelength of light corresponding to the color to be displayed.
  • the upper surfaces of the reflecting plates 71 in the light emitting elements 12 R , 12 G , and 12 B are arranged so as to be aligned.
  • the thickness of the optical adjustment layer 72 differs depending on the color to be displayed by the pixel, so the position of the upper surface of the second electrode 123 depends on the type of light emitting elements 12 R , 12 G , 12 B. It differs depending on the
  • the reflective plate 71 can be formed using, for example, metals such as aluminum (Al), silver (Ag), copper (Cu), or alloys containing these as main components.
  • the optical adjustment layer 72 is made of an inorganic insulating material such as silicon nitride (SiN x ), silicon oxide (SiO x ), silicon oxynitride (SiO x N y ), or an organic resin such as acrylic resin or polyimide resin. It can be constructed using materials.
  • the optical adjustment layer 72 may be a single layer or may be a laminated film of a plurality of these materials. Further, the number of laminated layers may differ depending on the type of light emitting element 12.
  • the first electrode 121 can be formed using a transparent conductive material such as indium tin oxide (ITO), indium zinc oxide (IZO), or zinc oxide (ZnO).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • ZnO zinc oxide
  • the second electrode 123 needs to function as a semi-transparent reflective film.
  • the second electrode 123 is formed using magnesium (Mg), silver (Ag), a magnesium silver alloy (MgAg) containing these as main components, or an alloy containing an alkali metal or alkaline earth metal. be able to.
  • FIG. 22B is a schematic cross-sectional view for explaining a second example of the resonator structure.
  • the first electrode 121 and the second electrode 123 are formed with a common thickness in each light emitting element 12.
  • the reflective plate 71 is arranged under the first electrode 121 of the light emitting element 12 with the optical adjustment layer 72 sandwiched therebetween.
  • a resonator structure is formed between the reflective plate 71 and the second electrode 123 to resonate the light generated by the OLED layer 122.
  • the reflective plate 71 is formed to have a common thickness in each light emitting element 12, and the thickness of the optical adjustment layer 72 differs depending on the color to be displayed by the pixel.
  • the upper surfaces of the reflective plates 71 in the light emitting elements 12 R , 12 G , and 12 B are arranged so as to be aligned, and the upper surfaces of the second electrodes 123 are located in the same position as in the light emitting elements 12 R , 12 G . , 12 differed depending on the type of B.
  • the upper surfaces of the second electrode 123 are arranged so that the upper surfaces of the light emitting elements 12 R , 12 G , and 12 B are aligned.
  • the upper surfaces of the reflectors 71 in the light emitting elements 12 R , 12 G , and 12 B are arranged differently depending on the type of the light emitting elements 12 R , 12 G , and 12 B.
  • the lower surface of the reflecting plate 71 in other words, the upper surface of the base layer (insulating layer) 73
  • the materials constituting the reflecting plate 71, the optical adjustment layer 72, the first electrode 121, and the second electrode 123 are the same as those described in the first example, so their explanation will be omitted.
  • FIG. 23A is a schematic cross-sectional view for explaining a third example of the resonator structure.
  • the reflection plates 71 provided corresponding to the sub-pixels 10R, 10G, and 10B may be referred to as reflection plates 71R , 71G , and 71B .
  • the first electrode 121 and the second electrode 123 are formed with a common thickness in each light emitting element 12.
  • the reflective plate 71 is disposed below the first electrode 121 of the light emitting element 12 with the optical adjustment layer 72 sandwiched therebetween.
  • a resonator structure that resonates light generated by the OLED layer 122 is formed between the reflection plate 71 and the second electrode 123.
  • the thickness of the optical adjustment layer 72 differs depending on the color that the pixel should display.
  • the positions of the upper surfaces of the second electrodes 123 are arranged to be aligned with the light emitting elements 12 R , 12 G , and 12 B.
  • the lower surface of the reflection plate 71 had a stepped shape depending on the type of light emitting element 12.
  • the film thickness of the reflection plate 71 is set to be different depending on the type of the light emitting elements 12 R , 12 G , and 12 B. More specifically, the film thickness is set so that the lower surfaces of the reflecting plates 71 R , 71 G , and 71 B are aligned.
  • the materials constituting the reflecting plate 71, the optical adjustment layer 72, the first electrode 121, and the second electrode 123 are the same as those described in the first example, so their explanation will be omitted.
  • FIG. 23B is a schematic cross-sectional view for explaining a fourth example of the resonator structure.
  • the first electrodes 121 provided corresponding to the subpixels 10R, 10G, and 10B may be referred to as first electrodes 121R , 121G , and 121B .
  • the first electrode 121 and second electrode 123 of each light emitting element 12 are formed with a common thickness.
  • a reflective plate 71 is disposed below the first electrode 121 of the light emitting element 12 with the optical adjustment layer 72 sandwiched therebetween.
  • the optical adjustment layer 72 is omitted, and the film thickness of the first electrode 121 is set to be different depending on the types of the light emitting elements 12 R , 12 G , and 12 B. .
  • the reflecting plate 71 is formed to have a common thickness in each light emitting element 12.
  • the thickness of the first electrode 121 varies depending on the color that the pixel should display. By having the first electrodes 121 R , 121 G , and 121 B having different thicknesses, it is possible to set an optical distance that produces optimum resonance for the wavelength of light corresponding to the color to be displayed.
  • the materials constituting the reflecting plate 71, the optical adjustment layer 72, the first electrode 121, and the second electrode 123 are the same as those described in the first example, so their explanation will be omitted.
  • FIG. 24A is a schematic cross-sectional view for explaining a fifth example of the resonator structure.
  • the first electrode 121 and the second electrode 123 are formed with a common thickness in each light emitting element 12.
  • a reflective plate 71 is disposed below the first electrode 121 of the light emitting element 12 with the optical adjustment layer 72 sandwiched therebetween.
  • the optical adjustment layer 72 is omitted, and an oxide film 74 is formed on the surface of the reflection plate 71 instead.
  • the thickness of the oxide film 74 was set to be different depending on the type of the light emitting elements 12 R , 12 G , and 12 B.
  • the oxide films 74 provided corresponding to the sub-pixels 10R, 10G, and 10B may be referred to as oxide films 74R , 74G , and 74B .
  • the thickness of the oxide film 74 varies depending on the color that the pixel should display. By having the oxide films 74 R , 74 G , and 74 B having different thicknesses, it is possible to set an optical distance that produces optimum resonance for the wavelength of light corresponding to the color to be displayed.
  • the oxide film 74 is a film obtained by oxidizing the surface of the reflecting plate 71, and is made of, for example, aluminum oxide, tantalum oxide, titanium oxide, magnesium oxide, zirconium oxide, or the like.
  • the oxide film 74 functions as an insulating film for adjusting the optical path length (optical distance) between the reflection plate 71 and the second electrode 123.
  • the oxide film 74 which has a different thickness depending on the type of the light emitting elements 12R , 12G , and 12B , can be formed, for example, as follows.
  • a container is filled with an electrolytic solution, and the substrate on which the reflective plate 71 is formed is immersed in the electrolytic solution. Further, electrodes are arranged so as to face the reflection plate 71.
  • a positive voltage is applied to the reflective plate 71 using the electrode as a reference, and the reflective plate 71 is anodized.
  • the thickness of the oxide film formed by anodic oxidation is proportional to the voltage value applied to the electrode. Therefore, anodic oxidation is performed while applying a voltage depending on the type of light emitting element 12 to each of the reflecting plates 71 R , 71 G , and 71 B. Thereby, oxide films 74 having different thicknesses can be formed all at once.
  • the materials constituting the reflecting plate 71, the first electrode 121, and the second electrode 123 are the same as those described in the first example, so the description thereof will be omitted.
  • FIG. 24B is a schematic cross-sectional view for explaining a sixth example of the resonator structure.
  • the light emitting element 12 is configured by laminating a first electrode 121, an OLED layer 122, and a second electrode 123.
  • the first electrode 121 is formed to serve both as an electrode and a reflector.
  • the first electrode (also serving as a reflection plate) 121 is made of a material having optical constants selected depending on the types of the light emitting elements 12 R , 12 G , and 12 B. By varying the phase shift caused by the first electrode (also serving as a reflecting plate) 121, it is possible to set an optical distance that produces optimum resonance for the wavelength of light corresponding to the color to be displayed.
  • the first electrode (also serving as a reflection plate) 121 can be made of a single metal such as aluminum (Al), silver (Ag), gold (Au), or copper (Cu), or an alloy containing these as main components.
  • the first electrode (cum-reflector) 121R of the light-emitting element 12R is formed of copper (Cu)
  • the first electrode (cum-reflector) 121G of the light - emitting element 12G and the first electrode of the light-emitting element 12B are formed of copper (Cu).
  • (also serving as a reflection plate) 121B may be formed of aluminum.
  • the materials constituting the second electrode 123 are the same as those described in the first example, so their description will be omitted.
  • FIG. 25 is a schematic cross-sectional view for explaining a seventh example of the resonator structure.
  • the seventh example basically has a configuration in which the sixth example is applied to the light emitting elements 12 R and 12 G , and the first example is applied to the light emitting element 12 B. Also in this configuration, it is possible to set an optical distance that produces optimum resonance for the wavelength of light corresponding to the color to be displayed.
  • the first electrodes (cum-reflection plates) 121 R and 121 G used in the light emitting elements 12 R and 12 G are made of a simple metal such as aluminum (Al), silver (Ag), gold (Au), copper (Cu), It can be constructed from an alloy containing these as main components.
  • the materials and the like constituting the reflecting plate 71 B , the optical adjustment layer 72 B , and the first electrode 121 B used in the light emitting element 12 B are the same as those described in the first example, so the description thereof will be omitted.
  • the display devices 101, 102, 103, 104, and 105 (hereinafter referred to as "display devices 101, etc.") according to the first to fifth embodiments and their modifications may be included in various electronic devices. good.
  • the display device 101 and the like are particularly suitable for eyewear devices such as head-mounted displays, or electronic viewfinders of video cameras or single-lens reflex cameras, which require high resolution and are used close to the eyes with magnification.
  • 26A and 26B show an example of the appearance of the digital still camera 310.
  • This digital still camera 310 is a single-lens reflex type with interchangeable lenses, and has an interchangeable photographic lens unit (interchangeable lens) 312 approximately in the center of the front of a camera body 311, and on the left side of the front. It has a grip part 313 for the photographer to hold.
  • interchangeable photographic lens unit interchangeable lens
  • a monitor 314 is provided at a position shifted to the left from the center of the back surface of the camera body 311.
  • An electronic viewfinder (eyepiece window) 315 is provided at the top of the monitor 314 . By looking through the electronic viewfinder 315, the photographer can visually recognize the light image of the subject guided from the photographic lens unit 312 and determine the composition.
  • the electronic viewfinder 315 includes any one of the display devices 101 and the like described above.
  • FIG. 27 shows an example of the appearance of the head mounted display 320.
  • Head mounted display 320 is an example of an eyewear device.
  • the head-mounted display 320 has, for example, ear hooks 322 on both sides of a glasses-shaped display section 321 to be worn on the user's head.
  • the display unit 321 includes any one of the display devices 101 and the like described above.
  • FIG. 28 shows an example of the appearance of the television device 330.
  • This television device 330 has, for example, a video display screen section 331 that includes a front panel 332 and a filter glass 333, and this video display screen section 331 includes any one of the above-described display devices 101 and the like.
  • FIG. 29 shows an example of the appearance of the see-through head-mounted display 340.
  • See-through head mounted display 340 is an example of an eyewear device.
  • the see-through head-mounted display 340 includes a main body 341, an arm 342, and a lens barrel 343.
  • the main body portion 341 is connected to the arm 342 and the glasses 350. Specifically, an end of the main body 341 in the long side direction is coupled to the arm 342, and one side of the main body 341 is coupled to the glasses 350 via a connecting member. Note that the main body portion 341 may be directly attached to the human head.
  • the main body section 341 incorporates a control board for controlling the operation of the see-through head-mounted display 340 and a display section.
  • the arm 342 connects the main body portion 341 and the lens barrel 343 and supports the lens barrel 343. Specifically, the arm 342 is coupled to an end of the main body portion 341 and an end of the lens barrel 343, respectively, and fixes the lens barrel 343. Further, the arm 342 has a built-in signal line for communicating data related to an image provided from the main body 341 to the lens barrel 343.
  • the lens barrel 343 projects image light provided from the main body 341 via the arm 342 through the eyepiece 351 toward the eyes of the user wearing the see-through head-mounted display 340.
  • the display section of the main body section 341 includes one of the display devices 101 and the like described above.
  • FIG. 30 shows an example of the appearance of a smartphone 360.
  • the smartphone 360 includes a display section 361 that displays various information, and an operation section 362 that includes buttons and the like that accept operation inputs from the user.
  • the display unit 361 includes any one of the display devices 101 and the like described above.
  • the display device 101 and the like described above may be included in various displays provided in a vehicle.
  • FIGS. 31A and 31B are diagrams showing an example of the internal configuration of a vehicle 500 equipped with various displays. Specifically, FIG. 31A is a diagram showing an example of the interior of the vehicle 500 from the rear to the front of the vehicle 500, and FIG. 31B is a diagram showing an example of the interior of the vehicle 500 from the diagonal rear to the diagonal front. It is a figure showing an example.
  • the vehicle 500 includes a center display 501, a console display 502, a head-up display 503, a digital rear mirror 504, a steering wheel display 505, and a rear entertainment display 506. At least one of these displays includes one of the display devices 101 and the like described above. For example, all of these displays may include one of the display devices 101 and the like described above.
  • the center display 501 is arranged on a part of the dashboard facing the driver's seat 508 and the passenger seat 509.
  • FIGS. 31A and 31B show an example of a horizontally long center display 501 extending from the driver's seat 508 side to the passenger seat 509 side
  • the screen size and placement location of the center display 501 are arbitrary.
  • Center display 501 can display information detected by various sensors. As a specific example, the center display 501 displays images taken by an image sensor, distance images to obstacles in front and sides of the vehicle 500 measured by a ToF sensor, and passenger body temperature detected by an infrared sensor. etc. can be displayed.
  • Center display 501 can be used, for example, to display at least one of safety-related information, operation-related information, life log, health-related information, authentication/identification-related information, and entertainment-related information.
  • Safety-related information includes information such as detection of falling asleep, detection of looking away, detection of mischief by children in the same vehicle, presence or absence of seatbelts, and detection of leaving passengers behind. This information is detected by The operation-related information uses sensors to detect gestures related to operations by the occupant.
  • the sensed gestures may include manipulation of various equipment within vehicle 500. For example, the operation of air conditioning equipment, navigation equipment, AV equipment, lighting equipment, etc. is detected.
  • the life log includes life logs of all crew members. For example, a life log includes a record of the actions of each occupant during the ride. By acquiring and saving life logs, it is possible to check the condition of the occupants at the time of the accident.
  • the body temperature of the occupant is detected using a sensor such as a temperature sensor, and the health condition of the occupant is estimated based on the detected body temperature.
  • a sensor such as a temperature sensor
  • an image sensor may be used to capture an image of the occupant's face, and the occupant's health condition may be estimated from the captured facial expression.
  • Authentication/identification related information includes a keyless entry function that performs facial recognition using a sensor, and a function that automatically adjusts seat height and position using facial recognition.
  • the entertainment-related information includes a function that uses a sensor to detect operation information of an AV device by a passenger, a function that recognizes the passenger's face using a sensor, and provides the AV device with content suitable for the passenger.
  • the console display 502 can be used, for example, to display life log information.
  • Console display 502 is arranged near shift lever 511 on center console 510 between driver's seat 508 and passenger seat 509.
  • the console display 502 can also display information detected by various sensors. Further, the console display 502 may display an image around the vehicle captured by an image sensor, or may display a distance image to an obstacle around the vehicle.
  • the head-up display 503 is virtually displayed behind the windshield 512 in front of the driver's seat 508.
  • Head-up display 503 can be used, for example, to display at least one of safety-related information, operation-related information, life log, health-related information, authentication/identification-related information, and entertainment-related information. Since the head-up display 503 is often placed virtually in front of the driver's seat 508, it is difficult to display information directly related to the operation of the vehicle 500, such as the speed of the vehicle 500 and the remaining amount of fuel (battery). Are suitable.
  • the digital rear mirror 504 can display not only the rear of the vehicle 500 but also the state of the occupants in the rear seats. Therefore, by arranging a sensor on the back side of the digital rear mirror 504, it can be used for displaying life log information, for example. be able to.
  • the steering wheel display 505 is placed near the center of the steering wheel 513 of the vehicle 500.
  • Steering wheel display 505 can be used, for example, to display at least one of safety-related information, operation-related information, lifelog, health-related information, authentication/identification-related information, and entertainment-related information.
  • life log information such as the driver's body temperature, information regarding the operation of AV equipment, air conditioning equipment, etc. There is.
  • the rear entertainment display 506 is attached to the back side of the driver's seat 508 and passenger seat 509, and is for viewing by passengers in the rear seats.
  • Rear entertainment display 506 can be used, for example, to display at least one of safety-related information, operation-related information, lifelog, health-related information, authentication/identification-related information, and entertainment-related information.
  • information relevant to the rear seat occupant is displayed. For example, information regarding the operation of the AV device or air conditioning equipment may be displayed, or the results of measuring the body temperature of the passenger in the rear seat using a temperature sensor may be displayed.
  • a configuration may also be adopted in which a sensor is placed on the back side of the display device 101 etc. so that the distance to objects existing in the surroundings can be measured.
  • optical distance measurement methods There are two main types of optical distance measurement methods: passive and active.
  • a passive type sensor measures distance by receiving light from an object without emitting light from the sensor to the object.
  • Passive methods include the lens focusing method, stereo method, and monocular viewing method.
  • the active type measures distance by projecting light onto an object and receiving the reflected light from the object with a sensor.
  • Active types include an optical radar method, an active stereo method, a photometric stereo method, a moiré topography method, an interferometry method, and the like.
  • the display device 101 and the like described above can be applied to any of these methods of distance measurement. By using a sensor placed overlappingly on the back side of the display device 101 or the like, the above-mentioned passive or active distance measurement can be performed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Provided is a light-emitting device with which it is possible to ensure a carrier path in a direction away from a light-emitting region while increasing the contact area between a first electrode and a contact electrode. This light-emitting device includes a plurality of light-emitting elements in a light-emitting region, the light-emitting device comprising a contact electrode that is provided to a peripheral region positioned at the periphery of the light-emitting region, and a first electrode that is extended from the light-emitting region to the peripheral region and is connected to the contact electrode. The contact electrode has a plurality of first structures in a section where the first electrode is connected, the plurality of first structures being extended in a direction away from the light-emitting region.

Description

発光装置および電子機器Light emitting devices and electronic equipment
 本開示は、発光装置およびそれを備える電子機器に関する。 The present disclosure relates to a light emitting device and an electronic device including the same.
 発光領域に複数の発光素子を含む発光装置は、広く普及している。この種の発光装置の一つとして、発光領域の周辺に位置する周辺領域にコンタクト電極が設けられ、複数の発光素子に共通の共通電極(例えば共通カソード)が発光領域から周辺領域まで延設され、コンタクト電極に接続された発光装置が知られている。このような構成の発光装置では、共通電極とコンタクト電極の接触面積を増やすために、凹部または凸部をコンタクト電極に設ける技術が提案されている(例えば特許文献1参照)。 Light-emitting devices including a plurality of light-emitting elements in a light-emitting region are widely used. As one type of light-emitting device, a contact electrode is provided in a peripheral region located around a light-emitting region, and a common electrode (for example, a common cathode) common to a plurality of light-emitting elements is provided extending from the light-emitting region to the peripheral region. A light emitting device connected to a contact electrode is known. In a light emitting device having such a configuration, a technique has been proposed in which a concave portion or a convex portion is provided in the contact electrode in order to increase the contact area between the common electrode and the contact electrode (see, for example, Patent Document 1).
国際公開第2019/142582号パンフレットInternational Publication No. 2019/142582 pamphlet
 しかしながら、上記のように、凹部または凸部をコンタクト電極に設けると、凹部または凸部の段差により共通電極が切断されること、または凹部または凸部の段差により共通電極の厚みが薄くなることがある。共通電極が段差によりこのような状態になると、発光領域から遠ざかる方向においてはキャリアパスを確保しにくくなることがある。 However, as described above, when a concave or convex portion is provided on a contact electrode, the common electrode may be cut due to the step of the concave or convex portion, or the thickness of the common electrode may be reduced due to the step of the concave or convex portion. be. When the common electrode is in such a state due to a step difference, it may become difficult to secure a carrier path in the direction away from the light emitting region.
 本開示の目的は、第1電極とコンタクト電極の接触面積を増加させつつ、発光領域から遠ざかる方向におけるキャリアパスを確保することができる発光装置およびそれを備える電子機器を提供することにある。 An object of the present disclosure is to provide a light emitting device that can secure a carrier path in a direction away from a light emitting region while increasing the contact area between a first electrode and a contact electrode, and an electronic device equipped with the same.
 上述の課題を解決するために、本開示に係る第1の発光装置は、
 発光領域に複数の発光素子を含む発光装置であって、
 発光領域の周辺に位置する周辺領域に設けられたコンタクト電極と、
 発光領域から周辺領域まで延設され、コンタクト電極に接続された第1電極と
 を備え、
 コンタクト電極は、第1電極が接続された部分に複数の第1構造体を有し、
 複数の第1構造体は、発光領域から遠ざかる方向に延設されている。
In order to solve the above problems, a first light emitting device according to the present disclosure includes:
A light emitting device including a plurality of light emitting elements in a light emitting region,
a contact electrode provided in a peripheral region located around the light emitting region;
a first electrode extending from the light emitting region to the peripheral region and connected to the contact electrode;
The contact electrode has a plurality of first structures in a portion connected to the first electrode,
The plurality of first structures extend in a direction away from the light emitting region.
 本開示に係る第2の発光装置は、
 発光領域に複数の発光素子を含む発光装置であって、
 発光領域の周辺に位置する周辺領域に設けられたコンタクト電極と、
 発光領域から周辺領域まで延設され、コンタクト電極に接続された第1電極と
 を備え、
 コンタクト電極は、第1電極が接続された部分に複数の構造体群を有し、
 複数の構造体群は、少なくとも発光領域の外周の周方向に配置され、
 各構造体群は、複数の構造体を含み、
 周方向に隣接する構造体群の間は、離されている。
The second light emitting device according to the present disclosure includes:
A light emitting device including a plurality of light emitting elements in a light emitting region,
a contact electrode provided in a peripheral region located around the light emitting region;
a first electrode extending from the light emitting region to the peripheral region and connected to the contact electrode;
The contact electrode has a plurality of structure groups in a portion connected to the first electrode,
The plurality of structure groups are arranged at least in the circumferential direction of the outer periphery of the light emitting region,
Each structure group includes multiple structures,
Structure groups adjacent in the circumferential direction are separated from each other.
 本開示に係る電子機器は、上記第1の発光装置または上記第2の発光装置を備える。 An electronic device according to the present disclosure includes the first light emitting device or the second light emitting device.
図1は、概要を説明するための表示装置の平面図である。FIG. 1 is a plan view of a display device for explaining the outline. 図2は、第1の実施形態に係る表示装置の平面図である。FIG. 2 is a plan view of the display device according to the first embodiment. 図3は、図2のIII-III線に沿った断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 2. 図4は、周辺領域の一部を拡大して表す平面図である。FIG. 4 is an enlarged plan view of a part of the surrounding area. 図5は、第2の実施形態に係る表示装置の平面図である。FIG. 5 is a plan view of a display device according to the second embodiment. 図6は、図5のVI-VI線に沿った断面図である。FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. 図7は、第3の実施形態に係る表示装置の平面図である。FIG. 7 is a plan view of a display device according to a third embodiment. 図8は、周辺領域の一部を拡大して表す平面図である。FIG. 8 is an enlarged plan view of a part of the surrounding area. 図9は、図7のIX-IX線に沿った断面図である。FIG. 9 is a cross-sectional view taken along line IX-IX in FIG. 7. 図10は、第4の実施形態に係る表示装置の断面図である。FIG. 10 is a cross-sectional view of a display device according to a fourth embodiment. 図11は、第5の実施形態に係る表示装置の断面図である。FIG. 11 is a cross-sectional view of a display device according to the fifth embodiment. 図12は、変形例1に係る表示装置の平面図である。FIG. 12 is a plan view of a display device according to Modification 1. 図13は、変形例2に係る表示装置の断面図である。FIG. 13 is a cross-sectional view of a display device according to modification example 2. 図14は、変形例3に係る表示装置の平面図である。FIG. 14 is a plan view of a display device according to modification example 3. 図15は、変形例4に係る表示装置の断面図である。FIG. 15 is a cross-sectional view of a display device according to modification example 4. 図16は、変形例5に係る表示装置の断面図である。FIG. 16 is a cross-sectional view of a display device according to modification example 5. 図17は、変形例6に係る表示装置の断面図である。FIG. 17 is a cross-sectional view of a display device according to modification 6. 図18A、図18B、図18Cはそれぞれ、発光部の中心を通る法線LNと、レンズ部材の中心を通る法線LN’と、波長選択部の中心を通る法線LN”との関係を説明するための概念図である。18A, 18B, and 18C respectively explain the relationship between the normal line LN passing through the center of the light emitting section, the normal line LN' passing through the center of the lens member, and the normal line LN'' passing through the center of the wavelength selection section. This is a conceptual diagram for 図19は、発光部の中心を通る法線LNと、レンズ部材の中心を通る法線LN’と、波長選択部の中心を通る法線LN”との関係を説明するための概念図である。FIG. 19 is a conceptual diagram for explaining the relationship between a normal line LN passing through the center of the light emitting section, a normal line LN' passing through the center of the lens member, and a normal line LN'' passing through the center of the wavelength selection section. . 図20A、図20Bはそれぞれ、発光部の中心を通る法線LNと、レンズ部材の中心を通る法線LN’と、波長選択部の中心を通る法線LN”との関係を説明するための概念図である。20A and 20B are diagrams for explaining the relationships between the normal line LN passing through the center of the light emitting section, the normal line LN' passing through the center of the lens member, and the normal line LN'' passing through the center of the wavelength selection section, respectively. It is a conceptual diagram. 図21は、発光部の中心を通る法線LNと、レンズ部材の中心を通る法線LN’と、波長選択部の中心を通る法線LN”との関係を説明するための概念図である。FIG. 21 is a conceptual diagram for explaining the relationship between a normal line LN passing through the center of the light emitting section, a normal line LN' passing through the center of the lens member, and a normal line LN'' passing through the center of the wavelength selection section. . 図22Aは、共振器構造の第1例を説明するための模式的な断面図である。図22Bは、共振器構造の第2例を説明するための模式的な断面図である。FIG. 22A is a schematic cross-sectional view for explaining a first example of the resonator structure. FIG. 22B is a schematic cross-sectional view for explaining a second example of the resonator structure. 図23Aは、共振器構造の第3例を説明するための模式的な断面図である。図23Bは、共振器構造の第4例を説明するための模式的な断面図である。FIG. 23A is a schematic cross-sectional view for explaining a third example of the resonator structure. FIG. 23B is a schematic cross-sectional view for explaining a fourth example of the resonator structure. 図24Aは、共振器構造の第5例を説明するための模式的な断面図である。図24Bは、共振器構造の第6例を説明するための模式的な断面図である。FIG. 24A is a schematic cross-sectional view for explaining a fifth example of the resonator structure. FIG. 24B is a schematic cross-sectional view for explaining a sixth example of the resonator structure. 図25は、共振器構造の第7例を説明するための模式的な断面図であるFIG. 25 is a schematic cross-sectional view for explaining the seventh example of the resonator structure. 図26Aは、デジタルスチルカメラの正面図である。図26Bは、デジタルスチルカメラの背面図である。FIG. 26A is a front view of the digital still camera. FIG. 26B is a rear view of the digital still camera. 図27は、ヘッドマウントディスプレイの斜視図である。FIG. 27 is a perspective view of the head mounted display. 図28は、テレビジョン装置の斜視図である。FIG. 28 is a perspective view of the television device. 図29は、シースルーヘッドマウントディスプレイの斜視図である。FIG. 29 is a perspective view of a see-through head mounted display. 図30は、スマートフォンの斜視図である。FIG. 30 is a perspective view of the smartphone. 図31Aは、乗物の後方から前方にかけての乗物の内部の様子を示す図である。図31Bは、乗物の斜め後方から斜め前方にかけての乗物の内部の様子を示す図である。FIG. 31A is a diagram showing the inside of the vehicle from the rear to the front of the vehicle. FIG. 31B is a diagram showing the inside of the vehicle from diagonally rearward to diagonally forwardly.
 本開示の実施形態について図面を参照しながら以下の順序で説明する。なお、以下の実施形態の全図においては、同一または対応する部分には同一の符号を付す。
 1 本開示に係る発光装置の全般に関する説明
 2 概要
 3 第1の実施形態(表示装置の例)
 4 第2の実施形態(表示装置の例)
 5 第3の実施形態(表示装置の例)
 6 第4の実施形態(表示装置の例)
 7 第5の実施形態(表示装置の例)
 8 変形例
 9 発光部、レンズ部材、波長選択部のそれぞれの中心を通る法線の関係
 10 共振器構造の例
 11 応用例(電子機器の例)
Embodiments of the present disclosure will be described in the following order with reference to the drawings. In addition, in all the figures of the following embodiment, the same code|symbol is attached to the same or corresponding part.
1 General description of the light emitting device according to the present disclosure 2 Overview 3 First embodiment (example of display device)
4 Second embodiment (example of display device)
5 Third embodiment (example of display device)
6 Fourth embodiment (example of display device)
7 Fifth embodiment (example of display device)
8 Modifications 9 Relationship between normal lines passing through the centers of the light emitting section, lens member, and wavelength selection section 10 Example of resonator structure 11 Application example (example of electronic equipment)
<1 本開示に係る発光装置の全般に関する説明>
 本開示に係る発光装置は、表示装置、照明装置またはこれら以外の装置であってもよい。表示装置は、OLED(Organic Light Emitting Diode)表示装置であってもよい。
<1 General description of the light emitting device according to the present disclosure>
The light emitting device according to the present disclosure may be a display device, a lighting device, or a device other than these. The display device may be an OLED (Organic Light Emitting Diode) display device.
 本開示に係る発光装置において、第1電極は、発光素子のアノードまたはカソードであってもよいし、複数の発光素子それぞれのアノードまたはカソードに接続された共通電極であってもよい。発光素子は、OLED素子であってもよい。 In the light emitting device according to the present disclosure, the first electrode may be the anode or cathode of the light emitting element, or may be a common electrode connected to the anode or cathode of each of the plurality of light emitting elements. The light emitting device may be an OLED device.
 本開示に係る発光装置において、第1電極がアノードであり、第2電極がカソードである場合、複数の発光素子は、発光領域に設けられた複数のアノードと、発光領域から周辺領域まで延設され、コンタクト電極に接続された1つのカソードと、複数のアノードと1つのカソードの間に設けられた有機発光層とにより構成されていてもよい。 In the light emitting device according to the present disclosure, when the first electrode is an anode and the second electrode is a cathode, the plurality of light emitting elements include the plurality of anodes provided in the light emitting region and the plurality of anodes extending from the light emitting region to the peripheral region. The organic light-emitting layer may include one cathode connected to a contact electrode, and an organic light-emitting layer provided between the plurality of anodes and one cathode.
 本開示に係る発光装置において、第1電極がカソードであり、第2電極がアノードである場合、複数の発光素子は、発光領域に設けられた複数のカソードと、発光領域から周辺領域まで延設され、コンタクト電極に接続された1つのアノードと、複数のカソードと1つのアノードの間に設けられた有機発光層とにより構成されていてもよい。 In the light emitting device according to the present disclosure, when the first electrode is a cathode and the second electrode is an anode, the plurality of light emitting elements include a plurality of cathodes provided in the light emitting region and a plurality of cathodes extending from the light emitting region to the peripheral region. The organic light emitting layer may include one anode connected to a contact electrode, and an organic light emitting layer provided between the plurality of cathodes and the one anode.
 本開示に係る発光装置において、第1電極が、複数の発光素子それぞれのアノードまたはカソードに接続された共通電極である場合、複数の発光素子は、複数種類の発光素子を含み、当該複数種類の発光素子はそれぞれ、異なる色の光を出射することができてもよい。例えば、複数種類の発光素子は、赤色光を発光することができる第1発光素子と、緑色光を発光することができる第2発光素子と、青色光を発光することができる第3発光素子とを含んでもよい。 In the light-emitting device according to the present disclosure, when the first electrode is a common electrode connected to the anode or cathode of each of the plurality of light-emitting elements, the plurality of light-emitting elements include a plurality of types of light-emitting elements, and the plurality of light-emitting elements include a plurality of types of light-emitting elements. Each light emitting element may be capable of emitting light of a different color. For example, the plurality of types of light emitting elements include a first light emitting element that can emit red light, a second light emitting element that can emit green light, and a third light emitting element that can emit blue light. May include.
 複数種類の発光素子は、アノードと、カソードと、有機発光層とを備え、有機発光層は、アノードとカソードの間に設けられていてもよい。複数種類の発光素子におけるアノード、カソードおよび有機発光層は、発光素子毎に個別に設けられている。例えば、第1発光素子は、アノードと、カソードと、第1有機発光層とを備え、第1有機発光層は、赤色光を発光することができてもよい。第2発光素子は、アノードと、カソードと、第2有機発光層とを備え、第2有機発光層は、緑色光を発光することができてもよい。第3発光素子は、アノードと、カソードと、第3有機発光層とを備え、第3有機発光層は、青色光を発光することができてもよい。 The plurality of types of light emitting elements include an anode, a cathode, and an organic light emitting layer, and the organic light emitting layer may be provided between the anode and the cathode. The anode, cathode, and organic light emitting layer in the plurality of types of light emitting elements are individually provided for each light emitting element. For example, the first light emitting device may include an anode, a cathode, and a first organic light emitting layer, and the first organic light emitting layer may be capable of emitting red light. The second light emitting device may include an anode, a cathode, and a second organic light emitting layer, and the second organic light emitting layer may emit green light. The third light emitting device may include an anode, a cathode, and a third organic light emitting layer, and the third organic light emitting layer may be capable of emitting blue light.
<2 概要>
 図1に示される表示装置601では、カソード623は、有効画素領域RE3から周辺領域RE4まで延設され、コンタクト電極(図示せず)に接続されている。コンタクト電極は、複数のコンタクト部(図示せず)により配線615に接続されている。コンタクト電極は、カソード623の周縁部とコンタクト電極の接触面積を増加させるために、カソード623が接続された部分に複数の凸部691を有している。複数の凸部691は、有効画素領域RE3の外周の周方向に沿って延設され、有効画素領域RE3から遠ざかる方向に並ぶ複数の例を構成している。
<2 Overview>
In the display device 601 shown in FIG. 1, the cathode 623 extends from the effective pixel region RE3 to the peripheral region RE4, and is connected to a contact electrode (not shown). The contact electrode is connected to the wiring 615 through a plurality of contact parts (not shown). The contact electrode has a plurality of protrusions 691 at the portion where the cathode 623 is connected to increase the contact area between the peripheral edge of the cathode 623 and the contact electrode. The plurality of convex portions 691 extend along the circumferential direction of the outer periphery of the effective pixel region RE3, and form a plurality of examples that are lined up in the direction away from the effective pixel region RE3.
 上記の構成を有する表示装置601においては、凸部691の段差によりカソード623の周縁部が切断される、あるいは凸部691の段差によりカソード623の周縁部が薄くなることがある。カソード623の周縁部がこのような状態となった場合には、有効画素領域RE3から遠ざかる方向におけるカソード623の抵抗値が上昇する。したがって、有効画素領域RE3から遠ざかる方向における電流パスを確保しにくくなる。図1において、矢印31が、凸部691により阻害されない電流パスのイメージを表し、矢印32が、凸部691により阻害された電流パスのイメージを表している。なお、以降の説明においても、矢印31、32はそれぞれ、電流パスのイメージを表すものとする。 In the display device 601 having the above configuration, the peripheral edge of the cathode 623 may be cut due to the step of the convex portion 691, or the peripheral edge of the cathode 623 may become thin due to the step of the convex portion 691. When the peripheral edge of the cathode 623 is in such a state, the resistance value of the cathode 623 in the direction away from the effective pixel area RE3 increases. Therefore, it becomes difficult to secure a current path in the direction away from the effective pixel area RE3. In FIG. 1, an arrow 31 represents an image of a current path that is not obstructed by the convex portion 691, and an arrow 32 represents an image of a current path that is obstructed by the convex portion 691. Note that in the following description, arrows 31 and 32 each represent an image of a current path.
 本発明者らは、上記の点を踏まえて、カソード623の周縁部とコンタクト電極の接触面積を増加させつつ、有効画素領域RE3から遠ざかる方向における電流パス(キャリアパス)を確保すべく鋭意検討を行った。その結果、有効画素領域RE3から遠ざかる方向に延設された複数の凸部をコンタクト電極に設ける構成を見出すに至った。 In view of the above points, the present inventors have conducted extensive studies to increase the contact area between the peripheral edge of the cathode 623 and the contact electrode while ensuring a current path (carrier path) in the direction away from the effective pixel area RE3. went. As a result, a configuration was found in which the contact electrode is provided with a plurality of convex portions extending in a direction away from the effective pixel region RE3.
<3 第1の実施形態>
[表示装置101の構成]
 図2は、第1の実施形態に係る表示装置101の平面図である。図3は、図2のIII-III線に沿った断面図である。表示装置101は、有効画素領域RE1と、有効画素領域RE1の周辺に位置する周辺領域RE2とを有する。有効画素領域RE1は、特許請求の範囲における発光領域の一例である。
<3 First embodiment>
[Configuration of display device 101]
FIG. 2 is a plan view of the display device 101 according to the first embodiment. FIG. 3 is a sectional view taken along line III-III in FIG. 2. The display device 101 has an effective pixel region RE1 and a peripheral region RE2 located around the effective pixel region RE1. The effective pixel area RE1 is an example of a light emitting area in the claims.
 複数の副画素10R、10G、10Bが、有効画素領域RE1内に規定の配置パターンで2次元配置されている。規定の配置パターンは、例えば、ストライプ配列、デルタ配列、正方配列、モザイク配列またはこれら以外の配列であってもよい。図示しないパッド部および映像表示用のドライバ等が、周辺領域RE2に設けられていてもよい。図示しないフレキシブルプリント配線基板(Flexible Printed Circuit:FPC)が、パッド部に接続されていてもよい。 A plurality of sub-pixels 10R, 10G, and 10B are two-dimensionally arranged in a prescribed arrangement pattern within the effective pixel region RE1. The prescribed arrangement pattern may be, for example, a stripe arrangement, a delta arrangement, a square arrangement, a mosaic arrangement, or an arrangement other than these. A pad section, a video display driver, etc. (not shown) may be provided in the peripheral region RE2. A flexible printed circuit (FPC) (not shown) may be connected to the pad portion.
 副画素10Rは、赤色光(第1光)を発光することができる。副画素10Gは、緑色光(第2光)を発光することができる。副画素10Bは、青色光(第3光)を発光することができる。以下の説明において、副画素10R、10G、10Bを特に区別せず総称する場合には、副画素10ということがある。1画素(1ピクセル)は、例えば、隣接する複数の副画素10R、10G、10B、または隣接する複数の副画素10R、10G、10B、10B等により構成されている。 The subpixel 10R can emit red light (first light). The subpixel 10G can emit green light (second light). The subpixel 10B can emit blue light (third light). In the following description, the sub-pixels 10R, 10G, and 10B may be referred to collectively as the sub-pixel 10 without any particular distinction. One pixel (one pixel) is composed of, for example, a plurality of adjacent sub-pixels 10R, 10G, 10B, or a plurality of adjacent sub-pixels 10R, 10G, 10B, 10B.
 表示装置101は、発光装置の一例である。表示装置101は、トップエミッション方式のOLED表示装置であってもよい。表示装置101は、マイクロディスプレイであってもよい。表示装置101は、VR(Virtual Reality)装置、MR(Mixed Reality)装置、AR(Augmented Reality)装置等のアイウェアデバイスに備えられてもよいし、電子ビューファインダ(Electronic View Finder:EVF)または小型プロジェクタ等に備えられてもよい。 The display device 101 is an example of a light emitting device. The display device 101 may be a top emission type OLED display device. Display device 101 may be a microdisplay. The display device 101 may be included in an eyewear device such as a VR (Virtual Reality) device, an MR (Mixed Reality) device, an AR (Augmented Reality) device, or an electronic view finder (EVF) or a small device. It may be provided in a projector or the like.
 表示装置101は、図3に示されるように、駆動基板11と、複数の発光素子12Wと、絶縁層13と、保護層14と、カラーフィルタ15と、充填樹脂層16と、シール部17と、カバーガラス18と、コンタクト電極19を備える。 As shown in FIG. 3, the display device 101 includes a driving substrate 11, a plurality of light emitting elements 12W, an insulating layer 13, a protective layer 14, a color filter 15, a filled resin layer 16, and a sealing part 17. , a cover glass 18 and a contact electrode 19.
 本明細書において、表示装置101を構成する各層の両面のうち、表示装置101のトップ側(表示面側)となる面を第1面といい、表示装置101のボトム側(表示面とは反対側)となる面を第2面ということがある。本明細書において、第1面の周縁部とは、第1面の周縁から内側に向かって、所定の幅を有する領域をいい、第2面の周縁部とは、第2面の周縁から内側に向かって、所定の幅を有する領域をいう。 In this specification, of both surfaces of each layer constituting the display device 101, the surface that is the top side (display surface side) of the display device 101 is referred to as the first surface, and the bottom side (opposite to the display surface) of the display device 101 is referred to as the first surface. The side) is sometimes referred to as the second side. In this specification, the periphery of the first surface refers to an area having a predetermined width from the periphery of the first surface inward, and the periphery of the second surface refers to an area inward from the periphery of the second surface. A region having a predetermined width towards the end.
(駆動基板11)
 駆動基板11は、いわゆるバックプレーンであり、複数の発光素子12Wを駆動することができる。駆動基板11は、例えば、基板111と、絶縁層112とを順に備える。
(Drive board 11)
The drive board 11 is a so-called backplane and can drive a plurality of light emitting elements 12W. The drive substrate 11 includes, for example, a substrate 111 and an insulating layer 112 in this order.
 複数の駆動回路(図示せず)および複数の配線113、115等が、基板111の第1面に設けられていてもよい。基板111は、例えば、トランジスタ等の形成が容易な半導体基板であってもよいし、水分および酸素の透過性が低いガラス基板または樹脂基板であってもよい。半導体基板は、例えば、アモルファスシリコン、多結晶シリコンまたは単結晶シリコン等を含む。ガラス基板は、例えば、高歪点ガラス、ソーダガラス、ホウケイ酸ガラス、フォルステライト、鉛ガラスまたは石英ガラス等を含む。樹脂基板は、例えば、ポリメチルメタクリレート、ポリビニルアルコール、ポリビニルフェノール、ポリエーテルスルホン、ポリイミド、ポリカーボネート、ポリエチレンテレフタラートおよびポリエチレンナフタレート等からなる群より選ばれた少なくとも1種を含む。 A plurality of drive circuits (not shown) and a plurality of wirings 113, 115, etc. may be provided on the first surface of the substrate 111. The substrate 111 may be, for example, a semiconductor substrate on which a transistor or the like can be easily formed, or may be a glass substrate or a resin substrate with low moisture and oxygen permeability. The semiconductor substrate includes, for example, amorphous silicon, polycrystalline silicon, single crystal silicon, or the like. The glass substrate includes, for example, high strain point glass, soda glass, borosilicate glass, forsterite, lead glass, or quartz glass. The resin substrate includes, for example, at least one selected from the group consisting of polymethyl methacrylate, polyvinyl alcohol, polyvinylphenol, polyether sulfone, polyimide, polycarbonate, polyethylene terephthalate, polyethylene naphthalate, and the like.
 絶縁層112は、基板111の第1面に設けられ、複数の駆動回路および複数の配線113、115等を覆い平坦化してもよい。絶縁層112は、基板111の第1面に設けられた複数の駆動回路および複数の配線113、115等と、複数の発光素子12Wの間を絶縁してもよい。配線115は、図示しないパッド部に接続されていてもよい。 The insulating layer 112 may be provided on the first surface of the substrate 111 to cover and planarize the plurality of drive circuits, the plurality of wirings 113, 115, and the like. The insulating layer 112 may insulate between the plurality of drive circuits, the plurality of wirings 113, 115, etc. provided on the first surface of the substrate 111, and the plurality of light emitting elements 12W. The wiring 115 may be connected to a pad portion (not shown).
 絶縁層112は、有機絶縁層であってもよいし、無機絶縁層であってもよし、これらの積層体であってもよい。有機絶縁層は、例えば、ポリイミド系樹脂、アクリル系樹脂およびノボラック系樹脂等からなる群より選ばれた少なくとも1種を含む。無機絶縁層は、例えば、酸化シリコン(SiO)、窒化シリコン(SiN)および酸窒化シリコン(SiO)等からなる群より選ばれた少なくとも1種を含む。 The insulating layer 112 may be an organic insulating layer, an inorganic insulating layer, or a laminate of these. The organic insulating layer contains, for example, at least one selected from the group consisting of polyimide resin, acrylic resin, novolak resin, and the like. The inorganic insulating layer includes, for example, at least one selected from the group consisting of silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), and the like.
 絶縁層112は、複数のコンタクト部114、116を内部に備える。コンタクト部114は、発光素子12Wと配線113とを電気的に接続する。コンタクト部116は、コンタクト電極19と配線115とを電気的に接続する。コンタクト部114、116は、例えば、銅(Cu)およびチタン(Ti)等からなる群より選ばれた少なくとも1種の金属を含む。 The insulating layer 112 includes a plurality of contact portions 114 and 116 therein. The contact portion 114 electrically connects the light emitting element 12W and the wiring 113. The contact portion 116 electrically connects the contact electrode 19 and the wiring 115. The contact portions 114 and 116 include, for example, at least one metal selected from the group consisting of copper (Cu), titanium (Ti), and the like.
(発光素子12W)
 発光素子12Wは、駆動回路等の制御に基づき、白色光を発光することができる。発光素子12Wは、OLED素子である。OLED素子は、Micro-OLED(M-OLED)素子であってもよい。発光素子12Wは、各色の副画素10R、10G、10Bに含まれる。
(Light emitting element 12W)
The light emitting element 12W can emit white light under the control of a drive circuit or the like. The light emitting element 12W is an OLED element. The OLED element may be a Micro-OLED (M-OLED) element. The light emitting element 12W is included in each color subpixel 10R, 10G, and 10B.
 複数の発光素子12Wは、規定の配置パターンで駆動基板11の第1面上に2次元配置されている。規定の配置パターンは、複数の副画素10の規定の配置パターンとして説明したとおりである。発光素子12Wは、アノード121と、OLED層122と、カソード123とにより構成されている。アノード121、OLED層122およびカソード123は、駆動基板11の第1面上に積層されている。第1の実施形態においては、アノード121が、特許請求の範囲における第2電極の一例であり、カソード123が、特許請求の範囲における第1電極の一例である。 The plurality of light emitting elements 12W are two-dimensionally arranged on the first surface of the drive substrate 11 in a prescribed arrangement pattern. The prescribed arrangement pattern is as described as the prescribed arrangement pattern of the plurality of sub-pixels 10. The light emitting element 12W includes an anode 121, an OLED layer 122, and a cathode 123. An anode 121, an OLED layer 122, and a cathode 123 are stacked on the first surface of the drive substrate 11. In the first embodiment, the anode 121 is an example of the second electrode in the claims, and the cathode 123 is an example of the first electrode in the claims.
(アノード121)
 アノード121は、OLED層122の第2面側に設けられている。アノード121は、有効画素領域RE1内において複数の発光素子12Wで個別に設けられている個別電極である。すなわち、アノード121は、有効画素領域RE1内において、駆動基板11の第1面の面内方向に隣接する発光素子12Wの間で分断されている。アノード121とカソード123の間に電圧が加えられると、アノード121からOLED層122にホールが注入される。
(Anode 121)
The anode 121 is provided on the second surface side of the OLED layer 122. The anode 121 is an individual electrode provided individually for the plurality of light emitting elements 12W within the effective pixel region RE1. That is, the anode 121 is divided between the light emitting elements 12W adjacent to each other in the in-plane direction of the first surface of the drive substrate 11 within the effective pixel region RE1. When a voltage is applied between the anode 121 and the cathode 123, holes are injected from the anode 121 into the OLED layer 122.
 アノード121は、例えば、金属層により構成されてもよいし、金属層と透明導電性酸化物層により構成されてもよい。アノード121が金属層と透明導電性酸化物層により構成されている場合には、高い仕事関数を有する層をOLED層122に隣接させる観点からすると、透明導電性酸化物層がOLED層122側に設けられることが好ましい。 The anode 121 may be composed of, for example, a metal layer, or a metal layer and a transparent conductive oxide layer. When the anode 121 is composed of a metal layer and a transparent conductive oxide layer, from the viewpoint of placing a layer having a high work function adjacent to the OLED layer 122, the transparent conductive oxide layer is placed on the OLED layer 122 side. Preferably.
 金属層は、OLED層122で発光された光を反射する反射層としての機能も有している。金属層は、例えば、クロム(Cr)、金(Au)、白金(Pt)、ニッケル(Ni)、銅(Cu)、モリブデン(Mo)、チタン(Ti)、タンタル(Ta)、アルミニウム(Al)、マグネシウム(Mg)、鉄(Fe)、タングステン(W)および銀(Ag)からなる群より選ばれた少なくとも1種の金属元素を含む。金属層は、上記少なくとも1種の金属元素を合金の構成元素として含んでいてもよい。合金の具体例としては、アルミニウム合金または銀合金が挙げられる。アルミニウム合金の具体例としては、例えば、AlNdまたはAlCuが挙げられる。 The metal layer also has a function as a reflective layer that reflects the light emitted by the OLED layer 122. Examples of the metal layer include chromium (Cr), gold (Au), platinum (Pt), nickel (Ni), copper (Cu), molybdenum (Mo), titanium (Ti), tantalum (Ta), and aluminum (Al). , magnesium (Mg), iron (Fe), tungsten (W), and silver (Ag). The metal layer may contain the at least one metal element described above as a constituent element of an alloy. Specific examples of alloys include aluminum alloys and silver alloys. Specific examples of aluminum alloys include AlNd and AlCu.
 下地層(図示せず)が、金属層の第2面側に隣接して設けられていてもよい。下地層は、金属層の成膜時に、金属層の結晶配向性を向上させることができてもよい。下地層は、例えば、チタン(Ti)およびタンタル(Ta)からなる群より選ばれた少なくとも1種の金属元素を含む。下地層は、上記少なくとも1種の金属元素を合金の構成元素として含んでいてもよい。 A base layer (not shown) may be provided adjacent to the second surface side of the metal layer. The base layer may be capable of improving the crystal orientation of the metal layer during film formation of the metal layer. The base layer contains, for example, at least one metal element selected from the group consisting of titanium (Ti) and tantalum (Ta). The base layer may contain the above-mentioned at least one metal element as a constituent element of the alloy.
 透明導電性酸化物層は、透明導電性酸化物を含む。透明導電性酸化物は、例えば、インジウムを含む透明導電性酸化物(以下「インジウム系透明導電性酸化物」という。)、錫を含む透明導電性酸化物(以下「錫系透明導電性酸化物」という。)および亜鉛を含む透明導電性酸化物(以下「亜鉛系透明導電性酸化物」という。)からなる群より選ばれた少なくとも1種を含む。 The transparent conductive oxide layer contains a transparent conductive oxide. Transparent conductive oxides include, for example, transparent conductive oxides containing indium (hereinafter referred to as "indium-based transparent conductive oxides") and transparent conductive oxides containing tin (hereinafter referred to as "tin-based transparent conductive oxides"). ) and transparent conductive oxides containing zinc (hereinafter referred to as "zinc-based transparent conductive oxides").
 インジウム系透明導電性酸化物は、例えば、酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)、酸化インジウムガリウム(IGO)、酸化インジウムガリウム亜鉛(IGZO)またはフッ素ドープ酸化インジウム(IFO)を含む。これらの透明導電性酸化物のうちでも酸化インジウム錫(ITO)が特に好ましい。酸化インジウム錫(ITO)は、仕事関数的にOLED層122へのホール注入障壁が特に低いため、表示装置101の駆動電圧を特に低電圧化することができるからである。錫系透明導電性酸化物は、例えば、酸化錫、アンチモンドープ酸化錫(ATO)またはフッ素ドープ酸化錫(FTO)を含む。亜鉛系透明導電性酸化物は、例えば、酸化亜鉛、アルミニウムドープ酸化亜鉛(AZO)、ホウ素ドープ酸化亜鉛またはガリウムドープ酸化亜鉛(GZO)を含む。 Indium-based transparent conductive oxides include, for example, indium tin oxide (ITO), indium zinc oxide (IZO), indium gallium oxide (IGO), indium gallium zinc oxide (IGZO), or fluorine-doped indium oxide (IFO). Among these transparent conductive oxides, indium tin oxide (ITO) is particularly preferred. This is because indium tin oxide (ITO) has a particularly low barrier for hole injection into the OLED layer 122 in terms of work function, so the driving voltage of the display device 101 can be particularly low. The tin-based transparent conductive oxide includes, for example, tin oxide, antimony-doped tin oxide (ATO), or fluorine-doped tin oxide (FTO). Zinc-based transparent conductive oxides include, for example, zinc oxide, aluminum-doped zinc oxide (AZO), boron-doped zinc oxide, or gallium-doped zinc oxide (GZO).
(OLED層122)
 OLED層122は、白色光を発光することができる。OLED層122は、複数のアノード121と1つのカソード123の間に設けられている。OLED層122は、有効画素領域RE1内において、隣接する発光素子12W間で繋がり、有効画素領域RE1内において複数の発光素子12Wで共通の層である。
(OLED layer 122)
OLED layer 122 can emit white light. OLED layer 122 is provided between a plurality of anodes 121 and one cathode 123. The OLED layer 122 is connected between adjacent light emitting elements 12W within the effective pixel region RE1, and is a layer common to the plurality of light emitting elements 12W within the effective pixel region RE1.
 OLED層122は、有機発光層を含む積層体により構成されてもよく、その場合、積層体のうちの一部の層(例えば電子注入層)は無機層であってもよい。OLED層122は、単層の発光ユニットを備えるOLED層であってもよいし、2層の発光ユニットを備えるOLED層(タンデム構造)であってもよいし、これら以外の構造のOLED層であってもよい。単層の発光ユニットを備えるOLED層は、例えば、アノード121からカソード123に向かって、正孔注入層、正孔輸送層、赤色発光層、発光分離層、青色発光層、緑色発光層、電子輸送層、電子注入層がこの順序で積層された構成を有する。2層の発光ユニットを備えるOLED層は、例えば、アノード121からカソード123に向かって、正孔注入層、正孔輸送層、青色発光層、電子輸送層、電荷発生層、正孔輸送層、黄色発光層、電子輸送層と、電子注入層がこの順序で積層された構成を有する。 The OLED layer 122 may be composed of a laminate including an organic light-emitting layer, and in that case, some layers (for example, an electron injection layer) in the laminate may be inorganic layers. The OLED layer 122 may be an OLED layer including a single layer of light emitting units, an OLED layer including two layers of light emitting units (tandem structure), or an OLED layer with a structure other than these. It's okay. For example, an OLED layer including a single-layer light emitting unit includes a hole injection layer, a hole transport layer, a red light emitting layer, a light emitting separation layer, a blue light emitting layer, a green light emitting layer, and an electron transporting layer from the anode 121 to the cathode 123. The electron injection layer has a structure in which the electron injection layer and the electron injection layer are stacked in this order. For example, an OLED layer including a two-layer light emitting unit includes a hole injection layer, a hole transport layer, a blue light emitting layer, an electron transport layer, a charge generation layer, a hole transport layer, and a yellow layer from the anode 121 to the cathode 123. It has a structure in which a light emitting layer, an electron transport layer, and an electron injection layer are stacked in this order.
 正孔注入層は、各発光層への正孔注入効率を高めると共に、リークを抑制することができる。正孔輸送層は、各発光層への正孔輸送効率を高めることができる。電子注入層は、各発光層への電子注入効率を高めることができる。電子輸送層は、各発光層への電子輸送効率を高めることができる。発光分離層は、各発光層へのキャリアの注入を調整するための層であり、発光分離層を介して各発光層に電子やホールが注入されることにより各色の発光バランスが調整される。電荷発生層は、当該電荷発生層を挟むように設けられた2つの発光層に電子と正孔をそれぞれ供給することができる。 The hole injection layer can increase the efficiency of hole injection into each light emitting layer and can suppress leakage. The hole transport layer can increase hole transport efficiency to each light emitting layer. The electron injection layer can increase the efficiency of electron injection into each light emitting layer. The electron transport layer can increase electron transport efficiency to each light emitting layer. The light emitting separation layer is a layer for adjusting the injection of carriers into each light emitting layer, and the light emission balance of each color is adjusted by injecting electrons and holes into each light emitting layer through the light emitting separation layer. The charge generation layer can supply electrons and holes to two light emitting layers provided to sandwich the charge generation layer, respectively.
 赤色発光層、緑色発光層、青色発光層、黄色発光層はそれぞれ、電界をかけることにより、アノード121または電荷発生層から注入された正孔とカソード123または電荷発生層から注入された電子との再結合が起こり、赤色光、緑色光、青色光、黄色光を発光するものである。 By applying an electric field to each of the red light emitting layer, green light emitting layer, blue light emitting layer, and yellow light emitting layer, holes injected from the anode 121 or the charge generation layer and electrons injected from the cathode 123 or the charge generation layer are combined. Recombination occurs and emits red, green, blue, and yellow light.
(カソード123)
 カソード123は、OLED層122の第1面側に設けられている。カソード123は、有効画素領域RE1内において隣接する発光素子12W間で繋がり、有効画素領域RE1内において複数の発光素子12Wで共通の電極である。カソード123は、有効画素領域RE1から周辺領域RE2まで延設されている。カソード123の第2面の周縁部は、コンタクト電極19の第1面に接続されている。
(Cathode 123)
The cathode 123 is provided on the first surface side of the OLED layer 122. The cathode 123 is connected between adjacent light emitting elements 12W within the effective pixel region RE1, and is a common electrode for the plurality of light emitting elements 12W within the effective pixel region RE1. The cathode 123 extends from the effective pixel region RE1 to the peripheral region RE2. A peripheral portion of the second surface of the cathode 123 is connected to the first surface of the contact electrode 19 .
 アノード121とカソード123の間に電圧が加えられると、カソード123からOLED層122に電子が注入される。カソード123は、OLED層122から発せられる白色光に対して透光性を有している。カソード123は、可視光に対して透明性を有する透明電極であることが好ましい。本明細書において、可視光とは、360nm以上830nmの波長域の光をいう。 When a voltage is applied between the anode 121 and the cathode 123, electrons are injected from the cathode 123 into the OLED layer 122. The cathode 123 is transparent to white light emitted from the OLED layer 122. The cathode 123 is preferably a transparent electrode that is transparent to visible light. In this specification, visible light refers to light in a wavelength range of 360 nm or more and 830 nm.
 カソード123は、できるだけ透光性が高く、かつ仕事関数が小さい材料によって構成されることが、発光効率を高める上で好ましい。カソード123は、例えば、金属層および透明導電性酸化物層のうちの少なくとも一層により構成されている。より具体的には、カソード123は、金属層もしくは透明導電性酸化物層の単層膜、または金属層と透明導電性酸化物層の積層膜により構成されている。カソード123が積層膜により構成されている場合、金属層がOLED層122側に設けられてもよいし、透明導電性酸化物層がOLED層122側に設けられてもよいが、低い仕事関数を有する層をOLED層122に隣接させる観点からすると、金属層がOLED層122側に設けられていることが好ましい。 It is preferable for the cathode 123 to be made of a material that has as high a light transmittance as possible and has a small work function in order to increase luminous efficiency. The cathode 123 is composed of, for example, at least one of a metal layer and a transparent conductive oxide layer. More specifically, the cathode 123 is composed of a single layer film of a metal layer or a transparent conductive oxide layer, or a laminated film of a metal layer and a transparent conductive oxide layer. When the cathode 123 is composed of a laminated film, a metal layer may be provided on the OLED layer 122 side, or a transparent conductive oxide layer may be provided on the OLED layer 122 side. From the viewpoint of making the layer adjacent to the OLED layer 122, it is preferable that the metal layer is provided on the OLED layer 122 side.
 金属層は、例えば、マグネシウム(Mg)、アルミニウム(Al)、銀(Ag)、カルシウム(Ca)およびナトリウム(Na)からなる群より選ばれた少なくとも1種の金属元素を含む。金属層は、上記少なくとも1種の金属元素を合金の構成元素として含んでいてもよい。合金の具体例としては、MgAg合金、MgAl合金またはAlLi合金等が挙げられる。透明導電性酸化物層は、透明導電性酸化物を含む。当該透明導電性酸化物としては、上記のアノード121の透明導電性酸化物と同様の材料を例示することができる。 The metal layer contains, for example, at least one metal element selected from the group consisting of magnesium (Mg), aluminum (Al), silver (Ag), calcium (Ca), and sodium (Na). The metal layer may contain the at least one metal element described above as a constituent element of an alloy. Specific examples of the alloy include MgAg alloy, MgAl alloy, and AlLi alloy. The transparent conductive oxide layer includes a transparent conductive oxide. Examples of the transparent conductive oxide include the same materials as the transparent conductive oxide of the anode 121 described above.
(コンタクト電極19)
 コンタクト電極19は、周辺領域RE2における駆動基板11の第1面上に設けられている。コンタクト電極19は、層状を有していてもよい。コンタクト電極19は、カソード123と配線115を接続する補助電極である。コンタクト電極19の第1面は、カソード123の第2面の周縁部に電気的に接続されている。一方、コンタクト電極19の第2面は、複数のコンタクト部116等を介して配線115に接続されている。
(Contact electrode 19)
Contact electrode 19 is provided on the first surface of drive substrate 11 in peripheral region RE2. Contact electrode 19 may have a layered structure. Contact electrode 19 is an auxiliary electrode that connects cathode 123 and wiring 115. The first surface of the contact electrode 19 is electrically connected to the peripheral edge of the second surface of the cathode 123. On the other hand, the second surface of the contact electrode 19 is connected to the wiring 115 via a plurality of contact parts 116 and the like.
 コンタクト電極19は、平面視において、有効画素領域RE1の外周全体を囲む閉ループ状を有していてもよいし、有効画素領域RE1の外周を部分的に囲む、部分的に分断されたループ状を有していてもよい。本明細書において、平面視とは、第1面に垂直な方向から対象物が見られたときの平面視を意味する。 The contact electrode 19 may have a closed loop shape that surrounds the entire outer periphery of the effective pixel region RE1 in plan view, or may have a partially divided loop shape that partially surrounds the outer periphery of the effective pixel region RE1. may have. In this specification, a planar view means a planar view when the object is viewed from a direction perpendicular to the first surface.
 コンタクト電極19は、カソード123の周縁部に接続される第1面に複数の凸部191を有している。凸部191は、構造体の一例である。カソード123の周縁部は、複数の凸部191に倣うように、コンタクト電極19の第1面上に設けられていてもよい。本明細書において、カソード123の周縁部とは、カソード123の周縁から内側に向かって、所定の幅を有する領域をいう。複数の凸部191は、平面視において、有効画素領域RE1から遠ざかる方向に延設されている。複数の凸部191は、有効画素領域RE1の周りに放射状に設けられていてもよい。 The contact electrode 19 has a plurality of protrusions 191 on the first surface connected to the peripheral edge of the cathode 123. The convex portion 191 is an example of a structure. The peripheral portion of the cathode 123 may be provided on the first surface of the contact electrode 19 so as to follow the plurality of convex portions 191 . In this specification, the peripheral edge of the cathode 123 refers to a region having a predetermined width from the peripheral edge of the cathode 123 toward the inside. The plurality of convex portions 191 extend in a direction away from the effective pixel region RE1 in plan view. The plurality of convex portions 191 may be provided radially around the effective pixel region RE1.
 本明細書において、有効画素領域RE1から遠ざかる方向とは、平面視において、有効画素領域RE1の外周に対して垂直な方向(図2参照)と、有効画素領域RE1の外周に対して斜めの方向(図4参照)とを含むものとする。複数の凸部191が、有効画素領域RE1の外周に対して垂直な方向に延設された複数の凸部191と、有効画素領域RE1の外周に対して斜めの方向に延設された複数の凸部191とを含んでもよい。複数の凸部191が、有効画素領域RE1の外周に対して斜めの方向に延設された複数の凸部191を含む場合、当該複数の凸部191の延設の方向は同一であってもよいし、2以上の異なる方向であってもよい。 In this specification, the direction away from the effective pixel area RE1 refers to a direction perpendicular to the outer periphery of the effective pixel area RE1 (see FIG. 2) and a direction oblique to the outer periphery of the effective pixel area RE1 in plan view. (See FIG. 4). A plurality of convex portions 191 extend in a direction perpendicular to the outer circumference of the effective pixel region RE1, and a plurality of convex portions 191 extend in a diagonal direction with respect to the outer circumference of the effective pixel region RE1. The convex portion 191 may also be included. When the plurality of convex portions 191 include a plurality of convex portions 191 extending in a diagonal direction with respect to the outer periphery of the effective pixel region RE1, even if the direction of extension of the plurality of convex portions 191 is the same, Alternatively, the direction may be two or more different directions.
 有効画素領域RE1の外周に垂直な垂線Lと、有効画素領域RE1の外周に対して斜めの方向に延設された凸部191の中心軸Lなす角θ(図4参照)は、好ましくは±10°以下、より好ましくは±8°以下または±6°以下、より好ましくは±5°以下、±4°以下、±3°以下、±2°以下、±1°以下、±0.5°以下または±0.1°以下である。ここで、「+」の角度は、有効画素領域RE1の外周に垂直な垂線Lを基準にして時計回りの方向の角度を表し、「-」の角度は、有効画素領域RE1の外周に垂直な垂線Lを基準にして反時計回りの方向の角度を表すものとする。凸部191の中心軸Lとは、凸部191の延設方向に延びる直線を表す。 The angle θ (see FIG. 4) formed by the perpendicular line L1 perpendicular to the outer periphery of the effective pixel region RE1 and the central axis L2 of the convex portion 191 extending in a direction oblique to the outer periphery of the effective pixel region RE1 is preferably is ±10° or less, more preferably ±8° or less, or ±6° or less, more preferably ±5° or less, ±4° or less, ±3° or less, ±2° or less, ±1° or less, ±0. It is 5° or less or ±0.1° or less. Here, the "+" angle represents an angle in the clockwise direction with respect to the perpendicular line L1 perpendicular to the outer periphery of the effective pixel area RE1, and the "-" angle represents an angle perpendicular to the outer periphery of the effective pixel area RE1. It represents the angle in the counterclockwise direction with respect to the perpendicular L1 . The central axis L2 of the convex portion 191 represents a straight line extending in the direction in which the convex portion 191 extends.
 複数の凸部191は、例えば、平面視において長尺状を有する。長尺状は、具体的には例えば、線状、長方形状またはオーバル状等であってもよいし、これら以外の形状であってもよい。オーバル状には、長円形状、楕円形状、卵形状等の形状が含まれる。複数の凸部191は、有効画素領域RE1の外周の周方向に、すなわちコンタクト電極19の周方向に間を離して配置されている。有効画素領域RE1の外周の周方向に隣接する凸部191の間の距離は、一定であってもよいし、変化してもよい。 The plurality of convex portions 191 have, for example, an elongated shape in plan view. Specifically, the elongated shape may be, for example, a linear shape, a rectangular shape, an oval shape, or the like, or a shape other than these. The oval shape includes shapes such as an elliptical shape, an elliptical shape, and an egg shape. The plurality of convex portions 191 are arranged at intervals in the circumferential direction of the outer periphery of the effective pixel region RE1, that is, in the circumferential direction of the contact electrode 19. The distance between adjacent protrusions 191 in the circumferential direction of the outer periphery of the effective pixel region RE1 may be constant or may vary.
 コンタクト電極19は、例えば、金属層および金属酸化物層のうちの少なくとも一層により構成されている。より具体的には例えば、コンタクト電極19は、金属層もしくは金属酸化物層の単層膜、または金属層と金属酸化物層の積層膜により構成されている。コンタクト電極19は、上記のアノード121と同様の構成を有していることが好ましい。この場合、コンタクト電極19をアノード121と同時に形成することができるので、表示装置101の製造工程を簡略化することができる。 The contact electrode 19 is composed of, for example, at least one of a metal layer and a metal oxide layer. More specifically, for example, the contact electrode 19 is composed of a single layer film of a metal layer or a metal oxide layer, or a laminated film of a metal layer and a metal oxide layer. It is preferable that the contact electrode 19 has the same configuration as the anode 121 described above. In this case, since the contact electrode 19 can be formed at the same time as the anode 121, the manufacturing process of the display device 101 can be simplified.
 コンタクト電極19に含まれる材料としては、上記のアノード121と同様の材料を例示することができる。具体的には、コンタクト電極19の金属層に含まれる材料としては、上記のアノード121の金属層と同様の材料を例示することができ、コンタクト電極19の金属酸化物層に含まれる材料としては、上記のアノード121の金属酸化物層と同様の材料を例示することができる。 As the material included in the contact electrode 19, the same material as the anode 121 described above can be exemplified. Specifically, the materials contained in the metal layer of the contact electrode 19 include the same materials as the metal layer of the anode 121 described above, and the materials contained in the metal oxide layer of the contact electrode 19 include: , the same material as the metal oxide layer of the anode 121 described above can be used.
 下地層(図示せず)が、金属層の第2面側に隣接して設けられていてもよい。下地層に含まれる材料としては、上記のアノード121の下地層と同様の材料を例示することができる。 A base layer (not shown) may be provided adjacent to the second surface side of the metal layer. As the material included in the base layer, the same material as the base layer of the anode 121 described above can be exemplified.
(絶縁層13)
 絶縁層13は、駆動基板11の第1面のうち、離隔されたアノード121の間の部分に設けられている。絶縁層13は、隣接するアノード121の間を絶縁する。絶縁層13は、複数の第1開口を有する。複数の第1開口はそれぞれ、各発光素子12Wに対応して設けられている。複数の第1開口がそれぞれ、各アノード121の第1面(OLED層122側の面)上に設けられていてもよい。第1開口を介して、アノード121とOLED層122とが接触する。
(Insulating layer 13)
The insulating layer 13 is provided in a portion of the first surface of the drive substrate 11 between the spaced apart anodes 121 . Insulating layer 13 provides insulation between adjacent anodes 121 . The insulating layer 13 has a plurality of first openings. Each of the plurality of first openings is provided corresponding to each light emitting element 12W. A plurality of first openings may be provided on the first surface (the surface on the OLED layer 122 side) of each anode 121, respectively. The anode 121 and the OLED layer 122 are in contact with each other through the first opening.
 絶縁層13は、駆動基板11の第1面のうち、アノード121とコンタクト電極19の間にも設けられている。絶縁層13は、アノード121とコンタクト電極19の間を絶縁する。絶縁層13は、第2開口を有する。第2開口は、コンタクト電極19に対応して設けられている。第2開口が、コンタクト電極19の第1面(カソード123の周縁部に接続される側の面)上に設けられていてもよい。第2開口を介して、コンタクト電極19とカソード123の周縁部とが電気的に接続される。第2開口は、コンタクト電極19と同様の閉ルーブ状を有していてもよい。 The insulating layer 13 is also provided between the anode 121 and the contact electrode 19 on the first surface of the drive substrate 11 . Insulating layer 13 insulates between anode 121 and contact electrode 19 . Insulating layer 13 has a second opening. The second opening is provided corresponding to the contact electrode 19. The second opening may be provided on the first surface of the contact electrode 19 (the surface connected to the peripheral edge of the cathode 123). The contact electrode 19 and the peripheral edge of the cathode 123 are electrically connected through the second opening. The second opening may have a closed loop shape similar to the contact electrode 19.
 絶縁層13は、有機絶縁層であってもよいし、無機絶縁層であってもよいし、これらの積層体であってもよい。有機絶縁層は、例えば、ポリイミド系樹脂、アクリル系樹脂およびノボラック系樹脂等からなる群より選ばれた少なくとも1種を含む。無機絶縁層は、例えば、酸化シリコン(SiO)、窒化シリコン(SiN)および酸窒化シリコン(SiO)等からなる群より選ばれた少なくとも1種を含む。 The insulating layer 13 may be an organic insulating layer, an inorganic insulating layer, or a laminate of these. The organic insulating layer contains, for example, at least one selected from the group consisting of polyimide resin, acrylic resin, novolak resin, and the like. The inorganic insulating layer includes, for example, at least one selected from the group consisting of silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), and the like.
(保護層14)
 保護層14は、カソード123の第1面上に設けられている。保護層14は、発光素子12Wから発せられる白色光に対して透光性を有している。保護層14は、可視光に対して透明性を有することが好ましい。保護層14は、複数の発光素子12W等を保護することができる。例えば、保護層14は、複数の発光素子12Wを外気と遮断し、外部環境から複数の発光素子12W内部への水分浸入を抑制することができる。また、カソード123が金属層により構成されている場合には、保護層14は、この金属層の酸化を抑制する機能を有していてもよい。
(Protective layer 14)
The protective layer 14 is provided on the first surface of the cathode 123. The protective layer 14 is transparent to white light emitted from the light emitting element 12W. It is preferable that the protective layer 14 has transparency to visible light. The protective layer 14 can protect the plurality of light emitting elements 12W and the like. For example, the protective layer 14 can isolate the plurality of light emitting elements 12W from the outside air, and can suppress moisture intrusion into the plurality of light emitting elements 12W from the external environment. Further, when the cathode 123 is formed of a metal layer, the protective layer 14 may have a function of suppressing oxidation of this metal layer.
 保護層14は、例えば、吸湿性が低い無機材料または高分子樹脂を含む。保護層14は、単層構造であってもよいし、多層構造であってもよい。保護層14の厚さを厚くする場合には、多層構造とすることが好ましい。保護層14における内部応力を緩和するためである。無機材料は、例えば、酸化シリコン(SiO)、窒化シリコン(SiN)、酸化窒化シリコン(SiO)、酸化チタン(TiO)および酸化アルミニウム(AlO)等からなる群より選ばれた少なくとも1種を含む。高分子樹脂は、例えば、熱硬化性樹脂および紫外線硬化性樹脂等からなる群より選ばれた少なくとも1種を含む。高分子樹脂は、具体的には例えば、アクリル系樹脂、ポリイミド系樹脂、ノボラック系樹脂、エポキシ系樹脂、ノルボルネン系樹脂およびパリレン系樹脂等からなる群より選ばれた少なくとも1種を含む。 The protective layer 14 includes, for example, an inorganic material or a polymer resin with low hygroscopicity. The protective layer 14 may have a single layer structure or a multilayer structure. When increasing the thickness of the protective layer 14, it is preferable to have a multilayer structure. This is to relieve internal stress in the protective layer 14. The inorganic material is selected from the group consisting of silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), titanium oxide (TiO x ), aluminum oxide (AlO x ), etc. Contains at least one species. The polymer resin includes, for example, at least one selected from the group consisting of thermosetting resins, ultraviolet curable resins, and the like. Specifically, the polymer resin includes at least one selected from the group consisting of acrylic resin, polyimide resin, novolak resin, epoxy resin, norbornene resin, parylene resin, and the like.
 保護層14は、ALD(Atomic Layer Deposition)層を含んでいてもよい。保護層14がALD層を含むことで、保護層14による水分浸入の抑制効果をさらに向上させることができる。ALD層は、例えば、酸化アルミニウム(AlO)または酸化チタン(TiO)を含む。 The protective layer 14 may include an ALD (Atomic Layer Deposition) layer. By including the ALD layer in the protective layer 14, the effect of the protective layer 14 on suppressing moisture infiltration can be further improved. The ALD layer includes, for example, aluminum oxide (AlO x ) or titanium oxide (TiO x ).
(カラーフィルタ15)
 カラーフィルタ15は、複数の発光素子12Wの上方に設けられている。より具体的には、カラーフィルタ15は、有効画素領域RE1における保護層14の第1面上に設けられている。カラーフィルタ15は、例えば、オンチップカラーフィルタ(On Chip Color Filter:OCCF)である。カラーフィルタ15は、例えば、複数の赤色フィルタ部15FRと、複数の緑色フィルタ部15FGと、複数の青色フィルタ部15FBとを備える。なお、以下の説明において、赤色フィルタ部15FR、緑色フィルタ部15FG、青色フィルタ部15FBを特に区別せず総称する場合には、フィルタ部15Fということがある。
(Color filter 15)
The color filter 15 is provided above the plurality of light emitting elements 12W. More specifically, the color filter 15 is provided on the first surface of the protective layer 14 in the effective pixel region RE1. The color filter 15 is, for example, an on-chip color filter (OCCF). The color filter 15 includes, for example, a plurality of red filter sections 15FR, a plurality of green filter sections 15FG, and a plurality of blue filter sections 15FB. In the following description, when the red filter section 15FR, the green filter section 15FG, and the blue filter section 15FB are collectively referred to without particular distinction, they may be referred to as a filter section 15F.
 複数のフィルタ部15Fは、規定の配置パターンで保護層14の第1面上に2次元配置されている。規定の配置パターンは、複数の副画素10の規定の配置パターンとして説明したとおりである。各フィルタ部15Fは、発光素子12Wの上方に設けられている。副画素10Rは、発光素子12Wと発光素子12Wの上方に設けられた赤色フィルタ部15FRとにより構成される。副画素10Gは、発光素子12Wと発光素子12Wの上方に設けられた緑色フィルタ部15FGとにより構成される。副画素10Bは、発光素子12Wと発光素子12Wの上方に設けられた青色フィルタ部15FBとにより構成される。 The plurality of filter parts 15F are two-dimensionally arranged on the first surface of the protective layer 14 in a prescribed arrangement pattern. The prescribed arrangement pattern is as described as the prescribed arrangement pattern of the plurality of sub-pixels 10. Each filter section 15F is provided above the light emitting element 12W. The subpixel 10R includes a light emitting element 12W and a red filter section 15FR provided above the light emitting element 12W. The subpixel 10G includes a light emitting element 12W and a green filter section 15FG provided above the light emitting element 12W. The subpixel 10B is composed of a light emitting element 12W and a blue filter section 15FB provided above the light emitting element 12W.
 赤色フィルタ部15FRは、発光素子12Wから出射された白色光のうち赤色光を透過するのに対して、赤色光以外の光を吸収することができる。緑色フィルタ部15FGは、発光素子12Wから出射された白色光のうち緑色光を透過するのに対して、緑色光以外の光を吸収することができる。青色フィルタ部15FBは、発光素子12Wから出射された白色光のうち青色光を透過するのに対して、青色光以外の光を吸収することができる。 The red filter section 15FR transmits red light among the white light emitted from the light emitting element 12W, but can absorb light other than red light. The green filter section 15FG transmits green light among the white light emitted from the light emitting element 12W, but can absorb light other than green light. The blue filter section 15FB transmits blue light among the white light emitted from the light emitting element 12W, but can absorb light other than blue light.
 赤色フィルタ部15FRは、例えば、赤色のカラーレジストを含む。緑色フィルタ部15FGは、例えば、緑色のカラーレジストを含む。青色フィルタ部15FBは、例えば、青色のカラーレジストを含む。 The red filter section 15FR includes, for example, a red color resist. The green filter section 15FG includes, for example, a green color resist. The blue filter section 15FB includes, for example, a blue color resist.
(充填樹脂層16)
 充填樹脂層16は、カラーフィルタ15とカバーガラス18の間に充填されている。充填樹脂層16は、シール部17の内側に設けられている。充填樹脂層16は、カラーフィルタ15から出射される各色の光に対して透光性を有している。充填樹脂層16は、可視光に対して透明性を有することが好ましい。充填樹脂層16は、カラーフィルタ15とカバーガラス18とを接着する接着層としての機能を有していてもよい。
(Filled resin layer 16)
The filled resin layer 16 is filled between the color filter 15 and the cover glass 18. Filled resin layer 16 is provided inside seal portion 17 . The filled resin layer 16 is transparent to each color of light emitted from the color filter 15 . It is preferable that the filled resin layer 16 has transparency to visible light. The filled resin layer 16 may function as an adhesive layer for bonding the color filter 15 and the cover glass 18 together.
 充填樹脂層16は、例えば、硬化性樹脂を含む。硬化性樹脂は、熱硬化性樹脂および紫外線硬化性樹脂等からなる群より選ばれた少なくとも1種を含む。なお、充填樹脂層16は、熱硬化性樹脂および紫外線硬化性樹脂に限定されるものではなく、熱硬化性樹脂および紫外線硬化性樹脂以外の種類の硬化性樹脂を含んでもよい。 The filled resin layer 16 contains, for example, a curable resin. The curable resin includes at least one selected from the group consisting of thermosetting resins, ultraviolet curable resins, and the like. Note that the filled resin layer 16 is not limited to thermosetting resins and ultraviolet curable resins, and may include other types of curable resins than thermosetting resins and ultraviolet curable resins.
(シール部17)
 シール部17は、保護層14の第1面の周縁部とカバーガラス18の第2面の周縁部の間に設けられている。シール部17は、保護層14の第1面の周縁部とカバーガラス18の第2面の周縁部とを接着し、保護層14の周縁部とカバーガラス18の周縁部の間をシールする。
(Seal part 17)
The seal portion 17 is provided between the peripheral edge of the first surface of the protective layer 14 and the peripheral edge of the second surface of the cover glass 18 . The seal portion 17 adheres the peripheral edge of the first surface of the protective layer 14 and the peripheral edge of the second surface of the cover glass 18 and seals between the peripheral edge of the protective layer 14 and the peripheral edge of the cover glass 18 .
 シール部17は、例えば、硬化性樹脂を含む。硬化性樹脂は、例えば、熱硬化性樹脂および紫外線硬化性樹脂等からなる群より選ばれた少なくとも1種を含む。より具体的には例えば、硬化性樹脂は、エポキシ系樹脂およびアクリル系樹脂等からなる群より選ばれた少なくとも1種を含む。なお、硬化性樹脂は、熱硬化性樹脂および紫外線硬化性樹脂に限定されるものではなく、熱硬化性樹脂および紫外線硬化性樹脂以外の種類の硬化性樹脂を含んでもよい。 The seal portion 17 includes, for example, a curable resin. The curable resin includes, for example, at least one selected from the group consisting of thermosetting resins, ultraviolet curable resins, and the like. More specifically, for example, the curable resin includes at least one selected from the group consisting of epoxy resins, acrylic resins, and the like. Note that the curable resin is not limited to thermosetting resins and ultraviolet curable resins, and may include types of curable resins other than thermosetting resins and ultraviolet curable resins.
(カバーガラス18)
 カバーガラス18は、充填樹脂層16の第1面上およびシール部17の第1面上に設けられている。カバーガラス18は、複数の発光素子12W等の各部材が設けられた駆動基板11の第1面を封止する。カバーガラス18は、カラーフィルタ15から出射される各色の光に対して透光性を有している。カバーガラス18は、可視光に対して透明性を有することが好ましい。カバーガラス18は、例えば、ガラス基板である。
(Cover glass 18)
The cover glass 18 is provided on the first surface of the filled resin layer 16 and the first surface of the seal portion 17 . The cover glass 18 seals the first surface of the drive substrate 11 on which members such as the plurality of light emitting elements 12W are provided. The cover glass 18 is transparent to each color of light emitted from the color filter 15. It is preferable that the cover glass 18 has transparency to visible light. The cover glass 18 is, for example, a glass substrate.
[表示装置101の製造方法]
 以下、第1の実施形態に係る表示装置101の製造方法の一例について説明する。
[Method for manufacturing display device 101]
An example of a method for manufacturing the display device 101 according to the first embodiment will be described below.
(アノード121およびコンタクト電極19の形成工程)
 まず、例えばスパッタリング法により、金属層、金属酸化物層を駆動基板11の第1面上に順次形成したのち、例えばフォトリソグラフィ技術を用いて金属層および金属酸化物層をパターニングする。これにより、複数のアノード121およびコンタクト電極19が駆動基板11の第1面上に形成される。次に、例えばフォトリソグラフィ技術を用いてコンタクト電極19の第1面に複数の凸部191を形成する。
(Formation process of anode 121 and contact electrode 19)
First, a metal layer and a metal oxide layer are sequentially formed on the first surface of the drive substrate 11 by, for example, sputtering, and then the metal layer and metal oxide layer are patterned by, for example, photolithography. As a result, a plurality of anodes 121 and contact electrodes 19 are formed on the first surface of the drive substrate 11. Next, a plurality of convex portions 191 are formed on the first surface of the contact electrode 19 using, for example, photolithography technology.
(絶縁層13の形成工程)
 次に、例えばCVD(Chemical Vapor Deposition)法により、複数のアノード121およびコンタクト電極19を覆うように駆動基板11の第1面上に絶縁層13を形成する。次に、例えばフォトリソグラフィ技術により、絶縁層13に複数の第1開口および1つの第2開口を形成する。これにより、各アノード121の第1面が第1開口を介して露出すると共に、コンタクト電極19の第1面が第2開口を介して露出する。
(Formation process of insulating layer 13)
Next, the insulating layer 13 is formed on the first surface of the drive substrate 11 so as to cover the plurality of anodes 121 and the contact electrodes 19 by, for example, a CVD (Chemical Vapor Deposition) method. Next, a plurality of first openings and one second opening are formed in the insulating layer 13 by, for example, photolithography. As a result, the first surface of each anode 121 is exposed through the first opening, and the first surface of the contact electrode 19 is exposed through the second opening.
(OLED層122の形成工程)
 次に、例えば蒸着法により、正孔輸送層、赤色発光層、発光分離層、青色発光層、緑色発光層、電子輸送層、電子注入層を複数のアノード121を覆うように駆動基板11の第1面上に順次積層することにより、OLED層122を形成する。
(Formation process of OLED layer 122)
Next, for example, by vapor deposition, a hole transport layer, a red light emitting layer, a light emitting separation layer, a blue light emitting layer, a green light emitting layer, an electron transport layer, and an electron injection layer are formed on the drive substrate 11 so as to cover the plurality of anodes 121. The OLED layer 122 is formed by sequentially stacking layers on one surface.
(カソード123の形成工程)
 次に、例えば蒸着法またはスパッタリング法により、カソード123をOLED層122の第1面上およびコンタクト電極19の第1面上に形成する。これにより、駆動基板11の第1面上に複数の発光素子12Wが形成されると共に、カソード123の第2面の周縁部がコンタクト電極19の第1面に接続される。
(Formation process of cathode 123)
Next, a cathode 123 is formed on the first surface of the OLED layer 122 and the first surface of the contact electrode 19 by, for example, a vapor deposition method or a sputtering method. As a result, a plurality of light emitting elements 12W are formed on the first surface of the drive substrate 11, and the peripheral portion of the second surface of the cathode 123 is connected to the first surface of the contact electrode 19.
(保護層14の形成工程)
 次に、例えばCVD法または蒸着法により、保護層14をカソード123の第1面上に形成する。
(Process of forming protective layer 14)
Next, the protective layer 14 is formed on the first surface of the cathode 123 by, for example, a CVD method or a vapor deposition method.
(カラーフィルタ15の形成工程)
 次に、保護層14の第1面上に緑色フィルタ部形成用の着色組成物を塗布し、フォトマスクを介して紫外線を照射しパターン露光した後、現像することにより、複数の緑色フィルタ部15FGを形成する。次に、保護層14の第1面上に赤色フィルタ部形成用の着色組成物を塗布し、フォトマスクを介して紫外線を照射しパターン露光した後、現像することにより、複数の赤色フィルタ部15FRを形成する。次に、保護層14の第1面上に青色フィルタ部形成用の着色組成物を塗布し、フォトマスクを介して紫外線を照射しパターン露光した後、現像することにより、複数の青色フィルタ部15FBを形成する。これにより、保護層14の第1面上にカラーフィルタ15が形成される。
(Formation process of color filter 15)
Next, a colored composition for forming green filter portions is applied on the first surface of the protective layer 14, and after pattern exposure is performed by irradiating ultraviolet rays through a photomask and developed, a plurality of green filter portions 15FG are formed. form. Next, a colored composition for forming a red filter portion is applied onto the first surface of the protective layer 14, and after pattern exposure is performed by irradiating ultraviolet rays through a photomask and then developed, a plurality of red filter portions 15FR are formed. form. Next, a colored composition for forming a blue filter portion is applied on the first surface of the protective layer 14, and after pattern exposure is performed by irradiating ultraviolet rays through a photomask and developing, a plurality of blue filter portions 15FB are formed. form. As a result, the color filter 15 is formed on the first surface of the protective layer 14.
(封止工程)
 次に、表示領域R1を囲む閉ループ状にシール剤を保護層14の第1面の周縁部上に塗布し、枠を形成したのち、この枠の内側に充填樹脂を塗布する。次に、カバーガラス18を充填樹脂およびシール剤の上に載置する。次に、例えば、熱処理および紫外線照射処理の少なくとも一方の処理によりシール剤および充填樹脂を硬化させる。これにより、保護層14の第1面の周縁部とカバーガラス18の第2面の周縁部とがシール部17により貼り合わされると共に、シール部17の内側に充填樹脂層16が形成される。なお、充填樹脂およびシール剤の硬化方法は、熱処理および紫外線照射処理に限定されるものではなく、熱処理および紫外線照射処理以外の硬化方法であってもよい。以上により、図3に示す表示装置101が得られる。
(Sealing process)
Next, a sealant is applied on the peripheral edge of the first surface of the protective layer 14 in a closed loop surrounding the display area R1 to form a frame, and then a filling resin is applied inside the frame. Next, the cover glass 18 is placed on top of the filled resin and sealant. Next, the sealant and the filled resin are cured, for example, by at least one of heat treatment and ultraviolet irradiation treatment. As a result, the peripheral edge of the first surface of the protective layer 14 and the peripheral edge of the second surface of the cover glass 18 are bonded together by the sealing part 17, and the filled resin layer 16 is formed inside the sealing part 17. Note that the method of curing the filled resin and sealant is not limited to heat treatment and ultraviolet irradiation treatment, and may be a curing method other than heat treatment and ultraviolet irradiation treatment. Through the above steps, the display device 101 shown in FIG. 3 is obtained.
[作用効果]
 第1の実施形態に係る表示装置101では、コンタクト電極19は、カソード123の周縁部に接続される第1面に複数の凸部191を有している。これらの複数の凸部191は、平面視において、有効画素領域RE1から遠ざかる方向に延設され、かつ、有効画素領域RE1の外周の周方向に間を離して配置されている。これにより、図2中に矢印31で示されるように、有効画素領域RE1の外周の周方向に隣接する凸部191の間の部分に電流パス(キャリアパス)を形成することができる。したがって、カソード123の周縁部とコンタクト電極19の接触面積を増加させつつ、有効画素領域RE1から遠ざかる方向における電流パスを確保することができる。よって、カソード123の周縁部とコンタクト電極19の接続部分における電圧降下の影響を抑制し、表示装置101の輝度低下を抑制することができる。また、表示装置101を狭額縁化し、表示装置101を小型化することができる。
[Effect]
In the display device 101 according to the first embodiment, the contact electrode 19 has a plurality of convex portions 191 on the first surface connected to the peripheral edge of the cathode 123. These plurality of convex portions 191 extend in a direction away from the effective pixel region RE1 in a plan view, and are spaced apart from each other in the circumferential direction of the outer periphery of the effective pixel region RE1. Thereby, as shown by the arrow 31 in FIG. 2, a current path (carrier path) can be formed in a portion between the protrusions 191 adjacent in the circumferential direction on the outer periphery of the effective pixel region RE1. Therefore, it is possible to increase the contact area between the peripheral edge of the cathode 123 and the contact electrode 19 while ensuring a current path in the direction away from the effective pixel region RE1. Therefore, it is possible to suppress the influence of voltage drop at the connection portion between the peripheral edge of the cathode 123 and the contact electrode 19, and to suppress a decrease in brightness of the display device 101. Further, the frame of the display device 101 can be made narrower, and the display device 101 can be made smaller.
 表示装置101が大型化または高輝度化された場合にも、カソード123の周縁部とコンタクト電極19の接続部分における電圧降下の影響を抑制することができる。 Even when the display device 101 is increased in size or brightness, the influence of voltage drop at the connection portion between the peripheral edge of the cathode 123 and the contact electrode 19 can be suppressed.
<4 第2の実施形態>
[表示装置102の構成]
 図5は、第2の実施形態に係る表示装置102の平面図である。図6は、図5のVI-VI線に沿った断面図である。表示装置102は、コンタクト電極19が複数の凸部191に代えて複数の凸部群192を有する点において、第1の実施形態に係る表示装置101とは異なっている。凸部群192は、特許請求の範囲における構造体群の一例である。
<4 Second embodiment>
[Configuration of display device 102]
FIG. 5 is a plan view of the display device 102 according to the second embodiment. FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. The display device 102 differs from the display device 101 according to the first embodiment in that the contact electrode 19 has a plurality of protrusion groups 192 instead of the plurality of protrusions 191. The convex portion group 192 is an example of a structure group in the claims.
(凸部群192)
 複数の凸部群192は、平面視において、有効画素領域RE1の外周の周方向に、すなわちコンタクト電極19の周方向に間を離して配置されている。有効画素領域RE1の外周の周方向に隣接する凸部群192の間の距離は、一定であってもよいし、変化してもよい。
(Protrusion group 192)
The plurality of convex portion groups 192 are arranged at intervals in the circumferential direction of the outer periphery of the effective pixel region RE1, that is, in the circumferential direction of the contact electrode 19, in plan view. The distance between the convex portion groups 192 adjacent in the circumferential direction of the outer periphery of the effective pixel region RE1 may be constant or may vary.
 各凸部群192は、複数の第1凸部192aと複数の第2凸部192bとを含む。第2の実施形態では、各凸部群192が複数の第1凸部192aと複数の第2凸部192bとを含む例について説明するが、各凸部群192が複数の第1凸部192aと1つの第2凸部192bとを含んでもよい。 Each protrusion group 192 includes a plurality of first protrusions 192a and a plurality of second protrusions 192b. In the second embodiment, an example will be described in which each convex group 192 includes a plurality of first convex portions 192a and a plurality of second convex portions 192b. and one second convex portion 192b.
(第1凸部192a)
 複数の第1凸部192aは、複数の第2凸部192bよりも有効画素領域RE1の近くに設けられている。第1凸部192aは、特許請求の範囲における第1構造体の一例である。第1凸部192aは、第1の実施形態における凸部191と同様である。但し、第1凸部192aの長さは、第1の実施形態における凸部191の長さに比べて短くてもよい。
(First convex portion 192a)
The plurality of first convex portions 192a are provided closer to the effective pixel region RE1 than the plurality of second convex portions 192b. The first convex portion 192a is an example of a first structure in the claims. The first convex portion 192a is similar to the convex portion 191 in the first embodiment. However, the length of the first convex portion 192a may be shorter than the length of the convex portion 191 in the first embodiment.
(第2凸部192b)
 複数の第2凸部192bは、複数の第1凸部192aよりも表示装置101の周縁側に設けられている。第2凸部192bは、特許請求の範囲における第2構造体の一例である。第2凸部192bは、平面視において、第1凸部192aの延設方向と略垂直な方向(すなわち有効画素領域RE1の周方向と略同一な方向)に延設されている。
(Second protrusion 192b)
The plurality of second convex portions 192b are provided closer to the peripheral edge of the display device 101 than the plurality of first convex portions 192a. The second convex portion 192b is an example of a second structure in the claims. The second convex portion 192b extends in a direction substantially perpendicular to the extending direction of the first convex portion 192a (that is, substantially the same direction as the circumferential direction of the effective pixel region RE1) in plan view.
 本明細書において、延設方向と略垂直な方向とは、延設方向とのなす角が80°以上100°以下である方向を表す。延設方向と当該延設方向に略垂直な方向のなす角は、例えば、82°以上98°以下、84°以上96°以下、85°以上95°以下、86°以上94°以下、87°以上93°以下、88°以上92°以下、89°以上91°以下、89.5°以上90.5°以下または89.9°以上90.1°以下であってもよい。 In this specification, a direction substantially perpendicular to the extension direction refers to a direction in which the angle with the extension direction is 80° or more and 100° or less. The angle between the extension direction and a direction substantially perpendicular to the extension direction is, for example, 82° or more and 98° or less, 84° or more and 96° or less, 85° or more and 95° or less, 86° or more and 94° or less, and 87°. The angle may be greater than or equal to 93 degrees, less than or equal to 92 degrees, greater than or equal to 89 degrees and less than or equal to 91 degrees, greater than or equal to 89.5 degrees and less than or equal to 90.5 degrees, or greater than or equal to 89.9 degrees and less than or equal to 90.1 degrees.
 複数の第2凸部192bは、例えば、平面視において長尺状を有する。長尺状の具体例として、第1の実施形態における凸部191と同様の形状を挙げることができる。複数の第2凸部192bは、有効画素領域RE1から遠ざかる方向に間を離して配置されている。凸部群192が3つ以上の第2凸部192bを含む場合、有効画素領域RE1から遠ざかる方向に隣接する第2凸部192bの間の距離は、一定であってもよいし、変化してもよい。 The plurality of second convex portions 192b have, for example, an elongated shape in plan view. As a specific example of the elongated shape, a shape similar to the convex portion 191 in the first embodiment can be cited. The plurality of second convex portions 192b are spaced apart from each other in a direction moving away from the effective pixel region RE1. When the convex part group 192 includes three or more second convex parts 192b, the distance between the second convex parts 192b adjacent to each other in the direction away from the effective pixel area RE1 may be constant or may vary. Good too.
 複数の第2凸部192bのうち有効画素領域RE1に最も近い第2凸部192bは、複数の第1凸部192aの一端から離されていてもよいし、複数の第1凸部192aの一端と接続されていてもよい。図5では、複数の第2凸部192bのうち有効画素領域RE1に最も近い第2凸部192bが、複数の第1凸部から離されている例が示されている。 The second protrusion 192b closest to the effective pixel area RE1 among the plurality of second protrusions 192b may be separated from one end of the plurality of first protrusions 192a, or may be separated from one end of the plurality of first protrusions 192a. It may be connected to FIG. 5 shows an example in which the second protrusion 192b closest to the effective pixel area RE1 among the plurality of second protrusions 192b is separated from the plurality of first protrusions.
[作用効果]
 第2の実施形態に係る表示装置102では、複数の凸部群192は、有効画素領域RE1の外周の周方向に間を離して配置されている。また、複数の凸部群192に含まれる複数の第1凸部192aは、平面視において、有効画素領域RE1から遠ざかる方向に延設され、かつ、有効画素領域RE1の外周の周方向に間を離して配置されている。これにより、図5中に矢印31で示されるように、有効画素領域RE1の外周の周方向に隣接する凸部群192の間の部分、および有効画素領域RE1の外周の周方向に隣接する第1凸部192aの間の部分に電流パス(キャリアパス)を形成することができる。したがって、カソード123とコンタクト電極19の接触面積を増加させつつ、有効画素領域RE1から遠ざかる方向における電流パスを確保することができる。
[Effect]
In the display device 102 according to the second embodiment, the plurality of convex portion groups 192 are arranged at intervals in the circumferential direction of the outer periphery of the effective pixel region RE1. In addition, the plurality of first convex portions 192a included in the plurality of convex portion groups 192 extend in a direction away from the effective pixel region RE1 in plan view, and are spaced apart in the circumferential direction of the outer periphery of the effective pixel region RE1. are placed apart. As a result, as shown by the arrow 31 in FIG. A current path (carrier path) can be formed in a portion between the first convex portions 192a. Therefore, it is possible to increase the contact area between the cathode 123 and the contact electrode 19 while ensuring a current path in the direction away from the effective pixel region RE1.
 第2の実施形態に係る表示装置102では、複数の凸部群192に含まれる複数の第2凸部192bは、平面視において、第1凸部192aの延設方向と略垂直な方向(すなわち有効画素領域RE1の周方向と略同一な方向)に延設され、かつ、有効画素領域RE1から遠ざかる方向に間を離して配置されている。これにより、図5中に矢印33で示されるように、第1凸部192aの延設方向と略垂直な方向に隣接する第2凸部192bの間の部分に電流パス(キャリアパス)を形成することができる。したがって、有効画素領域RE1の周方向における電流パスを確保することができる。 In the display device 102 according to the second embodiment, the plurality of second convex portions 192b included in the plurality of convex portion groups 192 are arranged in a direction substantially perpendicular to the extending direction of the first convex portions 192a (i.e., They extend in a direction substantially the same as the circumferential direction of the effective pixel region RE1, and are spaced apart from each other in a direction moving away from the effective pixel region RE1. As a result, as shown by the arrow 33 in FIG. 5, a current path (carrier path) is formed between the second protrusions 192b adjacent to each other in a direction substantially perpendicular to the extending direction of the first protrusion 192a. can do. Therefore, a current path in the circumferential direction of the effective pixel region RE1 can be secured.
<5 第3の実施形態>
[表示装置103の構成]
 図7は、第3の実施形態に係る表示装置103の平面図である。図8は、図7の周辺領域RE2の一部を拡大して表す平面図である。図9は、図7のIX-IX線に沿った断面図である。表示装置103は、コンタクト電極19が複数の凸部191に代えて複数の凸部群193を有する点において、第1の実施形態に係る表示装置101(図2参照)とは異なっている。凸部群193は、特許請求の範囲における構造体群の一例である。
<5 Third embodiment>
[Configuration of display device 103]
FIG. 7 is a plan view of the display device 103 according to the third embodiment. FIG. 8 is a plan view showing a part of the peripheral region RE2 in FIG. 7 in an enlarged manner. FIG. 9 is a cross-sectional view taken along line IX-IX in FIG. The display device 103 differs from the display device 101 according to the first embodiment (see FIG. 2) in that the contact electrode 19 has a plurality of protrusion groups 193 instead of the plurality of protrusions 191. The convex portion group 193 is an example of a structure group in the claims.
(凸部群193)
 複数の凸部群193は、平面視において、有効画素領域RE1の外周の周方向に、すなわちコンタクト電極19の周方向に間を離して配置されている。有効画素領域RE1の外周の周方向に隣接する凸部群193の間の距離Dは、一定であってもよいし、変化してもよい。各凸部群193は、複数の凸部193aを含む。
(Protrusion group 193)
The plurality of convex portion groups 193 are arranged at intervals in the circumferential direction of the outer periphery of the effective pixel region RE1, that is, in the circumferential direction of the contact electrode 19, in plan view. The distance D between the convex portion groups 193 adjacent in the circumferential direction of the outer periphery of the effective pixel region RE1 may be constant or may vary. Each convex group 193 includes a plurality of convex portions 193a.
(凸部193a)
 複数の凸部193aは、コンタクト電極19の第1面に規定の配置パターンで2次元配置されていてもよい。規定の配置パターンは、マトリックス状または市松模様状等であってもよいし、これら以外の配置パターンであってもよい。
(Convex portion 193a)
The plurality of convex portions 193a may be two-dimensionally arranged on the first surface of the contact electrode 19 in a prescribed arrangement pattern. The prescribed arrangement pattern may be a matrix shape, a checkerboard pattern, or the like, or may be an arrangement pattern other than these.
 複数の凸部193aは、平面視において、有効画素領域RE1の外周の周方向に間隔D21を離して並んでいてもよい。有効画素領域RE1の外周の周方向に隣接する凸部193aの間の距離D21は、一定であってもよいし、変化してもよい。 The plurality of convex portions 193a may be arranged at intervals D21 in the circumferential direction of the outer periphery of the effective pixel region RE1 in plan view. The distance D21 between adjacent convex portions 193a in the circumferential direction of the outer periphery of the effective pixel region RE1 may be constant or may vary.
 複数の凸部193aは、平面視において、有効画素領域RE1から遠ざかる方向に間隔D22を離して並んでいてもよい。有効画素領域RE1から遠ざかる方向に隣接する凸部193aの間の距離D22は、一定であってもよいし、変化してもよい。複数の凸部193aの高さは、略同一であってもよいし、異なっていてもよい。 The plurality of convex portions 193a may be arranged at intervals D22 in a direction moving away from the effective pixel region RE1 in plan view. The distance D22 between adjacent convex portions 193a in the direction away from the effective pixel area RE1 may be constant or may vary. The heights of the plurality of protrusions 193a may be substantially the same or may be different.
 凸部193aは、例えば、平面視においてドット状を有していてもよい。ドット状は、例えば、平面視において円形状、楕円形状または多角形状を有していてもよいし、これら以外の形状を有していてもよい。凸部193aは、例えば、略柱状、略錐台状、略錐体状または略ドーム状を有していてもよいし、これら以外の形状を有していてもよい。複数の凸部193aが、2種以上の形状の凸部193aを含んでもよい。 The convex portion 193a may have a dot shape in plan view, for example. The dot shape may have, for example, a circular shape, an elliptical shape, or a polygonal shape in plan view, or may have a shape other than these. The convex portion 193a may have, for example, a substantially columnar shape, a substantially truncated pyramid shape, a substantially conical shape, or a substantially dome shape, or may have a shape other than these. The plurality of protrusions 193a may include two or more types of protrusions 193a.
(距離D11、距離D21および距離D22の関係)
 有効画素領域RE1の外周の周方向に隣接する凸部群193の間の距離D11は、有効画素領域RE1の外周の周方向に隣接する凸部193aの間の距離D21に比べて大きいことが好ましい。これにより、有効画素領域RE1の外周の周方向に隣接する凸部群193の間の部分における電流の流れが、有効画素領域RE1の外周の周方向に隣接する凸部193aの間の部分における電流の流れに比べて良好になる。
(Relationship between distance D 11 , distance D 21 and distance D 22 )
The distance D 11 between the protrusions 193 adjacent in the circumferential direction on the outer periphery of the effective pixel region RE1 is larger than the distance D 21 between the protrusions 193a adjacent in the circumferential direction on the outer periphery of the effective pixel region RE1. is preferred. As a result, the current flow in the portion between the convex portion groups 193 adjacent in the circumferential direction on the outer periphery of the effective pixel region RE1 is changed from the current flow in the portion between the convex portions 193a adjacent in the circumferential direction on the outer periphery of the effective pixel region RE1. The flow is better than that of
 有効画素領域RE1の外周の周方向に隣接する凸部群193の間の距離D11と、有効画素領域RE1の外周の周方向に隣接する凸部193aの間の距離D21は、有効画素領域RE1から遠ざかる方向における電流パスの確保の観点から、好ましくは1.5×D21≦D11、より好ましくは2×D21≦D11、さらにより好ましくは3×D21≦D11、4×D21≦D11、5×D21≦D11または6×D21≦D11である。有効画素領域RE1の外周の周方向に隣接する凸部群193の間の距離D11と、有効画素領域RE1の外周の周方向に隣接する凸部193aの間の距離D21は、カソード123の周縁部とコンタクト電極19の接触面積の低下を抑制する観点から、好ましくはD11≦10×D21である。 The distance D 11 between the convex portion groups 193 adjacent in the circumferential direction on the outer periphery of the effective pixel region RE1 and the distance D 21 between the convex portions 193a adjacent in the circumferential direction on the outer periphery of the effective pixel region RE1 are the effective pixel region. From the viewpoint of ensuring a current path in the direction away from RE1, preferably 1.5×D 21 ≦D 11 , more preferably 2×D 21 ≦D 11 , even more preferably 3×D 21 ≦D 11 , 4× D 21 ≦D 11 , 5×D 21 ≦D 11 or 6×D 21 ≦D 11 . The distance D 11 between the protrusions 193 adjacent in the circumferential direction on the outer periphery of the effective pixel region RE1 and the distance D 21 between the protrusions 193a adjacent in the circumferential direction on the outer periphery of the effective pixel region RE1 are From the viewpoint of suppressing a decrease in the contact area between the peripheral edge portion and the contact electrode 19, D 11 ≦10×D 21 is preferably satisfied.
 有効画素領域RE1から遠ざかる方向に隣接する凸部193aの間隔D22は、有効画素領域RE1の外周の周方向に隣接する凸部193aの間の距離D21と同一であってもよいし、異なっていてもよい。有効画素領域RE1から遠ざかる方向に隣接する凸部193aの間隔D22は、有効画素領域RE1の外周の周方向に隣接する凸部群193の間の距離D11に比べて小さいことが好ましい。これにより、各凸部群193に含まれる複数の凸部群193の個数の減少を抑制し、カソード123の周縁部とコンタクト電極19の接触面積の低下を抑制することができる。 The distance D 22 between the protrusions 193a adjacent in the direction away from the effective pixel area RE1 may be the same as or different from the distance D 21 between the protrusions 193a adjacent in the circumferential direction of the outer periphery of the effective pixel area RE1. You can leave it there. It is preferable that the distance D 22 between the convex portions 193a adjacent to each other in the direction away from the effective pixel region RE1 is smaller than the distance D 11 between the convex portion groups 193 adjacent in the circumferential direction of the outer periphery of the effective pixel region RE1. Thereby, it is possible to suppress a decrease in the number of the plurality of protrusion groups 193 included in each protrusion group 193, and to suppress a decrease in the contact area between the peripheral edge of the cathode 123 and the contact electrode 19.
[作用効果]
 第3の実施形態に係る表示装置103では、コンタクト電極19が凸部群193を第1面に有する。これにより、カソード123とコンタクト電極19の接触面積を増加させることができる。複数の凸部群193は、有効画素領域RE1の外周の周方向に間を離して配置されている。これにより、有効画素領域RE1の外周の周方向に隣接する凸部群193の間の部分において電流パスを確保することができる。したがって、第3の実施形態に係る表示装置103では、カソード123とコンタクト電極19の接触面積を増加させつつ、有効画素領域RE1から遠ざかる方向における電流パスを確保することができる。
[Effect]
In the display device 103 according to the third embodiment, the contact electrode 19 has a group of convex portions 193 on the first surface. Thereby, the contact area between the cathode 123 and the contact electrode 19 can be increased. The plurality of convex portion groups 193 are arranged at intervals in the circumferential direction of the outer periphery of the effective pixel region RE1. Thereby, a current path can be secured in the portion between the convex portion groups 193 adjacent in the circumferential direction on the outer periphery of the effective pixel region RE1. Therefore, in the display device 103 according to the third embodiment, it is possible to increase the contact area between the cathode 123 and the contact electrode 19 while ensuring a current path in the direction away from the effective pixel region RE1.
<6 第4の実施形態>
[表示装置104の構成]
 図10は、第4の実施形態に係る表示装置104の断面図である。表示装置104は、駆動基板11と、複数の発光素子(第1発光素子)12Rと、複数の発光素子(第2発光素子)12Gと、複数の発光素子(第3発光素子)12Bと、共通電極124と、第1保護層21と、第2保護層22と、コンタクト電極19とを備える。なお、第4の実施形態において、第1の実施形態と同様の箇所には同一の符号を付して説明を省略する。以下の説明において、発光素子12R、12G、12Bを特に区別せず総称する場合には、発光素子12ということがある。第4の実施形態においては、共通電極124が、特許請求の範囲における第1電極の一例である。
<6 Fourth embodiment>
[Configuration of display device 104]
FIG. 10 is a cross-sectional view of a display device 104 according to the fourth embodiment. The display device 104 includes a drive substrate 11, a plurality of light emitting elements (first light emitting element) 12R, a plurality of light emitting elements (second light emitting element) 12G, and a plurality of light emitting elements (third light emitting element) 12B. It includes an electrode 124, a first protective layer 21, a second protective layer 22, and a contact electrode 19. Note that in the fourth embodiment, the same parts as in the first embodiment are given the same reference numerals, and the description thereof will be omitted. In the following description, when the light emitting elements 12R, 12G, and 12B are collectively referred to without particular distinction, they may be referred to as the light emitting element 12. In the fourth embodiment, the common electrode 124 is an example of the first electrode in the claims.
(発光素子12R、12G、12B)
 発光素子12R、発光素子12Gおよび発光素子12Bの発光光の色は異なっている。発光素子12Rは、駆動回路等の制御に基づき、赤色光を発光することができる。発光素子12Gは、駆動回路等の制御に基づき、緑色光を発光することができる。発光素子12Bは、駆動回路等の制御に基づき、青色光を発光することができる。発光素子12は、OLED(Organic Light Emitting Diode)素子である。発光素子12Rは、副画素10Rにより構成される。発光素子12Gは、副画素10Gにより構成される。発光素子12Bは、副画素10Bにより構成される。
( Light emitting elements 12R, 12G, 12B)
The colors of the emitted light of the light emitting element 12R, the light emitting element 12G, and the light emitting element 12B are different. The light emitting element 12R can emit red light under control of a drive circuit or the like. The light emitting element 12G can emit green light under control of a drive circuit or the like. The light emitting element 12B can emit blue light under control of a drive circuit or the like. The light emitting element 12 is an OLED (Organic Light Emitting Diode) element. The light emitting element 12R is composed of a subpixel 10R. The light emitting element 12G is composed of a subpixel 10G. The light emitting element 12B is composed of a subpixel 10B.
 複数の発光素子12は、規定の配置パターンで駆動基板11の第1面上に2次元配置されている。規定の配置パターンは、第1の実施形態において、複数の副画素10の規定の配置パターンとして説明したとおりである。 The plurality of light emitting elements 12 are two-dimensionally arranged on the first surface of the drive substrate 11 in a prescribed arrangement pattern. The prescribed arrangement pattern is the same as that described as the prescribed arrangement pattern of the plurality of sub-pixels 10 in the first embodiment.
 発光素子12Rは、アノード121と、OLED層122Rと、カソード126とを順に駆動基板11の第1面上に備える。発光素子12Gは、アノード121と、OLED層122Gと、カソード126とを順に駆動基板11の第1面上に備える。発光素子12Bは、アノード121と、OLED層122Bと、カソード126とを順に駆動基板11の第1面上に備える。第4の実施形態においては、アノード121およびカソード126のうちの一方の電極が、特許請求の範囲における第3電極の一例であり、他方が、特許請求の範囲における第4電極の一例である。 The light emitting element 12R includes an anode 121, an OLED layer 122R, and a cathode 126 on the first surface of the drive substrate 11 in this order. The light emitting element 12G includes an anode 121, an OLED layer 122G, and a cathode 126 on the first surface of the drive substrate 11 in this order. The light emitting element 12B includes an anode 121, an OLED layer 122B, and a cathode 126 on the first surface of the drive substrate 11 in this order. In the fourth embodiment, one of the anode 121 and the cathode 126 is an example of the third electrode in the claims, and the other is an example of the fourth electrode in the claims.
(OLED層122R、122G、122B)
 OLED層122Rは、赤色光を発光することができる。OLED層122Gは、緑色光を発光することができる。OLED層122Bは、青色光を発光することができる。
(OLED layers 122R, 122G, 122B)
The OLED layer 122R can emit red light. The OLED layer 122G can emit green light. OLED layer 122B can emit blue light.
 OLED層122R、122G、122Bはそれぞれ、アノード121とカソード126の間に設けられている。OLED層122Rは、赤色光を発光することができる有機発光層(以下「赤色の有機発光層」という。)を含む。OLED層122Rは、緑色光を発光することができる有機発光層(以下「緑色の有機発光層」という。)を含む。OLED層122Bは、青色光を発光することができる有機発光層(以下「青色の有機発光層」という。)を含む。以下の説明において、赤色の有機発光層、緑色の有機発光層および青色の有機発光層を特に区別せず総称する場合には、単に有機発光層ということがある。 OLED layers 122R, 122G, and 122B are provided between anode 121 and cathode 126, respectively. The OLED layer 122R includes an organic light emitting layer (hereinafter referred to as "red organic light emitting layer") capable of emitting red light. The OLED layer 122R includes an organic light emitting layer (hereinafter referred to as "green organic light emitting layer") capable of emitting green light. The OLED layer 122B includes an organic light-emitting layer (hereinafter referred to as "blue organic light-emitting layer") that can emit blue light. In the following description, when a red organic light-emitting layer, a green organic light-emitting layer, and a blue organic light-emitting layer are collectively referred to without particular distinction, they may be simply referred to as an organic light-emitting layer.
 OLED層122R、122G、112Bは、有機発光層を含む積層体により構成されてもよく、その場合、積層体のうちの一部の層(例えば電子注入層)が無機層であってもよい。OLED層122Rは、例えば、アノード121からカソード126に向かって、正孔注入層、正孔輸送層、赤色の有機発光層、電子輸送層、電子注入層を順に備える。OLED層122Gは、例えば、アノード121からカソード126に向かって、正孔注入層、正孔輸送層、緑色の有機発光層、電子輸送層、電子注入層を順に備える。OLED層122Gは、例えば、アノード121からカソード126に向かって、正孔注入層、正孔輸送層、青色の有機発光層、電子輸送層、電子注入層を順に備える。 The OLED layers 122R, 122G, and 112B may be composed of a laminate including an organic light-emitting layer, and in that case, some layers (for example, an electron injection layer) of the laminate may be an inorganic layer. The OLED layer 122R includes, for example, a hole injection layer, a hole transport layer, a red organic light emitting layer, an electron transport layer, and an electron injection layer in this order from the anode 121 to the cathode 126. The OLED layer 122G includes, for example, a hole injection layer, a hole transport layer, a green organic light emitting layer, an electron transport layer, and an electron injection layer in this order from the anode 121 to the cathode 126. The OLED layer 122G includes, for example, a hole injection layer, a hole transport layer, a blue organic light emitting layer, an electron transport layer, and an electron injection layer in this order from the anode 121 to the cathode 126.
 赤色の有機発光層は、アノード121から注入された正孔とカソード126から注入された電子との再結合により、赤色光を発光することができる。緑色の有機発光層は、上記の赤色有機発光層と同様の現象により、緑色光を発光することができる。青色の有機発光層は、上記の赤色有機発光層と同様の現象により、青色光を発光することができる。 The red organic light-emitting layer can emit red light by recombining holes injected from the anode 121 and electrons injected from the cathode 126. The green organic light emitting layer can emit green light due to the same phenomenon as the red organic light emitting layer described above. The blue organic light emitting layer can emit blue light due to the same phenomenon as the red organic light emitting layer described above.
(カソード126)
 カソード126は、有効画素領域RE1内において複数の発光素子12Wで個別に設けられている個別電極である。すなわち、アノード121は、有効画素領域RE1内において、駆動基板11の第1面の面内方向に隣接する発光素子12の間で分断されている。カソード126は、これ以外の点においては、第1の実施形態におけるカソード123と同様である。
(Cathode 126)
The cathode 126 is an individual electrode provided individually for the plurality of light emitting elements 12W within the effective pixel region RE1. That is, the anode 121 is divided between the light emitting elements 12 adjacent to each other in the in-plane direction of the first surface of the drive substrate 11 within the effective pixel region RE1. Cathode 126 is otherwise similar to cathode 123 in the first embodiment.
(第1保護層21、第2保護層22)
 第1保護層21および第2保護層22は、発光素子12R、12G、12Bから発せられる各色の光に対して透光性を有している。第1保護層21および第2保護層22は、可視光に対して透明性を有することが好ましい。第1保護層21および第2保護層22は、複数の発光素子12等を保護することができる。例えば、第1保護層21および第2保護層22は、複数の発光素子12を外気と遮断し、外部環境から複数の発光素子12内部への水分浸入を抑制することができる。
(First protective layer 21, second protective layer 22)
The first protective layer 21 and the second protective layer 22 are transparent to each color of light emitted from the light emitting elements 12R, 12G, and 12B. It is preferable that the first protective layer 21 and the second protective layer 22 have transparency to visible light. The first protective layer 21 and the second protective layer 22 can protect the plurality of light emitting elements 12 and the like. For example, the first protective layer 21 and the second protective layer 22 can isolate the plurality of light emitting elements 12 from the outside air, and can suppress moisture intrusion into the plurality of light emitting elements 12 from the external environment.
 第1保護層21は、複数の発光素子12を覆うように、駆動基板11の第1面上に設けられている。第1保護層21は、当該第1保護層21の厚さ方向に貫通する複数のコンタクト孔21Hを有している。コンタクト孔21Hは、平面視において発光素子12の発光領域内に設けられていてもよいし、平面視において発光素子12の発光領域の外に設けられていてもよい。図10では、コンタクト孔21Hが平面視において発光素子12の発光領域の外に設けられていている例が示されている。第2保護層22は、共通電極124の第1面上に設けられている。 The first protective layer 21 is provided on the first surface of the drive substrate 11 so as to cover the plurality of light emitting elements 12. The first protective layer 21 has a plurality of contact holes 21H passing through the first protective layer 21 in the thickness direction. The contact hole 21H may be provided within the light emitting region of the light emitting element 12 in plan view, or may be provided outside the light emitting region of the light emitting element 12 in plan view. FIG. 10 shows an example in which the contact hole 21H is provided outside the light emitting region of the light emitting element 12 in plan view. The second protective layer 22 is provided on the first surface of the common electrode 124.
 第1保護層21および第2保護層22に含まれる材料としては、第1の実施形態における保護層14と同様の材料を例示することができる。第1保護層21および第2保護層22に含まれる材料は同一であってもよいし、異なっていてもよい。 Examples of the materials included in the first protective layer 21 and the second protective layer 22 include the same materials as the protective layer 14 in the first embodiment. The materials contained in the first protective layer 21 and the second protective layer 22 may be the same or different.
(共通電極124)
 共通電極124は、第1保護層21の第1面上に設けられている。共通電極124は、有効画素領域RE1内において隣接する発光素子12間で繋がり、表示領域110A内に設けられた複数の発光素子12で共通の電極である。共通電極124は、発光素子12R、12G、12Bから発せられる各光に対して透光性を有している。共通電極124は、可視光に対して透明性を有することが好ましい。共通電極124は、有効画素領域RE1から周辺領域RE2まで延設されている。共通電極124の第2面の周縁部は、コンタクト電極19の第1面に接続されている。共通電極124の周縁部は、複数の凸部191に倣うように、コンタクト電極19の第1面上に設けられていてもよい。
(Common electrode 124)
The common electrode 124 is provided on the first surface of the first protective layer 21 . The common electrode 124 is connected between adjacent light emitting elements 12 in the effective pixel area RE1, and is a common electrode for the plurality of light emitting elements 12 provided in the display area 110A. The common electrode 124 is transparent to each light emitted from the light emitting elements 12R, 12G, and 12B. The common electrode 124 is preferably transparent to visible light. The common electrode 124 extends from the effective pixel region RE1 to the peripheral region RE2. A peripheral portion of the second surface of the common electrode 124 is connected to the first surface of the contact electrode 19 . The peripheral edge portion of the common electrode 124 may be provided on the first surface of the contact electrode 19 so as to follow the plurality of convex portions 191 .
 共通電極124は、副画素10毎に分離された各カソード126に接続されている。具体的には、共通電極124は、複数のコンタクト部125を有し、複数のコンタクト部125がそれぞれ、第1保護層1のコンタクト孔21H内に設けられている。これにより、複数のコンタクト部125の先端がそれぞれ、副画素10毎に分離されたカソード126の第1面に接続されている。 The common electrode 124 is connected to each cathode 126 separated for each subpixel 10. Specifically, the common electrode 124 has a plurality of contact parts 125, and each of the plurality of contact parts 125 is provided in the contact hole 21H of the first protective layer 1. As a result, the tips of the plurality of contact portions 125 are respectively connected to the first surface of the cathode 126 separated for each sub-pixel 10.
[作用効果]
 第4の実施形態では、共通電極124の周縁部がコンタクト電極19に接続される。コンタクト電極19は、第1の実施形態で説明された複数の凸部191を第1面に有している。したがって、共通電極124の周縁部とコンタクト電極19の接触面積を増加させつつ、有効画素領域RE1から遠ざかる方向における電流パスを確保することができる。
[Effect]
In the fourth embodiment, the peripheral portion of the common electrode 124 is connected to the contact electrode 19. The contact electrode 19 has the plurality of convex portions 191 described in the first embodiment on the first surface. Therefore, it is possible to increase the contact area between the peripheral portion of the common electrode 124 and the contact electrode 19, and to ensure a current path in the direction away from the effective pixel region RE1.
<7 第5の実施形態>
[表示装置105の構成]
 図11は、第5の実施形態に係る表示装置105の断面図である。表示装置105は、平坦化層23とレンズアレイ24とをさらに備える点において、第1の実施形態に係る表示装置101(図3参照)とは異なっている。
<7 Fifth embodiment>
[Configuration of display device 105]
FIG. 11 is a cross-sectional view of a display device 105 according to the fifth embodiment. The display device 105 differs from the display device 101 according to the first embodiment (see FIG. 3) in that it further includes a flattening layer 23 and a lens array 24.
(平坦化層23)
 平坦化層23は、カラーフィルタ15の第1面上に設けられている。平坦化層23は、平坦な第1の面を有している。平坦化層23は、カラーフィルタ15の第1面の凹凸を埋め、平坦な第1面をカラーフィルタ15の上方に形成することができる。平坦化層23は、例えば、無機材料または高分子樹脂を含む。無機材料としては、保護層14の無機材料と同様の材料を例示することができる。高分子樹脂としては、保護層14の高分子樹脂と同様の材料を例示することができる。
(Planarization layer 23)
The planarization layer 23 is provided on the first surface of the color filter 15. The planarization layer 23 has a flat first surface. The flattening layer 23 can fill in the unevenness of the first surface of the color filter 15 and form a flat first surface above the color filter 15 . The planarization layer 23 includes, for example, an inorganic material or a polymer resin. Examples of the inorganic material include the same materials as the inorganic material of the protective layer 14. As the polymer resin, the same material as the polymer resin of the protective layer 14 can be exemplified.
(レンズアレイ24)
 レンズアレイ24は、平坦化層23の第1面上に設けられている。レンズアレイ24は、複数のレンズ241を含む。レンズ241は、発光素子12Wから上方に出射された光を正面方向に集光することができる。複数のレンズ241は、いわゆるオンチップマイクロレンズ(On Chip Microlens:OCL)であり、規定の配置パターンで平坦化層23の第1面上に2次元配置されている。
(Lens array 24)
Lens array 24 is provided on the first surface of planarization layer 23 . Lens array 24 includes a plurality of lenses 241. The lens 241 can condense the light emitted upward from the light emitting element 12W in the front direction. The plurality of lenses 241 are so-called on-chip microlenses (OCL), and are two-dimensionally arranged on the first surface of the planarization layer 23 in a prescribed arrangement pattern.
 1つのレンズ241が、1つの発光素子12Wの上方に設けられていてもよいし、2つ以上のレンズ241が、1つの発光素子12Wの上方に設けられていてもよい。図11では、1つのレンズ241が1つの発光素子12Wの上方に設けられる例が示されている。レンズ241は、発光素子12Wから入射した光を出射する出射面側に曲面を有していてもよい。当該曲面は、発光素子12Wから遠ざかる方向に突出した凸状の湾曲面であってもよいし、発光素子12Wに近づく方向に窪んだ凹状の湾曲面であってもよい。湾曲面としては、例えば、略放物面状、略半球面状および略半楕円面状等が挙げられるが、これらの形状に限定されるものではない。 One lens 241 may be provided above one light emitting element 12W, or two or more lenses 241 may be provided above one light emitting element 12W. FIG. 11 shows an example in which one lens 241 is provided above one light emitting element 12W. The lens 241 may have a curved surface on the exit surface side that outputs the light incident from the light emitting element 12W. The curved surface may be a convex curved surface protruding in a direction away from the light emitting element 12W, or a concave curved surface concave in a direction approaching the light emitting element 12W. Examples of the curved surface include a substantially paraboloidal shape, a substantially hemispherical shape, a substantially semiellipsoidal shape, and the like, but the shape is not limited to these shapes.
 レンズアレイ24は、例えば、可視光に対して透明な無機材料または高分子樹脂を含む。無機材料は、例えば、酸化シリコン(SiO)を含む。高分子樹脂は、例えば、紫外線硬化樹脂を含む。 The lens array 24 includes, for example, an inorganic material or a polymer resin that is transparent to visible light. Inorganic materials include, for example, silicon oxide (SiO x ). The polymer resin includes, for example, an ultraviolet curing resin.
(充填樹脂層16)
 第5の実施形態においては、充填樹脂層16は、レンズアレイ24を覆う。充填樹脂層16の屈折率は、レンズアレイ24の屈折率とは異なっている。充填樹脂層16の屈折率は、レンズアレイ24の屈折率よりも高くてもよいし、低くてもよい。レンズ241が出射面側に凸状の湾曲面を有する場合には、正面輝度の向上の観点から、充填樹脂層16の屈折率は、レンズアレイ24の屈折率よりも低いことが好ましい。レンズ241が出射面側に凹状の湾曲面を有する場合には、正面輝度の向上の観点から、充填樹脂層16の屈折率は、レンズアレイ24の屈折率よりも高いことが好ましい。
(Filled resin layer 16)
In the fifth embodiment, the filled resin layer 16 covers the lens array 24. The refractive index of the filled resin layer 16 is different from the refractive index of the lens array 24. The refractive index of the filled resin layer 16 may be higher or lower than the refractive index of the lens array 24. When the lens 241 has a convex curved surface on the exit surface side, the refractive index of the filled resin layer 16 is preferably lower than the refractive index of the lens array 24 from the viewpoint of improving front brightness. When the lens 241 has a concave curved surface on the exit surface side, the refractive index of the filled resin layer 16 is preferably higher than the refractive index of the lens array 24 from the viewpoint of improving front brightness.
[作用効果]
 第5の実施形態では、レンズアレイ24が複数の発光素子12の上方に設けられている。これにより、発光素子12Wから上方に出射された光をレンズアレイ24により正面方向に集光することができる。したがって、表示装置105の正面輝度を向上させることができる。
[Effect]
In the fifth embodiment, a lens array 24 is provided above the plurality of light emitting elements 12. Thereby, the light emitted upward from the light emitting element 12W can be focused in the front direction by the lens array 24. Therefore, the front brightness of the display device 105 can be improved.
<8 変形例>
(変形例1)
 第1の実施形態に係る表示装置101は、以下の構成を有する複数の凸部191を有していてもよい。すなわち、図12に示されるように、周辺領域RE2の内周側における、隣接する凸部191の間の距離Dは、周辺領域RE2の外周側における、隣接する凸部191の間の距離Dより広くなっていてもよい。隣接する凸部191の間の距離Dは、周辺領域RE2の外周から周辺領域RE2の内周に向かって徐々に広がっていてもよい。
<8 Modification>
(Modification 1)
The display device 101 according to the first embodiment may include a plurality of convex portions 191 having the following configuration. That is, as shown in FIG. 12, the distance D between adjacent convex portions 191 on the inner circumferential side of the peripheral region RE2 is smaller than the distance D between adjacent convex portions 191 on the outer circumferential side of the peripheral region RE2. It may be wider. The distance D between adjacent convex portions 191 may gradually widen from the outer periphery of the peripheral region RE2 toward the inner periphery of the peripheral region RE2.
 凸部191は、平面視において、有効画素領域RE1の外周に対して傾斜した側面を有していてもよい。凸部191の幅は、平面視において、周辺領域RE2の外周から周辺領域RE2の内周に向かって徐々に狭くなっていてもよい。ここで、凸部191の幅とは、凸部191の延設方向に対して垂直な方向における凸部191の寸法を表す。凸部191は、例えば、平面視において三角形状または台形状を有していてもよいし、これら以外の形状を有していてもよい。三角形状は、例えば、二等辺三角形であってもよい。凸部191が平面視において三角形状を有する場合、当該三角形状の1つの頂点が周辺領域RE2の内周側に位置し、残りの2つの頂点が周辺領域RE2の外周側に位置していてもよい。凸部191が平面視において台形状を有する場合、当該台形状の上底が周辺領域RE2の内周側に位置し、下底が周辺領域RE2の外周側に位置していてもよい。 The convex portion 191 may have a side surface that is inclined with respect to the outer periphery of the effective pixel region RE1 in plan view. The width of the convex portion 191 may be gradually narrowed from the outer periphery of the peripheral region RE2 toward the inner periphery of the peripheral region RE2 in plan view. Here, the width of the protrusion 191 refers to the dimension of the protrusion 191 in the direction perpendicular to the direction in which the protrusion 191 extends. For example, the convex portion 191 may have a triangular shape or a trapezoidal shape in a plan view, or may have a shape other than these. The triangular shape may be, for example, an isosceles triangle. When the convex portion 191 has a triangular shape in a plan view, even if one vertex of the triangular shape is located on the inner circumferential side of the peripheral region RE2 and the remaining two vertices are located on the outer peripheral side of the peripheral region RE2. good. When the convex portion 191 has a trapezoidal shape in plan view, the upper base of the trapezoid may be located on the inner peripheral side of the peripheral region RE2, and the lower base may be located on the outer peripheral side of the peripheral region RE2.
 変形例1に係る表示装置101では、周辺領域RE2の内周側における、隣接する凸部191の間の距離Dは、周辺領域RE2の外周側における、隣接する凸部191の間の距離Dより広くなっていている。これにより、有効画素領域RE1から周辺領域RE2に向かって流れる電流が、有効画素領域RE1の外周の周方向に隣接する凸部191の間の部分に流れ込みやすくなる。したがって、有効画素領域RE1の外周の周方向に隣接する凸部191の間の部分に良好な電流パス(キャリアパス)を形成することができる。 In the display device 101 according to the first modification, the distance D between adjacent convex portions 191 on the inner circumferential side of the peripheral region RE2 is smaller than the distance D between adjacent convex portions 191 on the outer circumferential side of the peripheral region RE2. It's getting wider. This makes it easier for the current flowing from the effective pixel region RE1 toward the peripheral region RE2 to flow into the portion between the protrusions 191 adjacent in the circumferential direction on the outer periphery of the effective pixel region RE1. Therefore, a good current path (carrier path) can be formed in the portion between the circumferentially adjacent convex portions 191 on the outer periphery of the effective pixel region RE1.
 第2の実施形態に係る表示装置102が、上記の変形例1にて説明された複数の凸部191と同様の構成を有する複数の凸部192aを有してもよい。第4、第5の実施形態に係る表示装置104、105が、上記の変形例1にて説明された複数の凸部191を有していてもよい。 The display device 102 according to the second embodiment may have a plurality of convex portions 192a having the same configuration as the plurality of convex portions 191 described in the first modification above. The display devices 104 and 105 according to the fourth and fifth embodiments may have the plurality of convex portions 191 described in the first modification example above.
(変形例2)
 上記の第1、第4、第5の実施形態では、コンタクト電極19が複数の構造体として複数の凸部191を第1面に有している例について説明したが、図13に示されるように、コンタクト電極19が複数の構造体として複数の凹部194を第1面に有していてもよいし、複数の構造体として複数の凸部191と複数の凹部194を有していてもよい。当該凹部194は、凸部191が反転された構造部である。
(Modification 2)
In the first, fourth, and fifth embodiments described above, an example has been described in which the contact electrode 19 has a plurality of convex portions 191 as a plurality of structures on the first surface, but as shown in FIG. In addition, the contact electrode 19 may have a plurality of concave portions 194 as a plurality of structures on the first surface, or may have a plurality of convex portions 191 and a plurality of concave portions 194 as a plurality of structures. . The concave portion 194 is a structural portion in which the convex portion 191 is inverted.
 上記の第2の実施形態では、コンタクト電極19が複数の構造体群として複数の凸部群192を第1面に有する例について説明したが、コンタクト電極19が複数の構造体群として複数の凹部群を第1面に有していてもよいし、複数の構造体群として複数の凸部群192と複数の凹部群とを第1面に有していてもよい。当該凹部群は、凸部群192が反転された構造群である。 In the second embodiment described above, an example has been described in which the contact electrode 19 has a plurality of convex portion groups 192 as a plurality of structure groups on the first surface. A group may be provided on the first surface, or a plurality of convex portion groups 192 and a plurality of concave portion groups may be provided on the first surface as a plurality of structure groups. The concave group is a structure group in which the convex group 192 is inverted.
 上記の第2の実施形態では、構造体群が複数の第1凸部192aと複数の第2凸部192bとを含む例について説明したが、構造体群が複数の第1凸部192aに代えて複数の第1凹部を含んでもよいし、構造体群が複数の第2凸部192bに代えて複数の第2凹部を含んでもよい。当該第1凹部は、第1凸部192aが反転された構造部であり、当該第2凹部は、第2凸部192bが反転された構造部である。 In the second embodiment described above, an example has been described in which the structure group includes a plurality of first convex portions 192a and a plurality of second convex portions 192b. Alternatively, the structure group may include a plurality of second recesses instead of the plurality of second protrusions 192b. The first concave portion is a structural portion in which the first convex portion 192a is inverted, and the second concave portion is a structural portion in which the second convex portion 192b is inverted.
 上記の第2の実施形態においては、構造体群が複数の第1構造体として複数の第1凸部192aを含む例について説明したが、構造体群が複数の第1構造体として複数の第1凸部192aと複数の第1凹部とを含んでもよい。当該第1凹部は、上記のように、第1凸部192aが反転された構造部である。 In the second embodiment described above, an example has been described in which the structure group includes a plurality of first protrusions 192a as a plurality of first structures. It may include one convex portion 192a and a plurality of first concave portions. As described above, the first concave portion is a structural portion in which the first convex portion 192a is inverted.
 上記の第2の実施形態では、構造体群が複数の第2構造体として複数の第2凸部192bを含む例について説明したが、構造体群が複数の第2構造体として複数の第2凸部192bと複数の第2凹部とを含んでもよい。当該第2凹部は、上記のように、第2凸部192bが反転された構造部である。 In the second embodiment described above, an example has been described in which the structure group includes a plurality of second convex portions 192b as a plurality of second structures. The convex portion 192b and a plurality of second concave portions may be included. As described above, the second concave portion is a structure obtained by inverting the second convex portion 192b.
 上記の第3の実施形態では、コンタクト電極19が複数の構造体群として凸部群193を第1面に有する例について説明したが、コンタクト電極19が複数の構造体群として複数の凹部群を第1面に有していてもよいし、複数の構造体群として複数の凸部群193と複数の凹部群とを第1面に有していてもよい。当該凹部群は、凸部群193が反転された構造群である。凹部群に含まれる複数の凹部の深さは、略同一であってもよいし、異なっていてもよい。 In the third embodiment described above, an example was described in which the contact electrode 19 has a plurality of convex groups 193 as a plurality of structure groups on the first surface, but the contact electrode 19 has a plurality of concave groups as a plurality of structure groups. It may be provided on the first surface, or a plurality of convex portion groups 193 and a plurality of recessed portion groups may be provided on the first surface as a plurality of structure groups. The concave portion group is a structure group in which the convex portion group 193 is inverted. The depths of the plurality of recesses included in the recess group may be substantially the same or may be different.
 上記の第3の実施形態では、構造体群が複数の凸部193aを含む例について説明したが、構造体群が複数の凸部193aと複数の凹部とを含んでもよい。当該凹部は、凸部193aが反転された構造部である。 In the third embodiment described above, an example in which the structure group includes a plurality of convex portions 193a has been described, but the structure group may also include a plurality of convex portions 193a and a plurality of concave portions. The concave portion is a structural portion in which the convex portion 193a is inverted.
(変形例3)
 上記の第3の実施形態では、複数の凸部群193が有効画素領域RE1の外周の周方向に間を離して配置されている例について説明したが、図14に示されるように、複数の凸部群193が2次元配置されていてもよい。具体的には、複数の凸部群193が有効画素領域RE1の外周の周方向に間を離して配置され、かつ、有効画素領域RE1から遠ざかる方向に間を離して配置されていてもよい。有効画素領域RE1の外周の周方向に隣接する凸部群193の間の距離D11は、一定であってもよいし、変化してもよい。有効画素領域RE1から遠ざかる方向に隣接する凸部群193の間の距離D12は、一定であってもよいし、変化してもよい。
(Modification 3)
In the third embodiment described above, an example has been described in which the plurality of convex portion groups 193 are arranged at intervals in the circumferential direction of the outer periphery of the effective pixel region RE1, but as shown in FIG. The convex portion group 193 may be arranged two-dimensionally. Specifically, the plurality of convex portion groups 193 may be arranged at intervals in the circumferential direction of the outer periphery of the effective pixel region RE1, and may be arranged at intervals in the direction moving away from the effective pixel region RE1. The distance D11 between the convex portion groups 193 adjacent in the circumferential direction of the outer periphery of the effective pixel region RE1 may be constant or may vary. The distance D12 between the protrusion group 193 adjacent in the direction away from the effective pixel area RE1 may be constant or may vary.
 有効画素領域RE1から遠ざかる方向に隣接する凸部群193の間の距離D12は、有効画素領域RE1から遠ざかる方向に隣接する凸部193aの間の距離D22に比べて大きいことが好ましい。これにより、有効画素領域RE1から遠ざかる方向に隣接する凸部群193の間の部分における電流の流れが、有効画素領域RE1から遠ざかる方向に隣接する凸部193aの間の部分における電流の流れに比べて良好になる。図14において、矢印34が、有効画素領域RE1から遠ざかる方向に隣接する凸部群193の間の部分に形成される電流パスのイメージを表している。 It is preferable that the distance D 12 between the protrusions 193 adjacent in the direction away from the effective pixel area RE1 is larger than the distance D 22 between the protrusions 193a adjacent in the direction away from the effective pixel area RE1. As a result, the current flow in the portion between the convex portion groups 193 adjacent in the direction away from the effective pixel region RE1 is compared to the current flow in the portion between the convex portions 193a adjacent in the direction away from the effective pixel region RE1. It gets better. In FIG. 14, an arrow 34 represents an image of a current path formed in a portion between adjacent convex portion groups 193 in a direction moving away from the effective pixel region RE1.
 有効画素領域RE1から遠ざかる方向に隣接する凸部群193の間の距離D12と、有効画素領域RE1から遠ざかる方向に隣接する凸部193aの間の距離D22は、有効画素領域RE1の外周の周方向における電流パスの確保の観点から、好ましくは1.5×D22≦D12、より好ましくは2×D22≦D12、さらにより好ましくは3×D22≦D12、4×D22≦D12、5×D22≦D12または6×D22≦D12である。有効画素領域RE1から遠ざかる方向に隣接する凸部群193の間の距離D12と、有効画素領域RE1から遠ざかる方向に隣接する凸部193aの間の距離D22は、カソード123の周縁部とコンタクト電極19の接触面積の低下を抑制する観点から、好ましくはD12≦10×D22である。 The distance D 12 between the protrusion groups 193 adjacent in the direction away from the effective pixel area RE1 and the distance D 22 between the protrusions 193a adjacent in the direction away from the effective pixel area RE1 are based on the outer circumference of the effective pixel area RE1. From the viewpoint of ensuring a current path in the circumferential direction, preferably 1.5×D 22 ≦D 12 , more preferably 2×D 22 ≦D 12 , even more preferably 3×D 22 ≦D 12 , 4×D 22 ≦D 12 , 5×D 22 ≦D 12 or 6×D 22 ≦D 12 . The distance D 12 between the protrusions 193 adjacent in the direction away from the effective pixel area RE1 and the distance D 22 between the protrusions 193a adjacent in the direction away from the effective pixel area RE1 are in contact with the peripheral edge of the cathode 123. From the viewpoint of suppressing a decrease in the contact area of the electrode 19, D 12 ≦10×D 22 is preferably satisfied.
(変形例4)
 上記の第3の実施形態において、周辺領域RE2の内周側に設けられた複数の凸部193aの高さは、図15に示されるように、周辺領域RE2の外周側に設けられた複数の凸部193aの高さに比べて低くなっていてもよい。より具体的には例えば、複数の凸部193aの高さは、周辺領域RE2の外周から周辺領域RE2の内周に向かって徐々に低くなってもよい。この場合、複数の凸部193aの段差によりカソード123の周縁部が切断されること、あるいは複数の凸部193aの段差によりカソード123の周縁部の厚みが薄くなることを抑制することができる。したがって、有効画素領域RE1から遠ざかる方向における電流パス(キャリアパス)を確保しやすくなる。
(Modification 4)
In the third embodiment described above, the height of the plurality of convex portions 193a provided on the inner circumferential side of the peripheral region RE2 is the same as that of the plurality of convex portions 193a provided on the outer circumferential side of the peripheral region RE2, as shown in FIG. The height may be lower than the height of the convex portion 193a. More specifically, for example, the height of the plurality of convex portions 193a may gradually decrease from the outer periphery of the peripheral region RE2 toward the inner periphery of the peripheral region RE2. In this case, it is possible to prevent the circumferential edge of the cathode 123 from being cut due to the step difference between the plurality of convex portions 193a or from becoming thinner at the circumferential edge portion of the cathode 123 due to the step difference between the plurality of convex portions 193a. Therefore, it becomes easier to ensure a current path (carrier path) in the direction away from the effective pixel area RE1.
 第2の実施形態において、複数の第1凸部192aおよび複数の第2凸部192bの高さが、上記の変形例4にて説明された複数の凸部193aと同様に変化していてもよい。 In the second embodiment, even if the heights of the plurality of first convex portions 192a and the plurality of second convex portions 192b change in the same way as the plurality of convex portions 193a described in the above modification 4, good.
 変形例2にて説明されたように、コンタクト電極19が複数の構造体群として複数の凹部群を第1面に有する場合には、周辺領域RE2の内周側に設けられた複数の凹部の深さは、周辺領域RE2の外周側に設けられた複数の凹部の深さに比べて浅くなっていてもよい。より具体的には例えば、複数の凹部の深さは、周辺領域RE2の外周から周辺領域RE2の内周に向かって徐々に浅くなっていてもよい。この場合、複数の凹部の段差によりカソード123の周縁部が切断されること、あるいは複数の凹部の段差によりカソード123の周縁部の電極厚みが薄くなることを抑制することができる。したがって、有効画素領域RE1から遠ざかる方向における電流パス(キャリアパス)を確保しやすくなる。 As explained in Modification 2, when the contact electrode 19 has a plurality of recess groups as a plurality of structure groups on the first surface, the recesses provided on the inner circumferential side of the peripheral region RE2. The depth may be shallower than the depth of the plurality of recesses provided on the outer circumferential side of the peripheral region RE2. More specifically, for example, the depth of the plurality of recesses may gradually become shallower from the outer periphery of the peripheral region RE2 toward the inner periphery of the peripheral region RE2. In this case, it is possible to prevent the peripheral edge of the cathode 123 from being cut due to the step difference between the plurality of recesses, or to prevent the electrode thickness at the peripheral edge of the cathode 123 from becoming thinner due to the step difference between the plurality of recesses. Therefore, it becomes easier to ensure a current path (carrier path) in the direction away from the effective pixel area RE1.
(変形例5)
 上記の第3の実施形態において、複数の凸部193aが、図16に示されるように、少なくとも1つの段差を有していてもよい。複数の凸部193aの高さは、同一であってもよいし、異なっていてもよい。周辺領域RE2の内周側に設けられた複数の凸部193aの段数は、周辺領域RE2の外周側に設けられた複数の凸部193aの段数に比べて多くなっていてもよい。これにより、周辺領域RE2の内周側に設けられた複数の凸部193aの段差を、周辺領域RE2の外周側に設けられた複数の凸部193aの段差に比べて小さくすることができる。したがって、複数の凸部193aの段差によりカソード123の周縁部が切断されること、あるいは複数の凸部193aの段差によりカソード123の周縁部の厚みが薄くなることを抑制することができる。したがって、有効画素領域RE1から遠ざかる方向における電流パス(キャリアパス)を確保しやすくなる。
(Modification 5)
In the third embodiment described above, the plurality of convex portions 193a may have at least one step, as shown in FIG. 16. The heights of the plurality of protrusions 193a may be the same or different. The number of stages of the plurality of protrusions 193a provided on the inner circumferential side of the peripheral region RE2 may be greater than the number of stages of the plurality of protrusions 193a provided on the outer circumferential side of the peripheral region RE2. Thereby, the step difference between the plurality of convex portions 193a provided on the inner circumferential side of the peripheral region RE2 can be made smaller than the step difference between the plurality of convex portions 193a provided on the outer circumferential side of the peripheral region RE2. Therefore, it is possible to prevent the peripheral edge of the cathode 123 from being cut due to the step difference between the plurality of convex portions 193a or from becoming thinner at the peripheral edge portion of the cathode 123 due to the step difference between the plurality of convex portions 193a. Therefore, it becomes easier to ensure a current path (carrier path) in the direction away from the effective pixel area RE1.
 複数の凸部193aの段数は、周辺領域RE2の外周から周辺領域RE2の内周に向かって徐々に増加してもよい。これにより、複数の凸部193aの段差を、周辺領域RE2の外周から周辺領域RE2の内周に向かって徐々に小さくすることができる。 The number of stages of the plurality of convex portions 193a may gradually increase from the outer periphery of the peripheral region RE2 toward the inner periphery of the peripheral region RE2. Thereby, the step difference between the plurality of convex portions 193a can be gradually reduced from the outer periphery of the peripheral region RE2 toward the inner periphery of the peripheral region RE2.
(変形例6)
 上記の第3の実施形態において、複数の凸部193aの側面の傾斜角θが、図17に示されるように、異なっていてもよい。周辺領域RE2の内周側に設けられた複数の凸部193aの側面の傾斜角θは、周辺領域RE2の外周側に設けられた複数の凸部193aの傾斜角θに比べて小さくなっていてもよい。より具体的には例えば、複数の凸部193aの傾斜角θは、周辺領域RE2の外周から周辺領域RE2の内周に向かって徐々に小さくなってもいてもよい。この場合、複数の凸部193aの側面によりカソード123の周縁部が切断されること、あるいは複数の凸部193aの側面によりカソード123の周縁部の厚みが薄くなることを抑制することができる。したがって、有効画素領域RE1から遠ざかる方向における電流パス(キャリアパス)を確保しやすくなる。
(Modification 6)
In the third embodiment described above, the inclination angles θ of the side surfaces of the plurality of convex portions 193a may be different, as shown in FIG. 17. The inclination angle θ of the side surface of the plurality of convex portions 193a provided on the inner circumferential side of the peripheral region RE2 is smaller than the inclination angle θ of the plurality of convex portions 193a provided on the outer circumferential side of the peripheral region RE2. Good too. More specifically, for example, the inclination angle θ of the plurality of convex portions 193a may gradually become smaller from the outer circumference of the peripheral region RE2 toward the inner circumference of the peripheral region RE2. In this case, it is possible to prevent the peripheral edge of the cathode 123 from being cut by the side surfaces of the plurality of protrusions 193a or to reduce the thickness of the peripheral edge of the cathode 123 due to the side surfaces of the plurality of protrusions 193a. Therefore, it becomes easier to ensure a current path (carrier path) in the direction away from the effective pixel area RE1.
 変形例2にて説明されたように、コンタクト電極19が複数の構造体群として複数の凹部群を第1面に有する場合には、複数の凹部の側面の傾斜角θが、異なっていてもよい。周辺領域RE2の内周側に設けられた複数の凹部の側面の傾斜角θは、周辺領域RE2の外周側に設けられた複数の凹部の傾斜角θに比べて小さくなっていてもよい。より具体的には例えば、複数の凹部の傾斜角θは、周辺領域RE2の外周から周辺領域RE2の内周に向かって徐々に小さくなってもいてもよい。 As explained in Modification 2, when the contact electrode 19 has a plurality of recess groups as a plurality of structure groups on the first surface, even if the inclination angles θ of the side surfaces of the plurality of recesses are different. good. The inclination angle θ of the side surfaces of the plurality of recesses provided on the inner circumferential side of the peripheral region RE2 may be smaller than the inclination angle θ of the plurality of recesses provided on the outer circumferential side of the peripheral region RE2. More specifically, for example, the inclination angle θ of the plurality of recesses may gradually become smaller from the outer periphery of the peripheral region RE2 toward the inner periphery of the peripheral region RE2.
(変形例7)
 上記の第1から第5の実施形態では、発光素子がOLED素子である例について説明したが、発光素子はこの例に限定されるものではなく、LED(Light Emitting Diode(発光ダイオード))、無機エレクトロルミネッセンス(Inorganic Electro-Luminescence:IEL)素子または半導体レーザー素子等の自発光型の発光素子等であってもよい。2種以上の発光素子が表示装置に備えられてもよい。
(Modification 7)
In the first to fifth embodiments described above, an example in which the light emitting element is an OLED element has been described, but the light emitting element is not limited to this example, and may be an LED (Light Emitting Diode), an inorganic A self-luminous light emitting element such as an electroluminescence (IEL) element or a semiconductor laser element may be used. A display device may be equipped with two or more types of light emitting elements.
(変形例8)
 上記の第1から第5の実施形態では、発光装置が表示装置である例について説明したが、発光装置は表示装置に限定されるものではなく、照明装置等であってもよい。
(Modification 8)
In the first to fifth embodiments described above, an example in which the light emitting device is a display device has been described, but the light emitting device is not limited to a display device, and may be a lighting device or the like.
(変形例9)
 上記の第4の実施形態では、第1の実施形態に係る表示装置101において、複数の発光素子12Wおよびカラーフィルタ15に代えて、複数の発光素子12R、12G、12Bが備えられる例について説明した。しかしながら、本開示はこの例に限定されるものではなく、例えば、第2、第3、第4の実施形態に係る表示装置102、103、104において、複数の発光素子12Wおよびカラーフィルタ15に代えて、複数の発光素子12R、12G、12Bが備えられてもよい。
(Modification 9)
In the fourth embodiment described above, an example was described in which the display device 101 according to the first embodiment includes a plurality of light emitting elements 12R, 12G, and 12B instead of the plurality of light emitting elements 12W and the color filter 15. . However, the present disclosure is not limited to this example, and for example, in the display devices 102, 103, and 104 according to the second, third, and fourth embodiments, the plurality of light emitting elements 12W and the color filter 15 may be replaced with Therefore, a plurality of light emitting elements 12R, 12G, and 12B may be provided.
(変形例10)
 上記の第1、第2、第3、第5の実施形態では、アノード121、カソード123がそれぞれ個別電極(第2電極)、共通電極(第1電極)であり、カソード123の周縁部がコンタクト電極19に接続される例について説明したが、アノード121、カソード123がそれぞれ共通電極(第1電極)、個別電極(第2電極)であり、アノード121の周縁部がコンタクト電極19に接続されてもよい。この場合、アノード121とカソード123の位置が入れ替えられてもよい。
(Modification 10)
In the first, second, third, and fifth embodiments described above, the anode 121 and the cathode 123 are an individual electrode (second electrode) and a common electrode (first electrode), respectively, and the peripheral portion of the cathode 123 is a contact. Although an example in which the anode 121 and the cathode 123 are connected to the electrode 19 has been described, the anode 121 and the cathode 123 are a common electrode (first electrode) and an individual electrode (second electrode), respectively, and the peripheral part of the anode 121 is connected to the contact electrode 19. Good too. In this case, the positions of the anode 121 and cathode 123 may be interchanged.
 上記の第4の実施形態では、アノード121、カソード126がそれぞれ個別電極(第3電極)、個別電極(第4電極)であり、複数のカソード126が共通電極124に接続されている例について説明したが、アノード121、カソード126がそれぞれ個別電極(第3電極)、個別電極(第4電極)であり、複数のアノード121が共通電極124に接続されていてもよい。この場合、アノード121とカソード126の位置が入れ替えられてもよい。 In the fourth embodiment described above, an example will be described in which the anode 121 and the cathode 126 are individual electrodes (third electrode) and individual electrodes (fourth electrode), respectively, and a plurality of cathodes 126 are connected to the common electrode 124. However, the anode 121 and the cathode 126 may be an individual electrode (third electrode) and an individual electrode (fourth electrode), respectively, and a plurality of anodes 121 may be connected to the common electrode 124. In this case, the positions of the anode 121 and cathode 126 may be interchanged.
(変形例11)
 上記の第2の実施形態では、第1凸部192aが第1の実施形態における凸部191と同様である例について説明したが、第1凸部192aが第1の実施形態における凸部191と同様でなくてもよい。例えば、第1凸部192aが、平面視においてドット状を有していてもよい。この場合、複数の第1凸部192aは、1次元配置されていてもよい、2次元配置されていてもよい。1次元配置の場合、複数の第1凸部192aは有効画素領域RE1の外周の周方向に間を離して並んでいてもよい。2次元配置の場合、複数の第1凸部192aは第3の実施形態における複数の凸部193aと同様の2次元配置であってもよい。
(Modification 11)
In the second embodiment described above, an example in which the first convex portion 192a is the same as the convex portion 191 in the first embodiment has been described, but the first convex portion 192a is the same as the convex portion 191 in the first embodiment. It doesn't have to be the same. For example, the first convex portion 192a may have a dot shape in plan view. In this case, the plurality of first convex portions 192a may be arranged one-dimensionally or two-dimensionally. In the case of one-dimensional arrangement, the plurality of first convex portions 192a may be spaced apart from each other and lined up in the circumferential direction of the outer periphery of the effective pixel region RE1. In the case of a two-dimensional arrangement, the plurality of first protrusions 192a may be arranged in a two-dimensional manner similar to the plurality of protrusions 193a in the third embodiment.
(変形例12)
 第4の実施形態において、表示装置104が、充填樹脂層16と、シール部17と、カバーガラス18とをさらに備えていてもよい。この場合、充填樹脂層16およびシール部17は、第2保護層22の第1面上に設けられていてもよい。
(Modification 12)
In the fourth embodiment, the display device 104 may further include a filled resin layer 16, a seal portion 17, and a cover glass 18. In this case, the filled resin layer 16 and the seal portion 17 may be provided on the first surface of the second protective layer 22.
(変形例13)
 第1、第2、第3、第5の実施形態では、カラーフィルタ15が備えられる例について説明したが、カラーフィルタ15に代えて量子ドット層が備えられてもよいし、カラーフィルタ15と共に量子ドット層が備えられてもよい。量子ドット層は、量子ドット(半導体粒子)を含み、複数の発光素子から出射された光の色を変換することができる。複数の発光素子としては、複数の発光素子20Wに代えて複数の発光素子20Bが備えられてもよい。
(Modification 13)
In the first, second, third, and fifth embodiments, examples in which the color filter 15 is provided have been described; however, a quantum dot layer may be provided in place of the color filter 15, or a quantum dot layer may be provided together with the color filter 15. A dot layer may also be provided. The quantum dot layer includes quantum dots (semiconductor particles) and can convert the color of light emitted from the plurality of light emitting elements. As the plurality of light emitting elements, a plurality of light emitting elements 20B may be provided instead of the plurality of light emitting elements 20W.
(その他の変形例)
 以上、本開示の第1から第5の実施形態およびそれらの変形例について具体的に説明したが、本開示は、上記の第1から第5の実施形態およびそれらの変形例に限定されるものではなく、本開示の技術的思想に基づく各種の変形が可能である。
(Other variations)
Although the first to fifth embodiments of the present disclosure and their modifications have been specifically described above, the present disclosure is limited to the first to fifth embodiments and their modifications. Rather, various modifications are possible based on the technical idea of the present disclosure.
 例えば、上記の第1から第5の実施形態およびそれらの変形例において挙げた構成、方法、工程、形状、材料および数値等はあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値等を用いてもよい。 For example, the configurations, methods, processes, shapes, materials, numerical values, etc. mentioned in the first to fifth embodiments and their modifications are merely examples, and different configurations, methods, Processes, shapes, materials, numerical values, etc. may also be used.
 上記の第1から第5の実施形態およびそれらの変形例の構成、方法、工程、形状、材料および数値等は、本開示の主旨を逸脱しない限り、互いに組み合わせることが可能である。 The configurations, methods, processes, shapes, materials, numerical values, etc. of the first to fifth embodiments and their modifications can be combined with each other without departing from the gist of the present disclosure.
 上記の第1から第5の実施形態およびそれらの変形例に例示した材料は、特に断らない限り、1種を単独でまたは2種以上を組み合わせて用いることができる。 Unless otherwise specified, the materials exemplified in the first to fifth embodiments and their modifications can be used alone or in combination of two or more.
 また、本開示は以下の構成を採用することもできる。
(1)
 発光領域に複数の発光素子を含む発光装置であって、
 前記発光領域の周辺に位置する周辺領域に設けられたコンタクト電極と、
 前記発光領域から前記周辺領域まで延設され、前記コンタクト電極に接続された第1電極と
 を備え、
 前記コンタクト電極は、前記第1電極が接続された部分に複数の第1構造体を有し、
 複数の前記第1構造体は、前記発光領域から遠ざかる方向に延設されている、
 発光装置。
(2)
 複数の前記第1構造体は、複数の第1凹部および複数の第1凸部の少なくとも一方を含む、
 (1)または(2)に記載の発光装置。
(3)
 前記コンタクト電極は、前記発光領域を囲むループ状を有している、
 (1)または(2)に記載の発光装置。
(4)
 前記発光領域から遠ざかる方向は、前記発光領域の外周に対して垂直な方向または前記発光領域の外周に対して斜めの方向である、
 (1)から(3)のいずれか1項に記載の発光装置。
(5)
 複数の前記第1構造体は、前記発光領域の外周の周方向に配置され、
 前記周辺領域の内周側における、隣接する前記第1構造体の間の距離は、前記周辺領域の外周側における、隣接する前記第1構造体の間の距離よりも広い、
 (1)から(4)のいずれか1項に記載の発光装置。
(6)
 前記コンタクト電極は、前記第1電極が接続された部分に複数の第2構造体をさらに有し、
 複数の前記第2構造体は、前記第1構造体の延設方向と略垂直な方向に延設され、
 複数の前記第1構造体は、複数の前記第2構造体よりも前記発光領域の近くに設けられている、
 (1)から(5)のいずれか1項に記載の発光装置。
(7)
 前記発光領域は、有効画素領域であり、
 前記第1電極は、カソードである、
 (1)から(6)のいずれか1項に記載の発光装置。
(8)
 前記発光領域に設けられた複数の第2電極と、
 複数の前記第2電極と前記第1電極の間に設けられた有機発光層と
 をさらに備える、
 (1)から(7)のいずれか1項に記載の発光装置。
(9)
 前記発光領域に設けられた複数の第3電極と、
 前記発光領域に設けられた複数の第4電極と、
 前記発光領域に設けられた複数の有機発光層と
 を備え、
 前記有機発光層は、前記第3電極と前記第4電極の間に設けられ、
 前記第1電極は、複数の前記第4電極に接続されている、
 (1)から(7)のいずれか1項に記載の発光装置。
(10)
 発光領域に複数の発光素子を含む発光装置であって、
 前記発光領域の周辺に位置する周辺領域に設けられたコンタクト電極と、
 前記発光領域から前記周辺領域まで延設され、前記コンタクト電極に接続された第1電極と
 を備え、
 前記コンタクト電極は、前記第1電極が接続された部分に複数の構造体群を有し、
 複数の前記構造体群は、少なくとも前記発光領域の外周の周方向に配置され、
 前記各構造体群は、複数の構造体を含み、
 前記周方向に隣接する前記構造体群の間は、離されている、
 発光装置。
(11)
 複数の前記構造体は、複数の凹部および複数の凸部の少なくとも一方を含む、
 (10)に記載の発光装置。
(12)
 前記周方向に隣接する前記構造体群の間の距離は、隣接する前記構造体の間の距離よりも大きい、
 (10)または(11)に記載の発光装置。
(13)
 複数の前記構造体は、前記周方向および前記周方向に対して略垂直な方向に2次元配置され、
 前記周方向に隣接する前記構造体群の間の距離は、前記周方向に隣接する前記構造体の間の距離よりも大きい、
 (10)または(11)に記載の発光装置。
(14)
 複数の前記構造体群は、前記周方向および前記周方向に略垂直な方向に2次元配置され、
 前記周方向に略垂直な方向に隣接する前記構造体群の間は、離されている、
 (10)または(11)に記載の発光装置。
(15)
 複数の前記構造体は、前記周方向および該周方向に対して略垂直な方向に2次元配置され、
 前記周方向に隣接する前記構造体群の間の距離は、前記周方向に隣接する前記構造体の間の距離よりも大きく、
 前記周方向に略垂直な方向に隣接する前記構造体群の間の距離は、前記周方向に略垂直な方向に隣接する前記構造体の間の距離よりも大きい、
 (14)に記載の発光装置。
(16)
 複数の前記構造体は、2次元配置され、
 複数の前記凹部は、前記周辺領域の外周から内周に向かって浅くなり、
 複数の前記凸部は、前記周辺領域の外周から内周に向かって低くなる、
 (11)に記載の発光装置。
(17)
 複数の前記構造体は、2次元配置され、
 複数の前記構造体は、少なくとも1つの段差を有し、
 複数の前記構造体の段数は、前記周辺領域の外周から内周に向かって増加する、
 (10)から(15)のいずれか1項に記載の発光装置。
(18)
 複数の前記構造体は、2次元配置され、
 複数の前記構造体の側面の傾斜角は、前記周辺領域の外周から内周に向かって小さくなる、
 (10)から(15)のいずれか1項に記載の発光装置。
(19)
 複数の前記構造体は、平面視においてドット状を有している、
 (10)から(18)のいずれか1項に記載の発光装置。
(20)
 (1)から(19)のいずれか1項に記載の発光装置を備える電子機器。
Further, the present disclosure can also adopt the following configuration.
(1)
A light emitting device including a plurality of light emitting elements in a light emitting region,
a contact electrode provided in a peripheral region located around the light emitting region;
a first electrode extending from the light emitting region to the peripheral region and connected to the contact electrode;
The contact electrode has a plurality of first structures in a portion connected to the first electrode,
The plurality of first structures extend in a direction away from the light emitting region,
Light emitting device.
(2)
The plurality of first structures include at least one of a plurality of first recesses and a plurality of first protrusions.
The light emitting device according to (1) or (2).
(3)
The contact electrode has a loop shape surrounding the light emitting region,
The light emitting device according to (1) or (2).
(4)
The direction away from the light emitting region is a direction perpendicular to the outer periphery of the light emitting region or a direction oblique to the outer periphery of the light emitting region.
The light emitting device according to any one of (1) to (3).
(5)
The plurality of first structures are arranged in a circumferential direction around the outer periphery of the light emitting region,
The distance between the adjacent first structures on the inner circumferential side of the peripheral area is wider than the distance between the adjacent first structures on the outer circumferential side of the peripheral area.
The light emitting device according to any one of (1) to (4).
(6)
The contact electrode further includes a plurality of second structures in a portion connected to the first electrode,
The plurality of second structures extend in a direction substantially perpendicular to the direction in which the first structures extend,
The plurality of first structures are provided closer to the light emitting region than the plurality of second structures,
The light emitting device according to any one of (1) to (5).
(7)
The light emitting area is an effective pixel area,
the first electrode is a cathode,
The light emitting device according to any one of (1) to (6).
(8)
a plurality of second electrodes provided in the light emitting region;
further comprising: an organic light emitting layer provided between the plurality of second electrodes and the first electrode;
The light emitting device according to any one of (1) to (7).
(9)
a plurality of third electrodes provided in the light emitting region;
a plurality of fourth electrodes provided in the light emitting region;
a plurality of organic light emitting layers provided in the light emitting region;
The organic light emitting layer is provided between the third electrode and the fourth electrode,
The first electrode is connected to the plurality of fourth electrodes,
The light emitting device according to any one of (1) to (7).
(10)
A light emitting device including a plurality of light emitting elements in a light emitting region,
a contact electrode provided in a peripheral region located around the light emitting region;
a first electrode extending from the light emitting region to the peripheral region and connected to the contact electrode;
The contact electrode has a plurality of structure groups in a portion connected to the first electrode,
The plurality of structure groups are arranged at least in the circumferential direction of the outer periphery of the light emitting region,
Each of the structure groups includes a plurality of structures,
The structures adjacent to each other in the circumferential direction are separated from each other,
Light emitting device.
(11)
The plurality of structures include at least one of a plurality of recesses and a plurality of protrusions.
The light emitting device according to (10).
(12)
The distance between the structure groups adjacent in the circumferential direction is greater than the distance between the adjacent structures,
The light emitting device according to (10) or (11).
(13)
The plurality of structures are two-dimensionally arranged in the circumferential direction and in a direction substantially perpendicular to the circumferential direction,
The distance between the structures adjacent in the circumferential direction is greater than the distance between the structures adjacent in the circumferential direction,
The light emitting device according to (10) or (11).
(14)
The plurality of structure groups are two-dimensionally arranged in the circumferential direction and in a direction substantially perpendicular to the circumferential direction,
The structure groups adjacent to each other in a direction substantially perpendicular to the circumferential direction are separated from each other,
The light emitting device according to (10) or (11).
(15)
The plurality of structures are two-dimensionally arranged in the circumferential direction and in a direction substantially perpendicular to the circumferential direction,
The distance between the structures adjacent in the circumferential direction is greater than the distance between the structures adjacent in the circumferential direction,
A distance between the structures adjacent in a direction substantially perpendicular to the circumferential direction is greater than a distance between the structures adjacent in a direction substantially perpendicular to the circumferential direction.
The light emitting device according to (14).
(16)
The plurality of structures are two-dimensionally arranged,
The plurality of recesses become shallower from the outer periphery toward the inner periphery of the peripheral region,
The plurality of convex portions become lower from the outer periphery toward the inner periphery of the peripheral region,
The light emitting device according to (11).
(17)
The plurality of structures are two-dimensionally arranged,
The plurality of structures have at least one step,
The number of stages of the plurality of structures increases from the outer periphery to the inner periphery of the peripheral area,
The light emitting device according to any one of (10) to (15).
(18)
The plurality of structures are two-dimensionally arranged,
The angle of inclination of the side surfaces of the plurality of structures decreases from the outer periphery toward the inner periphery of the peripheral region,
The light emitting device according to any one of (10) to (15).
(19)
The plurality of structures have a dot shape in plan view,
The light emitting device according to any one of (10) to (18).
(20)
An electronic device comprising the light emitting device according to any one of (1) to (19).
<9 発光部、レンズ部材、波長選択部のそれぞれの中心を通る法線の関係>
 以下、発光部の中心を通る法線LNと、レンズ部材の中心を通る法線LN’と、波長選択部の中心を通る法線LN”との関係を説明する。ここで、発光部は、例えば、発光素子12W、発光素子12R、発光素子12Gまたは発光素子12Bである。レンズ部材は、例えば、レンズアレイ24のレンズ241である。波長選択部は、例えば、フィルタ部15Fである。
<9 Relationship between normal lines passing through the centers of the light emitting section, lens member, and wavelength selection section>
The following describes the relationship between the normal LN passing through the center of the light emitting section, the normal LN' passing through the center of the lens member, and the normal LN'' passing through the center of the wavelength selection section. Here, the light emitting section is For example, they are the light emitting element 12W, the light emitting element 12R, the light emitting element 12G, or the light emitting element 12B.The lens member is, for example, the lens 241 of the lens array 24.The wavelength selection section is, for example, the filter section 15F.
 なお、発光部が出射する光に対応して、波長選択部の大きさを、適宜、変えてもよいし、隣接する発光部の波長選択部の間に光吸収部(例えば、ブラックマトリクス部)が設けられている場合、発光部が出射する光に対応して、光吸収部の大きさを、適宜、変えてもよい。また、波長選択部の大きさを、発光部の中心を通る法線と波長選択部の中心を通る法線との間の距離(オフセット量)dに応じて、適宜、変えてもよい。波長選択部の平面形状は、レンズ部材の平面形状と同じであってもよいし、相似であってもよいし、異なっていてもよい。 Note that the size of the wavelength selection section may be changed as appropriate depending on the light emitted by the light emitting section, or a light absorption section (for example, a black matrix section) may be provided between the wavelength selection sections of adjacent light emitting sections. is provided, the size of the light absorbing section may be changed as appropriate depending on the light emitted by the light emitting section. Further, the size of the wavelength selection section may be changed as appropriate depending on the distance (offset amount) d 0 between the normal line passing through the center of the light emitting section and the normal line passing through the center of the wavelength selection section. The planar shape of the wavelength selection section may be the same as, similar to, or different from the planar shape of the lens member.
 以下、図18A、図18B、図18C、図19を参照して、発光部51と、波長選択部52、レンズ部材53が、この順序で配置されている場合の各部の中心を通る法線の関係について説明する。 Hereinafter, with reference to FIGS. 18A, 18B, 18C, and 19, the normal line passing through the center of each part when the light emitting part 51, the wavelength selection part 52, and the lens member 53 are arranged in this order will be described. Explain the relationship.
 図18Aに示されるように、発光部51の中心を通る法線LNと、波長選択部52の中心を通る法線LN”と、レンズ部材53の中心を通る法線LN’とは、一致していてもよい。すなわち、D=0、d=0であってもよい。但し、Dは、発光部51の中心を通る法線LNとレンズ部材53の中心を通る法線LN’との間の距離(オフセット量)を表し、dは、発光部51の中心を通る法線LNと波長選択部52の中心を通る法線LN”との間の距離(オフセット量)を表す。 As shown in FIG. 18A, the normal line LN passing through the center of the light emitting section 51, the normal line LN'' passing through the center of the wavelength selection section 52, and the normal line LN' passing through the center of the lens member 53 coincide. In other words, D 0 =0, d 0 =0. However, D 0 is the normal line LN passing through the center of the light emitting part 51 and the normal line LN' passing through the center of the lens member 53. d0 represents the distance (offset amount) between the normal line LN passing through the center of the light emitting section 51 and the normal line LN'' passing through the center of the wavelength selection section 52. .
 図18Bに示されるように、発光部51の中心を通る法線LNと、波長選択部52の中心を通る法線LN”とは、一致しているが、発光部51の中心を通る法線LNおよび波長選択部52の中心を通る法線LN”と、レンズ部材53の中心を通る法線LN’とは、一致していない構成としてもよい。すなわち、D>0、d=0であってもよい。 As shown in FIG. 18B, the normal line LN passing through the center of the light emitting section 51 and the normal line LN'' passing through the center of the wavelength selection section 52 are the same, but the normal line passing through the center of the light emitting section 51 The normal line LN'' passing through the center of LN and the wavelength selection section 52 and the normal line LN' passing through the center of the lens member 53 may not match. That is, D 0 >0, d 0 =0 may be satisfied.
 図18Cに示されるように、発光部51の中心を通る法線LNと、波長選択部52の中心を通る法線LN”およびレンズ部材53の中心を通る法線LN’とは、一致しておらず、波長選択部52の中心を通る法線LN”と、レンズ部材53の中心を通る法線LN’とは、一致している構成としてもよい。すなわち、D>0、d>0、D=dであってもよい。 As shown in FIG. 18C, the normal LN passing through the center of the light emitting section 51, the normal LN'' passing through the center of the wavelength selection section 52, and the normal LN' passing through the center of the lens member 53 coincide. Instead, the normal line LN'' passing through the center of the wavelength selection section 52 and the normal line LN' passing through the center of the lens member 53 may be configured to match. That is, D 0 >0, d 0 >0, and D 0 =d 0 may be satisfied.
 図19に示されるように、発光部51の中心を通る法線LNと、波長選択部52の中心を通る法線LN”と、レンズ部材53の中心を通る法線LN’とがいずれも、一致していない構成としてもよい。すなわち、D>0、d>0、D≠dであってもよい。ここで、発光部51の中心とレンズ部材53の中心(図19において黒丸で示される位置)とを結ぶ直線LL上に、波長選択部52の中心(図19において黒四角で示される位置)が位置することが好ましい。具体的には、発光部51の中心と波長選択部52の中心との間の、厚さ方向(図19中、垂直方向)における距離をLL、波長選択部52の中心とレンズ部材53の中心との間の、厚さ方向における距離をLLとしたとき、
  D>d>0
であり、製造上のバラツキを考慮した上で、
  d:D=LL:(LL+LL
を満足することが好ましい。
 ここで、厚さ方向とは、発光部51、波長選択部52、レンズ部材53の厚さ方向を表す。
As shown in FIG. 19, the normal LN passing through the center of the light emitting section 51, the normal LN'' passing through the center of the wavelength selection section 52, and the normal LN' passing through the center of the lens member 53 are all In other words, D 0 >0, d 0 >0, and D 0 ≠d 0 may be configured. Here, the center of the light emitting section 51 and the center of the lens member 53 (in FIG. 19 It is preferable that the center of the wavelength selection section 52 (the position indicated by a black square in FIG. 19) be located on the straight line LL connecting the center of the light emitting section 51 and the wavelength The distance in the thickness direction (vertical direction in FIG. 19) between the center of the selection part 52 is LL 1 , and the distance in the thickness direction between the center of the wavelength selection part 52 and the center of the lens member 53 is When set to LL 2 ,
D 0 >d 0 >0
After taking into account manufacturing variations,
d 0 :D 0 =LL 1 :(LL 1 +LL 2 )
It is preferable to satisfy the following.
Here, the thickness direction refers to the thickness direction of the light emitting section 51, the wavelength selection section 52, and the lens member 53.
 以下、図20A、図20B、図21を参照して、発光部51と、レンズ部材53、波長選択部52が、この順序で配置されている場合の各部の中心を通る法線の関係について説明する。 Hereinafter, with reference to FIGS. 20A, 20B, and 21, the relationship between the normal lines passing through the center of each part when the light emitting part 51, the lens member 53, and the wavelength selection part 52 are arranged in this order will be explained. do.
 図20Aに示されるように、発光部51の中心を通る法線LNと、波長選択部52の中心を通る法線LN”と、レンズ部材53の中心を通る法線LN’とは、一致している構成としてもよい。すなわち、D>0、d=0であってもよい。 As shown in FIG. 20A, the normal LN passing through the center of the light emitting section 51, the normal LN'' passing through the center of the wavelength selection section 52, and the normal LN' passing through the center of the lens member 53 coincide. In other words, D 0 >0 and d 0 =0 may be used.
 図20Bに示されるように、発光部51の中心を通る法線LNと、波長選択部52の中心を通る法線LN”およびレンズ部材53の中心を通る法線LN’とは、一致しておらず、波長選択部52の中心を通る法線LN”と、レンズ部材53の中心を通る法線LN’とは、一致している構成としてもよい。すなわち、D>0、d>0、D=dであってもよい。 As shown in FIG. 20B, the normal LN passing through the center of the light emitting section 51, the normal LN'' passing through the center of the wavelength selection section 52, and the normal LN' passing through the center of the lens member 53 are coincident with each other. Instead, the normal line LN'' passing through the center of the wavelength selection section 52 and the normal line LN' passing through the center of the lens member 53 may be configured to match. That is, D 0 >0, d 0 >0, and D 0 =d 0 may be satisfied.
 図21に示されるように、発光部51の中心を通る法線LNと、波長選択部52の中心を通る法線LN”と、レンズ部材53の中心を通る法線LN’とがいずれも、一致していない構成としてもよい。ここで、発光部51の中心と波長選択部52の中心(図21において黒四角で示される位置)とを結ぶ直線LL上に、レンズ部材53の中心(図21において黒丸で示される位置)が位置することが好ましい。具体的には、発光部51の中心とレンズ部材53の中心との間の、厚さ方向(図21中、垂直方向)における距離をLL、レンズ部材53の中心と波長選択部52の中心との間の、厚さ方向における距離をLLとしたとき、
  d>D>0
であり、製造上のバラツキを考慮した上で、
  D:d=LL:(LL+LL
を満足することが好ましい。
 ここで、厚さ方向とは、発光部51、波長選択部52、レンズ部材53の厚さ方向を表す。
As shown in FIG. 21, the normal LN passing through the center of the light emitting section 51, the normal LN'' passing through the center of the wavelength selection section 52, and the normal LN' passing through the center of the lens member 53 are all The center of the lens member 53 (the position indicated by the black square in FIG. 21) is preferably located.Specifically, the distance between the center of the light emitting part 51 and the center of the lens member 53 in the thickness direction (in the vertical direction in FIG. 21) is preferably located. LL2 , when the distance in the thickness direction between the center of the lens member 53 and the center of the wavelength selection section 52 is LL1 ,
d 0 >D 0 >0
After taking into account manufacturing variations,
D 0 :d 0 =LL 2 :(LL 1 +LL 2 )
It is preferable to satisfy the following.
Here, the thickness direction refers to the thickness direction of the light emitting section 51, the wavelength selection section 52, and the lens member 53.
<10 共振器構造の例>
 上述した本開示に係る表示装置に用いられる画素は、発光素子で発生した光を共振させる共振器構造を備えている構成とすることができる。以下、図面を参照しながら、共振器構造について説明する。また、以下の説明において、各層の第1面を上面ということがある。
<10 Example of resonator structure>
A pixel used in the display device according to the present disclosure described above can be configured to include a resonator structure that resonates light generated by a light emitting element. Hereinafter, the resonator structure will be explained with reference to the drawings. Furthermore, in the following description, the first surface of each layer may be referred to as an upper surface.
(共振器構造:第1例)
 図22Aは、共振器構造の第1例を説明するための模式的な断面図である。以下の説明において、副画素10R、10G、10Bにそれぞれに対応して設けられた発光素子を特に区別せず総称する場合には、発光素子12ということがある。副画素10R、10G、10Bにそれぞれに対応して設けられた発光素子を区別する場合には、発光素子12、12、12ということがある。OLED層122のうち副画素10R、10G、10Bにそれぞれに対応する部分を、OLED層122、OLED層122、OLED層122ということがある。アノード121、カソード123をそれぞれ第1電極121、第2電極123ということがある。発光素子は、第1、第2、第3、第5の実施形態における発光素子12Wであってもよいし、第4の実施形態における発光素子12R、12G、12Bであってもよい。
(Resonator structure: 1st example)
FIG. 22A is a schematic cross-sectional view for explaining a first example of the resonator structure. In the following description, when the light emitting elements provided corresponding to the subpixels 10R, 10G, and 10B are collectively referred to without particular distinction, they may be referred to as the light emitting elements 12. When distinguishing the light emitting elements provided corresponding to the subpixels 10R, 10G, and 10B, they may be referred to as light emitting elements 12R , 12G , and 12B . Portions of the OLED layer 122 corresponding to the subpixels 10R, 10G, and 10B are sometimes referred to as an OLED layer 122R , an OLED layer 122G , and an OLED layer 122B . The anode 121 and cathode 123 may be referred to as a first electrode 121 and a second electrode 123, respectively. The light emitting element may be the light emitting element 12W in the first, second, third, or fifth embodiment, or may be the light emitting element 12R, 12G, or 12B in the fourth embodiment.
 第1例において、第1電極121は各発光素子12において共通の膜厚で形成されている。第2電極123においても同様である。 In the first example, the first electrode 121 is formed to have a common thickness in each light emitting element 12. The same applies to the second electrode 123.
 発光素子12の第1電極121の下に、光学調整層72を挟んだ状態で、反射板71が配されている。反射板71と第2電極123との間にOLED層122が発生する光を共振させる共振器構造が形成される。以下の説明において、副画素10R、10G、10Bにそれぞれに対応して設けられた光学調整層72を、光学調整層72、72、72ということがある。 A reflective plate 71 is disposed below the first electrode 121 of the light emitting element 12 with an optical adjustment layer 72 sandwiched therebetween. A resonator structure is formed between the reflection plate 71 and the second electrode 123 to resonate the light generated by the OLED layer 122. In the following description, the optical adjustment layers 72 provided corresponding to the sub-pixels 10R, 10G, and 10B may be referred to as optical adjustment layers 72R , 72G , and 72B .
 反射板71は各発光素子12において共通の膜厚で形成されている。光学調整層72の膜厚は、画素が表示すべき色に応じて異なっている。光学調整層72、72、72が異なる膜厚を有することにより、表示すべき色に応じた光の波長に最適な共振を生ずる光学的距離を設定することができる。 The reflecting plate 71 is formed to have a common thickness in each light emitting element 12. The thickness of the optical adjustment layer 72 varies depending on the color that the pixel should display. By having the optical adjustment layers 72R , 72G , and 72B having different thicknesses, it is possible to set an optical distance that produces optimal resonance for the wavelength of light corresponding to the color to be displayed.
 図22Aに示す例では、発光素子12、12、12における反射板71の上面は揃うように配置されている。上述したように、光学調整層72の膜厚は、画素が表示すべき色に応じて異なっているので、第2電極123の上面の位置は、発光素子12、12、12の種類に応じて相違する。 In the example shown in FIG. 22A, the upper surfaces of the reflecting plates 71 in the light emitting elements 12 R , 12 G , and 12 B are arranged so as to be aligned. As described above, the thickness of the optical adjustment layer 72 differs depending on the color to be displayed by the pixel, so the position of the upper surface of the second electrode 123 depends on the type of light emitting elements 12 R , 12 G , 12 B. It differs depending on the
 反射板71は、例えば、アルミニウム(Al)、銀(Ag)、銅(Cu)等の金属、あるいは、これらを主成分とする合金を用いて形成することができる。 The reflective plate 71 can be formed using, for example, metals such as aluminum (Al), silver (Ag), copper (Cu), or alloys containing these as main components.
 光学調整層72は、シリコン窒化物(SiN)、シリコン酸化物(SiO)、シリコン酸窒化物(SiO)等の無機絶縁材料や、アクリル系樹脂やポリイミド系樹脂等といった有機樹脂材料を用いて構成することができる。光学調整層72は単層でも良いし、これら複数の材料の積層膜であってもよい。また、発光素子12の種類に応じて積層数が異なっても良い。 The optical adjustment layer 72 is made of an inorganic insulating material such as silicon nitride (SiN x ), silicon oxide (SiO x ), silicon oxynitride (SiO x N y ), or an organic resin such as acrylic resin or polyimide resin. It can be constructed using materials. The optical adjustment layer 72 may be a single layer or may be a laminated film of a plurality of these materials. Further, the number of laminated layers may differ depending on the type of light emitting element 12.
 第1電極121は、インジウムスズ酸化物(ITO)やインジウム亜鉛酸化物(IZO)、亜鉛酸化物(ZnO)等の透明導電材料を用いて形成することができる。 The first electrode 121 can be formed using a transparent conductive material such as indium tin oxide (ITO), indium zinc oxide (IZO), or zinc oxide (ZnO).
 第2電極123は、半透過反射膜として機能する必要がある。第2電極123は、マグネシウム(Mg)や銀(Ag)、またはこれらを主成分とするマグネシウム銀合金(MgAg)、さらには、アルカリ金属やアルカリ土類金属を含んだ合金等を用いて形成することができる。 The second electrode 123 needs to function as a semi-transparent reflective film. The second electrode 123 is formed using magnesium (Mg), silver (Ag), a magnesium silver alloy (MgAg) containing these as main components, or an alloy containing an alkali metal or alkaline earth metal. be able to.
(共振器構造:第2例)
 図22Bは、共振器構造の第2例を説明するための模式的な断面図である。
(Resonator structure: second example)
FIG. 22B is a schematic cross-sectional view for explaining a second example of the resonator structure.
 第2例においても、第1電極121や第2電極123は各発光素子12において共通の膜厚で形成されている。 In the second example as well, the first electrode 121 and the second electrode 123 are formed with a common thickness in each light emitting element 12.
 そして、第2例においても、発光素子12の第1電極121の下に、光学調整層72を挟んだ状態で、反射板71が配される。反射板71と第2電極123との間にOLED層122が発生する光を共振させる共振器構造が形成される。第1例と同様に、反射板71は各発光素子12において共通の膜厚で形成されており、光学調整層72の膜厚は、画素が表示すべき色に応じて異なっている。 In the second example as well, the reflective plate 71 is arranged under the first electrode 121 of the light emitting element 12 with the optical adjustment layer 72 sandwiched therebetween. A resonator structure is formed between the reflective plate 71 and the second electrode 123 to resonate the light generated by the OLED layer 122. Similar to the first example, the reflective plate 71 is formed to have a common thickness in each light emitting element 12, and the thickness of the optical adjustment layer 72 differs depending on the color to be displayed by the pixel.
 図22Aに示す第1例においては、発光素子12、12、12における反射板71の上面は揃うように配置され、第2電極123の上面の位置は、発光素子12、12、12の種類に応じて相違していた。 In the first example shown in FIG. 22A, the upper surfaces of the reflective plates 71 in the light emitting elements 12 R , 12 G , and 12 B are arranged so as to be aligned, and the upper surfaces of the second electrodes 123 are located in the same position as in the light emitting elements 12 R , 12 G . , 12 differed depending on the type of B.
 これに対し、図22Bに示す第2例において、第2電極123の上面は、発光素子12、12、12で揃うように配置されている。第2電極123の上面を揃えるために、発光素子12、12、12において反射板71の上面は、発光素子12、12、12の種類に応じて異なるように配置されている。このため、反射板71の下面(換言すれば、下地層(絶縁層)73の上面)は、発光素子12の種類に応じた階段形状となる。 On the other hand, in the second example shown in FIG. 22B, the upper surfaces of the second electrode 123 are arranged so that the upper surfaces of the light emitting elements 12 R , 12 G , and 12 B are aligned. In order to align the upper surfaces of the second electrodes 123, the upper surfaces of the reflectors 71 in the light emitting elements 12 R , 12 G , and 12 B are arranged differently depending on the type of the light emitting elements 12 R , 12 G , and 12 B. There is. Therefore, the lower surface of the reflecting plate 71 (in other words, the upper surface of the base layer (insulating layer) 73) has a stepped shape depending on the type of the light emitting element 12.
 反射板71、光学調整層72、第1電極121および第2電極123を構成する材料等については、第1例において説明した内容と同様であるので、説明を省略する。 The materials constituting the reflecting plate 71, the optical adjustment layer 72, the first electrode 121, and the second electrode 123 are the same as those described in the first example, so their explanation will be omitted.
(共振器構造:第3例)
 図23Aは、共振器構造の第3例を説明するための模式的な断面図である。以下の説明において、副画素10R、10G、10Bにそれぞれに対応して設けられた反射板71を、反射板71、71、71ということがある。
(Resonator structure: 3rd example)
FIG. 23A is a schematic cross-sectional view for explaining a third example of the resonator structure. In the following description, the reflection plates 71 provided corresponding to the sub-pixels 10R, 10G, and 10B may be referred to as reflection plates 71R , 71G , and 71B .
 第3例においても、第1電極121や第2電極123は各発光素子12において共通の膜厚で形成されている。 In the third example as well, the first electrode 121 and the second electrode 123 are formed with a common thickness in each light emitting element 12.
 そして、第3例においても、発光素子12の第1電極121の下に、光学調整層72を挟んだ状態で、反射板71が配される。反射板71と第2電極123との間に、OLED層122が発生する光を共振させる共振器構造が形成される。第1例や第2例と同様に、光学調整層72の膜厚は、画素が表示すべき色に応じて異なっている。そして、第2例と同様に、第2電極123の上面の位置は、発光素子12、12、12で揃うように配置されている。 Also in the third example, the reflective plate 71 is disposed below the first electrode 121 of the light emitting element 12 with the optical adjustment layer 72 sandwiched therebetween. A resonator structure that resonates light generated by the OLED layer 122 is formed between the reflection plate 71 and the second electrode 123. Similar to the first and second examples, the thickness of the optical adjustment layer 72 differs depending on the color that the pixel should display. As in the second example, the positions of the upper surfaces of the second electrodes 123 are arranged to be aligned with the light emitting elements 12 R , 12 G , and 12 B.
 図22Bに示す第2例にあっては、第2電極123の上面を揃えるために、反射板71の下面は、発光素子12の種類に応じた階段形状であった。 In the second example shown in FIG. 22B, in order to align the upper surfaces of the second electrodes 123, the lower surface of the reflection plate 71 had a stepped shape depending on the type of light emitting element 12.
 これに対し、図23Aに示す第3例において、反射板71の膜厚は、発光素子12、12、12の種類に応じて異なるように設定されている。より具体的には、反射板71、71、71の下面が揃うように膜厚が設定されている。 On the other hand, in the third example shown in FIG. 23A, the film thickness of the reflection plate 71 is set to be different depending on the type of the light emitting elements 12 R , 12 G , and 12 B. More specifically, the film thickness is set so that the lower surfaces of the reflecting plates 71 R , 71 G , and 71 B are aligned.
 反射板71、光学調整層72、第1電極121および第2電極123を構成する材料等については、第1例において説明した内容と同様であるので、説明を省略する。 The materials constituting the reflecting plate 71, the optical adjustment layer 72, the first electrode 121, and the second electrode 123 are the same as those described in the first example, so their explanation will be omitted.
(共振器構造:第4例)
 図23Bは、共振器構造の第4例を説明するための模式的な断面図である。以下の説明において、副画素10R、10G、10Bにそれぞれに対応して設けられた第1電極121を、第1電極121、121、121ということがある。
(Resonator structure: 4th example)
FIG. 23B is a schematic cross-sectional view for explaining a fourth example of the resonator structure. In the following description, the first electrodes 121 provided corresponding to the subpixels 10R, 10G, and 10B may be referred to as first electrodes 121R , 121G , and 121B .
 図22Aに示す第1例において、各発光素子12の第1電極121や第2電極123は、共通の膜厚で形成されている。そして、発光素子12の第1電極121の下に、光学調整層72を挟んだ状態で、反射板71が配されている。 In the first example shown in FIG. 22A, the first electrode 121 and second electrode 123 of each light emitting element 12 are formed with a common thickness. A reflective plate 71 is disposed below the first electrode 121 of the light emitting element 12 with the optical adjustment layer 72 sandwiched therebetween.
 これに対し、図23Bに示す第4例では、光学調整層72を省略し、第1電極121の膜厚を、発光素子12、12、12の種類に応じて異なるように設定した。 On the other hand, in the fourth example shown in FIG. 23B, the optical adjustment layer 72 is omitted, and the film thickness of the first electrode 121 is set to be different depending on the types of the light emitting elements 12 R , 12 G , and 12 B. .
 反射板71は各発光素子12において共通の膜厚で形成されている。第1電極121の膜厚は、画素が表示すべき色に応じて異なっている。第1電極121、121、121が異なる膜厚を有することにより、表示すべき色に応じた光の波長に最適な共振を生ずる光学的距離を設定することができる。 The reflecting plate 71 is formed to have a common thickness in each light emitting element 12. The thickness of the first electrode 121 varies depending on the color that the pixel should display. By having the first electrodes 121 R , 121 G , and 121 B having different thicknesses, it is possible to set an optical distance that produces optimum resonance for the wavelength of light corresponding to the color to be displayed.
 反射板71、光学調整層72、第1電極121および第2電極123を構成する材料等については、第1例において説明した内容と同様であるので、説明を省略する。 The materials constituting the reflecting plate 71, the optical adjustment layer 72, the first electrode 121, and the second electrode 123 are the same as those described in the first example, so their explanation will be omitted.
(共振器構造:第5例)
 図24Aは、共振器構造の第5例を説明するための模式的な断面図である。
(Resonator structure: 5th example)
FIG. 24A is a schematic cross-sectional view for explaining a fifth example of the resonator structure.
 図22Aに示す第1例において、第1電極121や第2電極123は各発光素子12において共通の膜厚で形成されている。そして、発光素子12の第1電極121の下に、光学調整層72を挟んだ状態で、反射板71が配されている。 In the first example shown in FIG. 22A, the first electrode 121 and the second electrode 123 are formed with a common thickness in each light emitting element 12. A reflective plate 71 is disposed below the first electrode 121 of the light emitting element 12 with the optical adjustment layer 72 sandwiched therebetween.
 これに対し、図24Aに示す第5例にあっては、光学調整層72を省略し、代わりに、反射板71の表面に酸化膜74を形成した。酸化膜74の膜厚は、発光素子12、12、12の種類に応じて異なるように設定した。以下の説明において、副画素10R、10G、10Bにそれぞれに対応して設けられた酸化膜74を、酸化膜74、74、74ということがある。 On the other hand, in the fifth example shown in FIG. 24A, the optical adjustment layer 72 is omitted, and an oxide film 74 is formed on the surface of the reflection plate 71 instead. The thickness of the oxide film 74 was set to be different depending on the type of the light emitting elements 12 R , 12 G , and 12 B. In the following description, the oxide films 74 provided corresponding to the sub-pixels 10R, 10G, and 10B may be referred to as oxide films 74R , 74G , and 74B .
 酸化膜74の膜厚は、画素が表示すべき色に応じて異なっている。酸化膜74、74、74が異なる膜厚を有することにより、表示すべき色に応じた光の波長に最適な共振を生ずる光学的距離を設定することができる。 The thickness of the oxide film 74 varies depending on the color that the pixel should display. By having the oxide films 74 R , 74 G , and 74 B having different thicknesses, it is possible to set an optical distance that produces optimum resonance for the wavelength of light corresponding to the color to be displayed.
 酸化膜74は、反射板71の表面を酸化した膜であって、例えば、アルミニウム酸化物、タンタル酸化物、チタン酸化物、マグネシウム酸化物、ジルコニウム酸化物等から構成される。酸化膜74は、反射板71と第2電極123との間の光路長(光学的距離)を調整するための絶縁膜として機能する。 The oxide film 74 is a film obtained by oxidizing the surface of the reflecting plate 71, and is made of, for example, aluminum oxide, tantalum oxide, titanium oxide, magnesium oxide, zirconium oxide, or the like. The oxide film 74 functions as an insulating film for adjusting the optical path length (optical distance) between the reflection plate 71 and the second electrode 123.
 発光素子12、12、12の種類に応じて膜厚が異なる酸化膜74は、例えば、以下のようにして形成することができる。 The oxide film 74, which has a different thickness depending on the type of the light emitting elements 12R , 12G , and 12B , can be formed, for example, as follows.
 先ず、容器の中に電解液を充填し、反射板71が形成された基板を電解液の中に浸漬する。また、反射板71と対向するように電極を配置する。 First, a container is filled with an electrolytic solution, and the substrate on which the reflective plate 71 is formed is immersed in the electrolytic solution. Further, electrodes are arranged so as to face the reflection plate 71.
 そして、電極を基準として正電圧を反射板71に印加して、反射板71を陽極酸化する。陽極酸化による酸化膜の膜厚は、電極に対する電圧値に比例する。そこで、反射板71、71、71のそれぞれに発光素子12の種類に応じた電圧を印加した状態で陽極酸化を行う。これによって、膜厚の異なる酸化膜74を一括して形成することができる。 Then, a positive voltage is applied to the reflective plate 71 using the electrode as a reference, and the reflective plate 71 is anodized. The thickness of the oxide film formed by anodic oxidation is proportional to the voltage value applied to the electrode. Therefore, anodic oxidation is performed while applying a voltage depending on the type of light emitting element 12 to each of the reflecting plates 71 R , 71 G , and 71 B. Thereby, oxide films 74 having different thicknesses can be formed all at once.
 反射板71、第1電極121および第2電極123を構成する材料等については、第1例において説明した内容と同様であるので、説明を省略する。 The materials constituting the reflecting plate 71, the first electrode 121, and the second electrode 123 are the same as those described in the first example, so the description thereof will be omitted.
(共振器構造:第6例)
 図24Bは、共振器構造の第6例を説明するための模式的な断面図である。
(Resonator structure: 6th example)
FIG. 24B is a schematic cross-sectional view for explaining a sixth example of the resonator structure.
 第6例において、発光素子12は、第1電極121とOLED層122と第2電極123とが積層されて構成されている。但し、第6例において、第1電極121は、電極と反射板の機能を兼ねるように形成されている。第1電極(兼反射板)121は、発光素子12、12、12の種類に応じて選択された光学定数を有する材料によって形成されている。第1電極(兼反射板)121による位相シフトが異なることによって、表示すべき色に応じた光の波長に最適な共振を生ずる光学的距離を設定することができる。 In the sixth example, the light emitting element 12 is configured by laminating a first electrode 121, an OLED layer 122, and a second electrode 123. However, in the sixth example, the first electrode 121 is formed to serve both as an electrode and a reflector. The first electrode (also serving as a reflection plate) 121 is made of a material having optical constants selected depending on the types of the light emitting elements 12 R , 12 G , and 12 B. By varying the phase shift caused by the first electrode (also serving as a reflecting plate) 121, it is possible to set an optical distance that produces optimum resonance for the wavelength of light corresponding to the color to be displayed.
 第1電極(兼反射板)121は、アルミニウム(Al)、銀(Ag)、金(Au)、銅(Cu)等の単体金属や、これらを主成分とする合金から構成することができる。例えば、発光素子12の第1電極(兼反射板)121を銅(Cu)で形成し、発光素子12の第1電極(兼反射板)121と発光素子12の第1電極(兼反射板)121とをアルミニウムで形成するといった構成とすることができる。 The first electrode (also serving as a reflection plate) 121 can be made of a single metal such as aluminum (Al), silver (Ag), gold (Au), or copper (Cu), or an alloy containing these as main components. For example, the first electrode (cum-reflector) 121R of the light-emitting element 12R is formed of copper (Cu), and the first electrode (cum-reflector) 121G of the light - emitting element 12G and the first electrode of the light-emitting element 12B are formed of copper (Cu). (also serving as a reflection plate) 121B may be formed of aluminum.
 第2電極123を構成する材料等については、第1例において説明した内容と同様であるので、説明を省略する。 The materials constituting the second electrode 123 are the same as those described in the first example, so their description will be omitted.
(共振器構造:第7例)
 図25は、共振器構造の第7例を説明するための模式的な断面図である。
(Resonator structure: 7th example)
FIG. 25 is a schematic cross-sectional view for explaining a seventh example of the resonator structure.
 第7例は、基本的には、発光素子12、12については第6例を適用し、発光素子12については第1例を適用したといった構成である。この構成においても、表示すべき色に応じた光の波長に最適な共振を生ずる光学的距離を設定することができる。 The seventh example basically has a configuration in which the sixth example is applied to the light emitting elements 12 R and 12 G , and the first example is applied to the light emitting element 12 B. Also in this configuration, it is possible to set an optical distance that produces optimum resonance for the wavelength of light corresponding to the color to be displayed.
 発光素子12、12に用いられる第1電極(兼反射板)121、121は、アルミニウム(Al)、銀(Ag)、金(Au)、銅(Cu)等の単体金属や、これらを主成分とする合金から構成することができる。 The first electrodes (cum-reflection plates) 121 R and 121 G used in the light emitting elements 12 R and 12 G are made of a simple metal such as aluminum (Al), silver (Ag), gold (Au), copper (Cu), It can be constructed from an alloy containing these as main components.
 発光素子12に用いられる、反射板71、光学調整層72および第1電極121を構成する材料等については、第1例において説明した内容と同様であるので、説明を省略する。 The materials and the like constituting the reflecting plate 71 B , the optical adjustment layer 72 B , and the first electrode 121 B used in the light emitting element 12 B are the same as those described in the first example, so the description thereof will be omitted.
<11 応用例>
(電子機器)
 上記の第1から第5の実施形態およびそれらの変形例に係る表示装置101、102、103、104、105(以下「表示装置101等」という。)は、各種の電子機器に備えられてもよい。表示装置101等は、特にヘッドマウント型ディスプレイ等のアイウェアデバイス、またはビデオカメラもしくは一眼レフカメラの電子ビューファインダ等の高解像度が要求され、目の近くで拡大して使用されるものに適する。
<11 Application examples>
(Electronics)
The display devices 101, 102, 103, 104, and 105 (hereinafter referred to as "display devices 101, etc.") according to the first to fifth embodiments and their modifications may be included in various electronic devices. good. The display device 101 and the like are particularly suitable for eyewear devices such as head-mounted displays, or electronic viewfinders of video cameras or single-lens reflex cameras, which require high resolution and are used close to the eyes with magnification.
(具体例1)
 図26A、図26Bは、デジタルスチルカメラ310の外観の一例を示す。このデジタルスチルカメラ310は、レンズ交換式一眼レフレックスタイプのものであり、カメラ本体部(カメラボディ)311の正面略中央に交換式の撮影レンズユニット(交換レンズ)312を有し、正面左側に撮影者が把持するためのグリップ部313を有している。
(Specific example 1)
26A and 26B show an example of the appearance of the digital still camera 310. This digital still camera 310 is a single-lens reflex type with interchangeable lenses, and has an interchangeable photographic lens unit (interchangeable lens) 312 approximately in the center of the front of a camera body 311, and on the left side of the front. It has a grip part 313 for the photographer to hold.
 カメラ本体部311の背面中央から左側にずれた位置には、モニタ314が設けられている。モニタ314の上部には、電子ビューファインダ(接眼窓)315が設けられている。撮影者は、電子ビューファインダ315を覗くことによって、撮影レンズユニット312から導かれた被写体の光像を視認して構図決定を行うことが可能である。電子ビューファインダ315は、上記の表示装置101等のうちいずれかを備える。 A monitor 314 is provided at a position shifted to the left from the center of the back surface of the camera body 311. An electronic viewfinder (eyepiece window) 315 is provided at the top of the monitor 314 . By looking through the electronic viewfinder 315, the photographer can visually recognize the light image of the subject guided from the photographic lens unit 312 and determine the composition. The electronic viewfinder 315 includes any one of the display devices 101 and the like described above.
(具体例2)
 図27は、ヘッドマウントディスプレイ320の外観の一例を示す。ヘッドマウントディスプレイ320は、アイウェアデバイスの一例である。ヘッドマウントディスプレイ320は、例えば、眼鏡形の表示部321の両側に、使用者の頭部に装着するための耳掛け部322を有している。表示部321は、上記の表示装置101等のうちいずれかを備える。
(Specific example 2)
FIG. 27 shows an example of the appearance of the head mounted display 320. Head mounted display 320 is an example of an eyewear device. The head-mounted display 320 has, for example, ear hooks 322 on both sides of a glasses-shaped display section 321 to be worn on the user's head. The display unit 321 includes any one of the display devices 101 and the like described above.
(具体例3)
 図28は、テレビジョン装置330の外観の一例を示す。このテレビジョン装置330は、例えば、フロントパネル332およびフィルターガラス333を含む映像表示画面部331を有しており、この映像表示画面部331は、上記の表示装置101等のうちいずれかを備える。
(Specific example 3)
FIG. 28 shows an example of the appearance of the television device 330. This television device 330 has, for example, a video display screen section 331 that includes a front panel 332 and a filter glass 333, and this video display screen section 331 includes any one of the above-described display devices 101 and the like.
(具体例4)
 図29は、シースルーヘッドマウントディスプレイ340の外観の一例を示す。シースルーヘッドマウントディスプレイ340は、アイウェアデバイスの一例である。シースルーヘッドマウントディスプレイ340は、本体部341と、アーム342と、鏡筒343とを備える。
(Specific example 4)
FIG. 29 shows an example of the appearance of the see-through head-mounted display 340. See-through head mounted display 340 is an example of an eyewear device. The see-through head-mounted display 340 includes a main body 341, an arm 342, and a lens barrel 343.
 本体部341は、アーム342および眼鏡350と接続される。具体的には、本体部341の長辺方向の端部はアーム342と結合され、本体部341の側面の一側は接続部材を介して眼鏡350と連結される。なお、本体部341は、直接的に人体の頭部に装着されてもよい。 The main body portion 341 is connected to the arm 342 and the glasses 350. Specifically, an end of the main body 341 in the long side direction is coupled to the arm 342, and one side of the main body 341 is coupled to the glasses 350 via a connecting member. Note that the main body portion 341 may be directly attached to the human head.
 本体部341は、シースルーヘッドマウントディスプレイ340の動作を制御するための制御基板や、表示部を内蔵する。アーム342は、本体部341と鏡筒343とを接続させ、鏡筒343を支える。具体的には、アーム342は、本体部341の端部および鏡筒343の端部とそれぞれ結合され、鏡筒343を固定する。また、アーム342は、本体部341から鏡筒343に提供される画像に係るデータを通信するための信号線を内蔵する。 The main body section 341 incorporates a control board for controlling the operation of the see-through head-mounted display 340 and a display section. The arm 342 connects the main body portion 341 and the lens barrel 343 and supports the lens barrel 343. Specifically, the arm 342 is coupled to an end of the main body portion 341 and an end of the lens barrel 343, respectively, and fixes the lens barrel 343. Further, the arm 342 has a built-in signal line for communicating data related to an image provided from the main body 341 to the lens barrel 343.
 鏡筒343は、本体部341からアーム342を経由して提供される画像光を、接眼レンズ351を通じて、シースルーヘッドマウントディスプレイ340を装着するユーザの目に向かって投射する。このシースルーヘッドマウントディスプレイ340において、本体部341の表示部は、上記の表示装置101等のうちいずれかを備える。 The lens barrel 343 projects image light provided from the main body 341 via the arm 342 through the eyepiece 351 toward the eyes of the user wearing the see-through head-mounted display 340. In this see-through head-mounted display 340, the display section of the main body section 341 includes one of the display devices 101 and the like described above.
(具体例5)
 図30は、スマートフォン360の外観の一例を示す。スマートフォン360は、各種情報を表示する表示部361、およびユーザによる操作入力を受け付けるボタン等から構成される操作部362等を備える。表示部361は、上記の表示装置101等のうちいずれかを備える。
(Specific example 5)
FIG. 30 shows an example of the appearance of a smartphone 360. The smartphone 360 includes a display section 361 that displays various information, and an operation section 362 that includes buttons and the like that accept operation inputs from the user. The display unit 361 includes any one of the display devices 101 and the like described above.
(具体例6)
 上記の表示装置101等は、乗物に備えられる各種のディスプレイに備えられてもよい。
(Specific example 6)
The display device 101 and the like described above may be included in various displays provided in a vehicle.
 図31Aおよび図31Bは、各種のディスプレイが備えられた乗物500の内部の構成の一例を示す図である。具体的には、図31Aは、乗物500の後方から前方にかけての乗物500の内部の様子の一例を示す図、図31Bは、乗物500の斜め後方から斜め前方にかけての乗物500の内部の様子の一例を示す図である。 FIGS. 31A and 31B are diagrams showing an example of the internal configuration of a vehicle 500 equipped with various displays. Specifically, FIG. 31A is a diagram showing an example of the interior of the vehicle 500 from the rear to the front of the vehicle 500, and FIG. 31B is a diagram showing an example of the interior of the vehicle 500 from the diagonal rear to the diagonal front. It is a figure showing an example.
 乗物500は、センターディスプレイ501と、コンソールディスプレイ502と、ヘッドアップディスプレイ503と、デジタルリアミラー504と、ステアリングホイールディスプレイ505と、リアエンタテイメントディスプレイ506とを備える。これらのディスプレイの少なくとも1つが、上記の表示装置101等のうちいずれかを備える。例えば、これらのディスプレイのすべてが、上記の表示装置101等のうちいずれかを備えてもよい。 The vehicle 500 includes a center display 501, a console display 502, a head-up display 503, a digital rear mirror 504, a steering wheel display 505, and a rear entertainment display 506. At least one of these displays includes one of the display devices 101 and the like described above. For example, all of these displays may include one of the display devices 101 and the like described above.
 センターディスプレイ501は、運転席508および助手席509に対向するダッシュボードの部分に配置されている。図31Aおよび図31Bでは、運転席508側から助手席509側まで延びる横長形状のセンターディスプレイ501の例を示すが、センターディスプレイ501の画面サイズや配置場所は任意である。センターディスプレイ501には、種々のセンサで検知された情報を表示可能である。具体的な一例として、センターディスプレイ501には、イメージセンサで撮影した撮影画像、ToFセンサで計測された乗物500の前方や側方の障害物までの距離画像、赤外線センサで検出された乗客の体温等を表示可能である。センターディスプレイ501は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、およびエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。 The center display 501 is arranged on a part of the dashboard facing the driver's seat 508 and the passenger seat 509. Although FIGS. 31A and 31B show an example of a horizontally long center display 501 extending from the driver's seat 508 side to the passenger seat 509 side, the screen size and placement location of the center display 501 are arbitrary. Center display 501 can display information detected by various sensors. As a specific example, the center display 501 displays images taken by an image sensor, distance images to obstacles in front and sides of the vehicle 500 measured by a ToF sensor, and passenger body temperature detected by an infrared sensor. etc. can be displayed. Center display 501 can be used, for example, to display at least one of safety-related information, operation-related information, life log, health-related information, authentication/identification-related information, and entertainment-related information.
 安全関連情報は、居眠り検知、よそ見検知、同乗している子供のいたずら検知、シートベルト装着有無、乗員の置き去り検知等の情報であり、例えばセンターディスプレイ501の裏面側に重ねて配置されたセンサにて検知される情報である。操作関連情報は、センサを用いて乗員の操作に関するジェスチャを検知する。検知されるジェスチャは、乗物500内の種々の設備の操作を含んでいてもよい。例えば、空調設備、ナビゲーション装置、AV装置、照明装置等の操作を検知する。ライフログは、乗員全員のライフログを含む。例えば、ライフログは、乗車中の各乗員の行動記録を含む。ライフログを取得および保存することで、事故時に乗員がどのような状態であったかを確認できる。健康関連情報は、温度センサ等のセンサを用いて乗員の体温を検知し、検知した体温に基づいて乗員の健康状態を推測する。あるいは、イメージセンサを用いて乗員の顔を撮像し、撮像した顔の表情から乗員の健康状態を推測してもよい。さらに、乗員に対して自動音声で会話を行って、乗員の回答内容に基づいて乗員の健康状態を推測してもよい。認証/識別関連情報は、センサを用いて顔認証を行うキーレスエントリ機能や、顔識別でシート高さや位置の自動調整機能等を含む。エンタテイメント関連情報は、センサを用いて乗員によるAV装置の操作情報を検出する機能や、センサで乗員の顔を認識して、乗員に適したコンテンツをAV装置にて提供する機能等を含む。 Safety-related information includes information such as detection of falling asleep, detection of looking away, detection of mischief by children in the same vehicle, presence or absence of seatbelts, and detection of leaving passengers behind. This information is detected by The operation-related information uses sensors to detect gestures related to operations by the occupant. The sensed gestures may include manipulation of various equipment within vehicle 500. For example, the operation of air conditioning equipment, navigation equipment, AV equipment, lighting equipment, etc. is detected. The life log includes life logs of all crew members. For example, a life log includes a record of the actions of each occupant during the ride. By acquiring and saving life logs, it is possible to check the condition of the occupants at the time of the accident. For health-related information, the body temperature of the occupant is detected using a sensor such as a temperature sensor, and the health condition of the occupant is estimated based on the detected body temperature. Alternatively, an image sensor may be used to capture an image of the occupant's face, and the occupant's health condition may be estimated from the captured facial expression. Furthermore, it is also possible to have an automatic voice conversation with the occupant and estimate the occupant's health condition based on the occupant's responses. Authentication/identification related information includes a keyless entry function that performs facial recognition using a sensor, and a function that automatically adjusts seat height and position using facial recognition. The entertainment-related information includes a function that uses a sensor to detect operation information of an AV device by a passenger, a function that recognizes the passenger's face using a sensor, and provides the AV device with content suitable for the passenger.
 コンソールディスプレイ502は、例えば、ライフログ情報の表示に用いることができる。コンソールディスプレイ502は、運転席508と助手席509の間のセンターコンソール510のシフトレバー511の近くに配置されている。コンソールディスプレイ502にも、種々のセンサで検知された情報を表示可能である。また、コンソールディスプレイ502には、イメージセンサで撮像された車両周辺の画像を表示してもよいし、車両周辺の障害物までの距離画像を表示してもよい。 The console display 502 can be used, for example, to display life log information. Console display 502 is arranged near shift lever 511 on center console 510 between driver's seat 508 and passenger seat 509. The console display 502 can also display information detected by various sensors. Further, the console display 502 may display an image around the vehicle captured by an image sensor, or may display a distance image to an obstacle around the vehicle.
 ヘッドアップディスプレイ503は、運転席508の前方のフロントガラス512の奥に仮想的に表示される。ヘッドアップディスプレイ503は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、およびエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。ヘッドアップディスプレイ503は、運転席508の正面に仮想的に配置されることが多いため、乗物500の速度や燃料(バッテリ)残量等の乗物500の操作に直接関連する情報を表示するのに適している。 The head-up display 503 is virtually displayed behind the windshield 512 in front of the driver's seat 508. Head-up display 503 can be used, for example, to display at least one of safety-related information, operation-related information, life log, health-related information, authentication/identification-related information, and entertainment-related information. Since the head-up display 503 is often placed virtually in front of the driver's seat 508, it is difficult to display information directly related to the operation of the vehicle 500, such as the speed of the vehicle 500 and the remaining amount of fuel (battery). Are suitable.
 デジタルリアミラー504は、乗物500の後方を表示できるだけでなく、後部座席の乗員の様子も表示できるため、デジタルリアミラー504の裏面側に重ねてセンサを配置することで、例えばライフログ情報の表示に用いることができる。 The digital rear mirror 504 can display not only the rear of the vehicle 500 but also the state of the occupants in the rear seats. Therefore, by arranging a sensor on the back side of the digital rear mirror 504, it can be used for displaying life log information, for example. be able to.
 ステアリングホイールディスプレイ505は、乗物500のハンドル513の中心付近に配置されている。ステアリングホイールディスプレイ505は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、およびエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。特に、ステアリングホイールディスプレイ505は、運転者の手の近くにあるため、運転者の体温等のライフログ情報を表示したり、AV装置や空調設備等の操作に関する情報等を表示するのに適している。 The steering wheel display 505 is placed near the center of the steering wheel 513 of the vehicle 500. Steering wheel display 505 can be used, for example, to display at least one of safety-related information, operation-related information, lifelog, health-related information, authentication/identification-related information, and entertainment-related information. In particular, since the steering wheel display 505 is located near the driver's hands, it is suitable for displaying life log information such as the driver's body temperature, information regarding the operation of AV equipment, air conditioning equipment, etc. There is.
 リアエンタテイメントディスプレイ506は、運転席508や助手席509の背面側に取り付けられており、後部座席の乗員が視聴するためのものである。リアエンタテイメントディスプレイ506は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、およびエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。特に、リアエンタテイメントディスプレイ506は、後部座席の乗員の目の前にあるため、後部座席の乗員に関連する情報が表示される。例えば、AV装置や空調設備の操作に関する情報を表示したり、後部座席の乗員の体温等を温度センサで計測した結果を表示してもよい。 The rear entertainment display 506 is attached to the back side of the driver's seat 508 and passenger seat 509, and is for viewing by passengers in the rear seats. Rear entertainment display 506 can be used, for example, to display at least one of safety-related information, operation-related information, lifelog, health-related information, authentication/identification-related information, and entertainment-related information. In particular, since the rear entertainment display 506 is located in front of the rear seat occupant, information relevant to the rear seat occupant is displayed. For example, information regarding the operation of the AV device or air conditioning equipment may be displayed, or the results of measuring the body temperature of the passenger in the rear seat using a temperature sensor may be displayed.
 表示装置101等の裏面側に重ねてセンサを配置し、周囲に存在する物体までの距離を計測することができる構成としてもよい。光学的な距離計測の手法には、大きく分けて、受動型と能動型がある。受動型は、センサから物体に光を投光せずに、物体からの光を受光して距離計測を行うものである。受動型には、レンズ焦点法、ステレオ法、および単眼視法等がある。能動型は、物体に光を投光して、物体からの反射光をセンサで受光して距離計測を行うものである。能動型には、光レーダ方式、アクティブステレオ方式、照度差ステレオ法、モアレトポグラフィ法、干渉法等がある。上記の表示装置101等は、これらのどの方式の距離計測にも適用可能である。上記の表示装置101等の裏面側に重ねて配置されるセンサを用いることで、上述した受動型又は能動型の距離計測を行うことができる。 A configuration may also be adopted in which a sensor is placed on the back side of the display device 101 etc. so that the distance to objects existing in the surroundings can be measured. There are two main types of optical distance measurement methods: passive and active. A passive type sensor measures distance by receiving light from an object without emitting light from the sensor to the object. Passive methods include the lens focusing method, stereo method, and monocular viewing method. The active type measures distance by projecting light onto an object and receiving the reflected light from the object with a sensor. Active types include an optical radar method, an active stereo method, a photometric stereo method, a moiré topography method, an interferometry method, and the like. The display device 101 and the like described above can be applied to any of these methods of distance measurement. By using a sensor placed overlappingly on the back side of the display device 101 or the like, the above-mentioned passive or active distance measurement can be performed.
 10R、10G、10B  副画素
 11  駆動基板
 111  基板
 112  絶縁層
 113、115  配線
 114、116  コンタクト部
 12W、12R、12G、12B  発光素子
 121  アノード
 122  OLED層
 123、126  カソード
 124  共通電極
 125  コンタクト部
 13  絶縁層
 14  保護層
 15  カラーフィルタ
 15FR  赤色フィルタ部
 15FG  緑色フィルタ部
 15FB  青色フィルタ部
 16  充填樹脂層
 17  シール部
 18  カバーガラス
 19  コンタクト電極
 191  凸部
 192  凸部群
 192a  第1凸部
 192b  第2凸部
 193  凸部群
 193a  凸部
 21  第1保護層
 22  第2保護層
 23  平坦化層
 24  レンズアレイ
 241  レンズ
 101、102、103、104、105、601  表示装置
 310  デジタルスチルカメラ
 320  ヘッドマウントディスプレイ
 330  テレビジョン装置
 340  シースルーヘッドマウントディスプレイ
 360  スマートフォン
 500  乗物
 RE1  有効画素領域
 RE2  周辺領域
10R, 10G, 10B Subpixel 11 Drive board 111 Substrate 112 Insulating layer 113, 115 Wiring 114, 116 Contact portion 12W, 12R, 12G, 12B Light emitting element 121 Anode 122 OLED layer 123, 126 Cathode 124 Common electrode 125 Contact portion 13 Insulation Layer 14 Protective layer 15 Color filter 15FR Red filter section 15FG Green filter section 15FB Blue filter section 16 Filled resin layer 17 Seal section 18 Cover glass 19 Contact electrode 191 Convex section 192 Convex group 192a First convex section 192b Second convex section 193 Convex part group 193a Convex part 21 First protective layer 22 Second protective layer 23 Flattening layer 24 Lens array 241 Lens 101, 102, 103, 104, 105, 601 Display device 310 Digital still camera 320 Head mounted display 330 Television device 340 See-through head-mounted display 360 Smartphone 500 Vehicle RE1 Effective pixel area RE2 Peripheral area

Claims (20)

  1.  発光領域に複数の発光素子を含む発光装置であって、
     前記発光領域の周辺に位置する周辺領域に設けられたコンタクト電極と、
     前記発光領域から前記周辺領域まで延設され、前記コンタクト電極に接続された第1電極と
     を備え、
     前記コンタクト電極は、前記第1電極が接続された部分に複数の第1構造体を有し、
     複数の前記第1構造体は、前記発光領域から遠ざかる方向に延設されている、
     発光装置。
    A light emitting device including a plurality of light emitting elements in a light emitting region,
    a contact electrode provided in a peripheral region located around the light emitting region;
    a first electrode extending from the light emitting region to the peripheral region and connected to the contact electrode;
    The contact electrode has a plurality of first structures in a portion connected to the first electrode,
    The plurality of first structures extend in a direction away from the light emitting region,
    Light emitting device.
  2.  複数の前記第1構造体は、複数の第1凹部および複数の第1凸部の少なくとも一方を含む、
     請求項1に記載の発光装置。
    The plurality of first structures include at least one of a plurality of first recesses and a plurality of first protrusions.
    The light emitting device according to claim 1.
  3.  前記コンタクト電極は、前記発光領域を囲むループ状を有している、
     請求項1に記載の発光装置。
    The contact electrode has a loop shape surrounding the light emitting region,
    The light emitting device according to claim 1.
  4.  前記発光領域から遠ざかる方向は、前記発光領域の外周に対して垂直な方向または前記発光領域の外周に対して斜めの方向である、
     請求項1に記載の発光装置。
    The direction away from the light emitting region is a direction perpendicular to the outer periphery of the light emitting region or a direction oblique to the outer periphery of the light emitting region.
    The light emitting device according to claim 1.
  5.  複数の前記第1構造体は、前記発光領域の外周の周方向に配置され、
     前記周辺領域の内周側における、隣接する前記第1構造体の間の距離は、前記周辺領域の外周側における、隣接する前記第1構造体の間の距離よりも広い、
     請求項1に記載の発光装置。
    The plurality of first structures are arranged in a circumferential direction around the outer periphery of the light emitting region,
    The distance between the adjacent first structures on the inner circumferential side of the peripheral area is wider than the distance between the adjacent first structures on the outer circumferential side of the peripheral area.
    The light emitting device according to claim 1.
  6.  前記コンタクト電極は、前記第1電極が接続された部分に複数の第2構造体をさらに有し、
     複数の前記第2構造体は、前記第1構造体の延設方向と略垂直な方向に延設され、
     複数の前記第1構造体は、複数の前記第2構造体よりも前記発光領域の近くに設けられている、
     請求項1に記載の発光装置。
    The contact electrode further includes a plurality of second structures in a portion connected to the first electrode,
    The plurality of second structures extend in a direction substantially perpendicular to the direction in which the first structures extend,
    The plurality of first structures are provided closer to the light emitting region than the plurality of second structures,
    The light emitting device according to claim 1.
  7.  前記発光領域は、有効画素領域であり、
     前記第1電極は、カソードである、
     請求項1に記載の発光装置。
    The light emitting area is an effective pixel area,
    the first electrode is a cathode;
    The light emitting device according to claim 1.
  8.  前記発光領域に設けられた複数の第2電極と、
     複数の前記第2電極と前記第1電極の間に設けられた有機発光層と
     をさらに備える、
     請求項1に記載の発光装置。
    a plurality of second electrodes provided in the light emitting region;
    further comprising: an organic light emitting layer provided between the plurality of second electrodes and the first electrode;
    The light emitting device according to claim 1.
  9.  前記発光領域に設けられた複数の第3電極と、
     前記発光領域に設けられた複数の第4電極と、
     前記発光領域に設けられた複数の有機発光層と
     を備え、
     前記有機発光層は、前記第3電極と前記第4電極の間に設けられ、
     前記第1電極は、複数の前記第4電極に接続されている、
     請求項1に記載の発光装置。
    a plurality of third electrodes provided in the light emitting region;
    a plurality of fourth electrodes provided in the light emitting region;
    a plurality of organic light emitting layers provided in the light emitting region;
    The organic light emitting layer is provided between the third electrode and the fourth electrode,
    The first electrode is connected to the plurality of fourth electrodes,
    The light emitting device according to claim 1.
  10.  発光領域に複数の発光素子を含む発光装置であって、
     前記発光領域の周辺に位置する周辺領域に設けられたコンタクト電極と、
     前記発光領域から前記周辺領域まで延設され、前記コンタクト電極に接続された第1電極と
     を備え、
     前記コンタクト電極は、前記第1電極が接続された部分に複数の構造体群を有し、
     複数の前記構造体群は、少なくとも前記発光領域の外周の周方向に配置され、
     前記各構造体群は、複数の構造体を含み、
     前記周方向に隣接する前記構造体群の間は、離されている、
     発光装置。
    A light emitting device including a plurality of light emitting elements in a light emitting region,
    a contact electrode provided in a peripheral region located around the light emitting region;
    a first electrode extending from the light emitting region to the peripheral region and connected to the contact electrode;
    The contact electrode has a plurality of structure groups in a portion connected to the first electrode,
    The plurality of structure groups are arranged at least in the circumferential direction of the outer periphery of the light emitting region,
    Each of the structure groups includes a plurality of structures,
    The structures adjacent to each other in the circumferential direction are separated from each other,
    Light emitting device.
  11.  複数の前記構造体は、複数の凹部および複数の凸部の少なくとも一方を含む、
     請求項10に記載の発光装置。
    The plurality of structures include at least one of a plurality of recesses and a plurality of protrusions.
    The light emitting device according to claim 10.
  12.  前記周方向に隣接する前記構造体群の間の距離は、隣接する前記構造体の間の距離よりも大きい、
     請求項10に記載の発光装置。
    The distance between the structure groups adjacent in the circumferential direction is greater than the distance between the adjacent structures,
    The light emitting device according to claim 10.
  13.  複数の前記構造体は、前記周方向および前記周方向に対して略垂直な方向に2次元配置され、
     前記周方向に隣接する前記構造体群の間の距離は、前記周方向に隣接する前記構造体の間の距離よりも大きい、
     請求項10に記載の発光装置。
    The plurality of structures are two-dimensionally arranged in the circumferential direction and in a direction substantially perpendicular to the circumferential direction,
    The distance between the structures adjacent in the circumferential direction is greater than the distance between the structures adjacent in the circumferential direction,
    The light emitting device according to claim 10.
  14.  複数の前記構造体群は、前記周方向および前記周方向に略垂直な方向に2次元配置され、
     前記周方向に略垂直な方向に隣接する前記構造体群の間は、離されている、
     請求項10に記載の発光装置。
    The plurality of structure groups are two-dimensionally arranged in the circumferential direction and in a direction substantially perpendicular to the circumferential direction,
    The structure groups adjacent to each other in a direction substantially perpendicular to the circumferential direction are separated from each other,
    The light emitting device according to claim 10.
  15.  複数の前記構造体は、前記周方向および該周方向に対して略垂直な方向に2次元配置され、
     前記周方向に隣接する前記構造体群の間の距離は、前記周方向に隣接する前記構造体の間の距離よりも大きく、
     前記周方向に略垂直な方向に隣接する前記構造体群の間の距離は、前記周方向に略垂直な方向に隣接する前記構造体の間の距離よりも大きい、
     請求項14に記載の発光装置。
    The plurality of structures are two-dimensionally arranged in the circumferential direction and in a direction substantially perpendicular to the circumferential direction,
    The distance between the structures adjacent in the circumferential direction is greater than the distance between the structures adjacent in the circumferential direction,
    A distance between the structures adjacent in a direction substantially perpendicular to the circumferential direction is greater than a distance between the structures adjacent in a direction substantially perpendicular to the circumferential direction.
    The light emitting device according to claim 14.
  16.  複数の前記構造体は、2次元配置され、
     複数の前記凹部は、前記周辺領域の外周から内周に向かって浅くなり、
     複数の前記凸部は、前記周辺領域の外周から内周に向かって低くなる、
     請求項11に記載の発光装置。
    The plurality of structures are two-dimensionally arranged,
    The plurality of recesses become shallower from the outer periphery to the inner periphery of the peripheral area,
    The plurality of convex portions become lower from the outer periphery toward the inner periphery of the peripheral region,
    The light emitting device according to claim 11.
  17.  複数の前記構造体は、2次元配置され、
     複数の前記構造体は、少なくとも1つの段差を有し、
     複数の前記構造体の段数は、前記周辺領域の外周から内周に向かって増加する、
     請求項10に記載の発光装置。
    The plurality of structures are two-dimensionally arranged,
    The plurality of structures have at least one step,
    The number of stages of the plurality of structures increases from the outer periphery to the inner periphery of the peripheral area,
    The light emitting device according to claim 10.
  18.  複数の前記構造体は、2次元配置され、
     複数の前記構造体の側面の傾斜角は、前記周辺領域の外周から内周に向かって小さくなる、
     請求項10に記載の発光装置。
    The plurality of structures are two-dimensionally arranged,
    The angle of inclination of the side surfaces of the plurality of structures decreases from the outer periphery to the inner periphery of the peripheral region,
    The light emitting device according to claim 10.
  19.  複数の前記構造体は、平面視においてドット状を有している、
     請求項10に記載の発光装置。
    The plurality of structures have a dot shape in plan view,
    The light emitting device according to claim 10.
  20.  請求項1に記載の発光装置を備える電子機器。 An electronic device comprising the light emitting device according to claim 1.
PCT/JP2023/032254 2022-09-08 2023-09-04 Light-emitting device and electronic equipment WO2024053611A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022143240 2022-09-08
JP2022-143240 2022-09-08

Publications (1)

Publication Number Publication Date
WO2024053611A1 true WO2024053611A1 (en) 2024-03-14

Family

ID=90191176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032254 WO2024053611A1 (en) 2022-09-08 2023-09-04 Light-emitting device and electronic equipment

Country Status (1)

Country Link
WO (1) WO2024053611A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258492A (en) * 2010-06-11 2011-12-22 Seiko Epson Corp Light emitting device and method for manufacturing the same
KR20140080231A (en) * 2012-12-20 2014-06-30 엘지디스플레이 주식회사 Flexible type organic light emitting diode device and fabricating method thereof
US20140353609A1 (en) * 2013-05-29 2014-12-04 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
JP2019053292A (en) * 2017-09-12 2019-04-04 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Display device
WO2019142582A1 (en) * 2018-01-18 2019-07-25 ソニーセミコンダクタソリューションズ株式会社 Display device and electronic machine
JP2021110934A (en) * 2019-12-31 2021-08-02 エルジー ディスプレイ カンパニー リミテッド Display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258492A (en) * 2010-06-11 2011-12-22 Seiko Epson Corp Light emitting device and method for manufacturing the same
KR20140080231A (en) * 2012-12-20 2014-06-30 엘지디스플레이 주식회사 Flexible type organic light emitting diode device and fabricating method thereof
US20140353609A1 (en) * 2013-05-29 2014-12-04 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
JP2019053292A (en) * 2017-09-12 2019-04-04 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Display device
WO2019142582A1 (en) * 2018-01-18 2019-07-25 ソニーセミコンダクタソリューションズ株式会社 Display device and electronic machine
JP2021110934A (en) * 2019-12-31 2021-08-02 エルジー ディスプレイ カンパニー リミテッド Display device

Similar Documents

Publication Publication Date Title
KR102318464B1 (en) Display devices and electronic devices
CN112216730A (en) Display device and display system
US20200212111A1 (en) Display apparatus
CN111354858B (en) Display device
KR20180076597A (en) Display module and method for head mounted display
KR20230127994A (en) Display and electronic devices
CN116583895A (en) Display device and electronic apparatus
WO2024053611A1 (en) Light-emitting device and electronic equipment
JP6318693B2 (en) Display device and electronic device
WO2024048559A1 (en) Light-emitting device and electronic equipment
JP7198250B2 (en) Display device
KR20220056788A (en) Light-emitting device, display device, imaging device, and electronic device
CN114497129A (en) Organic light emitting device, display device, photoelectric conversion device, electronic device, lighting device, and moving object
WO2024048556A1 (en) Light-emitting device and eyewear device
WO2024034502A1 (en) Light-emitting device and electronic equipment
WO2024080039A1 (en) Display device, electronic apparatus, and method for manufacturing display device
JP2022047608A (en) Organic light-emitting device, display device, photoelectric conversion device, electronic device, lighting device, and mobile body
WO2024009728A1 (en) Display device and electronic device
WO2024024491A1 (en) Display device and electronic apparatus
WO2023095857A1 (en) Light-emitting device and electronic apparatus
WO2023248768A1 (en) Display device and electronic apparatus
WO2024014444A1 (en) Display device
WO2024014214A1 (en) Display device and electronic apparatus
KR20200072740A (en) Electroluminance Display And Personal Imersion Display Having The Same
WO2023176474A1 (en) Light-emitting device and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863149

Country of ref document: EP

Kind code of ref document: A1