WO2024048559A1 - Light-emitting device and electronic equipment - Google Patents

Light-emitting device and electronic equipment Download PDF

Info

Publication number
WO2024048559A1
WO2024048559A1 PCT/JP2023/031149 JP2023031149W WO2024048559A1 WO 2024048559 A1 WO2024048559 A1 WO 2024048559A1 JP 2023031149 W JP2023031149 W JP 2023031149W WO 2024048559 A1 WO2024048559 A1 WO 2024048559A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
nanostructures
layer
emitting element
light
Prior art date
Application number
PCT/JP2023/031149
Other languages
French (fr)
Japanese (ja)
Inventor
示寛 横野
健矢 米原
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2024048559A1 publication Critical patent/WO2024048559A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Definitions

  • the present disclosure relates to a light emitting device and an electronic device including the same.
  • Patent Document 1 discloses a display device in which a plurality of nanolenses are configured by forming a plurality of nanostructures in a single layer on an encapsulation layer.
  • the next generation of metalens is desired to have not only a light-gathering effect but also other functions.
  • An object of the present disclosure is to provide a light-emitting device including a metamaterial having a function other than a light-gathering effect, and an electronic device including the same.
  • a first light emitting device includes: A plurality of light emitting elements arranged two-dimensionally, and a plurality of metamaterials provided corresponding to each of the plurality of light emitting elements,
  • the metamaterial includes multiple nanostructures arranged in two dimensions,
  • the plurality of nanostructures include a plurality of separated structural nanostructures separated in the height direction of the nanostructures,
  • the plurality of separated nanostructures are provided at the outer periphery of the light emitting region corresponding to the light emitting element.
  • the second light emitting device includes: A plurality of light emitting elements arranged two-dimensionally, and a plurality of metamaterials provided corresponding to each of the plurality of light emitting elements, Metamaterials include multiple nanostructures, The plurality of nanostructures are three-dimensionally arranged so as to form a staircase shape descending from the center of the light emitting region corresponding to the light emitting element toward the outer periphery of the light emitting region.
  • the third light emitting device includes: A plurality of light emitting elements arranged two-dimensionally, and a plurality of metamaterials provided corresponding to each of the plurality of light emitting elements, Metamaterials include multiple nanostructures, The plurality of nanostructures are arranged so as to constitute a plurality of diagonal rows in a cross-sectional view, The diagonal rows become further apart from the central axis of the light emitting element as they get farther away from the light emitting element in cross-sectional view.
  • a fourth light emitting device includes: A plurality of light emitting elements arranged two-dimensionally, and a plurality of metamaterials provided corresponding to each of the plurality of light emitting elements,
  • the metamaterial includes multiple nanostructures arranged in two dimensions,
  • the plurality of nanostructures include a plurality of first nanostructures and a plurality of second nanostructures,
  • the plurality of second nanostructures are provided at the outer periphery of the light emitting region corresponding to the light emitting element,
  • the plurality of first nanostructures are provided inside the outer peripheral part,
  • the bottom of the second nanostructure is located higher than the bottom of the first nanostructure.
  • An electronic device includes a first light-emitting device, a second light-emitting device, a third light-emitting device, or a fourth light-emitting device.
  • FIG. 1 is a plan view of a display device according to a first embodiment.
  • FIGS. 2A and 2B are plan views showing enlarged portions of the display area.
  • 3A and 3B are plan views showing a portion of the display area in an enlarged manner.
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 2A.
  • FIG. 5 is a sectional view taken along line VV in FIG. 4.
  • 6A, FIG. 6B, FIG. 6C, and FIG. 6D are process diagrams for explaining the method for manufacturing the display device according to the first embodiment.
  • 7A, FIG. 7B, and FIG. 7C are process diagrams for explaining the method for manufacturing the display device according to the first embodiment. 8A, FIG. 8B, and FIG.
  • FIG. 8C are process diagrams for explaining the method for manufacturing the display device according to the first embodiment.
  • FIG. 9 is a cross-sectional view of a display device according to the second embodiment.
  • FIG. 10 is a cross-sectional view of a display device according to a third embodiment.
  • FIG. 11 is a cross-sectional view of a display device according to a fourth embodiment.
  • FIG. 12 is a cross-sectional view taken along line XII-XII in FIG. 11.
  • FIG. 13 is a cross-sectional view of a display device according to a comparative example.
  • FIG. 14 is a cross-sectional view of a display device according to a fifth embodiment.
  • FIG. 15 is an enlarged cross-sectional view of a part of FIG. 14.
  • FIG. 16 is a cross-sectional view of a display device according to a sixth embodiment.
  • FIG. 17 is a cross-sectional view of a display device according to a seventh embodiment.
  • FIG. 18A is a schematic cross-sectional view for explaining a first example of the resonator structure.
  • FIG. 18B is a schematic cross-sectional view for explaining a second example of the resonator structure.
  • FIG. 19A is a schematic cross-sectional view for explaining a third example of the resonator structure.
  • FIG. 19B is a schematic cross-sectional view for explaining a fourth example of the resonator structure.
  • FIG. 20A is a schematic cross-sectional view for explaining a fifth example of the resonator structure.
  • FIG. 20A is a schematic cross-sectional view for explaining a fifth example of the resonator structure.
  • FIG. 20B is a schematic cross-sectional view for explaining a sixth example of the resonator structure.
  • FIG. 21 is a schematic cross-sectional view for explaining the seventh example of the resonator structure.
  • FIG. 22A is a front view of the digital still camera.
  • FIG. 22B is a rear view of the digital still camera.
  • FIG. 23 is a perspective view of the head mounted display.
  • FIG. 24 is a perspective view of the television device.
  • FIG. 25 is a perspective view of the see-through head mounted display.
  • FIG. 26 is a perspective view of the smartphone.
  • FIG. 27A is a diagram showing the inside of the vehicle from the rear to the front of the vehicle.
  • FIG. 27B is a diagram showing the interior of the vehicle from diagonally rearward to diagonally forward.
  • FIG. 1 is a plan view of a display device 101 according to the first embodiment.
  • the display device 101 has a display area RE1 and a peripheral area RE2 provided around the display area RE1.
  • the horizontal direction of the display area RE1 is referred to as a horizontal direction DX
  • the vertical direction of the display area RE1 is referred to as a vertical direction DY
  • a front direction Dz is referred to as a front direction Dz.
  • FIG. 2A is an enlarged plan view of a part of the display area RE1.
  • a plurality of sub-pixels 10R, 10G, and 10B are two-dimensionally arranged in a prescribed arrangement pattern within the display region RE1.
  • FIG. 2A shows an example in which the prescribed arrangement pattern is a striped arrangement.
  • the prescribed arrangement pattern is not limited to a stripe arrangement, but may be a mosaic arrangement (see FIG. 2B), a square arrangement (see FIG. 3A), a delta arrangement (see FIG. 3B), or other arrangement.
  • a pad portion 101a, a driver for displaying an image (not shown), and the like are provided in the peripheral region RE2.
  • a flexible printed circuit (FPC) (not shown) may be connected to the pad portion 101a.
  • the sub-pixel 10R can emit red light (first light).
  • the sub-pixel 10G can emit green light (second light).
  • the sub-pixel 10B can emit blue light (third light).
  • the sections marked with symbols "R,” “G,” and "B” represent sub-pixel 10R, sub-pixel 10G, and sub-pixel 10B, respectively.
  • One pixel (one pixel) 10Px is composed of, for example, a plurality of adjacent sub-pixels 10R, 10G, 10B, or a plurality of adjacent sub-pixels 10R, 10G, 10B, 10B.
  • the shape of the sub-pixel 10 is not particularly limited, but examples thereof include a rectangular shape or a hexagonal shape when viewed from above, but the shape is not limited to these shapes.
  • the rectangular shape includes a square shape.
  • FIGS. 2A, 2B, and 3A show examples in which the sub-pixels 10 have a rectangular shape in a plan view
  • FIG. 3B shows an example in which the sub-pixels 10 have a hexagonal shape in a plan view.
  • the upper limit of the size of the sub-pixel 10 is preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less, even more preferably 5 ⁇ m or less, 4 ⁇ m or less, or 3.5 ⁇ m or less.
  • the lower limit of the size of the sub-pixel 10 is, for example, 1 ⁇ m or more.
  • the display device 101 is an example of a light emitting device.
  • the display device 101 may be a top emission type OLED display device.
  • Display device 101 may be a microdisplay.
  • the display device 101 may be included in a VR (Virtual Reality) device, an MR (Mixed Reality) device, an AR (Augmented Reality) device, an electronic view finder (EVF), a small projector, or the like.
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 2A.
  • the display device 101 includes a drive substrate 11, a plurality of light emitting elements (first light emitting element) 12R, a plurality of light emitting elements (second light emitting element) 12G, a plurality of light emitting elements (third light emitting element) 12B, and a protective layer. It includes a layer 13, an optical adjustment layer 14, a plurality of metamaterials 15R, a plurality of metamaterials 15G, a plurality of metamaterials 15B, a low refractive index layer 16, and a cover layer 17. Note that the low refractive index layer 16 and the cover layer 17 are provided as necessary, and do not need to be provided.
  • a planar view means a planar view when the object is viewed from the front direction DZ perpendicular to the first surface.
  • the light emitting elements 12R, 12G, and 12B when collectively referred to without particular distinction, they may be referred to as the light emitting elements 12.
  • the metamaterials 15R, 15G, and 15B when collectively referred to without particular distinction, they may be referred to as the metamaterial 15.
  • the drive board 11 is a so-called backplane, and drives a plurality of light emitting elements 12R, 12G, and 12B.
  • the drive substrate 11 includes, for example, a substrate and an insulating layer in this order.
  • the substrate may be made of, for example, a semiconductor with which transistors and the like can be easily formed, or may be made of glass or resin that has low moisture and oxygen permeability.
  • the substrate may be a semiconductor substrate, a glass substrate, a resin substrate, or the like.
  • the semiconductor substrate includes, for example, amorphous silicon, polycrystalline silicon, single crystal silicon, or the like.
  • the glass substrate includes, for example, high strain point glass, soda glass, borosilicate glass, forsterite, lead glass, or quartz glass.
  • the resin substrate includes, for example, at least one selected from the group consisting of polymethyl methacrylate, polyvinyl alcohol, polyvinylphenol, polyether sulfone, polyimide, polycarbonate, polyethylene terephthalate, polyethylene naphthalate, and the like.
  • the insulating layer may be provided on the first surface of the substrate, cover the plurality of drive circuits, the plurality of wirings, etc., and flatten the first surface of the drive substrate 11.
  • the insulating layer may insulate between the plurality of drive circuits, the plurality of wirings, etc. provided on the first surface of the substrate and the plurality of light emitting elements 12.
  • the insulating layer may be an organic insulating layer, an inorganic insulating layer, or a laminate of these.
  • the organic insulating layer contains, for example, at least one selected from the group consisting of polyimide resin, acrylic resin, novolak resin, and the like.
  • the inorganic insulating layer includes, for example, at least one selected from the group consisting of silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), and the like.
  • the color of the light emitted by the light emitting element 12R, the color of the light emitted by the light emitting element 12G, and the color of the light emitted by the light emitting element 12B are different.
  • the light emitting element 12R can emit red light under control of a drive circuit or the like.
  • the light emitting element 12G can emit green light under control of a drive circuit or the like.
  • the light emitting element 12B can emit blue light under control of a drive circuit or the like.
  • the light emitting element 12 is an OLED (Organic Light Emitting Diode) element.
  • the light emitting element 12R is included in the sub-pixel 10R.
  • the light emitting element 12G is included in the sub-pixel 10G.
  • the light emitting element 12B is included in the sub-pixel 10B.
  • the sub-pixel 10R is an example of a light emitting region corresponding to the light emitting element 12R.
  • the sub-pixel 10G is an example of a light emitting region corresponding to the light emitting element 12G.
  • the sub-pixel 10B is an example of a light emitting region corresponding to the light emitting element 12B.
  • the plurality of light emitting elements 12 are two-dimensionally arranged on the first surface of the drive substrate 11 in a prescribed arrangement pattern.
  • the prescribed arrangement pattern is as described as the prescribed arrangement pattern of the plurality of sub-pixels 10.
  • the light emitting element 12R includes a first electrode 121, an OLED layer 122R, and a second electrode 123 on the first surface of the drive substrate 11 in this order.
  • the light emitting element 12G includes a first electrode 121, an OLED layer 122G, and a second electrode 123 on the first surface of the drive substrate 11 in this order.
  • the light emitting element 12B includes a first electrode 121, an OLED layer 122B, and a second electrode 123 on the first surface of the drive substrate 11 in this order.
  • OLED layers 122R, 122G, 122B The OLED layer 122R can emit red light.
  • the OLED layer 122G can emit green light.
  • OLED layer 122B can emit blue light.
  • the OLED layers 122R, 122G, and 122B are provided between the first electrode 121 and the second electrode 123, respectively.
  • the OLED layer 122R includes an organic light emitting layer (hereinafter referred to as “red organic light emitting layer”) capable of emitting red light.
  • the OLED layer 122R includes an organic light emitting layer (hereinafter referred to as “green organic light emitting layer”) capable of emitting green light.
  • the OLED layer 122B includes an organic light-emitting layer (hereinafter referred to as "blue organic light-emitting layer”) that can emit blue light.
  • OLED layers 122R, 122G, and 112B when collectively referred to without particular distinction, they may simply be referred to as the OLED layer 122.
  • the red organic light-emitting layer, the green organic light-emitting layer, and the blue light-emitting layer when collectively referred to without particular distinction, they may simply be referred to as an organic light-emitting layer.
  • the OLED layers 122R, 122G, and 112B may be composed of a laminate including an organic light-emitting layer, and in that case, some layers (for example, an electron injection layer) of the laminate may be an inorganic layer.
  • the OLED layer 122R includes, for example, a hole injection layer, a hole transport layer, a red organic light emitting layer, an electron transport layer, and an electron injection layer in this order from the first electrode 121 to the second electrode 123.
  • the OLED layer 122G includes, for example, a hole injection layer, a hole transport layer, a green organic light emitting layer, an electron transport layer, and an electron injection layer in this order from the first electrode 121 to the second electrode 123.
  • the OLED layer 122G includes, for example, a hole injection layer, a hole transport layer, a blue organic light emitting layer, an electron transport layer, and an electron injection layer in this order from the first electrode 121 to the second electrode 123.
  • the red organic light emitting layer can emit red light by recombining holes injected from the first electrode 121 and electrons injected from the second electrode 123.
  • the green organic light emitting layer can emit green light due to the same phenomenon as the red organic light emitting layer described above.
  • the blue organic light emitting layer can emit blue light due to the same phenomenon as the red organic light emitting layer described above.
  • the hole injection layer can increase the efficiency of hole injection into the organic light emitting layer of each color and can suppress leakage.
  • the hole transport layer can increase hole transport efficiency to the organic light emitting layer of each color.
  • the electron injection layer can increase the efficiency of electron injection into the organic light emitting layer of each color.
  • the electron transport layer can increase the efficiency of electron transport to the organic light emitting layer.
  • the first electrode 121 is provided on the second surface side of the OLED layer 122.
  • the first electrode 121 is provided separately for the plurality of light emitting elements 12 within the display area RE1. That is, the first electrode 121 is divided between the light emitting elements 12 adjacent in the in-plane direction within the display region RE1.
  • the first electrode 121 is an anode. When a voltage is applied between the first electrode 121 and the second electrode 123, holes are injected from the first electrode 121 into the OLED layer 122.
  • the first electrode 121 may be composed of a metal layer, or a metal layer and a transparent conductive oxide layer, for example.
  • the transparent conductive oxide layer is similar to the OLED layer 122. Preferably, it is provided on the side.
  • the metal layer also has a function as a reflective layer that reflects the light emitted by the OLED layer 122.
  • the metal layer include chromium (Cr), gold (Au), platinum (Pt), nickel (Ni), copper (Cu), molybdenum (Mo), titanium (Ti), tantalum (Ta), and aluminum (Al). , magnesium (Mg), iron (Fe), tungsten (W), and silver (Ag).
  • the metal layer may contain the at least one metal element described above as a constituent element of an alloy. Specific examples of alloys include aluminum alloys and silver alloys. Specific examples of aluminum alloys include AlNd and AlCu.
  • a base layer may be provided adjacent to the second surface side of the metal layer.
  • the base layer is for improving the crystal orientation of the metal layer during film formation of the metal layer.
  • the base layer contains, for example, at least one metal element selected from the group consisting of titanium (Ti) and tantalum (Ta).
  • the base layer may contain the above-mentioned at least one metal element as a constituent element of the alloy.
  • the transparent conductive oxide layer contains a transparent conductive oxide.
  • Transparent conductive oxides include, for example, transparent conductive oxides containing indium (hereinafter referred to as “indium-based transparent conductive oxides”) and transparent conductive oxides containing tin (hereinafter referred to as “tin-based transparent conductive oxides”). ) and transparent conductive oxides containing zinc (hereinafter referred to as “zinc-based transparent conductive oxides").
  • Indium-based transparent conductive oxides include, for example, indium tin oxide (ITO), indium zinc oxide (IZO), indium gallium oxide (IGO), indium gallium zinc oxide (IGZO), or fluorine-doped indium oxide (IFO).
  • ITO indium tin oxide
  • ITO indium zinc oxide
  • IGO indium gallium oxide
  • IGZO indium gallium zinc oxide
  • ITO indium tin oxide
  • ITO indium tin oxide
  • ITO has a particularly low barrier for hole injection into the OLED layers 122R, 122G, and 122B in terms of work function, so that the driving voltage of the display device 101 can be particularly low.
  • the tin-based transparent conductive oxide includes, for example, tin oxide, antimony-doped tin oxide (ATO), or fluorine-doped tin oxide (FTO).
  • Zinc-based transparent conductive oxides include, for example, zinc oxide, aluminum-doped zinc oxide (AZO), boron-doped zinc oxide, or gallium-doped zinc oxide (GZO).
  • the second electrode 123 is provided on the first surface side of the OLED layer 122.
  • the second electrode 123 is a cathode.
  • the second electrode 123 is transparent to each light emitted from the OLED layers 122R, 122G, and 122B.
  • the second electrode 123 is preferably a transparent electrode that is transparent to visible light. In this specification, visible light refers to light in a wavelength range of 360 nm or more and 830 nm.
  • the second electrode 123 is made of a material that has as high a light transmittance as possible and has a small work function in order to increase luminous efficiency.
  • the second electrode 123 is made of, for example, at least one of a metal layer and a transparent conductive oxide layer. More specifically, the second electrode 123 is composed of a single layer film of a metal layer or a transparent conductive oxide layer, or a laminated film of a metal layer and a transparent conductive oxide layer.
  • a metal layer may be provided on the OLED layer 122 side, or a transparent conductive oxide layer may be provided on the OLED layer 122 side. From the viewpoint of placing a layer having a function adjacent to the OLED layer 122, it is preferable that the metal layer is provided on the OLED layer 122 side.
  • the metal layer contains, for example, at least one metal element selected from the group consisting of magnesium (Mg), aluminum (Al), silver (Ag), calcium (Ca), and sodium (Na).
  • the metal layer may contain the at least one metal element described above as a constituent element of an alloy. Specific examples of the alloy include MgAg alloy, MgAl alloy, and AlLi alloy.
  • the transparent conductive oxide layer includes a transparent conductive oxide. Examples of the transparent conductive oxide include the same materials as the transparent conductive oxide of the first electrode 121 described above.
  • the protective layer 13 is transparent to each light emitted from the light emitting elements 12R, 12G, and 12B.
  • the second electrode 123 is preferably transparent to visible light.
  • the protective layer 13 can protect the plurality of light emitting elements 12 and the like.
  • the protective layer 13 is provided on the first surface of the drive substrate 11 so as to cover the plurality of light emitting elements 12 .
  • the protective layer 13 can isolate the light emitting element 12 from the outside air and suppress moisture from entering the light emitting element 12 from the external environment. Further, when the second electrode 123 is formed of a metal layer, the protective layer 13 may have a function of suppressing oxidation of this metal layer.
  • the protective layer 13 includes, for example, an inorganic material or a polymer resin with low hygroscopicity.
  • the protective layer 13 may have a single layer structure or a multilayer structure. When increasing the thickness of the protective layer 13, it is preferable to have a multilayer structure. This is to relieve internal stress in the protective layer 13.
  • the inorganic material is selected from the group consisting of silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), titanium oxide (TiO x ), aluminum oxide (AlO x ), etc. Contains at least one species.
  • the polymer resin includes, for example, at least one selected from the group consisting of thermosetting resins, ultraviolet curable resins, and the like. Specifically, the polymer resin includes at least one selected from the group consisting of acrylic resins, polyimide resins, novolac resins, epoxy resins, norbornene resins, parylene resins, and the like.
  • the optical adjustment layer 14 is transparent to each light emitted from the light emitting elements 12R, 12G, and 12B. It is preferable that the optical adjustment layer 14 has transparency to visible light.
  • the optical adjustment layer 14 is provided between the plurality of light emitting elements 12 and the plurality of metamaterials 15. More specifically, the optical adjustment layer 14 is provided between the protective layer 13 and the plurality of metamaterials 15.
  • the optical adjustment layer 14 can adjust the distance (optical path length) between the plurality of light emitting elements 12 and the metamaterial 15. It is preferable that the surface of the optical adjustment layer 14 is substantially flat with suppressed unevenness.
  • the optical adjustment layer 14 includes, for example, an inorganic material or a polymer resin.
  • the optical adjustment layer 14 may be an organic layer, an inorganic layer, or a laminate of these layers.
  • the organic layer contains, for example, at least one selected from the group consisting of polyimide resins, acrylic resins, novolak resins, parylene resins, and the like.
  • the inorganic layer includes, for example, at least one selected from the group consisting of metal oxides, metal nitrides, and the like.
  • the metal oxide is selected from the group consisting of silicon oxide (SiO x ), silicon oxynitride (SiO x N y ), titanium oxide (TiO x ), tantalum oxide (TaO x ), zinc oxide (ZnO x ), etc. Contains at least one species.
  • the metal nitride includes, for example, at least one selected from the group consisting of silicon nitride (SiN x ), gallium nitride (GaN x ), and the like.
  • the metamaterials 15R, 15G, and 15B each constitute a metalens.
  • the plurality of metamaterials 15R, 15G, and 15B are two-dimensionally arranged on the first surface of the optical adjustment layer 14 in a prescribed arrangement pattern.
  • the prescribed arrangement pattern is as described as the prescribed arrangement pattern of the plurality of sub-pixels 10.
  • a plurality of metamaterials 15 are provided corresponding to each light emitting element 12. More specifically, the metamaterial 15R is provided above the light emitting element 12R. The metamaterial 15G is provided above the light emitting element 12G. Metamaterial 15B is provided above light emitting element 12B.
  • the metamaterials 15R, 15G, and 15B have a function equivalent to a lens having a geometrically convex curved surface (a function of condensing light emitted from the light emitting elements 12R, 12B, and 12C), and a function of condensing light emitted from the light emitting elements 12R, 12B, and 12C, and a function of condensing light emitted from the light emitting elements 12R, 12B, and 12C. It has two types of functions: a function of suppressing light transmission (that is, a function of suppressing color mixture between adjacent sub-pixels 10).
  • the metamaterial 15R functions as a lens to condense red light emitted obliquely from the light emitting element 12R provided below the metamaterial 15R, and also transmits the red light to adjacent sub-pixels 10G, 10B, etc. (ie, a function of suppressing color mixture between adjacent sub-pixels 10).
  • the metamaterial 15G functions as a lens that condenses green light emitted in an oblique direction from the light emitting element 12G provided below the metamaterial 15G, and also transmits the green light to adjacent sub-pixels 10R, 10B, etc. (ie, a function of suppressing color mixture between adjacent sub-pixels 10).
  • the metamaterial 15B functions as a lens that condenses blue light emitted in an oblique direction from the light emitting element 12B provided below the metamaterial 15B, and also transmits the blue light to adjacent sub-pixels 10R, 10G, etc. (ie, a function of suppressing color mixture between adjacent sub-pixels 10).
  • the metamaterials 15R, 15G, and 15B include a plurality of nanostructures (unit cells) 151 and 152 having a size equal to or smaller than the wavelength of light. More specifically, the metamaterial 15R may include a plurality of nanostructures 151, 152 having a size equal to or less than the peak wavelength of red light emitted from the light emitting element 12R.
  • the metamaterial 15G may include a plurality of nanostructures 151 and 152 having a size equal to or less than the peak wavelength of green light emitted from the light emitting element 12G.
  • the metamaterial 15B may include a plurality of nanostructures 151 and 152 having a size equal to or less than the peak wavelength of blue light emitted from the light emitting element 12B.
  • the peak wavelength represents the peak wavelength of the largest peak among the multiple peaks.
  • the size of the nanostructures 151 and 152 refers to the size of the bottom surface of the nanostructure 151 in the direction perpendicular to the front direction DZ (in-plane direction of the first surface of the optical adjustment layer 14).
  • the size of the nanostructures 151, 152 refers to the size of the nanostructures 151, 152 in the direction where the size of the nanostructures 151, 152 is maximum. shall be expressed.
  • the size of the nanostructures 151 and 152 represents the major axis of the bottom surface of the nanostructures 151 and 152.
  • the size of the nanostructures 151 and 152 represents the length of the diagonal line of the rectangle at the bottom of the nanostructures 151 and 152.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG. 4.
  • the plurality of nanostructures 151 and 152 are two-dimensionally arranged on the first surface of the optical adjustment layer 14.
  • the size of the plurality of nanostructures 151 may become smaller from the center of the sub-pixel 10 toward the periphery in order to obtain a light focusing effect by controlling the phase of light.
  • the plurality of nanostructures 151 and 152 may be arranged uniformly at equal intervals, or may be arranged non-uniformly at different intervals.
  • the central axes of the nanostructures 151 and 152 may be perpendicular to the first surface of the optical adjustment layer 14 (that is, parallel to the central axis of the light emitting element 12), or may be perpendicular to the first surface of the optical adjustment layer 14. It may be tilted to the opposite direction.
  • the nanostructures 151 and 152 are, for example, nanopillars.
  • the shape of the nanopillar may be, for example, a polygonal columnar shape such as a cylinder, an elliptical columnar shape, or a quadrangular columnar shape, or may be a shape other than these.
  • the quadrangular column shape may be, for example, a rectangular column shape, or may have a shape other than this.
  • the plurality of nanostructures 151 and 152 may include nanopillars of two or more shapes.
  • the configurations of the metamaterials 15R, 15G, and 15B may be different from each other or the same, but it is preferable that the configurations differ depending on the light incident from the light emitting elements 12R, 12B, and 12G.
  • at least one of the arrangement, height, shape, etc. of the nanostructures 151 constituting the metamaterials 15R, 15G, and 15B may be different among the metamaterials 15R, 15G, and 15B.
  • the nanostructure 151 is an example of a nanostructure with a non-separated structure, and has a non-separated structure that is not separated in the height direction of the nanostructure 151.
  • the nanostructure 152 is an example of a separated nanostructure, and has a separated structure separated in the height direction of the nanostructure 152.
  • FIG. 4 shows an example in which the number of separated nanostructures 152 is two, the number of separated nanostructures 152 is not limited to this, and may be three or more.
  • the heights of the separated structures may be the same or different.
  • the filling rate of the nanostructures 151 with a non-separated structure is higher than that of the nanostructures 151 with a separate structure, and the transmittance of the nanostructures 151 with a non-separated structure is higher than that of the nanostructures 151 with a separate structure. high compared to the rate.
  • the nanostructure 151 having a separated structure refers to a nanostructure assuming that the nanostructure 151 having a non-separated structure is made into a separated structure.
  • the filling factor of the nanostructures 152 having a separated structure is lower than that of the nanostructures 152 having a non-separated structure, and the transmittance of the nanostructures 152 having a separated structure is lower than that of the nanostructures 152 having a non-separated structure. low compared to the rate.
  • the nanostructure 152 with a non-separated structure refers to a nanostructure when it is assumed that the nanostructure 152 with a separate structure is made into a non-separated structure.
  • the plurality of nanostructures 152 are provided at the periphery of the sub-pixel 10.
  • the plurality of nanostructures 151 are provided in a region inside the periphery of the sub-pixel 10.
  • the periphery of the sub-pixel 10 refers to an area having a predetermined width inward from the periphery of the sub-pixel 10 in plan view.
  • Nanostructure 151 includes, for example, an inorganic material or a polymer resin.
  • the inorganic material and polymer resin include a high dielectric material.
  • the inorganic material includes, for example, at least one selected from the group consisting of metal oxides, metal nitrides, and the like.
  • the metal oxide includes, for example, at least one selected from the group consisting of titanium oxide (TiO x ), tantalum oxide (TaO x ), zinc oxide (ZnO x ), and the like.
  • Metal nitrides include, for example, gallium nitride (GaN x ).
  • the refractive index of the low refractive index layer 16 is lower than that of the nanostructures 151.
  • the refractive index n 1 of the nanostructure 151 and the refractive index n 2 of the low refractive index layer 16 represent the refractive index for light with a wavelength of 589.3 nm (D line of sodium).
  • the low refractive index layer 16 is provided so as to fill the spaces between at least the plurality of nanostructures 151.
  • the low refractive index layer 16 may cover and protect the plurality of nanostructures 151.
  • the low refractive index layer 16 may have a function as an adhesive layer for bonding the cover layer 17 to the drive substrate 11 on the first surface of which the plurality of light emitting elements 12 and the like are provided.
  • the low refractive index layer 16 is transparent to each light emitted from the light emitting elements 12R, 12G, and 12B. It is preferable that the low refractive index layer 16 has transparency to visible light.
  • the low refractive index layer 16 includes, for example, at least one selected from the group consisting of thermosetting resins, ultraviolet curable resins, and the like.
  • the low refractive index layer 16 includes, for example, a polymer resin or an inorganic material.
  • the polymer resin includes, for example, at least one selected from the group consisting of thermosetting resins, ultraviolet curable resins, and the like.
  • Inorganic materials include, for example, silicon oxide (SiO x ).
  • the cover layer 17 seals the plurality of light emitting elements 12, the plurality of metamaterials 15, etc. provided on the first surface of the drive substrate 11.
  • the cover layer 17 is transparent to each light emitted from the light emitting elements 12R, 12G, and 12B. It is preferable that the cover layer 17 has transparency to visible light.
  • the cover layer 17 is provided on the first surface of the low refractive index layer 16.
  • the cover layer 17 is, for example, a glass substrate.
  • a metal layer and a metal oxide layer are sequentially formed on the first surface of the drive substrate 11 by, for example, sputtering, and then the metal layer and metal oxide layer are patterned by, for example, photolithography. As a result, a plurality of first electrodes 121 are formed on the first surface of the drive substrate 11.
  • a hole injection layer, a hole transport layer, a red organic light emitting layer, an electron transport layer, and an electron injection layer are deposited on the first surface of the plurality of first electrodes 121 and the first surface of the drive substrate 11 by, for example, a vapor deposition method.
  • a vapor deposition method By stacking layers on top in this order, an OLED layer 122R is formed.
  • the second electrode 123 is formed on the first surface of the OLED layer 122R by, for example, a vapor deposition method or a sputtering method.
  • a first protective layer is formed on the first surface of the second electrode 123 by, for example, a CVD method.
  • the OLED layer 122R, the second electrode 123, and the first protective layer are processed using, for example, photolithography technology. As a result, a plurality of light emitting elements 12R are formed on the first surface of the drive substrate 11.
  • a plurality of light emitting elements 12G and a plurality of light emitting elements 12B are formed on the first surface of the drive substrate 11 in the same procedure as the above-described formation process of the light emitting element 12R.
  • a second protective layer is formed to cover the plurality of light emitting elements 12 by, for example, a CVD method.
  • the protective layer 13 consisting of the first protective layer and the second protective layer is formed.
  • the optical adjustment layer 14 is formed on the first surface of the protective layer 13 by, for example, a CVD method or a vapor deposition method.
  • a first high dielectric material layer 153 containing titanium oxide (TiO x ) or the like is formed on the first surface of the optical adjustment layer 14 by, for example, a CVD method or a vapor deposition method.
  • a resist is applied onto the first surface of the first high dielectric material layer 153 to form a resist layer, and then the resist layer is exposed and developed. As a result, a resist pattern 31 is formed on the first surface of the first high dielectric material layer 153, as shown in FIG. 6B.
  • Nanostructure 151a corresponds to a portion of nanostructure 151.
  • Nanostructure 152a corresponds to a portion of nanostructure 152.
  • the first low refractive index layer 161 is formed on the first surface of the optical adjustment layer 14 by, for example, a CVD method so as to cover the plurality of nanostructures 151a.
  • the surface of the first low refractive index layer 161 is polished and planarized by, for example, CMP (Chemical Mechanical Polishing).
  • CMP Chemical Mechanical Polishing
  • a resist is applied onto the first surface of the first low refractive index layer 161 to form a resist layer, and then the resist layer is exposed and developed.
  • a resist pattern 32 is formed on the first surface of the first low refractive index layer 161, as shown in FIG. 7A.
  • the resist pattern 32 covers the nanostructures 152a located at the periphery of the sub-pixel 10.
  • the resist pattern 32 is removed.
  • a plurality of separation parts 163 are formed on the nanostructures 152a located at the periphery of the sub-pixel 10, and a plurality of isolation parts 163 are formed on the nanostructures 152a located inside the periphery of the sub-pixel 10.
  • the upper surface of the structure 151a is exposed.
  • a second high dielectric material layer 154 containing titanium oxide ( TiO It is formed on the first surface of the refractive index layer 161 and the upper surface of the plurality of nanostructures 151a.
  • a resist pattern 33 is formed on the first surface of the second high dielectric material layer 154 in the same manner as the formation process of the resist pattern 31 described above.
  • the second high dielectric material layer 154 is etched through the resist pattern 33.
  • a plurality of nanostructures 151 and a plurality of nanostructures 152 are formed on the first surface of the optical adjustment layer 14. That is, a plurality of metamaterials 15R, a plurality of metamaterials 15G, and a plurality of metamaterials 15B are formed on the first surface of the optical adjustment layer 14.
  • the second low refractive index layer 162 is formed on the first surface of the first low refractive index layer 161 so as to cover the plurality of nanostructures 151 and the plurality of nanostructures 152, for example, by a CVD method.
  • a low refractive index layer 16 including a first low refractive index layer 161, a second low refractive index layer 162, and a plurality of separation parts 163 is formed.
  • a cover layer 17 may be formed on the low refractive index layer 16, if necessary.
  • a metamaterial 15 is provided above the light emitting element 12. As a result, light emitted from the light emitting element 12 in an oblique direction is bent toward the front by the metamaterial 15 and condensed. Therefore, the front brightness of the display device 101 can be improved.
  • the metamaterial 15 includes a plurality of nanostructures 152, and the plurality of nanostructures 152 have a separation structure separated in the height direction, and each of the nanostructures 152 has a separation structure that is separated in the height direction, and the subpixel 10 (light emitting region corresponding to the light emitting element 12). It is provided on the outer periphery. Thereby, the transmittance of the nanostructures 152 located at the outer periphery of the sub-pixel 10 can be reduced. Therefore, light emitted from the light emitting element 12 in an oblique direction can be prevented from leaking to the adjacent sub-pixel 10. Therefore, the metamaterial 15 can be provided with a color mixture suppressing function as a function other than a light focusing effect (that is, a function other than a lens).
  • the nanostructures 152 have a separation structure, the interface between the nanostructures 152 and the low refractive index layer 16 increases. As a result, the nanostructures 152 having the separated structure easily reflect incident light. Therefore, the nanostructure 152 having a separate structure is advantageous in terms of suppressing color mixture.
  • FIG. 9 is a cross-sectional view of the display device 102 according to the second embodiment.
  • the display device 102 differs from the display device 101 according to the first embodiment (see FIG. 4) in that it includes a plurality of nanostructures 155 instead of the plurality of nanostructures 152.
  • Nanostructure 151 is an example of a first nanostructure
  • nanostructure 155 is an example of a second nanostructure.
  • the height of the nanostructure 155 is lower than the height of the nanostructure 151.
  • the bottom of the nanostructure 155 is located at a higher position than the bottom of the nanostructure 151 with respect to the first surface of the optical adjustment layer 14 .
  • the top of the nanostructure 155 may be provided at substantially the same height as the top of the nanostructure 151.
  • the bottom of the nanostructure 155 is provided at a higher position than the bottom of the nanostructure 151.
  • the transmittance of the nanostructures 155 located at the outer periphery of the sub-pixel 10 can be reduced. Therefore, light emitted from the light emitting element 12 in an oblique direction can be prevented from leaking to the adjacent sub-pixel 10. Therefore, it is possible to provide the metamaterial 15 with a color mixture suppressing function as a function other than a light condensing effect (that is, a function other than a lens).
  • FIG. 10 is a cross-sectional view of a display device 103 according to the third embodiment.
  • the display device 103 differs from the display device 101 according to the first embodiment (see FIG. 4) in that the optical adjustment layer 14 includes a part of each metamaterial 15.
  • the nanostructure 152 having a separation structure includes a first separation structure 152M and a second separation structure 152N.
  • FIG. 10 shows an example in which the number of separated nanostructures 152 is two, the number of separated nanostructures 152 is not limited to this, and may be three or more.
  • the first separation structure 152M and the second separation structure 152N are separated from each other.
  • the first separation structure 152M is provided closer to the front than the second separation structure 152N when viewed from the light emitting element 12.
  • the plurality of nanostructures 151 and the plurality of second separation structures 152N may have substantially the same height.
  • the plurality of nanostructures 151 and the plurality of second separation structures 152N are two-dimensionally arranged on the first surface of the optical adjustment layer 14.
  • the optical adjustment layer 14 is provided between the plurality of light emitting elements 12 and the plurality of second separation structures 151N, more specifically, between the protective layer 13 and the plurality of second separation structures 151N.
  • the optical adjustment layer 14 includes a plurality of first separation structures 151M.
  • the display device 103 according to the third embodiment can provide the same effects as the display device 101 according to the first embodiment.
  • FIG. 11 is a cross-sectional view of the display device 104 according to the fourth embodiment.
  • FIG. 12 is a cross-sectional view taken along line XII-XII in FIG. 11.
  • the display device 104 differs from the display device 101 according to the first embodiment (see FIG. 4) in that it includes a plurality of metamaterials 21R, 21G, and 21B instead of the plurality of metamaterials 15R, 15G, and 115B. ing.
  • the multiple metamaterials 21R, 21G, and 21B include multiple nanostructures (unit cells) 211.
  • the plurality of nanostructures 211 are arranged three-dimensionally. More specifically, the plurality of nanostructures 211 are arranged in the horizontal direction D X , the vertical direction D Y , and the front direction Dz (direction of the central axis 12 a of the light emitting element 12 ).
  • the horizontal direction D X , the vertical direction D Y , and the front direction Dz are examples of the first direction, the second direction, and the third direction, respectively.
  • the first direction and the second direction are directions perpendicular to the central axis 12a of the light emitting element 12, and the angle between the first direction and the second direction may or may not be 90°. Good too.
  • the third direction is a direction parallel to the central axis 12a of the light emitting element 12.
  • the central axis 12a of the light emitting element 12 represents an axis that passes through the geometric center of the OLED layer 122 and is perpendicular to the display surface of the display device 101.
  • the arrangement pitch of the nanostructures 211 in the horizontal direction D X , the vertical direction D Y , and the front direction Dz may be constant or may vary.
  • the plurality of nanostructures 211 may constitute a plurality of nanostructure layers 21L.
  • the nanostructure layers 21L may be separated for a specified period of time.
  • FIG. 11 shows an example in which a plurality of nanostructures 211 constitute a three-layer nanostructure layer 21L.
  • the number of nanostructures 211 arranged in the front direction Dz decreases from the center of the sub-pixel 10 toward the outer periphery of the sub-pixel 10. That is, the plurality of nanostructures 211 are three-dimensionally arranged in a step-like manner descending from the center of the sub-pixel 10 toward the outer periphery of the sub-pixel 10.
  • the plurality of nanostructures 211 included in each nanostructure layer 21L have the same shape and size, as shown in FIG. 12.
  • the size of the nanostructure 211 refers to the size of a cross section obtained by cutting the nanostructure 211 in a direction perpendicular to the central axis.
  • the size of the nanostructure 211 refers to the diameter of the nanostructure 211.
  • FIG. 13 is a cross-sectional view of a display device 201 according to a comparative example.
  • the display device 201 includes a plurality of metamaterials 22R, 22G, and 22B, and each of the metamaterials 22R, 22G, and 22B includes a plurality of nanostructures 151.
  • the size of the plurality of nanostructures 151 decreases from the center of the sub-pixel 10 toward the periphery. Therefore, in the display device 201 according to the comparative example, there is a possibility that the difficulty level of forming the metamaterials 22R, 22G, and 22B using photolithography technology may increase.
  • the display device 104 according to the fourth embodiment includes a plurality of metamaterials 21R, 21G, and 21B, and each of the metamaterials 21R, 21G, and 21B includes a plurality of nanostructures 211.
  • a plurality of nanostructures 211 having the same size are three-dimensionally arranged. Since the sizes of the plurality of nanostructures 211 are the same, in the display device 104 according to the fourth embodiment, formation of 21R, 21G, and 21B by photolithography becomes easy.
  • the nanostructures 211 arranged in the front direction Dz are separated from each other, it is possible to provide the metamaterials 21R, 21G, and 21B with a color mixture suppressing function as a function other than a light focusing effect (that is, a function other than a lens). can.
  • FIG. 14 is a cross-sectional view of the display device 105 according to the fifth embodiment.
  • FIG. 15 is an enlarged cross-sectional view of a part of FIG. 14.
  • the display device 105 differs from the display device 101 according to the first embodiment (see FIG. 4) in that it includes a plurality of metamaterials 23R, 23G, and 23B instead of the plurality of metamaterials 15R, 15G, and 115B. ing.
  • the metamaterials 23R, 23G, and 23B include a plurality of nanostructures 231.
  • Metamaterials 23R, 23G, 23B may further include one or more nanostructures 232.
  • the plurality of nanostructures 231 are arranged so as to form a plurality of diagonal rows 231a in a cross-sectional view.
  • the cross-sectional view refers to a cross-sectional view of a cut surface obtained by cutting the display device 105 along a plane including the central axis 12a of the light emitting element 12.
  • the diagonal rows 231a are spaced apart from the central axis 12a of the light emitting elements 12 as they move away from the light emitting elements 12 located below the diagonal rows 231a in cross-sectional view.
  • the first end of the diagonal row 231a on the light emitting element 12 side is closer to the central axis 12a of the light emitting element 12 than the second end of the diagonal row 231a on the display surface side.
  • the diagonal rows 231a form an angle ⁇ with respect to the central axis 12a of the light emitting element 12 in cross-sectional view.
  • the plurality of nanostructures 231 constituting the diagonal row 231a are arranged diagonally at an angle ⁇ with respect to the central axis 12a of the light emitting element 12 in cross-sectional view.
  • the plurality of nanostructures 231 constituting the diagonal row 231a are spaced apart from the central axis 12a of the light emitting element 12 as they move away from the light emitting element 12 located below the plurality of nanostructures 231 in cross-sectional view. .
  • the central axis of the nanostructure 231 may be parallel to the central axis 12a of the light emitting element 12, or may form an angle ⁇ a with respect to the central axis 12a of the light emitting element 12.
  • the central axis of the nanostructure 231 forms an angle ⁇ a with the central axis 12a of the light emitting element 12
  • the central axis of the nanostructure 231 becomes more distant from the central axis 12a of the light emitting element 12 as it moves away from the light emitting element 12. You can leave it there.
  • the angle ⁇ a of the central axis of the nanostructures 231 may be substantially the same as the angle ⁇ of the arrangement of the diagonal rows 231 a.
  • the metamaterials 23R, 23G When the amount of light emitted from the center of the light emitting element 12 is dominant to the total amount of light emitted from the light emitting element 12, and the light emitted from the center of the light emitting element 12 spreads radially, the metamaterials 23R, 23G, The light incident on the outer peripheral portion of 23B includes a large amount of light emitted from the light emitting element 12 in an oblique direction with respect to the central axis 12a. Therefore, as described above, a configuration in which a plurality of nanostructures 231 are arranged so as to form a plurality of diagonal rows in a cross-sectional view is effective.
  • the angle ⁇ of the diagonal rows may be constant regardless of the distance of the diagonal rows 231a from the central axis 12a of the light emitting elements 12.
  • Nanostructures 231 adjacent to each other in the diagonal direction may be in contact with each other or may be separated from each other.
  • the arrangement pitch of diagonally adjacent nanostructures 231 may be constant or may vary.
  • the plurality of nanostructures 231 may constitute a plurality of nanostructure layers 23L. Adjacent nanostructure layers 23L may be in contact with each other, or may be separated by a specified distance.
  • the plurality of nanostructures 231 included in the nanostructure layer 23L may be arranged concentrically, such as in a concentric circle, with respect to the central axis of the light emitting element 12 in plan view.
  • the arrangement pitch of the plurality of nanostructures 231 arranged on the same circumference may be constant or may vary.
  • the plurality of nanostructures 231 included in the nanostructure layer 23L form a row in the radial direction, and may be arranged radially.
  • Nanostructures 232 may have a height approximately three times that of nanostructures 231. One or more nanostructures 232 are provided at the center of the sub-pixel 10. The nanostructure 232 may be located on the central axis 12a of the light emitting element 12.
  • the plurality of nanostructures 231 are arranged obliquely at an angle ⁇ with respect to the central axis of the light emitting element 12 in a cross-sectional view.
  • the function of the metamaterials 23R, 23G, and 23B as lenses for light emitted from the light emitting element 12 in a diagonal direction with respect to the central axis 12a can be improved.
  • the plurality of nanostructures 231 are arranged obliquely at an angle ⁇ with respect to the central axis of the light emitting element 12 in a cross-sectional view, thereby increasing the interface between the nanostructures 231 and the low refractive index layer 16. be able to. Therefore, it becomes easier to reflect the light emitted from the light emitting element 12 in a diagonal direction with respect to the central axis 12a. Therefore, it is possible to provide the metamaterials 23R, 23G, and 23B with a color mixture suppressing function as a function other than a light-condensing effect (that is, a function other than a lens).
  • FIG. 16 is a cross-sectional view of the display device 106 according to the sixth embodiment.
  • the display device 106 differs from the display device 105 according to the fifth embodiment (see FIGS. 14 and 15) in that the angle ⁇ of the diagonal rows 231a changes.
  • the angle ⁇ of the diagonal rows 231a increases as the diagonal rows 231a move away from the central axis 12a of the light emitting elements 12 in a cross-sectional view.
  • the farther from the center of the metamaterials 23R, 23G, and 23B the greater the angle of incidence of the incident light from the light emitting element 12 (the angle of incidence between the incident light and the optical adjustment layer 14) increases.
  • the angle formed with one surface tends to become larger. Therefore, as described above, it is effective that the angle ⁇ of the diagonal rows 231a increases as the diagonal rows 231a move away from the central axis 12a of the light emitting elements 12 in cross-sectional view.
  • the angle ⁇ of the diagonal rows 231a increases as the diagonal rows 231a move away from the central axis 12a of the light emitting elements 12 in a cross-sectional view.
  • the function of the metamaterials 23R, 23G, and 23B as lenses for light emitted from the light emitting element 12 in a diagonal direction with respect to the central axis 12a can be further improved.
  • FIG. 17 is a cross-sectional view of a display device 107 according to the seventh embodiment.
  • the display device 107 is different from the display device 101 according to the first embodiment in that the display device 107 includes a light emitting element 12W and a color filter 19 instead of the three color light emitting elements 12R, 12G, and 12B.
  • the display device 107 may further include an insulating layer 18.
  • the light emitting element 12W can emit white light.
  • the light emitting element 12W is a white OLED element, and can emit white light under control of a drive circuit or the like.
  • the light emitting element 12W is the same as the light emitting element 12R except that it includes an OLED layer 122W instead of the OLED layer 122R.
  • the OLED layer 122W may be continuously provided across the plurality of light emitting elements 12W within the display region RE1, and may be shared by the plurality of light emitting elements 12W within the display region RE1.
  • the OLED layer 122W can emit white light.
  • the OLED layer 122W may be an OLED layer including a single-layer light-emitting unit, an OLED layer including two-layer light-emitting units (tandem structure), or an OLED layer with a structure other than these. It's okay.
  • the OLED layer including a single-layer light emitting unit includes, for example, a hole injection layer, a hole transport layer, a red light emitting layer, a light emitting separation layer, a blue light emitting layer, and a green light emitting layer from the first electrode 121 to the second electrode 123. It has a structure in which a layer, an electron transport layer, and an electron injection layer are stacked in this order.
  • an OLED layer including a two-layer light emitting unit includes, from the first electrode 121 toward the second electrode 123, a hole injection layer, a hole transport layer, a blue light emitting layer, an electron transport layer, a charge generation layer, and a hole injection layer. It has a structure in which a transport layer, a yellow light-emitting layer, an electron transport layer, and an electron injection layer are laminated in this order.
  • the color filter 19 is provided above the plurality of light emitting elements 12W. More specifically, the color filter 19 is provided on the first surface of the protective layer 13.
  • the color filter 19 includes, for example, a plurality of red filter sections 19FR, a plurality of green filter sections 19FG, and a plurality of blue filter sections 19FB.
  • red filter section 19FR, the green filter section 19FG, and the blue filter section 19FB are collectively referred to without distinction, they may be referred to as the filter section 19F.
  • the plurality of filter parts 19F are two-dimensionally arranged in the in-plane direction.
  • the in-plane direction means the in-plane direction on the first surface of the drive substrate 11.
  • Each filter section 19F is provided above the light emitting element 12W.
  • the red filter section 19FR and the light emitting element 12W constitute a sub pixel 10R
  • the green filter section 19FG and the light emitting element 12W constitute a sub pixel 10G
  • the blue filter section 19FB and the light emitting element 12W constitute a sub pixel 10B. ing.
  • the red filter section 19FR transmits red light among the white light emitted from the light emitting element 12W, but absorbs light other than red light.
  • the green filter section 19FG transmits green light among the white light emitted from the light emitting element 12W, but absorbs light other than green light.
  • the blue filter section 19FB transmits blue light among the white light emitted from the light emitting element 12W, but absorbs light other than blue light.
  • the red filter section 19FR includes, for example, a red color resist.
  • the green filter section 19FG includes, for example, a green color resist.
  • the blue filter section 19FB includes, for example, a blue color resist.
  • the second electrode 123 may be continuously provided across the plurality of light emitting elements 12W within the display region RE1, and may be shared by the plurality of light emitting elements 12W within the display region RE1.
  • the metamaterial 15R may include a plurality of nanostructures 151 having a size equal to or less than the peak wavelength of red light emitted from the red filter section 19FR.
  • the metamaterial 15G may include a plurality of nanostructures 151 having a size equal to or less than the peak wavelength of green light emitted from the green filter section 19FG.
  • the metamaterial 15B may include a plurality of nanostructures 151 having a size equal to or less than the peak wavelength of blue light emitted from the blue filter section 19FB. Note that when the light emitted from the red filter section 19FR, the green filter section 19FG, and the blue filter section 19FB has multiple peaks, the peak wavelength represents the peak wavelength of the largest peak among the multiple peaks. shall be.
  • the insulating layer 18 is provided on the first surface of the drive substrate 11 in a portion between the spaced apart first electrodes 121 .
  • the insulating layer 18 insulates between adjacent first electrodes 121.
  • Insulating layer 18 has a plurality of openings. Each of the plurality of openings is provided corresponding to each light emitting element 12W. More specifically, each of the plurality of openings is provided on the first surface (the surface on the OLED layer 122 side) of each first electrode 121.
  • the first electrode 121 and the OLED layer 122 are in contact with each other through the opening.
  • the insulating layer 18 may be an organic insulating layer, an inorganic insulating layer, or a laminate of these.
  • the organic insulating layer contains, for example, at least one selected from the group consisting of polyimide resin, acrylic resin, novolak resin, and the like.
  • the inorganic insulating layer includes, for example, at least one selected from the group consisting of silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), and the like.
  • the display device 107 according to the seventh embodiment can provide the same effects as the display device 101 according to the first embodiment.
  • configurations, methods, processes, shapes, materials, numerical values, etc. listed in the first to seventh embodiments are merely examples, and configurations, methods, processes, shapes, materials, etc. that differ from these as necessary. and numerical values may also be used.
  • the light emitting element is an OLED element
  • the light emitting element is not limited to this example, and may include an LED (Light Emitting Diode), an inorganic
  • a self-luminous light emitting element such as an electroluminescence (IEL) element or a semiconductor laser element may be used.
  • a display device may be equipped with two or more types of light emitting elements.
  • the light-emitting device is a display device
  • the light-emitting device is not limited to a display device, and may be a lighting device or the like.
  • the display device 101 according to the first embodiment is provided with the light emitting element 12W and the color filter 19 instead of the three color light emitting elements 12R, 12G, and 12B.
  • the present disclosure is not limited to this example, and for example, in the display devices 102, 103, 104, 105, 106 according to the second to seventh embodiments, the three color light emitting elements 12R, 12G, 12B The light emitting element 12W and the color filter 19 may be provided instead.
  • the present disclosure can also adopt the following configuration.
  • the metamaterial includes a plurality of nanostructures arranged two-dimensionally,
  • the plurality of nanostructures include a plurality of separated nanostructures separated in the height direction of the nanostructures,
  • the plurality of separated nanostructures are provided at the outer periphery of a light emitting region corresponding to the light emitting element, Light emitting device.
  • the separation structure nanostructure includes a first separation structure and a second separation structure, and the first separation structure is provided closer to the front than the second separation structure when viewed from the light emitting element.
  • the optical adjustment layer is provided between the light emitting element and the second separation structure, The optical adjustment layer includes the first separation structure.
  • the plurality of nanostructures include a plurality of non-separated nanostructures that are not separated in the height direction of the nanostructures, The plurality of non-separated nanostructures are provided inside the outer periphery of the light emitting region, The light emitting device according to any one of (1) to (3).
  • the plurality of nanostructures include a plurality of nanopillars, The light emitting device according to any one of (1) to (4).
  • the plurality of metamaterials constitute a plurality of metalens, The light emitting device according to any one of (1) to (5).
  • the metamaterial has a function of condensing light emitted from the light emitting element and a function of suppressing transmission of the light to the adjacent light emitting region.
  • the light emitting region is a subpixel;
  • the light emitting device according to any one of (1) to (8).
  • (10) A plurality of light emitting elements arranged two-dimensionally, a plurality of metamaterials provided corresponding to each of the plurality of light emitting elements,
  • the metamaterial includes a plurality of nanostructures,
  • the plurality of nanostructures are three-dimensionally arranged so as to form a step shape descending from the center of the light emitting region corresponding to the light emitting element toward the outer periphery of the light emitting region.
  • (11) The plurality of nanostructures constitute a plurality of layers,
  • (12) the nanostructures included in each layer have the same size;
  • the metamaterial includes a plurality of nanostructures,
  • the plurality of nanostructures are arranged so as to constitute a plurality of diagonal rows in a cross-sectional view, In the cross-sectional view, the diagonal rows are spaced apart from the central axis of the light emitting element as they move away from the light emitting element.
  • the angle ⁇ of the diagonal row with respect to the central axis of the light emitting element increases as the diagonal row moves away from the central axis of the light emitting element.
  • the plurality of nanostructures constitute a plurality of layers, The light emitting device according to (13) or (14).
  • Light emitting device 17.
  • An electronic device comprising the light emitting device according to any one of (1) to (16).
  • a pixel used in the display device according to the present disclosure described above can be configured to include a resonator structure that resonates light generated by a light emitting element.
  • the resonator structure will be explained with reference to the drawings.
  • the first surface of each layer may be referred to as an upper surface.
  • FIG. 18A is a schematic cross-sectional view for explaining a first example of the resonator structure.
  • the light emitting elements 12 provided corresponding to the sub-pixels 10R, 10G, and 10B may be referred to as light emitting elements 12R , 12G , and 12B .
  • portions of the OLED layer 122 corresponding to the sub-pixels 10R, 10G, and 10B may be referred to as an OLED layer 122R , an OLED layer 122G , and an OLED layer 122B .
  • the first electrode 121 is formed to have a common thickness in each light emitting element 12. The same applies to the second electrode 123.
  • a reflective plate 71 is disposed below the first electrode 121 of the light emitting element 12 with an optical adjustment layer 72 sandwiched therebetween.
  • a resonator structure is formed between the reflection plate 71 and the second electrode 123 to resonate the light generated by the OLED layer 122.
  • the optical adjustment layers 72 provided corresponding to the sub-pixels 10R, 10G, and 10B may be referred to as optical adjustment layers 72R , 72G , and 72B .
  • the reflecting plate 71 is formed to have a common thickness in each light emitting element 12.
  • the thickness of the optical adjustment layer 72 varies depending on the color that the pixel should display. By having the optical adjustment layers 72R , 72G , and 72B having different thicknesses, it is possible to set an optical distance that produces optimal resonance for the wavelength of light corresponding to the color to be displayed.
  • the upper surfaces of the reflecting plates 71 in the light emitting elements 12 R , 12 G , and 12 B are arranged so as to be aligned.
  • the thickness of the optical adjustment layer 72 differs depending on the color to be displayed by the pixel, so the position of the upper surface of the second electrode 123 depends on the type of light emitting elements 12 R , 12 G , 12 B. It differs depending on the
  • the reflective plate 71 can be formed using, for example, metals such as aluminum (Al), silver (Ag), copper (Cu), or alloys containing these as main components.
  • the optical adjustment layer 72 is made of an inorganic insulating material such as silicon nitride (SiN x ), silicon oxide (SiO x ), or silicon oxynitride (SiO x N y ), or an organic resin such as acrylic resin or polyimide resin. It can be constructed using materials.
  • the optical adjustment layer 72 may be a single layer or may be a laminated film of a plurality of these materials. Further, the number of laminated layers may differ depending on the type of light emitting element 12.
  • the first electrode 121 can be formed using a transparent conductive material such as indium tin oxide (ITO), indium zinc oxide (IZO), or zinc oxide (ZnO).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • ZnO zinc oxide
  • the second electrode 123 needs to function as a semi-transparent reflective film.
  • the second electrode 123 is formed using magnesium (Mg), silver (Ag), a magnesium silver alloy (MgAg) containing these as main components, or an alloy containing an alkali metal or an alkaline earth metal. be able to.
  • FIG. 18B is a schematic cross-sectional view for explaining a second example of the resonator structure.
  • the first electrode 121 and the second electrode 123 are formed with a common thickness in each light emitting element 12.
  • the reflective plate 71 is arranged under the first electrode 121 of the light emitting element 12 with the optical adjustment layer 72 sandwiched therebetween.
  • a resonator structure is formed between the reflection plate 71 and the second electrode 123 to resonate the light generated by the OLED layer 122.
  • the reflective plate 71 is formed to have a common thickness in each light emitting element 12, and the thickness of the optical adjustment layer 72 differs depending on the color that the pixel should display.
  • the upper surfaces of the reflective plates 71 in the light emitting elements 12 R , 12 G , and 12 B are arranged so as to be aligned, and the upper surfaces of the second electrodes 123 are located in the same position as in the light emitting elements 12 R , 12 G . , 12 differed depending on the type of B.
  • the upper surfaces of the second electrode 123 are arranged so that the upper surfaces of the light emitting elements 12 R , 12 G , and 12 B are aligned.
  • the upper surfaces of the reflectors 71 in the light emitting elements 12 R , 12 G , and 12 B are arranged differently depending on the type of the light emitting elements 12 R , 12 G , and 12 B.
  • the lower surface of the reflecting plate 71 in other words, the upper surface of the base layer (insulating layer) 73
  • the materials constituting the reflecting plate 71, the optical adjustment layer 72, the first electrode 121, and the second electrode 123 are the same as those described in the first example, so their description will be omitted.
  • FIG. 19A is a schematic cross-sectional view for explaining a third example of the resonator structure.
  • the reflection plates 71 provided corresponding to the sub-pixels 10R, 10G, and 10B may be referred to as reflection plates 71R , 71G , and 71B .
  • the first electrode 121 and the second electrode 123 are formed with a common thickness in each light emitting element 12.
  • the reflective plate 71 is disposed below the first electrode 121 of the light emitting element 12 with the optical adjustment layer 72 sandwiched therebetween.
  • a resonator structure that resonates light generated by the OLED layer 122 is formed between the reflection plate 71 and the second electrode 123.
  • the thickness of the optical adjustment layer 72 differs depending on the color that the pixel should display.
  • the positions of the upper surfaces of the second electrodes 123 are arranged to be aligned with the light emitting elements 12 R , 12 G , and 12 B.
  • the lower surface of the reflection plate 71 had a stepped shape depending on the type of light emitting element 12.
  • the film thickness of the reflection plate 71 is set to be different depending on the types of the light emitting elements 12 R , 12 G , and 12 B. More specifically, the film thickness is set so that the lower surfaces of the reflecting plates 71 R , 71 G , and 71 B are aligned.
  • the materials constituting the reflecting plate 71, the optical adjustment layer 72, the first electrode 121, and the second electrode 123 are the same as those described in the first example, so their description will be omitted.
  • FIG. 19B is a schematic cross-sectional view for explaining a fourth example of the resonator structure.
  • the first electrodes 121 provided corresponding to the sub-pixels 10R, 10G, and 10B may be referred to as first electrodes 121R , 121G , and 121B .
  • the first electrode 121 and second electrode 123 of each light emitting element 12 are formed with a common thickness.
  • a reflective plate 71 is disposed below the first electrode 121 of the light emitting element 12 with the optical adjustment layer 72 sandwiched therebetween.
  • the optical adjustment layer 72 is omitted, and the film thickness of the first electrode 121 is set to be different depending on the types of the light emitting elements 12 R , 12 G , and 12 B. .
  • the reflecting plate 71 is formed to have a common thickness in each light emitting element 12.
  • the thickness of the first electrode 121 varies depending on the color that the pixel should display. By having the first electrodes 121 R , 121 G , and 121 B having different thicknesses, it is possible to set an optical distance that produces optimum resonance for the wavelength of light corresponding to the color to be displayed.
  • the materials constituting the reflecting plate 71, the optical adjustment layer 72, the first electrode 121, and the second electrode 123 are the same as those described in the first example, so their description will be omitted.
  • FIG. 20A is a schematic cross-sectional view for explaining a fifth example of the resonator structure.
  • the first electrode 121 and the second electrode 123 are formed with a common thickness in each light emitting element 12.
  • a reflective plate 71 is disposed below the first electrode 121 of the light emitting element 12 with the optical adjustment layer 72 sandwiched therebetween.
  • the optical adjustment layer 72 is omitted, and an oxide film 74 is formed on the surface of the reflection plate 71 instead.
  • the thickness of the oxide film 74 was set to be different depending on the type of the light emitting elements 12 R , 12 G , and 12 B.
  • the oxide films 74 provided corresponding to the sub-pixels 10R, 10G, and 10B may be referred to as oxide films 74R , 74G , and 74B .
  • the thickness of the oxide film 74 varies depending on the color that the pixel should display. By having the oxide films 74 R , 74 G , and 74 B having different thicknesses, it is possible to set an optical distance that produces optimum resonance for the wavelength of light corresponding to the color to be displayed.
  • the oxide film 74 is a film obtained by oxidizing the surface of the reflecting plate 71, and is made of, for example, aluminum oxide, tantalum oxide, titanium oxide, magnesium oxide, zirconium oxide, or the like.
  • the oxide film 74 functions as an insulating film for adjusting the optical path length (optical distance) between the reflection plate 71 and the second electrode 123.
  • the oxide film 74 which has a different thickness depending on the type of the light emitting elements 12R , 12G , and 12B , can be formed, for example, as follows.
  • a container is filled with an electrolytic solution, and the substrate on which the reflective plate 71 is formed is immersed in the electrolytic solution. Further, electrodes are arranged to face the reflecting plate 71.
  • a positive voltage is applied to the reflective plate 71 using the electrode as a reference, and the reflective plate 71 is anodized.
  • the thickness of the oxide film formed by anodic oxidation is proportional to the voltage value applied to the electrode. Therefore, anodic oxidation is performed while applying a voltage depending on the type of light emitting element 12 to each of the reflecting plates 71 R , 71 G , and 71 B. Thereby, oxide films 74 having different thicknesses can be formed all at once.
  • the materials constituting the reflecting plate 71, the first electrode 121, and the second electrode 123 are the same as those described in the first example, so their explanation will be omitted.
  • FIG. 20B is a schematic cross-sectional view for explaining a sixth example of the resonator structure.
  • the light emitting element 12 is configured by laminating a first electrode 121, an OLED layer 122, and a second electrode 123.
  • the first electrode 121 is formed to serve both as an electrode and as a reflector.
  • the first electrode (also serving as a reflection plate) 121 is made of a material having optical constants selected depending on the types of the light emitting elements 12 R , 12 G , and 12 B. By varying the phase shift caused by the first electrode (also serving as a reflecting plate) 121, it is possible to set an optical distance that produces optimum resonance for the wavelength of light corresponding to the color to be displayed.
  • the first electrode (also serving as a reflection plate) 121 can be made of a single metal such as aluminum (Al), silver (Ag), gold (Au), or copper (Cu), or an alloy containing these as main components.
  • the first electrode (cum-reflector) 121R of the light-emitting element 12R is formed of copper (Cu)
  • the first electrode (cum-reflector) 121G of the light - emitting element 12G and the first electrode of the light-emitting element 12B are formed of copper (Cu).
  • (also serving as a reflection plate) 121B may be formed of aluminum.
  • the materials constituting the second electrode 123 are the same as those explained in the first example, so the explanation will be omitted.
  • FIG. 21 is a schematic cross-sectional view for explaining a seventh example of the resonator structure.
  • the seventh example basically has a configuration in which the sixth example is applied to the light emitting elements 12 R and 12 G , and the first example is applied to the light emitting element 12 B. Also in this configuration, it is possible to set an optical distance that produces optimum resonance for the wavelength of light corresponding to the color to be displayed.
  • the first electrodes (cum-reflection plates) 121 R and 121 G used in the light emitting elements 12 R and 12 G are made of a single metal such as aluminum (Al), silver (Ag), gold (Au), copper (Cu), It can be constructed from an alloy containing these as main components.
  • the materials constituting the reflecting plate 71 B , the optical adjustment layer 72 B , and the first electrode 121 B used in the light emitting element 12 B are the same as those described in the first example, so the description thereof will be omitted.
  • Display devices 101, 102, 103, 104, 105, 106, and 107 are used in various electronic devices. May be provided.
  • the display device 101 and the like are particularly suitable for devices that require high resolution and are used close to the eyes, such as electronic viewfinders of video cameras or single-lens reflex cameras, or head-mounted displays.
  • This digital still camera 310 is a single-lens reflex type with interchangeable lenses, and has an interchangeable photographic lens unit (interchangeable lens) 312 approximately in the center of the front of a camera body 311, and on the left side of the front. It has a grip part 313 for the photographer to hold.
  • interchangeable photographic lens unit interchangeable lens
  • a monitor 314 is provided at a position shifted to the left from the center of the back surface of the camera body 311.
  • An electronic viewfinder (eyepiece window) 315 is provided at the top of the monitor 314 . By looking through the electronic viewfinder 315, the photographer can visually recognize the light image of the subject guided from the photographic lens unit 312 and determine the composition.
  • the electronic viewfinder 315 includes any one of the display devices 101 and the like described above.
  • FIG. 23 shows an example of the appearance of the head mounted display 320.
  • the head-mounted display 320 has, for example, ear hooks 322 on both sides of a glasses-shaped display section 321 to be worn on the user's head.
  • the display unit 321 includes any one of the display devices 101 and the like described above.
  • FIG. 24 shows an example of the appearance of the television device 330.
  • This television device 330 has, for example, a video display screen section 331 that includes a front panel 332 and a filter glass 333, and this video display screen section 331 includes any one of the above-described display devices 101 and the like.
  • FIG. 25 shows an example of the appearance of the see-through head-mounted display 340.
  • the see-through head-mounted display 340 includes a main body 341, an arm 342, and a lens barrel 343.
  • the main body portion 341 is connected to the arm 342 and the glasses 350. Specifically, an end of the main body 341 in the long side direction is coupled to the arm 342, and one side of the main body 341 is coupled to the glasses 350 via a connecting member. Note that the main body portion 341 may be directly attached to the human head.
  • the main body section 341 incorporates a control board for controlling the operation of the see-through head-mounted display 340 and a display section.
  • the arm 342 connects the main body portion 341 and the lens barrel 343 and supports the lens barrel 343. Specifically, the arm 342 is coupled to an end of the main body portion 341 and an end of the lens barrel 343, respectively, and fixes the lens barrel 343. Further, the arm 342 has a built-in signal line for communicating data related to an image provided from the main body 341 to the lens barrel 343.
  • the lens barrel 343 projects image light provided from the main body 341 via the arm 342 through the eyepiece 351 toward the eyes of the user wearing the see-through head-mounted display 340.
  • the display section of the main body section 341 includes one of the display devices 101 and the like described above.
  • FIG. 26 shows an example of the appearance of the smartphone 360.
  • the smartphone 360 includes a display section 361 that displays various information, and an operation section 362 that includes buttons and the like that accept operation inputs from the user.
  • the display unit 361 includes any one of the display devices 101 and the like described above.
  • the display device 101 and the like described above may be included in various displays provided in a vehicle.
  • FIGS. 27A and 27B are diagrams showing an example of the internal configuration of a vehicle 500 equipped with various displays. Specifically, FIG. 27A is a diagram showing an example of the interior of the vehicle 500 from the rear to the front of the vehicle 500, and FIG. 27B is a diagram showing an example of the interior of the vehicle 500 from the diagonal rear to the diagonal front of the vehicle 500. It is a figure showing an example.
  • the vehicle 500 includes a center display 501, a console display 502, a head-up display 503, a digital rear mirror 504, a steering wheel display 505, and a rear entertainment display 506. At least one of these displays includes one of the display devices 101 and the like described above. For example, all of these displays may include one of the display devices 101 and the like described above.
  • the center display 501 is arranged on a part of the dashboard facing the driver's seat 508 and the passenger seat 509.
  • FIGS. 27A and 27B show an example of a horizontally long center display 501 extending from the driver's seat 508 side to the passenger seat 509 side
  • the screen size and placement location of the center display 501 are arbitrary.
  • Center display 501 can display information detected by various sensors. As a specific example, the center display 501 displays images taken by an image sensor, distance images to obstacles in front and sides of the vehicle 500 measured by a ToF sensor, and passenger body temperature detected by an infrared sensor. etc. can be displayed.
  • Center display 501 can be used, for example, to display at least one of safety-related information, operation-related information, life log, health-related information, authentication/identification-related information, and entertainment-related information.
  • Safety-related information includes information such as detection of falling asleep, detection of looking away, detection of mischief by children in the same vehicle, presence or absence of seatbelts, and detection of leaving passengers behind. This information is detected by The operation-related information uses sensors to detect gestures related to operations by the occupant.
  • the sensed gestures may include manipulation of various equipment within vehicle 500. For example, the operation of air conditioning equipment, navigation equipment, AV equipment, lighting equipment, etc. is detected.
  • the life log includes life logs of all crew members. For example, a life log includes a record of the actions of each occupant during the ride. By acquiring and saving life logs, it is possible to check the condition of the occupants at the time of the accident.
  • the body temperature of the occupant is detected using a sensor such as a temperature sensor, and the health condition of the occupant is estimated based on the detected body temperature.
  • a sensor such as a temperature sensor
  • an image sensor may be used to capture an image of the occupant's face, and the occupant's health condition may be estimated from the captured facial expression.
  • Authentication/identification related information includes a keyless entry function that performs facial recognition using a sensor, and a function that automatically adjusts seat height and position using facial recognition.
  • the entertainment-related information includes a function that uses a sensor to detect operation information of an AV device by a passenger, a function that recognizes the passenger's face using a sensor, and provides the AV device with content suitable for the passenger.
  • the console display 502 can be used, for example, to display life log information.
  • Console display 502 is arranged near shift lever 511 on center console 510 between driver's seat 508 and passenger seat 509.
  • the console display 502 can also display information detected by various sensors. Further, the console display 502 may display an image around the vehicle captured by an image sensor, or may display a distance image to an obstacle around the vehicle.
  • the head-up display 503 is virtually displayed behind the windshield 512 in front of the driver's seat 508.
  • Head-up display 503 can be used, for example, to display at least one of safety-related information, operation-related information, life log, health-related information, authentication/identification-related information, and entertainment-related information. Since the head-up display 503 is often virtually placed in front of the driver's seat 508, it is difficult to display information directly related to the operation of the vehicle 500, such as the speed of the vehicle 500 and the remaining amount of fuel (battery). Are suitable.
  • the digital rear mirror 504 can display not only the rear of the vehicle 500 but also the state of the occupants in the rear seats. Therefore, by arranging a sensor on the back side of the digital rear mirror 504, it can be used for displaying life log information, for example. be able to.
  • the steering wheel display 505 is placed near the center of the steering wheel 513 of the vehicle 500.
  • Steering wheel display 505 can be used, for example, to display at least one of safety-related information, operation-related information, lifelog, health-related information, authentication/identification-related information, and entertainment-related information.
  • life log information such as the driver's body temperature, and information regarding the operation of AV equipment, air conditioning equipment, etc. There is.
  • the rear entertainment display 506 is attached to the back side of the driver's seat 508 and passenger seat 509, and is for viewing by passengers in the rear seats.
  • Rear entertainment display 506 can be used, for example, to display at least one of safety-related information, operation-related information, lifelog, health-related information, authentication/identification-related information, and entertainment-related information.
  • information relevant to the rear seat occupant is displayed. For example, information regarding the operation of the AV device or air conditioning equipment may be displayed, or the results of measuring the body temperature of the passenger in the rear seat using a temperature sensor may be displayed.
  • a configuration may also be adopted in which a sensor is placed on the back side of the display device 101 etc. so that the distance to objects existing in the surroundings can be measured.
  • optical distance measurement methods There are two main types of optical distance measurement methods: passive and active.
  • a passive type sensor measures distance by receiving light from an object without emitting light from the sensor to the object.
  • Passive types include lens focusing, stereo, and monocular viewing.
  • the active type measures distance by projecting light onto an object and receiving the reflected light from the object with a sensor.
  • Active types include an optical radar method, an active stereo method, a photometric stereo method, a moiré topography method, and an interferometry method.
  • the display device 101 and the like described above can be applied to any of these methods of distance measurement. By using a sensor placed overlappingly on the back side of the display device 101 or the like, the above-mentioned passive or active distance measurement can be performed.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Provided is a light-emitting device comprising a meta-material having a function other than a light-condensing effect. The light-emitting device comprises: a plurality of light-emitting elements disposed in a two-dimensional manner; and a plurality of meta-materials provided to respectively correspond to the plurality of light-emitting elements. The meta-materials include a plurality of nano-structures disposed in a two-dimensional manner. The plurality of nano-structures include a plurality of separation-structured nano-structures which are separated in the height direction of the plurality of nano-structures. The plurality of separation-structured nano-structures are provided to the outer peripheral portions of light-emitting regions corresponding to the light-emitting elements.

Description

発光装置および電子機器Light emitting devices and electronic equipment
 本開示は、発光装置およびそれを備える電子機器に関する。 The present disclosure relates to a light emitting device and an electronic device including the same.
 発光装置の技術分野においては、光の波長以下の構造体でレンズを形成するメタレンズ技術は広く知られている。メタレンズの主な機能として、光の位相を制御することによる集光効果が挙げられる。例えば特許文献1には、複数のナノ構造が単層で封入層上に形成されることにより、複数のナノレンズが構成されているディスプレイ装置が開示されている。 In the technical field of light emitting devices, metalens technology, in which lenses are formed from structures with a wavelength smaller than that of light, is widely known. The main function of metalens is the light focusing effect by controlling the phase of light. For example, Patent Document 1 discloses a display device in which a plurality of nanolenses are configured by forming a plurality of nanostructures in a single layer on an encapsulation layer.
国際公開第2018/222688号パンフレットInternational Publication No. 2018/222688 pamphlet
 次世代のメタレンズとしては、集光効果のみではなく、他の機能も有するものが望まれている。しかしながら、特許文献1に記載のナノレンズでは、集光効果以外の機能を得ることは困難である。 The next generation of metalens is desired to have not only a light-gathering effect but also other functions. However, with the nanolens described in Patent Document 1, it is difficult to obtain functions other than the light focusing effect.
 本開示の目的は、集光効果以外の機能を有するメタマテリアルを備える発光装置およびそれを備える電子機器を提供することにある。 An object of the present disclosure is to provide a light-emitting device including a metamaterial having a function other than a light-gathering effect, and an electronic device including the same.
 上述の課題を解決するために、本開示に係る第1の発光装置は、
 2次元配置された複数の発光素子と、
 複数の発光素子のそれぞれに対応して設けられた複数のメタマテリアルと
 を備え、
 メタマテリアルは、2次元配置された複数のナノ構造体を含み、
 複数のナノ構造体は、ナノ構造体の高さ方向に分離された複数の分離構造ナノ構造体を含み、
 複数の分離構造ナノ構造体は、発光素子に対応する発光領域の外周部に設けられている。
In order to solve the above problems, a first light emitting device according to the present disclosure includes:
A plurality of light emitting elements arranged two-dimensionally,
and a plurality of metamaterials provided corresponding to each of the plurality of light emitting elements,
The metamaterial includes multiple nanostructures arranged in two dimensions,
The plurality of nanostructures include a plurality of separated structural nanostructures separated in the height direction of the nanostructures,
The plurality of separated nanostructures are provided at the outer periphery of the light emitting region corresponding to the light emitting element.
 本開示に係る第2の発光装置は、
 2次元配置された複数の発光素子と、
 複数の発光素子のそれぞれに対応して設けられた複数のメタマテリアルと
 を備え、
 メタマテリアルは、複数のナノ構造体を含み、
 複数のナノ構造体は、発光素子に対応する発光領域の中心から発光領域の外周に向かって下降する階段状をなすように、3次元配置されている。
The second light emitting device according to the present disclosure includes:
A plurality of light emitting elements arranged two-dimensionally,
and a plurality of metamaterials provided corresponding to each of the plurality of light emitting elements,
Metamaterials include multiple nanostructures,
The plurality of nanostructures are three-dimensionally arranged so as to form a staircase shape descending from the center of the light emitting region corresponding to the light emitting element toward the outer periphery of the light emitting region.
 本開示に係る第3の発光装置は、
 2次元配置された複数の発光素子と、
 複数の発光素子のそれぞれに対応して設けられた複数のメタマテリアルと
 を備え、
 メタマテリアルは、複数のナノ構造体を含み、
 複数のナノ構造体は、断面視において、複数の斜め方向の列を構成するように配置され、
 斜め方向の列は、断面視において、発光素子から離れるに従って発光素子の中心軸から離隔している。
The third light emitting device according to the present disclosure includes:
A plurality of light emitting elements arranged two-dimensionally,
and a plurality of metamaterials provided corresponding to each of the plurality of light emitting elements,
Metamaterials include multiple nanostructures,
The plurality of nanostructures are arranged so as to constitute a plurality of diagonal rows in a cross-sectional view,
The diagonal rows become further apart from the central axis of the light emitting element as they get farther away from the light emitting element in cross-sectional view.
 本開示に係る第4の発光装置は、
 2次元配置された複数の発光素子と、
 複数の発光素子のそれぞれに対応して設けられた複数のメタマテリアルと
 を備え、
 メタマテリアルは、2次元配置された複数のナノ構造体を含み、
 複数のナノ構造体は、複数の第1ナノ構造体と複数の第2ナノ構造体とを含み、
 複数の第2ナノ構造体は、発光素子に対応する発光領域の外周部に設けられ、
 複数の第1ナノ構造体は、外周部の内側に設けられ、
 第2ナノ構造体の底部は、第1ナノ構造体の底部よりも高い位置に位置している。
A fourth light emitting device according to the present disclosure includes:
A plurality of light emitting elements arranged two-dimensionally,
and a plurality of metamaterials provided corresponding to each of the plurality of light emitting elements,
The metamaterial includes multiple nanostructures arranged in two dimensions,
The plurality of nanostructures include a plurality of first nanostructures and a plurality of second nanostructures,
The plurality of second nanostructures are provided at the outer periphery of the light emitting region corresponding to the light emitting element,
The plurality of first nanostructures are provided inside the outer peripheral part,
The bottom of the second nanostructure is located higher than the bottom of the first nanostructure.
 本開示に係る電子機器は、第1の発光装置、第2の発光装置、第3の発光装置または第4の発光装置を備える。 An electronic device according to the present disclosure includes a first light-emitting device, a second light-emitting device, a third light-emitting device, or a fourth light-emitting device.
図1は、第1の実施形態に係る表示装置の平面図である。FIG. 1 is a plan view of a display device according to a first embodiment. 図2A、図2Bは、表示領域の一部を拡大して表す平面図である。FIGS. 2A and 2B are plan views showing enlarged portions of the display area. 図3A、図3Bは、表示領域の一部を拡大して表す平面図である。3A and 3B are plan views showing a portion of the display area in an enlarged manner. 図4は、図2AのIV-IV線に沿った断面図である。FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 2A. 図5は、図4のV-V線に沿った断面図である。FIG. 5 is a sectional view taken along line VV in FIG. 4. 図6A、図6B、図6C、図6Dは、第1の実施形態に係る表示装置の製造方法を説明するための工程図である。6A, FIG. 6B, FIG. 6C, and FIG. 6D are process diagrams for explaining the method for manufacturing the display device according to the first embodiment. 図7A、図7B、図7Cは、第1の実施形態に係る表示装置の製造方法を説明するための工程図である。7A, FIG. 7B, and FIG. 7C are process diagrams for explaining the method for manufacturing the display device according to the first embodiment. 図8A、図8B、図8Cは、第1の実施形態に係る表示装置の製造方法を説明するための工程図である。8A, FIG. 8B, and FIG. 8C are process diagrams for explaining the method for manufacturing the display device according to the first embodiment. 図9は、第2の実施形態に係る表示装置の断面図である。FIG. 9 is a cross-sectional view of a display device according to the second embodiment. 図10は、第3の実施形態に係る表示装置の断面図である。FIG. 10 is a cross-sectional view of a display device according to a third embodiment. 図11は、第4の実施形態に係る表示装置の断面図である。FIG. 11 is a cross-sectional view of a display device according to a fourth embodiment. 図12は、図11のXII-XII線に沿った断面図である。FIG. 12 is a cross-sectional view taken along line XII-XII in FIG. 11. 図13は、比較例に係る表示装置の断面図である。FIG. 13 is a cross-sectional view of a display device according to a comparative example. 図14は、第5の実施形態に係る表示装置の断面図である。FIG. 14 is a cross-sectional view of a display device according to a fifth embodiment. 図15は、図14の一部を拡大して表す断面図である。FIG. 15 is an enlarged cross-sectional view of a part of FIG. 14. 図16は、第6の実施形態に係る表示装置の断面図である。FIG. 16 is a cross-sectional view of a display device according to a sixth embodiment. 図17は、第7の実施形態に係る表示装置の断面図である。FIG. 17 is a cross-sectional view of a display device according to a seventh embodiment. 図18Aは、共振器構造の第1例を説明するための模式的な断面図である。図18Bは、共振器構造の第2例を説明するための模式的な断面図である。FIG. 18A is a schematic cross-sectional view for explaining a first example of the resonator structure. FIG. 18B is a schematic cross-sectional view for explaining a second example of the resonator structure. 図19Aは、共振器構造の第3例を説明するための模式的な断面図である。図19Bは、共振器構造の第4例を説明するための模式的な断面図である。FIG. 19A is a schematic cross-sectional view for explaining a third example of the resonator structure. FIG. 19B is a schematic cross-sectional view for explaining a fourth example of the resonator structure. 図20Aは、共振器構造の第5例を説明するための模式的な断面図である。図20Bは、共振器構造の第6例を説明するための模式的な断面図である。FIG. 20A is a schematic cross-sectional view for explaining a fifth example of the resonator structure. FIG. 20B is a schematic cross-sectional view for explaining a sixth example of the resonator structure. 図21は、共振器構造の第7例を説明するための模式的な断面図であるFIG. 21 is a schematic cross-sectional view for explaining the seventh example of the resonator structure. 図22Aは、デジタルスチルカメラの正面図である。図22Bは、デジタルスチルカメラの背面図である。FIG. 22A is a front view of the digital still camera. FIG. 22B is a rear view of the digital still camera. 図23は、ヘッドマウントディスプレイの斜視図である。FIG. 23 is a perspective view of the head mounted display. 図24は、テレビジョン装置の斜視図である。FIG. 24 is a perspective view of the television device. 図25は、シースルーヘッドマウントディスプレイの斜視図である。FIG. 25 is a perspective view of the see-through head mounted display. 図26は、スマートフォンの斜視図である。FIG. 26 is a perspective view of the smartphone. 図27Aは、乗物の後方から前方にかけての乗物の内部の様子を示す図である。図27Bは、乗物の斜め後方から斜め前方にかけての乗物の内部の様子を示す図である。FIG. 27A is a diagram showing the inside of the vehicle from the rear to the front of the vehicle. FIG. 27B is a diagram showing the interior of the vehicle from diagonally rearward to diagonally forward.
 本開示の実施形態について図面を参照しながら以下の順序で説明する。なお、以下の実施形態の全図においては、同一または対応する部分には同一の符号を付す。
 1 第1の実施形態(表示装置の例)
 2 第2の実施形態(表示装置の例)
 3 第3の実施形態(表示装置の例)
 4 第4の実施形態(表示装置の例)
 5 第5の実施形態(表示装置の例)
 6 第6の実施形態(表示装置の例)
 7 第7の実施形態(表示装置の例)
 8 変形例
 9 シミュレーションにより解析例
 10 各実施形態に適用される共振器構造の例
 11 応用例
Embodiments of the present disclosure will be described in the following order with reference to the drawings. In addition, in all the figures of the following embodiment, the same code|symbol is attached to the same or corresponding part.
1 First embodiment (example of display device)
2 Second embodiment (example of display device)
3 Third embodiment (example of display device)
4 Fourth embodiment (example of display device)
5 Fifth embodiment (example of display device)
6 Sixth embodiment (example of display device)
7 Seventh embodiment (example of display device)
8 Modified Examples 9 Analysis Examples by Simulation 10 Examples of Resonator Structures Applied to Each Embodiment 11 Application Examples
<1 第1の実施形態>
[表示装置101の構成]
 図1は、第1の実施形態に係る表示装置101の平面図である。表示装置101は、表示領域RE1と、表示領域RE1の周辺に設けられた周辺領域RE2とを有する。本明細書において、表示領域RE1の水平方向を水平方向D、表示領域RE1の垂直方向を垂直方向Dという。また、水平方向Dおよび垂直方向Dの両方向に垂直で、かつ、表示面から離れる方向を正面方向Dzという。
<1 First embodiment>
[Configuration of display device 101]
FIG. 1 is a plan view of a display device 101 according to the first embodiment. The display device 101 has a display area RE1 and a peripheral area RE2 provided around the display area RE1. In this specification, the horizontal direction of the display area RE1 is referred to as a horizontal direction DX , and the vertical direction of the display area RE1 is referred to as a vertical direction DY . Further, a direction perpendicular to both the horizontal direction DX and the vertical direction DY and away from the display surface is referred to as a front direction Dz.
 図2Aは、表示領域RE1の一部を拡大して表す平面図である。複数のサブ画素10R、10G、10Bが、表示領域RE1内に規定の配置パターンで2次元配置されている。図2Aでは、規定の配置パターンがストライプ配列である例が示されている。規定の配置パターンは、ストライプ配列に限定されるものではなく、モザイク配列(図2B参照)、正方配列(図3A参照)、デルタ配列(図3B参照)またはこれら以外の配列であってもよい。パッド部101aおよび映像表示用のドライバ(図示せず)等が、周辺領域RE2に設けられている。図示しないフレキシブルプリント配線基板(Flexible Printed Circuit:FPC)が、パッド部101aに接続されてもよい。 FIG. 2A is an enlarged plan view of a part of the display area RE1. A plurality of sub-pixels 10R, 10G, and 10B are two-dimensionally arranged in a prescribed arrangement pattern within the display region RE1. FIG. 2A shows an example in which the prescribed arrangement pattern is a striped arrangement. The prescribed arrangement pattern is not limited to a stripe arrangement, but may be a mosaic arrangement (see FIG. 2B), a square arrangement (see FIG. 3A), a delta arrangement (see FIG. 3B), or other arrangement. A pad portion 101a, a driver for displaying an image (not shown), and the like are provided in the peripheral region RE2. A flexible printed circuit (FPC) (not shown) may be connected to the pad portion 101a.
 サブ画素10Rは、赤色光(第1光)を発光することができる。サブ画素10Gは、緑色光(第2光)を発光することができる。サブ画素10Bは、青色光(第3光)を発光することができる。図2A、図2B、図3Aおよび図3B中にて記号「R」、「G」、「B」が付された区画はそれぞれ、サブ画素10R、サブ画素10G、サブ画素10Bを表している。 The sub-pixel 10R can emit red light (first light). The sub-pixel 10G can emit green light (second light). The sub-pixel 10B can emit blue light (third light). In FIGS. 2A, 2B, 3A, and 3B, the sections marked with symbols "R," "G," and "B" represent sub-pixel 10R, sub-pixel 10G, and sub-pixel 10B, respectively.
 以下の説明において、サブ画素10R、10G、10Bを特に区別せず総称する場合には、サブ画素10ということがある。1画素(1ピクセル)10Pxは、例えば、隣接する複数のサブ画素10R、10G、10B、または隣接する複数のサブ画素10R、10G、10B、10Bにより構成されている。 In the following description, the sub-pixels 10R, 10G, and 10B may be referred to collectively as the sub-pixel 10 without any particular distinction. One pixel (one pixel) 10Px is composed of, for example, a plurality of adjacent sub-pixels 10R, 10G, 10B, or a plurality of adjacent sub-pixels 10R, 10G, 10B, 10B.
 サブ画素10の形状は特に限定されるものではないが、例示するならば、平面視において長方形状等の四角形状または六角形状等が挙げられるが、これらの形状に限定されるものではない。本明細書において、長方形状には、正方形状も含まれるものとする。なお、図2A、図2Bおよび図3Aでは、サブ画素10が平面視において四角形状を有する例が示され、図3Bでは、サブ画素10が平面視において六角形状を有する例が示されている。サブ画素10のサイズの上限値は、好ましくは10μm以下、より好ましくは8μm以下、さらにより好ましくは5μm以下、4μm以下または3.5μm以下である。サブ画素10のサイズの下限値は、例えば1μm以上である。 The shape of the sub-pixel 10 is not particularly limited, but examples thereof include a rectangular shape or a hexagonal shape when viewed from above, but the shape is not limited to these shapes. In this specification, the rectangular shape includes a square shape. Note that FIGS. 2A, 2B, and 3A show examples in which the sub-pixels 10 have a rectangular shape in a plan view, and FIG. 3B shows an example in which the sub-pixels 10 have a hexagonal shape in a plan view. The upper limit of the size of the sub-pixel 10 is preferably 10 μm or less, more preferably 8 μm or less, even more preferably 5 μm or less, 4 μm or less, or 3.5 μm or less. The lower limit of the size of the sub-pixel 10 is, for example, 1 μm or more.
 表示装置101は、発光装置の一例である。表示装置101は、トップエミッション方式のOLED表示装置であってもよい。表示装置101は、マイクロディスプレイであってもよい。表示装置101は、VR(Virtual Reality)装置、MR(Mixed Reality)装置、AR(Augmented Reality)装置、電子ビューファインダ(Electronic View Finder:EVF)または小型プロジェクタ等に備えられてもよい。 The display device 101 is an example of a light emitting device. The display device 101 may be a top emission type OLED display device. Display device 101 may be a microdisplay. The display device 101 may be included in a VR (Virtual Reality) device, an MR (Mixed Reality) device, an AR (Augmented Reality) device, an electronic view finder (EVF), a small projector, or the like.
 図4は、図2AのIV-IV線に沿った断面図である。表示装置101は、駆動基板11と、複数の発光素子(第1発光素子)12Rと、複数の発光素子(第2発光素子)12Gと、複数の発光素子(第3発光素子)12Bと、保護層13と、光学調整層14と、複数のメタマテリアル15Rと、複数のメタマテリアル15Gと、複数のメタマテリアル15Bと、低屈折率層16と、カバー層17とを備える。なお、低屈折率層16およびカバー層17は、必要に応じて備えられるものであり、備えられていなくてもよい。 FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 2A. The display device 101 includes a drive substrate 11, a plurality of light emitting elements (first light emitting element) 12R, a plurality of light emitting elements (second light emitting element) 12G, a plurality of light emitting elements (third light emitting element) 12B, and a protective layer. It includes a layer 13, an optical adjustment layer 14, a plurality of metamaterials 15R, a plurality of metamaterials 15G, a plurality of metamaterials 15B, a low refractive index layer 16, and a cover layer 17. Note that the low refractive index layer 16 and the cover layer 17 are provided as necessary, and do not need to be provided.
 本明細書において、表示装置101を構成する各層の両面のうち、表示装置101のトップ側(表示面側)となる面を第1面といい、表示装置101のボトム側(表示面とは反対側)となる面を第2面ということがある。本明細書において、平面視とは、第1面に対して垂直な正面方向Dから対象物が見られたときの平面視を意味する。 In this specification, of both surfaces of each layer constituting the display device 101, the surface that is the top side (display surface side) of the display device 101 is referred to as the first surface, and the bottom side (opposite to the display surface) of the display device 101 is referred to as the first surface. The side) is sometimes referred to as the second side. In this specification, a planar view means a planar view when the object is viewed from the front direction DZ perpendicular to the first surface.
 以下の説明において、発光素子12R、12G、12Bを特に区別せず総称する場合には、発光素子12ということがある。同様に、メタマテリアル15R、15G、15Bを特に区別せず総称する場合には、メタマテリアル15ということがある。 In the following description, when the light emitting elements 12R, 12G, and 12B are collectively referred to without particular distinction, they may be referred to as the light emitting elements 12. Similarly, when the metamaterials 15R, 15G, and 15B are collectively referred to without particular distinction, they may be referred to as the metamaterial 15.
(駆動基板11)
 駆動基板11は、いわゆるバックプレーンであり、複数の発光素子12R、12G、12Bを駆動する。駆動基板11は、例えば、基板と、絶縁層とを順に備える。
(Drive board 11)
The drive board 11 is a so-called backplane, and drives a plurality of light emitting elements 12R, 12G, and 12B. The drive substrate 11 includes, for example, a substrate and an insulating layer in this order.
 複数の駆動回路および複数の配線(いずれも図示せず)等が、基板の第1面に設けられていてもよい。基板は、例えば、トランジスタ等の形成が容易な半導体で構成されてもよいし、水分および酸素の透過性が低いガラスまたは樹脂で構成されてもよい。具体的には、基板は、半導体基板、ガラス基板または樹脂基板等であってもよい。半導体基板は、例えば、アモルファスシリコン、多結晶シリコンまたは単結晶シリコン等を含む。ガラス基板は、例えば、高歪点ガラス、ソーダガラス、ホウケイ酸ガラス、フォルステライト、鉛ガラスまたは石英ガラス等を含む。樹脂基板は、例えば、ポリメチルメタクリレート、ポリビニルアルコール、ポリビニルフェノール、ポリエーテルスルホン、ポリイミド、ポリカーボネート、ポリエチレンテレフタラートおよびポリエチレンナフタレート等からなる群より選ばれた少なくとも1種を含む。 A plurality of drive circuits, a plurality of wirings (none of which are shown), etc. may be provided on the first surface of the substrate. The substrate may be made of, for example, a semiconductor with which transistors and the like can be easily formed, or may be made of glass or resin that has low moisture and oxygen permeability. Specifically, the substrate may be a semiconductor substrate, a glass substrate, a resin substrate, or the like. The semiconductor substrate includes, for example, amorphous silicon, polycrystalline silicon, single crystal silicon, or the like. The glass substrate includes, for example, high strain point glass, soda glass, borosilicate glass, forsterite, lead glass, or quartz glass. The resin substrate includes, for example, at least one selected from the group consisting of polymethyl methacrylate, polyvinyl alcohol, polyvinylphenol, polyether sulfone, polyimide, polycarbonate, polyethylene terephthalate, polyethylene naphthalate, and the like.
 絶縁層は、基板の第1面に設けられ、複数の駆動回路および複数の配線等を覆い、駆動基板11の第1面を平坦化してもよい。絶縁層は、基板の第1面に設けられた複数の駆動回路および複数の配線等と、複数の発光素子12の間を絶縁してもよい。 The insulating layer may be provided on the first surface of the substrate, cover the plurality of drive circuits, the plurality of wirings, etc., and flatten the first surface of the drive substrate 11. The insulating layer may insulate between the plurality of drive circuits, the plurality of wirings, etc. provided on the first surface of the substrate and the plurality of light emitting elements 12.
 絶縁層は、有機絶縁層であってもよいし、無機絶縁層であってもよし、これらの積層体であってもよい。有機絶縁層は、例えば、ポリイミド系樹脂、アクリル系樹脂およびノボラック系樹脂等からなる群より選ばれた少なくとも1種を含む。無機絶縁層は、例えば、酸化シリコン(SiO)、窒化シリコン(SiN)および酸窒化シリコン(SiO)等からなる群より選ばれた少なくとも1種を含む。 The insulating layer may be an organic insulating layer, an inorganic insulating layer, or a laminate of these. The organic insulating layer contains, for example, at least one selected from the group consisting of polyimide resin, acrylic resin, novolak resin, and the like. The inorganic insulating layer includes, for example, at least one selected from the group consisting of silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), and the like.
(発光素子12R、12G、12B)
 発光素子12Rの発光光の色、発光素子12Gの発光光の色および発光素子12Bの発光光の色は異なっている。発光素子12Rは、駆動回路等の制御に基づき、赤色光を発光することができる。発光素子12Gは、駆動回路等の制御に基づき、緑色光を発光することができる。発光素子12Bは、駆動回路等の制御に基づき、青色光を発光することができる。発光素子12は、OLED(Organic Light Emitting Diode)素子である。
( Light emitting elements 12R, 12G, 12B)
The color of the light emitted by the light emitting element 12R, the color of the light emitted by the light emitting element 12G, and the color of the light emitted by the light emitting element 12B are different. The light emitting element 12R can emit red light under control of a drive circuit or the like. The light emitting element 12G can emit green light under control of a drive circuit or the like. The light emitting element 12B can emit blue light under control of a drive circuit or the like. The light emitting element 12 is an OLED (Organic Light Emitting Diode) element.
 発光素子12Rは、サブ画素10Rに含まれる。発光素子12Gは、サブ画素10Gに含まれる。発光素子12Bは、サブ画素10Bに含まれる。サブ画素10Rは、発光素子12Rに対応する発光領域の一例である。サブ画素10Gは、発光素子12Gに対応する発光領域の一例である。サブ画素10Bは、発光素子12Bに対応する発光領域の一例である。 The light emitting element 12R is included in the sub-pixel 10R. The light emitting element 12G is included in the sub-pixel 10G. The light emitting element 12B is included in the sub-pixel 10B. The sub-pixel 10R is an example of a light emitting region corresponding to the light emitting element 12R. The sub-pixel 10G is an example of a light emitting region corresponding to the light emitting element 12G. The sub-pixel 10B is an example of a light emitting region corresponding to the light emitting element 12B.
 複数の発光素子12は、規定の配置パターンで駆動基板11の第1面上に2次元配置されている。規定の配置パターンは、複数のサブ画素10の規定の配置パターンとして説明したとおりである。 The plurality of light emitting elements 12 are two-dimensionally arranged on the first surface of the drive substrate 11 in a prescribed arrangement pattern. The prescribed arrangement pattern is as described as the prescribed arrangement pattern of the plurality of sub-pixels 10.
 発光素子12Rは、第1電極121と、OLED層122Rと、第2電極123とを順に駆動基板11の第1面上に備える。発光素子12Gは、第1電極121と、OLED層122Gと、第2電極123とを順に駆動基板11の第1面上に備える。発光素子12Bは、第1電極121と、OLED層122Bと、第2電極123とを順に駆動基板11の第1面上に備える。 The light emitting element 12R includes a first electrode 121, an OLED layer 122R, and a second electrode 123 on the first surface of the drive substrate 11 in this order. The light emitting element 12G includes a first electrode 121, an OLED layer 122G, and a second electrode 123 on the first surface of the drive substrate 11 in this order. The light emitting element 12B includes a first electrode 121, an OLED layer 122B, and a second electrode 123 on the first surface of the drive substrate 11 in this order.
(OLED層122R、122G、122B)
 OLED層122Rは、赤色光を発光することができる。OLED層122Gは、緑色光を発光することができる。OLED層122Bは、青色光を発光することができる。
(OLED layers 122R, 122G, 122B)
The OLED layer 122R can emit red light. The OLED layer 122G can emit green light. OLED layer 122B can emit blue light.
 OLED層122R、122G、122Bはそれぞれ、第1電極121と第2電極123の間に設けられている。OLED層122Rは、赤色光を発光することができる有機発光層(以下「赤色の有機発光層」という。)を含む。OLED層122Rは、緑色光を発光することができる有機発光層(以下「緑色の有機発光層」という。)を含む。OLED層122Bは、青色光を発光することができる有機発光層(以下「青色の有機発光層」という。)を含む。以下の説明において、OLED層122R、122G、112B特に区別せず総称する場合には、単にOLED層122ということがある。また、赤色の有機発光層、緑色の有機発光層および青色の発光層を特に区別せず総称する場合には、単に有機発光層ということがある。 The OLED layers 122R, 122G, and 122B are provided between the first electrode 121 and the second electrode 123, respectively. The OLED layer 122R includes an organic light emitting layer (hereinafter referred to as "red organic light emitting layer") capable of emitting red light. The OLED layer 122R includes an organic light emitting layer (hereinafter referred to as "green organic light emitting layer") capable of emitting green light. The OLED layer 122B includes an organic light-emitting layer (hereinafter referred to as "blue organic light-emitting layer") that can emit blue light. In the following description, when the OLED layers 122R, 122G, and 112B are collectively referred to without particular distinction, they may simply be referred to as the OLED layer 122. Furthermore, when the red organic light-emitting layer, the green organic light-emitting layer, and the blue light-emitting layer are collectively referred to without particular distinction, they may simply be referred to as an organic light-emitting layer.
 OLED層122R、122G、112Bは、有機発光層を含む積層体により構成されてもよく、その場合、積層体のうちの一部の層(例えば電子注入層)が無機層であってもよい。OLED層122Rは、例えば、第1電極121から第2電極123に向かって、正孔注入層、正孔輸送層、赤色の有機発光層、電子輸送層、電子注入層を順に備える。OLED層122Gは、例えば、第1電極121から第2電極123に向かって、正孔注入層、正孔輸送層、緑色の有機発光層、電子輸送層、電子注入層を順に備える。OLED層122Gは、例えば、第1電極121から第2電極123に向かって、正孔注入層、正孔輸送層、青色の有機発光層、電子輸送層、電子注入層を順に備える。 The OLED layers 122R, 122G, and 112B may be composed of a laminate including an organic light-emitting layer, and in that case, some layers (for example, an electron injection layer) of the laminate may be an inorganic layer. The OLED layer 122R includes, for example, a hole injection layer, a hole transport layer, a red organic light emitting layer, an electron transport layer, and an electron injection layer in this order from the first electrode 121 to the second electrode 123. The OLED layer 122G includes, for example, a hole injection layer, a hole transport layer, a green organic light emitting layer, an electron transport layer, and an electron injection layer in this order from the first electrode 121 to the second electrode 123. The OLED layer 122G includes, for example, a hole injection layer, a hole transport layer, a blue organic light emitting layer, an electron transport layer, and an electron injection layer in this order from the first electrode 121 to the second electrode 123.
 赤色の有機発光層は、第1電極121から注入された正孔と第2電極123から注入された電子との再結合により、赤色光を発光することができる。緑色の有機発光層は、上記の赤色有機発光層と同様の現象により、緑色光を発光することができる。青色の有機発光層は、上記の赤色有機発光層と同様の現象により、青色光を発光することができる。 The red organic light emitting layer can emit red light by recombining holes injected from the first electrode 121 and electrons injected from the second electrode 123. The green organic light emitting layer can emit green light due to the same phenomenon as the red organic light emitting layer described above. The blue organic light emitting layer can emit blue light due to the same phenomenon as the red organic light emitting layer described above.
 正孔注入層は、各色の有機発光層への正孔注入効率を高めると共に、リークを抑制することができる。正孔輸送層は、各色の有機発光層への正孔輸送効率を高めることができる。電子注入層は、各色の有機発光層への電子注入効率を高めることができる。電子輸送層は、有機発光層への電子輸送効率を高めることができる。 The hole injection layer can increase the efficiency of hole injection into the organic light emitting layer of each color and can suppress leakage. The hole transport layer can increase hole transport efficiency to the organic light emitting layer of each color. The electron injection layer can increase the efficiency of electron injection into the organic light emitting layer of each color. The electron transport layer can increase the efficiency of electron transport to the organic light emitting layer.
(第1電極121)
 第1電極121は、OLED層122の第2面側に設けられている。第1電極121は、表示領域RE1内において複数の発光素子12で別々に設けられている。すなわち、第1電極121は、表示領域RE1内において、面内方向に隣接する発光素子12の間で分断されている。第1電極121は、アノードである。第1電極121と第2電極123の間に電圧が加えられると、第1電極121からOLED層122にホールが注入される。
(First electrode 121)
The first electrode 121 is provided on the second surface side of the OLED layer 122. The first electrode 121 is provided separately for the plurality of light emitting elements 12 within the display area RE1. That is, the first electrode 121 is divided between the light emitting elements 12 adjacent in the in-plane direction within the display region RE1. The first electrode 121 is an anode. When a voltage is applied between the first electrode 121 and the second electrode 123, holes are injected from the first electrode 121 into the OLED layer 122.
 第1電極121は、例えば、金属層により構成されてもよいし、金属層と透明導電性酸化物層により構成されてもよい。第1電極121が金属層と透明導電性酸化物層により構成されている場合には、高い仕事関数を有する層をOLED層122に隣接させる観点からすると、透明導電性酸化物層がOLED層122側に設けられることが好ましい。 The first electrode 121 may be composed of a metal layer, or a metal layer and a transparent conductive oxide layer, for example. When the first electrode 121 is composed of a metal layer and a transparent conductive oxide layer, from the viewpoint of placing a layer having a high work function adjacent to the OLED layer 122, the transparent conductive oxide layer is similar to the OLED layer 122. Preferably, it is provided on the side.
 金属層は、OLED層122で発光された光を反射する反射層としての機能も有している。金属層は、例えば、クロム(Cr)、金(Au)、白金(Pt)、ニッケル(Ni)、銅(Cu)、モリブデン(Mo)、チタン(Ti)、タンタル(Ta)、アルミニウム(Al)、マグネシウム(Mg)、鉄(Fe)、タングステン(W)および銀(Ag)からなる群より選ばれた少なくとも1種の金属元素を含む。金属層は、上記少なくとも1種の金属元素を合金の構成元素として含んでいてもよい。合金の具体例としては、アルミニウム合金または銀合金が挙げられる。アルミニウム合金の具体例としては、例えば、AlNdまたはAlCuが挙げられる。 The metal layer also has a function as a reflective layer that reflects the light emitted by the OLED layer 122. Examples of the metal layer include chromium (Cr), gold (Au), platinum (Pt), nickel (Ni), copper (Cu), molybdenum (Mo), titanium (Ti), tantalum (Ta), and aluminum (Al). , magnesium (Mg), iron (Fe), tungsten (W), and silver (Ag). The metal layer may contain the at least one metal element described above as a constituent element of an alloy. Specific examples of alloys include aluminum alloys and silver alloys. Specific examples of aluminum alloys include AlNd and AlCu.
 下地層(図示せず)が、金属層の第2面側に隣接して設けられていてもよい。下地層は、金属層の成膜時に、金属層の結晶配向性を向上させるためのものである。下地層は、例えば、チタン(Ti)およびタンタル(Ta)からなる群より選ばれた少なくとも1種の金属元素を含む。下地層は、上記少なくとも1種の金属元素を合金の構成元素として含んでいてもよい。 A base layer (not shown) may be provided adjacent to the second surface side of the metal layer. The base layer is for improving the crystal orientation of the metal layer during film formation of the metal layer. The base layer contains, for example, at least one metal element selected from the group consisting of titanium (Ti) and tantalum (Ta). The base layer may contain the above-mentioned at least one metal element as a constituent element of the alloy.
 透明導電性酸化物層は、透明導電性酸化物を含む。透明導電性酸化物は、例えば、インジウムを含む透明導電性酸化物(以下「インジウム系透明導電性酸化物」という。)、錫を含む透明導電性酸化物(以下「錫系透明導電性酸化物」という。)および亜鉛を含む透明導電性酸化物(以下「亜鉛系透明導電性酸化物」という。)からなる群より選ばれた少なくとも1種を含む。 The transparent conductive oxide layer contains a transparent conductive oxide. Transparent conductive oxides include, for example, transparent conductive oxides containing indium (hereinafter referred to as "indium-based transparent conductive oxides") and transparent conductive oxides containing tin (hereinafter referred to as "tin-based transparent conductive oxides"). ) and transparent conductive oxides containing zinc (hereinafter referred to as "zinc-based transparent conductive oxides").
 インジウム系透明導電性酸化物は、例えば、酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)、酸化インジウムガリウム(IGO)、酸化インジウムガリウム亜鉛(IGZO)またはフッ素ドープ酸化インジウム(IFO)を含む。これらの透明導電性酸化物のうちでも酸化インジウム錫(ITO)が特に好ましい。酸化インジウム錫(ITO)は、仕事関数的にOLED層122R、122G、122Bへのホール注入障壁が特に低いため、表示装置101の駆動電圧を特に低電圧化することができるからである。錫系透明導電性酸化物は、例えば、酸化錫、アンチモンドープ酸化錫(ATO)またはフッ素ドープ酸化錫(FTO)を含む。亜鉛系透明導電性酸化物は、例えば、酸化亜鉛、アルミニウムドープ酸化亜鉛(AZO)、ホウ素ドープ酸化亜鉛またはガリウムドープ酸化亜鉛(GZO)を含む。 Indium-based transparent conductive oxides include, for example, indium tin oxide (ITO), indium zinc oxide (IZO), indium gallium oxide (IGO), indium gallium zinc oxide (IGZO), or fluorine-doped indium oxide (IFO). Among these transparent conductive oxides, indium tin oxide (ITO) is particularly preferred. This is because indium tin oxide (ITO) has a particularly low barrier for hole injection into the OLED layers 122R, 122G, and 122B in terms of work function, so that the driving voltage of the display device 101 can be particularly low. The tin-based transparent conductive oxide includes, for example, tin oxide, antimony-doped tin oxide (ATO), or fluorine-doped tin oxide (FTO). Zinc-based transparent conductive oxides include, for example, zinc oxide, aluminum-doped zinc oxide (AZO), boron-doped zinc oxide, or gallium-doped zinc oxide (GZO).
(第2電極123)
 第2電極123は、OLED層122の第1面側に設けられている。第2電極123は、カソードである。第1電極121と第2電極123の間に電圧が加えられると、第2電極123からOLED層122に電子が注入される。第2電極123は、OLED層122R、122G、122Bから発せられる各光に対して透光性を有している。第2電極123は、可視光に対して透明性を有する透明電極であることが好ましい。本明細書において、可視光とは、360nm以上830nmの波長域の光をいう。
(Second electrode 123)
The second electrode 123 is provided on the first surface side of the OLED layer 122. The second electrode 123 is a cathode. When a voltage is applied between the first electrode 121 and the second electrode 123, electrons are injected from the second electrode 123 into the OLED layer 122. The second electrode 123 is transparent to each light emitted from the OLED layers 122R, 122G, and 122B. The second electrode 123 is preferably a transparent electrode that is transparent to visible light. In this specification, visible light refers to light in a wavelength range of 360 nm or more and 830 nm.
 第2電極123は、できるだけ透光性が高く、かつ仕事関数が小さい材料によって構成されることが、発光効率を高める上で好ましい。第2電極123は、例えば、金属層および透明導電性酸化物層のうちの少なくとも一層により構成されている。より具体的には、第2電極123は、金属層もしくは透明導電性酸化物層の単層膜、または金属層と透明導電性酸化物層の積層膜により構成されている。第2電極123が積層膜により構成されている場合、金属層がOLED層122側に設けられてもよいし、透明導電性酸化物層がOLED層122側に設けられてもよいが、低い仕事関数を有する層をOLED層122に隣接させる観点からすると、金属層がOLED層122側に設けられていることが好ましい。 It is preferable for the second electrode 123 to be made of a material that has as high a light transmittance as possible and has a small work function in order to increase luminous efficiency. The second electrode 123 is made of, for example, at least one of a metal layer and a transparent conductive oxide layer. More specifically, the second electrode 123 is composed of a single layer film of a metal layer or a transparent conductive oxide layer, or a laminated film of a metal layer and a transparent conductive oxide layer. When the second electrode 123 is constituted by a laminated film, a metal layer may be provided on the OLED layer 122 side, or a transparent conductive oxide layer may be provided on the OLED layer 122 side. From the viewpoint of placing a layer having a function adjacent to the OLED layer 122, it is preferable that the metal layer is provided on the OLED layer 122 side.
 金属層は、例えば、マグネシウム(Mg)、アルミニウム(Al)、銀(Ag)、カルシウム(Ca)およびナトリウム(Na)からなる群より選ばれた少なくとも1種の金属元素を含む。金属層は、上記少なくとも1種の金属元素を合金の構成元素として含んでいてもよい。合金の具体例としては、MgAg合金、MgAl合金またはAlLi合金等が挙げられる。透明導電性酸化物層は、透明導電性酸化物を含む。当該透明導電性酸化物としては、上記の第1電極121の透明導電性酸化物と同様の材料を例示することができる。 The metal layer contains, for example, at least one metal element selected from the group consisting of magnesium (Mg), aluminum (Al), silver (Ag), calcium (Ca), and sodium (Na). The metal layer may contain the at least one metal element described above as a constituent element of an alloy. Specific examples of the alloy include MgAg alloy, MgAl alloy, and AlLi alloy. The transparent conductive oxide layer includes a transparent conductive oxide. Examples of the transparent conductive oxide include the same materials as the transparent conductive oxide of the first electrode 121 described above.
(保護層13)
 保護層13は、発光素子12R、12G、12Bから発せられる各光に対して透光性を有している。第2電極123は、可視光に対して透明性を有することが好ましい。保護層13は、複数の発光素子12等を保護することができる。保護層13は、複数の発光素子12を覆うように、駆動基板11の第1面上に設けられている。保護層13は、発光素子12を外気と遮断し、外部環境から発光素子12内部への水分浸入を抑制することができる。また、第2電極123が金属層により構成されている場合には、保護層13は、この金属層の酸化を抑制する機能を有していてもよい。
(Protective layer 13)
The protective layer 13 is transparent to each light emitted from the light emitting elements 12R, 12G, and 12B. The second electrode 123 is preferably transparent to visible light. The protective layer 13 can protect the plurality of light emitting elements 12 and the like. The protective layer 13 is provided on the first surface of the drive substrate 11 so as to cover the plurality of light emitting elements 12 . The protective layer 13 can isolate the light emitting element 12 from the outside air and suppress moisture from entering the light emitting element 12 from the external environment. Further, when the second electrode 123 is formed of a metal layer, the protective layer 13 may have a function of suppressing oxidation of this metal layer.
 保護層13は、例えば、吸湿性が低い無機材料または高分子樹脂を含む。保護層13は、単層構造であってもよいし、多層構造であってもよい。保護層13の厚さを厚くする場合には、多層構造とすることが好ましい。保護層13における内部応力を緩和するためである。無機材料は、例えば、酸化シリコン(SiO)、窒化シリコン(SiN)、酸化窒化シリコン(SiO)、酸化チタン(TiO)および酸化アルミニウム(AlO)等からなる群より選ばれた少なくとも1種を含む。高分子樹脂は、例えば、熱硬化型樹脂および紫外線硬化型樹脂等からなる群より選ばれた少なくとも1種を含む。高分子樹脂は、具体的には例えば、アクリル系樹脂、ポリイミド系樹脂、ノボラック系樹脂、エポキシ系樹脂、ノルボルネン系樹脂およびパリレン系樹脂等から群より選ばれた少なくとも1種を含む。 The protective layer 13 includes, for example, an inorganic material or a polymer resin with low hygroscopicity. The protective layer 13 may have a single layer structure or a multilayer structure. When increasing the thickness of the protective layer 13, it is preferable to have a multilayer structure. This is to relieve internal stress in the protective layer 13. The inorganic material is selected from the group consisting of silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), titanium oxide (TiO x ), aluminum oxide (AlO x ), etc. Contains at least one species. The polymer resin includes, for example, at least one selected from the group consisting of thermosetting resins, ultraviolet curable resins, and the like. Specifically, the polymer resin includes at least one selected from the group consisting of acrylic resins, polyimide resins, novolac resins, epoxy resins, norbornene resins, parylene resins, and the like.
(光学調整層14)
 光学調整層14は、発光素子12R、12G、12Bから発せられる各光に対して透光性を有している。光学調整層14は、可視光に対して透明性を有することが好ましい。光学調整層14は、複数の発光素子12と複数のメタマテリアル15の間に設けられている。より具体的には、光学調整層14は、保護層13と複数のメタマテリアル15の間に設けられている。光学調整層14は、複数の発光素子12とメタマテリアル15の間の距離(光路長)を調整することができる。光学調整層14の表面は、凹凸が抑制され、略平坦となっていることが好ましい。
(Optical adjustment layer 14)
The optical adjustment layer 14 is transparent to each light emitted from the light emitting elements 12R, 12G, and 12B. It is preferable that the optical adjustment layer 14 has transparency to visible light. The optical adjustment layer 14 is provided between the plurality of light emitting elements 12 and the plurality of metamaterials 15. More specifically, the optical adjustment layer 14 is provided between the protective layer 13 and the plurality of metamaterials 15. The optical adjustment layer 14 can adjust the distance (optical path length) between the plurality of light emitting elements 12 and the metamaterial 15. It is preferable that the surface of the optical adjustment layer 14 is substantially flat with suppressed unevenness.
 光学調整層14は、例えば、無機材料または高分子樹脂を含む。光学調整層14は、有機層であってもよいし、無機層であってもよいし、これらの積層体であってもよい。有機層は、例えば、ポリイミド系樹脂、アクリル系樹脂、ノボラック系樹脂およびパリレン系樹脂等からなる群より選ばれた少なくとも1種を含む。無機層は、例えば、金属酸化物および金属窒化物等からなる群より選ばれた少なくとも1種を含む。金属酸化物は、例えば、酸化シリコン(SiO)、酸窒化シリコン(SiO)、酸化チタン(TiO)、酸化タンタル(TaO)および酸化亜鉛(ZnO)等からなる群より選ばれた少なくとも1種を含む。金属窒化物は、例えば、窒化シリコン(SiN)および窒化ガリウム(GaN)等からなる群より選ばれた少なくとも1種を含む。 The optical adjustment layer 14 includes, for example, an inorganic material or a polymer resin. The optical adjustment layer 14 may be an organic layer, an inorganic layer, or a laminate of these layers. The organic layer contains, for example, at least one selected from the group consisting of polyimide resins, acrylic resins, novolak resins, parylene resins, and the like. The inorganic layer includes, for example, at least one selected from the group consisting of metal oxides, metal nitrides, and the like. The metal oxide is selected from the group consisting of silicon oxide (SiO x ), silicon oxynitride (SiO x N y ), titanium oxide (TiO x ), tantalum oxide (TaO x ), zinc oxide (ZnO x ), etc. Contains at least one species. The metal nitride includes, for example, at least one selected from the group consisting of silicon nitride (SiN x ), gallium nitride (GaN x ), and the like.
(メタマテリアル15R、15G、15B)
 メタマテリアル15R、15G、15Bはそれぞれ、メタレンズを構成している。複数のメタマテリアル15R、15G、15Bは、規定の配置パターンで光学調整層14の第1面上に2次元配置されている。規定の配置パターンは、複数のサブ画素10の規定の配置パターンとして説明したとおりである。
( Metamaterial 15R, 15G, 15B)
The metamaterials 15R, 15G, and 15B each constitute a metalens. The plurality of metamaterials 15R, 15G, and 15B are two-dimensionally arranged on the first surface of the optical adjustment layer 14 in a prescribed arrangement pattern. The prescribed arrangement pattern is as described as the prescribed arrangement pattern of the plurality of sub-pixels 10.
 複数のメタマテリアル15は、各発光素子12に対応して設けられている。より具体的には、メタマテリアル15Rは、発光素子12Rの上方に設けられている。メタマテリアル15Gは、発光素子12Gの上方に設けられている。メタマテリアル15Bは、発光素子12Bの上方に設けられている。 A plurality of metamaterials 15 are provided corresponding to each light emitting element 12. More specifically, the metamaterial 15R is provided above the light emitting element 12R. The metamaterial 15G is provided above the light emitting element 12G. Metamaterial 15B is provided above light emitting element 12B.
 メタマテリアル15R、15G、15Bは、幾何学的な凸曲面を有するレンズに相当する機能(発光素子12R、12B、12Cから出射された光を集光する機能)と、隣接するサブ画素10への光の透過を抑制する機能(すなわち隣接するサブ画素10間の混色抑制機能)との2種の機能を有している。 The metamaterials 15R, 15G, and 15B have a function equivalent to a lens having a geometrically convex curved surface (a function of condensing light emitted from the light emitting elements 12R, 12B, and 12C), and a function of condensing light emitted from the light emitting elements 12R, 12B, and 12C, and a function of condensing light emitted from the light emitting elements 12R, 12B, and 12C. It has two types of functions: a function of suppressing light transmission (that is, a function of suppressing color mixture between adjacent sub-pixels 10).
 メタマテリアル15Rは、メタマテリアル15Rの下方に設けられた発光素子12Rから斜め方向に出射された赤色光を集光するレンズの機能と共に、隣接するサブ画素10G、10B等への当該赤色光の透過を抑制する機能(すなわち隣接するサブ画素10間の混色抑制機能)を有している。 The metamaterial 15R functions as a lens to condense red light emitted obliquely from the light emitting element 12R provided below the metamaterial 15R, and also transmits the red light to adjacent sub-pixels 10G, 10B, etc. (ie, a function of suppressing color mixture between adjacent sub-pixels 10).
 メタマテリアル15Gは、メタマテリアル15Gの下方に設けられた発光素子12Gから斜め方向に出射された緑色光を集光するレンズの機能と共に、隣接するサブ画素10R、10B等への当該緑色光の透過を抑制する機能(すなわち隣接するサブ画素10間の混色抑制機能)を有している。 The metamaterial 15G functions as a lens that condenses green light emitted in an oblique direction from the light emitting element 12G provided below the metamaterial 15G, and also transmits the green light to adjacent sub-pixels 10R, 10B, etc. (ie, a function of suppressing color mixture between adjacent sub-pixels 10).
 メタマテリアル15Bは、メタマテリアル15Bの下方に設けられた発光素子12Bから斜め方向に出射された青色光を集光するレンズの機能と共に、隣接するサブ画素10R、10G等への当該青色光の透過を抑制する機能(すなわち隣接するサブ画素10間の混色抑制機能)を有している。 The metamaterial 15B functions as a lens that condenses blue light emitted in an oblique direction from the light emitting element 12B provided below the metamaterial 15B, and also transmits the blue light to adjacent sub-pixels 10R, 10G, etc. (ie, a function of suppressing color mixture between adjacent sub-pixels 10).
 メタマテリアル15R、15G、15Bは、光の波長以下のサイズを有する複数のナノ構造体(ユニットセル)151、152を含む。より具体的には、メタマテリアル15Rは、発光素子12Rから出射される赤色光のピーク波長以下のサイズを有する複数のナノ構造体151、152を含んでもよい。メタマテリアル15Gは、発光素子12Gから出射される緑色光のピーク波長以下のサイズを有する複数のナノ構造体151、152を含んでもよい。メタマテリアル15Bは、発光素子12Bから出射される青色光のピーク波長以下のサイズを有する複数のナノ構造体151、152を含んでもよい。 The metamaterials 15R, 15G, and 15B include a plurality of nanostructures (unit cells) 151 and 152 having a size equal to or smaller than the wavelength of light. More specifically, the metamaterial 15R may include a plurality of nanostructures 151, 152 having a size equal to or less than the peak wavelength of red light emitted from the light emitting element 12R. The metamaterial 15G may include a plurality of nanostructures 151 and 152 having a size equal to or less than the peak wavelength of green light emitted from the light emitting element 12G. The metamaterial 15B may include a plurality of nanostructures 151 and 152 having a size equal to or less than the peak wavelength of blue light emitted from the light emitting element 12B.
 発光素子12R、12G、12Bから出射される光が複数のピークを有する場合には、ピーク波長とは、複数のピークのうち最大のピークのピーク波長を表すものとする。ナノ構造体151、152のサイズとは、正面方向Dに垂直な方向(光学調整層14の第1面の面内方向)におけるナノ構造体151の底面のサイズを表す。ナノ構造体151、152のサイズが方向により異なる場合には、ナノ構造体151、152のサイズとは、ナノ構造体151、152のサイズが最大となる方向におけるナノ構造体151、152のサイズを表すものとする。例えば、ナノ構造体151、152が楕円柱である場合には、ナノ構造体151、152のサイズとは、ナノ構造体151、152の底面の長径を表すものとする。例えば、ナノ構造体151が長方形柱である場合、ナノ構造体151、152のサイズとは、ナノ構造体151、152の底面の長方形の対角線の長さを表すものとする。 When the light emitted from the light emitting elements 12R, 12G, and 12B has multiple peaks, the peak wavelength represents the peak wavelength of the largest peak among the multiple peaks. The size of the nanostructures 151 and 152 refers to the size of the bottom surface of the nanostructure 151 in the direction perpendicular to the front direction DZ (in-plane direction of the first surface of the optical adjustment layer 14). When the size of the nanostructures 151, 152 differs depending on the direction, the size of the nanostructures 151, 152 refers to the size of the nanostructures 151, 152 in the direction where the size of the nanostructures 151, 152 is maximum. shall be expressed. For example, when the nanostructures 151 and 152 are elliptical cylinders, the size of the nanostructures 151 and 152 represents the major axis of the bottom surface of the nanostructures 151 and 152. For example, when the nanostructures 151 are rectangular columns, the size of the nanostructures 151 and 152 represents the length of the diagonal line of the rectangle at the bottom of the nanostructures 151 and 152.
 図5は、図4のV-V線に沿った断面図である。複数のナノ構造体151、152は、光学調整層14の第1面上に2次元配置されている。複数のナノ構造体151のサイズは、光の位相を制御することにより集光効果を得るために、サブ画素10の中心から周縁に向かって小さくなっていてもよい。複数のナノ構造体151、152は、等間隔で均一に配置されていてもよいし、異なる間隔で不均一に配置されていてもよい。ナノ構造体151、152の中心軸は、光学調整層14の第1面に対して垂直(すなわち発光素子12の中心軸と平行)であってもよいし、光学調整層14の第1面に対して傾いていてもよい。 FIG. 5 is a cross-sectional view taken along line VV in FIG. 4. The plurality of nanostructures 151 and 152 are two-dimensionally arranged on the first surface of the optical adjustment layer 14. The size of the plurality of nanostructures 151 may become smaller from the center of the sub-pixel 10 toward the periphery in order to obtain a light focusing effect by controlling the phase of light. The plurality of nanostructures 151 and 152 may be arranged uniformly at equal intervals, or may be arranged non-uniformly at different intervals. The central axes of the nanostructures 151 and 152 may be perpendicular to the first surface of the optical adjustment layer 14 (that is, parallel to the central axis of the light emitting element 12), or may be perpendicular to the first surface of the optical adjustment layer 14. It may be tilted to the opposite direction.
 ナノ構造体151、152は、例えば、ナノピラーである。ナノピラーの形状は、例えば、円柱状、楕円柱状または四角柱状等の多角柱状であってもよいし、これら以外の形状であってもよい。四角柱状は、例えば、長方形柱状等であってもよいし、これ以外の形状であってもよい。複数のナノ構造体151、152が、2種以上の形状のナノピラーを含んでもよい。 The nanostructures 151 and 152 are, for example, nanopillars. The shape of the nanopillar may be, for example, a polygonal columnar shape such as a cylinder, an elliptical columnar shape, or a quadrangular columnar shape, or may be a shape other than these. The quadrangular column shape may be, for example, a rectangular column shape, or may have a shape other than this. The plurality of nanostructures 151 and 152 may include nanopillars of two or more shapes.
 メタマテリアル15R、15G、15Bの構成は互いに異なっていてもよいし、同一であってもよいが、発光素子12R、12B、12Gから入射する光に応じて構成が異なっていることが好ましい。例えば、メタマテリアル15R、15G、15Bを構成するナノ構造体151の配置、高さおよび形状等のうちの少なくとも1種が、メタマテリアル15R、15G、15Bで異なっていてもよい。 The configurations of the metamaterials 15R, 15G, and 15B may be different from each other or the same, but it is preferable that the configurations differ depending on the light incident from the light emitting elements 12R, 12B, and 12G. For example, at least one of the arrangement, height, shape, etc. of the nanostructures 151 constituting the metamaterials 15R, 15G, and 15B may be different among the metamaterials 15R, 15G, and 15B.
 ナノ構造体151は、非分離構造ナノ構造体の一例であり、ナノ構造体151の高さ方向に分離されていない非分離構造を有している。ナノ構造体152は、分離構造ナノ構造体の一例であり、ナノ構造体152の高さ方向に分離された分離構造を有している。図4では、ナノ構造体152の分離数が2である例が示されているが、ナノ構造体152の分離数はこれに限定されるものではなく、3以上であってもよい。分離された各構造体の高さは、同一であってもよいし、異なっていてもよい。 The nanostructure 151 is an example of a nanostructure with a non-separated structure, and has a non-separated structure that is not separated in the height direction of the nanostructure 151. The nanostructure 152 is an example of a separated nanostructure, and has a separated structure separated in the height direction of the nanostructure 152. Although FIG. 4 shows an example in which the number of separated nanostructures 152 is two, the number of separated nanostructures 152 is not limited to this, and may be three or more. The heights of the separated structures may be the same or different.
 非分離構造のナノ構造体151の充填率は、分離構造のナノ構造体151の充填率に比べて高く、非分離構造のナノ構造体151の透過率は、分離構造のナノ構造体151の透過率に比べて高い。ここで、分離構造のナノ構造体151とは、非分離構造のナノ構造体151を分離構造にしたと仮定した場合のナノ構造体を表す。 The filling rate of the nanostructures 151 with a non-separated structure is higher than that of the nanostructures 151 with a separate structure, and the transmittance of the nanostructures 151 with a non-separated structure is higher than that of the nanostructures 151 with a separate structure. high compared to the rate. Here, the nanostructure 151 having a separated structure refers to a nanostructure assuming that the nanostructure 151 having a non-separated structure is made into a separated structure.
 分離構造のナノ構造体152の充填率は、非分離構造のナノ構造体152の充填率に比べて低く、分離構造のナノ構造体152の透過率は、非分離構造のナノ構造体152の透過率に比べて低い。ここで、非分離構造のナノ構造体152とは、分離構造のナノ構造体152を非分離構造にしたと仮定した場合のナノ構造体を表す。 The filling factor of the nanostructures 152 having a separated structure is lower than that of the nanostructures 152 having a non-separated structure, and the transmittance of the nanostructures 152 having a separated structure is lower than that of the nanostructures 152 having a non-separated structure. low compared to the rate. Here, the nanostructure 152 with a non-separated structure refers to a nanostructure when it is assumed that the nanostructure 152 with a separate structure is made into a non-separated structure.
 複数のナノ構造体152は、サブ画素10の周縁部に設けられている。複数のナノ構造体151は、サブ画素10の周縁部の内側の領域に設けられている。ここで、サブ画素10の周縁部とは、平面視においてサブ画素10の周縁から内側に向かって所定の幅を有する領域のことをいう。 The plurality of nanostructures 152 are provided at the periphery of the sub-pixel 10. The plurality of nanostructures 151 are provided in a region inside the periphery of the sub-pixel 10. Here, the periphery of the sub-pixel 10 refers to an area having a predetermined width inward from the periphery of the sub-pixel 10 in plan view.
 ナノ構造体151は、例えば、無機材料または高分子樹脂を含む。無機材料および高分子樹脂は、高誘電材料を含むことが好ましい。無機材料は、例えば、金属酸化物および金属窒化物等からなる群より選ばれた少なくとも1種を含む。金属酸化物は、例えば、酸化チタン(TiO)、酸化タンタル(TaO)および酸化亜鉛(ZnO)等からなる群より選ばれた少なくとも1種を含む。金属窒化物は、例えば、窒化ガリウム(GaN)を含む。 Nanostructure 151 includes, for example, an inorganic material or a polymer resin. Preferably, the inorganic material and polymer resin include a high dielectric material. The inorganic material includes, for example, at least one selected from the group consisting of metal oxides, metal nitrides, and the like. The metal oxide includes, for example, at least one selected from the group consisting of titanium oxide (TiO x ), tantalum oxide (TaO x ), zinc oxide (ZnO x ), and the like. Metal nitrides include, for example, gallium nitride (GaN x ).
(低屈折率層16)
 低屈折率層16の屈折率は、ナノ構造体151の屈折率に比べて低い。ナノ構造体151の屈折率nと低屈折率層16の屈折率nの屈折率差Δn(=n-n)は、ナノ構造体151のアスペクト比が大きくなり過ぎないようにする観点から、好ましくは0.2以上、より好ましくは0.5以上、さらにより好ましくは0.8以上、特に好ましくは1.0以上である。ナノ構造体151のアスペクト比が大きくなり過ぎないようにすることで、ナノ構造体151の形成が容易になる。本明細書において、ナノ構造体151の屈折率nおよび低屈折率層16の屈折率nは、波長589.3nmの光(ナトリウムのD線)に対する屈折率を表す。
(Low refractive index layer 16)
The refractive index of the low refractive index layer 16 is lower than that of the nanostructures 151. The refractive index difference Δn (=n 1 - n 2 ) between the refractive index n 1 of the nanostructure 151 and the refractive index n 2 of the low refractive index layer 16 is set so that the aspect ratio of the nanostructure 151 does not become too large. From this point of view, it is preferably 0.2 or more, more preferably 0.5 or more, even more preferably 0.8 or more, and particularly preferably 1.0 or more. Formation of the nanostructures 151 is facilitated by preventing the aspect ratio of the nanostructures 151 from becoming too large. In this specification, the refractive index n 1 of the nanostructure 151 and the refractive index n 2 of the low refractive index layer 16 represent the refractive index for light with a wavelength of 589.3 nm (D line of sodium).
 低屈折率層16は、少なくとも複数のナノ構造体151の間を埋めるように設けられる。低屈折率層16が、複数のナノ構造体151を覆い、複数のナノ構造体151を保護していてもよい。低屈折率層16は、複数の発光素子12等が第1面に設けられた駆動基板11とカバー層17とを貼り合わせる接着層としての機能を有していてもよい。 The low refractive index layer 16 is provided so as to fill the spaces between at least the plurality of nanostructures 151. The low refractive index layer 16 may cover and protect the plurality of nanostructures 151. The low refractive index layer 16 may have a function as an adhesive layer for bonding the cover layer 17 to the drive substrate 11 on the first surface of which the plurality of light emitting elements 12 and the like are provided.
 低屈折率層16は、発光素子12R、12G、12Bから発せられる各光に対して透光性を有している。低屈折率層16は、可視光に対して透明性を有することが好ましい。低屈折率層16は、例えば、熱硬化型樹脂および紫外線硬化型樹脂等からなる群より選ばれた少なくとも1種を含む。 The low refractive index layer 16 is transparent to each light emitted from the light emitting elements 12R, 12G, and 12B. It is preferable that the low refractive index layer 16 has transparency to visible light. The low refractive index layer 16 includes, for example, at least one selected from the group consisting of thermosetting resins, ultraviolet curable resins, and the like.
 低屈折率層16は、例えば、高分子樹脂または無機材料を含む。高分子樹脂は、例えば、熱硬化型樹脂および紫外線硬化型樹脂等からなる群より選ばれた少なくとも1種を含む。無機材料は、例えば、酸化シリコン(SiO)を含む。 The low refractive index layer 16 includes, for example, a polymer resin or an inorganic material. The polymer resin includes, for example, at least one selected from the group consisting of thermosetting resins, ultraviolet curable resins, and the like. Inorganic materials include, for example, silicon oxide (SiO x ).
(カバー層17)
 カバー層17は、駆動基板11の第1面上に設けられた、複数の発光素子12および複数のメタマテリアル15等を封止する。カバー層17は、発光素子12R、12G、12Bから発せられる各光に対して透光性を有している。カバー層17は、可視光に対して透明性を有することが好ましい。カバー層17は、低屈折率層16の第1面上に設けられている。カバー層17は、例えば、ガラス基板である。
(Cover layer 17)
The cover layer 17 seals the plurality of light emitting elements 12, the plurality of metamaterials 15, etc. provided on the first surface of the drive substrate 11. The cover layer 17 is transparent to each light emitted from the light emitting elements 12R, 12G, and 12B. It is preferable that the cover layer 17 has transparency to visible light. The cover layer 17 is provided on the first surface of the low refractive index layer 16. The cover layer 17 is, for example, a glass substrate.
[表示装置101の製造方法]
 以下、図6A~図6D、図7A~図7Cおよび図8A~図8Cを参照して、第1の実施形態に係る表示装置101の製造方法の一例について説明する。
[Method for manufacturing display device 101]
Hereinafter, an example of a method for manufacturing the display device 101 according to the first embodiment will be described with reference to FIGS. 6A to 6D, FIGS. 7A to 7C, and FIGS. 8A to 8C.
 まず、例えばスパッタリング法により、金属層、金属酸化物層を駆動基板11の第1面上に順次形成したのち、例えばフォトリソグラフィ技術を用いて金属層および金属酸化物層をパターニングする。これにより、複数の第1電極121が駆動基板11の第1面上に形成される。 First, a metal layer and a metal oxide layer are sequentially formed on the first surface of the drive substrate 11 by, for example, sputtering, and then the metal layer and metal oxide layer are patterned by, for example, photolithography. As a result, a plurality of first electrodes 121 are formed on the first surface of the drive substrate 11.
 次に、例えば蒸着法により、正孔注入層、正孔輸送層、赤色の有機発光層、電子輸送層、電子注入層を複数の第1電極121の第1面および駆動基板11の第1面上にこの順序で積層することにより、OLED層122Rを形成する。次に、例えば蒸着法またはスパッタリング法により、第2電極123をOLED層122Rの第1面上に形成する。 Next, a hole injection layer, a hole transport layer, a red organic light emitting layer, an electron transport layer, and an electron injection layer are deposited on the first surface of the plurality of first electrodes 121 and the first surface of the drive substrate 11 by, for example, a vapor deposition method. By stacking layers on top in this order, an OLED layer 122R is formed. Next, the second electrode 123 is formed on the first surface of the OLED layer 122R by, for example, a vapor deposition method or a sputtering method.
 次に、例えばCVD法により、第1保護層を第2電極123の第1面上に形成する。次に、例えばフォトリソグラフィ技術により、OLED層122R、第2電極123および第1保護層を加工する。これにより、駆動基板11の第1面上に複数の発光素子12Rが形成される。 Next, a first protective layer is formed on the first surface of the second electrode 123 by, for example, a CVD method. Next, the OLED layer 122R, the second electrode 123, and the first protective layer are processed using, for example, photolithography technology. As a result, a plurality of light emitting elements 12R are formed on the first surface of the drive substrate 11.
 次に、上記の発光素子12Rの形成工程と同様の手順で、複数の発光素子12Gおよび複数の発光素子12Bを駆動基板11の第1面上に形成する。次に、例えばCVD法により、複数の発光素子12を覆うように第2保護層を形成する。これにより、第1保護層と第2保護層からなる保護層13が形成される。次に、例えばCVD法または蒸着法により、光学調整層14を保護層13の第1面上に形成する。 Next, a plurality of light emitting elements 12G and a plurality of light emitting elements 12B are formed on the first surface of the drive substrate 11 in the same procedure as the above-described formation process of the light emitting element 12R. Next, a second protective layer is formed to cover the plurality of light emitting elements 12 by, for example, a CVD method. As a result, the protective layer 13 consisting of the first protective layer and the second protective layer is formed. Next, the optical adjustment layer 14 is formed on the first surface of the protective layer 13 by, for example, a CVD method or a vapor deposition method.
 次に、図6Aに示されるように、例えばCVD法または蒸着法により、酸化チタン(TiO)等を含む第1高誘電体材料層153を光学調整層14の第1面上に形成する。次に、第1高誘電体材料層153の第1面上にレジストを塗布し、レジスト層を形成した後、レジスト層を露光、現像する。これにより、図6Bに示されるように、レジストパターン31が第1高誘電体材料層153の第1面上に形成される。 Next, as shown in FIG. 6A, a first high dielectric material layer 153 containing titanium oxide (TiO x ) or the like is formed on the first surface of the optical adjustment layer 14 by, for example, a CVD method or a vapor deposition method. Next, a resist is applied onto the first surface of the first high dielectric material layer 153 to form a resist layer, and then the resist layer is exposed and developed. As a result, a resist pattern 31 is formed on the first surface of the first high dielectric material layer 153, as shown in FIG. 6B.
 次に、第1高誘電体材料層153をレジストパターン31越しにエッチングした後、レジストパターン31を除去する。これにより、図6Cに示されるように、複数のナノ構造体151aおよび複数のナノ構造体152aが光学調整層14の第1面上に形成される。ナノ構造体151aは、ナノ構造体151の一部分に相当する。ナノ構造体152aは、ナノ構造体152の一部分に相当する。 Next, after the first high dielectric material layer 153 is etched through the resist pattern 31, the resist pattern 31 is removed. Thereby, as shown in FIG. 6C, a plurality of nanostructures 151a and a plurality of nanostructures 152a are formed on the first surface of the optical adjustment layer 14. Nanostructure 151a corresponds to a portion of nanostructure 151. Nanostructure 152a corresponds to a portion of nanostructure 152.
 次に、例えばCVD法により、複数のナノ構造体151aを覆うように、第1低屈折率層161を光学調整層14の第1面上に形成する。次に、例えばCMP(Chemical Mechanical Polishing)等により第1低屈折率層161の表面を研磨し、平坦化する。次に、第1低屈折率層161の第1面上にレジストを塗布し、レジスト層を形成した後、レジスト層を露光、現像する。これにより、図7Aに示されるように、レジストパターン32が第1低屈折率層161の第1面上に形成される。レジストパターン32は、サブ画素10の周縁部に位置するナノ構造体152aの上方を覆う。 Next, the first low refractive index layer 161 is formed on the first surface of the optical adjustment layer 14 by, for example, a CVD method so as to cover the plurality of nanostructures 151a. Next, the surface of the first low refractive index layer 161 is polished and planarized by, for example, CMP (Chemical Mechanical Polishing). Next, a resist is applied onto the first surface of the first low refractive index layer 161 to form a resist layer, and then the resist layer is exposed and developed. As a result, a resist pattern 32 is formed on the first surface of the first low refractive index layer 161, as shown in FIG. 7A. The resist pattern 32 covers the nanostructures 152a located at the periphery of the sub-pixel 10.
 次に、第1低屈折率層161をレジストパターン32越しにエッチングした後、レジストパターン32を除去する。これにより、図7Bに示されるように、複数の分離部163が、サブ画素10の周縁部に位置するナノ構造体152a上に形成されると共に、サブ画素10の周縁部の内側に位置するナノ構造体151aの上面が露出される。次に、図7Cに示されるように、例えばCVD法または蒸着法により、複数の分離部163を覆うように、酸化チタン(TiO)等を含む第2高誘電体材料層154を第1低屈折率層161の第1面および複数のナノ構造体151aの上面上に形成する。 Next, after etching the first low refractive index layer 161 through the resist pattern 32, the resist pattern 32 is removed. As a result, as shown in FIG. 7B, a plurality of separation parts 163 are formed on the nanostructures 152a located at the periphery of the sub-pixel 10, and a plurality of isolation parts 163 are formed on the nanostructures 152a located inside the periphery of the sub-pixel 10. The upper surface of the structure 151a is exposed. Next, as shown in FIG. 7C, a second high dielectric material layer 154 containing titanium oxide ( TiO It is formed on the first surface of the refractive index layer 161 and the upper surface of the plurality of nanostructures 151a.
 次に、図8Aに示されるように、上記のレジストパターン31の形成工程と同様にして、レジストパターン33を第2高誘電体材料層154の第1面上に形成する。次に、第1高誘電体材料層153のエッチング工程と同様にして、第2高誘電体材料層154をレジストパターン33越しにエッチングする。これにより、図8Bに示されるように、複数のナノ構造体151および複数のナノ構造体152が光学調整層14の第1面上に形成される。すなわち、複数のメタマテリアル15R、複数のメタマテリアル15Gおよび複数のメタマテリアル15Bが光学調整層14の第1面上に形成される。 Next, as shown in FIG. 8A, a resist pattern 33 is formed on the first surface of the second high dielectric material layer 154 in the same manner as the formation process of the resist pattern 31 described above. Next, in the same manner as the etching process for the first high dielectric material layer 153, the second high dielectric material layer 154 is etched through the resist pattern 33. Thereby, as shown in FIG. 8B, a plurality of nanostructures 151 and a plurality of nanostructures 152 are formed on the first surface of the optical adjustment layer 14. That is, a plurality of metamaterials 15R, a plurality of metamaterials 15G, and a plurality of metamaterials 15B are formed on the first surface of the optical adjustment layer 14.
 次に、例えばCVD法により、複数のナノ構造体151および複数のナノ構造体152を覆うように、第2低屈折率層162を第1低屈折率層161の第1面上に形成する。これにより、図8Cに示されるように、第1低屈折率層161と第2低屈折率層162と複数の分離部163からなる低屈折率層16が形成される。次に、必要に応じて、低屈折率層16上にカバー層17を形成してもよい。以上により、表示装置101が得られる。 Next, the second low refractive index layer 162 is formed on the first surface of the first low refractive index layer 161 so as to cover the plurality of nanostructures 151 and the plurality of nanostructures 152, for example, by a CVD method. Thereby, as shown in FIG. 8C, a low refractive index layer 16 including a first low refractive index layer 161, a second low refractive index layer 162, and a plurality of separation parts 163 is formed. Next, a cover layer 17 may be formed on the low refractive index layer 16, if necessary. Through the above steps, the display device 101 is obtained.
[作用効果]
 第1の実施形態に係る表示装置101では、発光素子12の上方にメタマテリアル15が設けられている。これより、発光素子12から斜め方向に出射された光がメタマテリアル15により正面方向に曲げられ、集光される。したがって、表示装置101の正面輝度を向上させることができる。
[Effect]
In the display device 101 according to the first embodiment, a metamaterial 15 is provided above the light emitting element 12. As a result, light emitted from the light emitting element 12 in an oblique direction is bent toward the front by the metamaterial 15 and condensed. Therefore, the front brightness of the display device 101 can be improved.
 メタマテリアル15は、複数のナノ構造体152を含み、当該複数のナノ構造体152は、高さ方向に分離された分離構造を有し、サブ画素10(発光素子12に対応する発光領域)の外周部に設けられている。これにより、サブ画素10の外周部に位置するナノ構造体152の透過率を低下させることができる。したがって、発光素子12から斜め方向に出射された光が、隣接するサブ画素10に漏れることを抑制することができる。よって、メタマテリアル15に集光効果以外の機能(すなわちレンズ以外の機能)として混色抑制機能を付与することができる。 The metamaterial 15 includes a plurality of nanostructures 152, and the plurality of nanostructures 152 have a separation structure separated in the height direction, and each of the nanostructures 152 has a separation structure that is separated in the height direction, and the subpixel 10 (light emitting region corresponding to the light emitting element 12). It is provided on the outer periphery. Thereby, the transmittance of the nanostructures 152 located at the outer periphery of the sub-pixel 10 can be reduced. Therefore, light emitted from the light emitting element 12 in an oblique direction can be prevented from leaking to the adjacent sub-pixel 10. Therefore, the metamaterial 15 can be provided with a color mixture suppressing function as a function other than a light focusing effect (that is, a function other than a lens).
 ナノ構造体152が分離構造を有することで、ナノ構造体152と低屈折率層16の界面が増加する。これにより、分離構造のナノ構造体152は入射光を反射しやすくなる。したがって、分離構造のナノ構造体152は、混色抑制の点で有利である。 Because the nanostructures 152 have a separation structure, the interface between the nanostructures 152 and the low refractive index layer 16 increases. As a result, the nanostructures 152 having the separated structure easily reflect incident light. Therefore, the nanostructure 152 having a separate structure is advantageous in terms of suppressing color mixture.
<2 第2の実施形態>
[表示装置102の構成]
 図9は、第2の実施形態に係る表示装置102の断面図である。表示装置102は、複数のナノ構造体152に代えて、複数のナノ構造体155を備える点において、第1の実施形態に係る表示装置101(図4参照)とは異なっている。ナノ構造体151が第1ナノ構造体の一例であり、ナノ構造体155が第2ナノ構造体の一例である。
<2 Second embodiment>
[Configuration of display device 102]
FIG. 9 is a cross-sectional view of the display device 102 according to the second embodiment. The display device 102 differs from the display device 101 according to the first embodiment (see FIG. 4) in that it includes a plurality of nanostructures 155 instead of the plurality of nanostructures 152. Nanostructure 151 is an example of a first nanostructure, and nanostructure 155 is an example of a second nanostructure.
 ナノ構造体155の高さは、ナノ構造体151の高さに比べて低い。ナノ構造体155の底部は、光学調整層14の第1面を基準にして、ナノ構造体151の底部に比べて高い位置に位置している。ナノ構造体155の頂部は、ナノ構造体151の頂部と略同一の高さに設けられていてもよい。 The height of the nanostructure 155 is lower than the height of the nanostructure 151. The bottom of the nanostructure 155 is located at a higher position than the bottom of the nanostructure 151 with respect to the first surface of the optical adjustment layer 14 . The top of the nanostructure 155 may be provided at substantially the same height as the top of the nanostructure 151.
[作用効果]
 第2の実施形態に係る表示装置102では、ナノ構造体155の底部は、ナノ構造体151の底部に比べて高い位置に設けられている。これにより、サブ画素10の外周部に位置するナノ構造体155の透過率を低下させることができる。したがって、発光素子12から斜め方向に出射された光が、隣接するサブ画素10に漏れることを抑制することができる。よって、メタマテリアル15に集光効果以外の機能(すなわちレンズ以外の機能)として混色抑制機能を付与することができる。
[Effect]
In the display device 102 according to the second embodiment, the bottom of the nanostructure 155 is provided at a higher position than the bottom of the nanostructure 151. Thereby, the transmittance of the nanostructures 155 located at the outer periphery of the sub-pixel 10 can be reduced. Therefore, light emitted from the light emitting element 12 in an oblique direction can be prevented from leaking to the adjacent sub-pixel 10. Therefore, it is possible to provide the metamaterial 15 with a color mixture suppressing function as a function other than a light condensing effect (that is, a function other than a lens).
<3 第3の実施形態>
[表示装置103の構成]
 図10は、第3の実施形態に係る表示装置103の断面図である。表示装置103は、光学調整層14が各メタマテリアル15の一部を含む点において、第1の実施形態に係る表示装置101(図4参照)とは異なっている。
<3 Third embodiment>
[Configuration of display device 103]
FIG. 10 is a cross-sectional view of a display device 103 according to the third embodiment. The display device 103 differs from the display device 101 according to the first embodiment (see FIG. 4) in that the optical adjustment layer 14 includes a part of each metamaterial 15.
 分離構造のナノ構造体152は、第1分離構造体152Mと第2分離構造体152Nとを備えている。図10では、ナノ構造体152の分離数が2である例が示されているが、ナノ構造体152の分離数はこれに限定されるものではなく、3以上であってもよい。 The nanostructure 152 having a separation structure includes a first separation structure 152M and a second separation structure 152N. Although FIG. 10 shows an example in which the number of separated nanostructures 152 is two, the number of separated nanostructures 152 is not limited to this, and may be three or more.
 第1分離構造体152Mと第2分離構造体152Nは、離隔されている。第1分離構造体152Mが、発光素子12から見て第2分離構造体152Nよりも手前側に設けられている。複数のナノ構造体151と複数の第2分離構造体152Nは、略同一の高さを有していてもよい。複数のナノ構造体151および複数の第2分離構造体152Nは、光学調整層14の第1の面に2次元配置されている。 The first separation structure 152M and the second separation structure 152N are separated from each other. The first separation structure 152M is provided closer to the front than the second separation structure 152N when viewed from the light emitting element 12. The plurality of nanostructures 151 and the plurality of second separation structures 152N may have substantially the same height. The plurality of nanostructures 151 and the plurality of second separation structures 152N are two-dimensionally arranged on the first surface of the optical adjustment layer 14.
 光学調整層14は、複数の発光素子12と複数の第2分離構造体151Nの間、より具体的には、保護層13と複数の第2分離構造体151Nの間に設けられている。光学調整層14は、複数の第1分離構造体151Mを含む。 The optical adjustment layer 14 is provided between the plurality of light emitting elements 12 and the plurality of second separation structures 151N, more specifically, between the protective layer 13 and the plurality of second separation structures 151N. The optical adjustment layer 14 includes a plurality of first separation structures 151M.
[作用効果]
 第3の実施形態に係る表示装置103では、第1の実施形態に係る表示装置101と同様の作用効果を得ることができる。
[Effect]
The display device 103 according to the third embodiment can provide the same effects as the display device 101 according to the first embodiment.
<4 第4の実施形態>
[表示装置104の構成]
 図11は、第4の実施形態に係る表示装置104の断面図である。図12は、図11のXII-XII線に沿った断面図である。表示装置104は、複数のメタマテリアル15R、15G、115Bに代えて、複数のメタマテリアル21R、21G、21Bを備える点において、第1の実施形態に係る表示装置101(図4参照)とは異なっている。
<4 Fourth embodiment>
[Configuration of display device 104]
FIG. 11 is a cross-sectional view of the display device 104 according to the fourth embodiment. FIG. 12 is a cross-sectional view taken along line XII-XII in FIG. 11. The display device 104 differs from the display device 101 according to the first embodiment (see FIG. 4) in that it includes a plurality of metamaterials 21R, 21G, and 21B instead of the plurality of metamaterials 15R, 15G, and 115B. ing.
(メタマテリアル21R、21G、21B)
 複数のメタマテリアル21R、21G、21Bは、複数のナノ構造体(ユニットセル)211を含む。複数のナノ構造体211は、3次元配置されている。より具体的には、複数のナノ構造体211は、水平方向D、垂直方向D、正面方向Dz(発光素子12の中心軸12aの方向)に配置されている。
( Metamaterial 21R, 21G, 21B)
The multiple metamaterials 21R, 21G, and 21B include multiple nanostructures (unit cells) 211. The plurality of nanostructures 211 are arranged three-dimensionally. More specifically, the plurality of nanostructures 211 are arranged in the horizontal direction D X , the vertical direction D Y , and the front direction Dz (direction of the central axis 12 a of the light emitting element 12 ).
 水平方向D、垂直方向D、正面方向Dzはそれぞれ、第1方向、第2方向、第3方向の一例である。第1方向および第2方向は、発光素子12の中心軸12aに対して垂直な方向であり、第1方向と第2方向のなす角は90°であってもよいし、90°でなくてもよい。第3方向は、発光素子12の中心軸12aに平行な方向である。本明細書において、発光素子12の中心軸12aとは、OLED層122の幾何中心を通り、かつ、表示装置101の表示面に垂直な軸を表す。水平方向D、垂直方向D、正面方向Dzにおけるナノ構造体211の配置ピッチは一定であってもよいし、変化していてもよい。 The horizontal direction D X , the vertical direction D Y , and the front direction Dz are examples of the first direction, the second direction, and the third direction, respectively. The first direction and the second direction are directions perpendicular to the central axis 12a of the light emitting element 12, and the angle between the first direction and the second direction may or may not be 90°. Good too. The third direction is a direction parallel to the central axis 12a of the light emitting element 12. In this specification, the central axis 12a of the light emitting element 12 represents an axis that passes through the geometric center of the OLED layer 122 and is perpendicular to the display surface of the display device 101. The arrangement pitch of the nanostructures 211 in the horizontal direction D X , the vertical direction D Y , and the front direction Dz may be constant or may vary.
 複数のナノ構造体211は、複数のナノ構造層21Lを構成していてもよい。ナノ構造層21Lの間は、規定の間隔離されていてもよい。図11では、複数のナノ構造体211が、3層のナノ構造層21Lを構成する例が示されている。正面方向Dzに配置されたナノ構造体211の数は、サブ画素10の中心からサブ画素10の外周に向かって減少している。すなわち、複数のナノ構造体211が、サブ画素10の中心からサブ画素10の外周に向かって下降する階段状をなすように、3次元配置されている。 The plurality of nanostructures 211 may constitute a plurality of nanostructure layers 21L. The nanostructure layers 21L may be separated for a specified period of time. FIG. 11 shows an example in which a plurality of nanostructures 211 constitute a three-layer nanostructure layer 21L. The number of nanostructures 211 arranged in the front direction Dz decreases from the center of the sub-pixel 10 toward the outer periphery of the sub-pixel 10. That is, the plurality of nanostructures 211 are three-dimensionally arranged in a step-like manner descending from the center of the sub-pixel 10 toward the outer periphery of the sub-pixel 10.
 各ナノ構造層21Lに含まれる複数のナノ構造体211は、図12に示されるように、同一形状および同一サイズを有していることが好ましい。ここで、ナノ構造体211のサイズとは、ナノ構造体211の中心軸に対して垂直な方向に切断して得られる断面のサイズを表す。例えば、ナノ構造体211が円柱状を有する場合には、ナノ構造体211のサイズとは、ナノ構造体211の直径を表す。 It is preferable that the plurality of nanostructures 211 included in each nanostructure layer 21L have the same shape and size, as shown in FIG. 12. Here, the size of the nanostructure 211 refers to the size of a cross section obtained by cutting the nanostructure 211 in a direction perpendicular to the central axis. For example, when the nanostructure 211 has a cylindrical shape, the size of the nanostructure 211 refers to the diameter of the nanostructure 211.
[作用効果]
 図13は、比較例に係る表示装置201の断面図である。表示装置201は、複数のメタマテリアル22R、22G、22Bを備え、メタマテリアル22R、22G、22Bはそれぞれ、複数のナノ構造体151を含む。メタマテリアル22R、22G、22Bを集光レンズとしての機能させるために、複数のナノ構造体151のサイズは、サブ画素10の中心から周縁に向かって小さくなっている。このため、比較例に係る表示装置201では、フォトリソグラフィ技術によるメタマテリアル22R、22G、22Bの形成の難易度が高くなる虞がある。
[Effect]
FIG. 13 is a cross-sectional view of a display device 201 according to a comparative example. The display device 201 includes a plurality of metamaterials 22R, 22G, and 22B, and each of the metamaterials 22R, 22G, and 22B includes a plurality of nanostructures 151. In order for the metamaterials 22R, 22G, and 22B to function as condensing lenses, the size of the plurality of nanostructures 151 decreases from the center of the sub-pixel 10 toward the periphery. Therefore, in the display device 201 according to the comparative example, there is a possibility that the difficulty level of forming the metamaterials 22R, 22G, and 22B using photolithography technology may increase.
 一方、第4の実施形態に係る表示装置104は、複数のメタマテリアル21R、21G、21Bを備え、メタマテリアル21R、21G、21Bはそれぞれ、複数のナノ構造体211を含む。メタマテリアル21R、21G、21Bをメタマテリアル22R、22G、22Bと同様の集光レンズとして機能させるために、サイズが同一である複数のナノ構造体211が、3次元配置されている。複数のナノ構造体211のサイズが同一であるため、第4の実施形態に係る表示装置104では、フォトリソグラフィ技術による21R、21G、21Bの形成が容易となる。 On the other hand, the display device 104 according to the fourth embodiment includes a plurality of metamaterials 21R, 21G, and 21B, and each of the metamaterials 21R, 21G, and 21B includes a plurality of nanostructures 211. In order to make the metamaterials 21R, 21G, and 21B function as condensing lenses similar to the metamaterials 22R, 22G, and 22B, a plurality of nanostructures 211 having the same size are three-dimensionally arranged. Since the sizes of the plurality of nanostructures 211 are the same, in the display device 104 according to the fourth embodiment, formation of 21R, 21G, and 21B by photolithography becomes easy.
 正面方向Dzに配置されたナノ構造体211の間は離隔されているため、メタマテリアル21R、21G、21Bに集光効果以外の機能(すなわちレンズ以外の機能)として混色抑制機能を付与することができる。 Since the nanostructures 211 arranged in the front direction Dz are separated from each other, it is possible to provide the metamaterials 21R, 21G, and 21B with a color mixture suppressing function as a function other than a light focusing effect (that is, a function other than a lens). can.
<5 第5の実施形態>
[表示装置105の構成]
 図14は、第5の実施形態に係る表示装置105の断面図である。図15は、図14の一部を拡大して表す断面図である。表示装置105は、複数のメタマテリアル15R、15G、115Bに代えて、複数のメタマテリアル23R、23G、23Bを備える点において、第1の実施形態に係る表示装置101(図4参照)とは異なっている。
<5 Fifth embodiment>
[Configuration of display device 105]
FIG. 14 is a cross-sectional view of the display device 105 according to the fifth embodiment. FIG. 15 is an enlarged cross-sectional view of a part of FIG. 14. The display device 105 differs from the display device 101 according to the first embodiment (see FIG. 4) in that it includes a plurality of metamaterials 23R, 23G, and 23B instead of the plurality of metamaterials 15R, 15G, and 115B. ing.
(メタマテリアル23R、23G、23B)
 メタマテリアル23R、23G、23Bは、複数のナノ構造体231を含む。メタマテリアル23R、23G、23Bは、1または複数のナノ構造体232をさらに含んでもよい。
( Metamaterial 23R, 23G, 23B)
The metamaterials 23R, 23G, and 23B include a plurality of nanostructures 231. Metamaterials 23R, 23G, 23B may further include one or more nanostructures 232.
(ナノ構造体231)
 複数のナノ構造体231は、断面視において、複数の斜め方向の列231aを構成するように配置されている。ここで、断面視とは、発光素子12の中心軸12aを含む面で表示装置105を切断して得られる切断面における断面視を表す。斜め方向の列231aは、断面視において、当該斜め方向の列231aの下方に位置する発光素子12から離れるに従って発光素子12の中心軸12aから離隔している。すなわち、断面視において、斜め方向の列231aの発光素子12側の第1端部は、斜め方向の列231aの表示面側の第2端部に比べて発光素子12の中心軸12aに近い。斜め方向の列231aは、断面視において、発光素子12の中心軸12aに対して角度θをなしている。斜め方向の列231aを構成する複数のナノ構造体231は、断面視において、発光素子12の中心軸12aに対して角度θをなす斜め方向に配置されている。斜め方向の列231aを構成する複数のナノ構造体231は、断面視において、当該複数のナノ構造体231の下方に位置する発光素子12から離れるに従って発光素子12の中心軸12aから離隔している。
(Nanostructure 231)
The plurality of nanostructures 231 are arranged so as to form a plurality of diagonal rows 231a in a cross-sectional view. Here, the cross-sectional view refers to a cross-sectional view of a cut surface obtained by cutting the display device 105 along a plane including the central axis 12a of the light emitting element 12. The diagonal rows 231a are spaced apart from the central axis 12a of the light emitting elements 12 as they move away from the light emitting elements 12 located below the diagonal rows 231a in cross-sectional view. That is, in a cross-sectional view, the first end of the diagonal row 231a on the light emitting element 12 side is closer to the central axis 12a of the light emitting element 12 than the second end of the diagonal row 231a on the display surface side. The diagonal rows 231a form an angle θ with respect to the central axis 12a of the light emitting element 12 in cross-sectional view. The plurality of nanostructures 231 constituting the diagonal row 231a are arranged diagonally at an angle θ with respect to the central axis 12a of the light emitting element 12 in cross-sectional view. The plurality of nanostructures 231 constituting the diagonal row 231a are spaced apart from the central axis 12a of the light emitting element 12 as they move away from the light emitting element 12 located below the plurality of nanostructures 231 in cross-sectional view. .
 ナノ構造体231の中心軸は、発光素子12の中心軸12aと平行であってもよいし、発光素子12の中心軸12aに対して角度θをなしていてもよい。ナノ構造体231の中心軸が発光素子12の中心軸12aに対して角度θをなす場合、ナノ構造体231の中心軸は、発光素子12から離れるに従って発光素子12の中心軸12aから離隔していてもよい。ナノ構造体231の中心軸の角度θが斜め方向の列231aの配列の角度θと略同一であってもよい。 The central axis of the nanostructure 231 may be parallel to the central axis 12a of the light emitting element 12, or may form an angle θa with respect to the central axis 12a of the light emitting element 12. When the central axis of the nanostructure 231 forms an angle θ a with the central axis 12a of the light emitting element 12, the central axis of the nanostructure 231 becomes more distant from the central axis 12a of the light emitting element 12 as it moves away from the light emitting element 12. You can leave it there. The angle θ a of the central axis of the nanostructures 231 may be substantially the same as the angle θ of the arrangement of the diagonal rows 231 a.
 発光素子12の中央部の発光量が発光素子12の全発光量に対して支配的であり、かつ、発光素子12の中央部から放射された光は放射状に広がる場合、メタマテリアル23R、23G、23Bの外周部に入射する光は、発光素子12から中心軸12aに対して斜め方向に出射された光を多く含むことになる。このため、上記のように、断面視において、複数のナノ構造体231が複数の斜め方向の列を構成するように配置される構成は有効である。 When the amount of light emitted from the center of the light emitting element 12 is dominant to the total amount of light emitted from the light emitting element 12, and the light emitted from the center of the light emitting element 12 spreads radially, the metamaterials 23R, 23G, The light incident on the outer peripheral portion of 23B includes a large amount of light emitted from the light emitting element 12 in an oblique direction with respect to the central axis 12a. Therefore, as described above, a configuration in which a plurality of nanostructures 231 are arranged so as to form a plurality of diagonal rows in a cross-sectional view is effective.
 斜め方向の列の角度θは、発光素子12の中心軸12aからの斜め方向の列231aの距離によらず一定であってもよい。斜め方向に隣接するナノ構造体231同士は接していてもよいし、離れていてもよい。斜め方向に隣接するナノ構造体231の配置ピッチは一定であってもよいし、変化していてもよい。複数のナノ構造体231は、複数のナノ構造層23Lを構成していてもよい。隣り合うナノ構造層23Lの間は接していてもよいし、規定の間隔離されていてもよい。 The angle θ of the diagonal rows may be constant regardless of the distance of the diagonal rows 231a from the central axis 12a of the light emitting elements 12. Nanostructures 231 adjacent to each other in the diagonal direction may be in contact with each other or may be separated from each other. The arrangement pitch of diagonally adjacent nanostructures 231 may be constant or may vary. The plurality of nanostructures 231 may constitute a plurality of nanostructure layers 23L. Adjacent nanostructure layers 23L may be in contact with each other, or may be separated by a specified distance.
 ナノ構造層23Lに含まれる複数のナノ構造体231は、平面視において、発光素子12の中心軸に対して同心円状等の同心状に配置されていてもよい。同一の周上に配置されている複数のナノ構造体231の配置ピッチは一定であってもよいし、変化していてもよい。ナノ構造層23Lに含まれる複数のナノ構造体231は、径方向に列を構成しており、放射状に配置されていてもよい。 The plurality of nanostructures 231 included in the nanostructure layer 23L may be arranged concentrically, such as in a concentric circle, with respect to the central axis of the light emitting element 12 in plan view. The arrangement pitch of the plurality of nanostructures 231 arranged on the same circumference may be constant or may vary. The plurality of nanostructures 231 included in the nanostructure layer 23L form a row in the radial direction, and may be arranged radially.
(ナノ構造体232)
 ナノ構造体232は、ナノ構造体231の約3倍の高さを有していてもよい。1または複数のナノ構造体232は、サブ画素10の中心部に設けられている。ナノ構造体232は、発光素子12の中心軸12a上に位置していてもよい。
(Nanostructure 232)
Nanostructures 232 may have a height approximately three times that of nanostructures 231. One or more nanostructures 232 are provided at the center of the sub-pixel 10. The nanostructure 232 may be located on the central axis 12a of the light emitting element 12.
[作用効果]
 第5の実施形態に係る表示装置105では、複数のナノ構造体231は、断面視において、発光素子12の中心軸に対して角度θをなす斜め方向に配置されている。これにより、発光素子12から中心軸12aに対して斜め方向に出射された光に対する、メタマテリアル23R、23G、23Bのレンズとしての機能を向上させることができる。
[Effect]
In the display device 105 according to the fifth embodiment, the plurality of nanostructures 231 are arranged obliquely at an angle θ with respect to the central axis of the light emitting element 12 in a cross-sectional view. Thereby, the function of the metamaterials 23R, 23G, and 23B as lenses for light emitted from the light emitting element 12 in a diagonal direction with respect to the central axis 12a can be improved.
 複数のナノ構造体231が、断面視において、発光素子12の中心軸に対して角度θをなす斜め方向に配置されていることで、ナノ構造体231と低屈折率層16の界面を増加させることができる。したがって、発光素子12から中心軸12aに対して斜め方向に出射された光を反射させやすくなる。よって、メタマテリアル23R、23G、23Bに集光効果以外の機能(すなわちレンズ以外の機能)として混色抑制機能を付与することができる。 The plurality of nanostructures 231 are arranged obliquely at an angle θ with respect to the central axis of the light emitting element 12 in a cross-sectional view, thereby increasing the interface between the nanostructures 231 and the low refractive index layer 16. be able to. Therefore, it becomes easier to reflect the light emitted from the light emitting element 12 in a diagonal direction with respect to the central axis 12a. Therefore, it is possible to provide the metamaterials 23R, 23G, and 23B with a color mixture suppressing function as a function other than a light-condensing effect (that is, a function other than a lens).
<6 第6の実施形態>
[表示装置106の構成]
 図16は、第6の実施形態に係る表示装置106の断面図である。表示装置106は、斜め方向の列231aの角度θが変化する点において、第5の実施形態に係る表示装置105(図14および図15参照)とは異なっている。
<6 Sixth embodiment>
[Configuration of display device 106]
FIG. 16 is a cross-sectional view of the display device 106 according to the sixth embodiment. The display device 106 differs from the display device 105 according to the fifth embodiment (see FIGS. 14 and 15) in that the angle θ of the diagonal rows 231a changes.
 斜め方向の列231aの角度θは、断面視において、斜め方向の列231aが発光素子12の中心軸12aから離れるに従って大きくなる。発光素子12の中央部から放射された光が放射状に広がる場合、メタマテリアル23R、23G、23Bの中心から離れるほど、発光素子12からの入射光の入射角(入射光と光学調整層14の第1面とがなす角度)がより大きくなる傾向がある。このため、上記のように、断面視において、斜め方向の列231aの角度θは斜め方向の列231aが発光素子12の中心軸12aから離れるに従って大きくなることは有効である。 The angle θ of the diagonal rows 231a increases as the diagonal rows 231a move away from the central axis 12a of the light emitting elements 12 in a cross-sectional view. When light emitted from the center of the light emitting element 12 spreads radially, the farther from the center of the metamaterials 23R, 23G, and 23B, the greater the angle of incidence of the incident light from the light emitting element 12 (the angle of incidence between the incident light and the optical adjustment layer 14) increases. The angle formed with one surface tends to become larger. Therefore, as described above, it is effective that the angle θ of the diagonal rows 231a increases as the diagonal rows 231a move away from the central axis 12a of the light emitting elements 12 in cross-sectional view.
[作用効果]
 第6の実施形態では、斜め方向の列231aの角度θは、断面視において、斜め方向の列231aが発光素子12の中心軸12aから離れるに従って大きくなる。これにより、発光素子12から中心軸12aに対して斜め方向に出射された光に対する、メタマテリアル23R、23G、23Bのレンズとしての機能をさらに向上させることができる。
[Effect]
In the sixth embodiment, the angle θ of the diagonal rows 231a increases as the diagonal rows 231a move away from the central axis 12a of the light emitting elements 12 in a cross-sectional view. Thereby, the function of the metamaterials 23R, 23G, and 23B as lenses for light emitted from the light emitting element 12 in a diagonal direction with respect to the central axis 12a can be further improved.
<7 第7の実施形態>
[表示装置107の構成]
 図17は、第7の実施形態に係る表示装置107の断面図である。表示装置107が、3色の発光素子12R、12G、12Bに代えて発光素子12Wおよびカラーフィルタ19を備える点において、第1の実施形態に係る表示装置101とは異なっている。表示装置107が、絶縁層18をさらに備えていてもよい。
<7 Seventh embodiment>
[Configuration of display device 107]
FIG. 17 is a cross-sectional view of a display device 107 according to the seventh embodiment. The display device 107 is different from the display device 101 according to the first embodiment in that the display device 107 includes a light emitting element 12W and a color filter 19 instead of the three color light emitting elements 12R, 12G, and 12B. The display device 107 may further include an insulating layer 18.
(発光素子12W)
 発光素子12Wは、白色光を発光することができる。発光素子12Wは、白色OLED素子であり、駆動回路等の制御に基づき、白色光を発光することができる。発光素子12Wは、OLED層122Rに代えてOLED層122Wを備えること以外は発光素子12Rと同様である。
(Light emitting element 12W)
The light emitting element 12W can emit white light. The light emitting element 12W is a white OLED element, and can emit white light under control of a drive circuit or the like. The light emitting element 12W is the same as the light emitting element 12R except that it includes an OLED layer 122W instead of the OLED layer 122R.
 OLED層122Wが、表示領域RE1内において複数の発光素子12Wに亘って連続して設けられ、表示領域RE1内において複数の発光素子12Wに共有されていてもよい。 The OLED layer 122W may be continuously provided across the plurality of light emitting elements 12W within the display region RE1, and may be shared by the plurality of light emitting elements 12W within the display region RE1.
 OLED層122Wは、白色光を発光することができる。OLED層122Wは、単層の発光ユニットを備えるOLED層であってもよいし、2層の発光ユニットを備えるOLED層(タンデム構造)であってもよいし、これら以外の構造のOLED層であってもよい。単層の発光ユニットを備えるOLED層は、例えば、第1電極121から第2電極123に向かって、正孔注入層、正孔輸送層、赤色発光層、発光分離層、青色発光層、緑色発光層、電子輸送層、電子注入層がこの順序で積層された構成を有する。2層の発光ユニットを備えるOLED層は、例えば、第1電極121から第2電極123に向かって、正孔注入層、正孔輸送層、青色発光層、電子輸送層、電荷発生層、正孔輸送層、黄色発光層、電子輸送層と、電子注入層がこの順序で積層された構成を有する。 The OLED layer 122W can emit white light. The OLED layer 122W may be an OLED layer including a single-layer light-emitting unit, an OLED layer including two-layer light-emitting units (tandem structure), or an OLED layer with a structure other than these. It's okay. The OLED layer including a single-layer light emitting unit includes, for example, a hole injection layer, a hole transport layer, a red light emitting layer, a light emitting separation layer, a blue light emitting layer, and a green light emitting layer from the first electrode 121 to the second electrode 123. It has a structure in which a layer, an electron transport layer, and an electron injection layer are stacked in this order. For example, an OLED layer including a two-layer light emitting unit includes, from the first electrode 121 toward the second electrode 123, a hole injection layer, a hole transport layer, a blue light emitting layer, an electron transport layer, a charge generation layer, and a hole injection layer. It has a structure in which a transport layer, a yellow light-emitting layer, an electron transport layer, and an electron injection layer are laminated in this order.
(カラーフィルタ19)
 カラーフィルタ19は、複数の発光素子12Wの上方に設けられている。より具体的には、カラーフィルタ19は、保護層13の第1面上に設けられている。カラーフィルタ19は、例えば、複数の赤色フィルタ部19FRと、複数の緑色フィルタ部19FGと、複数の青色フィルタ部19FBとを備える。なお、以下の説明において、赤色フィルタ部19FR、緑色フィルタ部19FG、青色フィルタ部19FBを特に区別せず総称する場合には、フィルタ部19Fということがある。
(Color filter 19)
The color filter 19 is provided above the plurality of light emitting elements 12W. More specifically, the color filter 19 is provided on the first surface of the protective layer 13. The color filter 19 includes, for example, a plurality of red filter sections 19FR, a plurality of green filter sections 19FG, and a plurality of blue filter sections 19FB. In addition, in the following description, when the red filter section 19FR, the green filter section 19FG, and the blue filter section 19FB are collectively referred to without distinction, they may be referred to as the filter section 19F.
 複数のフィルタ部19Fは、面内方向に2次元配置されている。本明細書において、面内方向とは、駆動基板11の第1面における面内方向を意味する。各フィルタ部19Fは、発光素子12Wの上方に設けられている。赤色フィルタ部19FRと発光素子12Wとによりサブ画素10Rが構成され、緑色フィルタ部19FGと発光素子12Wとによりサブ画素10Gが構成され、青色フィルタ部19FBと発光素子12Wとによりサブ画素10Bが構成されている。 The plurality of filter parts 19F are two-dimensionally arranged in the in-plane direction. In this specification, the in-plane direction means the in-plane direction on the first surface of the drive substrate 11. Each filter section 19F is provided above the light emitting element 12W. The red filter section 19FR and the light emitting element 12W constitute a sub pixel 10R, the green filter section 19FG and the light emitting element 12W constitute a sub pixel 10G, and the blue filter section 19FB and the light emitting element 12W constitute a sub pixel 10B. ing.
 赤色フィルタ部19FRは、発光素子12Wから出射された白色光のうち赤色光を透過するのに対して、赤色光以外の光を吸収する。緑色フィルタ部19FGは、発光素子12Wから出射された白色光のうち緑色光を透過するのに対して、緑色光以外の光を吸収する。青色フィルタ部19FBは、発光素子12Wから出射された白色光のうち青色光を透過するのに対して、青色光以外の光を吸収する。 The red filter section 19FR transmits red light among the white light emitted from the light emitting element 12W, but absorbs light other than red light. The green filter section 19FG transmits green light among the white light emitted from the light emitting element 12W, but absorbs light other than green light. The blue filter section 19FB transmits blue light among the white light emitted from the light emitting element 12W, but absorbs light other than blue light.
 赤色フィルタ部19FRは、例えば、赤色のカラーレジストを含む。緑色フィルタ部19FGは、例えば、緑色のカラーレジストを含む。青色フィルタ部19FBは、例えば、青色のカラーレジストを含む。 The red filter section 19FR includes, for example, a red color resist. The green filter section 19FG includes, for example, a green color resist. The blue filter section 19FB includes, for example, a blue color resist.
(第2電極123)
 第2電極123が、OLED層122Wと同様に、表示領域RE1内において複数の発光素子12Wに亘って連続して設けられ、表示領域RE1内において複数の発光素子12Wに共有されていてもよい。
(Second electrode 123)
Like the OLED layer 122W, the second electrode 123 may be continuously provided across the plurality of light emitting elements 12W within the display region RE1, and may be shared by the plurality of light emitting elements 12W within the display region RE1.
(メタマテリアル15R、15G、15B)
 メタマテリアル15Rは、赤色フィルタ部19FRから出射される赤色光のピーク波長以下のサイズを有する複数のナノ構造体151を含んでもよい。メタマテリアル15Gは、緑色フィルタ部19FGから出射される緑色光のピーク波長以下のサイズを有する複数のナノ構造体151を含んでもよい。メタマテリアル15Bは、青色フィルタ部19FBから出射される青色光のピーク波長以下のサイズを有する複数のナノ構造体151を含んでもよい。なお、赤色フィルタ部19FR、緑色フィルタ部19FG、青色フィルタ部19FBから出射される光が複数のピークを有する場合には、ピーク波長とは、複数のピークのうち最大のピークのピーク波長を表すものとする。
( Metamaterial 15R, 15G, 15B)
The metamaterial 15R may include a plurality of nanostructures 151 having a size equal to or less than the peak wavelength of red light emitted from the red filter section 19FR. The metamaterial 15G may include a plurality of nanostructures 151 having a size equal to or less than the peak wavelength of green light emitted from the green filter section 19FG. The metamaterial 15B may include a plurality of nanostructures 151 having a size equal to or less than the peak wavelength of blue light emitted from the blue filter section 19FB. Note that when the light emitted from the red filter section 19FR, the green filter section 19FG, and the blue filter section 19FB has multiple peaks, the peak wavelength represents the peak wavelength of the largest peak among the multiple peaks. shall be.
(絶縁層18)
 絶縁層18は、駆動基板11の第1面のうち、離隔された第1電極121の間の部分に設けられている。絶縁層18は、隣接する第1電極121の間を絶縁する。絶縁層18は、複数の開口を有する。複数の開口はそれぞれ、各発光素子12Wに対応して設けられている。より具体的には、複数の開口はそれぞれ、各第1電極121の第1面(OLED層122側の面)上に設けられている。開口を介して、第1電極121とOLED層122とが接触する。
(Insulating layer 18)
The insulating layer 18 is provided on the first surface of the drive substrate 11 in a portion between the spaced apart first electrodes 121 . The insulating layer 18 insulates between adjacent first electrodes 121. Insulating layer 18 has a plurality of openings. Each of the plurality of openings is provided corresponding to each light emitting element 12W. More specifically, each of the plurality of openings is provided on the first surface (the surface on the OLED layer 122 side) of each first electrode 121. The first electrode 121 and the OLED layer 122 are in contact with each other through the opening.
 絶縁層18は、有機絶縁層であってもよいし、無機絶縁層であってもよいし、これらの積層体であってもよい。有機絶縁層は、例えば、ポリイミド系樹脂、アクリル系樹脂およびノボラック系樹脂等からなる群より選ばれた少なくとも1種を含む。無機絶縁層は、例えば、酸化シリコン(SiO)、窒化シリコン(SiN)および酸窒化シリコン(SiO)等からなる群より選ばれた少なくとも1種を含む。 The insulating layer 18 may be an organic insulating layer, an inorganic insulating layer, or a laminate of these. The organic insulating layer contains, for example, at least one selected from the group consisting of polyimide resin, acrylic resin, novolak resin, and the like. The inorganic insulating layer includes, for example, at least one selected from the group consisting of silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), and the like.
[作用効果]
 第7の実施形態に係る表示装置107では、第1の実施形態に係る表示装置101と同様の作用効果を得ることができる。
[Effect]
The display device 107 according to the seventh embodiment can provide the same effects as the display device 101 according to the first embodiment.
<8 変形例>
 以上、本開示の第1から第7の実施形態について具体的に説明したが、本開示は、上記の第1から第7の実施形態に限定されるものではなく、本開示の技術的思想に基づく各種の変形が可能である。
<8 Modification>
Although the first to seventh embodiments of the present disclosure have been specifically described above, the present disclosure is not limited to the first to seventh embodiments, and is based on the technical idea of the present disclosure. Various modifications based on this are possible.
 例えば、上記の第1から第7の実施形態において挙げた構成、方法、工程、形状、材料および数値等はあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値等を用いてもよい。 For example, the configurations, methods, processes, shapes, materials, numerical values, etc. listed in the first to seventh embodiments are merely examples, and configurations, methods, processes, shapes, materials, etc. that differ from these as necessary. and numerical values may also be used.
 上記の第1から第7の実施形態の構成、方法、工程、形状、材料および数値等は、本開示の主旨を逸脱しない限り、互いに組み合わせることが可能である。 The configurations, methods, processes, shapes, materials, numerical values, etc. of the first to seventh embodiments described above can be combined with each other without departing from the gist of the present disclosure.
 上記の第1から第7の実施形態に例示した材料は、特に断らない限り、1種を単独でまたは2種以上を組み合わせて用いることができる。 The materials exemplified in the first to seventh embodiments above can be used alone or in combination of two or more, unless otherwise specified.
 上記の第1から第7の実施形態では、発光素子がOLED素子である例について説明したが、発光素子はこの例に限定されるものではなく、LED(Light Emitting Diode(発光ダイオード))、無機エレクトロルミネッセンス(Inorganic Electro-Luminescence:IEL)素子または半導体レーザー素子等の自発光型の発光素子等であってもよい。2種以上の発光素子が表示装置に備えられてもよい。 In the first to seventh embodiments described above, an example in which the light emitting element is an OLED element has been described, but the light emitting element is not limited to this example, and may include an LED (Light Emitting Diode), an inorganic A self-luminous light emitting element such as an electroluminescence (IEL) element or a semiconductor laser element may be used. A display device may be equipped with two or more types of light emitting elements.
 上記の第1から第7の実施形態では、発光装置が表示装置である例について説明したが、発光装置は表示装置に限定されるものではなく、照明装置等であってもよい。 In the first to seventh embodiments described above, an example in which the light-emitting device is a display device has been described, but the light-emitting device is not limited to a display device, and may be a lighting device or the like.
 上記の第7の実施形態では、第1の実施形態に係る表示装置101において、3色の発光素子12R、12G、12Bに代えて発光素子12Wおよびカラーフィルタ19が備えられる例について説明した。しかしながら、本開示はこの例に限定されるものではなく、例えば、第2から第7の実施形態に係る表示装置102、103、104、105、106において、3色の発光素子12R、12G、12Bに代えて発光素子12Wおよびカラーフィルタ19が備えられてもよい。 In the seventh embodiment described above, an example was described in which the display device 101 according to the first embodiment is provided with the light emitting element 12W and the color filter 19 instead of the three color light emitting elements 12R, 12G, and 12B. However, the present disclosure is not limited to this example, and for example, in the display devices 102, 103, 104, 105, 106 according to the second to seventh embodiments, the three color light emitting elements 12R, 12G, 12B The light emitting element 12W and the color filter 19 may be provided instead.
 また、本開示は以下の構成を採用することもできる。
(1)
 2次元配置された複数の発光素子と、
 前記複数の発光素子のそれぞれに対応して設けられた複数のメタマテリアルと
 を備え、
 前記メタマテリアルは、2次元配置された複数のナノ構造体を含み、
 前記複数のナノ構造体は、前記ナノ構造体の高さ方向に分離された複数の分離構造ナノ構造体を含み、
 前記複数の分離構造ナノ構造体は、前記発光素子に対応する発光領域の外周部に設けられている、
 発光装置。
(2)
 光学調整層をさらに備え、
 前記分離構造ナノ構造体は、第1分離構造体と第2分離構造体とを含み、前記第1分離構造体が、前記発光素子から見て前記第2分離構造体よりも手前側に設けられ、
 前記光学調整層は、前記発光素子と前記第2分離構造体の間に設けられ、
 前記光学調整層は、前記第1分離構造体を含む、
 (1)に記載の発光装置。
(3)
 光学調整層をさらに備え、
 前記光学調整層は、前記複数の発光素子と前記複数のメタマテリアルの間に設けられている、
 (1)に記載の発光装置。
(4)
 前記複数のナノ構造体は、前記ナノ構造体の高さ方向に分離されていない複数の非分離構造ナノ構造体を含み、
 前記複数の非分離構造ナノ構造体は、前記発光領域の外周部の内側に設けられている、
 (1)から(3)のいずれか1項に記載の発光装置。
(5)
 前記複数のナノ構造体は、複数のナノピラーを含む、
 (1)から(4)のいずれか1項に記載の発光装置。
(6)
 前記複数のメタマテリアルは、複数のメタレンズを構成する、
 (1)から(5)のいずれか1項に記載の発光装置。
(7)
 前記メタマテリアルは、前記発光素子から出射された光を集光する機能と、隣接する前記発光領域への前記光の透過を抑制する機能とを有する、
 (1)から(6)のいずれか1項に記載の発光装置。
(8)
 前記複数のナノ構造体の間を埋める低屈折率層をさらに備え、
 前記低屈折率層の屈折率は、前記ナノ構造体の屈折率に比べて低い、
 (1)から(7)のいずれか1項に記載の発光装置。
(9)
 前記発光領域は、サブ画素である、
 (1)から(8)のいずれか1項に記載の発光装置。
(10)
 2次元配置された複数の発光素子と、
 前記複数の発光素子のそれぞれに対応して設けられた複数のメタマテリアルと
 を備え、
 前記メタマテリアルは、複数のナノ構造体を含み、
 前記複数のナノ構造体は、前記発光素子に対応する発光領域の中心から前記発光領域の外周に向かって下降する階段状をなすように、3次元配置されている、
 発光装置。
(11)
 前記複数のナノ構造体は、複数の層を構成している、
 (10)に記載の発光装置。
(12)
 前記各層に含まれるナノ構造体が、同一のサイズを有している、
 (11)に記載の発光装置。
(13)
 2次元配置された複数の発光素子と、
 前記複数の発光素子のそれぞれに対応して設けられた複数のメタマテリアルと
 を備え、
 前記メタマテリアルは、複数のナノ構造体を含み、
 前記複数のナノ構造体は、断面視において、複数の斜め方向の列を構成するように配置され、
 前記斜め方向の列は、前記断面視において、前記発光素子から離れるに従って前記発光素子の中心軸から離隔している、
 発光装置。
(14)
 前記発光素子の中心軸に対する前記斜め方向の列の角度θは、前記斜め方向の列が前記発光素子の中心軸から離れるに従って大きくなる、
 (13)に記載の発光装置。
(15)
 前記複数のナノ構造体は、複数の層を構成している、
 (13)または(14)に記載の発光装置。
(16)
 2次元配置された複数の発光素子と、
 前記複数の発光素子のそれぞれに対応して設けられた複数のメタマテリアルと
 を備え、
 前記メタマテリアルは、2次元配置された複数のナノ構造体を含み、
 前記複数のナノ構造体は、複数の第1ナノ構造体と複数の第2ナノ構造体とを含み、
 前記複数の第2ナノ構造体は、前記発光素子に対応する発光領域の外周部に設けられ、
 前記複数の第1ナノ構造体は、前記外周部の内側に設けられ、
 前記第2ナノ構造体の底部は、前記第1ナノ構造体の底部よりも高い位置に位置している、
 発光装置。
(17)
 (1)から(16)のいずれか1項に記載の発光装置を備える電子機器。
Further, the present disclosure can also adopt the following configuration.
(1)
A plurality of light emitting elements arranged two-dimensionally,
a plurality of metamaterials provided corresponding to each of the plurality of light emitting elements,
The metamaterial includes a plurality of nanostructures arranged two-dimensionally,
The plurality of nanostructures include a plurality of separated nanostructures separated in the height direction of the nanostructures,
The plurality of separated nanostructures are provided at the outer periphery of a light emitting region corresponding to the light emitting element,
Light emitting device.
(2)
Further equipped with an optical adjustment layer,
The separation structure nanostructure includes a first separation structure and a second separation structure, and the first separation structure is provided closer to the front than the second separation structure when viewed from the light emitting element. ,
The optical adjustment layer is provided between the light emitting element and the second separation structure,
The optical adjustment layer includes the first separation structure.
The light emitting device according to (1).
(3)
Further equipped with an optical adjustment layer,
The optical adjustment layer is provided between the plurality of light emitting elements and the plurality of metamaterials,
The light emitting device according to (1).
(4)
The plurality of nanostructures include a plurality of non-separated nanostructures that are not separated in the height direction of the nanostructures,
The plurality of non-separated nanostructures are provided inside the outer periphery of the light emitting region,
The light emitting device according to any one of (1) to (3).
(5)
The plurality of nanostructures include a plurality of nanopillars,
The light emitting device according to any one of (1) to (4).
(6)
The plurality of metamaterials constitute a plurality of metalens,
The light emitting device according to any one of (1) to (5).
(7)
The metamaterial has a function of condensing light emitted from the light emitting element and a function of suppressing transmission of the light to the adjacent light emitting region.
The light emitting device according to any one of (1) to (6).
(8)
further comprising a low refractive index layer filling between the plurality of nanostructures,
the refractive index of the low refractive index layer is lower than the refractive index of the nanostructure;
The light emitting device according to any one of (1) to (7).
(9)
the light emitting region is a subpixel;
The light emitting device according to any one of (1) to (8).
(10)
A plurality of light emitting elements arranged two-dimensionally,
a plurality of metamaterials provided corresponding to each of the plurality of light emitting elements,
The metamaterial includes a plurality of nanostructures,
The plurality of nanostructures are three-dimensionally arranged so as to form a step shape descending from the center of the light emitting region corresponding to the light emitting element toward the outer periphery of the light emitting region.
Light emitting device.
(11)
The plurality of nanostructures constitute a plurality of layers,
The light emitting device according to (10).
(12)
the nanostructures included in each layer have the same size;
The light emitting device according to (11).
(13)
A plurality of light emitting elements arranged two-dimensionally,
a plurality of metamaterials provided corresponding to each of the plurality of light emitting elements,
The metamaterial includes a plurality of nanostructures,
The plurality of nanostructures are arranged so as to constitute a plurality of diagonal rows in a cross-sectional view,
In the cross-sectional view, the diagonal rows are spaced apart from the central axis of the light emitting element as they move away from the light emitting element.
Light emitting device.
(14)
The angle θ of the diagonal row with respect to the central axis of the light emitting element increases as the diagonal row moves away from the central axis of the light emitting element.
The light emitting device according to (13).
(15)
The plurality of nanostructures constitute a plurality of layers,
The light emitting device according to (13) or (14).
(16)
A plurality of light emitting elements arranged two-dimensionally,
a plurality of metamaterials provided corresponding to each of the plurality of light emitting elements,
The metamaterial includes a plurality of nanostructures arranged two-dimensionally,
The plurality of nanostructures include a plurality of first nanostructures and a plurality of second nanostructures,
The plurality of second nanostructures are provided at the outer periphery of a light emitting region corresponding to the light emitting element,
The plurality of first nanostructures are provided inside the outer peripheral part,
The bottom of the second nanostructure is located at a higher position than the bottom of the first nanostructure.
Light emitting device.
(17)
An electronic device comprising the light emitting device according to any one of (1) to (16).
<9 シミュレーションにより解析例>
[解析例1]
 FDTD(Finite Difference Time Domain)法による電磁界シミュレーションにより、図4に示す構成を有するメタマテリアルの光学特性を解析した。
<9 Example of analysis using simulation>
[Analysis example 1]
The optical properties of the metamaterial having the configuration shown in FIG. 4 were analyzed by electromagnetic field simulation using the FDTD (Finite Difference Time Domain) method.
[解析例2]
 FDTD法による電磁界シミュレーションにより、図13に示す構成を有するメタマテリアルの光学特性を解析した。
[Analysis example 2]
The optical properties of the metamaterial having the configuration shown in FIG. 13 were analyzed by electromagnetic field simulation using the FDTD method.
 上記解析結果から、ナノ構造体の構造を分離構造とすることで、透過率が低下することがわかった。 From the above analysis results, it was found that the transmittance was reduced by making the structure of the nanostructure into a separated structure.
<10 各実施形態に適用される共振器構造の例>
 上述した本開示に係る表示装置に用いられる画素は、発光素子で発生した光を共振させる共振器構造を備えている構成とすることができる。以下、図面を参照しながら、共振器構造について説明する。また、以下の説明において、各層の第1面を上面ということがある。
<10 Examples of resonator structures applied to each embodiment>
A pixel used in the display device according to the present disclosure described above can be configured to include a resonator structure that resonates light generated by a light emitting element. Hereinafter, the resonator structure will be explained with reference to the drawings. Furthermore, in the following description, the first surface of each layer may be referred to as an upper surface.
(共振器構造:第1例)
 図18Aは、共振器構造の第1例を説明するための模式的な断面図である。以下の説明において、サブ画素10R、10G、10Bにそれぞれに対応して設けられた発光素子12を、発光素子12、12、12ということがある。また、OLED層122のうちサブ画素10R、10G、10Bにそれぞれに対応する部分を、OLED層122、OLED層122、OLED層122ということがある。
(Resonator structure: 1st example)
FIG. 18A is a schematic cross-sectional view for explaining a first example of the resonator structure. In the following description, the light emitting elements 12 provided corresponding to the sub-pixels 10R, 10G, and 10B may be referred to as light emitting elements 12R , 12G , and 12B . Further, portions of the OLED layer 122 corresponding to the sub-pixels 10R, 10G, and 10B may be referred to as an OLED layer 122R , an OLED layer 122G , and an OLED layer 122B .
 第1例において、第1電極121は各発光素子12において共通の膜厚で形成されている。第2電極123においても同様である。 In the first example, the first electrode 121 is formed to have a common thickness in each light emitting element 12. The same applies to the second electrode 123.
 発光素子12の第1電極121の下に、光学調整層72を挟んだ状態で、反射板71が配されている。反射板71と第2電極123との間にOLED層122が発生する光を共振させる共振器構造が形成される。以下の説明において、サブ画素10R、10G、10Bにそれぞれに対応して設けられた光学調整層72を、光学調整層72、72、72ということがある。 A reflective plate 71 is disposed below the first electrode 121 of the light emitting element 12 with an optical adjustment layer 72 sandwiched therebetween. A resonator structure is formed between the reflection plate 71 and the second electrode 123 to resonate the light generated by the OLED layer 122. In the following description, the optical adjustment layers 72 provided corresponding to the sub-pixels 10R, 10G, and 10B may be referred to as optical adjustment layers 72R , 72G , and 72B .
 反射板71は各発光素子12において共通の膜厚で形成されている。光学調整層72の膜厚は、画素が表示すべき色に応じて異なっている。光学調整層72、72、72が異なる膜厚を有することにより、表示すべき色に応じた光の波長に最適な共振を生ずる光学的距離を設定することができる。 The reflecting plate 71 is formed to have a common thickness in each light emitting element 12. The thickness of the optical adjustment layer 72 varies depending on the color that the pixel should display. By having the optical adjustment layers 72R , 72G , and 72B having different thicknesses, it is possible to set an optical distance that produces optimal resonance for the wavelength of light corresponding to the color to be displayed.
 図18Aに示す例では、発光素子12、12、12における反射板71の上面は揃うように配置されている。上述したように、光学調整層72の膜厚は、画素が表示すべき色に応じて異なっているので、第2電極123の上面の位置は、発光素子12、12、12の種類に応じて相違する。 In the example shown in FIG. 18A, the upper surfaces of the reflecting plates 71 in the light emitting elements 12 R , 12 G , and 12 B are arranged so as to be aligned. As described above, the thickness of the optical adjustment layer 72 differs depending on the color to be displayed by the pixel, so the position of the upper surface of the second electrode 123 depends on the type of light emitting elements 12 R , 12 G , 12 B. It differs depending on the
 反射板71は、例えば、アルミニウム(Al)、銀(Ag)、銅(Cu)等の金属、あるいは、これらを主成分とする合金を用いて形成することができる。 The reflective plate 71 can be formed using, for example, metals such as aluminum (Al), silver (Ag), copper (Cu), or alloys containing these as main components.
 光学調整層72は、シリコン窒化物(SiN)、シリコン酸化物(SiO)、シリコン酸窒化物(SiO)などの無機絶縁材料や、アクリル系樹脂やポリイミド系樹脂などといった有機樹脂材料を用いて構成することができる。光学調整層72は単層でも良いし、これら複数の材料の積層膜であってもよい。また、発光素子12の種類に応じて積層数が異なっても良い。 The optical adjustment layer 72 is made of an inorganic insulating material such as silicon nitride (SiN x ), silicon oxide (SiO x ), or silicon oxynitride (SiO x N y ), or an organic resin such as acrylic resin or polyimide resin. It can be constructed using materials. The optical adjustment layer 72 may be a single layer or may be a laminated film of a plurality of these materials. Further, the number of laminated layers may differ depending on the type of light emitting element 12.
 第1電極121は、インジウムスズ酸化物(ITO)やインジウム亜鉛酸化物(IZO)、亜鉛酸化物(ZnO)などの透明導電材料を用いて形成することができる。 The first electrode 121 can be formed using a transparent conductive material such as indium tin oxide (ITO), indium zinc oxide (IZO), or zinc oxide (ZnO).
 第2電極123は、半透過反射膜として機能する必要がある。第2電極123は、マグネシウム(Mg)や銀(Ag)、またはこれらを主成分とするマグネシウム銀合金(MgAg)、さらには、アルカリ金属やアルカリ土類金属を含んだ合金などを用いて形成することができる。 The second electrode 123 needs to function as a semi-transparent reflective film. The second electrode 123 is formed using magnesium (Mg), silver (Ag), a magnesium silver alloy (MgAg) containing these as main components, or an alloy containing an alkali metal or an alkaline earth metal. be able to.
(共振器構造:第2例)
 図18Bは、共振器構造の第2例を説明するための模式的な断面図である。
(Resonator structure: second example)
FIG. 18B is a schematic cross-sectional view for explaining a second example of the resonator structure.
 第2例においても、第1電極121や第2電極123は各発光素子12において共通の膜厚で形成されている。 In the second example as well, the first electrode 121 and the second electrode 123 are formed with a common thickness in each light emitting element 12.
 そして、第2例においても、発光素子12の第1電極121の下に、光学調整層72を挟んだ状態で、反射板71が配される。反射板71と第2電極123との間にOLED層122が発生する光を共振させる共振器構造が形成される。第1例と同様に、反射板71は各発光素子12において共通の膜厚で形成されており、光学調整層72の膜厚は、画素が表示すべき色に応じて異なっている。 In the second example as well, the reflective plate 71 is arranged under the first electrode 121 of the light emitting element 12 with the optical adjustment layer 72 sandwiched therebetween. A resonator structure is formed between the reflection plate 71 and the second electrode 123 to resonate the light generated by the OLED layer 122. Similar to the first example, the reflective plate 71 is formed to have a common thickness in each light emitting element 12, and the thickness of the optical adjustment layer 72 differs depending on the color that the pixel should display.
 図18Aに示す第1例においては、発光素子12、12、12における反射板71の上面は揃うように配置され、第2電極123の上面の位置は、発光素子12、12、12の種類に応じて相違していた。 In the first example shown in FIG. 18A, the upper surfaces of the reflective plates 71 in the light emitting elements 12 R , 12 G , and 12 B are arranged so as to be aligned, and the upper surfaces of the second electrodes 123 are located in the same position as in the light emitting elements 12 R , 12 G . , 12 differed depending on the type of B.
 これに対し、図18Bに示す第2例において、第2電極123の上面は、発光素子12、12、12で揃うように配置されている。第2電極123の上面を揃えるために、発光素子12、12、12において反射板71の上面は、発光素子12、12、12の種類に応じて異なるように配置されている。このため、反射板71の下面(換言すれば、下地層(絶縁層)73の上面)は、発光素子12の種類に応じた階段形状となる。 On the other hand, in the second example shown in FIG. 18B, the upper surfaces of the second electrode 123 are arranged so that the upper surfaces of the light emitting elements 12 R , 12 G , and 12 B are aligned. In order to align the upper surfaces of the second electrodes 123, the upper surfaces of the reflectors 71 in the light emitting elements 12 R , 12 G , and 12 B are arranged differently depending on the type of the light emitting elements 12 R , 12 G , and 12 B. There is. Therefore, the lower surface of the reflecting plate 71 (in other words, the upper surface of the base layer (insulating layer) 73) has a stepped shape depending on the type of the light emitting element 12.
 反射板71、光学調整層72、第1電極121および第2電極123を構成する材料などについては、第1例において説明した内容と同様であるので、説明を省略する。 The materials constituting the reflecting plate 71, the optical adjustment layer 72, the first electrode 121, and the second electrode 123 are the same as those described in the first example, so their description will be omitted.
(共振器構造:第3例)
 図19Aは、共振器構造の第3例を説明するための模式的な断面図である。以下の説明において、サブ画素10R、10G、10Bにそれぞれに対応して設けられた反射板71を、反射板71、71、71ということがある。
(Resonator structure: 3rd example)
FIG. 19A is a schematic cross-sectional view for explaining a third example of the resonator structure. In the following description, the reflection plates 71 provided corresponding to the sub-pixels 10R, 10G, and 10B may be referred to as reflection plates 71R , 71G , and 71B .
 第3例においても、第1電極121や第2電極123は各発光素子12において共通の膜厚で形成されている。 In the third example as well, the first electrode 121 and the second electrode 123 are formed with a common thickness in each light emitting element 12.
 そして、第3例においても、発光素子12の第1電極121の下に、光学調整層72を挟んだ状態で、反射板71が配される。反射板71と第2電極123との間に、OLED層122が発生する光を共振させる共振器構造が形成される。第1例や第2例と同様に、光学調整層72の膜厚は、画素が表示すべき色に応じて異なっている。そして、第2例と同様に、第2電極123の上面の位置は、発光素子12、12、12で揃うように配置されている。 Also in the third example, the reflective plate 71 is disposed below the first electrode 121 of the light emitting element 12 with the optical adjustment layer 72 sandwiched therebetween. A resonator structure that resonates light generated by the OLED layer 122 is formed between the reflection plate 71 and the second electrode 123. Similar to the first and second examples, the thickness of the optical adjustment layer 72 differs depending on the color that the pixel should display. As in the second example, the positions of the upper surfaces of the second electrodes 123 are arranged to be aligned with the light emitting elements 12 R , 12 G , and 12 B.
 図18Bに示す第2例にあっては、第2電極123の上面を揃えるために、反射板71の下面は、発光素子12の種類に応じた階段形状であった。 In the second example shown in FIG. 18B, in order to align the upper surfaces of the second electrodes 123, the lower surface of the reflection plate 71 had a stepped shape depending on the type of light emitting element 12.
 これに対し、図19Aに示す第3例において、反射板71の膜厚は、発光素子12、12、12の種類に応じて異なるように設定されている。より具体的には、反射板71、71、71の下面が揃うように膜厚が設定されている。 On the other hand, in the third example shown in FIG. 19A, the film thickness of the reflection plate 71 is set to be different depending on the types of the light emitting elements 12 R , 12 G , and 12 B. More specifically, the film thickness is set so that the lower surfaces of the reflecting plates 71 R , 71 G , and 71 B are aligned.
 反射板71、光学調整層72、第1電極121および第2電極123を構成する材料などについては、第1例において説明した内容と同様であるので、説明を省略する。 The materials constituting the reflecting plate 71, the optical adjustment layer 72, the first electrode 121, and the second electrode 123 are the same as those described in the first example, so their description will be omitted.
(共振器構造:第4例)
 図19Bは、共振器構造の第4例を説明するための模式的な断面図である。以下の説明において、サブ画素10R、10G、10Bにそれぞれに対応して設けられた第1電極121を、第1電極121、121、121ということがある。
(Resonator structure: 4th example)
FIG. 19B is a schematic cross-sectional view for explaining a fourth example of the resonator structure. In the following description, the first electrodes 121 provided corresponding to the sub-pixels 10R, 10G, and 10B may be referred to as first electrodes 121R , 121G , and 121B .
 図18Aに示す第1例において、各発光素子12の第1電極121や第2電極123は、共通の膜厚で形成されている。そして、発光素子12の第1電極121の下に、光学調整層72を挟んだ状態で、反射板71が配されている。 In the first example shown in FIG. 18A, the first electrode 121 and second electrode 123 of each light emitting element 12 are formed with a common thickness. A reflective plate 71 is disposed below the first electrode 121 of the light emitting element 12 with the optical adjustment layer 72 sandwiched therebetween.
 これに対し、図19Bに示す第4例では、光学調整層72を省略し、第1電極121の膜厚を、発光素子12、12、12の種類に応じて異なるように設定した。 On the other hand, in the fourth example shown in FIG. 19B, the optical adjustment layer 72 is omitted, and the film thickness of the first electrode 121 is set to be different depending on the types of the light emitting elements 12 R , 12 G , and 12 B. .
 反射板71は各発光素子12において共通の膜厚で形成されている。第1電極121の膜厚は、画素が表示すべき色に応じて異なっている。第1電極121、121、121が異なる膜厚を有することにより、表示すべき色に応じた光の波長に最適な共振を生ずる光学的距離を設定することができる。 The reflecting plate 71 is formed to have a common thickness in each light emitting element 12. The thickness of the first electrode 121 varies depending on the color that the pixel should display. By having the first electrodes 121 R , 121 G , and 121 B having different thicknesses, it is possible to set an optical distance that produces optimum resonance for the wavelength of light corresponding to the color to be displayed.
 反射板71、光学調整層72、第1電極121および第2電極123を構成する材料などについては、第1例において説明した内容と同様であるので、説明を省略する。 The materials constituting the reflecting plate 71, the optical adjustment layer 72, the first electrode 121, and the second electrode 123 are the same as those described in the first example, so their description will be omitted.
(共振器構造:第5例)
 図20Aは、共振器構造の第5例を説明するための模式的な断面図である。
(Resonator structure: 5th example)
FIG. 20A is a schematic cross-sectional view for explaining a fifth example of the resonator structure.
 図18Aに示す第1例において、第1電極121や第2電極123は各発光素子12において共通の膜厚で形成されている。そして、発光素子12の第1電極121の下に、光学調整層72を挟んだ状態で、反射板71が配されている。 In the first example shown in FIG. 18A, the first electrode 121 and the second electrode 123 are formed with a common thickness in each light emitting element 12. A reflective plate 71 is disposed below the first electrode 121 of the light emitting element 12 with the optical adjustment layer 72 sandwiched therebetween.
 これに対し、図20Aに示す第5例にあっては、光学調整層72を省略し、代わりに、反射板71の表面に酸化膜74を形成した。酸化膜74の膜厚は、発光素子12、12、12の種類に応じて異なるように設定した。以下の説明において、サブ画素10R、10G、10Bにそれぞれに対応して設けられた酸化膜74を、酸化膜74、74、74ということがある。 On the other hand, in the fifth example shown in FIG. 20A, the optical adjustment layer 72 is omitted, and an oxide film 74 is formed on the surface of the reflection plate 71 instead. The thickness of the oxide film 74 was set to be different depending on the type of the light emitting elements 12 R , 12 G , and 12 B. In the following description, the oxide films 74 provided corresponding to the sub-pixels 10R, 10G, and 10B may be referred to as oxide films 74R , 74G , and 74B .
 酸化膜74の膜厚は、画素が表示すべき色に応じて異なっている。酸化膜74、74、74が異なる膜厚を有することにより、表示すべき色に応じた光の波長に最適な共振を生ずる光学的距離を設定することができる。 The thickness of the oxide film 74 varies depending on the color that the pixel should display. By having the oxide films 74 R , 74 G , and 74 B having different thicknesses, it is possible to set an optical distance that produces optimum resonance for the wavelength of light corresponding to the color to be displayed.
 酸化膜74は、反射板71の表面を酸化した膜であって、例えば、アルミニウム酸化物、タンタル酸化物、チタン酸化物、マグネシウム酸化物、ジルコニウム酸化物などから構成される。酸化膜74は、反射板71と第2電極123との間の光路長(光学的距離)を調整するための絶縁膜として機能する。 The oxide film 74 is a film obtained by oxidizing the surface of the reflecting plate 71, and is made of, for example, aluminum oxide, tantalum oxide, titanium oxide, magnesium oxide, zirconium oxide, or the like. The oxide film 74 functions as an insulating film for adjusting the optical path length (optical distance) between the reflection plate 71 and the second electrode 123.
 発光素子12、12、12の種類に応じて膜厚が異なる酸化膜74は、例えば、以下のようにして形成することができる。 The oxide film 74, which has a different thickness depending on the type of the light emitting elements 12R , 12G , and 12B , can be formed, for example, as follows.
 先ず、容器の中に電解液を充填し、反射板71が形成された基板を電解液の中に浸漬する。また、反射板71と対向するように電極を配置する。 First, a container is filled with an electrolytic solution, and the substrate on which the reflective plate 71 is formed is immersed in the electrolytic solution. Further, electrodes are arranged to face the reflecting plate 71.
 そして、電極を基準として正電圧を反射板71に印加して、反射板71を陽極酸化する。陽極酸化による酸化膜の膜厚は、電極に対する電圧値に比例する。そこで、反射板71、71、71のそれぞれに発光素子12の種類に応じた電圧を印加した状態で陽極酸化を行う。これによって、膜厚の異なる酸化膜74を一括して形成することができる。 Then, a positive voltage is applied to the reflective plate 71 using the electrode as a reference, and the reflective plate 71 is anodized. The thickness of the oxide film formed by anodic oxidation is proportional to the voltage value applied to the electrode. Therefore, anodic oxidation is performed while applying a voltage depending on the type of light emitting element 12 to each of the reflecting plates 71 R , 71 G , and 71 B. Thereby, oxide films 74 having different thicknesses can be formed all at once.
 反射板71、第1電極121および第2電極123を構成する材料などについては、第1例において説明した内容と同様であるので、説明を省略する。 The materials constituting the reflecting plate 71, the first electrode 121, and the second electrode 123 are the same as those described in the first example, so their explanation will be omitted.
(共振器構造:第6例)
 図20Bは、共振器構造の第6例を説明するための模式的な断面図である。
(Resonator structure: 6th example)
FIG. 20B is a schematic cross-sectional view for explaining a sixth example of the resonator structure.
 第6例において、発光素子12は、第1電極121とOLED層122と第2電極123とが積層されて構成されている。但し、第6例において、第1電極121は、電極と反射板の機能を兼ねるように形成されている。第1電極(兼反射板)121は、発光素子12、12、12の種類に応じて選択された光学定数を有する材料によって形成されている。第1電極(兼反射板)121による位相シフトが異なることによって、表示すべき色に応じた光の波長に最適な共振を生ずる光学的距離を設定することができる。 In the sixth example, the light emitting element 12 is configured by laminating a first electrode 121, an OLED layer 122, and a second electrode 123. However, in the sixth example, the first electrode 121 is formed to serve both as an electrode and as a reflector. The first electrode (also serving as a reflection plate) 121 is made of a material having optical constants selected depending on the types of the light emitting elements 12 R , 12 G , and 12 B. By varying the phase shift caused by the first electrode (also serving as a reflecting plate) 121, it is possible to set an optical distance that produces optimum resonance for the wavelength of light corresponding to the color to be displayed.
 第1電極(兼反射板)121は、アルミニウム(Al)、銀(Ag)、金(Au)、銅(Cu)などの単体金属や、これらを主成分とする合金から構成することができる。例えば、発光素子12の第1電極(兼反射板)121を銅(Cu)で形成し、発光素子12の第1電極(兼反射板)121と発光素子12の第1電極(兼反射板)121とをアルミニウムで形成するといった構成とすることができる。 The first electrode (also serving as a reflection plate) 121 can be made of a single metal such as aluminum (Al), silver (Ag), gold (Au), or copper (Cu), or an alloy containing these as main components. For example, the first electrode (cum-reflector) 121R of the light-emitting element 12R is formed of copper (Cu), and the first electrode (cum-reflector) 121G of the light - emitting element 12G and the first electrode of the light-emitting element 12B are formed of copper (Cu). (also serving as a reflection plate) 121B may be formed of aluminum.
 第2電極123を構成する材料などについては、第1例において説明した内容と同様であるので、説明を省略する。 The materials constituting the second electrode 123 are the same as those explained in the first example, so the explanation will be omitted.
(共振器構造:第7例)
 図21は、共振器構造の第7例を説明するための模式的な断面図である。
(Resonator structure: 7th example)
FIG. 21 is a schematic cross-sectional view for explaining a seventh example of the resonator structure.
 第7例は、基本的には、発光素子12、12については第6例を適用し、発光素子12については第1例を適用したといった構成である。この構成においても、表示すべき色に応じた光の波長に最適な共振を生ずる光学的距離を設定することができる。 The seventh example basically has a configuration in which the sixth example is applied to the light emitting elements 12 R and 12 G , and the first example is applied to the light emitting element 12 B. Also in this configuration, it is possible to set an optical distance that produces optimum resonance for the wavelength of light corresponding to the color to be displayed.
 発光素子12、12に用いられる第1電極(兼反射板)121、121は、アルミニウム(Al)、銀(Ag)、金(Au)、銅(Cu)などの単体金属や、これらを主成分とする合金から構成することができる。 The first electrodes (cum-reflection plates) 121 R and 121 G used in the light emitting elements 12 R and 12 G are made of a single metal such as aluminum (Al), silver (Ag), gold (Au), copper (Cu), It can be constructed from an alloy containing these as main components.
 発光素子12に用いられる、反射板71、光学調整層72および第1電極121を構成する材料などについては、第1例において説明した内容と同様であるので、説明を省略する。 The materials constituting the reflecting plate 71 B , the optical adjustment layer 72 B , and the first electrode 121 B used in the light emitting element 12 B are the same as those described in the first example, so the description thereof will be omitted.
<11 応用例>
(電子機器)
 上記の第1から第7の実施形態およびそれらの変形例に係る表示装置101、102、103、104、105、106、107(以下「表示装置101等」という。)は、各種の電子機器に備えられてもよい。表示装置101等は、特にビデオカメラまたは一眼レフカメラの電子ビューファインダ、もしくはヘッドマウント型ディスプレイ等の高解像度が要求され、目の近くで拡大して使用されるものに適する。
<11 Application examples>
(Electronics)
Display devices 101, 102, 103, 104, 105, 106, and 107 (hereinafter referred to as "display devices 101, etc.") according to the first to seventh embodiments and their modifications are used in various electronic devices. May be provided. The display device 101 and the like are particularly suitable for devices that require high resolution and are used close to the eyes, such as electronic viewfinders of video cameras or single-lens reflex cameras, or head-mounted displays.
(具体例1)
 図22A、図22Bは、デジタルスチルカメラ310の外観の一例を示す。このデジタルスチルカメラ310は、レンズ交換式一眼レフレックスタイプのものであり、カメラ本体部(カメラボディ)311の正面略中央に交換式の撮影レンズユニット(交換レンズ)312を有し、正面左側に撮影者が把持するためのグリップ部313を有している。
(Specific example 1)
22A and 22B show an example of the appearance of the digital still camera 310. This digital still camera 310 is a single-lens reflex type with interchangeable lenses, and has an interchangeable photographic lens unit (interchangeable lens) 312 approximately in the center of the front of a camera body 311, and on the left side of the front. It has a grip part 313 for the photographer to hold.
 カメラ本体部311の背面中央から左側にずれた位置には、モニタ314が設けられている。モニタ314の上部には、電子ビューファインダ(接眼窓)315が設けられている。撮影者は、電子ビューファインダ315を覗くことによって、撮影レンズユニット312から導かれた被写体の光像を視認して構図決定を行うことが可能である。電子ビューファインダ315は、上記の表示装置101等のうちいずれかを備える。 A monitor 314 is provided at a position shifted to the left from the center of the back surface of the camera body 311. An electronic viewfinder (eyepiece window) 315 is provided at the top of the monitor 314 . By looking through the electronic viewfinder 315, the photographer can visually recognize the light image of the subject guided from the photographic lens unit 312 and determine the composition. The electronic viewfinder 315 includes any one of the display devices 101 and the like described above.
(具体例2)
 図23は、ヘッドマウントディスプレイ320の外観の一例を示す。ヘッドマウントディスプレイ320は、例えば、眼鏡形の表示部321の両側に、使用者の頭部に装着するための耳掛け部322を有している。表示部321は、上記の表示装置101等のうちいずれかを備える。
(Specific example 2)
FIG. 23 shows an example of the appearance of the head mounted display 320. The head-mounted display 320 has, for example, ear hooks 322 on both sides of a glasses-shaped display section 321 to be worn on the user's head. The display unit 321 includes any one of the display devices 101 and the like described above.
(具体例3)
 図24は、テレビジョン装置330の外観の一例を示す。このテレビジョン装置330は、例えば、フロントパネル332およびフィルターガラス333を含む映像表示画面部331を有しており、この映像表示画面部331は、上記の表示装置101等のうちいずれかを備える。
(Specific example 3)
FIG. 24 shows an example of the appearance of the television device 330. This television device 330 has, for example, a video display screen section 331 that includes a front panel 332 and a filter glass 333, and this video display screen section 331 includes any one of the above-described display devices 101 and the like.
(具体例4)
 図25は、シースルーヘッドマウントディスプレイ340の外観の一例を示す。シースルーヘッドマウントディスプレイ340は、本体部341と、アーム342と、鏡筒343とを備える。
(Specific example 4)
FIG. 25 shows an example of the appearance of the see-through head-mounted display 340. The see-through head-mounted display 340 includes a main body 341, an arm 342, and a lens barrel 343.
 本体部341は、アーム342および眼鏡350と接続される。具体的には、本体部341の長辺方向の端部はアーム342と結合され、本体部341の側面の一側は接続部材を介して眼鏡350と連結される。なお、本体部341は、直接的に人体の頭部に装着されてもよい。 The main body portion 341 is connected to the arm 342 and the glasses 350. Specifically, an end of the main body 341 in the long side direction is coupled to the arm 342, and one side of the main body 341 is coupled to the glasses 350 via a connecting member. Note that the main body portion 341 may be directly attached to the human head.
 本体部341は、シースルーヘッドマウントディスプレイ340の動作を制御するための制御基板や、表示部を内蔵する。アーム342は、本体部341と鏡筒343とを接続させ、鏡筒343を支える。具体的には、アーム342は、本体部341の端部および鏡筒343の端部とそれぞれ結合され、鏡筒343を固定する。また、アーム342は、本体部341から鏡筒343に提供される画像に係るデータを通信するための信号線を内蔵する。 The main body section 341 incorporates a control board for controlling the operation of the see-through head-mounted display 340 and a display section. The arm 342 connects the main body portion 341 and the lens barrel 343 and supports the lens barrel 343. Specifically, the arm 342 is coupled to an end of the main body portion 341 and an end of the lens barrel 343, respectively, and fixes the lens barrel 343. Further, the arm 342 has a built-in signal line for communicating data related to an image provided from the main body 341 to the lens barrel 343.
 鏡筒343は、本体部341からアーム342を経由して提供される画像光を、接眼レンズ351を通じて、シースルーヘッドマウントディスプレイ340を装着するユーザの目に向かって投射する。このシースルーヘッドマウントディスプレイ340において、本体部341の表示部は、上記の表示装置101等のうちいずれかを備える。 The lens barrel 343 projects image light provided from the main body 341 via the arm 342 through the eyepiece 351 toward the eyes of the user wearing the see-through head-mounted display 340. In this see-through head-mounted display 340, the display section of the main body section 341 includes one of the display devices 101 and the like described above.
(具体例5)
 図26は、スマートフォン360の外観の一例を示す。スマートフォン360は、各種情報を表示する表示部361、およびユーザによる操作入力を受け付けるボタン等から構成される操作部362等を備える。表示部361は、上記の表示装置101等のうちいずれかを備える。
(Specific example 5)
FIG. 26 shows an example of the appearance of the smartphone 360. The smartphone 360 includes a display section 361 that displays various information, and an operation section 362 that includes buttons and the like that accept operation inputs from the user. The display unit 361 includes any one of the display devices 101 and the like described above.
(具体例6)
 上記の表示装置101等は、乗物に備えられる各種のディスプレイに備えられてもよい。
(Specific example 6)
The display device 101 and the like described above may be included in various displays provided in a vehicle.
 図27Aおよび図27Bは、各種のディスプレイが備えられた乗物500の内部の構成の一例を示す図である。具体的には、図27Aは、乗物500の後方から前方にかけての乗物500の内部の様子の一例を示す図、図27Bは、乗物500の斜め後方から斜め前方にかけての乗物500の内部の様子の一例を示す図である。 FIGS. 27A and 27B are diagrams showing an example of the internal configuration of a vehicle 500 equipped with various displays. Specifically, FIG. 27A is a diagram showing an example of the interior of the vehicle 500 from the rear to the front of the vehicle 500, and FIG. 27B is a diagram showing an example of the interior of the vehicle 500 from the diagonal rear to the diagonal front of the vehicle 500. It is a figure showing an example.
 乗物500は、センターディスプレイ501と、コンソールディスプレイ502と、ヘッドアップディスプレイ503と、デジタルリアミラー504と、ステアリングホイールディスプレイ505と、リアエンタテイメントディスプレイ506とを備える。これらのディスプレイの少なくとも1つが、上記の表示装置101等のうちいずれかを備える。例えば、これらのディスプレイのすべてが、上記の表示装置101等のうちいずれかを備えてもよい。 The vehicle 500 includes a center display 501, a console display 502, a head-up display 503, a digital rear mirror 504, a steering wheel display 505, and a rear entertainment display 506. At least one of these displays includes one of the display devices 101 and the like described above. For example, all of these displays may include one of the display devices 101 and the like described above.
 センターディスプレイ501は、運転席508および助手席509に対向するダッシュボードの部分に配置されている。図27Aおよび図27Bでは、運転席508側から助手席509側まで延びる横長形状のセンターディスプレイ501の例を示すが、センターディスプレイ501の画面サイズや配置場所は任意である。センターディスプレイ501には、種々のセンサで検知された情報を表示可能である。具体的な一例として、センターディスプレイ501には、イメージセンサで撮影した撮影画像、ToFセンサで計測された乗物500の前方や側方の障害物までの距離画像、赤外線センサで検出された乗客の体温などを表示可能である。センターディスプレイ501は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、およびエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。 The center display 501 is arranged on a part of the dashboard facing the driver's seat 508 and the passenger seat 509. Although FIGS. 27A and 27B show an example of a horizontally long center display 501 extending from the driver's seat 508 side to the passenger seat 509 side, the screen size and placement location of the center display 501 are arbitrary. Center display 501 can display information detected by various sensors. As a specific example, the center display 501 displays images taken by an image sensor, distance images to obstacles in front and sides of the vehicle 500 measured by a ToF sensor, and passenger body temperature detected by an infrared sensor. etc. can be displayed. Center display 501 can be used, for example, to display at least one of safety-related information, operation-related information, life log, health-related information, authentication/identification-related information, and entertainment-related information.
 安全関連情報は、居眠り検知、よそ見検知、同乗している子供のいたずら検知、シートベルト装着有無、乗員の置き去り検知などの情報であり、例えばセンターディスプレイ501の裏面側に重ねて配置されたセンサにて検知される情報である。操作関連情報は、センサを用いて乗員の操作に関するジェスチャを検知する。検知されるジェスチャは、乗物500内の種々の設備の操作を含んでいてもよい。例えば、空調設備、ナビゲーション装置、AV装置、照明装置等の操作を検知する。ライフログは、乗員全員のライフログを含む。例えば、ライフログは、乗車中の各乗員の行動記録を含む。ライフログを取得および保存することで、事故時に乗員がどのような状態であったかを確認できる。健康関連情報は、温度センサなどのセンサを用いて乗員の体温を検知し、検知した体温に基づいて乗員の健康状態を推測する。あるいは、イメージセンサを用いて乗員の顔を撮像し、撮像した顔の表情から乗員の健康状態を推測してもよい。さらに、乗員に対して自動音声で会話を行って、乗員の回答内容に基づいて乗員の健康状態を推測してもよい。認証/識別関連情報は、センサを用いて顔認証を行うキーレスエントリ機能や、顔識別でシート高さや位置の自動調整機能などを含む。エンタテイメント関連情報は、センサを用いて乗員によるAV装置の操作情報を検出する機能や、センサで乗員の顔を認識して、乗員に適したコンテンツをAV装置にて提供する機能などを含む。 Safety-related information includes information such as detection of falling asleep, detection of looking away, detection of mischief by children in the same vehicle, presence or absence of seatbelts, and detection of leaving passengers behind. This information is detected by The operation-related information uses sensors to detect gestures related to operations by the occupant. The sensed gestures may include manipulation of various equipment within vehicle 500. For example, the operation of air conditioning equipment, navigation equipment, AV equipment, lighting equipment, etc. is detected. The life log includes life logs of all crew members. For example, a life log includes a record of the actions of each occupant during the ride. By acquiring and saving life logs, it is possible to check the condition of the occupants at the time of the accident. For health-related information, the body temperature of the occupant is detected using a sensor such as a temperature sensor, and the health condition of the occupant is estimated based on the detected body temperature. Alternatively, an image sensor may be used to capture an image of the occupant's face, and the occupant's health condition may be estimated from the captured facial expression. Furthermore, it is also possible to have an automatic voice conversation with the occupant and estimate the occupant's health condition based on the occupant's responses. Authentication/identification related information includes a keyless entry function that performs facial recognition using a sensor, and a function that automatically adjusts seat height and position using facial recognition. The entertainment-related information includes a function that uses a sensor to detect operation information of an AV device by a passenger, a function that recognizes the passenger's face using a sensor, and provides the AV device with content suitable for the passenger.
 コンソールディスプレイ502は、例えば、ライフログ情報の表示に用いることができる。コンソールディスプレイ502は、運転席508と助手席509の間のセンターコンソール510のシフトレバー511の近くに配置されている。コンソールディスプレイ502にも、種々のセンサで検知された情報を表示可能である。また、コンソールディスプレイ502には、イメージセンサで撮像された車両周辺の画像を表示してもよいし、車両周辺の障害物までの距離画像を表示してもよい。 The console display 502 can be used, for example, to display life log information. Console display 502 is arranged near shift lever 511 on center console 510 between driver's seat 508 and passenger seat 509. The console display 502 can also display information detected by various sensors. Further, the console display 502 may display an image around the vehicle captured by an image sensor, or may display a distance image to an obstacle around the vehicle.
 ヘッドアップディスプレイ503は、運転席508の前方のフロントガラス512の奥に仮想的に表示される。ヘッドアップディスプレイ503は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、およびエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。ヘッドアップディスプレイ503は、運転席508の正面に仮想的に配置されることが多いため、乗物500の速度や燃料(バッテリ)残量などの乗物500の操作に直接関連する情報を表示するのに適している。 The head-up display 503 is virtually displayed behind the windshield 512 in front of the driver's seat 508. Head-up display 503 can be used, for example, to display at least one of safety-related information, operation-related information, life log, health-related information, authentication/identification-related information, and entertainment-related information. Since the head-up display 503 is often virtually placed in front of the driver's seat 508, it is difficult to display information directly related to the operation of the vehicle 500, such as the speed of the vehicle 500 and the remaining amount of fuel (battery). Are suitable.
 デジタルリアミラー504は、乗物500の後方を表示できるだけでなく、後部座席の乗員の様子も表示できるため、デジタルリアミラー504の裏面側に重ねてセンサを配置することで、例えばライフログ情報の表示に用いることができる。 The digital rear mirror 504 can display not only the rear of the vehicle 500 but also the state of the occupants in the rear seats. Therefore, by arranging a sensor on the back side of the digital rear mirror 504, it can be used for displaying life log information, for example. be able to.
 ステアリングホイールディスプレイ505は、乗物500のハンドル513の中心付近に配置されている。ステアリングホイールディスプレイ505は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、およびエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。特に、ステアリングホイールディスプレイ505は、運転者の手の近くにあるため、運転者の体温等のライフログ情報を表示したり、AV装置や空調設備等の操作に関する情報などを表示するのに適している。 The steering wheel display 505 is placed near the center of the steering wheel 513 of the vehicle 500. Steering wheel display 505 can be used, for example, to display at least one of safety-related information, operation-related information, lifelog, health-related information, authentication/identification-related information, and entertainment-related information. In particular, since the steering wheel display 505 is located near the driver's hands, it is suitable for displaying life log information such as the driver's body temperature, and information regarding the operation of AV equipment, air conditioning equipment, etc. There is.
 リアエンタテイメントディスプレイ506は、運転席508や助手席509の背面側に取り付けられており、後部座席の乗員が視聴するためのものである。リアエンタテイメントディスプレイ506は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、およびエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。特に、リアエンタテイメントディスプレイ506は、後部座席の乗員の目の前にあるため、後部座席の乗員に関連する情報が表示される。例えば、AV装置や空調設備の操作に関する情報を表示したり、後部座席の乗員の体温等を温度センサで計測した結果を表示してもよい。 The rear entertainment display 506 is attached to the back side of the driver's seat 508 and passenger seat 509, and is for viewing by passengers in the rear seats. Rear entertainment display 506 can be used, for example, to display at least one of safety-related information, operation-related information, lifelog, health-related information, authentication/identification-related information, and entertainment-related information. In particular, since the rear entertainment display 506 is located in front of the rear seat occupant, information relevant to the rear seat occupant is displayed. For example, information regarding the operation of the AV device or air conditioning equipment may be displayed, or the results of measuring the body temperature of the passenger in the rear seat using a temperature sensor may be displayed.
 表示装置101等の裏面側に重ねてセンサを配置し、周囲に存在する物体までの距離を計測することができる構成としてもよい。光学的な距離計測の手法には、大きく分けて、受動型と能動型がある。受動型は、センサから物体に光を投光せずに、物体からの光を受光して距離計測を行うものである。受動型には、レンズ焦点法、ステレオ法、および単眼視法などがある。能動型は、物体に光を投光して、物体からの反射光をセンサで受光して距離計測を行うものである。能動型には、光レーダ方式、アクティブステレオ方式、照度差ステレオ法、モアレトポグラフィ法、干渉法などがある。上記の表示装置101等は、これらのどの方式の距離計測にも適用可能である。上記の表示装置101等の裏面側に重ねて配置されるセンサを用いることで、上述した受動型又は能動型の距離計測を行うことができる。 A configuration may also be adopted in which a sensor is placed on the back side of the display device 101 etc. so that the distance to objects existing in the surroundings can be measured. There are two main types of optical distance measurement methods: passive and active. A passive type sensor measures distance by receiving light from an object without emitting light from the sensor to the object. Passive types include lens focusing, stereo, and monocular viewing. The active type measures distance by projecting light onto an object and receiving the reflected light from the object with a sensor. Active types include an optical radar method, an active stereo method, a photometric stereo method, a moiré topography method, and an interferometry method. The display device 101 and the like described above can be applied to any of these methods of distance measurement. By using a sensor placed overlappingly on the back side of the display device 101 or the like, the above-mentioned passive or active distance measurement can be performed.
 10R、10G、10B  サブ画素
 11  駆動基板
 12R、12G、12B  発光素子
 12a  中心軸
 13  保護層
 14  光学調整層
 15R、15G、15B  メタマテリアル
 16  保護層
 17  カバー層
 18  絶縁層
 19  カラーフィルタ
 19FR  赤色フィルタ部
 19FG  緑色フィルタ部
 19FB  青色フィルタ部
 21R、21G、21B  メタマテリアル
 21L  ナノ構造層
 22R、22G、22B  メタマテリアル
 23R、23G、23B  メタマテリアル
 23L  ナノ構造層
 31、32、33  レジストパターン
 101、102、103、104、105、106、107  表示装置
 101a  パッド部
 121  第1電極
 122R、122G、122B  OLED層
 123  第2電極
 151、152、155  ナノ構造体
 152M  第1分離構造体
 152N  第2分離構造体
 211  ナノ構造体
 231、232  ナノ構造体
 231a  斜め方向の列
 310  デジタルスチルカメラ
 320  ヘッドマウントディスプレイ
 330  テレビジョン装置
 340  シースルーヘッドマウントディスプレイ
 360  スマートフォン
 500  乗物
 RE1  表示領域
 RE2  周辺領域
10R, 10G, 10B Subpixel 11 Drive board 12R, 12G, 12B Light emitting element 12a Central axis 13 Protective layer 14 Optical adjustment layer 15R, 15G, 15B Metamaterial 16 Protective layer 17 Cover layer 18 Insulating layer 19 Color filter 19FR Red filter section 19FG Green filter section 19FB Blue filter section 21R, 21G, 21B Metamaterial 21L Nanostructure layer 22R, 22G, 22B Metamaterial 23R, 23G, 23B Metamaterial 23L Nanostructure layer 31, 32, 33 Resist pattern 101, 102, 103, 104, 105, 106, 107 Display device 101a Pad portion 121 First electrode 122R, 122G, 122B OLED layer 123 Second electrode 151, 152, 155 Nanostructure 152M First separation structure 152N Second separation structure 211 Nanostructure Body 231, 232 Nanostructure 231a Diagonal row 310 Digital still camera 320 Head-mounted display 330 Television device 340 See-through head-mounted display 360 Smartphone 500 Vehicle RE1 Display area RE2 Peripheral area

Claims (17)

  1.  2次元配置された複数の発光素子と、
     前記複数の発光素子のそれぞれに対応して設けられた複数のメタマテリアルと
     を備え、
     前記メタマテリアルは、2次元配置された複数のナノ構造体を含み、
     前記複数のナノ構造体は、前記ナノ構造体の高さ方向に分離された複数の分離構造ナノ構造体を含み、
     前記複数の分離構造ナノ構造体は、前記発光素子に対応する発光領域の外周部に設けられている、
     発光装置。
    A plurality of light emitting elements arranged two-dimensionally,
    a plurality of metamaterials provided corresponding to each of the plurality of light emitting elements,
    The metamaterial includes a plurality of nanostructures arranged two-dimensionally,
    The plurality of nanostructures include a plurality of separated nanostructures separated in the height direction of the nanostructures,
    The plurality of separated nanostructures are provided at the outer periphery of a light emitting region corresponding to the light emitting element,
    Light emitting device.
  2.  光学調整層をさらに備え、
     前記分離構造ナノ構造体は、第1分離構造体と第2分離構造体とを含み、前記第1分離構造体が、前記発光素子から見て前記第2分離構造体よりも手前側に設けられ、
     前記光学調整層は、前記発光素子と前記第2分離構造体の間に設けられ、
     前記光学調整層は、前記第1分離構造体を含む、
     請求項1に記載の発光装置。
    Further equipped with an optical adjustment layer,
    The separation structure nanostructure includes a first separation structure and a second separation structure, and the first separation structure is provided closer to the front than the second separation structure when viewed from the light emitting element. ,
    The optical adjustment layer is provided between the light emitting element and the second separation structure,
    The optical adjustment layer includes the first separation structure.
    The light emitting device according to claim 1.
  3.  光学調整層をさらに備え、
     前記光学調整層は、前記複数の発光素子と前記複数のメタマテリアルの間に設けられている、
     請求項1に記載の発光装置。
    Further equipped with an optical adjustment layer,
    The optical adjustment layer is provided between the plurality of light emitting elements and the plurality of metamaterials,
    The light emitting device according to claim 1.
  4.  前記複数のナノ構造体は、前記ナノ構造体の高さ方向に分離されていない複数の非分離構造ナノ構造体を含み、
     前記複数の非分離構造ナノ構造体は、前記発光領域の外周部の内側に設けられている、
     請求項1に記載の発光装置。
    The plurality of nanostructures include a plurality of non-separated nanostructures that are not separated in the height direction of the nanostructures,
    The plurality of non-separated nanostructures are provided inside the outer periphery of the light emitting region,
    The light emitting device according to claim 1.
  5.  前記複数のナノ構造体は、複数のナノピラーを含む、
     請求項1に記載の発光装置。
    The plurality of nanostructures include a plurality of nanopillars,
    The light emitting device according to claim 1.
  6.  前記複数のメタマテリアルは、複数のメタレンズを構成する、
     請求項1に記載の発光装置。
    The plurality of metamaterials constitute a plurality of metalens,
    The light emitting device according to claim 1.
  7.  前記メタマテリアルは、前記発光素子から出射された光を集光する機能と、隣接する前記発光領域への前記光の透過を抑制する機能とを有する、
     請求項1に記載の発光装置。
    The metamaterial has a function of condensing light emitted from the light emitting element and a function of suppressing transmission of the light to the adjacent light emitting region.
    The light emitting device according to claim 1.
  8.  前記複数のナノ構造体の間を埋める低屈折率層をさらに備え、
     前記低屈折率層の屈折率は、前記ナノ構造体の屈折率に比べて低い、
     請求項1に記載の発光装置。
    further comprising a low refractive index layer filling between the plurality of nanostructures,
    the refractive index of the low refractive index layer is lower than the refractive index of the nanostructure;
    The light emitting device according to claim 1.
  9.  前記発光領域は、サブ画素である、
     請求項1に記載の発光装置。
    the light emitting region is a subpixel;
    The light emitting device according to claim 1.
  10.  2次元配置された複数の発光素子と、
     前記複数の発光素子のそれぞれに対応して設けられた複数のメタマテリアルと
     を備え、
     前記メタマテリアルは、複数のナノ構造体を含み、
     前記複数のナノ構造体は、前記発光素子に対応する発光領域の中心から前記発光領域の外周に向かって下降する階段状をなすように、3次元配置されている、
     発光装置。
    A plurality of light emitting elements arranged two-dimensionally,
    a plurality of metamaterials provided corresponding to each of the plurality of light emitting elements,
    The metamaterial includes a plurality of nanostructures,
    The plurality of nanostructures are three-dimensionally arranged so as to form a staircase shape descending from the center of the light emitting region corresponding to the light emitting element toward the outer periphery of the light emitting region.
    Light emitting device.
  11.  前記複数のナノ構造体は、複数の層を構成している、
     請求項10に記載の発光装置。
    The plurality of nanostructures constitute a plurality of layers,
    The light emitting device according to claim 10.
  12.  前記各層に含まれるナノ構造体が、同一のサイズを有している、
     請求項11に記載の発光装置。
    the nanostructures included in each layer have the same size;
    The light emitting device according to claim 11.
  13.  2次元配置された複数の発光素子と、
     前記複数の発光素子のそれぞれに対応して設けられた複数のメタマテリアルと
     を備え、
     前記メタマテリアルは、複数のナノ構造体を含み、
     前記複数のナノ構造体は、断面視において、複数の斜め方向の列を構成するように配置され、
     前記斜め方向の列は、前記断面視において、前記発光素子から離れるに従って前記発光素子の中心軸から離隔している、
     発光装置。
    A plurality of light emitting elements arranged two-dimensionally,
    a plurality of metamaterials provided corresponding to each of the plurality of light emitting elements,
    The metamaterial includes a plurality of nanostructures,
    The plurality of nanostructures are arranged so as to constitute a plurality of diagonal rows in a cross-sectional view,
    In the cross-sectional view, the diagonal rows are spaced apart from the central axis of the light emitting element as they move away from the light emitting element.
    Light emitting device.
  14.  前記発光素子の中心軸に対する前記斜め方向の列の角度θは、前記斜め方向の列が前記発光素子の中心軸から離れるに従って大きくなる、
     請求項13に記載の発光装置。
    The angle θ of the diagonal row with respect to the central axis of the light emitting element increases as the diagonal row moves away from the central axis of the light emitting element.
    The light emitting device according to claim 13.
  15.  前記複数のナノ構造体は、複数の層を構成している、
     請求項13に記載の発光装置。
    The plurality of nanostructures constitute a plurality of layers,
    The light emitting device according to claim 13.
  16.  2次元配置された複数の発光素子と、
     前記複数の発光素子のそれぞれに対応して設けられた複数のメタマテリアルと
     を備え、
     前記メタマテリアルは、2次元配置された複数のナノ構造体を含み、
     前記複数のナノ構造体は、複数の第1ナノ構造体と複数の第2ナノ構造体とを含み、
     前記複数の第2ナノ構造体は、前記発光素子に対応する発光領域の外周部に設けられ、
     前記複数の第1ナノ構造体は、前記外周部の内側に設けられ、
     前記第2ナノ構造体の底部は、前記第1ナノ構造体の底部よりも高い位置に位置している、
     発光装置。
    A plurality of light emitting elements arranged two-dimensionally,
    a plurality of metamaterials provided corresponding to each of the plurality of light emitting elements,
    The metamaterial includes a plurality of nanostructures arranged two-dimensionally,
    The plurality of nanostructures include a plurality of first nanostructures and a plurality of second nanostructures,
    The plurality of second nanostructures are provided at the outer periphery of a light emitting region corresponding to the light emitting element,
    The plurality of first nanostructures are provided inside the outer peripheral part,
    The bottom of the second nanostructure is located at a higher position than the bottom of the first nanostructure.
    Light emitting device.
  17.  請求項1に記載の発光装置を備える電子機器。 An electronic device comprising the light emitting device according to claim 1.
PCT/JP2023/031149 2022-08-31 2023-08-29 Light-emitting device and electronic equipment WO2024048559A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-138700 2022-08-31
JP2022138700 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024048559A1 true WO2024048559A1 (en) 2024-03-07

Family

ID=90099588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031149 WO2024048559A1 (en) 2022-08-31 2023-08-29 Light-emitting device and electronic equipment

Country Status (1)

Country Link
WO (1) WO2024048559A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094760A1 (en) * 2015-12-03 2017-06-08 シャープ株式会社 Organic electroluminescent device, method of manufacturing organic electroluminescent device, illuminating device and display device
US20190033683A1 (en) * 2017-12-18 2019-01-31 Intel Corporation Broadband flat optical elements and methods of manufacture
US20190339447A1 (en) * 2018-05-04 2019-11-07 Oculus Vr, Llc Diffraction gratings for beam redirection
US10896994B1 (en) * 2019-04-15 2021-01-19 Facebook Technologies, Llc Light-emitting diode with hyperbolic metamaterial
US20210193949A1 (en) * 2019-12-18 2021-06-24 Boe Technology Group Co., Ltd Display panel, method for preparing display panel, and display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094760A1 (en) * 2015-12-03 2017-06-08 シャープ株式会社 Organic electroluminescent device, method of manufacturing organic electroluminescent device, illuminating device and display device
US20190033683A1 (en) * 2017-12-18 2019-01-31 Intel Corporation Broadband flat optical elements and methods of manufacture
US20190339447A1 (en) * 2018-05-04 2019-11-07 Oculus Vr, Llc Diffraction gratings for beam redirection
US10896994B1 (en) * 2019-04-15 2021-01-19 Facebook Technologies, Llc Light-emitting diode with hyperbolic metamaterial
US20210193949A1 (en) * 2019-12-18 2021-06-24 Boe Technology Group Co., Ltd Display panel, method for preparing display panel, and display device

Similar Documents

Publication Publication Date Title
KR102318464B1 (en) Display devices and electronic devices
KR20180076597A (en) Display module and method for head mounted display
US20200212111A1 (en) Display apparatus
US10763309B2 (en) Display device
CN116583895A (en) Display device and electronic apparatus
KR20200079684A (en) Display device
WO2024048559A1 (en) Light-emitting device and electronic equipment
WO2024034502A1 (en) Light-emitting device and electronic equipment
WO2024053611A1 (en) Light-emitting device and electronic equipment
KR20220056788A (en) Light-emitting device, display device, imaging device, and electronic device
WO2024048556A1 (en) Light-emitting device and eyewear device
JP2022071601A (en) Light-emitting device, display device, imaging device, and electronic apparatus, and manufacturing method for light-emitting device
JP2022069135A (en) Organic light emitting apparatus, display apparatus, photoelectric conversion apparatus, electronic equipment, illumination apparatus, and moving object
WO2024080039A1 (en) Display device, electronic apparatus, and method for manufacturing display device
JP2022063741A (en) Display
WO2024024491A1 (en) Display device and electronic apparatus
WO2024009728A1 (en) Display device and electronic device
WO2023095857A1 (en) Light-emitting device and electronic apparatus
WO2024014214A1 (en) Display device and electronic apparatus
WO2023176474A1 (en) Light-emitting device and electronic apparatus
WO2023195351A1 (en) Display apparatus and electronic device
WO2023248768A1 (en) Display device and electronic apparatus
KR20200072740A (en) Electroluminance Display And Personal Imersion Display Having The Same
WO2024014444A1 (en) Display device
WO2023095622A1 (en) Light-emitting element, display device, and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860321

Country of ref document: EP

Kind code of ref document: A1