WO2024018536A1 - Heat exchanger, electronic component handling device, and electronic component testing device - Google Patents

Heat exchanger, electronic component handling device, and electronic component testing device Download PDF

Info

Publication number
WO2024018536A1
WO2024018536A1 PCT/JP2022/028100 JP2022028100W WO2024018536A1 WO 2024018536 A1 WO2024018536 A1 WO 2024018536A1 JP 2022028100 W JP2022028100 W JP 2022028100W WO 2024018536 A1 WO2024018536 A1 WO 2024018536A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
flow path
dut
heater
electronic component
Prior art date
Application number
PCT/JP2022/028100
Other languages
French (fr)
Japanese (ja)
Inventor
祐也 山田
有朋 菊池
ギュンター ジェセラー
マーリン ウォルナー
Original Assignee
株式会社アドバンテスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドバンテスト filed Critical 株式会社アドバンテスト
Priority to PCT/JP2022/028100 priority Critical patent/WO2024018536A1/en
Publication of WO2024018536A1 publication Critical patent/WO2024018536A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer

Definitions

  • the present invention provides a heat exchanger that contacts the DUT and exchanges heat with the DUT when testing an electronic component under test (hereinafter also simply referred to as a "DUT" (Device Under Test)) such as a semiconductor integrated circuit element.
  • the present invention relates to an exchanger, and an electronic component handling device and an electronic component testing device equipped with the heat exchanger.
  • An electronic component testing device in which a heater and a cooling device are embedded in a contact arm that sucks and holds a DUT (see, for example, Patent Document 1 (paragraph [0037]).
  • the DUT is tested by pressing the DUT into the socket while adjusting the temperature of the DUT.
  • both the heater and the cooling device are buried in the contact arm, as in the electronic component testing equipment mentioned above, either the heater or the cooling device must be placed away from the DUT, which makes it difficult to control the temperature of the DUT. The problem is that it is difficult to increase the speed.
  • the problem to be solved by the present invention is to provide a heat exchanger, an electronic component handling device, and an electronic component testing device that can speed up the temperature control of a DUT.
  • Aspect 1 of the present invention is a heat exchanger that exchanges heat with a DUT or a carrier containing the DUT, the heat exchanger having a first flow path through which a fluid for adjusting the temperature of the DUT can flow. and a heater disposed in the first flow path so as to be located at the bottom of the first flow path.
  • Aspect 2 of the present invention is the heat exchanger of aspect 1, wherein the first flow path has a meandering planar shape with a folded portion, and the heater is arranged in the heat exchanger of aspect 1.
  • the heat exchanger may have a planar shape corresponding to the above.
  • Aspect 3 of the present invention is the heat exchanger according to aspect 1 or 2, wherein the heater is arranged in the first flow path so as to be in contact with the bottom surface of the first flow path. It may also be an exchanger.
  • Aspect 4 of the present invention is the heat exchanger of Aspects 1 to 3, wherein the heat exchanger has thermal insulation, and the heater has a surface facing the bottom surface of the first flow path.
  • the heat exchanger may include a heat insulating member that covers the surface opposite to the heat exchanger.
  • Aspect 5 of the present invention is the heat exchanger of Aspects 1 to 4, wherein the heat exchanger has electrical insulation, and has a surface facing the bottom surface of the first flow path in the heater.
  • the heat exchanger may include an electrically insulating member covering the opposite side.
  • Aspect 6 of the present invention is the heat exchanger according to aspect 5, wherein the heat exchanger includes a heat insulating member that covers a surface of the heater opposite to a surface facing the bottom surface of the first flow path.
  • a heat exchanger may be provided in which the heat insulating member and the electrically insulating member are the same member.
  • Aspect 7 of the present invention is a heat exchanger according to aspects 1 to 6, wherein the heat exchanger is provided with a pressing mechanism that presses the heater toward the bottom surface of the first flow path. It may be.
  • Aspect 8 of the present invention is the heat exchanger according to aspect 7, wherein the pressing mechanism is provided in the first flow path so as to extend along the depth direction of the first flow path.
  • the heat exchanger may include a coil spring arranged, and the coil spring biases the heater along the depth direction of the first flow path.
  • Aspect 9 of the present invention is the heat exchanger according to aspect 8, wherein the pressing mechanism includes a plate member attached to the tip of the coil spring, and the plate member is substantially connected to the heater.
  • the heat exchanger may be disposed within the first flow path so as to be parallel to the flow path.
  • Aspect 10 of the present invention is the heat exchanger according to aspects 7 to 9, wherein the heat exchanger has thermal insulation and includes a heat insulating member interposed between the pressing mechanism and the heater. It may also be a heat exchanger equipped with a heat exchanger.
  • Aspect 11 of the present invention is the heat exchanger according to aspects 7 to 10, wherein the heat exchanger has electrical insulation, and an electrically insulating member interposed between the pressing mechanism and the heater. It may be a heat exchanger equipped with.
  • a twelfth aspect of the present invention is the heat exchanger according to aspect 11, wherein the heat exchanger includes a heat insulating member having thermal insulation and interposed between the pressing mechanism and the heater.
  • the heat insulating member and the electrically insulating member may be a heat exchanger made of the same member.
  • Aspect 13 of the present invention is a heat exchanger that exchanges heat with a DUT or a carrier containing the DUT, the heat exchanger having a first flow path through which a fluid for temperature adjustment of the DUT can flow. and a heater embedded in the main body so as to correspond to the bottom of the first flow path, and the first flow path has a meandering planar shape with a folded portion.
  • the heater is a heat exchanger having a planar shape corresponding to the first flow path.
  • Aspect 14 of the present invention is the heat exchanger according to aspect 13, wherein the main body portion includes a heat sink in which the first flow path is formed and the heater is embedded, and the heat sink includes:
  • the heat exchanger may be made of aluminum nitride.
  • Aspect 15 of the present invention is the heat exchanger of Aspects 1 to 14, in which the heater may be a heat exchanger equipped with a planar or linear heating element that generates heat when energized.
  • Aspect 16 of the present invention is the heat exchanger according to aspect 15, in which the heating element may include a metal foil.
  • Aspect 17 of the present invention may be the heat exchanger of aspect 15, in which the heater has electrical insulation and includes an insulating layer covering the heating element.
  • Aspect 18 of the present invention may be the heat exchanger according to aspect 17, in which the insulating layer is made of aluminum nitride.
  • Aspect 19 of the present invention is a heat exchanger according to aspects 1 to 18, wherein the interval between the first channels is narrower than the width of the first channel. Good too.
  • Aspect 20 of the present invention may be the heat exchanger of Aspects 1 to 19, in which the bottom surface of the main body portion is a contact surface that contacts the DUT or the carrier.
  • the heat exchanger in the heat exchanger of aspects 1 to 20, may be a heat exchanger equipped with a second flow path for adsorption and holding of the DUT.
  • Aspect 22 of the present invention is the heat exchanger of Aspects 1 to 21, wherein the main body portion has an inlet communicating with the first flow path and an outlet communicating with the first flow path. It may also be a heat exchanger equipped with a heat exchanger.
  • Aspect 23 of the present invention is the heat exchanger of Aspects 1 to 22, in which, in plan view, the heater is folded back so as not to overlap with a portion between the mutually adjacent first flow paths. It may also be a heat exchanger that is located.
  • Aspect 24 of the present invention is the heat exchanger according to aspects 1 to 23, wherein the main body includes a heat sink having fins forming the first flow path, and in plan view, the heater The heat exchanger may be arranged so as not to overlap the fins.
  • Aspect 25 of the present invention may be the heat exchanger of aspects 1 to 24, in which the fluid is a gas.
  • Aspect 26 of the present invention is an electronic component handling device for handling a DUT or a carrier containing the DUT, in which the heat exchanger of Aspects 1 to 25 and the heat exchanger are attached. and a moving device that moves the heat exchanger, and the moving device holds the DUT or the carrier so that the heat exchanger comes into contact with the DUT or the carrier, and the moving device is an electronic component handling device that presses the DUT or the carrier into a socket by moving the DUT or the carrier together with the heat exchanger.
  • Aspect 27 of the present invention is the electronic component handling device according to aspect 26, comprising a connection portion to which a fluid supply source for supplying the fluid to the first flow path is connected. Good too.
  • Aspect 28 of the present invention is an electronic component testing device for testing a DUT, comprising the electronic component handling device of aspect 26 or 27 and a test device main body having a socket. .
  • the heater is disposed within the first flow path so as to be located at the bottom of the first flow path, or the heater having a planar shape corresponding to the first flow path is located at the bottom of the first flow path. It is buried in the main body so as to correspond to the bottom. Therefore, in the present invention, since both the heater and the first flow path can be placed near the DUT, it is possible to speed up the temperature control of the DUT.
  • FIG. 1 is a block diagram showing the configuration of an electronic component testing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing a thermal head in an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of the thermal head according to the embodiment of the present invention, taken along line III-III in FIG. 2.
  • FIG. 4 is a sectional view of the thermal head in the embodiment of the present invention, taken along the line IV-IV in FIG. 2.
  • FIG. 5 is a plan view showing a heat sink of a thermal head in an embodiment of the present invention.
  • FIG. 6 is a plan view showing the heater of the thermal head in the embodiment of the present invention.
  • FIG. 7 is a plan view showing an insulating member of a thermal head in an embodiment of the present invention.
  • FIG. 8 is a plan view showing the pressing mechanism of the thermal head in the embodiment of the present invention.
  • FIG. 9 is a plan view showing a modification of the heater in the embodiment of the present invention.
  • FIG. 10 is a sectional view showing a modified example of the heater in the embodiment of the present invention, and is a view taken along the line XX in FIG. 9.
  • FIG. 11 is a plan view showing a heater-integrated heat sink in another embodiment of the present invention.
  • FIG. 12 is a cross-sectional view showing a heater-integrated heat sink according to another embodiment of the present invention, taken along line XII-XII in FIG. 11.
  • FIG. 1 is a block diagram showing the configuration of an electronic component testing apparatus 1 in an embodiment of the present invention.
  • the electronic component testing device 1 in this embodiment is a device that tests the electrical characteristics of a DUT 100, which is an electronic component under test.
  • this electronic component testing apparatus 1 includes a tester 2 and a handler 10.
  • This tester 2 corresponds to an example of a "testing device main body" in an aspect of the present invention
  • the handler 10 corresponds to an example of an "electronic component handling device” in an aspect of the present invention.
  • the tester 2 tests the DUT 100 whose temperature is controlled by a thermal head (heat exchanger) 25, which will be described later. Specifically, with the DUT 100 electrically connected to the socket 6, the tester 2 inputs a test signal based on a test pattern for testing the DUT 100 to the DUT 100 via the socket 6, and performs the test. The quality of the DUT 100 is determined based on the output signal that the DUT 100 outputs in response to the signal. As shown in FIG. 1, the tester 2 includes a main frame 3 and a test head 5 connected to the main frame 3 via a cable 4. The socket 6 is attached to the upper surface of the test head 5.
  • the socket 6 includes a contactor 7 that comes into contact with the terminal 110 of the DUT 100 (see FIGS. 3 and 4).
  • This contactor 7 is electrically connected to a load board (not shown) or the like disposed above the test head 5.
  • a pogo pin is used as the contact 7, but something other than the pogo pin may be used as the contact 7.
  • a cantilever type probe needle, an anisotropically conductive rubber sheet, or a membrane type contactor having bumps formed on an insulating film may be used.
  • DUT 100 to be tested is an SoC (System on chip), but the DUT 100 may also be a memory device, a logic device, a digital circuit, an analog circuit, or the like. Furthermore, the DUT 100 may be a resin molded device in which a semiconductor chip is packaged with a molding material such as a resin material, or may be a bare die that is not packaged.
  • SoC System on chip
  • the DUT 100 may also be a memory device, a logic device, a digital circuit, an analog circuit, or the like.
  • the DUT 100 may be a resin molded device in which a semiconductor chip is packaged with a molding material such as a resin material, or may be a bare die that is not packaged.
  • the DUT 100 in this embodiment includes a temperature detection circuit 120 that detects the temperature of the DUT 100.
  • the temperature detection circuit 120 is, for example, a circuit including a thermal diode, and is formed on the semiconductor substrate of the DUT 100.
  • the temperature detection circuit 120 is not limited to a thermal diode.
  • the temperature detection circuit 120 may be configured using an element having temperature-dependent resistance characteristics or bandgap characteristics.
  • a thermocouple may be embedded in the DUT 100 as the temperature detection circuit 120.
  • the handler 10 is configured to handle the DUT 100 before testing up to the socket 6, press the DUT 100 against the socket 6, and classify the DUT 100 according to the test results.
  • the handler 10 includes a contact arm 20 having a thermal head 25, a chamber 70, a coolant supply system 80, and a control device 90.
  • the contact arm 20 is a transport arm that holds and moves the DUT 100 and presses the DUT 100 against the socket 6. By pressing the DUT 100 against the socket 6 using the contact arm 20, the DUT 100 and the socket 6 are electrically connected.
  • This contact arm 20 corresponds to an example of a "moving device" in an aspect of the present invention.
  • This contact arm 20 includes an arm body 21 and a thermal head 25.
  • the arm body 21 can be moved and rotated on the XY plane by an actuator (not shown), and can also be moved up and down in the Z direction.
  • a thermal head 25 is attached to the tip of this arm body 21.
  • the contact arm 20 is capable of suctioning and holding the DUT 100 that is in contact with the thermal head 25. Further, this contact arm 20 is capable of controlling the temperature of the DUT 100 using a thermal head 25.
  • the chamber 70 is a constant temperature bath made of a heat insulating material or the like. Since this chamber 70 is not easily affected by temperature changes from the surrounding environment, the temperature of the atmosphere inside the constant temperature bath can be kept constant. Although not particularly shown, the chamber 70 is provided with, for example, a refrigerant supply port, a heater, and a fan, making it possible to adjust the atmospheric temperature within the chamber 70 to a desired temperature. There is. Although not particularly limited, the temperature of this chamber 70 can be adjusted within the range of -55°C to +155°C, for example. The upper part of the test head 5 enters this chamber 70 through an opening 71, and the socket 6 is arranged in the chamber 70.
  • the DUT 100 is transported above the socket 6 disposed in the chamber 70 by horizontally moving the arm body 21 while the DUT 100 is held by the thermal head 25. Next, the DUT 100 is pressed against the socket 6 by lowering the arm body 21 . At this time, the thermal head 25 attached to the tip of the arm body 21 is located within the chamber 70.
  • thermal head 25 of the contact arm 20 will be described below with reference to FIGS. 2 to 8 in addition to FIG. 1.
  • FIG. 2 is a plan view showing the thermal head 25 in the embodiment of the present invention.
  • 3 and 4 are cross-sectional views of the thermal head 25 in the embodiment of the present invention,
  • FIG. 3 is a view taken along line III-III in FIG. 2
  • FIG. 4 is a view taken along line IV-IV in FIG.
  • FIG. 5 is a plan view showing the heat sink 31 of the thermal head 25 in the embodiment of the invention
  • FIG. 6 is a plan view showing the heater 40 of the thermal head 25 in the embodiment of the invention
  • FIG. 7 is a plan view showing the heater 40 of the thermal head 25 in the embodiment of the invention.
  • 8 is a plan view showing the insulating member 50 of the thermal head 25 in the embodiment
  • FIG. 8 is a plan view showing the pressing mechanism 60 of the thermal head 25 in the embodiment of the present invention.
  • FIG. 4 illustrates a state in which the thermal head 25 is in contact with the DUT 100 and the DUT 100 and the socket 6 are in contact.
  • the thermal head 25 of the contact arm 20 is a heat exchanger that adjusts the temperature of the DUT 100 by exchanging heat with the DUT 100 while in contact with the DUT 100.
  • the thermal head 25 includes a main body 30, a heater 40, an insulating member 50, and a pressing mechanism 60.
  • This thermal head 25 corresponds to an example of a "heat exchanger" in the aspect of the present invention.
  • the main body portion 30 includes a heat sink 31 and a cover 35.
  • the heat sink 31 is made of a material with excellent thermal conductivity, such as a metal material, in order to contact the DUT 100 and exchange heat with the DUT 100.
  • a material with excellent thermal conductivity such as a metal material
  • examples of the material constituting the heat sink 31 include aluminum.
  • this heat sink 31 has an electrically insulating layer on its surface in order to ensure electrical insulation with a heater 40, which will be described later.
  • an aluminum oxide layer can be exemplified as a specific example of such an electrically insulating layer.
  • the cover 35 is made of a material with low thermal conductivity, such as a resin material, and is intended to suppress heat transfer from the thermal head 25 to members other than the DUT 100.
  • the heat sink 31 includes a base portion 32 and a plurality of (seven in this example) fins 33.
  • the base portion 32 is a member having a rectangular annular shape with a bottom portion.
  • the base portion 32 includes a bottom plate 321 and side walls 322a to 322d erected on the bottom plate 321, and has a recess 323 defined by the bottom plate 321 and the side walls 322a to 322d.
  • a bottom surface (lower surface) 324 of the bottom plate 321 of the base portion 32 is a contact surface that comes into contact with the DUT 100 when the contact arm 20 holds the DUT 100 by suction.
  • the heat sink 31 may include a TIM (Thermal Interface Material) that thermally adheres to the DUT 100 on its bottom surface.
  • this TIM functions as the above-mentioned contact surface.
  • the contact arm 20 presses the DUT 100 against the socket 6 with the contact surface 324 in contact with the DUT 100. That is, in addition to the function of controlling the temperature of the DUT 100, the thermal head 25 provided at the tip of the contact arm 20 also has the function of a pusher that presses the DUT 100 against the socket 6.
  • the plurality of fins 33 are arranged inside the recess 323 of the base portion 32.
  • the plurality of fins 33 are arranged at regular intervals in the X direction in the figure, and are arranged parallel to each other. Further, the plurality of fins 33 are arranged alternately so that adjacent fins 33 are shifted from each other in the Y direction in the figure.
  • the four fins 33A are connected to the side wall 322a of the base portion 32 at one end (the upper end in FIG. 2) in plan view.
  • a space is formed between the other end of the fin 33A (the lower end in FIG. 2) and the side wall 322c of the base portion 32.
  • the three fins 33B arranged between the fins 33A are connected to the side wall 322c of the base part 32 at the other end (lower end in FIG. 2).
  • a space is formed between one end of the fin 33B (the upper end in FIG. 2) and the side wall 322a of the base portion 32.
  • a flow path 34 is formed inside the heat sink 31.
  • This flow path 34 repeatedly turns back from the -Y direction to the +Y direction in the figure at the folding part 341 and from the +Y direction to the -Y direction in the figure at the folding part 342, resulting in a meandering shape. It has a planar shape.
  • This flow path 34 corresponds to an example of a "first flow path" in the aspect of the present invention.
  • a refrigerant is supplied to this flow path 34 by a refrigerant supply system 80 (see FIG. 1), which will be described later.
  • a refrigerant supply system 80 see FIG. 1
  • the refrigerant absorbs heat from the fins 33. Due to this heat absorption, the DUT 100 in contact with the bottom surface 324 of the heat sink 31 is cooled via the fins 33 of the heat sink 31 and the bottom plate 321.
  • the interval D i.e., the thickness of the fins 33
  • the width W of the flow channels 34 D ⁇ W.
  • the planar shape of the flow path 34 in the heat sink 31 is not particularly limited to the above as long as it has a folded portion.
  • the flow path 34 has seven folded parts 341 and 342, but the number of folded parts that the flow passage 34 has is not particularly limited to this, and is less than seven. There may be more than 7 pieces.
  • the portion between the folded portions 341 and 342 in the flow path 34 extends in a straight line; however, the present invention is not particularly limited to this, and the portion may extend in a curved manner. good.
  • a temperature sensor 36 is embedded in this heat sink 31. This temperature sensor 36 is connected to a later-described temperature calculation section 91 of the control device 90 via a wiring 37.
  • the cover 35 is a plate-like member having a rectangular annular portion, as shown in FIGS. 2 to 4.
  • the heat sink 31 described above is fitted into this cover 35, and the heat sink 31 and the cover 35 are fixed by bolts or the like (not shown).
  • the flow path 34 of the heat sink 31 is sealed by this cover 35.
  • this cover 35 has an opening 351 formed at a position opposite to one end (starting point, left end in FIG. 5) of the flow path 34 of the heat sink 31, and an opening 351 at a position opposite to the other end (end point) of the flow path 34 of the heat sink 31.
  • An opening 352 is formed at a position corresponding to the right end in FIG. 5 (see FIGS. 4 and 5).
  • the refrigerant supply system 80 is connected to one opening 351 , and the opening 351 functions as an inlet for the refrigerant supplied to the flow path 34 of the heat sink 31 .
  • the other opening 352 communicates with the outside via the arm body 21, and functions as an outlet for the refrigerant discharged from the flow path 34.
  • the arrangement of the inlet 351 and the outlet 352 is not particularly limited to the above.
  • the inlets 351 may be formed at both ends of the flow path 34, and the outlet 352 may be formed at the center of the flow path 34.
  • through holes 325 and 353 passing through the main body 30 are formed at the four corners of the heat sink 31 and the cover 35 (that is, the main body 30).
  • the through holes 325 and 353 are connected to the vacuum source 95 via the arm body 21.
  • the contact arm 20 can attract and hold the DUT 100 in contact with the contact surface 324.
  • the thermal head 25 provided at the tip of the contact arm 20 has a function of adjusting the temperature of the DUT 100 and a function of a pusher, as well as a function of holding the DUT 100.
  • a specific example of the vacuum source 95 is a vacuum pump.
  • the number and arrangement of the through holes 325 and 353 provided in the main body portion 30 of the thermal head 25 are not particularly limited to the above.
  • two through holes may be provided in the main body 30 so as to be located at two corners on the same diagonal line of the main body 30.
  • one through hole may be provided in the main body 30 so as to be located in the center of the main body 30.
  • the heater 40 is a planar heating element that generates heat when energized, and is, for example, a sheet-shaped resistance heating type heater. Although not particularly limited, the heater 40 of this embodiment is composed of only one sheet of metal foil. An example of the metal material constituting the heater 40 is stainless steel.
  • This heater 40 has a planar shape corresponding to the flow path 34 of the heat sink 31 described above. Specifically, as shown in FIG. 6, this heater 40 is folded back from the -Y direction in the figure to the +Y direction at the folding part 41, and from the +Y direction to the -Y direction in the figure at the folding part 42. It has a planar shape that repeats the following. That is, this heater 40 extends in a planar shape (band shape) and has a meandering planar shape. Note that the planar shape of the heater 40 is not particularly limited to the above as long as it corresponds to the flow path 34. Further, the heater 40 may extend linearly.
  • This heater 40 has a width narrower than the width of the flow path 34, and is arranged within the flow path 34, as shown in FIGS. 3 and 4. Specifically, this heater 40 is arranged in the flow path 34 such that the lower surface 44 of the heater 40 contacts the bottom surface 343 of the flow path 34 of the heat sink 31 (that is, the upper surface of the bottom plate 321 of the heat sink 31). ing.
  • This heater 40 is connected to a heater control section 92 (see FIG. 1) of a control device 90 via a terminal 45, and generates heat using electric power supplied from the heater control section 92.
  • the heater 40 When the heater 40 generates heat, the heat is transmitted to the DUT 100 in contact with the bottom surface 324 of the heat sink 31 via the bottom plate 321 of the heat sink 31, thereby heating the DUT 100.
  • the heater 40 is located only within the flow path 34, and the heater 40 is not interposed between the fins 33 and the contact surface 324 of the bottom plate 321. That is, in the plan view shown in FIG. 2, the heater 40 is folded so that it does not overlap with the portion between the adjacent channels 34, and is arranged so as not to overlap with the fins 33. Therefore, the coolant passing through the flow path 34 can efficiently cool the DUT 100 via the fins 33 of the heat sink 31 and the bottom plate 321.
  • the insulating member 50 is a plate-shaped member made of a material that is thermally insulating and electrically insulating. As a specific material constituting this insulating member 50, for example, glass cloth can be exemplified.
  • This insulating member 50 corresponds to an example of the "insulating member” in the aspect of the present invention, and also corresponds to an example of the "electrical insulating member” in the aspect of the present invention.
  • This insulating member 50 has a planar shape corresponding to the flow path 34 of the heat sink 31 described above. Specifically, as shown in FIG. 7, the insulating member 50 is folded back from the -Y direction in the figure to the +Y direction at the folding part 51, and is folded back from the +Y direction to the -Y direction in the figure at the folding part 52. It has a planar shape that repeats this. That is, the insulating member 50 extends in a planar shape (band shape) and has a meandering planar shape. Note that the planar shape of the insulating member 50 is not particularly limited to the above as long as it corresponds to the flow path 34.
  • This insulating member 50 has a width narrower than the width of the flow path 34 and has the same width as the width of the heater 40 described above. As shown in FIGS. 3 and 4, the insulating member 50 is placed in the flow path 34 so as to be stacked on the heater 40. Specifically, the insulating member 50 is arranged within the flow path 34 such that the lower surface of the insulating member 50 contacts the upper surface 43 of the heater 40 .
  • the insulating member 50 has thermal insulation properties (thermal insulation function), so that thermal insulation can be established between the refrigerant flowing in the flow path 34 of the heat sink 31 and the heater 40. It is insulated (insulated).
  • This insulating member 50 can suppress the energy input to the heater 40 from diffusing into the refrigerant flowing through the flow path 34, so that the bottom surface of the bottom plate 321 can be selectively and efficiently heated by the heater 40. , it is possible to realize an improvement in the heating rate and an improvement in energy efficiency.
  • the insulating member 50 has electrical insulation properties (electrical insulation function), dew condensation generated in the flow path 34 cooled by the refrigerant and the heater 40 can be prevented. The occurrence of short circuits can be suppressed.
  • the insulating member 50 has both a thermal insulating function and an electrical insulating function, but is not particularly limited to this.
  • the thermal insulation function and the electrical insulation function may be realized by independent and separate members.
  • the pressing mechanism 60 is a mechanism that presses the heater 40 toward the bottom surface 343 of the flow path 34 of the heat sink 31. As shown in FIGS. 3, 4, and 8, this pressing mechanism 60 includes a plate member 61 and a plurality of (23 in this example) coil springs 65.
  • the plate member 61 is a plate member made of an electrically insulating material such as a resin material. Note that if this plate member 61 has thermal insulation in addition to electrical insulation, the above-mentioned insulating member 50 may be omitted.
  • This plate-like member 61 has a planar shape corresponding to the flow path 34 of the heat sink 31 described above. Specifically, as shown in FIG. 8, this plate member 61 is folded back from the -Y direction in the figure to the +Y direction at the folding part 62, and is folded back from the +Y direction to the -Y direction in the figure at the folding part 63. It has a planar shape that is repeatedly folded back. That is, this plate-like member 61 extends in a planar shape (band-like shape) and has a meandering planar shape.
  • the planar shape of the plate member 61 is not particularly limited to the above.
  • the pressing mechanism 60 may include a plurality of plate-like members 61, and the plurality of plate-like members 61 may be arranged intermittently along the flow path 34 of the heat sink 31.
  • This plate-like member 61 has a width narrower than the width of the flow path 34 and has the same width as the width of the heater 40 and the insulating member 50 described above. As shown in FIGS. 3 and 4, the plate member 61 is stacked on the insulating member 50 so as to be substantially parallel to the heater 40, and is placed in the flow path 34.
  • Each coil spring 65 is arranged within the flow path 34 along the depth direction of the flow path 34 (Z direction in the figure).
  • the coil spring 65 is interposed between the plate member 61 and the cover 35 in a compressed state, and urges the heater 40 along the depth direction of the flow path 34 via the plate member 61.
  • the plurality of coil springs 65 are arranged at intervals in the meandering extension direction of the plate-like member 61 so as to press the plate-like member 61 evenly. Note that the number of coil springs 65 included in the pressing mechanism 60 is not particularly limited to the above number.
  • the heater 40 By pressing the heater 40 against the bottom surface 343 of the flow path 34 via the plate member 61 by the coil spring 65, the heater 40 can be brought into close contact with the bottom surface 343 of the flow path 34, and the DUT 100 can be efficiently heated by the heater 40. Can be heated.
  • the coil spring 65 as a biasing member that presses the heater 40 against the bottom surface 343 of the flow path 34, when the refrigerant flows in the flow path 34, the coil spring 65 can also form a turbulent flow of the refrigerant. Therefore, the DUT 100 can be efficiently cooled by the refrigerant.
  • an elastic body other than a coil spring may be used as the biasing member that presses the heater 40 against the bottom surface 343 of the flow path 34.
  • the refrigerant supply system 80 is a system that supplies refrigerant to the flow path 34 of the thermal head 25.
  • This refrigerant supply system 80 includes a connecting portion 81, piping 82, and a valve 83.
  • the refrigerant supplied by this refrigerant supply system 80 is not particularly limited, but examples include gaseous, mist, or liquid nitrogen, compressed dry air, and the like. This refrigerant corresponds to an example of the "fluid" in the aspect of the present invention.
  • a refrigerant supply source 96 provided outside the electronic component testing apparatus 1 is connected to the connection portion 81 .
  • the electronic component testing apparatus 1 may include a refrigerant supply source 96.
  • An example of such a refrigerant supply source 96 is an LN 2 (liquid nitrogen) supply source that stores liquid nitrogen and supplies low-temperature nitrogen.
  • This LN 2 supply source is equipped with a connection port that is connected to a pressure vessel storing liquid nitrogen at high pressure or a liquid nitrogen supply pipeline in the factory. Nitrogen and/or liquid nitrogen can be supplied.
  • This refrigerant supply source 96 corresponds to an example of a "fluid supply source" in the aspect of the present invention.
  • the refrigerant supplied to the thermal head 25 via the refrigerant supply system 80 is not particularly limited to the above-mentioned nitrogen, as long as it is a fluid having a temperature lower than the target temperature T sp of the DUT 100.
  • an air supply source that supplies compressed air at room temperature may be used as the fluid supply source instead of the refrigerant supply source 96.
  • This air supply source may include, for example, a compressor that takes in and compresses outside air, and a dryer that dries the compressed air.
  • This air supply source may be provided outside the electronic component testing apparatus 1, or the electronic component testing apparatus 1 may be provided with this air supply source.
  • the air supply source may be existing factory piping or the like that can supply compressed dry air.
  • the above-mentioned refrigerant may be either gas or liquid, by using gas as the refrigerant, it is not necessary to recover the refrigerant discharged from the outlet 352 of the thermal head 25.
  • a fluorine-based inert liquid in addition to the above-mentioned liquid nitrogen, a fluorine-based inert liquid can be exemplified.
  • a hot medium may be supplied to the flow path 34 of the thermal head 25.
  • a pipe 82 is connected to the connecting portion 81, and this pipe 82 passes through the arm body 21 and is connected to the inlet 351 of the thermal head 25. Further, this pipe 82 is provided with a valve 83. This valve 83 regulates the flow rate of refrigerant supplied into the refrigerant supply system 80 from the refrigerant supply source 96 .
  • the control device 90 includes a temperature calculation section 91, a heater control section 92, and a valve control section 93.
  • This control device 90 includes, for example, a computer having a microprocessor, and by executing a program on this computer, the above-mentioned temperature calculation section 91, heater control section 92, and valve control section 93 are functionally controlled. It has been realized. Note that instead of a computer, the control device 90 may be configured with an electric circuit board, and the above-mentioned temperature calculation section 91, heater control section 92, and valve control section 93 may be functionally realized by this electric circuit board. .
  • the temperature calculation unit 91 calculates the current temperature T j ' of the DUT 100 based on the detection voltage signal input from the temperature detection circuit 120 of the DUT 100. Furthermore, this temperature calculation section 91 calculates the flow rate of the refrigerant and the output of the heater 40 such that the deviation between the current temperature T j ' of the DUT 100 and the target temperature T sp is reduced. Then, based on the calculation result of the temperature calculation section 91, the heater control section 92 controls the driving of the heater 40, and the valve control section 93 controls the opening degree of the valve 83. Note that the detected voltage signal of the temperature detection circuit 120 is input to the temperature calculation unit 91 via the socket 6 (see FIGS. 1, 3, and 4).
  • the detection voltage signal of the temperature detection circuit 120 is used instead of the calculation result T j ' of the temperature calculation section 91.
  • the junction temperature Tj calculated by the tester 2 may be used.
  • a detection voltage signal of the temperature sensor 36 installed in the thermal head 25 may be used instead of the detection voltage signal of the temperature detection circuit 120.
  • the heater 40 is arranged in the flow path 34 of the heat sink 31 so that the heater 40 is located at the bottom of the flow path 34 .
  • the flow path 34 and the heater 40 are arranged substantially on the same plane. Therefore, in this embodiment, both the heater 40 and the flow path 34 can be placed near the DUT 100, the heat capacity between the flow path 34 and the DUT 100 can be reduced, and the heat capacity between the heater 40 and the DUT 100 can be reduced. Since the heat capacity can also be reduced, it is possible to speed up the temperature control of the DUT 100.
  • the heater 40 is made of only one piece of metal foil, but the heater 40 is not particularly limited to this.
  • the heater 40 instead of the heater 40, as shown in FIGS. 9 and 10, a so-called aluminum nitride heater may be used as the heater 40B.
  • 9 and 10 are a plan view and a sectional view showing a modified example of the heater in the embodiment of the present invention, and FIG. 10 is a view taken along the line XX in FIG. 9.
  • this heater 40B includes a heating element 46 and an insulating layer 47 covering the heating element 46.
  • the heating element 46 has a planar shape corresponding to the flow path 34 of the heat sink 31 described above. Specifically, as shown in FIG. 9, the heating element 46 is folded back from the -Y direction in the figure to the +Y direction at the folding part 461, and is folded back from the +Y direction to the -Y direction in the figure at the folding part 462. It has a planar shape that repeats this. That is, this heating element 46 extends in a planar shape (band shape) and has a meandering planar shape.
  • planar shape of the heating element 46 is not particularly limited to the above as long as it corresponds to the flow path 34. Further, the heating element 46 may extend linearly.
  • the entire circumference of the heating element 46 is covered with an insulating layer 47 made of aluminum nitride.
  • the width of the insulating layer 47 (that is, the width of the heater 40B) is narrower than the flow path 34, and the heater 40B is arranged in the flow path 34 of the heat sink 31, similarly to the heater 40 described above.
  • This insulating layer 47 has excellent thermal conductivity as well as excellent electrical insulation.
  • an electrically insulating layer on the surface of the heat sink 31 is not required, and a heat insulating member without electrical insulation can be used as the insulating member 50.
  • the heater 40C may be embedded in the heat sink 31C.
  • 11 and 12 are a plan view and a sectional view showing a heater-integrated heat sink according to another embodiment of the present invention, and FIG. 12 is a view taken along line XII-XII in FIG. 11.
  • the heat sink 31C is made of aluminum nitride, and the heater 40C is embedded in the bottom plate 321 of the heat sink 31C.
  • the heat sink 31C has a shape similar to that of the heat sink 31 of the first embodiment having a plurality of (seven in this example) fins 33, and a flow path 34 having a meandering planar shape is formed in the heat sink 31C. has been done.
  • the heater 40C also has a planar shape corresponding to the flow path 34, and is embedded in the heat sink 31C so as to correspond to the bottom of the flow path 34. Namely. This heater 40C is embedded in the heat sink 31C so as to be interposed between the bottom surface 343 of the flow path 34 and the lower surface 324 of the bottom plate 321 of the heat sink 31C.
  • planar shape of the heater 40C is not particularly limited to the above as long as it corresponds to the flow path 34. Further, the heater 40C may extend linearly.
  • the heat sink 31C with the heater 40C is formed by carving a channel 34 into an aluminum nitride block in which the heater 40C is embedded in the bottom.
  • the insulating member 50 and the pressing mechanism 60 are not necessary.
  • a heater 40C having a planar shape corresponding to the flow path 34 is embedded in the heat sink 31C so as to correspond to the bottom of the flow path 34. Therefore, both the heater 40C and the flow path 34 can be placed near the DUT 100, and the heat capacity between the flow path 34 and the DUT 100 can be reduced, as well as the heat capacity between the heater 40C and the DUT 100. , it is possible to speed up the temperature control of the DUT 100.
  • the heater 40 is folded so that it does not overlap with the portion between the mutually adjacent channels 34, and is arranged so as not to overlap with the fins 33. Therefore, the coolant passing through the flow path 34 can efficiently cool the DUT 100 via the fins 33 of the heat sink 31 and the bottom plate 321.
  • fluid was supplied to the flow path 34 of the thermal head 25 via the contact arm 20, but the present invention is not particularly limited to this.
  • fluid may be supplied to the thermal head from a socket guide provided around the socket.
  • fluid may be supplied to the thermal head from outside the contact arm.
  • the thermal head 25 of the contact arm 20 holds the DUT 100 by suction, but the present invention is not limited to this.
  • the thermal head 25 may hold the carrier 200 (see FIG. 1) containing the DUT by suction.
  • a carrier is not particularly limited, but for example, carriers described in JP-A No. 2019-197012, JP-A No. 2013-79860, etc. can be used.
  • the handler 10 includes the contact arm 20 and the chamber 70, but the configuration of the handler is not particularly limited to this.
  • the above-described thermal head may be applied to a handler that does not have a chamber.
  • the above-described thermal head may be applied to a type of handler that does not have a contact arm and presses a DUT housed in a test tray using a pusher included in a Z-axis drive device.
  • the above-mentioned thermal head may be applied to a robot arm that holds and transports an SSD in an SSD (Solid State Drive) testing device. That is, the DUT also includes the SSD.
  • SSD Solid State Drive
  • Coil spring 70 Chamber 80
  • Refrigerant supply system 81
  • Connection section 83 Valve 90
  • Control device 91 Temperature calculation section 92
  • Heater control section 93 Valve control section 95
  • Vacuum source 96 Refrigerant supply source 100
  • DUT DUT

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

A thermal head 25 is a heat exchanger that exchanges heat with a DUT 100, and comprises a main body part 30 having a flow path 34 through which a fluid for temperature adjustment of the DUT 100 can flow, and a heater 40 placed in the flow path 34 so as to be located at the bottom of the flow path 34.

Description

熱交換器、電子部品ハンドリング装置、及び、電子部品試験装置Heat exchangers, electronic component handling equipment, and electronic component testing equipment
 本発明は、半導体集積回路素子等の被試験電子部品(以下、単に「DUT」(Device Under Test)とも称する。)の試験を行う際に、DUTに接触して当該DUTと熱交換を行う熱交換器、並びに、その熱交換器を備えた電子部品ハンドリング装置及び電子部品試験装置に関するものである。 The present invention provides a heat exchanger that contacts the DUT and exchanges heat with the DUT when testing an electronic component under test (hereinafter also simply referred to as a "DUT" (Device Under Test)) such as a semiconductor integrated circuit element. The present invention relates to an exchanger, and an electronic component handling device and an electronic component testing device equipped with the heat exchanger.
 DUTを吸着保持するコンタクトアームにヒータと冷却装置を埋設した電子部品試験装置が知られている(例えば、特許文献1(段落[0037]参照)。この電子部品試験装置は、ヒータ及び冷却装置によりDUTの温度を調整しながら当該DUTをソケットに押圧して、DUTの試験を実施する。 An electronic component testing device is known in which a heater and a cooling device are embedded in a contact arm that sucks and holds a DUT (see, for example, Patent Document 1 (paragraph [0037]). The DUT is tested by pressing the DUT into the socket while adjusting the temperature of the DUT.
国際公開第2007/094034号International Publication No. 2007/094034
 上記の電子部品試験装置のように、ヒータと冷却装置との両方をコンタクトアームに埋設する場合、ヒータ又は冷却装置のいずれか一方をDUTから離れて配置せざるを得ず、DUTの温度制御の高速化が難しい、という問題がある。 When both the heater and the cooling device are buried in the contact arm, as in the electronic component testing equipment mentioned above, either the heater or the cooling device must be placed away from the DUT, which makes it difficult to control the temperature of the DUT. The problem is that it is difficult to increase the speed.
 本発明が解決しようとする課題は、DUTの温度制御の高速化を図ることが可能な熱交換器、電子部品ハンドリング装置、及び、電子部品試験装置を提供することである。 The problem to be solved by the present invention is to provide a heat exchanger, an electronic component handling device, and an electronic component testing device that can speed up the temperature control of a DUT.
 [1]本発明の態様1は、DUT、又は、前記DUTを収容したキャリアと熱交換を行う熱交換器であって、前記DUTの温度調整用の流体が流通可能な第1の流路を有する本体部と、前記第1の流路の底部に位置するように前記第1の流路内に配置されたヒータと、を備えた熱交換器である。 [1] Aspect 1 of the present invention is a heat exchanger that exchanges heat with a DUT or a carrier containing the DUT, the heat exchanger having a first flow path through which a fluid for adjusting the temperature of the DUT can flow. and a heater disposed in the first flow path so as to be located at the bottom of the first flow path.
 [2]本発明の態様2は、態様1の熱交換器において、前記第1の流路は、折り返し部を持つ蛇行した平面形状を有しており、前記ヒータは、前記第1の流路に対応した平面形状を有している熱交換器であってもよい。 [2] Aspect 2 of the present invention is the heat exchanger of aspect 1, wherein the first flow path has a meandering planar shape with a folded portion, and the heater is arranged in the heat exchanger of aspect 1. The heat exchanger may have a planar shape corresponding to the above.
 [3]本発明の態様3は、態様1又は2の熱交換器において、前記ヒータは、前記第1の流路の底面に接触するように前記第1の流路内に配置されている熱交換器であってもよい。 [3] Aspect 3 of the present invention is the heat exchanger according to aspect 1 or 2, wherein the heater is arranged in the first flow path so as to be in contact with the bottom surface of the first flow path. It may also be an exchanger.
 [4]本発明の態様4は、態様1~3の熱交換器において、前記熱交換器は、熱的な絶縁性を有し、前記ヒータにおいて前記第1の流路の底面と対向する面とは反対側の面を覆う断熱部材を備えた熱交換器であってもよい。 [4] Aspect 4 of the present invention is the heat exchanger of Aspects 1 to 3, wherein the heat exchanger has thermal insulation, and the heater has a surface facing the bottom surface of the first flow path. The heat exchanger may include a heat insulating member that covers the surface opposite to the heat exchanger.
 [5]本発明の態様5は、態様1~4の熱交換器において、前記熱交換器は、電気的な絶縁性を有し、前記ヒータにおいて前記第1の流路の底面と対向する面とは反対側の面を覆う電気絶縁部材を備えた熱交換器であってもよい。 [5] Aspect 5 of the present invention is the heat exchanger of Aspects 1 to 4, wherein the heat exchanger has electrical insulation, and has a surface facing the bottom surface of the first flow path in the heater. The heat exchanger may include an electrically insulating member covering the opposite side.
 [6]本発明の態様6は、態様5の熱交換器において、前記熱交換器は、前記ヒータにおいて前記第1の流路の底面と対向する面とは反対側の面を覆う断熱部材を備えており、前記断熱部材と前記電気絶縁部材とは同一の部材である熱交換器であってもよい。 [6] Aspect 6 of the present invention is the heat exchanger according to aspect 5, wherein the heat exchanger includes a heat insulating member that covers a surface of the heater opposite to a surface facing the bottom surface of the first flow path. A heat exchanger may be provided in which the heat insulating member and the electrically insulating member are the same member.
 [7]本発明の態様7は、態様1~6の熱交換器において、前記熱交換器は、前記ヒータを前記第1の流路の底面に向かって押圧する押圧機構を備えた熱交換器であってもよい。 [7] Aspect 7 of the present invention is a heat exchanger according to aspects 1 to 6, wherein the heat exchanger is provided with a pressing mechanism that presses the heater toward the bottom surface of the first flow path. It may be.
 [8]本発明の態様8は、態様7の熱交換器において、前記押圧機構は、前記第1の流路の深さ方向に沿って延在するように、前記第1の流路内に配置されたコイルバネを備え、前記コイルバネは、前記ヒータを前記第1の流路の深さ方向に沿って付勢する熱交換器であってもよい。 [8] Aspect 8 of the present invention is the heat exchanger according to aspect 7, wherein the pressing mechanism is provided in the first flow path so as to extend along the depth direction of the first flow path. The heat exchanger may include a coil spring arranged, and the coil spring biases the heater along the depth direction of the first flow path.
 [9]本発明の態様9は、態様8の熱交換器において、前記押圧機構は、前記コイルバネの先端に取り付けられた板状部材を備えており、前記板状部材は、前記ヒータと実質的に平行となるように、前記第1の流路内に配置されている熱交換器であってもよい。 [9] Aspect 9 of the present invention is the heat exchanger according to aspect 8, wherein the pressing mechanism includes a plate member attached to the tip of the coil spring, and the plate member is substantially connected to the heater. The heat exchanger may be disposed within the first flow path so as to be parallel to the flow path.
 [10]本発明の態様10は、態様7~9の熱交換器において、前記熱交換器は、熱的な絶縁性を有し、前記押圧機構と前記ヒータとの間に介在する断熱部材を備えた熱交換器であってもよい。 [10] Aspect 10 of the present invention is the heat exchanger according to aspects 7 to 9, wherein the heat exchanger has thermal insulation and includes a heat insulating member interposed between the pressing mechanism and the heater. It may also be a heat exchanger equipped with a heat exchanger.
 [11]本発明の態様11は、態様7~10の熱交換器において、前記熱交換器は、電気的な絶縁性を有し、前記押圧機構と前記ヒータとの間に介在する電気絶縁部材を備えた熱交換器であってもよい。 [11] Aspect 11 of the present invention is the heat exchanger according to aspects 7 to 10, wherein the heat exchanger has electrical insulation, and an electrically insulating member interposed between the pressing mechanism and the heater. It may be a heat exchanger equipped with.
 [12]本発明の態様12は、態様11の熱交換器において、前記熱交換器は、熱的な絶縁性を有し、前記押圧機構と前記ヒータとの間に介在する断熱部材を備えており、前記断熱部材と前記電気絶縁部材とは同一の部材である熱交換器であってもよい。 [12] A twelfth aspect of the present invention is the heat exchanger according to aspect 11, wherein the heat exchanger includes a heat insulating member having thermal insulation and interposed between the pressing mechanism and the heater. Alternatively, the heat insulating member and the electrically insulating member may be a heat exchanger made of the same member.
 [13]本発明の態様13は、DUT、又は、前記DUTを収容したキャリアと熱交換を行う熱交換器であって、前記DUTの温度調整用の流体が流通可能な第1の流路を有する本体部と、前記第1の流路の底部に対応するように前記本体部に埋設されたヒータと、を備えており、前記第1の流路は、折り返し部を持つ蛇行した平面形状を有し、前記ヒータは、前記第1の流路に対応した平面形状を有している熱交換器である。 [13] Aspect 13 of the present invention is a heat exchanger that exchanges heat with a DUT or a carrier containing the DUT, the heat exchanger having a first flow path through which a fluid for temperature adjustment of the DUT can flow. and a heater embedded in the main body so as to correspond to the bottom of the first flow path, and the first flow path has a meandering planar shape with a folded portion. The heater is a heat exchanger having a planar shape corresponding to the first flow path.
 [14]本発明の態様14は、態様13の熱交換器において、前記本体部は、前記第1の流路が形成されていると共に、前記ヒータが埋設されたヒートシンクを備え、前記ヒートシンクは、窒化アルミニウムから構成されている熱交換器であってもよい。 [14] Aspect 14 of the present invention is the heat exchanger according to aspect 13, wherein the main body portion includes a heat sink in which the first flow path is formed and the heater is embedded, and the heat sink includes: The heat exchanger may be made of aluminum nitride.
 [15]本発明の態様15は、態様1~14の熱交換器において、前記ヒータは、通電により発熱する面状又は線状の発熱体を備えた熱交換器であってもよい。 [15] Aspect 15 of the present invention is the heat exchanger of Aspects 1 to 14, in which the heater may be a heat exchanger equipped with a planar or linear heating element that generates heat when energized.
 [16]本発明の態様16は、態様15の熱交換器において、前記発熱体は、金属箔を含む熱交換器であってもよい。 [16] Aspect 16 of the present invention is the heat exchanger according to aspect 15, in which the heating element may include a metal foil.
 [17]本発明の態様17は、態様15の熱交換器において、前記ヒータは、電気絶縁性を有し、前記発熱体を覆う絶縁層を備えた熱交換器であってもよい。 [17] Aspect 17 of the present invention may be the heat exchanger of aspect 15, in which the heater has electrical insulation and includes an insulating layer covering the heating element.
 [18]本発明の態様18は、態様17の熱交換器において、前記絶縁層は、窒化アルミニウムから構成されている熱交換器であってもよい。 [18] Aspect 18 of the present invention may be the heat exchanger according to aspect 17, in which the insulating layer is made of aluminum nitride.
 [19]本発明の態様19は、態様1~18の熱交換器において、前記第1の流路同士の間の間隔は、前記第1の流路の幅よりも狭い熱交換器であってもよい。 [19] Aspect 19 of the present invention is a heat exchanger according to aspects 1 to 18, wherein the interval between the first channels is narrower than the width of the first channel. Good too.
 [20]本発明の態様20は、態様1~19の熱交換器において、前記本体部の底面は、前記DUT、又は、前記キャリアに接触する接触面である熱交換器であってもよい。 [20] Aspect 20 of the present invention may be the heat exchanger of Aspects 1 to 19, in which the bottom surface of the main body portion is a contact surface that contacts the DUT or the carrier.
 [21]本発明の態様21は、態様1~20の熱交換器において、前記熱交換器は、前記DUTの吸着保持用の第2の流路を備えた熱交換器であってもよい。 [21] In the aspect 21 of the present invention, in the heat exchanger of aspects 1 to 20, the heat exchanger may be a heat exchanger equipped with a second flow path for adsorption and holding of the DUT.
 [22]本発明の態様22は、態様1~21の熱交換器において、前記本体部は、前記第1の流路に連通した入口と、前記第1の流路に連通した出口と、を備えた熱交換器であってもよい。 [22] Aspect 22 of the present invention is the heat exchanger of Aspects 1 to 21, wherein the main body portion has an inlet communicating with the first flow path and an outlet communicating with the first flow path. It may also be a heat exchanger equipped with a heat exchanger.
 [23]本発明の態様23は、態様1~22の熱交換器において、平面視において、前記ヒータは、折り返すことで相互に隣り合う前記第1の流路の間の部分と重複しないように配置されている熱交換器であってもよい。 [23] Aspect 23 of the present invention is the heat exchanger of Aspects 1 to 22, in which, in plan view, the heater is folded back so as not to overlap with a portion between the mutually adjacent first flow paths. It may also be a heat exchanger that is located.
 [24]本発明の態様24は、態様1~23の熱交換器において、前記本体部は、前記第1の流路を形成するフィンを有するヒートシンクを備え、平面視において、前記ヒータは、前記フィンと重複しないように配置されている熱交換器であってもよい。 [24] Aspect 24 of the present invention is the heat exchanger according to aspects 1 to 23, wherein the main body includes a heat sink having fins forming the first flow path, and in plan view, the heater The heat exchanger may be arranged so as not to overlap the fins.
 [25]本発明の態様25は、態様1~24の熱交換器において、前記流体は、気体である熱交換器であってもよい。 [25] Aspect 25 of the present invention may be the heat exchanger of aspects 1 to 24, in which the fluid is a gas.
 [26]本発明の態様26は、DUT、又は、前記DUTを収容したキャリアをハンドリングする電子部品ハンドリング装置であって、態様1~25の熱交換器と、前記熱交換器が取り付けられていると共に、前記熱交換器を移動させる移動装置と、を備えており、前記移動装置が前記DUT又は前記キャリアを保持することで、前記熱交換器が前記DUT又は前記キャリアと接触し、前記移動装置は、前記熱交換器と共に前記DUT又は前記キャリアを移動させることで、前記DUT又は前記キャリアをソケットに押圧する電子部品ハンドリング装置である。 [26] Aspect 26 of the present invention is an electronic component handling device for handling a DUT or a carrier containing the DUT, in which the heat exchanger of Aspects 1 to 25 and the heat exchanger are attached. and a moving device that moves the heat exchanger, and the moving device holds the DUT or the carrier so that the heat exchanger comes into contact with the DUT or the carrier, and the moving device is an electronic component handling device that presses the DUT or the carrier into a socket by moving the DUT or the carrier together with the heat exchanger.
 [27]本発明の態様27は、態様26の電子部品ハンドリング装置において、前記第1の流路に前記流体を供給する流体供給源が接続される接続部を備えた電子部品ハンドリング装置であってもよい。 [27] Aspect 27 of the present invention is the electronic component handling device according to aspect 26, comprising a connection portion to which a fluid supply source for supplying the fluid to the first flow path is connected. Good too.
 [28]本発明の態様28は、DUTを試験する電子部品試験装置であって、態様26又は27の電子部品ハンドリング装置と、ソケットを有する試験装置本体と、を備えた電子部品試験装置である。 [28] Aspect 28 of the present invention is an electronic component testing device for testing a DUT, comprising the electronic component handling device of aspect 26 or 27 and a test device main body having a socket. .
 本発明では、第1の流路の底部に位置するように第1の流路内にヒータを配置し、又は、第1の流路に対応した平面形状を有するヒータが第1の流路の底部に対応するように本体部に埋設されている。このため、本発明では、ヒータと第1の流路の両方をDUTの近くに配置することができるので、DUTの温度制御の高速化を図ることができる。 In the present invention, the heater is disposed within the first flow path so as to be located at the bottom of the first flow path, or the heater having a planar shape corresponding to the first flow path is located at the bottom of the first flow path. It is buried in the main body so as to correspond to the bottom. Therefore, in the present invention, since both the heater and the first flow path can be placed near the DUT, it is possible to speed up the temperature control of the DUT.
図1は、本発明の実施形態における電子部品試験装置の構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of an electronic component testing apparatus according to an embodiment of the present invention. 図2は、本発明の実施形態におけるサーマルヘッドを示す平面図である。FIG. 2 is a plan view showing a thermal head in an embodiment of the present invention. 図3は、本発明の実施形態におけるサーマルヘッドの断面図であり、図2のIII-III線に沿った図である。FIG. 3 is a cross-sectional view of the thermal head according to the embodiment of the present invention, taken along line III-III in FIG. 2. 図4は、本発明の実施形態におけるサーマルヘッドの断面図であり、図2のIV-IV線に沿った図である。FIG. 4 is a sectional view of the thermal head in the embodiment of the present invention, taken along the line IV-IV in FIG. 2. 図5は、本発明の実施形態におけるサーマルヘッドのヒートシンクを示す平面図である。FIG. 5 is a plan view showing a heat sink of a thermal head in an embodiment of the present invention. 図6は、本発明の実施形態におけるサーマルヘッドのヒータを示す平面図である。FIG. 6 is a plan view showing the heater of the thermal head in the embodiment of the present invention. 図7は、本発明の実施形態におけるサーマルヘッドの絶縁部材を示す平面図である。FIG. 7 is a plan view showing an insulating member of a thermal head in an embodiment of the present invention. 図8は、本発明の実施形態におけるサーマルヘッドの押圧機構を示す平面図である。FIG. 8 is a plan view showing the pressing mechanism of the thermal head in the embodiment of the present invention. 図9は、本発明の実施形態におけるヒータの変形例を示す平面図である。FIG. 9 is a plan view showing a modification of the heater in the embodiment of the present invention. 図10は、本発明の実施形態におけるヒータの変形例を示す断面図であり、図9のX-X線に沿った図である。FIG. 10 is a sectional view showing a modified example of the heater in the embodiment of the present invention, and is a view taken along the line XX in FIG. 9. 図11は、本発明の他の実施形態におけるヒータ一体型のヒートシンクを示す平面図である。FIG. 11 is a plan view showing a heater-integrated heat sink in another embodiment of the present invention. 図12は、本発明の他の実施形態におけるヒータ一体型のヒートシンクを示す断面図であり、図11のXII-XII線に沿った図である。FIG. 12 is a cross-sectional view showing a heater-integrated heat sink according to another embodiment of the present invention, taken along line XII-XII in FIG. 11.
 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described based on the drawings.
 図1は、本発明の実施形態における電子部品試験装置1の構成を示すブロック図である。 FIG. 1 is a block diagram showing the configuration of an electronic component testing apparatus 1 in an embodiment of the present invention.
 本実施形態における電子部品試験装置1は、被試験電子部品であるDUT100の電気的特性を試験する装置である。この電子部品試験装置1は、図1に示すように、テスタ2と、ハンドラ10と、を備えている。このテスタ2が本発明の態様における「試験装置本体」の一例に相当し、ハンドラ10が本発明の態様における「電子部品ハンドリング装置」の一例に相当する。 The electronic component testing device 1 in this embodiment is a device that tests the electrical characteristics of a DUT 100, which is an electronic component under test. As shown in FIG. 1, this electronic component testing apparatus 1 includes a tester 2 and a handler 10. This tester 2 corresponds to an example of a "testing device main body" in an aspect of the present invention, and the handler 10 corresponds to an example of an "electronic component handling device" in an aspect of the present invention.
 テスタ2は、後述するサーマルヘッド(熱交換器)25によって温度が制御されているDUT100を試験する。具体的には、このテスタ2は、DUT100がソケット6に電気的に接続された状態で、DUT100を試験するための試験パターンに基づく試験信号をDUT100にソケット6を介して入力して、当該試験信号に応じてDUT100が出力する出力信号に基づいて、当該DUT100の良否を判断する。図1に示すように、このテスタ2は、メインフレーム3と、このメインフレーム3にケーブル4を介して接続されたテストヘッド5と、を備えている。ソケット6はテストヘッド5の上面に装着されている。 The tester 2 tests the DUT 100 whose temperature is controlled by a thermal head (heat exchanger) 25, which will be described later. Specifically, with the DUT 100 electrically connected to the socket 6, the tester 2 inputs a test signal based on a test pattern for testing the DUT 100 to the DUT 100 via the socket 6, and performs the test. The quality of the DUT 100 is determined based on the output signal that the DUT 100 outputs in response to the signal. As shown in FIG. 1, the tester 2 includes a main frame 3 and a test head 5 connected to the main frame 3 via a cable 4. The socket 6 is attached to the upper surface of the test head 5.
 ソケット6は、DUT100の端子110と接触する接触子7を備えている(図3及び図4参照)。この接触子7は、テストヘッド5の上部に配置されたロードボード(不図示)等と電気的に接続されている。なお、本実施形態では、接触子7としてポゴピンを用いているが、接触子7としてポゴピン以外のものを用いてもよい。例えば、カンチレバー型のプローブ針、異方導電性ゴムシート、又は、絶縁膜にバンプを形成したメンブレンタイプの接触子を用いてもよい。この接触子7とDUT100の端子110と接触することで、ソケット6とDUT100とが電気的に接続される。 The socket 6 includes a contactor 7 that comes into contact with the terminal 110 of the DUT 100 (see FIGS. 3 and 4). This contactor 7 is electrically connected to a load board (not shown) or the like disposed above the test head 5. Note that in this embodiment, a pogo pin is used as the contact 7, but something other than the pogo pin may be used as the contact 7. For example, a cantilever type probe needle, an anisotropically conductive rubber sheet, or a membrane type contactor having bumps formed on an insulating film may be used. By bringing this contact 7 into contact with the terminal 110 of the DUT 100, the socket 6 and the DUT 100 are electrically connected.
 試験対象であるDUT100としては、SoC(System on chip)を例示することができるが、DUT100が、メモリデバイス、ロジックデバイス、デジタル回路、アナログ回路等であってもよい。また、DUT100は、樹脂材料等のモールド材で半導体チップをパッケージングした樹脂モールドデバイスであってもよいし、パッケージングされていないベアダイであってもよい。 An example of the DUT 100 to be tested is an SoC (System on chip), but the DUT 100 may also be a memory device, a logic device, a digital circuit, an analog circuit, or the like. Furthermore, the DUT 100 may be a resin molded device in which a semiconductor chip is packaged with a molding material such as a resin material, or may be a bare die that is not packaged.
 また、本実施形態におけるDUT100は、当該DUT100の温度を検出する温度検出回路120を備えている。この温度検出回路120は、例えば、サーマルダイオードを含む回路であり、DUT100の半導体基板に形成されている。なお、温度検出回路120は、サーマルダイオードに限定されない。例えば、温度に依存した抵抗特性やバンドギャップ特性を有する素子を用いて温度検出回路120を構成してもよい。或いは、温度検出回路120として、熱電対をDUT100に埋設してもよい。 Furthermore, the DUT 100 in this embodiment includes a temperature detection circuit 120 that detects the temperature of the DUT 100. The temperature detection circuit 120 is, for example, a circuit including a thermal diode, and is formed on the semiconductor substrate of the DUT 100. Note that the temperature detection circuit 120 is not limited to a thermal diode. For example, the temperature detection circuit 120 may be configured using an element having temperature-dependent resistance characteristics or bandgap characteristics. Alternatively, a thermocouple may be embedded in the DUT 100 as the temperature detection circuit 120.
 ハンドラ10は、試験前のDUT100をソケット6までハンドリングして当該DUT100をソケット6に押し付けたり、試験結果に応じてDUT100を分類するように構成されている。このハンドラ10は、図1に示すように、サーマルヘッド25を有するコンタクトアーム20と、チャンバ70と、冷媒供給システム80と、制御装置90と、を備えている。 The handler 10 is configured to handle the DUT 100 before testing up to the socket 6, press the DUT 100 against the socket 6, and classify the DUT 100 according to the test results. As shown in FIG. 1, the handler 10 includes a contact arm 20 having a thermal head 25, a chamber 70, a coolant supply system 80, and a control device 90.
 コンタクトアーム20は、DUT100を保持して移動させて当該DUT100をソケット6に押し付ける搬送アームである。コンタクトアーム20によってDUT100をソケット6に押し付けることで、当該DUT100とソケット6とが電気的に接続される。このコンタクトアーム20が、本発明の態様における「移動装置」の一例に相当する。 The contact arm 20 is a transport arm that holds and moves the DUT 100 and presses the DUT 100 against the socket 6. By pressing the DUT 100 against the socket 6 using the contact arm 20, the DUT 100 and the socket 6 are electrically connected. This contact arm 20 corresponds to an example of a "moving device" in an aspect of the present invention.
 このコンタクトアーム20は、アーム本体21と、サーマルヘッド25と、を備えている。アーム本体21は、特に図示しないアクチュエータによって、XY平面上において移動及び回転することが可能になっていると共に、Z方向に上下動することが可能となっている。このアーム本体21の先端にサーマルヘッド25が装着されている。 This contact arm 20 includes an arm body 21 and a thermal head 25. The arm body 21 can be moved and rotated on the XY plane by an actuator (not shown), and can also be moved up and down in the Z direction. A thermal head 25 is attached to the tip of this arm body 21.
 コンタクトアーム20は、サーマルヘッド25に接触しているDUT100を吸着保持することが可能となっている。また、このコンタクトアーム20は、サーマルヘッド25によりDUT100の温度を制御することが可能となっている。 The contact arm 20 is capable of suctioning and holding the DUT 100 that is in contact with the thermal head 25. Further, this contact arm 20 is capable of controlling the temperature of the DUT 100 using a thermal head 25.
 チャンバ70は、断熱材等から構成された恒温槽である。このチャンバ70は、周辺環境からの温度変化の影響を受け難いため、恒温槽の内部の雰囲気の温度を一定に保つことができる。特に図示しないが、このチャンバ70内には、例えば、冷媒供給口と、ヒータと、ファンとが設けられており、当該チャンバ70内の雰囲気温度を所望の温度に調整することが可能となっている。特に限定されないが、このチャンバ70は、例えば、-55℃~+155℃の範囲で温度を調整することが可能となっている。テストヘッド5の上部は、開口71を介してこのチャンバ70内に入り込んでおり、ソケット6はチャンバ70内に配置されている。 The chamber 70 is a constant temperature bath made of a heat insulating material or the like. Since this chamber 70 is not easily affected by temperature changes from the surrounding environment, the temperature of the atmosphere inside the constant temperature bath can be kept constant. Although not particularly shown, the chamber 70 is provided with, for example, a refrigerant supply port, a heater, and a fan, making it possible to adjust the atmospheric temperature within the chamber 70 to a desired temperature. There is. Although not particularly limited, the temperature of this chamber 70 can be adjusted within the range of -55°C to +155°C, for example. The upper part of the test head 5 enters this chamber 70 through an opening 71, and the socket 6 is arranged in the chamber 70.
 このハンドラ10では、DUT100がサーマルヘッド25に保持された状態でアーム本体21が水平移動することにより、チャンバ70内に配置されたソケット6の上方に当該DUT100が搬送される。次いで、アーム本体21が下降することにより、DUT100がソケット6に押し付けられる。この際、アーム本体21の先端に取り付けられたサーマルヘッド25は、チャンバ70内に位置している。 In this handler 10, the DUT 100 is transported above the socket 6 disposed in the chamber 70 by horizontally moving the arm body 21 while the DUT 100 is held by the thermal head 25. Next, the DUT 100 is pressed against the socket 6 by lowering the arm body 21 . At this time, the thermal head 25 attached to the tip of the arm body 21 is located within the chamber 70.
 以下に、コンタクトアーム20のサーマルヘッド25の構成について、図1に加えて、図2~図8を参照しながら説明する。 The configuration of the thermal head 25 of the contact arm 20 will be described below with reference to FIGS. 2 to 8 in addition to FIG. 1.
 図2は本発明の実施形態におけるサーマルヘッド25を示す平面図である。図3及び図4は本発明の実施形態におけるサーマルヘッド25の断面図であり、図3は図2のIII-III線に沿った図であり、図4は図2のIV-IV線に沿った図である。図5は本発明の実施形態におけるサーマルヘッド25のヒートシンク31を示す平面図であり、図6は本発明の実施形態におけるサーマルヘッド25のヒータ40を示す平面図であり、図7は本発明の実施形態におけるサーマルヘッド25の絶縁部材50を示す平面図であり、図8は本発明の実施形態におけるサーマルヘッド25の押圧機構60を示す平面図である。 FIG. 2 is a plan view showing the thermal head 25 in the embodiment of the present invention. 3 and 4 are cross-sectional views of the thermal head 25 in the embodiment of the present invention, FIG. 3 is a view taken along line III-III in FIG. 2, and FIG. 4 is a view taken along line IV-IV in FIG. This is a diagram. FIG. 5 is a plan view showing the heat sink 31 of the thermal head 25 in the embodiment of the invention, FIG. 6 is a plan view showing the heater 40 of the thermal head 25 in the embodiment of the invention, and FIG. 7 is a plan view showing the heater 40 of the thermal head 25 in the embodiment of the invention. 8 is a plan view showing the insulating member 50 of the thermal head 25 in the embodiment, and FIG. 8 is a plan view showing the pressing mechanism 60 of the thermal head 25 in the embodiment of the present invention.
 なお、サーマルヘッド25、DUT100、及び、ソケット6の関係の理解を容易にするために、図3では、サーマルヘッド25がDUT100から離れていると共に、当該DUT100がソケット6から離れている状態を図示している。これに対し、図4では、サーマルヘッド25がDUT100に接触していると共に、当該DUT100とソケット6が接触している状態を図示している。 Note that in order to facilitate understanding of the relationship between the thermal head 25, DUT 100, and socket 6, FIG. Showing. In contrast, FIG. 4 illustrates a state in which the thermal head 25 is in contact with the DUT 100 and the DUT 100 and the socket 6 are in contact.
 コンタクトアーム20のサーマルヘッド25は、DUT100に接触した状態で当該DUT100と熱交換を行うことで、DUT100の温度を調整する熱交換器である。図2~図4に示すように、このサーマルヘッド25は、本体部30と、ヒータ40と、絶縁部材50と、押圧機構60と、を備えている。このサーマルヘッド25が本発明の態様における「熱交換器」の一例に相当する。 The thermal head 25 of the contact arm 20 is a heat exchanger that adjusts the temperature of the DUT 100 by exchanging heat with the DUT 100 while in contact with the DUT 100. As shown in FIGS. 2 to 4, the thermal head 25 includes a main body 30, a heater 40, an insulating member 50, and a pressing mechanism 60. This thermal head 25 corresponds to an example of a "heat exchanger" in the aspect of the present invention.
 本体部30は、ヒートシンク31と、カバー35と、を備えている。 The main body portion 30 includes a heat sink 31 and a cover 35.
 ヒートシンク31は、DUT100に接触して当該DUT100と熱交換を行うため、例えば、金属材料等の熱伝導性に優れた材料から構成されている。特に限定されないが、ヒートシンク31を構成する材料としては、例えば、アルミニウムを例示することができる。また、このヒートシンク31は、後述のヒータ40との電気的な絶縁性を確保するために、その表面に電気絶縁層を有している。特に限定されないが、こうした電気絶縁層の具体例としては、酸化アルミニウム層を例示することができる。 The heat sink 31 is made of a material with excellent thermal conductivity, such as a metal material, in order to contact the DUT 100 and exchange heat with the DUT 100. Although not particularly limited, examples of the material constituting the heat sink 31 include aluminum. Further, this heat sink 31 has an electrically insulating layer on its surface in order to ensure electrical insulation with a heater 40, which will be described later. Although not particularly limited, an aluminum oxide layer can be exemplified as a specific example of such an electrically insulating layer.
 一方、カバー35は、例えば、樹脂材料等の熱伝導率の低い材料から構成されており、サーマルヘッド25からDUT100以外の部材への伝熱の抑制が図られている。 On the other hand, the cover 35 is made of a material with low thermal conductivity, such as a resin material, and is intended to suppress heat transfer from the thermal head 25 to members other than the DUT 100.
 ヒートシンク31は、図3~図5に示すように、ベース部32と、複数(本例では7本)のフィン33と、を備えている。ベース部32は、底部を持つ矩形の環状形状を有する部材である。具体的には、このベース部32は、底板321と、当該底板321に立設された側壁322a~322dと、を備えており、底板321と側壁322a~322dによって規定された凹部323を有している。このベース部32の底板321の底面(下面)324は、コンタクトアーム20がDUT100を吸着保持した状態において、当該DUT100に接触する接触面である。 As shown in FIGS. 3 to 5, the heat sink 31 includes a base portion 32 and a plurality of (seven in this example) fins 33. The base portion 32 is a member having a rectangular annular shape with a bottom portion. Specifically, the base portion 32 includes a bottom plate 321 and side walls 322a to 322d erected on the bottom plate 321, and has a recess 323 defined by the bottom plate 321 and the side walls 322a to 322d. ing. A bottom surface (lower surface) 324 of the bottom plate 321 of the base portion 32 is a contact surface that comes into contact with the DUT 100 when the contact arm 20 holds the DUT 100 by suction.
 なお、ヒートシンク31が、DUT100に熱的に密着するTIM(Thermal Interface Material)をその底面に含んでいてもよい。この場合には、このTIMが上記の接触面として機能する。 Note that the heat sink 31 may include a TIM (Thermal Interface Material) that thermally adheres to the DUT 100 on its bottom surface. In this case, this TIM functions as the above-mentioned contact surface.
 ここで、コンタクトアーム20は、この接触面324がDUT100と接触した状態で、当該DUT100をソケット6に押圧する。すなわち、コンタクトアーム20の先端に設けられたサーマルヘッド25は、DUT100の温度を制御する機能に加えて、DUT100をソケット6に押圧するプッシャとしての機能も備えている。 Here, the contact arm 20 presses the DUT 100 against the socket 6 with the contact surface 324 in contact with the DUT 100. That is, in addition to the function of controlling the temperature of the DUT 100, the thermal head 25 provided at the tip of the contact arm 20 also has the function of a pusher that presses the DUT 100 against the socket 6.
 複数のフィン33は、ベース部32の凹部323の内部に配置されている。この複数のフィン33は、図中のX方向において一定の間隔を空けて並べられており、相互に平行に配置されている。また、この複数のフィン33は、相互に隣り合うフィン33同士が図中のY方向にずれるように、互い違いに配置されている。 The plurality of fins 33 are arranged inside the recess 323 of the base portion 32. The plurality of fins 33 are arranged at regular intervals in the X direction in the figure, and are arranged parallel to each other. Further, the plurality of fins 33 are arranged alternately so that adjacent fins 33 are shifted from each other in the Y direction in the figure.
 より具体的には、図5に示すように、平面視において、4本のフィン33Aは、一方の端部(図2の上側の端部)でベース部32の側壁322aに接続されているが、当該フィン33Aの他方の端部(図2の下側の端部)とベース部32の側壁322cとの間には空間が形成されている。これに対し、上記のフィン33Aの間に配置されている3本のフィン33Bは、他方の端部(図2の下側の端部)でベース部32の側壁322cに接続されているが、当該フィン33Bの一方の端部(図2の上側の端部)とベース部32の側壁322aとの間には空間が形成されている。 More specifically, as shown in FIG. 5, the four fins 33A are connected to the side wall 322a of the base portion 32 at one end (the upper end in FIG. 2) in plan view. A space is formed between the other end of the fin 33A (the lower end in FIG. 2) and the side wall 322c of the base portion 32. On the other hand, the three fins 33B arranged between the fins 33A are connected to the side wall 322c of the base part 32 at the other end (lower end in FIG. 2). A space is formed between one end of the fin 33B (the upper end in FIG. 2) and the side wall 322a of the base portion 32.
 こうしたフィン33の配置を採用することで、ヒートシンク31の内部に流路34が形成されている。この流路34は、折り返し部341で図中の-Y方向から+Y方向に折り返すと共に、折り返し部342で図中の+Y方向から-Y方向に折り返すことを繰り返しており、結果的に、蛇行した平面形状を有している。この流路34が、本発明の態様における「第1の流路」の一例に相当する。 By adopting this arrangement of the fins 33, a flow path 34 is formed inside the heat sink 31. This flow path 34 repeatedly turns back from the -Y direction to the +Y direction in the figure at the folding part 341 and from the +Y direction to the -Y direction in the figure at the folding part 342, resulting in a meandering shape. It has a planar shape. This flow path 34 corresponds to an example of a "first flow path" in the aspect of the present invention.
 この流路34には、後述する冷媒供給システム80(図1参照)によって冷媒が供給される。この冷媒が流路34内を通過する際に、当該冷媒がフィン33から熱を吸収する。この吸熱により、ヒートシンク31の底面324に接触しているDUT100が、ヒートシンク31のフィン33と底板321を介して冷却される。 A refrigerant is supplied to this flow path 34 by a refrigerant supply system 80 (see FIG. 1), which will be described later. When this refrigerant passes through the flow path 34, the refrigerant absorbs heat from the fins 33. Due to this heat absorption, the DUT 100 in contact with the bottom surface 324 of the heat sink 31 is cooled via the fins 33 of the heat sink 31 and the bottom plate 321.
 本実施形態では、折り返すことで相互に隣り合う流路34の間隔D(すなわち、フィン33の厚さ)が、当該流路34の幅Wよりも狭くなっている(D<W)。これにより、フィン33を介した流路34とDUT100との間の熱容量を小さくしつつ、ヒータ40の面積を広く確保することができるので、冷媒によりDUT100を効率的に冷却すると共に、後述のヒータ40によりDUT100を効率的に加熱することができる。 In the present embodiment, the interval D (i.e., the thickness of the fins 33) between the flow channels 34 adjacent to each other by folding back is narrower than the width W of the flow channels 34 (D<W). This makes it possible to reduce the heat capacity between the flow path 34 via the fins 33 and the DUT 100 while ensuring a large area for the heater 40, so that the DUT 100 can be efficiently cooled by the refrigerant, and the heater 40 can be 40 allows the DUT 100 to be efficiently heated.
 なお、ヒートシンク31内の流路34の平面形状は、折り返し部を有していれば、上記に特に限定されない。例えば、本実施形態では、流路34が7個の折り返し部341,342を有しているが、流路34が有する折り返し部の数は、特にこれに限定されず、7個未満であってもよいし、7個より多くてもよい。また、本実施形態では、流路34において折り返し部341,342の間の部分が直線状に延在しているが、特にこれに限定されず、当該部分が曲線状に延在していてもよい。 Note that the planar shape of the flow path 34 in the heat sink 31 is not particularly limited to the above as long as it has a folded portion. For example, in the present embodiment, the flow path 34 has seven folded parts 341 and 342, but the number of folded parts that the flow passage 34 has is not particularly limited to this, and is less than seven. There may be more than 7 pieces. Further, in the present embodiment, the portion between the folded portions 341 and 342 in the flow path 34 extends in a straight line; however, the present invention is not particularly limited to this, and the portion may extend in a curved manner. good.
 また、このヒートシンク31には、温度センサ36が埋設されている。この温度センサ36は、配線37を介して、制御装置90の後述の温度演算部91に接続されている。 Additionally, a temperature sensor 36 is embedded in this heat sink 31. This temperature sensor 36 is connected to a later-described temperature calculation section 91 of the control device 90 via a wiring 37.
 カバー35は、図2~図4に示すように、矩形の環状部を有する板状部材である。上述のヒートシンク31がこのカバー35に嵌合しており、特に図示しないボルト等によりヒートシンク31とカバー35とが固定されている。このカバー35によりヒートシンク31の流路34が密閉されている。 The cover 35 is a plate-like member having a rectangular annular portion, as shown in FIGS. 2 to 4. The heat sink 31 described above is fitted into this cover 35, and the heat sink 31 and the cover 35 are fixed by bolts or the like (not shown). The flow path 34 of the heat sink 31 is sealed by this cover 35.
 また、このカバー35には、ヒートシンク31の流路34の一端(始点。図5において左側の端部)に対向する位置に開口351が形成されていると共に、当該流路34の他端(終点。図5において右側の端部)に対応する位置に開口352が形成されている(図4及び図5参照)。一方の開口351には冷媒供給システム80が接続されており、当該開口351は、ヒートシンク31の流路34に供給される冷媒の入口として機能する。これに対し、他方の開口352は、アーム本体21を経由して外部に連通しており、当該開口352は、当該流路34から排出される冷媒の出口として機能する。 Further, this cover 35 has an opening 351 formed at a position opposite to one end (starting point, left end in FIG. 5) of the flow path 34 of the heat sink 31, and an opening 351 at a position opposite to the other end (end point) of the flow path 34 of the heat sink 31. An opening 352 is formed at a position corresponding to the right end in FIG. 5 (see FIGS. 4 and 5). The refrigerant supply system 80 is connected to one opening 351 , and the opening 351 functions as an inlet for the refrigerant supplied to the flow path 34 of the heat sink 31 . On the other hand, the other opening 352 communicates with the outside via the arm body 21, and functions as an outlet for the refrigerant discharged from the flow path 34.
 なお、入口351と出口352の配置は上記に特に限定されない。例えば、流路34の両端に入口351をそれぞれ形成し、当該流路34の中央に出口352を形成してもよい。 Note that the arrangement of the inlet 351 and the outlet 352 is not particularly limited to the above. For example, the inlets 351 may be formed at both ends of the flow path 34, and the outlet 352 may be formed at the center of the flow path 34.
 また、ヒートシンク31及びカバー35(すなわち本体部30)の四隅には、当該本体部30を貫通する貫通孔325,353が形成されている。この貫通孔325,353は、アーム本体21を介して、真空源95に接続されている。真空源95により貫通孔325,353を吸引することで、接触面324に接触しているDUT100をコンタクトアーム20が吸着保持することが可能となっている。すなわち、コンタクトアーム20の先端に設けられたサーマルヘッド25は、DUT100の温度を調整する機能、及び、プッシャとしての機能に加えて、DUT100を保持する機能も備えている。真空源95の具体例としては、真空ポンプ等を例示することができる。この貫通孔325,353が、本発明の態様における「第2の流路」の一例に相当する。 Furthermore, through holes 325 and 353 passing through the main body 30 are formed at the four corners of the heat sink 31 and the cover 35 (that is, the main body 30). The through holes 325 and 353 are connected to the vacuum source 95 via the arm body 21. By suctioning the through holes 325 and 353 by the vacuum source 95, the contact arm 20 can attract and hold the DUT 100 in contact with the contact surface 324. That is, the thermal head 25 provided at the tip of the contact arm 20 has a function of adjusting the temperature of the DUT 100 and a function of a pusher, as well as a function of holding the DUT 100. A specific example of the vacuum source 95 is a vacuum pump. These through holes 325 and 353 correspond to an example of a "second flow path" in the aspect of the present invention.
 なお、サーマルヘッド25の本体部30が備える貫通孔325,353の数や配置は、特に上記に限定されない。例えば、本体部30の同じ対角線上の2つの隅部に位置するように、当該本体部30に2つの貫通孔を設けてもよい。或いは、本体部30の中央に位置するように、当該本体部30に1つの貫通孔を設けてもよい。 Note that the number and arrangement of the through holes 325 and 353 provided in the main body portion 30 of the thermal head 25 are not particularly limited to the above. For example, two through holes may be provided in the main body 30 so as to be located at two corners on the same diagonal line of the main body 30. Alternatively, one through hole may be provided in the main body 30 so as to be located in the center of the main body 30.
 ヒータ40は、通電により発熱する面状の発熱体であり、例えば、抵抗加熱方式のシート状のヒータである。特に限定されないが、本実施形態のヒータ40は、一枚の金属箔のみから構成されている。こうしたヒータ40を構成する金属材料としては、例えば、ステンレスを例示することができる。 The heater 40 is a planar heating element that generates heat when energized, and is, for example, a sheet-shaped resistance heating type heater. Although not particularly limited, the heater 40 of this embodiment is composed of only one sheet of metal foil. An example of the metal material constituting the heater 40 is stainless steel.
 このヒータ40は、上述のヒートシンク31の流路34に対応した平面形状を有している。具体的には、図6に示すように、このヒータ40は、折り返し部41で図中の-Y方向から+Y方向に折り返すと共に、折り返し部42で図中の+Y方向から-Y方向に折り返すことを繰り返した平面形状を有している。すなわち、このヒータ40は、面状(帯状)に延在していると共に、蛇行した平面形状を有している。なお、ヒータ40の平面形状は、流路34に対応した形状であれば、上記に特に限定されない。また、ヒータ40が線状に延在していてもよい。 This heater 40 has a planar shape corresponding to the flow path 34 of the heat sink 31 described above. Specifically, as shown in FIG. 6, this heater 40 is folded back from the -Y direction in the figure to the +Y direction at the folding part 41, and from the +Y direction to the -Y direction in the figure at the folding part 42. It has a planar shape that repeats the following. That is, this heater 40 extends in a planar shape (band shape) and has a meandering planar shape. Note that the planar shape of the heater 40 is not particularly limited to the above as long as it corresponds to the flow path 34. Further, the heater 40 may extend linearly.
 このヒータ40は、流路34の幅よりも狭い幅を有しており、図3及び図4に示すように、流路34の中に配置されている。具体的には、このヒータ40は、当該ヒータ40の下面44がヒートシンク31の流路34の底面(すなわちヒートシンク31の底板321の上面)343に接触するように、当該流路34内に配置されている。 This heater 40 has a width narrower than the width of the flow path 34, and is arranged within the flow path 34, as shown in FIGS. 3 and 4. Specifically, this heater 40 is arranged in the flow path 34 such that the lower surface 44 of the heater 40 contacts the bottom surface 343 of the flow path 34 of the heat sink 31 (that is, the upper surface of the bottom plate 321 of the heat sink 31). ing.
 このヒータ40は、端子45を介して制御装置90のヒータ制御部92(図1参照)に接続されており、当該ヒータ制御部92から供給された電力により発熱する。ヒータ40が発熱すると、ヒートシンク31の底面324に接触しているDUT100にその熱がヒートシンク31の底板321を介して伝わり、当該DUT100が加熱される。 This heater 40 is connected to a heater control section 92 (see FIG. 1) of a control device 90 via a terminal 45, and generates heat using electric power supplied from the heater control section 92. When the heater 40 generates heat, the heat is transmitted to the DUT 100 in contact with the bottom surface 324 of the heat sink 31 via the bottom plate 321 of the heat sink 31, thereby heating the DUT 100.
 その一方で、ヒータ40は流路34内のみに位置しており、フィン33と底板321の接触面324との間にはヒータ40が介在していない。すなわち、図2に示す平面視において、ヒータ40は、折り返すことで相互に隣り合う流路34の間の部分に重複しないように配置されており、フィン33と重複しないように配置されている。このため、流路34を通過する冷媒は、ヒートシンク31のフィン33及び底板321を介してDUT100を効率的に冷却することができる。 On the other hand, the heater 40 is located only within the flow path 34, and the heater 40 is not interposed between the fins 33 and the contact surface 324 of the bottom plate 321. That is, in the plan view shown in FIG. 2, the heater 40 is folded so that it does not overlap with the portion between the adjacent channels 34, and is arranged so as not to overlap with the fins 33. Therefore, the coolant passing through the flow path 34 can efficiently cool the DUT 100 via the fins 33 of the heat sink 31 and the bottom plate 321.
 絶縁部材50は、熱的な絶縁性を有すると共に、電気的に絶縁性を有する材料から構成された板状の部材である。この絶縁部材50を構成する具体的な材料としては、例えば、ガラスクロスを例示することができる。この絶縁部材50が、本発明の態様における「断熱部材」の一例に相当すると共に、本発明の態様における「電気絶縁部材」の一例に相当する。 The insulating member 50 is a plate-shaped member made of a material that is thermally insulating and electrically insulating. As a specific material constituting this insulating member 50, for example, glass cloth can be exemplified. This insulating member 50 corresponds to an example of the "insulating member" in the aspect of the present invention, and also corresponds to an example of the "electrical insulating member" in the aspect of the present invention.
 この絶縁部材50は、上述のヒートシンク31の流路34に対応した平面形状を有している。具体的には、図7に示すように、この絶縁部材50は、折り返し部51で図中の-Y方向から+Y方向に折り返すと共に、折り返し部52で図中の+Y方向から-Y方向に折り返すことを繰り返した平面形状を有している。すなわち、この絶縁部材50は、面状(帯状)に延在していると共に、蛇行した平面形状を有している。なお、絶縁部材50の平面形状は、流路34に対応した形状であれば、上記に特に限定されない。 This insulating member 50 has a planar shape corresponding to the flow path 34 of the heat sink 31 described above. Specifically, as shown in FIG. 7, the insulating member 50 is folded back from the -Y direction in the figure to the +Y direction at the folding part 51, and is folded back from the +Y direction to the -Y direction in the figure at the folding part 52. It has a planar shape that repeats this. That is, the insulating member 50 extends in a planar shape (band shape) and has a meandering planar shape. Note that the planar shape of the insulating member 50 is not particularly limited to the above as long as it corresponds to the flow path 34.
 この絶縁部材50は、流路34の幅よりも狭い幅を有しており、上述のヒータ40の幅と同じ幅を有している。そして、この絶縁部材50は、図3及び図4に示すように、ヒータ40の上に積層されるように、流路34の中に配置されている。具体的には、この絶縁部材50は、当該絶縁部材50の下面がヒータ40の上面43に接触するように、流路34内に配置されている。 This insulating member 50 has a width narrower than the width of the flow path 34 and has the same width as the width of the heater 40 described above. As shown in FIGS. 3 and 4, the insulating member 50 is placed in the flow path 34 so as to be stacked on the heater 40. Specifically, the insulating member 50 is arranged within the flow path 34 such that the lower surface of the insulating member 50 contacts the upper surface 43 of the heater 40 .
 本実施形態では、この絶縁部材50が熱的な絶縁性(熱的絶縁機能)を有していることで、ヒートシンク31の流路34内を流通する冷媒と、ヒータ40との間を熱的に絶縁(断熱)している。この絶縁部材50により、ヒータ40への投入エネルギーが流路34を流れる冷媒に拡散することを抑制することができるので、ヒータ40により底板321の底面を選択的且つ効率的に加熱することができ、昇温速度の改善及びエネルギー効率改善を実現することができる。また、副次的効果として、この絶縁部材50が電気的な絶縁性(電気的絶縁機能)を有していることで、冷媒により冷却された流路34内に生じる結露と、ヒータ40との短絡の発生を抑制することができる。 In this embodiment, the insulating member 50 has thermal insulation properties (thermal insulation function), so that thermal insulation can be established between the refrigerant flowing in the flow path 34 of the heat sink 31 and the heater 40. It is insulated (insulated). This insulating member 50 can suppress the energy input to the heater 40 from diffusing into the refrigerant flowing through the flow path 34, so that the bottom surface of the bottom plate 321 can be selectively and efficiently heated by the heater 40. , it is possible to realize an improvement in the heating rate and an improvement in energy efficiency. Furthermore, as a secondary effect, since the insulating member 50 has electrical insulation properties (electrical insulation function), dew condensation generated in the flow path 34 cooled by the refrigerant and the heater 40 can be prevented. The occurrence of short circuits can be suppressed.
 なお、本実施形態では、絶縁部材50が、熱的絶縁機能と電気的絶縁機能の両方を備えているが、特にこれに限定されない。熱的絶縁機能と電気的絶縁機能とが、独立した別々の部材によって実現されてもよい。 Note that in this embodiment, the insulating member 50 has both a thermal insulating function and an electrical insulating function, but is not particularly limited to this. The thermal insulation function and the electrical insulation function may be realized by independent and separate members.
 押圧機構60は、ヒータ40をヒートシンク31の流路34の底面343に向かって押圧する機構である。この押圧機構60は、図3、図4及び、図8に示すように、板状部材61と、複数(本例では23個)のコイルバネ65と、を備えている。 The pressing mechanism 60 is a mechanism that presses the heater 40 toward the bottom surface 343 of the flow path 34 of the heat sink 31. As shown in FIGS. 3, 4, and 8, this pressing mechanism 60 includes a plate member 61 and a plurality of (23 in this example) coil springs 65.
 板状部材61は、樹脂材料等の電気絶縁性を有する材料から構成された板状の部材である。なお、この板状部材61が、電気絶縁性に加えて、熱的絶縁性を有している場合には、上述の絶縁部材50を省略してもよい。 The plate member 61 is a plate member made of an electrically insulating material such as a resin material. Note that if this plate member 61 has thermal insulation in addition to electrical insulation, the above-mentioned insulating member 50 may be omitted.
 この板状部材61は、上述のヒートシンク31の流路34に対応した平面形状を有している。具体的には、図8に示すように、この板状部材61は、折り返し部62で図中の-Y方向から+Y方向に折り返すと共に、折り返し部63で図中の+Y方向から-Y方向に折り返すことを繰り返した平面形状を有している。すなわち、この板状部材61は、面状(帯状)に延在していると共に、蛇行した平面形状を有している。 This plate-like member 61 has a planar shape corresponding to the flow path 34 of the heat sink 31 described above. Specifically, as shown in FIG. 8, this plate member 61 is folded back from the -Y direction in the figure to the +Y direction at the folding part 62, and is folded back from the +Y direction to the -Y direction in the figure at the folding part 63. It has a planar shape that is repeatedly folded back. That is, this plate-like member 61 extends in a planar shape (band-like shape) and has a meandering planar shape.
 なお、板状部材61の平面形状は、上記に特に限定されない。例えば、押圧機構60が複数の板状部材61を備え、当該複数の板状部材61がヒートシンク31の流路34に沿って間欠的に配置されてもよい。 Note that the planar shape of the plate member 61 is not particularly limited to the above. For example, the pressing mechanism 60 may include a plurality of plate-like members 61, and the plurality of plate-like members 61 may be arranged intermittently along the flow path 34 of the heat sink 31.
 この板状部材61は、流路34の幅よりも狭い幅を有しており、上述のヒータ40及び絶縁部材50の幅と同じ幅を有している。そして、この板状部材61は、図3及び図4に示すように、ヒータ40と実質的に平行となるように絶縁部材50の上に積層され、流路34の中に配置されている。 This plate-like member 61 has a width narrower than the width of the flow path 34 and has the same width as the width of the heater 40 and the insulating member 50 described above. As shown in FIGS. 3 and 4, the plate member 61 is stacked on the insulating member 50 so as to be substantially parallel to the heater 40, and is placed in the flow path 34.
 それぞれのコイルバネ65は、流路34の深さ方向(図中のZ方向)に沿うように当該流路34内に配置されている。このコイルバネ65は、圧縮された状態で板状部材61とカバー35との間に介装されており、板状部材61を介してヒータ40を流路34の深さ方向に沿って付勢している。また、複数のコイルバネ65は、板状部材61を均等に押圧するように、板状部材61の蛇行する延在方向において間隔を空けて並べられている。なお、押圧機構60が備えるコイルバネ65の数は、特に上記に限定されない。 Each coil spring 65 is arranged within the flow path 34 along the depth direction of the flow path 34 (Z direction in the figure). The coil spring 65 is interposed between the plate member 61 and the cover 35 in a compressed state, and urges the heater 40 along the depth direction of the flow path 34 via the plate member 61. ing. Further, the plurality of coil springs 65 are arranged at intervals in the meandering extension direction of the plate-like member 61 so as to press the plate-like member 61 evenly. Note that the number of coil springs 65 included in the pressing mechanism 60 is not particularly limited to the above number.
 このコイルバネ65によって板状部材61を介してヒータ40を流路34の底面343に押圧することで、ヒータ40を流路34の底面343に密着させることができ、ヒータ40によりDUT100を効率的に加熱することができる。 By pressing the heater 40 against the bottom surface 343 of the flow path 34 via the plate member 61 by the coil spring 65, the heater 40 can be brought into close contact with the bottom surface 343 of the flow path 34, and the DUT 100 can be efficiently heated by the heater 40. Can be heated.
 また、ヒータ40を流路34の底面343に押圧する付勢部材としてコイルバネ65を用いることで、流路34内を冷媒が流れた際にコイルバネ65によって当該冷媒の乱流を形成することもできるので、冷媒によりDUT100を効率的に冷却することができる。なお、ヒータ40を流路34の底面343に押圧する付勢部材として、コイルバネ以外の弾性体を用いてもよい。 Furthermore, by using the coil spring 65 as a biasing member that presses the heater 40 against the bottom surface 343 of the flow path 34, when the refrigerant flows in the flow path 34, the coil spring 65 can also form a turbulent flow of the refrigerant. Therefore, the DUT 100 can be efficiently cooled by the refrigerant. Note that an elastic body other than a coil spring may be used as the biasing member that presses the heater 40 against the bottom surface 343 of the flow path 34.
 図1に戻り、冷媒供給システム80は、サーマルヘッド25の流路34に冷媒を供給するシステムである。この冷媒供給システム80は、接続部81と、配管82と、バルブ83と、を備えている。この冷媒供給システム80が供給する冷媒としては、特に限定されないが、気体状、ミスト状、若しくは、液体状の窒素、又は、圧縮乾燥空気等を例示することができる。この冷媒が、本発明の態様における「流体」の一例に相当する。 Returning to FIG. 1, the refrigerant supply system 80 is a system that supplies refrigerant to the flow path 34 of the thermal head 25. This refrigerant supply system 80 includes a connecting portion 81, piping 82, and a valve 83. The refrigerant supplied by this refrigerant supply system 80 is not particularly limited, but examples include gaseous, mist, or liquid nitrogen, compressed dry air, and the like. This refrigerant corresponds to an example of the "fluid" in the aspect of the present invention.
 接続部81には、電子部品試験装置1の外部に設けられている冷媒供給源96が接続されている。なお、電子部品試験装置1が冷媒供給源96を備えていてもよい。こうした冷媒供給源96としては、例えば、液体窒素を貯留し低温の窒素を供給するLN(液体窒素)供給源を例示することができる。このLN供給源は、液体窒素を高圧で貯留している圧力容器、或いは、工場内の液体窒素供給パイプラインと接続される接続口を備えており、接続部81に対して、低温の気体窒素及び/又は液体窒素を供給することができる。この冷媒供給源96が、本発明の態様における「流体供給源」の一例に相当する。 A refrigerant supply source 96 provided outside the electronic component testing apparatus 1 is connected to the connection portion 81 . Note that the electronic component testing apparatus 1 may include a refrigerant supply source 96. An example of such a refrigerant supply source 96 is an LN 2 (liquid nitrogen) supply source that stores liquid nitrogen and supplies low-temperature nitrogen. This LN 2 supply source is equipped with a connection port that is connected to a pressure vessel storing liquid nitrogen at high pressure or a liquid nitrogen supply pipeline in the factory. Nitrogen and/or liquid nitrogen can be supplied. This refrigerant supply source 96 corresponds to an example of a "fluid supply source" in the aspect of the present invention.
 なお、冷媒供給システム80を介してサーマルヘッド25に供給される冷媒としては、DUT100の目標温度Tspよりも低い温度を有する流体であれば、特に上記の窒素に限定されない。 Note that the refrigerant supplied to the thermal head 25 via the refrigerant supply system 80 is not particularly limited to the above-mentioned nitrogen, as long as it is a fluid having a temperature lower than the target temperature T sp of the DUT 100.
 例えば、低温試験を行わない場合には、冷媒供給源96に代えて、常温の圧縮エアを供給するエア供給源を、流体供給源として用いてもよい。このエア供給源は、例えば、外気を取り込み圧縮するコンプレッサと、圧縮した空気を乾燥するドライヤと、を備えていてもよい。このエア供給源が電子部品試験装置1の外部に設けられていてもよいし、電子部品試験装置1がこのエア供給源を備えていてもよい。或いは、エア供給源が、圧縮乾燥空気を供給可能な既設の工場配管等であってもよい。 For example, when a low-temperature test is not performed, an air supply source that supplies compressed air at room temperature may be used as the fluid supply source instead of the refrigerant supply source 96. This air supply source may include, for example, a compressor that takes in and compresses outside air, and a dryer that dries the compressed air. This air supply source may be provided outside the electronic component testing apparatus 1, or the electronic component testing apparatus 1 may be provided with this air supply source. Alternatively, the air supply source may be existing factory piping or the like that can supply compressed dry air.
 また、上記の冷媒が気体又は液体のいずれであってもよいが、冷媒として気体を用いることでサーマルヘッド25の出口352から排出された冷媒の回収が不要となる。なお、特に限定されないが、液体状の冷媒の一例としては、上述の液体状の窒素に加えて、フッ素系不活性液体を例示することができる。或いは、冷媒に代えて、温媒がサーマルヘッド25の流路34に供給されてもよい。 Further, although the above-mentioned refrigerant may be either gas or liquid, by using gas as the refrigerant, it is not necessary to recover the refrigerant discharged from the outlet 352 of the thermal head 25. Note that, although not particularly limited, as an example of the liquid refrigerant, in addition to the above-mentioned liquid nitrogen, a fluorine-based inert liquid can be exemplified. Alternatively, instead of the coolant, a hot medium may be supplied to the flow path 34 of the thermal head 25.
 接続部81には配管82が接続されており、この配管82はアーム本体21内を通過してサーマルヘッド25の入口351に接続されている。また、この配管82には、バルブ83が設けられている。このバルブ83は、冷媒供給源96から冷媒供給システム80内に供給される冷媒の流量を調整する。 A pipe 82 is connected to the connecting portion 81, and this pipe 82 passes through the arm body 21 and is connected to the inlet 351 of the thermal head 25. Further, this pipe 82 is provided with a valve 83. This valve 83 regulates the flow rate of refrigerant supplied into the refrigerant supply system 80 from the refrigerant supply source 96 .
 制御装置90は、図1に示すように、温度演算部91と、ヒータ制御部92と、バルブ制御部93と、を備えている。この制御装置90は、例えば、マイクロプロセッサを有するコンピュータを備えており、このコンピュータ上でプログラムを実行することにより上述の温度演算部91、ヒータ制御部92、及び、バルブ制御部93が機能的に実現されている。なお、コンピュータに代えて、電気回路板で制御装置90を構成し、この電気回路板により上述の温度演算部91、ヒータ制御部92,及び、バルブ制御部93を機能的に実現してもよい。 As shown in FIG. 1, the control device 90 includes a temperature calculation section 91, a heater control section 92, and a valve control section 93. This control device 90 includes, for example, a computer having a microprocessor, and by executing a program on this computer, the above-mentioned temperature calculation section 91, heater control section 92, and valve control section 93 are functionally controlled. It has been realized. Note that instead of a computer, the control device 90 may be configured with an electric circuit board, and the above-mentioned temperature calculation section 91, heater control section 92, and valve control section 93 may be functionally realized by this electric circuit board. .
 温度演算部91は、DUT100の温度検出回路120から入力された検出電圧信号に基づいて、DUT100の現在の温度T’を演算する。さらに、この温度演算部91は、DUT100の現在の温度T’と目標温度Tspとの偏差を小さくするような、冷媒の流量とヒータ40の出力を演算する。そして、この温度演算部91の演算結果に基づいて、ヒータ制御部92がヒータ40の駆動を制御すると共に、バルブ制御部93がバルブ83の開度を制御する。なお、温度検出回路120の検出電圧信号は、ソケット6を介して温度演算部91に入力される(図1、図3及び図4参照)。 The temperature calculation unit 91 calculates the current temperature T j ' of the DUT 100 based on the detection voltage signal input from the temperature detection circuit 120 of the DUT 100. Furthermore, this temperature calculation section 91 calculates the flow rate of the refrigerant and the output of the heater 40 such that the deviation between the current temperature T j ' of the DUT 100 and the target temperature T sp is reduced. Then, based on the calculation result of the temperature calculation section 91, the heater control section 92 controls the driving of the heater 40, and the valve control section 93 controls the opening degree of the valve 83. Note that the detected voltage signal of the temperature detection circuit 120 is input to the temperature calculation unit 91 via the socket 6 (see FIGS. 1, 3, and 4).
 こうした温度検出回路120の検出電圧信号を用いたDUT100の現在の温度T’の演算手法の具体例としては、米国特許出願第15/719,849(米国特許出願公開第2019/0101587号明細書)、米国特許出願第16/351,363(米国特許出願公開第2020/0033402号明細書)、米国特許出願第16/575,460(米国特許出願公開第2020/0241582号明細書)、及び、米国特許出願第16/575,470(米国特許出願公開第2020/0241040号明細書)に記載されたものを例示することができる。 A specific example of a method of calculating the current temperature T j ' of the DUT 100 using the detected voltage signal of the temperature detection circuit 120 is described in U.S. Patent Application No. 15/719,849 (U.S. Patent Application Publication No. 2019/0101587). ); An example may be the one described in US Patent Application No. 16/575,470 (US Patent Application Publication No. 2020/0241040).
 なお、例えば、DUT100が、自己発熱による温度変化が急激ではないタイプのデバイスである場合には、温度演算部91の演算結果T’に代えて、温度検出回路120の検出電圧信号に基づいてテスタ2が演算したジャンクション温度Tを用いてもよい。或いは、温度検出回路120の検出電圧信号に代えて、サーマルヘッド25に設置された温度センサ36の検出電圧信号を用いてもよい。 Note that, for example, if the DUT 100 is a type of device in which the temperature change due to self-heating is not rapid, the detection voltage signal of the temperature detection circuit 120 is used instead of the calculation result T j ' of the temperature calculation section 91. The junction temperature Tj calculated by the tester 2 may be used. Alternatively, instead of the detection voltage signal of the temperature detection circuit 120, a detection voltage signal of the temperature sensor 36 installed in the thermal head 25 may be used.
 以上のように、本実施形態では、ヒータ40がヒートシンク31の流路34の底部に位置するように、当該ヒータ40が流路34内に配置されている。換言すれば、サーマルヘッド25において流路34とヒータ40とが実質的に同一平面上に配置されている。このため、本実施形態では、ヒータ40と流路34の両方をDUT100の近くに配置することができ、流路34とDUT100との間の熱容量を小さくできると共に、ヒータ40とDUT100との間の熱容量も小さくできるので、DUT100の温度制御の高速化を図ることができる。 As described above, in this embodiment, the heater 40 is arranged in the flow path 34 of the heat sink 31 so that the heater 40 is located at the bottom of the flow path 34 . In other words, in the thermal head 25, the flow path 34 and the heater 40 are arranged substantially on the same plane. Therefore, in this embodiment, both the heater 40 and the flow path 34 can be placed near the DUT 100, the heat capacity between the flow path 34 and the DUT 100 can be reduced, and the heat capacity between the heater 40 and the DUT 100 can be reduced. Since the heat capacity can also be reduced, it is possible to speed up the temperature control of the DUT 100.
 なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 Note that the embodiments described above are described to facilitate understanding of the present invention, and are not described to limit the present invention. Therefore, each element disclosed in the above embodiments is intended to include all design changes and equivalents that fall within the technical scope of the present invention.
 上述の実施形態では、ヒータ40が一枚の金属箔のみから構成されているが、特にこれに限定されない。例えば、ヒータ40に代えて、図9及び図10に示すように、所謂、窒化アルミヒータをヒータ40Bとして用いてもよい。図9及び図10は本発明の実施形態におけるヒータの変形例を示す平面図及び断面図であり、図10は図9のX-X線に沿った図である。 In the embodiment described above, the heater 40 is made of only one piece of metal foil, but the heater 40 is not particularly limited to this. For example, instead of the heater 40, as shown in FIGS. 9 and 10, a so-called aluminum nitride heater may be used as the heater 40B. 9 and 10 are a plan view and a sectional view showing a modified example of the heater in the embodiment of the present invention, and FIG. 10 is a view taken along the line XX in FIG. 9.
 このヒータ40Bは、図9及び図10に示すように、発熱体46と、当該発熱体46を覆っている絶縁層47と、を備えている。発熱体46は、上述のヒートシンク31の流路34に対応した平面形状を有している。具体的には、図9に示すように、この発熱体46は、折り返し部461で図中の-Y方向から+Y方向に折り返すと共に、折り返し部462で図中の+Y方向から-Y方向に折り返すことを繰り返した平面形状を有している。すなわち、この発熱体46は、面状(帯状)に延在していると共に、蛇行した平面形状を有している。 As shown in FIGS. 9 and 10, this heater 40B includes a heating element 46 and an insulating layer 47 covering the heating element 46. The heating element 46 has a planar shape corresponding to the flow path 34 of the heat sink 31 described above. Specifically, as shown in FIG. 9, the heating element 46 is folded back from the -Y direction in the figure to the +Y direction at the folding part 461, and is folded back from the +Y direction to the -Y direction in the figure at the folding part 462. It has a planar shape that repeats this. That is, this heating element 46 extends in a planar shape (band shape) and has a meandering planar shape.
 なお、発熱体46の平面形状は、流路34に対応した形状であれば、上記に特に限定されない。また、発熱体46が線状に延在していてもよい。 Note that the planar shape of the heating element 46 is not particularly limited to the above as long as it corresponds to the flow path 34. Further, the heating element 46 may extend linearly.
 この変形例では、図10に示すように、発熱体46の全周が窒化アルミニウムからなる絶縁層47によって覆われている。この絶縁層47の幅(すなわちヒータ40Bの幅)は流路34よりも狭くなっており、ヒータ40Bは、上述のヒータ40と同様に、ヒートシンク31の流路34の中に配置されている。この絶縁層47は、優れた熱伝導性を有していると共に、優れた電気絶縁性を有している。このヒータ40Bを用いる場合には、ヒートシンク31の表面の電気絶縁層が不要になると共に、電気絶縁性を有しない断熱部材を絶縁部材50として用いることができる。 In this modification, as shown in FIG. 10, the entire circumference of the heating element 46 is covered with an insulating layer 47 made of aluminum nitride. The width of the insulating layer 47 (that is, the width of the heater 40B) is narrower than the flow path 34, and the heater 40B is arranged in the flow path 34 of the heat sink 31, similarly to the heater 40 described above. This insulating layer 47 has excellent thermal conductivity as well as excellent electrical insulation. When using this heater 40B, an electrically insulating layer on the surface of the heat sink 31 is not required, and a heat insulating member without electrical insulation can be used as the insulating member 50.
 或いは、図11及び図12に示すように、ヒータ40Cをヒートシンク31Cに埋設してもよい。図11及び図12は本発明の他の実施形態におけるヒータ一体型のヒートシンクを示す平面図及び断面図であり、図12は図11のXII-XII線に沿った図である。 Alternatively, as shown in FIGS. 11 and 12, the heater 40C may be embedded in the heat sink 31C. 11 and 12 are a plan view and a sectional view showing a heater-integrated heat sink according to another embodiment of the present invention, and FIG. 12 is a view taken along line XII-XII in FIG. 11.
 図11及び図12に示す例では、ヒートシンク31Cが窒化アルミニウムから構成されており、このヒートシンク31Cの底板321にヒータ40Cが埋設されている。 In the example shown in FIGS. 11 and 12, the heat sink 31C is made of aluminum nitride, and the heater 40C is embedded in the bottom plate 321 of the heat sink 31C.
 ヒートシンク31Cは、複数(本例では7本)のフィン33を有する第1実施形態のヒートシンク31と同様の形状を備えており、このヒートシンク31Cには、蛇行した平面形状を有する流路34が形成されている。 The heat sink 31C has a shape similar to that of the heat sink 31 of the first embodiment having a plurality of (seven in this example) fins 33, and a flow path 34 having a meandering planar shape is formed in the heat sink 31C. has been done.
 ヒータ40Cも、この流路34に対応した平面形状を有しており、流路34の底部に対応するようにヒートシンク31Cに埋設されている。すなわち。このヒータ40Cは、流路34の底面343とヒートシンク31Cの底板321の下面324との間に介在するように、ヒートシンク31Cに埋設されている。 The heater 40C also has a planar shape corresponding to the flow path 34, and is embedded in the heat sink 31C so as to correspond to the bottom of the flow path 34. Namely. This heater 40C is embedded in the heat sink 31C so as to be interposed between the bottom surface 343 of the flow path 34 and the lower surface 324 of the bottom plate 321 of the heat sink 31C.
 なお、ヒータ40Cの平面形状は、流路34に対応した形状であれば、上記に特に限定されない。また、ヒータ40Cが線状に延在していてもよい。 Note that the planar shape of the heater 40C is not particularly limited to the above as long as it corresponds to the flow path 34. Further, the heater 40C may extend linearly.
 このヒータ40C付きのヒートシンク31Cは、底部にヒータ40Cが埋設された窒化アルミニウム製のブロックに流路34を彫り込むことで形成されている。このヒータ40C付きのヒートシンク31Cを用いる場合には、絶縁部材50及び押圧機構60が不要となる。 The heat sink 31C with the heater 40C is formed by carving a channel 34 into an aluminum nitride block in which the heater 40C is embedded in the bottom. When using the heat sink 31C with this heater 40C, the insulating member 50 and the pressing mechanism 60 are not necessary.
 この図11及び図12に示す例では、流路34に対応した平面形状を有するヒータ40Cが、当該流路34の底部に対応するようにヒートシンク31Cに埋設されている。このため、ヒータ40Cと流路34の両方をDUT100の近くに配置することができ、流路34とDUT100との間の熱容量を小さくできると共に、ヒータ40CとDUT100との間の熱容量も小さくできるので、DUT100の温度制御の高速化を図ることができる。 In the example shown in FIGS. 11 and 12, a heater 40C having a planar shape corresponding to the flow path 34 is embedded in the heat sink 31C so as to correspond to the bottom of the flow path 34. Therefore, both the heater 40C and the flow path 34 can be placed near the DUT 100, and the heat capacity between the flow path 34 and the DUT 100 can be reduced, as well as the heat capacity between the heater 40C and the DUT 100. , it is possible to speed up the temperature control of the DUT 100.
 また、平面視において、ヒータ40は、折り返すことで相互に隣り合う流路34の間の部分に重複しないように配置されており、フィン33と重複しないように配置されている。このため、流路34を通過する冷媒は、ヒートシンク31のフィン33及び底板321を介してDUT100を効率的に冷却することができる。 Furthermore, in a plan view, the heater 40 is folded so that it does not overlap with the portion between the mutually adjacent channels 34, and is arranged so as not to overlap with the fins 33. Therefore, the coolant passing through the flow path 34 can efficiently cool the DUT 100 via the fins 33 of the heat sink 31 and the bottom plate 321.
 また、上述の実施形態では、コンタクトアーム20を介してサーマルヘッド25の流路34に流体を供給したが、特にこれに限定されない。例えば、ソケットの周囲に設けられたソケットガイドからサーマルヘッドに流体を供給してもよい。或いは、コンタクトアームの外部からサーマルヘッドに流体が供給されてもよい。 Further, in the embodiment described above, fluid was supplied to the flow path 34 of the thermal head 25 via the contact arm 20, but the present invention is not particularly limited to this. For example, fluid may be supplied to the thermal head from a socket guide provided around the socket. Alternatively, fluid may be supplied to the thermal head from outside the contact arm.
 また、上述の実施形態では、コンタクトアーム20のサーマルヘッド25がDUT100を吸着保持しているがこれに限定されない。当該サーマルヘッド25が、DUTを収容したキャリア200(図1参照)を吸着保持してもよい。このようなキャリアとしては、特に限定されないが、例えば、特開2019-197012号公報、及び、特開2013-79860号公報等に記載されているキャリアを用いることができる。 Furthermore, in the above-described embodiment, the thermal head 25 of the contact arm 20 holds the DUT 100 by suction, but the present invention is not limited to this. The thermal head 25 may hold the carrier 200 (see FIG. 1) containing the DUT by suction. Such a carrier is not particularly limited, but for example, carriers described in JP-A No. 2019-197012, JP-A No. 2013-79860, etc. can be used.
 また、上述の実施形態では、ハンドラ10がコンタクトアーム20とチャンバ70を備えているが、ハンドラの構成は特にこれに限定されない。例えば、チャンバを備えていないハンドラに、上述したサーマルヘッドを適用してもよい。或いは、コンタクトアームを有しておらず、テストトレイに収容された状態のDUTをZ軸駆動装置が有するプッシャにより押圧するタイプのハンドラに、上述したサーマルヘッドを適用してもよい。 Furthermore, in the embodiment described above, the handler 10 includes the contact arm 20 and the chamber 70, but the configuration of the handler is not particularly limited to this. For example, the above-described thermal head may be applied to a handler that does not have a chamber. Alternatively, the above-described thermal head may be applied to a type of handler that does not have a contact arm and presses a DUT housed in a test tray using a pusher included in a Z-axis drive device.
 或いは、SSD(Solid State Drive)の試験装置においてSSDを保持して搬送するロボットアームに、上述したサーマルヘッドを適用してもよい。すなわち、DUTにはSSDも含まれる。 Alternatively, the above-mentioned thermal head may be applied to a robot arm that holds and transports an SSD in an SSD (Solid State Drive) testing device. That is, the DUT also includes the SSD.
1…電子部品試験装置
 2…テスタ
   6…ソケット
 10…ハンドラ
  20…コンタクトアーム
   25…サーマルヘッド
    30…本体部
     31,31C…ヒートシンク
      32…ベース部
       321…底板
       322a~322d…側壁
       323…凹部
       324…接触面
       325…貫通孔
      33,33A,33B…フィン
      34…流路
       341,342…折り返し部
       343…底面
     35…カバー
      351…開口(入口)
      352…開口(出口)
      353…貫通孔
    40,40B,40C…ヒータ
     43…上面
     44…下面
     46…発熱体
      461,462…折り返し部
     47…絶縁層
    50…絶縁部材
    60…押圧機構
     61…板状部材
     65…コイルバネ
  70…チャンバ
  80…冷媒供給システム
   81接続部
   83…バルブ
  90…制御装置
   91…温度演算部
   92…ヒータ制御部
   93…バルブ制御部
95…真空源
96…冷媒供給源
100…DUT
1...Electronic component testing device 2...Tester 6...Socket 10...Handler 20...Contact arm 25...Thermal head 30... Body part 31, 31C...Heat sink 32...Base part 321...Bottom plate 322a-322d...Side wall 323...Concave part 324...Contact Surface 325... Through hole 33, 33A, 33B... Fin 34... Channel 341, 342... Turned part 343... Bottom surface 35... Cover 351... Opening (inlet)
352...Opening (exit)
353... Through hole 40, 40B, 40C... Heater 43... Upper surface 44... Lower surface 46... Heating element 461, 462... Folded part 47... Insulating layer 50... Insulating member 60... Pressing mechanism 61... Plate member 65... Coil spring 70... Chamber 80... Refrigerant supply system 81 Connection section 83... Valve 90... Control device 91... Temperature calculation section 92... Heater control section 93... Valve control section 95... Vacuum source 96... Refrigerant supply source 100... DUT

Claims (16)

  1.  DUT、又は、前記DUTを収容したキャリアと熱交換を行う熱交換器であって、
     前記DUTの温度調整用の流体が流通可能な第1の流路を有する本体部と、
     前記第1の流路の底部に位置するように前記第1の流路内に配置されたヒータと、を備えた熱交換器。
    A heat exchanger that exchanges heat with a DUT or a carrier containing the DUT,
    a main body portion having a first flow path through which a fluid for temperature adjustment of the DUT can flow;
    a heater disposed within the first flow path so as to be located at the bottom of the first flow path.
  2.  請求項1に記載の熱交換器であって、
     前記第1の流路は、折り返し部を持つ蛇行した平面形状を有しており、
     前記ヒータは、前記第1の流路に対応した平面形状を有している熱交換器。
    The heat exchanger according to claim 1,
    The first flow path has a meandering planar shape with a folded portion,
    The heater is a heat exchanger having a planar shape corresponding to the first flow path.
  3.  請求項1又は2に記載の熱交換器であって、
     前記ヒータは、前記第1の流路の底面に接触するように前記第1の流路内に配置されている熱交換器。
    The heat exchanger according to claim 1 or 2,
    The heater is a heat exchanger arranged in the first flow path so as to be in contact with a bottom surface of the first flow path.
  4.  請求項1~3のいずれか一項に記載の熱交換器であって、
     前記熱交換器は、熱的な絶縁性を有し、前記ヒータにおいて前記第1の流路の底面と対向する面とは反対側の面を覆う断熱部材を備えた熱交換器。
    The heat exchanger according to any one of claims 1 to 3,
    The heat exchanger includes a heat insulating member that has thermal insulation and covers a surface of the heater opposite to a surface facing the bottom surface of the first flow path.
  5.  請求項1~4のいずれか一項に記載の熱交換器であって、
     前記熱交換器は、電気的な絶縁性を有し、前記ヒータにおいて前記第1の流路の底面と対向する面とは反対側の面を覆う電気絶縁部材を備えた熱交換器。
    The heat exchanger according to any one of claims 1 to 4,
    The heat exchanger has an electrically insulating property and includes an electrically insulating member that covers a surface of the heater opposite to a surface facing the bottom surface of the first flow path.
  6.  請求項1~5のいずれか一項に記載の熱交換器であって、
     前記熱交換器は、前記ヒータを前記第1の流路の底面に向かって押圧する押圧機構を備えた熱交換器。
    The heat exchanger according to any one of claims 1 to 5,
    The heat exchanger includes a pressing mechanism that presses the heater toward the bottom of the first flow path.
  7.  請求項6に記載の熱交換器であって、
     前記押圧機構は、前記第1の流路の深さ方向に沿って延在するように、前記第1の流路内に配置されたコイルバネを備え、
     前記コイルバネは、前記ヒータを前記第1の流路の深さ方向に沿って付勢する熱交換器。
    The heat exchanger according to claim 6,
    The pressing mechanism includes a coil spring disposed within the first flow path so as to extend along the depth direction of the first flow path,
    The coil spring is a heat exchanger that biases the heater along the depth direction of the first flow path.
  8.  請求項7に記載の熱交換器であって、
     前記押圧機構は、前記コイルバネの先端に取り付けられた板状部材を備えており、
     前記板状部材は、前記ヒータと実質的に平行となるように、前記第1の流路内に配置されている熱交換器。
    The heat exchanger according to claim 7,
    The pressing mechanism includes a plate member attached to the tip of the coil spring,
    A heat exchanger, wherein the plate member is disposed within the first flow path so as to be substantially parallel to the heater.
  9.  DUT、又は、前記DUTを収容したキャリアと熱交換を行う熱交換器であって、
     前記DUTの温度調整用の流体が流通可能な第1の流路を有する本体部と、
     前記第1の流路の底部に対応するように前記本体部に埋設されたヒータと、を備えており、
     前記第1の流路は、折り返し部を持つ蛇行した平面形状を有し、
     前記ヒータは、前記第1の流路に対応した平面形状を有している熱交換器。
    A heat exchanger that exchanges heat with a DUT or a carrier containing the DUT,
    a main body portion having a first flow path through which a fluid for temperature adjustment of the DUT can flow;
    a heater embedded in the main body so as to correspond to the bottom of the first flow path,
    The first flow path has a meandering planar shape with a folded portion,
    The heater is a heat exchanger having a planar shape corresponding to the first flow path.
  10.  請求項1~9のいずれか一項に記載の熱交換器であって、
     前記ヒータは、通電により発熱する面状又は線状の発熱体を備えた熱交換器。
    The heat exchanger according to any one of claims 1 to 9,
    The heater is a heat exchanger that includes a planar or linear heating element that generates heat when energized.
  11.  請求項1~10のいずれか一項に記載の熱交換器であって、
     前記第1の流路同士の間の間隔は、前記第1の流路の幅よりも狭い熱交換器。
    The heat exchanger according to any one of claims 1 to 10,
    A heat exchanger in which the interval between the first flow paths is narrower than the width of the first flow path.
  12.  請求項1~11のいずれか一項に記載の熱交換器であって、
     前記本体部の底面は、前記DUT、又は、前記キャリアに接触する接触面である熱交換器。
    The heat exchanger according to any one of claims 1 to 11,
    A heat exchanger in which the bottom surface of the main body is a contact surface that contacts the DUT or the carrier.
  13.  請求項1~12のいずれか一項に記載の熱交換器であって、
     前記熱交換器は、前記DUTの吸着保持用の第2の流路を備えた熱交換器。
    The heat exchanger according to any one of claims 1 to 12,
    The heat exchanger includes a second flow path for adsorption and holding of the DUT.
  14.  請求項1~13のいずれか一項に記載の熱交換器であって、
     前記本体部は、
     前記第1の流路に連通した入口と、
     前記第1の流路に連通した出口と、を備えた熱交換器。
    The heat exchanger according to any one of claims 1 to 13,
    The main body portion is
    an inlet communicating with the first flow path;
    and an outlet communicating with the first flow path.
  15.  DUT、又は、前記DUTを収容したキャリアをハンドリングする電子部品ハンドリング装置であって、
     請求項1~14のいずれか一項に記載された熱交換器と、
     前記熱交換器が取り付けられていると共に、前記熱交換器を移動させる移動装置と、を備えており、
     前記移動装置が前記DUT又は前記キャリアを保持することで、前記熱交換器が前記DUT又は前記キャリアと接触し、
     前記移動装置は、前記熱交換器と共に前記DUT又は前記キャリアを移動させることで、前記DUT又は前記キャリアをソケットに押圧する電子部品ハンドリング装置。
    An electronic component handling device that handles a DUT or a carrier containing the DUT,
    A heat exchanger according to any one of claims 1 to 14,
    A moving device to which the heat exchanger is attached and which moves the heat exchanger,
    The moving device holds the DUT or the carrier, so that the heat exchanger comes into contact with the DUT or the carrier,
    The moving device is an electronic component handling device that presses the DUT or the carrier against the socket by moving the DUT or the carrier together with the heat exchanger.
  16.  DUTを試験する電子部品試験装置であって、
     請求項15に記載の電子部品ハンドリング装置と、
     ソケットを有する試験装置本体と、を備えた電子部品試験装置。
    An electronic component testing device for testing a DUT,
    The electronic component handling device according to claim 15;
    An electronic component testing device comprising: a testing device main body having a socket;
PCT/JP2022/028100 2022-07-19 2022-07-19 Heat exchanger, electronic component handling device, and electronic component testing device WO2024018536A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/028100 WO2024018536A1 (en) 2022-07-19 2022-07-19 Heat exchanger, electronic component handling device, and electronic component testing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/028100 WO2024018536A1 (en) 2022-07-19 2022-07-19 Heat exchanger, electronic component handling device, and electronic component testing device

Publications (1)

Publication Number Publication Date
WO2024018536A1 true WO2024018536A1 (en) 2024-01-25

Family

ID=89617442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028100 WO2024018536A1 (en) 2022-07-19 2022-07-19 Heat exchanger, electronic component handling device, and electronic component testing device

Country Status (1)

Country Link
WO (1) WO2024018536A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004527764A (en) * 2001-05-31 2004-09-09 クライオテック インコーポレイテッド Electronic device temperature control apparatus and temperature control method
JP2007003152A (en) * 2005-06-27 2007-01-11 Seiko Epson Corp Cooling device, and electronic component handler provided therewith
US20170176516A1 (en) * 2015-12-21 2017-06-22 Intel Corporation Thermal Head with a Thermal Barrier for Integrated Circuit Die Processing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004527764A (en) * 2001-05-31 2004-09-09 クライオテック インコーポレイテッド Electronic device temperature control apparatus and temperature control method
JP2007003152A (en) * 2005-06-27 2007-01-11 Seiko Epson Corp Cooling device, and electronic component handler provided therewith
US20170176516A1 (en) * 2015-12-21 2017-06-22 Intel Corporation Thermal Head with a Thermal Barrier for Integrated Circuit Die Processing

Similar Documents

Publication Publication Date Title
US6184504B1 (en) Temperature control system for electronic devices
EP0915499B1 (en) Semiconductor wafer holding apparatus
US7355428B2 (en) Active thermal control system with miniature liquid-cooled temperature control device for electronic device testing
JP4825812B2 (en) Semiconductor wafer inspection method and apparatus using chuck device capable of adjusting temperature
TWI470245B (en) A probe assembly for inspecting a semiconductor element for power, and an inspection apparatus using the same
US20020014894A1 (en) Temperature control apparatus
JP2000241454A (en) Probe card for high temperature test and test equipment
KR100383009B1 (en) Inspection method and apparatus for semiconductor integrated circuit, and vacuum contactor mechanism
JP2024023283A (en) Socket side surface heat system
KR20100093890A (en) Apparatus for testing semiconductor device
WO2024018536A1 (en) Heat exchanger, electronic component handling device, and electronic component testing device
US9007080B2 (en) Systems and methods for conforming device testers to integrated circuit device profiles with feedback temperature control
JP3611174B2 (en) Semiconductor wafer temperature test equipment
JP3294175B2 (en) Wafer storage room for reliability test
WO2002082528A1 (en) Contactor device for semiconductor device and method of testing semiconductor device
JP3539662B2 (en) Temperature control plate for semiconductor wafer
US11209497B2 (en) Method and system for thermal control of devices in an electronics tester
JP3294174B2 (en) Temperature measurement device for wafer holder and wafer storage chamber
WO2023084613A1 (en) Temperature adjustment system and electronic component test device
WO2023084612A1 (en) Temperature adjustment device and electronic component testing device
TWI840995B (en) Temperature control system and electronic component testing equipment
JPH11145271A (en) Wafer holder
TW202036012A (en) Electronic component testing device
WO2023112221A1 (en) Temperature adjusting unit, electronic component handling device, and electronic component testing device
US20230314500A1 (en) Temperature control device, electronic component handling apparatus, electronic component test apparatus, and dut temperature control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951925

Country of ref document: EP

Kind code of ref document: A1