WO2023112221A1 - Temperature adjusting unit, electronic component handling device, and electronic component testing device - Google Patents

Temperature adjusting unit, electronic component handling device, and electronic component testing device Download PDF

Info

Publication number
WO2023112221A1
WO2023112221A1 PCT/JP2021/046343 JP2021046343W WO2023112221A1 WO 2023112221 A1 WO2023112221 A1 WO 2023112221A1 JP 2021046343 W JP2021046343 W JP 2021046343W WO 2023112221 A1 WO2023112221 A1 WO 2023112221A1
Authority
WO
WIPO (PCT)
Prior art keywords
dut
temperature
valve
electronic component
flow path
Prior art date
Application number
PCT/JP2021/046343
Other languages
French (fr)
Japanese (ja)
Inventor
祐也 山田
有朋 菊池
ギュンター ジェセラー
マーリン ウォルナー
Original Assignee
株式会社アドバンテスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドバンテスト filed Critical 株式会社アドバンテスト
Priority to PCT/JP2021/046343 priority Critical patent/WO2023112221A1/en
Publication of WO2023112221A1 publication Critical patent/WO2023112221A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer

Definitions

  • the present invention provides a temperature adjustment unit for adjusting the temperature of a DUT when testing an electronic component under test such as a semiconductor integrated circuit device (hereinafter also referred to as a unit "DUT" (Device Under Test)), and its
  • the present invention relates to an electronic component handling device and an electronic component testing device having a temperature control unit.
  • An electronic component testing apparatus in which a heater is embedded in a contact arm that holds a DUT by suction (see, for example, Patent Document 1 (paragraph [0037] and FIG. 3)).
  • This electronic component testing apparatus tests the DUT by pressing the DUT against a socket while applying thermal stress to the DUT using a heater.
  • the heater is embedded in the arm body of the contact arm, so it is necessary to turn on/off the heater according to the temperature of the DUT.
  • the response speed of the heater is limited due to the heat capacity of the heater itself, it takes time for the temperature of the heater to reach the desired temperature, and the speed of temperature control of the DUT is increased. is difficult.
  • the problem to be solved by the present invention is to provide a temperature adjustment unit, an electronic component handling device, and an electronic component testing device that are capable of speeding up DUT temperature control.
  • a temperature adjustment unit is a temperature adjustment unit that adjusts the temperature of a DUT, and includes a heat exchanger having a heat exchange portion that contacts the DUT and exchanges heat with the DUT, and a heating device. and a moving device for relatively moving the heating device with respect to the heat exchange section, the heat exchanger being capable of circulating a fluid for adjusting the temperature of the DUT, and moving the heat exchange section.
  • the moving device is a temperature adjusting unit that has a passage through which the heating device contacts or separates from the heat exchange section by relatively moving the heating device.
  • the temperature adjustment unit is included in a pressing device that presses the DUT against the socket, and the heat exchange section contacts the DUT while the pressing device presses the DUT against the socket.
  • a predetermined gap is formed between the heat exchanger and the heating device, and the moving device relatively moves the heating device to eliminate the gap and move the heating device. You may contact the said heat exchange part.
  • the heat exchange section has a first contact surface that contacts the DUT, and the moving device is substantially parallel to the normal direction of the first contact surface.
  • the heating device may be relatively moved along the direction.
  • the heat exchange section has a first contact surface that contacts the DUT and a second contact surface opposite to the first contact surface, and the heating device may face the second contact surface, and the moving device may cause the heating device to contact or separate from the second contact surface by relatively moving the heating device.
  • the temperature adjustment unit is supplied with the fluid from a fluid supply source, and includes an inlet communicating with the flow path, and a first valve that opens and closes communication between the inlet and the flow path. and may be provided.
  • the fluid may be gas.
  • the fluid may be gas at room temperature or gas at a temperature lower than room temperature.
  • the inlet includes a first inlet to which the fluid is supplied from the fluid supply source
  • the temperature adjustment unit includes first and second outlets for discharging the fluid
  • the flow path includes a first flow path that passes through the heat exchange section and communicates with the first inlet and the first outlet
  • the first valve connects the first inlet.
  • a first switching valve may be included for switching between the first flow path and the second outlet.
  • the inlet includes a second inlet to which the fluid is supplied from the fluid supply source, and the flow path passes through the heat exchange section and extends through the second inlet and the A second flow path communicating with a second outlet is included, and the first valve switches a connection destination of the second inlet between the second flow path and the first outlet.
  • the first switching valve communicates the second flow path with the second outlet when the first inlet and the first flow path are communicated
  • the second switching valve may communicate the first flow path with the first outlet when the second inlet and the second flow path are communicated with each other.
  • the second switching valve when the first switching valve communicates the first inlet and the first flow path, the second switching valve connects the second inlet and the first flow path. 2 flow paths, and when the first switching valve communicates the first inlet and the second outlet, the second switching valve communicates the second inlet and the second outlet. It may communicate with the first outlet.
  • the first valve may be arranged in the heat exchanger.
  • the inlet may be arranged in the heat exchanger.
  • the moving device includes an air cylinder driven by air pressure supplied from an air supply source, and the first valve includes a valve driven by air supplied from the air supply source. You can stay.
  • An electronic component handling device is an electronic component handling device for handling a DUT, comprising the above-described temperature adjustment unit, a pressing device for pressing the DUT against a socket, the pressing device comprising: In the electronic component handling device, the heat exchange section is in contact with the DUT while the DUT is pressed against the socket.
  • the electronic component handling device includes a first control device that controls the heating device, and the first control device maintains the temperature of the heating device at a predetermined temperature or higher.
  • the heating device may be controlled such that
  • the electronic component handling device includes a first connecting portion connected to a fluid supply source that supplies the fluid, and the fluid is supplied through the first connecting portion.
  • the inlet may be continuously supplied from a source.
  • the electronic component handling device includes: a second connection portion connected to an air supply source for supplying air; and a second valve for opening and closing the supply of air to the first valve.
  • the moving device moves the heating device to move away from the heat exchange section, and the first valve opens to open the inlet and the inlet.
  • the moving device moves the heating device to come into contact with the heat exchange unit, and the first valve is closed to separate the inlet and the Communication with the channel may be blocked.
  • the electronic component handling device includes: a computing device that computes the temperature of the DUT; a second control device that controls the second valve based on the computation result of the computing device; may be provided.
  • the pressing device may include a third flow path for sucking and holding the DUT.
  • the electronic component handling device may include a chamber capable of adjusting an internal atmospheric temperature, and the socket may be arranged in the chamber.
  • An electronic component testing apparatus is an electronic component testing apparatus for testing a DUT, comprising the electronic component handling device described above and a test apparatus main body having a socket. .
  • the heating device can be brought into contact with or separated from the heat exchange section by relatively moving the heating device with respect to the heat exchange section by the moving device. Therefore, the heating device can be preheated before it is brought into contact with the heat exchange section, so that the temperature control of the DUT can be speeded up.
  • the heating device can be preheated as described above, and there is no need to rapidly heat the heating device, so that the output of the heating device can be reduced.
  • FIG. 1 is a block diagram showing the configuration of an electronic device testing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a temperature control unit according to an embodiment of the invention.
  • FIG. 3A is a diagram showing the operation of the temperature adjustment unit in the embodiment of the present invention, showing the state of cooling the DUT.
  • FIG. 3B is a diagram showing the operation of the temperature adjustment unit in the embodiment of the present invention, showing the state of heating the DUT.
  • FIG. 1 is a block diagram showing the configuration of an electronic component testing apparatus 1 according to this embodiment
  • FIG. 2 is a sectional view showing a temperature adjustment unit 30 according to this embodiment.
  • the electronic component testing apparatus 1 in this embodiment is an apparatus for testing electrical characteristics of a DUT 200, which is an electronic component under test.
  • This electronic component testing apparatus 1 includes a tester 2 and a handler 10, as shown in FIG.
  • the tester 2 in this embodiment corresponds to an example of the "test apparatus body" in the present invention
  • the handler 10 in this embodiment corresponds to an example of the "electronic component handling device" in the present invention.
  • the tester 2 tests the DUT 200 whose temperature is controlled by the temperature adjustment unit 30, which will be described later. Specifically, the tester 2 inputs a test signal based on a test pattern for testing the DUT 200 to the DUT 200 via the socket 6 while the DUT 200 is electrically connected to the socket 6 to perform the test. The quality of the DUT 200 is determined based on the output signal that the DUT 200 outputs in response to the signal. As shown in FIG. 1, this tester 2 comprises a mainframe 3 and a test head 5 connected to this mainframe 3 via a cable 4 . A socket 6 is attached to the upper surface of the test head 5 .
  • SoC System on a chip
  • memory devices logic devices, digital circuits, analog circuits, etc. may also be used.
  • the DUT 200 may be a resin-molded device in which a semiconductor chip is packaged with a molding material such as a resin material, or may be an unpackaged bare die.
  • the DUT 200 in this embodiment includes a temperature detection circuit 210 that detects the temperature of the DUT 200 .
  • the temperature detection circuit 210 in this embodiment is, for example, a circuit including a thermal diode and formed on a semiconductor substrate. Note that the temperature detection circuit 210 is not limited to a thermal diode.
  • the temperature detection circuit 210 may be configured using an element having temperature-dependent resistance characteristics or bandgap characteristics, or a thermocouple may be embedded in the DUT 200 as the temperature detection circuit 210 .
  • the handler 10 is configured to handle the DUT 200 before testing up to the socket 6, press the DUT 200 against the socket 6, and classify the DUT 200 according to the test results.
  • the handler 10 includes a contact arm 20 having a temperature control unit 30, a chamber 60, a first supply system 70, a second supply system 80, a valve controller 90, a heater and a controller 95 .
  • the contact arm 20 is a carrier arm that holds and moves the DUT 200 and presses the DUT 200 against the socket 6 . By pressing the DUT 200 against the socket 6 with the contact arm 20, the DUT 200 and the socket 6 are electrically connected.
  • the contact arm 20 in this embodiment corresponds to an example of the "pressing device" in the present invention.
  • the contact arm 20 includes an arm body 21 and a temperature control unit 30.
  • the arm body 21 is movable and rotatable on the XY plane and vertically movable in the Z direction by an actuator (not shown).
  • a temperature control unit 30 is attached to the tip of the arm body 21 .
  • the contact arm 20 can attract and hold the DUT 200 in contact with the temperature adjustment unit 30 . Also, the contact arm 20 can control the temperature of the DUT 200 by means of the temperature adjustment unit 30 .
  • the chamber 60 is a constant temperature bath made of a heat insulating material or the like. Since the chamber 60 is less susceptible to temperature changes from the surrounding environment, the temperature of the atmosphere inside the constant temperature bath can be kept constant. Although not shown, the chamber 60 is provided with, for example, a coolant supply port, a heater, and a fan, so that the ambient temperature in the chamber 60 can be adjusted to a desired temperature. There is The upper part of the test head 5 enters this chamber 60 through an opening 61 and the socket 6 is arranged in the chamber 60 .
  • the DUT 200 is transported above the socket 6 arranged in the chamber 60 by horizontally moving the arm body 21 while the DUT 200 is held by the temperature control unit 30 .
  • the DUT 200 is pressed against the socket 6 by lowering the arm body 21 .
  • the temperature control unit 30 attached to the tip of the arm body 21 is positioned inside the chamber 60 .
  • the temperature adjustment unit 30 of the contact arm 20 is a unit that contacts the DUT 200 to adjust the temperature of the DUT 200 .
  • this temperature control unit 30 includes a heat exchanger 31 , spool valves 38 and 39 , a heater 40 and an air cylinder 50 .
  • the spool valves 38 and 39 in the present embodiment correspond to an example of the "first valve” in the present invention
  • the heater 40 in the present embodiment corresponds to an example of the "heating device” in the present invention
  • the air The cylinder 50 corresponds to an example of the "moving device” in the present invention.
  • the heat exchanger 31 includes a body portion 32 and a heat exchange portion 33.
  • the body portion 32 is a member having an opening 321 .
  • the heat exchange portion 33 is a member having a bottomed concave portion 331 .
  • the heat exchanging portion 33 is fixed to the lower surface of the main body portion 32 so that the opening 321 and the recessed portion 331 are aligned, and the heat exchanging portion 33 protrudes downward from the main body portion 32 in a convex shape.
  • the lower surface (front end surface) of the heat exchange section 33 is a first contact surface 332 that contacts the DUT 200 when the contact arm 20 attracts the DUT 200 .
  • the contact arm 20 presses the DUT 200 against the socket 6 while the first contact surface 332 is in contact with the DUT 200 .
  • the temperature control unit 30 provided at the tip of the contact arm 20 has the function of controlling the temperature of the DUT 200 and also the function of a pusher that presses the DUT 200 against the socket 6 .
  • the bottom surface of the concave portion 331 of the heat exchanging portion 33 is a second contact surface 333 with which the heater 40 contacts.
  • This second contact surface 333 is located opposite to the first contact surface 332 described above.
  • the heat exchange section 33 is made of a material with excellent thermal conductivity, such as a metal material, in order to contact the DUT 200 and exchange heat with the DUT 200 .
  • the body portion 32 is made of a material having a low thermal conductivity such as a resin material, for example, so as to suppress heat transfer from the heat exchange portion 33 to members other than the DUT 200 .
  • This heat exchanger 31 has two flow paths 34 and 35 .
  • the first flow path 34 is formed in the body portion 32 and the heat exchange portion 33 so as to pass through the heat exchange portion 33 .
  • a second flow path 35 is also formed in the body portion 32 and the heat exchange portion 33 so as to pass through the heat exchange portion 33 . Both flow paths 34 and 35 pass between the first contact surface 332 and the second contact surface 333 of the heat exchanging portion 33 .
  • inlets 322 , 323 and outlets 324 , 325 of flow paths 34 , 35 are formed in main body 32 .
  • a first flow path 34 extends between a first inlet 322 and a first outlet 324 , the first inlet 322 and the first outlet 324 being connected to the first flow path 34 .
  • the second flow path 35 extends between a second inlet 323 and a second outlet 325, the second inlet 323 and the second outlet 325 They communicate with each other via a channel 35 .
  • the first and second spool valves 38 and 39 are installed in the body portion 32 of the heat exchanger 31.
  • a first spool valve 38 is interposed between the first inlet 322 and the first flow path 34 and between the second flow path 35 and the second outlet 325.
  • the second spool valve 39 is interposed between the second inlet 323 and the second flow path 35 and between the first flow path 34 and the first outlet 324. intervening.
  • the first spool valve 38 has a sleeve 381 , a biasing member 382 and a spool 383 .
  • Sleeve 381 has four ports 381a-381d.
  • the first inlet 322 is connected to the first port 381a
  • the first channel 34 is connected to the second port 381b
  • the second channel 35 is connected to the third port 381c
  • a second outlet 325 is connected to the fourth port 381d.
  • a pipe 723 of the first supply system 70 is connected to one end (upper end in the drawing) of the sleeve 381 . Compressed air is supplied from the air supply source 110 into the sleeve 381 via this first supply system 70 .
  • a biasing member 382 and a spool 383 are housed in this sleeve 381 .
  • the biasing member 382 is arranged on the other end side of the sleeve 381 (lower end side in the drawing).
  • a specific example of the biasing member 382 is not particularly limited, but a coil spring can be exemplified.
  • the spool 383 is movably accommodated in the sleeve 381 and is biased by a biasing member 382 toward one end (upper end in the figure) of the sleeve 381 .
  • the spool 383 has two lands 383a and 383b and a connecting portion 383c connecting the lands 383a and 383b.
  • the lands 383a and 383b have an outer diameter slightly smaller than the inner diameter of the sleeve 381, and the land 383a (383b) and the inner peripheral surface of the sleeve 381 are sealed.
  • the connecting portion 383c is a shaft portion having an outer diameter smaller than that of the lands 383a and 383b.
  • the air pressure compresses the biasing member 382 via the spool 383 .
  • the spool 383 moves to the other end side (lower end side in the figure) of the sleeve 381, and as shown in FIG. 322) and a fourth port 381d (second outlet 325) and between a second port 381b (first flow path 34) and a third port 381c (second flow path 35). located between
  • the biasing force of the biasing member 382 causes the spool 383 to move toward one end of the sleeve 381 (upper end in the figure).
  • the lower land 383b faces the second port 381b (the first flow path 34) to close the second port 381b
  • the connecting portion 383c faces the first port 381a (first inlet 322) and the fourth port 381d (second outlet 325).
  • the second spool valve 39 also comprises a sleeve 391, a biasing member 392 and a spool 393, as shown in FIG.
  • Sleeve 391 has four ports 391a-391d.
  • the second inlet 323 is connected to the fifth port 391a
  • the second flow path 35 is connected to the sixth port 391b
  • the first flow path 34 is connected to the seventh port 391c
  • a first outlet 324 is connected to the eighth port 391d.
  • a pipe 724 of the first supply system 70 is connected to one end (lower end in the drawing) of the sleeve 391 . Compressed air is supplied from the air supply source 110 into the sleeve 391 via this first supply system 70 .
  • a biasing member 392 and a spool 393 are accommodated in this sleeve 391 .
  • the biasing member 392 is arranged on the other end side (upper end side in the figure) of the sleeve 391 .
  • a specific example of the biasing member 392 is not particularly limited, but a coil spring can be exemplified.
  • the spool 393 is movably accommodated in the sleeve 391 and is biased by a biasing member 392 toward one end (lower end in the figure) of the sleeve 391 .
  • the spool 393 includes two lands 393a and 393b and a connecting portion 393c connecting the lands 393a and 393b.
  • the lands 393a and 393b have an outer diameter slightly smaller than the inner diameter of the sleeve 391, and the land 393a (393b) and the inner peripheral surface of the sleeve 391 are sealed.
  • the connecting portion 393c is a shaft portion having an outer diameter smaller than that of the lands 393a and 393b.
  • the biasing force of the biasing member 392 causes the spool 393 to move toward one end of the sleeve 391 (lower end in the drawing).
  • the upper land 393b faces the sixth port 391b (the second flow path 35) to block the sixth port 391b, and the connecting portion 393c is It faces the fifth port 391a (second inlet 323) and the eighth port 391d (second outlet 325).
  • the heat exchanger 31 includes a third flow path 36 in addition to the first and second flow paths 34 and 35 described above.
  • the third flow path 36 opens at the first contact surface 332 of the heat exchange section 33 and passes through the arm body 21 to be connected to the vacuum source 130 .
  • the contact arm 20 can suck and hold the DUT 200 in contact with the first contact surface 332 .
  • the temperature adjustment unit 30 provided at the tip of the contact arm 20 has a function of controlling the temperature of the DUT 200 and a function of a pusher, and also a function of holding the DUT 200 .
  • a specific example of the vacuum source 130 is a vacuum pump or the like.
  • the third flow is applied to the other member.
  • a channel 36 may be formed.
  • a temperature sensor 37 is embedded in the heat exchange section 33 of the heat exchanger 31 . This temperature sensor 37 is connected to a later-described temperature calculation section 91 of the valve control device 90 .
  • the heater 40 is a heating device for heating the heat exchange section 33 of the heat exchanger 31, and is a resistance heating type heating element. Although not particularly limited, a specific example of the heater 40 is a cartridge heater. By using a cartridge heater as the heater 40, the cost of the temperature control unit 30 can be reduced.
  • the heater 40 is connected to a heater control device 95 and generates heat by electric power supplied from the heater control device 95 . Instead of the heater 40, the heat exchange section 33 of the heat exchanger 31 may be heated using a heating device other than resistance heating.
  • the air cylinder 50 is an actuator that advances or retracts the drive shaft 51 by air pressure.
  • the heater 40 described above is fixed to the drive shaft 51 of the air cylinder 50 .
  • a pipe 722 of the first supply system 70 is connected to the air cylinder 50 .
  • Compressed air is supplied from the air supply source 110 to the air cylinder 50 via the first supply system 70 .
  • the air cylinder 50 is operated by the pressure of the air supplied from the air supply source 110 , so that the heater 40 can move toward or away from the heat exchange section 33 of the heat exchanger 31 . At this time, the heater 40 moves along the normal line direction (vertical direction in the drawing) of the first contact surface 332 of the heat exchanging portion 33 .
  • a moving device whose power source is energy other than air pressure, such as electricity or hydraulic pressure, may be used to move the heater 40 relative to the heat exchange section 33.
  • an electric motor having a ball screw mechanism may be used to move the heater 40 with respect to the heat exchange section 33.
  • the heater 40 is inserted into the heat exchanger 31. Specifically, the heater 40 is inserted into the opening 321 of the main body 32 of the heat exchanger 31 and is also inserted into the recess 331 of the heat exchange section 33 of the heat exchanger 31 .
  • a gap S1 is secured between the side surface of the heater 40 and the inner surface of the opening 321 of the body portion 32, and the side surface of the heater 40 and the heat exchange portion 33 are separated.
  • a gap S2 is also secured between the inner surface of the recess 331 and the recess 331 .
  • a gap S3 is also formed between the tip surface 41 of the heater 40 and the bottom surface (second contact surface) 333 of the recess 331 of the heat exchanging portion 33 . Secured. In this manner, when the air cylinder 50 is retracted, an air layer is interposed between the heater 40 and the heat exchanger 31, so heat transfer from the heater 40 to the heat exchanger 31 is suppressed.
  • the first supply system 70 is a system that supplies compressed air to the air cylinder 50 and spool valves 38 and 39 .
  • the first supply system 70 includes a first connection portion 71, pipes 721 to 724, and a valve 73, as shown in FIG.
  • the valve 73 in this embodiment corresponds to an example of the "second valve" in the present invention.
  • An air supply source 110 that supplies compressed air is connected to the first connection portion 71 .
  • This air supply source 110 comprises, for example, a pump that supplies outside air to the first connecting portion 71 .
  • As the air supply source 110 an existing factory pipe to which compressed air is constantly supplied may be used.
  • a first pipe 721 is connected to the first connecting portion 71 , and this first pipe 721 branches at a branch point 74 into three pipes 722 to 724 .
  • a second pipe 722 is connected to the air cylinder 50 .
  • a third pipe 723 is connected to the first spool valve 38 .
  • a fourth pipe 724 is connected to the second spool valve 39 .
  • the valve 73 is provided on the first pipe 721 . This valve 73 regulates the flow rate of compressed air supplied from the air supply source 110 into the first supply system 70 .
  • the second supply system 80 is a system that supplies refrigerant to the channels 34 and 35 of the heat exchanger 31 .
  • the second supply system 80 includes a second connection portion 81 and pipes 821-823.
  • a coolant supply source 120 is connected to the second connection portion 81 .
  • a coolant supply source 120 for example, an LN 2 (liquid nitrogen) supply source that stores liquid nitrogen and supplies low-temperature nitrogen can be exemplified.
  • This LN 2 supply source is equipped with a pressure vessel storing liquid nitrogen at high pressure, or a connection port connected to a liquid nitrogen supply pipeline in the factory. Cryogenic gaseous nitrogen and/or liquid nitrogen can be supplied.
  • the coolant supply source 120 in this embodiment corresponds to an example of the "fluid supply source" in the present invention.
  • the refrigerant supplied to the heat exchanger 31 via the second supply system 80 is not particularly limited to nitrogen, as long as it is a fluid having a temperature lower than the target temperature Tsp of the DUT 200 .
  • an air supply source that supplies normal temperature compressed air may be used.
  • the above refrigerant may be gas or liquid
  • recovery of the refrigerant discharged from the first and second outlets 324 and 325 becomes unnecessary by using gas as the refrigerant.
  • an example of the liquid coolant is a fluorine-based inert liquid.
  • a fifth pipe 821 is connected to the second connection portion 81 , and this fifth pipe 821 branches into two pipes 822 and 823 at a branch point 83 .
  • a sixth pipe 822 is connected to the first inlet 322 of the heat exchanger 31 .
  • a seventh pipe 823 is connected to the second inlet 323 of the heat exchanger 31 .
  • This second supply system 80 is not provided with a valve for adjusting the flow rate of the refrigerant supplied from the refrigerant supply source 120 . Therefore, in this embodiment, the second supply system 80 is always supplied with the refrigerant from the refrigerant supply source 120 . It should be noted that the second supply system 80 may include a valve if desired.
  • the valve control device 90 includes a temperature calculation section 91 and a valve control section 92, as shown in FIG.
  • the valve control device 90 includes, for example, a computer having a microprocessor, and the computer functionally implements the temperature calculation section 91 and the valve control section 92 by executing a program on the computer.
  • the valve control device 90 may be configured by an electric circuit board, and the above-described temperature calculation unit 91 and valve control unit 92 may be functionally realized by this electric circuit board.
  • the temperature calculation section 91 in this embodiment corresponds to an example of the "calculation device" in the present invention
  • the valve control section 92 in the present embodiment corresponds to an example of the "second control device" in the present invention.
  • the temperature calculation unit 91 calculates the current temperature T j ′ of the DUT 200 based on the detected voltage signal input from the temperature detection circuit 210 of the DUT 200 .
  • the valve control unit 92 then controls the valve 73 so that the deviation between the current temperature T j ′ of the DUT 200 and the target temperature T sp becomes small.
  • the valve control unit 92 PWM (Pulse Width Modulation) controls the valve 73 so that compressed air is intermittently supplied.
  • a voltage signal detected by the temperature detection circuit 210 is input to the temperature calculation unit 91 via the socket 6 (see FIGS. 1 and 3B).
  • Specific examples of controlling the valve 73 using the detected voltage signal of the temperature detection circuit 210 include U.S. Patent Application No. 15/719,849 (U.S. Patent Application Publication No. 2019/0101587), U.S. Patent Application No. 16 /351,363 (U.S. Patent Application Publication No. 2020/0033402), U.S. Patent Application No. 16/575,460 (U.S. Patent Application Publication No. 2020/0241582), and U.S. Patent Application No. 16/575 , 470 (U.S. Patent Application Publication No. 2020/0241040).
  • the DUT 200 is a device whose temperature does not change rapidly due to self-heating
  • the calculation result T j ' of the temperature calculation unit 91 based on the detection voltage signal of the temperature detection circuit 210
  • the junction temperature Tj calculated by the tester 2 may be used.
  • the voltage signal detected by the temperature detection circuit 210 the voltage signal detected by the temperature sensor 37 installed in the heat exchanger 31 may be used.
  • the heater control device 95 supplies power to the heater 40 to heat the heater 40 and controls the temperature of the heater 40 .
  • the heater control device 95 is composed of, for example, an electric circuit board having a thermostat function.
  • the heater control device 95 in this embodiment corresponds to an example of the "first control device" in the present invention.
  • the heater control device 95 starts supplying power to the heater 40, and an OFF signal is input from the main controller. Then, the power supply to the heater 40 is stopped.
  • the timing at which the ON signal is input to the heater control device 95 is not particularly limited, but may be, for example, when the handler 10 is activated or when the DUT 200 is changed.
  • the heater control device 95 controls power supply to the heater 40 by the thermostat function described above so that the temperature of the heater 40 is maintained at a predetermined temperature (eg, 300° C.) or higher. That is, in this embodiment, the temperature of the heater is not controlled according to the current temperature T j ' of the DUT 200, but during the period from when the ON signal is input to the heater control device 95 until when the OFF signal is input. , the temperature of the heater 40 is always maintained at a predetermined temperature or higher.
  • a predetermined temperature eg, 300° C.
  • the heater control device 95 may have a thermal fuse instead of the thermostat. In this case, the heater controller 95 always supplies power to the heater 40 and the thermal fuse prevents the heater 40 from overheating.
  • FIG. 3A and 3B are diagrams showing the operation of the temperature adjustment unit 30 in this embodiment.
  • FIG. 3A is a diagram showing the state in which the DUT 200 is being cooled
  • FIG. 3B is a diagram showing the state in which the DUT 200 is being heated. It is a figure which shows a state.
  • FIG. 3A in order to facilitate understanding of the relationship between the heat exchanger 31, the DUT 200, and the socket 6, the DUT 200 is separated from the socket 6, and the heat exchanger 31 is separated from the DUT 200.
  • the DUT 200 in reality the DUT 200 is in contact with the socket 6 and the heat exchanger 31 is in contact with the DUT 200 as in FIG. 3B.
  • the contact arm 20 moves above the DUT 200 held by another transport device (eg, buffer plate) to hold the DUT 200 .
  • another transport device eg, buffer plate
  • the heat exchanger 31 attached to the tip of the contact arm 20 contacts the DUT 200 , and the contact arm 20 sucks and holds the DUT 200 by sucking the third flow path 36 with the vacuum source 130 .
  • the valve control device 90 may start opening/closing control of the valve 73 so that the temperature of the heat exchange section 33 reaches a predetermined temperature before the contact arm 20 attracts and holds the DUT 200 .
  • the valve control device 90 performs opening/closing control of the valve 73 based on the detected voltage signal of the temperature sensor 37 of the heat exchanger 31 instead of the temperature detection circuit 210 of the DUT 200 .
  • the contact arm 20 then moves the DUT 200 above the socket 6 and presses the DUT 200 against the socket 6, as shown in FIG.
  • the terminals 210 of the DUT 200 and the contact pins 7 of the socket 6 come into contact with each other, and the DUT 200 and the socket 6 are electrically connected.
  • a voltage signal detected by the temperature detection circuit 210 of the DUT 200 is input to the valve control device 90 via the socket 6, and the temperature calculation unit 91 calculates the current temperature Tj ' of the DUT 200 based on the voltage signal detected. .
  • valve control section 92 controls the valve 73 so that the deviation between the current temperature T j ′ of the DUT 200 and the target temperature T sp becomes small.
  • opening valve 73 will cause air to flow through first supply system 70, as shown in FIG. 3A. Compressed air is supplied from the supply source 110 to the air cylinder 50 and the spool valves 38 and 39 .
  • the air cylinder 50 retracts the drive shaft 51 and the heater 40 separates from the heat exchange section 33 .
  • the temperature of the heater 40 is maintained at a predetermined temperature or higher.
  • gaps S 1 to S 3 are provided between the heater 40 and the heat exchanger 31, so that the air layers formed by the gaps S 1 to S 3 form air layers from the heater 40 to the heat exchanger 31. The heat transfer to is suppressed.
  • the spool 383 of the first spool valve 38 is pneumatically moved to the other end side of the sleeve 381 (lower end side in the figure), and the first spool valve 38 is connected to the first inlet 322 and the first inlet 322 .
  • the first flow path 34 is communicated, and the second flow path 35 and the second outlet 325 are communicated.
  • the spool 393 of the second spool valve 39 is pneumatically moved to the other end side of the sleeve 391 (upper end side in the figure), and the second spool valve 39 is connected to the second inlet 323 and the second inlet 323 . , and the first flow path 34 and the first outlet 324 are communicated.
  • the first flow path 34 communicates with the first inlet 322 via the first spool valve 38 and communicates with the first outlet 324 via the second spool valve 39, so that the second Refrigerant is supplied to the first flow path 34 from the supply system 80 of the first flow path 34 .
  • the second flow path 35 communicates with the second inlet 323 via the second spool valve 39 and communicates with the second outlet 325 via the first spool valve 38, so that the second Refrigerant is also supplied to the second flow path 35 from the supply system 80 of the second flow path 35 .
  • valve control unit 92 opens the valve 73 to separate the heater 40 from the heat exchange unit 33 and supply the refrigerant to the first and second flow paths 34 and 35 passing through the heat exchange unit 33. be done. Therefore, since the heat exchange section 33 is cooled by the refrigerant, the DUT 200 in contact with the heat exchange section 33 is also cooled. At this time, in the present embodiment, the heater 40 is not in contact with the heat exchanger 31, so the DUT 200 can be efficiently cooled by the coolant flowing through the first and second flow paths 34,35.
  • the temperature of the heater 40 is maintained at the predetermined temperature or higher, and the heater 40 is preheated. Therefore, in the present embodiment, it is not necessary to raise the temperature of the heater 40 itself after the heater 40 is brought into contact with the heat exchange section 33, so high-speed temperature control of the DUT 200 is possible.
  • the spool 383 of the first spool valve 38 moves toward one end of the sleeve 381 (upper end in the drawing) due to the biasing force of the biasing member 382 , and the first spool valve 38 moves toward the first spool valve 38 .
  • the first inlet 322 and the second outlet 325 are communicated with each other. Therefore, no coolant is supplied from the second supply system 80 to the first flow path 34 .
  • the spool 393 of the second spool valve 39 moves toward one end of the sleeve 391 (lower end in the drawing) due to the biasing force of the biasing member 392, and the second spool valve 393 moves toward the second spool.
  • the channel 35 is closed and the second inlet 323 and the first outlet 324 are communicated. Therefore, no refrigerant is supplied from the second supply system 80 to the second flow path 35 either.
  • valve control unit 92 closes the valve 73 so that the heater 40 comes into contact with the heat exchange unit 33 and the refrigerant is supplied to the first and second flow paths 34 and 35 passing through the heat exchange unit 33. not. Therefore, since the heat exchange section 33 is heated by the heater 40, the DUT 200 in contact with the heat exchange section 33 is also heated. At this time, in this embodiment, the coolant is not supplied to the first and second flow paths 34 and 35, so the DUT 200 can be efficiently heated by the heater 40.
  • the spool valves 38 and 39 direct the second supply system 80 to the outlet 324. , 325 to continue supplying the second supply system 80 with refrigerant. Therefore, in this embodiment, the second supply system 80 can be cooled by the coolant even while the DUT 200 is being heated by the heater 40 . As a result, when the DUT 200 is cooled, the time required for cooling the second supply system 80 itself is not required, so high-speed temperature control of the DUT 200 is possible.
  • the spool valves 38 and 39 are installed in the heat exchanger 31 . Therefore, since the second supply system 80 that is constantly cooled extends to the vicinity of the heat exchange section 33, the temperature control of the DUT 200 can be further speeded up.
  • a handler 10 having a chamber 60 with a tunable internal ambient temperature is particularly useful because a portion of the second supply system 80 is located within this chamber 60 .
  • the valve control unit 92 controls the opening and closing of the valve 73 described above so that the deviation between the current temperature T j ' of the DUT 200 and the target temperature T sp is reduced, thereby heating and cooling the DUT 200 by the heat exchange unit 33. I do.
  • the valve control unit 92 frequently repeats opening and closing of the valve 73 described above by PWM control, so that the temperature of the DUT 200 can be controlled precisely.
  • the air cylinder 50 causes the heater 40 to move relative to the heat exchange section 33 , thereby allowing the heater 40 to come into contact with or separate from the heat exchange section 33 . Therefore, the heater 40 can be preheated before the heater 40 is brought into contact with the heat exchange section 33, so that temperature control of the DUT 200 can be speeded up.
  • the heater 40 can be preheated as described above, and the heater 40 does not need to be heated rapidly. Further, by reducing the size of the heater 40, the contact arm 20 can be moved at high speed.
  • the temperature of the heater 40 is maintained at a predetermined temperature or higher, and while the refrigerant is always supplied to the second supply system 80, only opening and closing of one valve 73 allows the heater 40 to move and flow. Controls the supply of refrigerant to passages 34,35. Therefore, high-speed temperature control of the DUT 200 can be realized with a simple structure.
  • the temperature adjustment unit 30 includes two channels 34 and 35, but the number of channels through which the fluid for temperature adjustment flows is not particularly limited to this.
  • the temperature adjustment unit may have only one channel as the channel through which the fluid for temperature adjustment flows.
  • the temperature adjustment unit may have three or more channels as channels through which the fluid for temperature adjustment flows.
  • the spool valve may have 5 or more ports, and the temperature control unit may have 3 or more spool valves.
  • the heater 40 when the valve 73 is opened, the heater 40 is separated from the heat exchange section 33 and the refrigerant is supplied to the flow paths 34 and 35, and when the valve 73 is closed, the heater 40 is moved to the heat exchange section 33. They are configured to come into contact with each other and cut off the supply of coolant to the channels 34 and 35 .
  • the relationship between the opening/closing of the valve 73, the approach/separation of the heater 40, and the supply/shutoff of the coolant to the channels 34 and 35 is not particularly limited to this.
  • the heater 40 when the valve 73 is closed, the heater 40 is separated from the heat exchange section 33 and the coolant is supplied to the flow paths 34 and 35, and when the valve 73 is closed, the heater 40 is brought into contact with the heat exchange section 33 and the flow path 34 , 35 may be cut off.
  • the handler 10 includes contact arms and chambers, but the configuration of the handler is not particularly limited to this.
  • the temperature adjustment unit described above may be applied to a handler that does not have a chamber.
  • the above-described temperature control unit may be applied to a type of handler that does not have a contact arm and presses the DUT housed in the test tray with a pusher of the Z-axis driving device.
  • the temperature adjustment unit 30 is provided in the handler 10
  • the temperature adjustment unit described above may be applied to the tester 2 .
  • the socket may be provided with the temperature control unit.
  • the temperature control unit described above may be applied to a robot arm that holds and transports an SSD in an SSD (Solid State Drive) testing device. That is, the DUT also includes an SSD.
  • SSD Solid State Drive

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

This temperature adjusting unit 30 that adjusts the temperature of a DUT 200 comprises: a heat exchanger 31 that has a heat exchange unit 33 that is in contact with the DUT 200 and performs heat exchange with the DUT 200; a heater 40; and an air cylinder 50 that moves the heater 40 relative to the heat exchange unit 33. The heat exchanger 31 has flow paths 34 and 35 through which a refrigerant used for the temperature adjustment of the DUT 200 can flow, and that pass through the heat exchange unit 33. The air cylinder 50 causes the heater 40 to come into contact with or move away from the heat exchange unit 33 by moving the heater 40 relatively.

Description

温度調整ユニット、電子部品ハンドリング装置、及び、電子部品試験装置Temperature control unit, electronic component handling equipment, and electronic component testing equipment
 本発明は、半導体集積回路素子等の被試験電子部品(以下、単位「DUT」(Device Under Test)とも称する。)の試験を行う際に、DUTの温度調整を行う温度調整ユニット、並びに、その温度調整ユニットを備えた電子部品ハンドリング装置及び電子部品試験装置に関するものである。 The present invention provides a temperature adjustment unit for adjusting the temperature of a DUT when testing an electronic component under test such as a semiconductor integrated circuit device (hereinafter also referred to as a unit "DUT" (Device Under Test)), and its The present invention relates to an electronic component handling device and an electronic component testing device having a temperature control unit.
 DUTを吸着保持するコンタクトアームにヒータを埋設した電子部品試験装置が知られている(例えば、特許文献1(段落[0037]及び図3)参照)。この電子部品試験装置は、ヒータによりDUTに熱ストレスを印加しながら当該DUTをソケットに押圧して、当該DUTの試験を実施する。 An electronic component testing apparatus is known in which a heater is embedded in a contact arm that holds a DUT by suction (see, for example, Patent Document 1 (paragraph [0037] and FIG. 3)). This electronic component testing apparatus tests the DUT by pressing the DUT against a socket while applying thermal stress to the DUT using a heater.
国際公開第2007/094934号WO2007/094934
 上記の電子部品試験装置では、ヒータがコンタクトアームのアーム本体部に埋設されているため、DUTの温度に応じてヒータをオン/オフする必要がある。この際、ヒータ自体の熱容量等に起因して当該ヒータの応答速度にも限界があるため、当該ヒータの温度が所望の温度に達する迄に時間を要してしまい、DUTの温度制御の高速化が難しい、という問題がある。 In the above electronic component testing apparatus, the heater is embedded in the arm body of the contact arm, so it is necessary to turn on/off the heater according to the temperature of the DUT. In this case, since the response speed of the heater is limited due to the heat capacity of the heater itself, it takes time for the temperature of the heater to reach the desired temperature, and the speed of temperature control of the DUT is increased. is difficult.
 本発明が解決しようとする課題は、DUTの温度制御の高速化を図ることが可能な温度調整ユニット、電子部品ハンドリング装置、及び、電子部品試験装置を提供することである。 The problem to be solved by the present invention is to provide a temperature adjustment unit, an electronic component handling device, and an electronic component testing device that are capable of speeding up DUT temperature control.
 [1]本発明に係る温度調整ユニットは、DUTの温度を調整する温度調整ユニットであって、前記DUTに接触して前記DUTと熱交換を行う熱交換部を有する熱交換器と、加熱装置と、前記加熱装置を前記熱交換部に対して相対的に移動させる移動装置と、を備え、前記熱交換器は、前記DUTの温度調整用の流体が流通可能であり、前記熱交換部を通過する流路を有し、前記移動装置は、前記加熱装置を相対移動させることで、前記加熱装置を前記熱交換部に接触又は離反させる温度調整ユニットである。 [1] A temperature adjustment unit according to the present invention is a temperature adjustment unit that adjusts the temperature of a DUT, and includes a heat exchanger having a heat exchange portion that contacts the DUT and exchanges heat with the DUT, and a heating device. and a moving device for relatively moving the heating device with respect to the heat exchange section, the heat exchanger being capable of circulating a fluid for adjusting the temperature of the DUT, and moving the heat exchange section. The moving device is a temperature adjusting unit that has a passage through which the heating device contacts or separates from the heat exchange section by relatively moving the heating device.
 [2]上記発明において、前記温度調整ユニットは、前記DUTをソケットに押圧する押圧装置に含まれ、前記押圧装置が前記DUTを前記ソケットに押圧した状態で、前記熱交換部が前記DUTと接触してもよい。 [2] In the above invention, the temperature adjustment unit is included in a pressing device that presses the DUT against the socket, and the heat exchange section contacts the DUT while the pressing device presses the DUT against the socket. You may
 [3]上記発明において、前記熱交換器と前記加熱装置との間に所定の隙間が形成されており、前記移動装置が前記加熱装置を相対移動させることで、前記隙間がなくなり前記加熱装置が前記熱交換部に接触してもよい。 [3] In the above invention, a predetermined gap is formed between the heat exchanger and the heating device, and the moving device relatively moves the heating device to eliminate the gap and move the heating device. You may contact the said heat exchange part.
 [4]上記発明において、前記熱交換部は、前記DUTに接触する第1の接触面を有しており、前記移動装置は、前記第1の接触面の法線方向に実質的に平行な方向に沿って、前記加熱装置を相対移動させてもよい。 [4] In the above invention, the heat exchange section has a first contact surface that contacts the DUT, and the moving device is substantially parallel to the normal direction of the first contact surface. The heating device may be relatively moved along the direction.
 [5]上記発明において、前記熱交換部は、前記DUTに接触する第1の接触面と、前記第1の接触面とは反対側の第2の接触面と、を有し、前記加熱装置は、前記第2の接触面と対向しており、前記移動装置は、前記加熱装置を相対移動させることで、前記加熱装置を前記第2の接触面に接触又は離反させてもよい。 [5] In the above invention, the heat exchange section has a first contact surface that contacts the DUT and a second contact surface opposite to the first contact surface, and the heating device may face the second contact surface, and the moving device may cause the heating device to contact or separate from the second contact surface by relatively moving the heating device.
 [6]上記発明において、前記温度調整ユニットは、流体供給源から前記流体が供給されると共に、前記流路に連通した入口と、前記入口と前記流路との連通を開閉する第1のバルブと、を備えていてもよい。 [6] In the above invention, the temperature adjustment unit is supplied with the fluid from a fluid supply source, and includes an inlet communicating with the flow path, and a first valve that opens and closes communication between the inlet and the flow path. and may be provided.
 [7]上記発明において、前記流体は、気体であってもよい。 [7] In the above invention, the fluid may be gas.
 [8]上記発明において、前記流体は、常温の気体、又は、常温よりも低い温度の気体であってもよい。 [8] In the above invention, the fluid may be gas at room temperature or gas at a temperature lower than room temperature.
 [9]上記発明において、前記入口は、前記流体供給源から前記流体が供給される第1の入口を含み、前記温度調整ユニットは、前記流体を排出する第1及び第2の出口を備え、前記流路は、前記熱交換部を通過すると共に、前記第1の入口及び前記第1の出口に連通した第1の流路を含み、前記第1のバルブは、前記第1の入口の接続先を前記第1の流路と前記第2の出口との間で切り替える第1の切替バルブを含んでいてもよい。 [9] In the above invention, the inlet includes a first inlet to which the fluid is supplied from the fluid supply source, the temperature adjustment unit includes first and second outlets for discharging the fluid, The flow path includes a first flow path that passes through the heat exchange section and communicates with the first inlet and the first outlet, and the first valve connects the first inlet. A first switching valve may be included for switching between the first flow path and the second outlet.
 [10]上記発明において、前記入口は、前記流体供給源から前記流体が供給される第2の入口を含み、前記流路は、前記熱交換部を通過すると共に、前記第2の入口及び前記第2の出口に連通した第2の流路を含み、前記第1のバルブは、前記第2の入口の接続先を前記第2の流路と前記第1の出口との間で切り替える第2の切替バルブを含み、前記第1の切替バルブは、前記第1の入口と前記第1の流路とを連通させている場合に、前記第2の流路を前記第2の出口と連通させ、前記第2の切替バルブは、前記第2の入口と前記第2の流路とを連通させている場合に、前記第1の流路を前記第1の出口と連通させてもよい。 [10] In the above invention, the inlet includes a second inlet to which the fluid is supplied from the fluid supply source, and the flow path passes through the heat exchange section and extends through the second inlet and the A second flow path communicating with a second outlet is included, and the first valve switches a connection destination of the second inlet between the second flow path and the first outlet. wherein the first switching valve communicates the second flow path with the second outlet when the first inlet and the first flow path are communicated The second switching valve may communicate the first flow path with the first outlet when the second inlet and the second flow path are communicated with each other.
 [11]上記発明において、前記第1の切替バルブが前記第1の入口と前記第1の流路とを連通させている場合に、前記第2の切替バルブが前記第2の入口と前記第2の流路とを連通させ、前記第1の切替バルブが前記第1の入口と前記第2の出口とを連通させている場合に、前記第2の切替バルブが前記第2の入口と前記第1の出口とを連通させてもよい。 [11] In the above invention, when the first switching valve communicates the first inlet and the first flow path, the second switching valve connects the second inlet and the first flow path. 2 flow paths, and when the first switching valve communicates the first inlet and the second outlet, the second switching valve communicates the second inlet and the second outlet. It may communicate with the first outlet.
 [12]上記発明において、前記第1のバルブは、前記熱交換器に配置されていてもよい。 [12] In the above invention, the first valve may be arranged in the heat exchanger.
 [13]上記発明において、前記入口は、前記熱交換器に配置されていてもよい。 [13] In the above invention, the inlet may be arranged in the heat exchanger.
 [14]上記発明において、前記移動装置は、エア供給源から供給された空気圧により駆動するエアシリンダを含み、前記第1のバルブは、前記エア供給源から供給された空気により駆動するバルブを含んでいてもよい。 [14] In the above invention, the moving device includes an air cylinder driven by air pressure supplied from an air supply source, and the first valve includes a valve driven by air supplied from the air supply source. You can stay.
 [15]本発明に係る電子部品ハンドリング装置は、DUTをハンドリングする電子部品ハンドリング装置であって、上記の温度調整ユニットを有し、前記DUTをソケットに押圧する押圧装置を備え、前記押圧装置が前記DUTをソケットに押圧した状態で、前記熱交換部が前記DUTと接触している電子部品ハンドリング装置である。 [15] An electronic component handling device according to the present invention is an electronic component handling device for handling a DUT, comprising the above-described temperature adjustment unit, a pressing device for pressing the DUT against a socket, the pressing device comprising: In the electronic component handling device, the heat exchange section is in contact with the DUT while the DUT is pressed against the socket.
 [16]上記発明において、前記電子部品ハンドリング装置は、前記加熱装置を制御する第1の制御装置を備えており、前記第1の制御装置は、前記加熱装置の温度が所定温度以上を維持されるように、前記加熱装置を制御してもよい。 [16] In the above invention, the electronic component handling device includes a first control device that controls the heating device, and the first control device maintains the temperature of the heating device at a predetermined temperature or higher. The heating device may be controlled such that
 [17]上記発明において、前記電子部品ハンドリング装置は、前記流体を供給する流体供給源に接続される第1の接続部を備え、前記流体は、前記第1の接続部を介して前記流体供給源から前記入口に連続的に供給されてもよい。 [17] In the above invention, the electronic component handling device includes a first connecting portion connected to a fluid supply source that supplies the fluid, and the fluid is supplied through the first connecting portion. The inlet may be continuously supplied from a source.
 [18]上記発明において、前記電子部品ハンドリング装置は、空気を供給するエア供給源に接続される第2の接続部と、前記第2の接続部を介した前記エア供給源から前記移動装置及び前記第1のバルブへの空気の供給を開閉する第2のバルブと、を備えていてもよい。 [18] In the above invention, the electronic component handling device includes: a second connection portion connected to an air supply source for supplying air; and a second valve for opening and closing the supply of air to the first valve.
 [19]上記発明において、前記第2のバルブを開き又は閉じると、前記移動装置が前記加熱装置を移動させて前記熱交換部から離反すると共に、前記第1のバルブが開いて前記入口と前記流路とが連通し、前記第2のバルブが閉じ又は開くと、前記移動装置が前記加熱装置を移動させて前記熱交換部に接触すると共に、前記第1のバルブが閉じて前記入口と前記流路との連通が遮断されてもよい。 [19] In the above invention, when the second valve is opened or closed, the moving device moves the heating device to move away from the heat exchange section, and the first valve opens to open the inlet and the inlet. When the second valve is closed or opened, the moving device moves the heating device to come into contact with the heat exchange unit, and the first valve is closed to separate the inlet and the Communication with the channel may be blocked.
 [20]上記発明において、前記電子部品ハンドリング装置は、前記DUTの温度を演算する演算装置と、前記演算装置の演算結果に基づいて、前記第2のバルブを制御する第2の制御装置と、を備えていてもよい。 [20] In the above invention, the electronic component handling device includes: a computing device that computes the temperature of the DUT; a second control device that controls the second valve based on the computation result of the computing device; may be provided.
 [21]上記発明において、前記押圧装置は、前記DUTの吸着保持用の第3の流路を備えていてもよい。 [21] In the above invention, the pressing device may include a third flow path for sucking and holding the DUT.
 [22]上記発明において、前記電子部品ハンドリング装置は、内部の雰囲気温度を調整可能なチャンバを備えており、前記ソケットは、前記チャンバ内に配置されていてもよい。 [22] In the above invention, the electronic component handling device may include a chamber capable of adjusting an internal atmospheric temperature, and the socket may be arranged in the chamber.
 [23]本発明に係る電子部品試験装置は、DUTを試験する電子部品試験装置であって、上記の電子部品ハンドリング装置と、ソケットを有する試験装置本体と、を備えた電子部品試験装置である。 [23] An electronic component testing apparatus according to the present invention is an electronic component testing apparatus for testing a DUT, comprising the electronic component handling device described above and a test apparatus main body having a socket. .
 本発明では、移動装置により加熱装置が熱交換部に対して相対移動することで、加熱装置が熱交換部に接触又は離反することが可能となっている。このため、加熱装置を熱交換部に接触させる前に当該加熱装置を予熱しておくことができるので、DUTの温度制御の高速化を図ることができる。 In the present invention, the heating device can be brought into contact with or separated from the heat exchange section by relatively moving the heating device with respect to the heat exchange section by the moving device. Therefore, the heating device can be preheated before it is brought into contact with the heat exchange section, so that the temperature control of the DUT can be speeded up.
 また、本発明では、上記のような加熱装置の予熱が可能となり、加熱装置を急速に加熱する必要がないので、当該加熱装置の低出力化を図ることもできる。 In addition, in the present invention, the heating device can be preheated as described above, and there is no need to rapidly heat the heating device, so that the output of the heating device can be reduced.
図1は、本発明の実施形態における電子部品試験装置の構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of an electronic device testing apparatus according to an embodiment of the present invention. 図2は、本発明の実施形態における温度調整ユニットを示す断面図である。FIG. 2 is a cross-sectional view showing a temperature control unit according to an embodiment of the invention. 図3Aは、本発明の実施形態における温度調整ユニットの動作を示す図であり、DUTを冷却している状態を示す図である。FIG. 3A is a diagram showing the operation of the temperature adjustment unit in the embodiment of the present invention, showing the state of cooling the DUT. 図3Bは、本発明の実施形態における温度調整ユニットの動作を示す図であり、DUTを加熱している状態を示す図である。FIG. 3B is a diagram showing the operation of the temperature adjustment unit in the embodiment of the present invention, showing the state of heating the DUT.
 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described based on the drawings.
 図1は本実施形態における電子部品試験装置1の構成を示すブロック図であり、図2は本実施形態における温度調整ユニット30を示す断面図である。 FIG. 1 is a block diagram showing the configuration of an electronic component testing apparatus 1 according to this embodiment, and FIG. 2 is a sectional view showing a temperature adjustment unit 30 according to this embodiment.
 本実施形態における電子部品試験装置1は、被試験電子部品であるDUT200の電気的特性を試験する装置である。この電子部品試験装置1は、図1に示すように、テスタ2と、ハンドラ10と、を備えている。本実施形態におけるテスタ2が本発明における「試験装置本体」の一例に相当し、本実施形態におけるハンドラ10が本発明における「電子部品ハンドリング装置」の一例に相当する。 The electronic component testing apparatus 1 in this embodiment is an apparatus for testing electrical characteristics of a DUT 200, which is an electronic component under test. This electronic component testing apparatus 1 includes a tester 2 and a handler 10, as shown in FIG. The tester 2 in this embodiment corresponds to an example of the "test apparatus body" in the present invention, and the handler 10 in this embodiment corresponds to an example of the "electronic component handling device" in the present invention.
 テスタ2は、後述する温度調整ユニット30によって温度が制御されているDUT200を試験する。具体的には、このテスタ2は、DUT200がソケット6に電気的に接続された状態で、DUT200を試験するための試験パターンに基づく試験信号をDUT200にソケット6を介して入力して、当該試験信号に応じてDUT200が出力する出力信号に基づいて、当該DUT200の良否を判断する。図1に示すように、このテスタ2は、メインフレーム3と、このメインフレーム3にケーブル4を介して接続されたテストヘッド5と、を備えている。ソケット6はテストヘッド5の上面に装着されている。 The tester 2 tests the DUT 200 whose temperature is controlled by the temperature adjustment unit 30, which will be described later. Specifically, the tester 2 inputs a test signal based on a test pattern for testing the DUT 200 to the DUT 200 via the socket 6 while the DUT 200 is electrically connected to the socket 6 to perform the test. The quality of the DUT 200 is determined based on the output signal that the DUT 200 outputs in response to the signal. As shown in FIG. 1, this tester 2 comprises a mainframe 3 and a test head 5 connected to this mainframe 3 via a cable 4 . A socket 6 is attached to the upper surface of the test head 5 .
 試験対象であるDUT200としては、SoC(System on a chip)を例示することができるが、メモリデバイス、ロジックデバイス、デジタル回路、アナログ回路等であってもよい。また、DUT200は、樹脂材料等のモールド材で半導体チップをパッケージングした樹脂モールドデバイスであってもよいし、パッケージングされていないベアダイであってよい。 As the DUT 200 to be tested, SoC (System on a chip) can be exemplified, but memory devices, logic devices, digital circuits, analog circuits, etc. may also be used. Also, the DUT 200 may be a resin-molded device in which a semiconductor chip is packaged with a molding material such as a resin material, or may be an unpackaged bare die.
 また、本実施形態におけるDUT200は、当該DUT200の温度を検出する温度検出回路210を備えている。本実施形態における温度検出回路210は、例えば、サーマルダイオードを含む回路であり、半導体基板に形成されている。なお、温度検出回路210は、サーマルダイオードに限定されない。例えば、温度に依存した抵抗特性やバンドギャップ特性を有する素子を用いて温度検出回路210を構成してもよいし、或いは、温度検出回路210として、熱電対をDUT200に埋設してもよい。 Also, the DUT 200 in this embodiment includes a temperature detection circuit 210 that detects the temperature of the DUT 200 . The temperature detection circuit 210 in this embodiment is, for example, a circuit including a thermal diode and formed on a semiconductor substrate. Note that the temperature detection circuit 210 is not limited to a thermal diode. For example, the temperature detection circuit 210 may be configured using an element having temperature-dependent resistance characteristics or bandgap characteristics, or a thermocouple may be embedded in the DUT 200 as the temperature detection circuit 210 .
 ハンドラ10は、試験前のDUT200をソケット6までハンドリングして当該DUT200をソケット6に押し付けたり、試験結果に応じてDUT200を分類するように構成されている。このハンドラ10は、図1に示すように、温度調整ユニット30を有するコンタクトアーム20と、チャンバ60と、第1の供給システム70と、第2の供給システム80と、バルブ制御装置90と、ヒータ制御装置95と、を備えている。 The handler 10 is configured to handle the DUT 200 before testing up to the socket 6, press the DUT 200 against the socket 6, and classify the DUT 200 according to the test results. 1, the handler 10 includes a contact arm 20 having a temperature control unit 30, a chamber 60, a first supply system 70, a second supply system 80, a valve controller 90, a heater and a controller 95 .
 コンタクトアーム20は、DUT200を保持して移動させて当該DUT200をソケット6に押し付ける搬送アームである。コンタクトアーム20によってDUT200をソケット6に押し付けることで、当該DUT200とソケット6とが電気的に接続される。本実施形態におけるコンタクトアーム20が、本発明における「押圧装置」の一例に相当する。 The contact arm 20 is a carrier arm that holds and moves the DUT 200 and presses the DUT 200 against the socket 6 . By pressing the DUT 200 against the socket 6 with the contact arm 20, the DUT 200 and the socket 6 are electrically connected. The contact arm 20 in this embodiment corresponds to an example of the "pressing device" in the present invention.
 このコンタクトアーム20は、アーム本体21と、温度調整ユニット30と、を備えている。アーム本体21は、特に図示しないアクチュエータによって、XY平面上において移動及び回転が可能になっていると共に、Z方向に上下動することが可能となっている。このアーム本体21の先端に、温度調整ユニット30が装着されている。 The contact arm 20 includes an arm body 21 and a temperature control unit 30. The arm body 21 is movable and rotatable on the XY plane and vertically movable in the Z direction by an actuator (not shown). A temperature control unit 30 is attached to the tip of the arm body 21 .
 コンタクトアーム20は、温度調整ユニット30に接触しているDUT200を吸着保持することが可能となっている。また、このコンタクトアーム20は、温度調整ユニット30によりDUT200の温度を制御することが可能となっている。 The contact arm 20 can attract and hold the DUT 200 in contact with the temperature adjustment unit 30 . Also, the contact arm 20 can control the temperature of the DUT 200 by means of the temperature adjustment unit 30 .
 チャンバ60は、断熱材等から構成された恒温槽である。このチャンバ60は、周辺環境からの温度変化の影響を受け難いため、恒温槽の内部の雰囲気の温度を一定に保つことができる。特に図示しないが、このチャンバ60内には、例えば、冷媒供給口と、ヒータと、ファンとが設けられており、当該チャンバ60内の雰囲気温度を所望の温度に調整することが可能となっている。テストヘッド5の上部は、開口61を介してこのチャンバ60内に入り込んでおり、ソケット6はチャンバ60内に配置されている。 The chamber 60 is a constant temperature bath made of a heat insulating material or the like. Since the chamber 60 is less susceptible to temperature changes from the surrounding environment, the temperature of the atmosphere inside the constant temperature bath can be kept constant. Although not shown, the chamber 60 is provided with, for example, a coolant supply port, a heater, and a fan, so that the ambient temperature in the chamber 60 can be adjusted to a desired temperature. there is The upper part of the test head 5 enters this chamber 60 through an opening 61 and the socket 6 is arranged in the chamber 60 .
 このハンドラ10では、DUT200が温度調整ユニット30に保持された状態でアーム本体21が水平移動することにより、チャンバ60内に配置されたソケット6の上方に当該DUT200が搬送される。次いで、アーム本体21が下降することにより、DUT200がソケット6に押し付けられる。この際、アーム本体21の先端に取り付けられた温度調整ユニット30は、チャンバ60内に位置している。 In this handler 10 , the DUT 200 is transported above the socket 6 arranged in the chamber 60 by horizontally moving the arm body 21 while the DUT 200 is held by the temperature control unit 30 . Next, the DUT 200 is pressed against the socket 6 by lowering the arm body 21 . At this time, the temperature control unit 30 attached to the tip of the arm body 21 is positioned inside the chamber 60 .
 コンタクトアーム20の温度調整ユニット30は、DUT200に接触して当該DUT200の温度を調整するユニットである。図2に示すように、この温度調整ユニット30は、熱交換器31と、スプールバルブ38,39と、ヒータ40と、エアシリンダ50と、を備えている。本実施形態におけるスプールバルブ38,39が本発明における「第1のバルブ」の一例に相当し、本実施形態におけるヒータ40が本発明における「加熱装置」の一例に相当し、本実施形態におけるエアシリンダ50が本発明における「移動装置」の一例に相当する。 The temperature adjustment unit 30 of the contact arm 20 is a unit that contacts the DUT 200 to adjust the temperature of the DUT 200 . As shown in FIG. 2 , this temperature control unit 30 includes a heat exchanger 31 , spool valves 38 and 39 , a heater 40 and an air cylinder 50 . The spool valves 38 and 39 in the present embodiment correspond to an example of the "first valve" in the present invention, the heater 40 in the present embodiment corresponds to an example of the "heating device" in the present invention, and the air The cylinder 50 corresponds to an example of the "moving device" in the present invention.
 熱交換器31は、本体部32と、熱交換部33と、を備えている。本体部32は、開口321を有する部材である。熱交換部33は、有底の凹部331を有する部材である。この熱交換部33は、開口321と凹部331とが合うように、本体部32の下面に固定されており、本体部32から熱交換部33が下方に向かって凸状に突出している。 The heat exchanger 31 includes a body portion 32 and a heat exchange portion 33. The body portion 32 is a member having an opening 321 . The heat exchange portion 33 is a member having a bottomed concave portion 331 . The heat exchanging portion 33 is fixed to the lower surface of the main body portion 32 so that the opening 321 and the recessed portion 331 are aligned, and the heat exchanging portion 33 protrudes downward from the main body portion 32 in a convex shape.
 この熱交換部33の下面(先端面)は、コンタクトアーム20がDUT200を吸着した状態において、当該DUT200に接触する第1の接触面332である。コンタクトアーム20は、この第1の接触面332がDUT200と接触した状態で、当該DUT200をソケット6に押圧する。すなわち、コンタクトアーム20の先端に設けられた温度調整ユニット30は、DUT200の温度を制御する機能に加えて、DUT200をソケット6に押圧するプッシャとしての機能も備えている。 The lower surface (front end surface) of the heat exchange section 33 is a first contact surface 332 that contacts the DUT 200 when the contact arm 20 attracts the DUT 200 . The contact arm 20 presses the DUT 200 against the socket 6 while the first contact surface 332 is in contact with the DUT 200 . That is, the temperature control unit 30 provided at the tip of the contact arm 20 has the function of controlling the temperature of the DUT 200 and also the function of a pusher that presses the DUT 200 against the socket 6 .
 これに対し、この熱交換部33の凹部331の底面は、ヒータ40が接触する第2の接触面333である。この第2の接触面333は、上述の第1の接触面332に対して反対側に位置している。 On the other hand, the bottom surface of the concave portion 331 of the heat exchanging portion 33 is a second contact surface 333 with which the heater 40 contacts. This second contact surface 333 is located opposite to the first contact surface 332 described above.
 熱交換部33は、DUT200に接触して当該DUT200と熱交換を行うため、例えば、金属材料等の熱伝導性に優れた材料から構成されている。これに対し、本体部32は、例えば、樹脂材料等の熱伝導率の低い材料で構成されており、熱交換部33からDUT200以外の部材への伝熱の抑制が図られている。 The heat exchange section 33 is made of a material with excellent thermal conductivity, such as a metal material, in order to contact the DUT 200 and exchange heat with the DUT 200 . On the other hand, the body portion 32 is made of a material having a low thermal conductivity such as a resin material, for example, so as to suppress heat transfer from the heat exchange portion 33 to members other than the DUT 200 .
 この熱交換器31は、2つの流路34,35を備えている。第1の流路34は、熱交換部33を通過するように、本体部32及び熱交換部33に形成されている。同様に、第2の流路35も、熱交換部33を通過するように、本体部32及び熱交換部33に形成されている。いずれの流路34,35も、熱交換部33の第1の接触面332と第2の接触面333との間を通過している。 This heat exchanger 31 has two flow paths 34 and 35 . The first flow path 34 is formed in the body portion 32 and the heat exchange portion 33 so as to pass through the heat exchange portion 33 . Similarly, a second flow path 35 is also formed in the body portion 32 and the heat exchange portion 33 so as to pass through the heat exchange portion 33 . Both flow paths 34 and 35 pass between the first contact surface 332 and the second contact surface 333 of the heat exchanging portion 33 .
 また、本体部32には、流路34,35の入口322,323と出口324,325が形成されている。第1の流路34は、第1の入口322と第1の出口324との間を延在しており、当該第1の入口322と第1の出口324とがこの第1の流路34を介して連通している。同様に、第2の流路35は、第2の入口323と第2の出口325との間を延在しており、当該第2の入口323と第2の出口325とがこの第2の流路35を介して連通している。 In addition, inlets 322 , 323 and outlets 324 , 325 of flow paths 34 , 35 are formed in main body 32 . A first flow path 34 extends between a first inlet 322 and a first outlet 324 , the first inlet 322 and the first outlet 324 being connected to the first flow path 34 . communicated through Similarly, the second flow path 35 extends between a second inlet 323 and a second outlet 325, the second inlet 323 and the second outlet 325 They communicate with each other via a channel 35 .
 第1及び第2のスプールバルブ38,39は、熱交換器31の本体部32に設置されている。第1のスプールバルブ38は、第1の入口322と第1の流路34との間に介在していると共に、第2の流路35と第2の出口325との間に介在している。これに対し、第2のスプールバルブ39は、第2の入口323と第2の流路35との間に介在していると共に、第1の流路34と第1の出口324との間に介在している。 The first and second spool valves 38 and 39 are installed in the body portion 32 of the heat exchanger 31. A first spool valve 38 is interposed between the first inlet 322 and the first flow path 34 and between the second flow path 35 and the second outlet 325. . In contrast, the second spool valve 39 is interposed between the second inlet 323 and the second flow path 35 and between the first flow path 34 and the first outlet 324. intervening.
 第1のスプールバルブ38は、スリーブ381と、付勢部材382と、スプール383と、を備えている。スリーブ381は、4つのポート381a~381dを有している。第1のポート381aには第1の入口322が接続され、第2のポート381bには第1の流路34が接続され、第3のポート381cには第2の流路35が接続され、第4のポート381dには第2の出口325が接続されている。また、このスリーブ381の一端(図中の上端)には、第1の供給システム70の配管723が接続されている。この第1の供給システム70を介して、エア供給源110からスリーブ381内に圧縮エアが供給される。 The first spool valve 38 has a sleeve 381 , a biasing member 382 and a spool 383 . Sleeve 381 has four ports 381a-381d. The first inlet 322 is connected to the first port 381a, the first channel 34 is connected to the second port 381b, the second channel 35 is connected to the third port 381c, A second outlet 325 is connected to the fourth port 381d. A pipe 723 of the first supply system 70 is connected to one end (upper end in the drawing) of the sleeve 381 . Compressed air is supplied from the air supply source 110 into the sleeve 381 via this first supply system 70 .
 このスリーブ381には、付勢部材382とスプール383が収容されている。付勢部材382は、スリーブ381の他端側(図中の下端側)に配置されている。付勢部材382の具体例としては、特に限定されないが、コイルバネを例示することができる。スプール383は、スリーブ381内に移動可能に収容されており、付勢部材382によりスリーブ381の一端側(図中の上端側)に向かって付勢されている。 A biasing member 382 and a spool 383 are housed in this sleeve 381 . The biasing member 382 is arranged on the other end side of the sleeve 381 (lower end side in the drawing). A specific example of the biasing member 382 is not particularly limited, but a coil spring can be exemplified. The spool 383 is movably accommodated in the sleeve 381 and is biased by a biasing member 382 toward one end (upper end in the figure) of the sleeve 381 .
 このスプール383は、2つのランド383a,383bと、当該ランド383a,383b同士を連結している連結部383cと、を備えている。ランド383a,383bは、スリーブ381の内径よりも僅かに小さな外径を有しており、ランド383a(383b)とスリーブ381の内周面との間は密閉されている。連結部383cは、ランド383a,383bの外径よりも小さな外径を有する軸部である。 The spool 383 has two lands 383a and 383b and a connecting portion 383c connecting the lands 383a and 383b. The lands 383a and 383b have an outer diameter slightly smaller than the inner diameter of the sleeve 381, and the land 383a (383b) and the inner peripheral surface of the sleeve 381 are sealed. The connecting portion 383c is a shaft portion having an outer diameter smaller than that of the lands 383a and 383b.
 第1の供給システム70を介してエア供給源110からこの第1のスプールバルブ38にエアが供給されている状態では、空気圧によりスプール383を介して付勢部材382が圧縮される。この状態において、スプール383はスリーブ381の他端側(図中の下端側)に移動して、後述の図3Aに示すように、上側のランド383aが、第1のポート381a(第1の入口322)と第4のポート381d(第2の出口325)との間に位置すると共に、第2のポート381b(第1の流路34)と第3のポート381c(第2の流路35)との間に位置する。 When air is supplied from the air supply source 110 to the first spool valve 38 via the first supply system 70 , the air pressure compresses the biasing member 382 via the spool 383 . In this state, the spool 383 moves to the other end side (lower end side in the figure) of the sleeve 381, and as shown in FIG. 322) and a fourth port 381d (second outlet 325) and between a second port 381b (first flow path 34) and a third port 381c (second flow path 35). located between
 これに対し、第1のスプールバルブ38にエアが供給されていない状態では、付勢部材382の付勢力によりスプール383がスリーブ381の一端側(図中の上端側)に移動する。この状態において、後述の図3Bに示すように、下側のランド383bが第2のポート381b(第1の流路34)に対向して当該第2のポート381bを閉塞すると共に、連結部383cが第1のポート381a(第1の入口322)と第4のポート381d(第2の出口325)に対向する。 On the other hand, when air is not supplied to the first spool valve 38, the biasing force of the biasing member 382 causes the spool 383 to move toward one end of the sleeve 381 (upper end in the figure). In this state, as shown in FIG. 3B described later, the lower land 383b faces the second port 381b (the first flow path 34) to close the second port 381b, and the connecting portion 383c faces the first port 381a (first inlet 322) and the fourth port 381d (second outlet 325).
 第2のスプールバルブ39も、図2に示すように、スリーブ391と、付勢部材392と、スプール393と、を備えている。スリーブ391は、4つのポート391a~391dを有している。第5のポート391aには第2の入口323が接続され、第6のポート391bには第2の流路35が接続され、第7のポート391cには第1の流路34が接続され、第8のポート391dには第1の出口324が接続されている。また、このスリーブ391の一端(図中の下端)には、第1の供給システム70の配管724が接続されている。この第1の供給システム70を介して、エア供給源110からスリーブ391内に圧縮エアが供給される。 The second spool valve 39 also comprises a sleeve 391, a biasing member 392 and a spool 393, as shown in FIG. Sleeve 391 has four ports 391a-391d. The second inlet 323 is connected to the fifth port 391a, the second flow path 35 is connected to the sixth port 391b, the first flow path 34 is connected to the seventh port 391c, A first outlet 324 is connected to the eighth port 391d. A pipe 724 of the first supply system 70 is connected to one end (lower end in the drawing) of the sleeve 391 . Compressed air is supplied from the air supply source 110 into the sleeve 391 via this first supply system 70 .
 このスリーブ391には、付勢部材392とスプール393が収容されている。付勢部材392は、スリーブ391の他端側(図中の上端側)に配置されている。付勢部材392の具体例としては、特に限定されないが、コイルバネを例示することができる。スプール393は、スリーブ391内に移動可能に収容されており、付勢部材392によりスリーブ391の一端側(図中の下端側)に向かって付勢されている。 A biasing member 392 and a spool 393 are accommodated in this sleeve 391 . The biasing member 392 is arranged on the other end side (upper end side in the figure) of the sleeve 391 . A specific example of the biasing member 392 is not particularly limited, but a coil spring can be exemplified. The spool 393 is movably accommodated in the sleeve 391 and is biased by a biasing member 392 toward one end (lower end in the figure) of the sleeve 391 .
 このスプール393は、2つのランド393a,393bと、当該ランド393a,393b同士を連結している連結部393cと、を備えている。ランド393a,393bは、スリーブ391の内径よりも僅かに小さな外径を有しており、ランド393a(393b)とスリーブ391の内周面との間は密閉されている。連結部393cは、ランド393a,393bの外径よりも小さな外径を有する軸部である。 The spool 393 includes two lands 393a and 393b and a connecting portion 393c connecting the lands 393a and 393b. The lands 393a and 393b have an outer diameter slightly smaller than the inner diameter of the sleeve 391, and the land 393a (393b) and the inner peripheral surface of the sleeve 391 are sealed. The connecting portion 393c is a shaft portion having an outer diameter smaller than that of the lands 393a and 393b.
 第1の供給システム70を介してエア供給源110からこの第2のスプールバルブ39にエアが供給されている状態では、空気圧によりスプール393を介して付勢部材392が圧縮される。この状態において、後述の図3Aに示すように、スプール393はスリーブ391の他端側(図中の上端側)に移動して、下側のランド393aが、第5のポート391a(第2の入口323)と第8のポート391d(第1の出口324)との間に位置すると共に、第6のポート391b(第2の流路35)と第7のポート391c(第1の流路34)との間に位置する。 When air is being supplied from the air supply source 110 to the second spool valve 39 via the first supply system 70 , the air pressure compresses the biasing member 392 via the spool 393 . In this state, as shown in FIG. 3A, which will be described later, the spool 393 moves toward the other end of the sleeve 391 (the upper end in the drawing), and the lower land 393a moves toward the fifth port 391a (the second port). 323) and an eighth port 391d (first outlet 324), and between a sixth port 391b (second flow path 35) and a seventh port 391c (first flow path 34). ).
 これに対し、第2のスプールバルブ39にエアが供給されていない状態では、付勢部材392の付勢力によりスプール393がスリーブ391の一端側(図中の下端側)に移動する。この状態において、後述の図3Bに示すように、上側のランド393bが第6のポート391b(第2の流路35)に対向して当該第6のポート391bを閉塞すると共に、連結部393cが第5のポート391a(第2の入口323)と第8のポート391d(第2の出口325)に対向する。 On the other hand, when air is not supplied to the second spool valve 39, the biasing force of the biasing member 392 causes the spool 393 to move toward one end of the sleeve 391 (lower end in the drawing). In this state, as shown in FIG. 3B described later, the upper land 393b faces the sixth port 391b (the second flow path 35) to block the sixth port 391b, and the connecting portion 393c is It faces the fifth port 391a (second inlet 323) and the eighth port 391d (second outlet 325).
 また、図2に示すように、熱交換器31は、上述の第1及び第2の流路34,35に加えて、第3の流路36を備えている。この第3の流路36は、熱交換部33の第1の接触面332で開口していると共に、アーム本体21を通過して真空源130に接続されている。真空源130により第3の流路36を吸引することで、第1の接触面332に接触しているDUT200をコンタクトアーム20が吸着保持することが可能となっている。すなわち、コンタクトアーム20の先端に設けられた温度調整ユニット30は、DUT200の温度を制御する機能、及び、プッシャとしての機能に加えて、DUT200を保持する機能も備えている。真空源130の具体例としては、真空ポンプ等を例示することができる。なお、熱交換器31に加えて別の部材(例えば、DUT200に品種交換に対応するためのチェンジキット部材)をアーム本体21の先端に装着する場合には、当該別の部材に第3の流路36を形成してもよい。 Also, as shown in FIG. 2, the heat exchanger 31 includes a third flow path 36 in addition to the first and second flow paths 34 and 35 described above. The third flow path 36 opens at the first contact surface 332 of the heat exchange section 33 and passes through the arm body 21 to be connected to the vacuum source 130 . By sucking the third channel 36 with the vacuum source 130 , the contact arm 20 can suck and hold the DUT 200 in contact with the first contact surface 332 . That is, the temperature adjustment unit 30 provided at the tip of the contact arm 20 has a function of controlling the temperature of the DUT 200 and a function of a pusher, and also a function of holding the DUT 200 . A specific example of the vacuum source 130 is a vacuum pump or the like. In addition to the heat exchanger 31, when another member (for example, a change kit member for adapting to the type change of the DUT 200) is attached to the tip of the arm body 21, the third flow is applied to the other member. A channel 36 may be formed.
 また、熱交換器31の熱交換部33には、温度センサ37が埋設されている。この温度センサ37は、バルブ制御装置90の後述の温度演算部91に接続されている。 A temperature sensor 37 is embedded in the heat exchange section 33 of the heat exchanger 31 . This temperature sensor 37 is connected to a later-described temperature calculation section 91 of the valve control device 90 .
 ヒータ40は、熱交換器31の熱交換部33を加熱するための加熱装置であり、抵抗加熱方式の発熱体である。特に限定されないが、こうしたヒータ40の具体例としては、カートリッジヒータを例示することができる。ヒータ40としてカートリッジヒータを用いることで、温度調整ユニット30の低コスト化を図ることができる。このヒータ40は、ヒータ制御装置95に接続されており、当該ヒータ制御装置95から供給された電力により発熱する。なお、ヒータ40に代えて、抵抗加熱以外の方式の加熱装置を用いて、熱交換器31の熱交換部33を加熱してもよい。 The heater 40 is a heating device for heating the heat exchange section 33 of the heat exchanger 31, and is a resistance heating type heating element. Although not particularly limited, a specific example of the heater 40 is a cartridge heater. By using a cartridge heater as the heater 40, the cost of the temperature control unit 30 can be reduced. The heater 40 is connected to a heater control device 95 and generates heat by electric power supplied from the heater control device 95 . Instead of the heater 40, the heat exchange section 33 of the heat exchanger 31 may be heated using a heating device other than resistance heating.
 エアシリンダ50は、空気圧により駆動シャフト51を前進又は後退させるアクチュエータである。このエアシリンダ50の駆動シャフト51には、上述したヒータ40が固定されている。このエアシリンダ50は、第1の供給システム70の配管722が接続されている。この第1の供給システム70を介して、エア供給源110からエアシリンダ50に圧縮エアが供給される。エア供給源110から供給されたエアの圧力によりこのエアシリンダ50が動作することで、ヒータ40が熱交換器31の熱交換部33に接近又は離反することが可能となっている。この際、ヒータ40は、熱交換部33の第1の接触面332の法線方向(図中の上下方向)に沿って移動する。 The air cylinder 50 is an actuator that advances or retracts the drive shaft 51 by air pressure. The heater 40 described above is fixed to the drive shaft 51 of the air cylinder 50 . A pipe 722 of the first supply system 70 is connected to the air cylinder 50 . Compressed air is supplied from the air supply source 110 to the air cylinder 50 via the first supply system 70 . The air cylinder 50 is operated by the pressure of the air supplied from the air supply source 110 , so that the heater 40 can move toward or away from the heat exchange section 33 of the heat exchanger 31 . At this time, the heater 40 moves along the normal line direction (vertical direction in the drawing) of the first contact surface 332 of the heat exchanging portion 33 .
 なお、エアシリンダ50に代えて、電気や油圧等の空気圧以外のエネルギーを動力源とする移動装置を用いて、ヒータ40を熱交換部33に対して相対的に移動させてもよい。例えば、エアシリンダ50に代えて、ボールねじ機構を有する電気モータを用いて、ヒータ40を熱交換部33に対して移動させてもよい。 Instead of the air cylinder 50, a moving device whose power source is energy other than air pressure, such as electricity or hydraulic pressure, may be used to move the heater 40 relative to the heat exchange section 33. For example, instead of the air cylinder 50, an electric motor having a ball screw mechanism may be used to move the heater 40 with respect to the heat exchange section 33.
 ヒータ40は、熱交換器31の中に挿入されている。具体的には、ヒータ40は、熱交換器31の本体部32の開口321内に挿入されていると共に、当該熱交換器31の熱交換部33の凹部331内にも挿入されている。 The heater 40 is inserted into the heat exchanger 31. Specifically, the heater 40 is inserted into the opening 321 of the main body 32 of the heat exchanger 31 and is also inserted into the recess 331 of the heat exchange section 33 of the heat exchanger 31 .
 この際、後述の図3Aに示すように、ヒータ40の側面と本体部32の開口321の内面との間に隙間Sが確保されていると共に、当該ヒータ40の側面と熱交換部33の凹部331の内側面との間にも隙間Sが確保されている。また、エアシリンダ50が駆動シャフト51を後退させている状態において、ヒータ40の先端面41と熱交換部33の凹部331の底面(第2の接触面)333との間にも隙間Sが確保されている。このように、エアシリンダ50が後退している状態では、ヒータ40と熱交換器31との間に空気層が介在しているため、ヒータ40から熱交換器31への熱伝導が抑制されている。 At this time, as shown in FIG. 3A to be described later, a gap S1 is secured between the side surface of the heater 40 and the inner surface of the opening 321 of the body portion 32, and the side surface of the heater 40 and the heat exchange portion 33 are separated. A gap S2 is also secured between the inner surface of the recess 331 and the recess 331 . Further, in a state in which the air cylinder 50 retracts the drive shaft 51, a gap S3 is also formed between the tip surface 41 of the heater 40 and the bottom surface (second contact surface) 333 of the recess 331 of the heat exchanging portion 33 . Secured. In this manner, when the air cylinder 50 is retracted, an air layer is interposed between the heater 40 and the heat exchanger 31, so heat transfer from the heater 40 to the heat exchanger 31 is suppressed. there is
 第1の供給システム70は、エアシリンダ50及びスプールバルブ38,39に圧縮エアを供給するシステムである。この第1の供給システム70は、図2に示すように、第1の接続部71と、配管721~724と、バルブ73と、を備えている。本実施形態におけるバルブ73が、本発明における「第2のバルブ」の一例に相当する。 The first supply system 70 is a system that supplies compressed air to the air cylinder 50 and spool valves 38 and 39 . The first supply system 70 includes a first connection portion 71, pipes 721 to 724, and a valve 73, as shown in FIG. The valve 73 in this embodiment corresponds to an example of the "second valve" in the present invention.
 第1の接続部71には、圧縮された空気を供給するエア供給源110が接続されている。このエア供給源110は、例えば、外気を第1の接続部71に供給するポンプを備えている。このエア供給源110として、圧縮エアが常時供給されている既設の工場配管を用いてもよい。 An air supply source 110 that supplies compressed air is connected to the first connection portion 71 . This air supply source 110 comprises, for example, a pump that supplies outside air to the first connecting portion 71 . As the air supply source 110, an existing factory pipe to which compressed air is constantly supplied may be used.
 第1の接続部71には第1の配管721が接続されており、この第1の配管721は分岐点74で3本の配管722~724に分岐している。第2の配管722はエアシリンダ50に接続されている。第3の配管723は第1のスプールバルブ38に接続されている。第4の配管724は第2のスプールバルブ39に接続されている。バルブ73は、第1の配管721に設けられている。このバルブ73は、エア供給源110から第1の供給システム70内に供給される圧縮エアの流量を調整する。 A first pipe 721 is connected to the first connecting portion 71 , and this first pipe 721 branches at a branch point 74 into three pipes 722 to 724 . A second pipe 722 is connected to the air cylinder 50 . A third pipe 723 is connected to the first spool valve 38 . A fourth pipe 724 is connected to the second spool valve 39 . The valve 73 is provided on the first pipe 721 . This valve 73 regulates the flow rate of compressed air supplied from the air supply source 110 into the first supply system 70 .
 第2の供給システム80は、熱交換器31の流路34,35に冷媒を供給するシステムである。この第2の供給システム80は、第2の接続部81と、配管821~823と、を備えている。 The second supply system 80 is a system that supplies refrigerant to the channels 34 and 35 of the heat exchanger 31 . The second supply system 80 includes a second connection portion 81 and pipes 821-823.
 第2の接続部81には、冷媒供給源120が接続されている。こうした冷媒供給源120としては、例えば、液体窒素を貯留し低温の窒素を供給するLN(液体窒素)供給源を例示することができる。このLN供給源は、液体窒素を高圧で貯留している圧力容器、或いは、工場内の液体窒素供給パイプラインと接続される接続口を備えており、第2の接続部81に対して、低温の気体窒素及び/又は液体窒素を供給することができる。本実施形態における冷媒供給源120が、本発明における「流体供給源」の一例に相当する。 A coolant supply source 120 is connected to the second connection portion 81 . As such a coolant supply source 120, for example, an LN 2 (liquid nitrogen) supply source that stores liquid nitrogen and supplies low-temperature nitrogen can be exemplified. This LN 2 supply source is equipped with a pressure vessel storing liquid nitrogen at high pressure, or a connection port connected to a liquid nitrogen supply pipeline in the factory. Cryogenic gaseous nitrogen and/or liquid nitrogen can be supplied. The coolant supply source 120 in this embodiment corresponds to an example of the "fluid supply source" in the present invention.
 なお、第2の供給システム80を介して熱交換器31に供給される冷媒としては、DUT200の目標温度Tspよりも低い温度を有する流体であれば、特に上記の窒素に限定されない。例えば、低温試験を行わない場合には、冷媒供給源120に代えて、常温の圧縮エアを供給するエア供給源を用いてもよい。 The refrigerant supplied to the heat exchanger 31 via the second supply system 80 is not particularly limited to nitrogen, as long as it is a fluid having a temperature lower than the target temperature Tsp of the DUT 200 . For example, when the low temperature test is not performed, instead of the refrigerant supply source 120, an air supply source that supplies normal temperature compressed air may be used.
 また、上記の冷媒が気体又は液体のいずれであってもよいが、冷媒として気体を用いることで第1及び第2の出口324,325から排出された冷媒の回収が不要となる。なお、特に限定されないが、液体の冷媒の一例としては、フッ素系不活性液体を例示することができる。 In addition, although the above refrigerant may be gas or liquid, recovery of the refrigerant discharged from the first and second outlets 324 and 325 becomes unnecessary by using gas as the refrigerant. Although not particularly limited, an example of the liquid coolant is a fluorine-based inert liquid.
 第2の接続部81には第5の配管821が接続されており、この第5の配管821は分岐点83で2本の配管822,823に分岐している。第6の配管822は熱交換器31の第1の入口322に接続されている。第7の配管823は熱交換器31の第2の入口323に接続されている。 A fifth pipe 821 is connected to the second connection portion 81 , and this fifth pipe 821 branches into two pipes 822 and 823 at a branch point 83 . A sixth pipe 822 is connected to the first inlet 322 of the heat exchanger 31 . A seventh pipe 823 is connected to the second inlet 323 of the heat exchanger 31 .
 この第2の供給システム80には、冷媒供給源120から供給される冷媒の流量を調整するバルブが設けられていない。このため、本実施形態では、第2の供給システム80には冷媒供給源120から冷媒が常時供給されている。なお、必要に応じて、第2の供給システム80がバルブを備えていてもよい。 This second supply system 80 is not provided with a valve for adjusting the flow rate of the refrigerant supplied from the refrigerant supply source 120 . Therefore, in this embodiment, the second supply system 80 is always supplied with the refrigerant from the refrigerant supply source 120 . It should be noted that the second supply system 80 may include a valve if desired.
 バルブ制御装置90は、図1に示すように、温度演算部91と、バルブ制御部92と、を備えている。このバルブ制御装置90は、例えば、マイクロプロセッサを有するコンピュータを備えており、このコンピュータ上でプログラムを実行することにより上述の温度演算部91及びバルブ制御部92が機能的に実現されている。なお、コンピュータに代えて、電気回路板でバルブ制御装置90を構成し、この電気回路板により上述の温度演算部91及びバルブ制御部92を機能的に実現してもよい。本実施形態における温度演算部91が本発明における「演算装置」の一例に相当し、本実施形態におけるバルブ制御部92が本発明における「第2の制御装置」の一例に相当する。 The valve control device 90 includes a temperature calculation section 91 and a valve control section 92, as shown in FIG. The valve control device 90 includes, for example, a computer having a microprocessor, and the computer functionally implements the temperature calculation section 91 and the valve control section 92 by executing a program on the computer. Instead of the computer, the valve control device 90 may be configured by an electric circuit board, and the above-described temperature calculation unit 91 and valve control unit 92 may be functionally realized by this electric circuit board. The temperature calculation section 91 in this embodiment corresponds to an example of the "calculation device" in the present invention, and the valve control section 92 in the present embodiment corresponds to an example of the "second control device" in the present invention.
 温度演算部91は、DUT200の温度検出回路210から入力された検出電圧信号に基づいて、DUT200の現在の温度T’を演算する。そして、バルブ制御部92は、DUT200の現在の温度T’と目標温度Tspとの偏差が小さくなるようにバルブ73を制御する。特に限定されないが、バルブ制御部92は、圧縮エアが断続的に供給されるようにバルブ73をPWM(Pulse Width Modulation)制御する。なお、温度検出回路210の検出電圧信号は、ソケット6を介して温度演算部91に入力される(図1及び図3B参照)。 The temperature calculation unit 91 calculates the current temperature T j ′ of the DUT 200 based on the detected voltage signal input from the temperature detection circuit 210 of the DUT 200 . The valve control unit 92 then controls the valve 73 so that the deviation between the current temperature T j ′ of the DUT 200 and the target temperature T sp becomes small. Although not particularly limited, the valve control unit 92 PWM (Pulse Width Modulation) controls the valve 73 so that compressed air is intermittently supplied. A voltage signal detected by the temperature detection circuit 210 is input to the temperature calculation unit 91 via the socket 6 (see FIGS. 1 and 3B).
 こうした温度検出回路210の検出電圧信号を用いたバルブ73の制御の具体例としては、米国特許出願第15/719,849(米国特許出願公開第2019/0101587号明細書)、米国特許出願第16/351,363(米国特許出願公開第2020/0033402号明細書)、米国特許出願第16/575,460(米国特許出願公開第2020/0241582号明細書)、及び、米国特許出願第16/575,470(米国特許出願公開第2020/0241040号明細書)に記載された制御を例示することができる。 Specific examples of controlling the valve 73 using the detected voltage signal of the temperature detection circuit 210 include U.S. Patent Application No. 15/719,849 (U.S. Patent Application Publication No. 2019/0101587), U.S. Patent Application No. 16 /351,363 (U.S. Patent Application Publication No. 2020/0033402), U.S. Patent Application No. 16/575,460 (U.S. Patent Application Publication No. 2020/0241582), and U.S. Patent Application No. 16/575 , 470 (U.S. Patent Application Publication No. 2020/0241040).
 なお、例えば、DUT200が、自己発熱による温度変化が急激ではないタイプのデバイスである場合には、温度演算部91の演算結果T’に代えて、温度検出回路210の検出電圧信号に基づいてテスタ2が演算したジャンクション温度Tを用いてもよい。或いは、温度検出回路210の検出電圧信号に代えて、熱交換器31に設置された温度センサ37の検出電圧信号を用いてもよい。 For example, if the DUT 200 is a device whose temperature does not change rapidly due to self-heating, instead of the calculation result T j ' of the temperature calculation unit 91, based on the detection voltage signal of the temperature detection circuit 210 The junction temperature Tj calculated by the tester 2 may be used. Alternatively, instead of the voltage signal detected by the temperature detection circuit 210, the voltage signal detected by the temperature sensor 37 installed in the heat exchanger 31 may be used.
 ヒータ制御装置95は、ヒータ40を発熱させるために当該ヒータ40に電力を供給すると共に、ヒータ40の温度を制御する。このヒータ制御装置95は、例えば、サーモスタット機能を備えた電気回路板により構成されている。本実施形態におけるヒータ制御装置95が本発明における「第1の制御装置」の一例に相当する。 The heater control device 95 supplies power to the heater 40 to heat the heater 40 and controls the temperature of the heater 40 . The heater control device 95 is composed of, for example, an electric circuit board having a thermostat function. The heater control device 95 in this embodiment corresponds to an example of the "first control device" in the present invention.
 このヒータ制御装置95は、例えば、ハンドラ10の主制御装置(不図示)からON信号が入力されると、ヒータ40への電力の供給を開始し、当該主制御装置からOFF信号が入力されると、ヒータ40への電力の供給を停止する。上記のON信号がヒータ制御装置95に入力されるタイミングとしては、特に限定されないが、例えば、ハンドラ10の起動時やDUT200の品種交換時を例示することができる。 For example, when an ON signal is input from a main controller (not shown) of the handler 10, the heater control device 95 starts supplying power to the heater 40, and an OFF signal is input from the main controller. Then, the power supply to the heater 40 is stopped. The timing at which the ON signal is input to the heater control device 95 is not particularly limited, but may be, for example, when the handler 10 is activated or when the DUT 200 is changed.
 また、このヒータ制御装置95は、上記のサーモスタット機能により、ヒータ40の温度が所定温度(例えば、300℃)以上に維持されるように、ヒータ40への電力の供給を制御する。すなわち、本実施形態では、DUT200の現在の温度T’に応じてヒータの温度が制御されるのではなく、ヒータ制御装置95にON信号が入力されてからOFF信号が入力される迄の間、ヒータ40の温度が所定温度以上に常時維持されている。 Further, the heater control device 95 controls power supply to the heater 40 by the thermostat function described above so that the temperature of the heater 40 is maintained at a predetermined temperature (eg, 300° C.) or higher. That is, in this embodiment, the temperature of the heater is not controlled according to the current temperature T j ' of the DUT 200, but during the period from when the ON signal is input to the heater control device 95 until when the OFF signal is input. , the temperature of the heater 40 is always maintained at a predetermined temperature or higher.
 なお、ヒータ制御装置95が、サーモスタットに代えて、サーマルヒューズを備えていてもよい。この場合には、ヒータ制御装置95はヒータ40に電力を常時供給しており、サーマルヒューズによりヒータ40が過熱状態となるのを防止する。 Note that the heater control device 95 may have a thermal fuse instead of the thermostat. In this case, the heater controller 95 always supplies power to the heater 40 and the thermal fuse prevents the heater 40 from overheating.
 以上に説明した温度調整ユニット30を用いたDUT200の温度制御について、図1に加えて、図3A及び図3Bを参照しながら説明する。 The temperature control of the DUT 200 using the temperature adjustment unit 30 described above will be described with reference to FIGS. 3A and 3B in addition to FIG.
 図3A及び図3Bは本実施形態における温度調整ユニット30の動作を示す図であり、図3AはDUT200を冷却している状態を示す図であるのに対し、図3BはDUT200を加熱している状態を示す図である。 3A and 3B are diagrams showing the operation of the temperature adjustment unit 30 in this embodiment. FIG. 3A is a diagram showing the state in which the DUT 200 is being cooled, while FIG. 3B is a diagram showing the state in which the DUT 200 is being heated. It is a figure which shows a state.
 なお、図3Aにおいて、熱交換器31、DUT200、及び、ソケット6の関係の理解を容易にするために、ソケット6からDUT200が離れていると共に、当該DUT200から熱交換器31が離れているように図示されているが、実際には、図3Bと同様に、DUT200がソケット6に接触していると共に、熱交換器31もDUT200に接触している。 In FIG. 3A, in order to facilitate understanding of the relationship between the heat exchanger 31, the DUT 200, and the socket 6, the DUT 200 is separated from the socket 6, and the heat exchanger 31 is separated from the DUT 200. , in reality the DUT 200 is in contact with the socket 6 and the heat exchanger 31 is in contact with the DUT 200 as in FIG. 3B.
 特に図示しないが、例えば、コンタクトアーム20が他の搬送装置(例えば、バッファプレート)に保持されたDUT200の上方に移動して、当該DUT200を保持する。この際、コンタクトアーム20の先端に装着された熱交換器31がDUT200に接触すると共に、真空源130により第3の流路36を吸引することで当該DUT200をコンタクトアーム20が吸着保持する。 Although not shown, for example, the contact arm 20 moves above the DUT 200 held by another transport device (eg, buffer plate) to hold the DUT 200 . At this time, the heat exchanger 31 attached to the tip of the contact arm 20 contacts the DUT 200 , and the contact arm 20 sucks and holds the DUT 200 by sucking the third flow path 36 with the vacuum source 130 .
 なお、コンタクトアーム20がDUT200を吸着保持する前に、熱交換部33の温度が所定の温度となるように、バルブ制御装置90がバルブ73の開閉制御を開始していてもよい。この場合には、バルブ制御装置90は、DUT200の温度検出回路210に代えて、熱交換器31が有する温度センサ37の検出電圧信号に基づいてバルブ73の開閉制御を行う。 The valve control device 90 may start opening/closing control of the valve 73 so that the temperature of the heat exchange section 33 reaches a predetermined temperature before the contact arm 20 attracts and holds the DUT 200 . In this case, the valve control device 90 performs opening/closing control of the valve 73 based on the detected voltage signal of the temperature sensor 37 of the heat exchanger 31 instead of the temperature detection circuit 210 of the DUT 200 .
 次いで、図1に示すように、コンタクトアーム20が、DUT200をソケット6の上方に移動させて、当該DUT200をソケット6に押圧する。これにより、DUT200の端子210とソケット6のコンタクトピン7とが接触して、DUT200とソケット6とが電気的に接続される。そして、このソケット6を介してDUT200の温度検出回路210の検出電圧信号がバルブ制御装置90に入力され、温度演算部91がその検出電圧信号に基づいてDUT200の現在の温度T’を算出する。 The contact arm 20 then moves the DUT 200 above the socket 6 and presses the DUT 200 against the socket 6, as shown in FIG. As a result, the terminals 210 of the DUT 200 and the contact pins 7 of the socket 6 come into contact with each other, and the DUT 200 and the socket 6 are electrically connected. A voltage signal detected by the temperature detection circuit 210 of the DUT 200 is input to the valve control device 90 via the socket 6, and the temperature calculation unit 91 calculates the current temperature Tj ' of the DUT 200 based on the voltage signal detected. .
 次いで、バルブ制御部92が、DUT200の現在の温度T’と目標温度Tspとの偏差が小さくなるようにバルブ73を制御する。 Next, the valve control section 92 controls the valve 73 so that the deviation between the current temperature T j ′ of the DUT 200 and the target temperature T sp becomes small.
 具体的には、DUT200の現在の温度T’が目標温度Tspに対して高い場合には、図3Aに示すように、バルブ73を開くことで、第1の供給システム70を介してエア供給源110からエアシリンダ50とスプールバルブ38,39に圧縮エアを供給する。 Specifically, if the current temperature T j ' of DUT 200 is higher than the target temperature T sp , opening valve 73 will cause air to flow through first supply system 70, as shown in FIG. 3A. Compressed air is supplied from the supply source 110 to the air cylinder 50 and the spool valves 38 and 39 .
 これにより、エアシリンダ50が駆動シャフト51を後退させて、ヒータ40が熱交換部33から離反する。なお、本実施形態では、ヒータ40が熱交換部33から離反している状態でも、ヒータ40の温度は所定温度以上に維持されている。この状態において、ヒータ40と熱交換器31との間には隙間S~Sが確保されているので、この隙間S~Sによって形成された空気層によりヒータ40から熱交換器31への熱の伝達が抑制されている。 As a result, the air cylinder 50 retracts the drive shaft 51 and the heater 40 separates from the heat exchange section 33 . In this embodiment, even when the heater 40 is separated from the heat exchange section 33, the temperature of the heater 40 is maintained at a predetermined temperature or higher. In this state, gaps S 1 to S 3 are provided between the heater 40 and the heat exchanger 31, so that the air layers formed by the gaps S 1 to S 3 form air layers from the heater 40 to the heat exchanger 31. The heat transfer to is suppressed.
 これと同時に、第1のスプールバルブ38のスプール383が空気圧によりスリーブ381の他端側(図中の下端側)に移動して、当該第1のスプールバルブ38は、第1の入口322と第1の流路34とを連通させると共に、第2の流路35と第2の出口325とを連通させる。 At the same time, the spool 383 of the first spool valve 38 is pneumatically moved to the other end side of the sleeve 381 (lower end side in the figure), and the first spool valve 38 is connected to the first inlet 322 and the first inlet 322 . The first flow path 34 is communicated, and the second flow path 35 and the second outlet 325 are communicated.
 同様に、第2のスプールバルブ39のスプール393が空気圧によりスリーブ391の他端側(図中の上端側)に移動して、当該第2のスプールバルブ39は、第2の入口323と第2の流路35とが連通させると共に、第1の流路34と第1の出口324とを連通させる。 Similarly, the spool 393 of the second spool valve 39 is pneumatically moved to the other end side of the sleeve 391 (upper end side in the figure), and the second spool valve 39 is connected to the second inlet 323 and the second inlet 323 . , and the first flow path 34 and the first outlet 324 are communicated.
 すなわち、第1の流路34は、第1のスプールバルブ38を介して第1の入口322に連通すると共に、第2のスプールバルブ39を介して第1の出口324に連通するので、第2の供給システム80から第1の流路34に冷媒が供給される。また、第2の流路35は、第2のスプールバルブ39を介して第2の入口323に連通すると共に、第1のスプールバルブ38を介して第2の出口325に連通するので、第2の供給システム80から第2の流路35にも冷媒が供給される。 That is, the first flow path 34 communicates with the first inlet 322 via the first spool valve 38 and communicates with the first outlet 324 via the second spool valve 39, so that the second Refrigerant is supplied to the first flow path 34 from the supply system 80 of the first flow path 34 . Also, the second flow path 35 communicates with the second inlet 323 via the second spool valve 39 and communicates with the second outlet 325 via the first spool valve 38, so that the second Refrigerant is also supplied to the second flow path 35 from the supply system 80 of the second flow path 35 .
 このように、バルブ制御部92がバルブ73を開くことで、ヒータ40が熱交換部33から離反すると共に、熱交換部33を通過する第1及び第2の流路34,35に冷媒が供給される。このため、熱交換部33が冷媒により冷却されるので、当該熱交換部33に接触しているDUT200も冷却される。この際、本実施形態では、ヒータ40が熱交換器31に接触していないので、第1及び第2の流路34,35を流れる冷媒によりDUT200を効率的に冷却することができる。 In this manner, the valve control unit 92 opens the valve 73 to separate the heater 40 from the heat exchange unit 33 and supply the refrigerant to the first and second flow paths 34 and 35 passing through the heat exchange unit 33. be done. Therefore, since the heat exchange section 33 is cooled by the refrigerant, the DUT 200 in contact with the heat exchange section 33 is also cooled. At this time, in the present embodiment, the heater 40 is not in contact with the heat exchanger 31, so the DUT 200 can be efficiently cooled by the coolant flowing through the first and second flow paths 34,35.
 これに対し、DUT200の現在の温度T’が目標温度Tspに対して低い場合には、図3Bに示すように、バルブ73を閉じることで、エアシリンダ50とスプールバルブ38,39への圧縮エアの供給を停止する。 On the other hand, if the current temperature T j ' of the DUT 200 is lower than the target temperature T sp , as shown in FIG. Stop the supply of compressed air.
 これにより、エアシリンダ50が駆動シャフト51を前進させる。これにより、ヒータ40の先端面41と熱交換部33の凹部331の底面(第2の接触面)333との間にも隙間Sがなくなり、ヒータ40の先端面41と熱交換部33の第2の接触面333とが接触し、ヒータ40から熱交換部33に熱が伝達される。 This causes the air cylinder 50 to advance the drive shaft 51 . As a result, there is no gap S3 between the tip surface 41 of the heater 40 and the bottom surface (second contact surface) 333 of the recessed portion 331 of the heat exchanging portion 33, and the gap between the tip surface 41 of the heater 40 and the heat exchanging portion 33 is eliminated. 2nd contact surface 333 contacts, and heat is transmitted from the heater 40 to the heat exchange part 33. As shown in FIG.
 この際、上述のように、ヒータ40が熱交換部33から離反している状態でもヒータ40の温度は所定温度以上に維持されており、ヒータ40が予熱されている。このため、本実施形態では、ヒータ40を熱交換部33に接触させた後の当該ヒータ40自体の昇温を必要としないので、DUT200の高速な温度制御が可能となっている。 At this time, as described above, even when the heater 40 is separated from the heat exchange section 33, the temperature of the heater 40 is maintained at the predetermined temperature or higher, and the heater 40 is preheated. Therefore, in the present embodiment, it is not necessary to raise the temperature of the heater 40 itself after the heater 40 is brought into contact with the heat exchange section 33, so high-speed temperature control of the DUT 200 is possible.
 なお、ヒータ40の先端面41と熱交換部33の第2の接触面333とが接触している状態においても、熱交換器31の本体部32の側面とヒータ40の側面との間の隙間Sは維持されていると共に、熱交換器31の熱交換部33の凹部331の内側面とヒータ40の側面との間の隙間Sも維持されている。このため、ヒータ40から熱交換部33の先端部(第1の接触面332と第2の接触面333で規定される部分)に熱を効率的に伝えることができる。 Note that even when the tip surface 41 of the heater 40 and the second contact surface 333 of the heat exchange portion 33 are in contact with each other, the gap between the side surface of the main body portion 32 of the heat exchanger 31 and the side surface of the heater 40 is maintained. S1 is maintained, and the gap S2 between the inner side surface of the recess 331 of the heat exchanging portion 33 of the heat exchanger 31 and the side surface of the heater 40 is also maintained. Therefore, heat can be efficiently transferred from the heater 40 to the tip portion of the heat exchanging portion 33 (the portion defined by the first contact surface 332 and the second contact surface 333).
 これと同時に、第1のスプールバルブ38のスプール383が付勢部材382の付勢力によりスリーブ381の一端側(図中の上端側)に移動して、当該第1のスプールバルブ38は、第1の流路34を閉塞すると共に、第1の入口322と第2の出口325とを連通させる。このため、第1の流路34には、第2の供給システム80から冷媒が供給されない。 At the same time, the spool 383 of the first spool valve 38 moves toward one end of the sleeve 381 (upper end in the drawing) due to the biasing force of the biasing member 382 , and the first spool valve 38 moves toward the first spool valve 38 . , the first inlet 322 and the second outlet 325 are communicated with each other. Therefore, no coolant is supplied from the second supply system 80 to the first flow path 34 .
 同様に、第2のスプールバルブ39のスプール393が付勢部材392の付勢力によりスリーブ391の一端側(図中の下端側)に移動して、当該第2のスプールバルブ393は、第2の流路35を閉塞すると共に、第2の入口323と第1の出口324とを連通させる。このため、第2の流路35にも、第2の供給システム80から冷媒が供給されない。 Similarly, the spool 393 of the second spool valve 39 moves toward one end of the sleeve 391 (lower end in the drawing) due to the biasing force of the biasing member 392, and the second spool valve 393 moves toward the second spool. The channel 35 is closed and the second inlet 323 and the first outlet 324 are communicated. Therefore, no refrigerant is supplied from the second supply system 80 to the second flow path 35 either.
 このように、バルブ制御部92がバルブ73を閉じることで、ヒータ40が熱交換部33に接触すると共に、熱交換部33を通過する第1及び第2の流路34,35に冷媒が供給されない。このため、熱交換部33がヒータ40により加熱されるので、当該熱交換部33に接触しているDUT200も加熱される。この際、本実施形態では、第1及び第2の流路34,35に冷媒が供給されていないので、ヒータ40によりDUT200を効率的に加熱することができる。 In this manner, the valve control unit 92 closes the valve 73 so that the heater 40 comes into contact with the heat exchange unit 33 and the refrigerant is supplied to the first and second flow paths 34 and 35 passing through the heat exchange unit 33. not. Therefore, since the heat exchange section 33 is heated by the heater 40, the DUT 200 in contact with the heat exchange section 33 is also heated. At this time, in this embodiment, the coolant is not supplied to the first and second flow paths 34 and 35, so the DUT 200 can be efficiently heated by the heater 40. FIG.
 また、本実施形態では、第1及び第2の流路34,35がスプールバルブ38,39により閉塞されている状態であっても、スプールバルブ38,39により第2の供給システム80を出口324,325にバイパスさせることで、当該第2の供給システム80への冷媒の供給が継続されている。このため、本実施形態では、ヒータ40によりDUT200を加熱している間も、冷媒により第2の供給システム80を冷却することができる。これにより、DUT200を冷却する際に第2の供給システム80自体の冷却に要する時間を必要としないので、DUT200の高速な温度制御が可能となっている。 Further, in this embodiment, even when the first and second flow paths 34 and 35 are blocked by the spool valves 38 and 39, the spool valves 38 and 39 direct the second supply system 80 to the outlet 324. , 325 to continue supplying the second supply system 80 with refrigerant. Therefore, in this embodiment, the second supply system 80 can be cooled by the coolant even while the DUT 200 is being heated by the heater 40 . As a result, when the DUT 200 is cooled, the time required for cooling the second supply system 80 itself is not required, so high-speed temperature control of the DUT 200 is possible.
 また、本実施形態では、スプールバルブ38,39が熱交換器31に設置されている。このため、常時冷却される第2の供給システム80が熱交換部33の近くまで延在しているので、DUT200の温度制御の高速化を一層図ることができる。内部の雰囲気温度を調整可能なチャンバ60を備えるハンドラ10では、第2の供給システム80の一部がこのチャンバ60内に配置されるため、特に有効である。 Also, in this embodiment, the spool valves 38 and 39 are installed in the heat exchanger 31 . Therefore, since the second supply system 80 that is constantly cooled extends to the vicinity of the heat exchange section 33, the temperature control of the DUT 200 can be further speeded up. A handler 10 having a chamber 60 with a tunable internal ambient temperature is particularly useful because a portion of the second supply system 80 is located within this chamber 60 .
 バルブ制御部92は、DUT200の現在の温度T’と目標温度Tspとの偏差が小さくなるように、上述したバルブ73の開閉制御を行うことで、熱交換部33によるDUT200の加熱及び冷却を行う。この際、本実施形態では、バルブ制御部92がPWM制御により上述したバルブ73の開閉を頻繁に繰り返すため、DUT200の温度を精密に制御することができる。 The valve control unit 92 controls the opening and closing of the valve 73 described above so that the deviation between the current temperature T j ' of the DUT 200 and the target temperature T sp is reduced, thereby heating and cooling the DUT 200 by the heat exchange unit 33. I do. At this time, in this embodiment, the valve control unit 92 frequently repeats opening and closing of the valve 73 described above by PWM control, so that the temperature of the DUT 200 can be controlled precisely.
 以上のように、本実施形態では、エアシリンダ50によりヒータ40が熱交換部33に対して相対移動することで、ヒータ40が熱交換部33に接触又は離反することが可能となっている。このため、ヒータ40を熱交換部33に接触させる前に当該ヒータ40を予熱しておくことができるので、DUT200の温度制御の高速化を図ることができる。 As described above, in the present embodiment, the air cylinder 50 causes the heater 40 to move relative to the heat exchange section 33 , thereby allowing the heater 40 to come into contact with or separate from the heat exchange section 33 . Therefore, the heater 40 can be preheated before the heater 40 is brought into contact with the heat exchange section 33, so that temperature control of the DUT 200 can be speeded up.
 また、本実施形態では、上記のようなヒータ40の予熱が可能となり、ヒータ40を急速に加熱する必要がないので、当該ヒータ40の低出力化や小型化を図ることもできる。また、ヒータ40の小型化を図ることで、コンタクトアーム20の高速移動も可能となる。 In addition, in the present embodiment, the heater 40 can be preheated as described above, and the heater 40 does not need to be heated rapidly. Further, by reducing the size of the heater 40, the contact arm 20 can be moved at high speed.
 また、本実施形態では、ヒータ40の温度を所定温度以上に維持すると共に、第2の供給システム80に冷媒を常時供給しつつ、一つのバルブ73の開閉のみで、ヒータ40の移動動作と流路34,35への冷媒の供給を制御する。このため、シンプルな構造により、DUT200の高速な温度制御を実現することができる。 In addition, in this embodiment, the temperature of the heater 40 is maintained at a predetermined temperature or higher, and while the refrigerant is always supplied to the second supply system 80, only opening and closing of one valve 73 allows the heater 40 to move and flow. Controls the supply of refrigerant to passages 34,35. Therefore, high-speed temperature control of the DUT 200 can be realized with a simple structure.
 なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 It should be noted that the embodiments described above are described to facilitate understanding of the present invention, and are not described to limit the present invention. Therefore, each element disclosed in the above embodiments is meant to include all design changes and equivalents that fall within the technical scope of the present invention.
 上述の実施形態では、温度調整ユニット30が2つの流路34,35を備えているが、温度調整用の流体が流通する流路の数は、特にこれに限定されない。 In the above-described embodiment, the temperature adjustment unit 30 includes two channels 34 and 35, but the number of channels through which the fluid for temperature adjustment flows is not particularly limited to this.
 例えば、温度調整ユニットが、温度調整用の流体が流通する流路として、1つの流路のみを備えていてもよい。或いは、温度調整ユニットが、温度調整用の流体が流通する流路として、3以上の流路を備えていてもよい。この場合に、スプールバルブが5以上のポートを備えていてもよいし、温度調整ユニットが3以上のスプールバルブを備えていてもよい。 For example, the temperature adjustment unit may have only one channel as the channel through which the fluid for temperature adjustment flows. Alternatively, the temperature adjustment unit may have three or more channels as channels through which the fluid for temperature adjustment flows. In this case, the spool valve may have 5 or more ports, and the temperature control unit may have 3 or more spool valves.
 また、上述の実施形態では、バルブ73を開くと、ヒータ40が熱交換部33から離反すると共に流路34,35に冷媒が供給され、バルブ73を閉じると、ヒータ40が熱交換部33に接触すると共に流路34,35への冷媒の供給が遮断されるように構成されている。 Further, in the above-described embodiment, when the valve 73 is opened, the heater 40 is separated from the heat exchange section 33 and the refrigerant is supplied to the flow paths 34 and 35, and when the valve 73 is closed, the heater 40 is moved to the heat exchange section 33. They are configured to come into contact with each other and cut off the supply of coolant to the channels 34 and 35 .
 しかしながら、バルブ73の開閉、ヒータ40の接近/離反、及び、流路34,35への冷媒の供給/遮断の関係は、特にこれに限定されない。例えば、バルブ73を閉じると、ヒータ40が熱交換部33から離反すると共に流路34,35に冷媒が供給され、バルブ73を閉じると、ヒータ40が熱交換部33に接触すると共に流路34,35への冷媒の供給が遮断されるように構成してもよい。 However, the relationship between the opening/closing of the valve 73, the approach/separation of the heater 40, and the supply/shutoff of the coolant to the channels 34 and 35 is not particularly limited to this. For example, when the valve 73 is closed, the heater 40 is separated from the heat exchange section 33 and the coolant is supplied to the flow paths 34 and 35, and when the valve 73 is closed, the heater 40 is brought into contact with the heat exchange section 33 and the flow path 34 , 35 may be cut off.
 また、上述の実施形態では、ハンドラ10がコンタクトアームとチャンバを備えているが、ハンドラの構成は特にこれに限定されない。例えば、チャンバを備えていないハンドラに、上述した温度調整ユニットを適用してもよい。或いは、コンタクトアームを有しておらず、テストトレイに収容された状態のDUTをZ軸駆動装置が有するプッシャにより押圧するタイプのハンドラに、上述した温度調整ユニットを適用してもよい。 Also, in the above-described embodiment, the handler 10 includes contact arms and chambers, but the configuration of the handler is not particularly limited to this. For example, the temperature adjustment unit described above may be applied to a handler that does not have a chamber. Alternatively, the above-described temperature control unit may be applied to a type of handler that does not have a contact arm and presses the DUT housed in the test tray with a pusher of the Z-axis driving device.
 また、上述の実施形態では、ハンドラ10に温度調整ユニット30を設けた例について説明したが、テスタ2に上述した温度調整ユニットを適用してもよい。例えば、DUTの下面に熱交換部が接触可能な領域を確保可能である場合には、ソケットに温度調整ユニットを設けてもよい。 Also, in the above-described embodiment, an example in which the temperature adjustment unit 30 is provided in the handler 10 has been described, but the temperature adjustment unit described above may be applied to the tester 2 . For example, if it is possible to secure an area where the heat exchange section can contact the lower surface of the DUT, the socket may be provided with the temperature control unit.
 或いは、SSD(Solid State Drive)の試験装置においてSSDを保持して搬送するロボットアームに、上述した温度調整ユニットを適用してもよい。すなわち、DUTにはSSDも含まれる。 Alternatively, the temperature control unit described above may be applied to a robot arm that holds and transports an SSD in an SSD (Solid State Drive) testing device. That is, the DUT also includes an SSD.
1…電子部品試験装置
 2…テスタ
  3…メインフレーム
  5…テストヘッド
   6…ソケット
 10…ハンドラ
  20…コンタクトアーム
   21…アーム本体
   30…温度調整ユニット
    31…熱交換器
     32…本体部
      322,323…入口
      324,325…出口
     33…熱交換部
      332,333…接触面
     34,35…流路
     38,39…スプールバルブ
 40…ヒータ
 S~S…隙間
 50…エアシリンダ
  60…チャンバ
 70…第1の供給システム
  71…第1の接続部
  721~724…配管
  73…バルブ
 80…第2の供給装置
  81…第2の接続部
  821~823…配管
 90…バルブ制御装置
  91…温度演算部
  92…バルブ制御部
 95…ヒータ制御装置
110…エア供給源
120…冷媒供給源
200…DUT
REFERENCE SIGNS LIST 1 Electronic component testing device 2 Tester 3 Main frame 5 Test head 6 Socket 10 Handler 20 Contact arm 21 Arm main body 30 Temperature control unit 31 Heat exchanger 32 Main body 322, 323 Inlet 324, 325... Outlet 33... Heat exchange part 332, 333... Contact surface 34, 35... Flow path 38, 39... Spool valve 40... Heater S1 to S3 ... Gap 50... Air cylinder 60... Chamber 70... First first Supply system 71 First connection 721 to 724 Piping 73 Valve 80 Second supply device 81 Second connection 821 to 823 Piping 90 Valve control device 91 Temperature calculator 92 Valve control Part 95...Heater control device 110...Air supply source 120...Refrigerant supply source 200...DUT

Claims (16)

  1.  DUTの温度を調整する温度調整ユニットであって、
     前記DUTに接触して前記DUTと熱交換を行う熱交換部を有する熱交換器と、
     加熱装置と、
     前記加熱装置を前記熱交換部に対して相対的に移動させる移動装置と、を備え、
     前記熱交換器は、前記DUTの温度調整用の流体が流通可能であり、前記熱交換部を通過する流路を有し、
     前記移動装置は、前記加熱装置を相対移動させることで、前記加熱装置を前記熱交換部に接触又は離反させる温度調整ユニット。
    A temperature adjustment unit for adjusting the temperature of a DUT, comprising:
    a heat exchanger having a heat exchange portion that contacts the DUT and exchanges heat with the DUT;
    a heating device;
    a moving device that moves the heating device relative to the heat exchange unit,
    The heat exchanger has a flow path through which a fluid for adjusting the temperature of the DUT can flow and passes through the heat exchange unit,
    The moving device is a temperature control unit that relatively moves the heating device to bring the heating device into contact with or away from the heat exchange section.
  2.  請求項1に記載の温度調整ユニットであって、
     前記熱交換器と前記加熱装置との間に所定の隙間が形成されており、
     前記移動装置が前記加熱装置を相対移動させることで、前記隙間がなくなり前記加熱装置が前記熱交換部に接触する温度調整ユニット。
    The temperature adjustment unit according to claim 1,
    A predetermined gap is formed between the heat exchanger and the heating device,
    A temperature adjustment unit in which the moving device relatively moves the heating device so that the gap is eliminated and the heating device contacts the heat exchange section.
  3.  請求項1又は2に記載の温度調整ユニットであって、
     前記熱交換部は、前記DUTに接触する第1の接触面を有しており、
     前記移動装置は、前記第1の接触面の法線方向に実質的に平行な方向に沿って、前記加熱装置を相対移動させる温度調整ユニット。
    The temperature adjustment unit according to claim 1 or 2,
    The heat exchange part has a first contact surface that contacts the DUT,
    The moving device is a temperature adjusting unit that relatively moves the heating device along a direction substantially parallel to a normal direction of the first contact surface.
  4.  請求項1~3のいずれか一項に記載の温度調整ユニットであって、
     前記熱交換部は、
     前記DUTに接触する第1の接触面と、
     前記第1の接触面とは反対側の第2の接触面と、を有し、
     前記加熱装置は、前記第2の接触面と対向しており、
     前記移動装置は、前記加熱装置を相対移動させることで、前記加熱装置を前記第2の接触面に接触又は離反させる温度調整ユニット。
    The temperature adjustment unit according to any one of claims 1 to 3,
    The heat exchange part is
    a first contact surface that contacts the DUT;
    a second contact surface opposite the first contact surface;
    The heating device faces the second contact surface,
    The moving device is a temperature adjusting unit that relatively moves the heating device to bring the heating device into contact with or away from the second contact surface.
  5.  請求項1~4のいずれか一項に記載の温度調整ユニットであって、
     前記温度調整ユニットは、
     流体供給源から前記流体が供給されると共に、前記流路に連通した入口と、
     前記入口と前記流路との連通を開閉する第1のバルブと、を備えた温度調整ユニット。
    The temperature adjustment unit according to any one of claims 1 to 4,
    The temperature adjustment unit is
    an inlet supplied with the fluid from a fluid supply source and communicating with the flow path;
    and a first valve that opens and closes communication between the inlet and the flow path.
  6.  請求項5に記載の温度調整ユニットであって、
     前記入口は、前記流体供給源から前記流体が供給される第1の入口を含み、
     前記温度調整ユニットは、前記流体を排出する第1及び第2の出口を備え、
     前記流路は、前記熱交換部を通過すると共に、前記第1の入口及び前記第1の出口に連通した第1の流路を含み、
     前記第1のバルブは、前記第1の入口の接続先を前記第1の流路と前記第2の出口との間で切り替える第1の切替バルブを含む温度調整ユニット。
    A temperature adjustment unit according to claim 5,
    the inlet comprises a first inlet to which the fluid is supplied from the fluid source;
    the temperature conditioning unit comprises first and second outlets for discharging the fluid;
    The flow path includes a first flow path that passes through the heat exchange section and communicates with the first inlet and the first outlet,
    The first valve is a temperature control unit including a first switching valve that switches a connection destination of the first inlet between the first flow path and the second outlet.
  7.  請求項6に記載の温度調整ユニットであって、
     前記入口は、前記流体供給源から前記流体が供給される第2の入口を含み、
     前記流路は、前記熱交換部を通過すると共に、前記第2の入口及び前記第2の出口に連通した第2の流路を含み、
     前記第1のバルブは、前記第2の入口の接続先を前記第2の流路と前記第1の出口との間で切り替える第2の切替バルブを含み、
     前記第1の切替バルブは、前記第1の入口と前記第1の流路とを連通させている場合に、前記第2の流路を前記第2の出口と連通させ、
     前記第2の切替バルブは、前記第2の入口と前記第2の流路とを連通させている場合に、前記第1の流路を前記第1の出口と連通させる温度調整ユニット。
    A temperature adjustment unit according to claim 6,
    the inlet comprises a second inlet to which the fluid is supplied from the fluid source;
    The flow path includes a second flow path that passes through the heat exchange section and communicates with the second inlet and the second outlet,
    The first valve includes a second switching valve that switches a connection destination of the second inlet between the second flow path and the first outlet,
    the first switching valve communicates the second flow path with the second outlet when the first inlet and the first flow path are in communication;
    The temperature control unit, wherein the second switching valve communicates the first flow path with the first outlet when the second inlet and the second flow path are in communication.
  8.  請求項5~7のいずれか一項に記載の温度調整ユニットであって、
     前記第1のバルブは、前記熱交換器に配置されている温度調整ユニット。
    The temperature adjustment unit according to any one of claims 5 to 7,
    The first valve is a temperature control unit arranged in the heat exchanger.
  9.  請求項5~8のいずれか一項に記載の温度調整ユニットであって、
     前記移動装置は、エア供給源から供給された空気により駆動するエアシリンダを含み、
     前記第1のバルブは、前記エア供給源から供給された空気により駆動するバルブを含む温度調整ユニット。
    The temperature adjustment unit according to any one of claims 5 to 8,
    The moving device includes an air cylinder driven by air supplied from an air supply source,
    The temperature control unit, wherein the first valve includes a valve driven by air supplied from the air supply source.
  10.  DUTをハンドリングする電子部品ハンドリング装置であって、
     請求項1~9のいずれか一項に記載された温度調整ユニットを有し、前記DUTをソケットに押圧する押圧装置を備え、
     前記押圧装置が前記DUTをソケットに押圧した状態で、前記熱交換部が前記DUTと接触している電子部品ハンドリング装置。
    An electronic component handling device for handling a DUT, comprising:
    A pressing device having the temperature adjustment unit according to any one of claims 1 to 9 and pressing the DUT against the socket,
    The electronic component handling device, wherein the heat exchanging portion is in contact with the DUT while the pressing device presses the DUT against the socket.
  11.  請求項10に記載の電子部品ハンドリング装置であって、
     前記電子部品ハンドリング装置は、前記加熱装置を制御する第1の制御装置を備えており、
     前記第1の制御装置は、前記加熱装置の温度が所定温度以上を維持されるように、前記加熱装置を制御する電子部品ハンドリング装置。
    11. The electronic component handling device of claim 10, comprising:
    The electronic component handling device comprises a first control device for controlling the heating device,
    The first control device is an electronic component handling device that controls the heating device so that the temperature of the heating device is maintained at a predetermined temperature or higher.
  12.  請求項10又は11に記載の電子部品ハンドリング装置であって、
     前記電子部品ハンドリング装置は、前記流体を供給する流体供給源に接続される第1の接続部を備え、
     前記流体は、前記第1の接続部を介して前記流体供給源から前記入口に連続的に供給される電子部品ハンドリング装置。
    The electronic component handling device according to claim 10 or 11,
    The electronic component handling device comprises a first connection connected to a fluid source that supplies the fluid,
    An electronic component handling device wherein the fluid is continuously supplied from the fluid supply to the inlet via the first connection.
  13.  請求項10~12のいずれか一項に記載の電子部品ハンドリング装置であって、
     前記電子部品ハンドリング装置は、
     空気を供給するエア供給源に接続される第2の接続部と、
     前記第2の接続部を介した前記エア供給源から前記移動装置及び前記第1のバルブへの空気の供給を開閉する第2のバルブと、を備えた電子部品ハンドリング装置。
    The electronic component handling device according to any one of claims 10 to 12,
    The electronic component handling device comprises:
    a second connection connected to an air supply that supplies air;
    and a second valve that opens and closes the supply of air from the air supply through the second connection to the moving device and the first valve.
  14.  請求項13に記載の電子部品ハンドリング装置であって、
     前記第2のバルブを開き又は閉じると、前記移動装置が前記加熱装置を移動させて前記熱交換部から離反すると共に、前記第1のバルブが開いて前記入口と前記流路とが連通し、
     前記第2のバルブが閉じ又は開くと、前記移動装置が前記加熱装置を移動させて前記熱交換部に接触すると共に、前記第1のバルブが閉じて前記入口と前記流路との連通が遮断される電子部品ハンドリング装置。
    14. The electronic component handling device of claim 13, comprising:
    When the second valve is opened or closed, the moving device moves the heating device away from the heat exchange unit, and the first valve opens to communicate the inlet and the flow path,
    When the second valve closes or opens, the moving device moves the heating device to come into contact with the heat exchange unit, and the first valve closes to block communication between the inlet and the flow path. electronic component handling equipment.
  15.  請求項13又は14に記載の電子部品ハンドリング装置であって、
     前記電子部品ハンドリング装置は、
     前記DUTの温度を演算する演算装置と、
     前記演算装置の演算結果に基づいて、前記第2のバルブを制御する第2の制御装置と、を備えた電子部品ハンドリング装置。
    15. The electronic component handling device according to claim 13 or 14,
    The electronic component handling device comprises:
    a computing device that computes the temperature of the DUT;
    and a second control device that controls the second valve based on the calculation result of the calculation device.
  16.  DUTを試験する電子部品試験装置であって、
     請求項10~15のいずれか一項に記載の電子部品ハンドリング装置と、
     ソケットを有する試験装置本体と、を備えた電子部品試験装置。
    An electronic component test apparatus for testing a DUT, comprising:
    An electronic component handling device according to any one of claims 10 to 15;
    An electronic device test device comprising: a test device main body having a socket.
PCT/JP2021/046343 2021-12-15 2021-12-15 Temperature adjusting unit, electronic component handling device, and electronic component testing device WO2023112221A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/046343 WO2023112221A1 (en) 2021-12-15 2021-12-15 Temperature adjusting unit, electronic component handling device, and electronic component testing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/046343 WO2023112221A1 (en) 2021-12-15 2021-12-15 Temperature adjusting unit, electronic component handling device, and electronic component testing device

Publications (1)

Publication Number Publication Date
WO2023112221A1 true WO2023112221A1 (en) 2023-06-22

Family

ID=86773862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046343 WO2023112221A1 (en) 2021-12-15 2021-12-15 Temperature adjusting unit, electronic component handling device, and electronic component testing device

Country Status (1)

Country Link
WO (1) WO2023112221A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01221681A (en) * 1988-03-01 1989-09-05 Toshiba Seiki Kk Testing apparatus for electronic parts
JP2007003152A (en) * 2005-06-27 2007-01-11 Seiko Epson Corp Cooling device, and electronic component handler provided therewith
JP2007071806A (en) * 2005-09-09 2007-03-22 Seiko Epson Corp Temperature control device of electronic component, and handler device
JP2009103638A (en) * 2007-10-25 2009-05-14 Seiko Epson Corp Temperature control device of electronic component, ic handler, and attachment of ic handler
US20150309112A1 (en) * 2012-12-12 2015-10-29 Marvelous Technology Pte Ltd Thermal head for device under test and method for controlling the temperature of device under test
JP2020190520A (en) * 2019-05-23 2020-11-26 株式会社アドバンテスト Electronic component handling device and electronic component test device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01221681A (en) * 1988-03-01 1989-09-05 Toshiba Seiki Kk Testing apparatus for electronic parts
JP2007003152A (en) * 2005-06-27 2007-01-11 Seiko Epson Corp Cooling device, and electronic component handler provided therewith
JP2007071806A (en) * 2005-09-09 2007-03-22 Seiko Epson Corp Temperature control device of electronic component, and handler device
JP2009103638A (en) * 2007-10-25 2009-05-14 Seiko Epson Corp Temperature control device of electronic component, ic handler, and attachment of ic handler
US20150309112A1 (en) * 2012-12-12 2015-10-29 Marvelous Technology Pte Ltd Thermal head for device under test and method for controlling the temperature of device under test
JP2020190520A (en) * 2019-05-23 2020-11-26 株式会社アドバンテスト Electronic component handling device and electronic component test device

Similar Documents

Publication Publication Date Title
US8025097B2 (en) Method and apparatus for setting and controlling temperature
US10119776B2 (en) Apparatus to control device temperature utilizing multiple thermal paths
JP4994842B2 (en) Microthermal chamber with proximity controlled temperature management function for the device under test
US20050151553A1 (en) Active thermal control system with miniature liquid-cooled temperature control device for electronic device testing
TWI569023B (en) Temperature of the test apparatus and temperature control method of the adapter
KR100996197B1 (en) Advanced thermal control interface
KR102433967B1 (en) Handler for electric device test
US11693049B2 (en) Sensor test apparatus
TWI684019B (en) Crimping device of test device and test classification equipment for its application
US11460520B2 (en) Sensor test system
US11181576B2 (en) Electronic component handling apparatus and electronic component testing apparatus
US11614350B2 (en) Sensor test apparatus
WO2023112221A1 (en) Temperature adjusting unit, electronic component handling device, and electronic component testing device
TWI684012B (en) Substrate temperature control unit of test device and test classification equipment applied
KR20140101458A (en) Pushing apparatus for test handler
US20220082636A1 (en) Method and system for thermal control of devices in an electronics tester
WO2020188844A1 (en) Electronic component testing device
TWI840995B (en) Temperature control system and electronic component testing equipment
TW202338376A (en) Temperature adjustment device and electronic component testing device
WO2023084613A1 (en) Temperature adjustment system and electronic component test device
WO2024018536A1 (en) Heat exchanger, electronic component handling device, and electronic component testing device
TW202129284A (en) Testing equipment and temperature control mechanism thereof
TW202403322A (en) Temperature adjustment device, electronic component processing device, electronic component testing device, and temperature adjustment method for DUT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968136

Country of ref document: EP

Kind code of ref document: A1