WO2024002899A1 - Transmission method and omamrc system with a selection strategy during retransmissions taking into account the throughput of the sources and of a single control exchange - Google Patents

Transmission method and omamrc system with a selection strategy during retransmissions taking into account the throughput of the sources and of a single control exchange Download PDF

Info

Publication number
WO2024002899A1
WO2024002899A1 PCT/EP2023/067145 EP2023067145W WO2024002899A1 WO 2024002899 A1 WO2024002899 A1 WO 2024002899A1 EP 2023067145 W EP2023067145 W EP 2023067145W WO 2024002899 A1 WO2024002899 A1 WO 2024002899A1
Authority
WO
WIPO (PCT)
Prior art keywords
sources
destination
source
correctly decoded
nodes
Prior art date
Application number
PCT/EP2023/067145
Other languages
French (fr)
Inventor
Ali AL KHANSA
Raphaël Visoz
Original Assignee
Orange
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orange filed Critical Orange
Publication of WO2024002899A1 publication Critical patent/WO2024002899A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0076Distributed coding, e.g. network coding, involving channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays

Definitions

  • TITLE Transmission method and OMAMRC system with a selection strategy during retransmissions taking into account the flow rate of the sources and a single exchange of control Field of the invention
  • the present invention relates to the field of digital communications. Within this field, the invention relates more particularly to the transmission of coded data between at least two sources and a destination with relaying by at least one node which can be a relay or a source.
  • a relay does not have a message to transmit.
  • a relay is a node dedicated to relaying messages from sources while a source has its own message to transmit and can also in certain cases relay messages from other sources i.e. the source is called cooperative in this case.
  • the invention applies in particular, but not exclusively, to the transmission of data via mobile networks, for example for real-time applications, or via for example sensor networks.
  • Such a sensor network is a multi-user network, made up of several sources, several relays and a recipient using an orthogonal multiple access scheme in time of the transmission channel between the relays and the sources, denoted OMAMRC ("Orthogonal Multiple- Access Multiple-Relay Channel” according to Anglo-Saxon terminology).
  • the considered OMAMRC telecommunication system illustrated in Figure 1 has N nodes and a destination with an implementation of an orthogonal time multiple access scheme of the transmission channel which applies between the N nodes.
  • the N nodes include M sources and L relays.
  • the maximum number of time intervals per transmitted frame is M + T max with M intervals allocated during a first phase to the successive transmission of M sources and T U sed T max intervals for one or more cooperative transmissions allocated during a second phase to one or more nodes selected by the destination according to a selection strategy.
  • Such an OMAMRC transmission system implementing a selection strategy during the second phase is known from the article by S. Cerovic, R. Visoz, and L. Madier entitled "Efficient Cooperative HARQ for Multi-Source Multi-Relay Wireless Networks.”, 14th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). IEEE, 2018.
  • the OMAMRC transmission system described is such that each of the sources can operate at different times either exclusively as a source or as a relay node.
  • the node terminology covers both a relay and a source acting as a relay node or as a source.
  • a relay is distinguished from a source because it does not have its own message to transmit, ie it only retransmits messages from other nodes.
  • the links between the different nodes of the system are subject to slow fading and white Gaussian noise.
  • Knowledge of all system links (CSI: Channel State Information) by the destination is not available. Indeed, the links between the sources, between the relays, between the relays and the sources are not directly observable by the destination and their knowledge by the destination would require too much exchange of information between the sources, the relays and the destination .
  • CDI Channel Distribution Information
  • CDI Channel Distribution Information
  • Link adaptation is said to be slow, meaning that before any transmission, the destination allocates initial flow rates to sources knowing the distribution of all channels (CDI: Channel Distribution Information).
  • CDI Channel Distribution Information
  • the transmissions of messages from the sources are formatted in frames during which the CSI of the links are assumed to be constant (slow fading hypothesis).
  • the rate allocation is assumed not to change for several hundred frames, it only changes with CDI changes.
  • the method distinguishes three phases, an initial phase and, for each frame to be transmitted, a 1st phase and a 2nd phase.
  • the transmission of a frame takes place in two phases which are possibly preceded by an additional phase called initial.
  • the destination determines an initial rate Ri for each source S[ taking into account the average quality (for example SNR) of each of the links in the system.
  • the destination estimates the quality (for example SNR) of the direct links: source to destination and relay to destination according to known techniques based on the exploitation of reference signals.
  • the quality of the source - source, relay - relay and source - relay links is estimated by the sources and the relays by using, for example, the reference signals.
  • Sources and relays transmit to the destination the average qualities of the links. This transmission occurs before the initialization phase.
  • the initialization phase occurs for example every 200 to 1000 frames.
  • the destination goes back to the sources via a return path the initial flow rates it has determined.
  • the initial flow rates remain constant between two occurrences of the initialization phase.
  • the M sources successively transmit their message during the M time intervals (time-slots) respectively using modulation and coding schemes determined from the initial bit rates.
  • the number of channel uses (channel use i.e. resource element according to 3GPP terminology) is fixed and identical for each source.
  • the independent sources broadcast their coded information sequences in the form of messages to a single recipient.
  • Each source broadcasts its messages with its initial rate.
  • the destination communicates to each source its initial rate via very limited rate control channels.
  • the sources each in turn transmit their respective message during “time-slot” intervals each dedicated to a source.
  • Sources other than the one which transmits and possibly the relays, of the “Half Duplex” type receive successive messages from the sources and decode them.
  • the destination selects for the current interval t a single node taken from the sources and the relays to cooperate. This node randomly selects the source it helps from among the one it has correctly decoded and the destination has not yet decoded correctly by transmitting a redundancy of the message from this source.
  • This phase lasts at most T max time intervals (time-slots).
  • the number N 2 of channel uses is fixed and identical for each of the nodes (sources and relays) selected.
  • control signals which consist, for the destination of broadcasting M bits which indicate its set of correctly decoded sources at the interval t — 1, for the nodes which have correctly decoded a source which the destination does not yet have correctly decoded to transmit a signal on a dedicated unicast channel and for the others to remain silent and finally for the destination to broadcast the result of its selection according to the selected selection strategy.
  • these exchanges limit the overhead linked to signaling while allowing maximization of the average spectral efficiency (utility metric) within the system considered under-constrained to respect an individual quality of service (QoS) per source, it may be desirable to further limit the signaling overhead.
  • the present invention meets this objective.
  • the subject of the present invention is a method of transmitting a frame carrying messages intended for an OMAMRC telecommunications system with M sources, possibly L relay and a destination, 0, the nodes operating in half-duplex mode, according to an orthogonal multiple access scheme of the transmission channel between the N nodes with a maximum number of M + T max time intervals per transmitted frame distributed between a 1st phase and a 2nd phase, 1 ⁇ T max , the message from a source having been coded before transmission according to incremental redundancy type coding which generates several redundancies, the 1st phase comprises M intervals allocated respectively to the successive transmissions of the M sources and the 2nd phase comprises at least a retransmission interval for a transmission of nodes having correctly decoded the same source s i such that these nodes transmit simultaneously during the same retransmission interval the same redundancy of the message from the same source not yet correctly decoded by the destination, called source to help.
  • the method according to the invention is such that it comprises: a single transmission by the nodes of at least their set of sources correctly decoded and not yet correctly decoded by the destination, these transmissions allowing the destination to determine, for each of these sources, a quality of an equivalent channel based on a quality of the channels between the nodes having correctly decoded this source and the destination, an estimate of a sufficient number of retransmission intervals (x i (0)) so that the destination decodes a source (Si) not yet correctly decoded and correctly decoded by at least one node on the basis of the quality of an equivalent channel for this source between this at least one node and the destination and a bit rate (R i ) assigned to this source (S i ), a selection by the destination of the sources to be helped taking into account the estimated numbers (x i (0)) of retransmission intervals sufficient for the destination to decode the sources not yet correctly decoded and a sum of flow rates (R i ) attributed to the sources.
  • the number of control exchanges between the source and the nodes is reduced to a single exchange during which the nodes communicate their set of correctly decoded sources to the destination.
  • the transmission by the nodes may contain only their correctly decoded source set decoded minus those already decoded correctly by the destination.
  • the transmission of the nodes allows the destination to evaluate the quality of the node-destination channels to estimate per source a sufficient number of retransmission intervals for the destination to correctly decode this source. Knowing these sufficient numbers of intervals, the destination can then successively select the sources to help either randomly or in an ordered manner among those whose sufficient number of intervals is less than the time remaining before reaching T max .
  • Scheduling can be done by successively selecting the sources according to increasing numbers of sufficient intervals.
  • the invention has the advantage of not wasting transmission if no source can be helped in the remaining time.
  • the invention further relates to a system comprising M sources..., s M , possibly L relays and a destination d, M ⁇ 2, L ⁇ 0, for implementing a transmission method according to 'invention.
  • the sole transmission by the nodes of at least their set of correctly decoded sources and not yet correctly decoded by the destination is carried out at the start of the 2nd phase.
  • the method further comprises a comparison between a sum of estimated numbers of retransmission intervals sufficient to help the destination decode sources not yet correctly decoded and a number of remaining time intervals during the 2nd phase to help the destination correctly decode one or more sources.
  • the method adds at least two estimated numbers of sufficient retransmission intervals and compares the result to the remaining time. If the result of the addition is less than the remaining time, all sources involved in the addition can be helped during the 2nd phase.
  • the comparison is updated after the correct decoding of a source by the destination.
  • this mode allows another source to help to benefit from the unused time.
  • the unique transmission by the nodes of at least their set of sources correctly decoded and not yet correctly decoded by the destination is part of a control exchange during which the source transmits its correctly decoded source set.
  • the method is such that during the exchange, a node only sends its set of correctly decoded sources and not yet correctly decoded by the destination.
  • the method is such that during the exchange, a node sends its set of correctly decoded sources.
  • the method further comprises a comparison between the estimated numbers of retransmission intervals sufficient for the selection to take into account an ordering of these estimated numbers of retransmission intervals sufficient.
  • the estimated numbers of sufficient retransmission intervals are classified according to their value.
  • the method first selects the source for which the estimated number of sufficient retransmission intervals is the smallest. The same source is aided for the duration corresponding to this estimated number or for a shorter duration if its correct decoding by the destination occurs before the end of the estimated number. The method thus successively considers the sources remaining to be correctly decoded. The process is stopped when all sources are correctly decoded by the destination, when no source not yet correctly decoded can be helped or when the maximum time is reached.
  • the method further comprises a determination of a set of sources that can be helped taking into account the estimated numbers of sufficient retransmission intervals and a time remaining before the end of the 2nd phase and such that the selection of sources to help is done randomly among all the sources that can be helped.
  • the method is such that if no source can be helped in the time remaining before the end of the 2nd phase then the transmission of the frame is interrupted before the use of the maximum number of sufficient retransmission intervals
  • the invention further relates to each of the specific software applications on one or more information media, said applications comprising program instructions adapted to the implementation of the transmission method when these applications are executed by processors.
  • the invention further relates to configured memories comprising instruction codes corresponding respectively to each of the specific applications.
  • Memory can be incorporated into any entity or device capable of storing the program.
  • the memory may be of the ROM type, for example a CD ROM or a microelectronic circuit ROM, or of the magnetic type, for example a USB key or a hard disk.
  • each specific application according to the invention can be downloaded from a server accessible on an Internet type network.
  • FIG 1 is a diagram of an example of a so-called OMAMRC Cooperative system (Orthogonal Multiple Access Multiple Relays Channel) described with regard to the prior art
  • Figure 2 is a diagram of a cycle transmission of a frame according to an example of implementation of the invention
  • FIG 3 is a diagram of the protocol for decoding control exchanges between the destination and the nodes, sources and relays, according to one embodiment of the invention.
  • a channel use is the smallest granularity in time-frequency resource defined by the system which allows the transmission of a modulated symbol.
  • the number of uses of the channel is linked to the available frequency band and the transmission duration.
  • An OMAMRC system is illustrated by Figure 1 already described.
  • An OMAMRC system comprises M sources which belong to the set of sources, possibly L relays which belong to the set of relays and a destination d.
  • M sources which belong to the set of sources, possibly L relays which belong to the set of relays and a destination d.
  • L relays which belong to the set of relays and a destination d.
  • a transmission cycle of a frame according to an example of implementation of the invention is illustrated in Figure 2.
  • the method according to the invention distinguishes two phases for each frame to be transmitted, a 1st phase and a 2nd phase.
  • the transmission of a frame is possibly preceded by an additional so-called initial phase during which the flow rates are allocated.
  • the M sources access the transmission channel according to an orthogonal time multiple access scheme during the 1st phase.
  • access to the transmission channel of N nodes which include the M sources and possibly the L relays is considered orthogonal because at each retransmission interval the active nodes transmit in parallel the same redundancy of the same message from the same source i.
  • the N nodes operate in a half-duplex mode which allows them to listen to transmissions from other nodes without interference.
  • Sources can behave like a relay when they do not only send their own message.
  • the CSI of the links are assumed to be constant (slow fading hypothesis) during the transmission of a frame. From time to time, the destination allocates flow rates to sources knowing the distribution of all channels (CDI: Channel Distribution Information). The rate allocation is assumed not to change for several hundred frames, it only changes with CDI changes.
  • CDI Channel Distribution Information
  • Each of the allocated rates determines in an unambiguous manner a modulation and coding scheme (MCS, Modulation and Coding Scheme) and conversely each MCS determines a rate.
  • MCS modulation and coding scheme
  • the allocated flow rates are reported from the destination to the sources via very limited flow control channels (shown in dotted lines in Figure 1).
  • the sources, relays and destination are equipped with a single transmitting antenna (or transmitting antenna port);
  • the sources, relays and destination are equipped with a single reception antenna (or reception antenna port);
  • T max ⁇ 1 is a system parameter
  • is a discrete variable representing the source rate ⁇ provided by a link adaptation process implemented before the transmission of the frames
  • is the number of retransmission intervals used during the 2nd phase, it corresponds to the number of transmissions during this phase
  • • 1 is the ratio between the number of channel uses available at each time interval (slots) of the 2nd phase and the number of channel uses available at each time interval (slots) of the 1st phase
  • is the set of sources not correctly decoded by the destination at the end of the retransmission interval
  • is the set of sources correctly decoded by the node at the end of the retransmission interval
  • is the fault indicator (outage) which takes the value one when an individual fault event occurs and the value zero in other cases.
  • the individual fault event O ⁇ , ⁇ depends on each retransmission interval (slot) of the mutual information of the nodes having correctly decoded the source , • represents the mutual information between the source and the destination ⁇ , • represents the mutual information between all the nodes helping the source ⁇ and the destination at the retransmission interval ⁇ (it is considered an equivalent channel formed by the different channels between these nodes and the destination).
  • the sources successively transmit their message after coding comprising information bits being the two-element Galois body.
  • the message ⁇ includes a CRC type code which allows the integrity to be checked of the message
  • the message is coded according to the MCS determined by the allocated bit rate. Given that MCSs may be different between sources, the lengths of encoded messages may be different between sources.
  • the encoding uses incremental redundancy type code. The codeword obtained is segmented into successive redundancies. The incremental redundancy code can be of systematic type, the information bits are then included in the first redundancy.
  • the incremental redundancy type code can be produced for example at means of a finite family of punctured linear codes with compatible efficiency or codes without efficiency modified to operate with finite lengths: raptor code (RC), punctured turbo code with compatible efficiency (RCPTC rate compatible punctured turbo code), punctured convolutional code compatible yield (RCPCC rate compatible punctured convolutional code), LDPC compatible yield (RCLDPC rate compatible low density parity check code).
  • RC raptor code
  • RCPTC rate compatible punctured turbo code punctured convolutional code compatible yield
  • LDPC compatible yield RCLDPC rate compatible low density parity check code
  • Transmission by a source conventionally comprises one or more reference signals.
  • the destination estimates the channel and therefore its quality between each of the sources and the destination in a known manner by using, for example, the reference signal(s) received.
  • the destination, sources and relays attempt to decode the redundancies received at the end of a time interval. Decoding success at each node is decided using the CRC. The destination and the nodes thus determine their correctly decoded set of sources at each interval.
  • the term retransmission associated with an interval is used in connection with the 2nd phase to clearly indicate that any transmission during this phase of an nth redundancy of the message from a source i occurs while this source has already transmitted the 1st redundancy of this same message during the first phase.
  • the destination does not systematically send back its set of correctly decoded sources at each retransmission interval nor indication on correct decoding or not
  • the nodes do not systematically transmit at each retransmission interval their set of correctly decoded sources nor indication on their correct decoding or not.
  • the nodes transmit to the destination their set of correctly decoded sources or at least their set of sources correctly decoded and not yet correctly decoded by the destination.
  • Transmission by a node conventionally comprises one or more reference signals.
  • the destination selects at each retransmission interval a so-called source to help using a broadcast control channel from the destination to the nodes.
  • the nodes that have correctly decoded this source then transmit the same redundancy of the message from this source during this interval using a data channel.
  • Helping a source means helping the destination to decode this source by transmitting, through the nodes that have correctly decoded this source, a redundancy of the message from this source during the 2nd phase.
  • the destination sends its set of correctly decoded sources to the nodes and the nodes transmit their set of correctly decoded sources.
  • the destination sends its set of correctly decoded sources to the nodes and the nodes transmit their set of sources correctly decoded and not yet correctly decoded by the destination.
  • the destination sends a signal to the nodes indicating an absence of correct decoding, NACK and the nodes transmit their set of correctly decoded sources.
  • the destination orders in turn the sources not yet correctly decoded for a given number of successive transmissions in order to maximize the sum rate received.
  • a transmission, during a retransmission interval, to help a source i corresponds to the transmission of the same redundant version of its message by all the nodes having correctly decoded this source. Transmissions to support a source i begin at retransmission interval t si and end when the source is decoded.
  • the individual fault event of source i for which the retransmission intervals start at t si , at the end of the retransmission interval t — 1, O i t-1 , can be expressed in the form: ( 1)
  • This expression reflects the fact that the source i is not decoded correctly at the retransmission interval t — 1 if the bit rate of the source is greater than the sum of the capacities of transmission.
  • This transmission capacity includes the capacity of the channel between this source i and the destination which intervenes during the first phase and a sum weighted by a of the capacities of the equivalent channels which intervene during the second phase from t si until retransmission interval t — 1.
  • an equivalent channel is considered for source i.
  • the equivalent channel considered at a retransmission interval l groups the channels between each of the nodes helping the source i during this interval and the destination.
  • the capacity of the channel between this source i and the destination is deduced from the quality of the channel ie the mutual information I id between the source i E ⁇ 1, ... , M] and the destination d.
  • the capacity of the equivalent channel considered when the source i is helped during the interval l is evaluated by the mutual information between the set of nodes which help the source i at the retransmission interval l and the destination. This capacity depends on time l since a node can benefit from transmissions to help a source i during the 2nd phase and correctly decode this source i from a retransmission interval of the 2nd phase while it does not had not been decoded at the end of the first phase.
  • X (t) is defined as the number of retransmission intervals sold to the current interval (not included) during the second phase from the last exchange of decoding control between the destination and the nodes.
  • X m (t) defines the value of X(t) which triggers a new exchange of sets of decoded sources. For example triggers an exchange of sets of decoded sources for
  • X m (l) 0 triggers an exchange of sets of decoded sources at the start of the 2nd transmission phase.
  • a source i is aided over one or more consecutive retransmission intervals starting with retransmission interval t if E ⁇ 1, ... , T max ⁇ .
  • the variable is defined according to the invention.
  • This variable is defined as being the maximum number (ie sufficient number) of retransmission intervals for the destination to decode this source i (from and counting the retransmission interval t s ), that is to say, the source i is decoded at the latest at the end of the retransmission interval
  • This variable %;(t) is estimated by the destination based on its knowledge of Either the whole determined by X m (t) retransmission intervals starting with a exchange of sets of decoded sources. Let the set of intervals be retransmission starting with an exchange of decoded source sets coinciding with transmissions to assist source i, i.e.,
  • the destination only knows to estimate for
  • the source index i of t si is omitted when it is obvious.
  • the method includes an exchange of decoding control between the destination and the nodes.
  • the method determines the sufficient number of retransmission intervals for the destination to decode the source i not yet decoded at the end of the first phase knowing its allocated bit rate:
  • the estimation of the channel between source i and the destination is carried out, for example, on the basis of the reference signals emitted by source i when it transmits during the first phase. As channels are assumed to be invariant during a frame, this value is independent of the transmission or retransmission interval. This knowledge of the quality of the channel between source i and the destination allows the destination to estimate mutual information I id representative of this quality and therefore of the capacity of the channel.
  • the estimation of the channel between the node and the destination is carried out, for example, on the basis of a reference signal emitted by node j during the control exchange during which it transmits its set or a subset of this set of correctly decoded sources.
  • the destination selects, according to the invention, for each retransmission interval t the source i to help.
  • the selection is determined to maximize spectral efficiency.
  • the maximization of spectral efficiency can be expressed in the form of determining the subset A taken from the set of possible subsets A of sources not yet decoded correctly by the destination at the interval preceding the current interval t leading to the greatest sum of the flow rates of the sources and such that the sources of this subset A can be decoded in the remaining time, T av ie such that the time remaining is greater than or equal to the sum of the number of retransmission intervals sufficient to decode each of the sources of this subset A: (22) is called the power play of
  • the nodes having correctly decoded this source i transmit the same redundancy during this interval t to help the decoding of source i by the destination.
  • the destination repeats the transmission of the indication of the selection of the same source i until the destination correctly decodes this source.
  • the number of retransmission intervals elapsed before correct decoding is at most x t (0).
  • the destination if the destination correctly decodes source i before the number Xi(0) of retransmission intervals has elapsed, it recalculates the best subset if and only if the set from which source i is removed does not does not contain all the sources not decoded by deetination otherwise the destination passes to another source in the subset from which the source was previously removed. This case can appear when the set of sources correctly decoded by a node changes to include source i during Xi(0) retransmission intervals.
  • this node becomes active during the transmission at interval l of redundancy for source i which leads to an increase in mutual information If source i is decoded after exactly xi(0) retransmission intervals then the destination passes to another source of the subset from which the source was previously removed.
  • sources 1, 2, 3, 4 and relay 7 have not yet decoded anything correctly at the end of the first phase but as a source knows its own message its game contains at least this message.
  • Relay 5 correctly decoded sources 2 and 3 and relay 6 correctly decoded sources 1, 2 and 3 at the end of the first phase.
  • Destination d has not yet decoded anything correctly and at the end of the first phase.
  • Step 2 The destination determines the estimated number of intervals needed so that the destination decodes a source i not yet decoded on the basis of knowledge of mutual information of the source i destination link and a rate allocated to this source i. The destination therefore calculates x i for all
  • the flow rates R t have the following values:
  • a single exchange of decoding control takes place between the destination and the nodes. During this exchange the nodes transmit their set of sources correctly decoded or only their set of sources correctly decoded but not yet correctly decoded by the destination.
  • Step 5 For a source i not yet decoded by the destination, the destination updates the estimate of x i using the quality of the equivalent channel considered to be the aggregation of channels between the nodes having correctly decoded this source and the destination.
  • Step 7 The set of sources A to be helped at the end of the 1st phase is determined, according to the algorithm in appendix A, by the destination knowing the x ( and the flow rates allocated to the sources.
  • the possible choices for ⁇ that satisfy are: ⁇ 1 ⁇ , ⁇ 2 ⁇ , ⁇ 3 ⁇ , ⁇ 1, 2 ⁇ , ⁇ 1, 3 ⁇ , ⁇ 2, 3 ⁇ .
  • the set which leads to the maximum sum of the flow rates and which is determined according to the algorithm in Appendix A is
  • Step 9 At retransmission interval t, the destination selects source i with the smallest Xi.
  • the destination first selects source 2.
  • Step 10 The process repeats steps 11-20 until source i is correctly decoded by the destination.
  • the destination repeats for source 2 until it has correctly decoded it then repeats for source 3.
  • Step 11 At each retransmission interval t the destination sends back the number of source i to be helped by the nodes.
  • the destination first returns the number 2 as long as this is not correctly decoded then the number 3 as long as this is not correctly decoded.
  • Step 12. The method increments the value of the current retransmission interval, t «- t + 1, decrements the remaining time, T av ⁇ T av — 1 and decrements the value of x t since i was helped once by the nodes.
  • Step 13 If the destination has correctly decoded source i at the current interval then follow steps 14-18.
  • S dl ⁇ 2 ⁇ .
  • Step 14 The source i correctly decoded by the destination is removed from the set ⁇ .
  • Step 15 If the x ( intervals have not been consumed and the set A did not contain all the sources not decoded correctly by the destination (when determining A the sum of the x ( exceeded the remaining time) then the process proceeds through steps 16-17.
  • Step 16 The method determines the set A according to the algorithm in Appendix A with the updated set of sources not decoded correctly by the destination.
  • Step 20 The process loops back to step 8 with ⁇ updated.
  • ie no other source can be decoded in the remaining time.
  • the transmission of the frame is interrupted, there is a decoding fault (outage event) of sources 1 and 4.
  • the process moves on to the transmission of the next frame.
  • the selection of a source in step 9 can be done randomly among the sources of the set ⁇ .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

The present invention relates to a method for transmitting a frame carrying messages for an OMAMRC telecommunication system having N nodes, including M sources si i ∈ {1,..., M} and a destination, where NM ≥ 2. The transmission comprises a maximum number of M + Tmax time intervals per transmitted frame, distributed between a first phase and a second phase. The selection of the sources to be assisted during the second phase takes into account the estimated numbers of retransmission intervals sufficient for the destination to decode the sources not yet correctly decoded and a sum of throughputs assigned to the sources.

Description

DESCRIPTION DESCRIPTION
TITRE : Procédé de transmission et système OMAMRC avec une stratégie de sélection lors de retransmissions tenant compte du débit des sources et d’un unique échange de contrôle Domaine de l’invention TITLE: Transmission method and OMAMRC system with a selection strategy during retransmissions taking into account the flow rate of the sources and a single exchange of control Field of the invention
La présente invention se rapporte au domaine des communications numériques. Au sein de ce domaine, l'invention se rapporte plus particulièrement à la transmission de données codées entre au moins deux sources et une destination avec relayage par au moins un nœud pouvant être un relais ou une source. The present invention relates to the field of digital communications. Within this field, the invention relates more particularly to the transmission of coded data between at least two sources and a destination with relaying by at least one node which can be a relay or a source.
Il est entendu qu’un relais n’a pas de message à transmettre. Un relais est un nœud dédié au relayage des messages des sources tandis qu’une source à son propre message à transmettre et peut en outre dans certain cas relayer les messages des autres sources i.e. la source est dite coopérative dans ce cas. It is understood that a relay does not have a message to transmit. A relay is a node dedicated to relaying messages from sources while a source has its own message to transmit and can also in certain cases relay messages from other sources i.e. the source is called cooperative in this case.
Il existe de nombreuses techniques de relayage connues sous leur appellation anglo-saxonne : « amplify and forward », « decode and forward », « compress-and-forward », « non-orthogonal amplify and forward », « dynamic decode and forward », etc. There are many relaying techniques known by their Anglo-Saxon names: “amplify and forward”, “decode and forward”, “compress-and-forward”, “non-orthogonal amplify and forward”, “dynamic decode and forward” , etc.
L’invention s’applique notamment, mais non exclusivement, à la transmission de données via des réseaux mobiles, par exemple pour des applications temps réel, ou via par exemple des réseaux de capteurs. The invention applies in particular, but not exclusively, to the transmission of data via mobile networks, for example for real-time applications, or via for example sensor networks.
Un tel réseau de capteurs est un réseau multi-utilisateurs, constitué de plusieurs sources, plusieurs relais et un destinataire utilisant un schéma d’accès multiple orthogonal en temps du canal de transmission entre les relais et les sources, noté OMAMRC (« Orthogonal Multiple- Access Multiple-Relay Channel » selon la terminologie anglosaxonne). Such a sensor network is a multi-user network, made up of several sources, several relays and a recipient using an orthogonal multiple access scheme in time of the transmission channel between the relays and the sources, denoted OMAMRC ("Orthogonal Multiple- Access Multiple-Relay Channel” according to Anglo-Saxon terminology).
Art antérieur Prior art
Le système de télécommunication OMAMRC considéré illustré par la figure 1 a N nœuds et une destination avec une mise en œuvre d’un schéma d’accès multiple orthogonal en temps du canal de transmission qui s’applique entre les N nœuds. Les N nœuds comprennent M sources et L relais. Le nombre maximum d’intervalles de temps par trame transmise est de M + Tmax avec M intervalles alloués pendant une première phase à la transmission successive des M sources et TUsed Tmax intervalles pour une ou plusieurs transmissions coopératives alloués pendant une deuxième phase à un ou plusieurs nœuds sélectionnés par la destination selon une stratégie de sélection. The considered OMAMRC telecommunication system illustrated in Figure 1 has N nodes and a destination with an implementation of an orthogonal time multiple access scheme of the transmission channel which applies between the N nodes. The N nodes include M sources and L relays. The maximum number of time intervals per transmitted frame is M + T max with M intervals allocated during a first phase to the successive transmission of M sources and T U sed T max intervals for one or more cooperative transmissions allocated during a second phase to one or more nodes selected by the destination according to a selection strategy.
Un tel système de transmission OMAMRC mettant en œuvre une stratégie de sélection lors de la deuxième phase est connu de l’article de S. Cerovic, R. Visoz, and L. Madier intitulé "Efficient Cooperative HARQ for Multi-Source Multi-Relay Wireless Networks.", 14th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). IEEE, 2018. Le système de transmission OMAMRC décrit est tel que chacune des sources peut fonctionner à des instants différents soit exclusivement comme une source, soit comme un nœud de relayage. La terminologie nœud couvre aussi bien un relais qu’une source agissant comme un nœud de relayage ou comme une source. Un relais se distingue d’une source car il n’a pas de message à transmettre qui lui soit propre i.e. il ne fait que retransmettre des messages provenant d’autres nœuds. Such an OMAMRC transmission system implementing a selection strategy during the second phase is known from the article by S. Cerovic, R. Visoz, and L. Madier entitled "Efficient Cooperative HARQ for Multi-Source Multi-Relay Wireless Networks.", 14th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). IEEE, 2018. The OMAMRC transmission system described is such that each of the sources can operate at different times either exclusively as a source or as a relay node. The node terminology covers both a relay and a source acting as a relay node or as a source. A relay is distinguished from a source because it does not have its own message to transmit, ie it only retransmits messages from other nodes.
Les liens entre les différents nœuds du système sont sujets à des évanouissements lents (slow fading) et à du bruit blanc Gaussien. La connaissance de tous les liens du système (CSI : Channel State Information) par la destination n’est pas disponible. En effet, les liens entre les sources, entre les relais, entre les relais et les sources ne sont pas directement observables par la destination et leur connaissance par la destination nécessiterait un échange d’information trop important entre les sources, les relais et la destination. Pour limiter le coût de la surcharge de la voie de retour (feedback overhead), représentée en pointillés sur la figure 1, seule une information sur la distribution/statistique des canaux (CDI : Channel Distribution Information) de tous les liens, e.g. qualité moyenne (par exemple SNR moyen, SINR moyen) de tous les liens, est supposée connue par la destination dans le but de déterminer les débits alloués aux sources. The links between the different nodes of the system are subject to slow fading and white Gaussian noise. Knowledge of all system links (CSI: Channel State Information) by the destination is not available. Indeed, the links between the sources, between the relays, between the relays and the sources are not directly observable by the destination and their knowledge by the destination would require too much exchange of information between the sources, the relays and the destination . To limit the cost of feedback channel overhead, shown in dotted lines in Figure 1, only information on the channel distribution/statistics (CDI: Channel Distribution Information) of all links, e.g. average quality (for example average SNR, average SINR) of all links, is assumed to be known by the destination in order to determine the flow rates allocated to the sources.
L’adaptation de lien est dit de type lent c’est-à-dire qu’avant toute transmission, la destination alloue des débits initiaux aux sources connaissant la distribution de tous les canaux (CDI: Channel Distribution Information). En général, il est possible de remonter à la distribution CDI sur la base de la connaissance du SNR ou SINR moyen de chaque lien du système. Link adaptation is said to be slow, meaning that before any transmission, the destination allocates initial flow rates to sources knowing the distribution of all channels (CDI: Channel Distribution Information). In general, it is possible to trace the CDI distribution based on knowledge of the average SNR or SINR of each link in the system.
Les transmissions des messages des sources sont formatées en trames pendant lesquelles les CSI des liens sont supposés constants (hypothèse d’évanouissements lents). L’allocation de débit est supposée ne pas changer pendant plusieurs centaines de trames, elle change uniquement avec les changements de CDI. The transmissions of messages from the sources are formatted in frames during which the CSI of the links are assumed to be constant (slow fading hypothesis). The rate allocation is assumed not to change for several hundred frames, it only changes with CDI changes.
Le procédé distingue trois phases, une phase initiale et, pour chaque trame à transmettre, une 1ère phase et une 2nde phase. La transmission d’une trame se déroule en deux phases qui sont éventuellement précédées d’une phase additionnelle dite initiale. The method distinguishes three phases, an initial phase and, for each frame to be transmitted, a 1st phase and a 2nd phase. The transmission of a frame takes place in two phases which are possibly preceded by an additional phase called initial.
Lors de la phase d’initialisation, la destination détermine un débit initial Ri pour chaque source S[ en prenant en compte la qualité (par exemple SNR) moyenne de chacun des liens du système. La destination estime la qualité (par exemple SNR) des liens directs : source vers destination et relais vers destination selon des techniques connues basées sur l’exploitation de signaux de référence. La qualité des liens source - source, relais - relais et source - relais est estimée par les sources et les relais en exploitant par exemple les signaux de référence. Les sources et les relais transmettent à la destination les qualités moyennes des liens. Cette transmission intervient avant la phase d’initialisation. Seule la valeur moyenne de la qualité d’un lien étant prise en compte, son rafraîchissement intervient à une échelle de temps longue c’est-à-dire sur un temps qui permet de moyenner les variations rapides (fast fading) du canal. Ce temps est de l’ordre du temps nécessaire pour parcourir plusieurs dizaines de longueur d’onde de la fréquence du signal transmis pour une vitesse donnée d’un nœud du système. La phase d’initialisation intervient par exemple toutes les 200 à 1000 trames. La destination remonte aux sources via une voie de retour les débits initiaux qu’elle a déterminés. Les débits initiaux restent constants entre deux occurrences de la phase d’initialisation. During the initialization phase, the destination determines an initial rate Ri for each source S[ taking into account the average quality (for example SNR) of each of the links in the system. The destination estimates the quality (for example SNR) of the direct links: source to destination and relay to destination according to known techniques based on the exploitation of reference signals. The quality of the source - source, relay - relay and source - relay links is estimated by the sources and the relays by using, for example, the reference signals. Sources and relays transmit to the destination the average qualities of the links. This transmission occurs before the initialization phase. Only the average value of the quality of a link being taken into account, its refreshing takes place on a long time scale, that is to say over a time which makes it possible to average out the rapid variations (fast fading) of the channel. This time is of the order of the time necessary to travel several tens of wavelengths of the frequency of the transmitted signal for a given speed of a node of the system. The initialization phase occurs for example every 200 to 1000 frames. The destination goes back to the sources via a return path the initial flow rates it has determined. The initial flow rates remain constant between two occurrences of the initialization phase.
Lors de la première phase, les M sources transmettent successivement leur message pendant les M intervalles de temps (time-slots) en utilisant respectivement des schémas de modulation et de codage déterminés à partir des débits initiaux. Pendant cette phase, le nombre d’utilisations du canal (channel use i.e. ressource element selon la terminologie du 3GPP) est fixe et identique pour chacune des sources. During the first phase, the M sources successively transmit their message during the M time intervals (time-slots) respectively using modulation and coding schemes determined from the initial bit rates. During this phase, the number of channel uses (channel use i.e. resource element according to 3GPP terminology) is fixed and identical for each source.
Les sources indépendantes entre elles diffusent pendant la première phase leurs séquences d'informations codées sous forme de messages à l'attention d’un seul destinataire. Chaque source diffuse ses messages avec son débit initial. La destination communique à chaque source son débit initial via des canaux de contrôle à débit très limité. Ainsi, pendant la première phase, les sources transmettent chacune à leur tour leur message respectif pendant des intervalles de temps « time-slot » dédiés chacun à une source. During the first phase, the independent sources broadcast their coded information sequences in the form of messages to a single recipient. Each source broadcasts its messages with its initial rate. The destination communicates to each source its initial rate via very limited rate control channels. Thus, during the first phase, the sources each in turn transmit their respective message during “time-slot” intervals each dedicated to a source.
Les sources autres que celle qui émet et éventuellement les relais, de type « Half Duplex » reçoivent les messages successifs des sources et les décodent. Sources other than the one which transmits and possibly the relays, of the “Half Duplex” type, receive successive messages from the sources and decode them.
Lors de la deuxième phase, la destination sélectionne pour l’intervalle courant t un seul nœud pris parmi les sources et les relais pour coopérer. Ce nœud sélectionne de manière aléatoire la source qu’il aide parmi celle qu’il a correctement décodé et que la destination n’a pas encore décodé correctement en transmettant une redondance du message de cette source. During the second phase, the destination selects for the current interval t a single node taken from the sources and the relays to cooperate. This node randomly selects the source it helps from among the one it has correctly decoded and the destination has not yet decoded correctly by transmitting a redundancy of the message from this source.
Cette phase dure au maximum Tmax intervalles de temps (time-slots). Pendant cette phase, le nombre N2 d’utilisations du canal (channel use) est fixe et identique pour chacun des nœuds (sources et relais) sélectionné. This phase lasts at most T max time intervals (time-slots). During this phase, the number N 2 of channel uses is fixed and identical for each of the nodes (sources and relays) selected.
Cet article enseigne des signaux de contrôle qui consistent, pour la destination à diffuser M bits qui indiquent son jeu de sources correctement décodées à l’intervalle t — 1, pour les nœuds qui ont correctement décodé une source que la destination n’a pas encore correctement décodé à transmettre un signal sur un canal dédié unicast et pour les autres à rester silencieux et enfin pour la destination à diffuser le résultat de sa sélection selon la stratégie de sélection retenue. Bien que ces échanges limitent la surcharge liée à la signalisation tout en permettant une maximisation de l’efficacité spectrale moyenne (métrique d’utilité) au sein du système considéré sous-contrainte de respecter une qualité de service individuelle (QoS) par source, il peut être souhaitable de limiter encore plus la surcharge de signalisation. This article teaches control signals which consist, for the destination of broadcasting M bits which indicate its set of correctly decoded sources at the interval t — 1, for the nodes which have correctly decoded a source which the destination does not yet have correctly decoded to transmit a signal on a dedicated unicast channel and for the others to remain silent and finally for the destination to broadcast the result of its selection according to the selected selection strategy. Although these exchanges limit the overhead linked to signaling while allowing maximization of the average spectral efficiency (utility metric) within the system considered under-constrained to respect an individual quality of service (QoS) per source, it may be desirable to further limit the signaling overhead.
La présente invention répond à cet objectif. The present invention meets this objective.
Caractéristiques principales de l’invention Main characteristics of the invention
La présente invention a pour objet un procédé de transmission d’une trame transportant des messages destiné à un système de télécommunication OMAMRC à M sources ,
Figure imgf000005_0003
éventuellement L relais et une destination,
Figure imgf000005_0002
0, les nœuds fonctionnant en
Figure imgf000005_0001
mode half-duplex, selon un schéma d’accès multiple orthogonal du canal de transmission entre les N nœuds avec un nombre maximum de M + Tmax intervalles de temps par trame transmise répartis entre une lere phase et une 2nde phase, 1 ≤ Tmax, le message d’une source ayant été codé avant transmission selon un codage de type à redondance incrémental qui génère plusieurs redondances, la 1ere phase comprend M intervalles alloués respectivement aux transmissions successives des M sources et la 2nde phase comprend au moins un intervalle de retransmission pour une transmission de nœuds ayant décodés correctement une même source si telle que ces nœuds transmettent simultanément pendant le même intervalle de retransmission la même redondance du message d’une même source non encore correctement décodée par la destination, dite source à aider. Le procédé selon l’invention est tel qu’il comprend : une unique transmission par les nœuds d’au moins leur jeu de sources correctement décodées et non encore correctement décodées par la destination, ces transmissions permettant à la destination de déterminer, pour chacune de ces sources, une qualité d’un canal équivalent basée sur une qualité des canaux entre les nœuds ayant correctement décodés cette source et la destination, une estimation d’un nombre d’intervalles de retransmission suffisant (xi(0)) pour que la destination décode une source (Si) non encore correctement décodée et correctement décodées par au moins un nœud sur la base de la qualité d’un canal équivalent pour cette source entre ce au moins un nœud et la destination et d’un débit (Ri) attribué à cette source (Si), une sélection par la destination des sources à aider en tenant compte des nombres (xi(0)) estimés d’intervalles de retransmission suffisant pour que la destination décode les sources non encore correctement décodées et d’une somme de débits (R i) attribués aux sources.
The subject of the present invention is a method of transmitting a frame carrying messages intended for an OMAMRC telecommunications system with M sources,
Figure imgf000005_0003
possibly L relay and a destination,
Figure imgf000005_0002
0, the nodes operating in
Figure imgf000005_0001
half-duplex mode, according to an orthogonal multiple access scheme of the transmission channel between the N nodes with a maximum number of M + T max time intervals per transmitted frame distributed between a 1st phase and a 2nd phase, 1 ≤ T max , the message from a source having been coded before transmission according to incremental redundancy type coding which generates several redundancies, the 1st phase comprises M intervals allocated respectively to the successive transmissions of the M sources and the 2nd phase comprises at least a retransmission interval for a transmission of nodes having correctly decoded the same source s i such that these nodes transmit simultaneously during the same retransmission interval the same redundancy of the message from the same source not yet correctly decoded by the destination, called source to help. The method according to the invention is such that it comprises: a single transmission by the nodes of at least their set of sources correctly decoded and not yet correctly decoded by the destination, these transmissions allowing the destination to determine, for each of these sources, a quality of an equivalent channel based on a quality of the channels between the nodes having correctly decoded this source and the destination, an estimate of a sufficient number of retransmission intervals (x i (0)) so that the destination decodes a source (Si) not yet correctly decoded and correctly decoded by at least one node on the basis of the quality of an equivalent channel for this source between this at least one node and the destination and a bit rate (R i ) assigned to this source (S i ), a selection by the destination of the sources to be helped taking into account the estimated numbers (x i (0)) of retransmission intervals sufficient for the destination to decode the sources not yet correctly decoded and a sum of flow rates (R i ) attributed to the sources.
Ainsi, le nombre d’échange de contrôle entre la source et les nœuds est réduit à un seul échange au cours duquel les nœuds communiquent à la destination leur jeu de sources correctement décodées. Si la destination a préalablement communiqué son propre jeu de sources correctement décodées, la transmission par les nœuds peut ne contenir que leur jeu de sources correctement décodées moins celles déjà décodées correctement par la destination. La transmission des nœuds permet à la destination d’évaluer la qualité des canaux nœuds-destination pour estimer par source un nombre suffisant d’intervalles de retransmission pour que la destination décode correctement cette source. Connaissant ces nombres d’intervalles suffisant, la destination peut alors sélectionner successivement les sources à aider soit de manière aléatoire, soit de manière ordonnée parmi celles dont le nombre d’intervalles suffisant est inférieur au temps restant avant d’atteindre Tmax. L’ordonnancement peut se faire en sélectionnant successivement les sources en fonction des nombres croissants d’intervalles suffisant. L’invention a pour avantage de ne pas gaspiller de transmission si aucune source ne peut être aider dans le temps restant. L’invention a en outre pour objet, un système comprenant M sources ... , sM, éventuellement L relais et une destination d, M ≥ 2, L ≥ 0, pour une mise en œuvre d’un procédé de transmission selon l’invention. Thus, the number of control exchanges between the source and the nodes is reduced to a single exchange during which the nodes communicate their set of correctly decoded sources to the destination. If the destination has previously communicated its own correctly decoded source set, the transmission by the nodes may contain only their correctly decoded source set decoded minus those already decoded correctly by the destination. The transmission of the nodes allows the destination to evaluate the quality of the node-destination channels to estimate per source a sufficient number of retransmission intervals for the destination to correctly decode this source. Knowing these sufficient numbers of intervals, the destination can then successively select the sources to help either randomly or in an ordered manner among those whose sufficient number of intervals is less than the time remaining before reaching T max . Scheduling can be done by successively selecting the sources according to increasing numbers of sufficient intervals. The invention has the advantage of not wasting transmission if no source can be helped in the remaining time. The invention further relates to a system comprising M sources..., s M , possibly L relays and a destination d, M ≥ 2, L ≥ 0, for implementing a transmission method according to 'invention.
Selon un mode de réalisation de l’invention, l’unique transmission par les nœuds d’au moins leur jeu de sources correctement décodées et non encore correctement décodées par la destination est réalisée au début de la 2nde phase. According to one embodiment of the invention, the sole transmission by the nodes of at least their set of correctly decoded sources and not yet correctly decoded by the destination is carried out at the start of the 2nd phase.
Selon un mode de réalisation de l’invention, le procédé comprend en outre une comparaison entre une somme de nombres estimés d’intervalles de retransmission suffisant pour aider la destination à décoder des sources non encore correctement décodées et un nombre d’intervalles de temps restant pendant la 2nde phase pour aider la destination à décoder correctement une ou plusieurs sources. According to one embodiment of the invention, the method further comprises a comparison between a sum of estimated numbers of retransmission intervals sufficient to help the destination decode sources not yet correctly decoded and a number of remaining time intervals during the 2nd phase to help the destination correctly decode one or more sources.
Selon ce mode, le procédé additionne au moins deux nombres estimés d’intervalles de retransmission suffisant et compare le résultat au temps restant. Si le résultat de l’addition est inférieur au temps restant, toutes les sources intervenant dans l’addition peuvent être aidées pendant la 2nde phase. According to this mode, the method adds at least two estimated numbers of sufficient retransmission intervals and compares the result to the remaining time. If the result of the addition is less than the remaining time, all sources involved in the addition can be helped during the 2nd phase.
Selon un mode de réalisation de l’invention, la comparaison est mise à jour après le décodage correct d’une source par la destination. According to one embodiment of the invention, the comparison is updated after the correct decoding of a source by the destination.
Comme le décodage correct par la destination d’une source peut intervenir avant la fin du nombre estimé d’intervalles de retransmission suffisant (transmissions coopératives), ce mode permet à une autre source à aider de bénéficier du temps non consommé. As the correct decoding by the destination of a source can occur before the end of the estimated number of sufficient retransmission intervals (cooperative transmissions), this mode allows another source to help to benefit from the unused time.
Selon un mode de réalisation de l’invention, l’unique transmission par les nœuds d’au moins leur jeu de sources correctement décodées et non encore correctement décodées par la destination fait partie d’un échange de contrôle au cours duquel la source transmet son jeu de sources correctement décodées. Selon un mode de réalisation de l’invention, le procédé est tel qu’au cours de l’échange, un nœud envoie uniquement son jeu de sources correctement décodées et non encore correctement décodées par la destination. According to one embodiment of the invention, the unique transmission by the nodes of at least their set of sources correctly decoded and not yet correctly decoded by the destination is part of a control exchange during which the source transmits its correctly decoded source set. According to one embodiment of the invention, the method is such that during the exchange, a node only sends its set of correctly decoded sources and not yet correctly decoded by the destination.
Selon un mode de réalisation de l’invention, le procédé est tel qu’au cours de l’échange, un nœud envoie son jeu de sources correctement décodées. According to one embodiment of the invention, the method is such that during the exchange, a node sends its set of correctly decoded sources.
Selon un mode de réalisation de l’invention, le procédé comprend en outre une comparaison entre les nombres estimés d’intervalles de retransmission suffisant pour que la sélection tienne compte d’un ordonnancement de ces nombres estimés d’intervalles de retransmission suffisant. Selon ce mode, les nombres estimés d’intervalles de retransmission suffisant sont classés selon leur valeur. Et, de préférence, le procédé sélectionne d’abord la source pour laquelle le nombre estimé d’intervalles de retransmission suffisant est le plus petit. La même source est aidée pendant la durée correspondant à ce nombre estimé ou pendant une durée plus courte si son décodage correct par la destination intervient avant la fin du nombre estimé. Le procédé considère ainsi successivement les sources restant à décoder correctement. Le procédé est stoppé lorsque toutes les sources sont correctement décodées par la destination, lorsqu’aucune source non encore correctement décodée ne peut être aidée ou lorsque le temps maximal est atteint. According to one embodiment of the invention, the method further comprises a comparison between the estimated numbers of retransmission intervals sufficient for the selection to take into account an ordering of these estimated numbers of retransmission intervals sufficient. According to this mode, the estimated numbers of sufficient retransmission intervals are classified according to their value. And, preferably, the method first selects the source for which the estimated number of sufficient retransmission intervals is the smallest. The same source is aided for the duration corresponding to this estimated number or for a shorter duration if its correct decoding by the destination occurs before the end of the estimated number. The method thus successively considers the sources remaining to be correctly decoded. The process is stopped when all sources are correctly decoded by the destination, when no source not yet correctly decoded can be helped or when the maximum time is reached.
Selon un mode de réalisation de l’invention, le procédé comprend en outre une détermination d’un ensemble de sources pouvant être aidées tenant compte des nombres estimés d’intervalles de retransmission suffisant et d’un temps restant avant la fin de la 2nde phase et tel que la sélection des sources à aider se fait de manière aléatoire parmi l’ensemble des sources pouvant être aidées. According to one embodiment of the invention, the method further comprises a determination of a set of sources that can be helped taking into account the estimated numbers of sufficient retransmission intervals and a time remaining before the end of the 2nd phase and such that the selection of sources to help is done randomly among all the sources that can be helped.
Selon un mode de réalisation de l’invention, le procédé est tel que si aucune source ne peut être aidée dans le temps restant avant la fin de la 2nde phase alors la transmission de la trame est interrompue avant l’utilisation du nombre maximal d’intervalles de retransmission suffisant L’invention a en outre pour objet chacune des applications logicielles spécifiques sur un ou plusieurs supports d'information, lesdites applications comportant des instructions de programme adaptées à la mise en œuvre du procédé de transmission lorsque ces applications sont exécutées par des processeurs. According to one embodiment of the invention, the method is such that if no source can be helped in the time remaining before the end of the 2nd phase then the transmission of the frame is interrupted before the use of the maximum number of sufficient retransmission intervals The invention further relates to each of the specific software applications on one or more information media, said applications comprising program instructions adapted to the implementation of the transmission method when these applications are executed by processors.
L’invention a en outre pour objet des mémoires configurées comportant des codes d’instructions correspondant respectivement à chacune des applications spécifiques. The invention further relates to configured memories comprising instruction codes corresponding respectively to each of the specific applications.
La mémoire peut être incorporée dans n'importe quelle entité ou dispositif capable de stocker le programme. La mémoire peut-être de type ROM, par exemple un CD ROM ou une ROM de circuit microélectronique, ou encore de type magnétique, par exemple une clé USB ou un disque dur. D'autre part, chaque application spécifique selon l'invention peut être téléchargée depuis un serveur accessible sur un réseau de type Internet. Memory can be incorporated into any entity or device capable of storing the program. The memory may be of the ROM type, for example a CD ROM or a microelectronic circuit ROM, or of the magnetic type, for example a USB key or a hard disk. On the other hand, each specific application according to the invention can be downloaded from a server accessible on an Internet type network.
Les caractéristiques optionnelles présentées ci-dessus dans le cadre du procédé de transmission peuvent éventuellement s’appliquer à l’application logicielle et à la mémoire ci-dessus évoquées. The optional characteristics presented above as part of the transmission process may possibly apply to the software application and the memory mentioned above.
Liste des figures List of Figures
D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante de modes de réalisation, donnés à titre de simples exemples illustratifs et non limitatifs, et des dessins annexés, parmi lesquels : Other characteristics and advantages of the invention will appear more clearly on reading the following description of embodiments, given by way of simple illustrative and non-limiting examples, and the appended drawings, among which:
[Fig 1] la figure 1 est un schéma d’un exemple de système dit Coopérative OMAMRC (Orthogonal Multiple Access Multiple Relays Channel) décrit en regard de l’art antérieur, [Fig 2] la figure 2 est un schéma d’un cycle de transmission d’une trame selon un exemple de mise en œuvre de l’invention, [Fig 1] Figure 1 is a diagram of an example of a so-called OMAMRC Cooperative system (Orthogonal Multiple Access Multiple Relays Channel) described with regard to the prior art, [Fig 2] Figure 2 is a diagram of a cycle transmission of a frame according to an example of implementation of the invention,
[Fig 3] la figure 3 est un schéma du protocole des échanges de contrôle de décodage entre la destination et les nœuds, sources et relais, selon un mode de réalisation de l’invention. [Fig 3] Figure 3 is a diagram of the protocol for decoding control exchanges between the destination and the nodes, sources and relays, according to one embodiment of the invention.
Description de modes de réalisation particuliers Description of particular embodiments
Une utilisation du canal (channel use) est la plus petite granularité en ressource temps -fréquence définit par le système qui permet la transmission d’un symbole modulé. Le nombre d’utilisations du canal est lié à la bande de fréquence disponible et à la durée de transmission. Un système OMAMRC est illustré par la figure 1 déjà décrite. A channel use is the smallest granularity in time-frequency resource defined by the system which allows the transmission of a modulated symbol. The number of uses of the channel is linked to the available frequency band and the transmission duration. An OMAMRC system is illustrated by Figure 1 already described.
Un système OMAMRC selon l’invention comprend M sources qui appartiennent au jeu de sources , éventuellement L relais qui appartiennent au jeu de relais
Figure imgf000008_0001
Figure imgf000008_0004
Figure imgf000008_0002
et une destination d. Par convention, il est considéré que et
Figure imgf000008_0005
dit autrement, on peut confondre une source et son indice, et un relais
Figure imgf000008_0003
et son indice (décalé de la valeur M du nombre de sources). Chaque source du jeu 5 communique avec l’unique destination avec l’aide des autres sources (user cooperation) et des relais qui coopèrent.
An OMAMRC system according to the invention comprises M sources which belong to the set of sources, possibly L relays which belong to the set of relays
Figure imgf000008_0001
Figure imgf000008_0004
Figure imgf000008_0002
and a destination d. By convention, it is considered that and
Figure imgf000008_0005
in other words, we can confuse a source and its index, and a relay
Figure imgf000008_0003
and its index (shifted from the value M of the number of sources). Each source of game 5 communicates with the single destination with the help of other sources (user cooperation) and relays which cooperate.
Cycle de transmission d’une trame selon l’invention Transmission cycle of a frame according to the invention
Un cycle de transmission d’une trame selon un exemple de mise en œuvre de l’invention est illustré par la figure 2. A transmission cycle of a frame according to an example of implementation of the invention is illustrated in Figure 2.
Le procédé selon l’invention distingue deux phases pour chaque trame à transmettre, une lere phase et une 2nde phase. La transmission d’une trame est éventuellement précédée d’une phase additionnelle dite initiale au cours de laquelle sont alloués les débits. The method according to the invention distinguishes two phases for each frame to be transmitted, a 1st phase and a 2nd phase. The transmission of a frame is possibly preceded by an additional so-called initial phase during which the flow rates are allocated.
Les M sources accèdent au canal de transmission selon un schéma d’accès multiple orthogonal en temps pendant la 1ere phase. Pendant la 2nde phase, l’accès au canal de transmission des N nœuds qui comprennent les M sources et éventuellement les L relais est considéré comme orthogonal car à chaque intervalle de retransmission les nœuds actifs transmettent en parallèle une même redondance d’un même message d’une même source i. The M sources access the transmission channel according to an orthogonal time multiple access scheme during the 1st phase. During the 2nd phase, access to the transmission channel of N nodes which include the M sources and possibly the L relays is considered orthogonal because at each retransmission interval the active nodes transmit in parallel the same redundancy of the same message from the same source i.
Les N nœuds fonctionnent selon un mode half-duplex qui leur permet d’écouter sans interférence les transmissions des autres nœuds. Les sources peuvent se comporter comme un relais quand elles n’émettent pas uniquement leur propre message. The N nodes operate in a half-duplex mode which allows them to listen to transmissions from other nodes without interference. Sources can behave like a relay when they do not only send their own message.
Les CSI des liens sont supposés constants (hypothèse d’évanouissements lents) pendant la transmission d’une trame. De temps en temps, la destination alloue des débits aux sources connaissant la distribution de tous les canaux (CDI: Channel Distribution Information). L’allocation de débits est supposée ne pas changer pendant plusieurs centaines de trames, elle change uniquement avec les changements de CDI. The CSI of the links are assumed to be constant (slow fading hypothesis) during the transmission of a frame. From time to time, the destination allocates flow rates to sources knowing the distribution of all channels (CDI: Channel Distribution Information). The rate allocation is assumed not to change for several hundred frames, it only changes with CDI changes.
Chacun des débits alloués détermine de manière non ambiguë un schéma de modulation et de codage (MCS, Modulation and Coding Scheme) et inversement chaque MCS détermine un débit. La remontée des débits alloués est effectuée depuis la destination vers les sources via des canaux de contrôle à débit très limité (représentés en traits pointillés sur la figure 1). Each of the allocated rates determines in an unambiguous manner a modulation and coding scheme (MCS, Modulation and Coding Scheme) and conversely each MCS determines a rate. The allocated flow rates are reported from the destination to the sources via very limited flow control channels (shown in dotted lines in Figure 1).
A titre de simplification de la description, les suppositions suivantes sont faites par la suite sur le système OMAMRC : To simplify the description, the following assumptions are subsequently made on the OMAMRC system:
- les sources, les relais et la destination sont équipés d’une seule antenne d’émission (ou port d’antenne d’émission) ; - the sources, relays and destination are equipped with a single transmitting antenna (or transmitting antenna port);
- les sources, les relais et la destination sont équipés d’une seule antenne de réception (ou port d’antenne de réception) ; - the sources, relays and destination are equipped with a single reception antenna (or reception antenna port);
- les sources, les relais et la destination sont parfaitement synchronisés ; - sources, relays and destination are perfectly synchronized;
- les sources sont statistiquement indépendantes (il n'y a pas de corrélation entre elles) ;- the sources are statistically independent (there is no correlation between them);
- tous les nœuds émettent avec une même puissance ; - all nodes transmit with the same power;
- il est fait usage d’un code CRC supposé inclus dans les Ki bits d’information de chaque source i pour déterminer si le message associé aux bits d’information est correctement décodé ou pas,
Figure imgf000009_0001
- use is made of a supposed CRC code included in the K i information bits of each source i to determine whether the message associated with the information bits is correctly decoded or not,
Figure imgf000009_0001
- les liens entre les différents nœuds souffrent de bruit additif et d’évanouissement. Les gains d’évanouissement sont fixes pendant la transmission d’une trame effectuée pendant une durée maximale de M + Tmax intervalles de temps, mais peuvent changer indépendamment d’une trame à une autre. Tmax ≥ 1 est un paramètre du système ; - the links between the different nodes suffer from additive noise and fading. The fading gains are fixed during the transmission of a frame carried out for a maximum of M + T max time intervals, but can change independently from one frame to another. T max ≥ 1 is a system parameter;
- la qualité instantanée d’un canal/lien direct en réception (CSIR Channel State Information at Receiver) est disponible à la destination, aux sources et aux relais ; - the instantaneous quality of a channel/direct link in reception (CSIR Channel State Information at Receiver) is available at the destination, sources and relays;
- les retours sont sans erreur (pas d’erreur sur les signaux/canaux de contrôle). - returns are error-free (no error on control signals/channels).
Les notations suivantes sont utilisées : •
Figure imgf000010_0001
est une variable discrète représentant le débit de la source ^^ fourni par un procédé d’adaptation de lien mis en œuvre avant la transmission des trames, • est le nombre d’intervalles de retransmission utilisés pendant la 2nde phase,
Figure imgf000010_0007
Figure imgf000010_0002
il correspond au nombre de transmissions pendant cette phase, •
Figure imgf000010_0003
1 est le rapport entre le nombre d’utilisations du canal disponibles à chaque intervalle de temps (slots) de la 2nde phase et le nombre d’utilisations du canal disponibles à chaque intervalle de temps (slots) de la 1ère phase, • est le jeu de sources non correctement décodées par la destination à l’issue de l’intervalle de retransmission
Figure imgf000010_0004
• est le jeu de sources correctement décodées par le nœud
Figure imgf000010_0016
à l’issue de l’intervalle de retransmission
Figure imgf000010_0005
• est l’indicateur de défaut (outage) qui prend la valeur un quand un événement de défaut individuel intervient et la valeur zéro dans les autres cas. représente l’événement de
Figure imgf000010_0006
défaut de la source
Figure imgf000010_0019
i.e. la source n’est pas décodée correctement à l’issue de l’envoi d’une trame compte tenu que le nombre maximum d’intervalles de retransmission
Figure imgf000010_0017
a été atteint sans que cette source ^^ soit correctement décodée. L’événement de défaut individuelle O ^^, ^^ dépend à chaque intervalle de retransmission
Figure imgf000010_0021
(slot) de l’information mutuelle des nœuds ayant correctement décodés la source
Figure imgf000010_0020
, • représente l’information mutuelle entre la source
Figure imgf000010_0008
et la destination ^^, • représente l’information mutuelle entre l’ensemble des nœuds aidant la source ^^ et la destination à l’intervalle de retransmission ^^ (il est considéré un canal équivalent formé des différents canaux entre ces nœuds et la destination). Par convention,
Figure imgf000010_0009
est égal à
Figure imgf000010_0010
Transmission d’une trame selon l’invention Pendant la première phase du procédé, les sources
Figure imgf000010_0011
transmettent successivement après codage leur message
Figure imgf000010_0022
comportant
Figure imgf000010_0015
bits d’information
Figure imgf000010_0012
étant le corps de Galois à deux éléments. Le message ^^ comprend un code de type CRC qui permet de vérifier l’intégrité
Figure imgf000010_0013
Figure imgf000010_0018
du message
Figure imgf000010_0014
Le message
Figure imgf000010_0023
est codé selon le MCS déterminé par le débit alloué. Compte tenu que les MCS peuvent être différents entre les sources, les longueurs des messages codés peuvent être différentes entre les sources. Le codage utilise un code de type à redondance incrémentale. Le mot de code obtenu est segmenté en redondances successives. Le code à redondance incrémentale peut être de type systématique, les bits d’information sont alors inclus dans la première redondance. Que le code à redondance incrémentale soit ou pas de type systématique, il est tel que la première redondance peut être décodée de manière indépendante des autres redondances. Le code de type à redondance incrémentale peut être réalisé par exemple au moyen d'une famille finie de codes linéaires poinçonnés à rendements compatibles ou de codes sans rendement modifiés pour fonctionner avec des longueurs finies : code raptor (RC), turbo code poinçonné de rendement compatible (RCPTC rate compatible punctured turbo code), code convolutionnel poinçonné de rendement compatible (RCPCC rate compatible punctured convolutional code), LDPC de rendement compatible (RCLDPC rate compatible low density parity check code).
The following notations are used: •
Figure imgf000010_0001
is a discrete variable representing the source rate ^^ provided by a link adaptation process implemented before the transmission of the frames, • is the number of retransmission intervals used during the 2nd phase,
Figure imgf000010_0007
Figure imgf000010_0002
it corresponds to the number of transmissions during this phase, •
Figure imgf000010_0003
1 is the ratio between the number of channel uses available at each time interval (slots) of the 2nd phase and the number of channel uses available at each time interval (slots) of the 1st phase, • is the set of sources not correctly decoded by the destination at the end of the retransmission interval
Figure imgf000010_0004
• is the set of sources correctly decoded by the node
Figure imgf000010_0016
at the end of the retransmission interval
Figure imgf000010_0005
• is the fault indicator (outage) which takes the value one when an individual fault event occurs and the value zero in other cases. represents the event of
Figure imgf000010_0006
source defect
Figure imgf000010_0019
ie the source is not decoded correctly after sending a frame given that the maximum number of retransmission intervals
Figure imgf000010_0017
was reached without this source ^^ being correctly decoded. The individual fault event O ^^, ^^ depends on each retransmission interval
Figure imgf000010_0021
(slot) of the mutual information of the nodes having correctly decoded the source
Figure imgf000010_0020
, • represents the mutual information between the source
Figure imgf000010_0008
and the destination ^^, • represents the mutual information between all the nodes helping the source ^^ and the destination at the retransmission interval ^^ (it is considered an equivalent channel formed by the different channels between these nodes and the destination). By convention,
Figure imgf000010_0009
is equal to
Figure imgf000010_0010
Transmission of a frame according to the invention During the first phase of the process, the sources
Figure imgf000010_0011
successively transmit their message after coding
Figure imgf000010_0022
comprising
Figure imgf000010_0015
information bits
Figure imgf000010_0012
being the two-element Galois body. The message ^^ includes a CRC type code which allows the integrity to be checked
Figure imgf000010_0013
Figure imgf000010_0018
of the message
Figure imgf000010_0014
The message
Figure imgf000010_0023
is coded according to the MCS determined by the allocated bit rate. Given that MCSs may be different between sources, the lengths of encoded messages may be different between sources. The encoding uses incremental redundancy type code. The codeword obtained is segmented into successive redundancies. The incremental redundancy code can be of systematic type, the information bits are then included in the first redundancy. Whether or not the incremental redundancy code is of systematic type, it is such that the first redundancy can be decoded independently of the other redundancies. The incremental redundancy type code can be produced for example at means of a finite family of punctured linear codes with compatible efficiency or codes without efficiency modified to operate with finite lengths: raptor code (RC), punctured turbo code with compatible efficiency (RCPTC rate compatible punctured turbo code), punctured convolutional code compatible yield (RCPCC rate compatible punctured convolutional code), LDPC compatible yield (RCLDPC rate compatible low density parity check code).
La transmission par une source comprend de manière classique un ou plusieurs signaux de référence. La destination estime de manière connue le canal et donc sa qualité entre chacune des sources et la destination en exploitant par exemple le ou les signaux de référence reçus. Transmission by a source conventionally comprises one or more reference signals. The destination estimates the channel and therefore its quality between each of the sources and the destination in a known manner by using, for example, the reference signal(s) received.
Que ce soit pendant la première phase ou la deuxième phase, lorsqu’un nœud transmet, en particulier une source, la destination et les autres nœuds écoutent. Whether during the first phase or the second phase, when a node transmits, especially a source, the destination and other nodes listen.
La destination, les sources et les relais tentent de décoder les redondances reçues à la fin d’un intervalle de temps. Le succès du décodage à chaque nœud est décidé en utilisant le CRC. La destination et les nœuds déterminent ainsi leur jeu de sources correctement décodés à chaque intervalle. The destination, sources and relays attempt to decode the redundancies received at the end of a time interval. Decoding success at each node is decided using the CRC. The destination and the nodes thus determine their correctly decoded set of sources at each interval.
La 2nde phase de transmission du procédé comprend t = {1, ... , Tused] intervalles de retransmission avec pour convention que t = 0 correspond au dernier intervalle de transmission de la première phase. Le terme retransmission associé à un intervalle est utilisé en lien avec la 2nde phase pour indiquer clairement que toute transmission pendant cette phase d’une nieme redondance du message d’une source i intervient alors que cette source t a déjà transmis la lere redondance de ce même message lors de la lere phase. The 2nd transmission phase of the method includes t = {1, ..., T used ] retransmission intervals with the convention that t = 0 corresponds to the last transmission interval of the first phase. The term retransmission associated with an interval is used in connection with the 2nd phase to clearly indicate that any transmission during this phase of an nth redundancy of the message from a source i occurs while this source has already transmitted the 1st redundancy of this same message during the first phase.
Contrairement à l’art antérieur, il n’y a pas à chaque intervalle de retransmission d’échange de contrôle de décodage entre la destination et les nœuds : la destination ne remonte pas systématiquement à chaque intervalle de retransmission son jeu de sources correctement décodées ni d’indication sur un décodage correct ou pas, les nœuds ne transmettent pas systématiquement à chaque intervalle de retransmission leur jeu de sources correctement décodées ni d’indication sur leur décodage correct ou pas. L’échange de contrôle de décodage pour une mise à jour de la connaissance par la destination des jeux de sources correctement décodées par les nœuds intervient uniquement lorsque t = 1, c’est-à-dire au début de la seconde phase. Cet échange peut intervenir de manière équivalente à la fin de la première phase. Lors de cet échange les nœuds transmettent à la destination leur jeu de sources correctement décodées ou au moins leur jeu de sources correctement décodées et non encore décodées correctement par la destination. La transmission par un nœud comprend de manière classique un ou plusieurs signaux de référence. La destination estime de manière connue le canal et donc sa qualité entre chacun des nœuds et la destination en exploitant par exemple le ou les signaux de référence reçus à cet intervalle t = 1. Unlike the prior art, at each retransmission interval there is no exchange of decoding control between the destination and the nodes: the destination does not systematically send back its set of correctly decoded sources at each retransmission interval nor indication on correct decoding or not, the nodes do not systematically transmit at each retransmission interval their set of correctly decoded sources nor indication on their correct decoding or not. The exchange of decoding control for an update of the knowledge by the destination of the sets of sources correctly decoded by the nodes occurs only when t = 1, that is to say at the start of the second phase. This exchange can take place in an equivalent manner at the end of the first phase. During this exchange the nodes transmit to the destination their set of correctly decoded sources or at least their set of sources correctly decoded and not yet correctly decoded by the destination. Transmission by a node conventionally comprises one or more reference signals. The destination estimates the channel and therefore its quality between each of the nodes and the destination by exploiting for example the reference signal(s) received at this interval t = 1.
Ainsi, les nœuds transmettent à la destination leur jeu de sources correctement décodées ou au moins leur jeu de sources correctement décodées et non encore décodées correctement par la destination une fois uniquement i.e. lors du dernier intervalle de transmission, t = 0 ou de manière équivalente lors du 1er intervalle de retransmission, t = 1. Thus, the nodes transmit to the destination their set of sources correctly decoded or at least their set of sources correctly decoded and not yet correctly decoded by the destination once only, ie during the last transmission interval, t = 0 or equivalently during of the 1st retransmission interval, t = 1.
Par contre, la destination sélectionne à chaque intervalle de retransmission une source dite source à aider en utilisant un canal de contrôle de diffusion de la destination vers les nœuds. Les nœuds ayant correctement décodé cette source transmettent alors une même redondance du message de cette source lors de cet intervalle en utilisant un canal de données. Aider une source signifie aider la destination à décoder cette source en transmettant par les nœuds ayant correctement décodé cette source une redondance du message de cette source pendant la 2nde phase. On the other hand, the destination selects at each retransmission interval a so-called source to help using a broadcast control channel from the destination to the nodes. The nodes that have correctly decoded this source then transmit the same redundancy of the message from this source during this interval using a data channel. Helping a source means helping the destination to decode this source by transmitting, through the nodes that have correctly decoded this source, a redundancy of the message from this source during the 2nd phase.
Sélection selon l’invention Selection according to the invention
La sélection par la destination d’une source à aider à chaque intervalle de retransmission est explicitée ci-après à l’appui de la figure 3 qui illustre l’unique échange de contrôle de décodage entre la destination et les nœuds selon un mode de réalisation. Selon ce mode, la destination remonte aux nœuds son jeu de sources correctement décodées et les nœuds transmettent leur jeu de sources correctement décodées. Selon un autre mode, la destination remonte aux nœuds son jeu de sources correctement décodées et les nœuds transmettent leur jeu de sources correctement décodées et pas encore décodées correctement par la destination. Selon un autre mode, la destination remonte aux nœuds un signal indiquant une absence de décodage correct, NACK et les nœuds transmettent leur jeu de sources correctement décodées. The selection by the destination of a source to help at each retransmission interval is explained below in support of Figure 3 which illustrates the unique exchange of decoding control between the destination and the nodes according to one embodiment . According to this mode, the destination sends its set of correctly decoded sources to the nodes and the nodes transmit their set of correctly decoded sources. According to another mode, the destination sends its set of correctly decoded sources to the nodes and the nodes transmit their set of sources correctly decoded and not yet correctly decoded by the destination. According to another mode, the destination sends a signal to the nodes indicating an absence of correct decoding, NACK and the nodes transmit their set of correctly decoded sources.
Pendant la 2nde phase, la destination ordonnance tour à tour les sources non encore correctement décodées pour un nombre donné de transmissions successives afin de maximiser le débit somme reçu. Une transmission, pendant un intervalle de retransmission, pour aider une source i correspond à la transmission d’une même version de redondance de son message par tous les nœuds ayant correctement décodé cette source. Les transmissions pour aider une source i commencent à l’intervalle de retransmission ts i et finissent quand la source est décodée.During the 2nd phase, the destination orders in turn the sources not yet correctly decoded for a given number of successive transmissions in order to maximize the sum rate received. A transmission, during a retransmission interval, to help a source i corresponds to the transmission of the same redundant version of its message by all the nodes having correctly decoded this source. Transmissions to support a source i begin at retransmission interval t si and end when the source is decoded.
L’événement de défaut individuelle de la source i, pour laquelle les intervalles de retransmission commencent à ts i, à la fin de l’intervalle de retransmission t — 1, Oi t-1, peut s’exprimer sous la forme : (1)
Figure imgf000012_0001
The individual fault event of source i, for which the retransmission intervals start at t si , at the end of the retransmission interval t — 1, O i t-1 , can be expressed in the form: ( 1)
Figure imgf000012_0001
Cette expression traduit le fait que la source i n’est pas décodée correctement à l’intervalle de retransmission t — 1 si le débit de la source est supérieur à la somme des capacités de transmission. Cette capacité de transmission comprend la capacité du canal entre cette source i et la destination qui intervient pendant la lere phase et une somme pondérée par a des capacités des canaux équivalents qui interviennent pendant la seconde phase à partir de ts i jusqu’à l’intervalle de retransmission t — 1. A l’intervalle de retransmission l ≥ ts i de la seconde phase, un canal équivalent est considéré pour la source i. Le canal équivalent considéré à un intervalle de retransmission l regroupe les canaux entre chacun des nœuds aidant la source i pendant cet intervalle et la destination. La capacité du canal entre cette source i et la destination se déduit de la qualité du canal i.e. l’information mutuelle Ii d entre la source i E {1, ... , M] et la destination d. La capacité du canal équivalent considéré lorsque la source i est aidée pendant l’intervalle l est évaluée par l’information mutuelle entre l’ensemble des nœuds qui aident la source i à l’intervalle de retransmission l et la destination. Cette capacité dépend du temps l puisqu’un nœud peut bénéficier des transmissions pour aider une source i pendant la 2nde phase et décoder correctement cette source i à partir d’un intervalle de retransmission de la 2nde phase alors qu’il ne l’avait pas décodée à la fin de la lere phase. This expression reflects the fact that the source i is not decoded correctly at the retransmission interval t — 1 if the bit rate of the source is greater than the sum of the capacities of transmission. This transmission capacity includes the capacity of the channel between this source i and the destination which intervenes during the first phase and a sum weighted by a of the capacities of the equivalent channels which intervene during the second phase from t si until retransmission interval t — 1. At the retransmission interval l ≥ t if of the second phase, an equivalent channel is considered for source i. The equivalent channel considered at a retransmission interval l groups the channels between each of the nodes helping the source i during this interval and the destination. The capacity of the channel between this source i and the destination is deduced from the quality of the channel ie the mutual information I id between the source i E {1, ... , M] and the destination d. The capacity of the equivalent channel considered when the source i is helped during the interval l is evaluated by the mutual information between the set of nodes which help the source i at the retransmission interval l and the destination. This capacity depends on time l since a node can benefit from transmissions to help a source i during the 2nd phase and correctly decode this source i from a retransmission interval of the 2nd phase while it does not had not been decoded at the end of the first phase.
X(t) est défini comme le nombre d’intervalles de retransmission écoulés jusqu’à l’intervalle courant (non inclus) pendant la seconde phase depuis le dernier échange de contrôle de décodage entre la destination et les nœuds. X (t) is defined as the number of retransmission intervals sold to the current interval (not included) during the second phase from the last exchange of decoding control between the destination and the nodes.
Xm(t) définit la valeur de X(t) qui déclenche un nouvel échange de jeux de sources décodées. Par exemple déclenche un échange de jeux de sources décodées pour
Figure imgf000013_0001
X m (t) defines the value of X(t) which triggers a new exchange of sets of decoded sources. For example triggers an exchange of sets of decoded sources for
Figure imgf000013_0001
Par convention, Xm(l) = 0 déclenche un échange de jeux de sources décodées au début de la 2nde phase de transmission. By convention, X m (l) = 0 triggers an exchange of sets of decoded sources at the start of the 2nd transmission phase.
Il est supposé qu’une source i est aidée sur un ou plusieurs intervalles de retransmission consécutifs en commençant par l’intervalle de retransmission ts i E {1, ... , Tmax}. A chaque intervalle de retransmission (time slot) t ≥ ts i, et pour la source i sélectionnée non encore décodée correctement par la destination, la variable
Figure imgf000013_0007
est définie selon
Figure imgf000013_0008
l’invention. Cette variable
Figure imgf000013_0009
est définie comme étant le nombre maximum (i.e. nombre suffisant) d’intervalles de retransmission pour que la destination décode cette source i (à partir et en comptant l’intervalle de retransmission ts), c’est à dire, la source i est décodée au plus tard à la fin de l’intervalle de retransmission
Figure imgf000013_0002
Cette variable %;(t) est estimée par la destination en fonction de sa connaissance de
Figure imgf000013_0003
Soit l’ensemble
Figure imgf000013_0004
déterminé par Xm (t) des intervalles de retransmission commençant par un
Figure imgf000013_0005
échange de jeux de sources décodées. Soit l’ensemble des intervalles de
Figure imgf000013_0006
retransmission commençant par un échange de jeux de sources décodées coïncidant avec les transmissions pour aider la source i, c’est-à-dire,
Figure imgf000014_0013
It is assumed that a source i is aided over one or more consecutive retransmission intervals starting with retransmission interval t if E {1, ... , T max }. At each retransmission interval (time slot) t ≥ t if , and for the selected source i not yet decoded correctly by the destination, the variable
Figure imgf000013_0007
is defined according to
Figure imgf000013_0008
the invention. This variable
Figure imgf000013_0009
is defined as being the maximum number (ie sufficient number) of retransmission intervals for the destination to decode this source i (from and counting the retransmission interval t s ), that is to say, the source i is decoded at the latest at the end of the retransmission interval
Figure imgf000013_0002
This variable %;(t) is estimated by the destination based on its knowledge of
Figure imgf000013_0003
Either the whole
Figure imgf000013_0004
determined by X m (t) retransmission intervals starting with a
Figure imgf000013_0005
exchange of sets of decoded sources. Let the set of intervals be
Figure imgf000013_0006
retransmission starting with an exchange of decoded source sets coinciding with transmissions to assist source i, i.e.,
Figure imgf000014_0013
Dans le cas où un échange de jeux de sources décodées a eu lieu avant ts i, c’est-à-dire avant le début de la sélection de la source i à aider pendant la 2nde phase, la destination connaît H est à souligner qu’un échange de jeux de sources décodées au
Figure imgf000014_0012
début de la 2nde phase de transmission permet à la destination de connaître
Figure imgf000014_0014
pour toutes les sources. En effet, les transmissions précédant ts i étant liées à une autre source elles n’impactent pas le nombre de nœuds ayant décodés la source i ni Pour tout
Figure imgf000014_0008
Figure imgf000014_0009
Figure imgf000014_0011
In the case where an exchange of sets of decoded sources took place before t si , that is to say before the start of the selection of the source i to help during the 2nd phase, the destination knows H must be underlined that an exchange of sets of decoded sources at
Figure imgf000014_0012
start of the 2nd transmission phase allows the destination to know
Figure imgf000014_0014
for all sources. Indeed, the transmissions preceding t if being linked to another source they do not impact the number of nodes having decoded the source i nor For all
Figure imgf000014_0008
Figure imgf000014_0009
Figure imgf000014_0011
Dans le cas contraire, la destination ne connaît que pour estimer
Figure imgf000014_0006
Figure imgf000014_0007
pour Par souci de simplicité des notations, l’indice de source i de ts i est omis
Figure imgf000014_0010
quand il est évident.
Otherwise, the destination only knows to estimate
Figure imgf000014_0006
Figure imgf000014_0007
for For the sake of simplicity of notations, the source index i of t si is omitted
Figure imgf000014_0010
when it is obvious.
Pour les intervalles de retransmission ts ≤ t ≤ t0 l’invention considère : (2)
Figure imgf000014_0001
et
Figure imgf000014_0015
le nombre d’intervalles de retransmission suffisant estimé par la destination à partir de l’intervalle de retransmission t est :
Figure imgf000014_0002
(4) où [q] représente la fonction partie entière supérieure (ceiling function) qui prend la valeur entière juste supérieure ou égale à q, e.g., [2.3] = 3.
For the retransmission intervals t s ≤ t ≤ t 0 the invention considers: (2)
Figure imgf000014_0001
And
Figure imgf000014_0015
the sufficient number of retransmission intervals estimated by the destination from the retransmission interval t is:
Figure imgf000014_0002
(4) where [q] represents the upper integer function (ceiling function) which takes the integer value just greater than or equal to q, eg, [2.3] = 3.
Pour t = t0, un échange de jeux de sources décodées a lieu, ce qui permet à la destination d’évaluer ainsi :
Figure imgf000014_0016
avec
Figure imgf000014_0003
(6)
For t = t 0 , an exchange of sets of decoded sources takes place, which allows the destination to evaluate as follows:
Figure imgf000014_0016
with
Figure imgf000014_0003
(6)
Plus généralement, pour il est possible de construire
Figure imgf000014_0004
récursivement (t) comme : )
Figure imgf000014_0005
ou, de façon équivalente : (8)
Figure imgf000015_0001
avec toujours :
Figure imgf000015_0002
Remarque :
Figure imgf000015_0003
Entre deux échanges de contrôle de décodage le nombre d’intervalles de retransmission suffisant pour décoder la source i est décrémenté à chaque transmission aidant la source i Pour , il vient :
Figure imgf000015_0004
Finalement, dans le cas où aucun échange de jeux de sources décodées est réalisé que ce soit avant ou après
Figure imgf000015_0016
il vient : (11)
Figure imgf000015_0005
Dans le cas où un unique échange de jeux de sources décodées est réalisé au début de la 2nde phase de transmission alors : (12)
Figure imgf000015_0006
est le nombre d’intervalles de retransmission pour aider la source i à partir de l’intervalle de retransmission
Figure imgf000015_0017
inclus suffisant pour le décodage sans erreur de la source i qui est estimé par la destination en fonction de sa connaissance de
Figure imgf000015_0007
La destination utilise comme approximation de
Figure imgf000015_0008
une valeur précédente (connue la plus proche) avec par conséquent
Figure imgf000015_0009
Figure imgf000015_0010
Figure imgf000015_0011
1}. Le nombre d’intervalles de retransmission nécessaires en pratique nécessite la
Figure imgf000015_0013
connaissance de . Il est donné par la plus petite valeur de ^^
Figure imgf000015_0012
tel que :
Figure imgf000015_0014
, (13) L’estimation es x
Figure imgf000015_0015
t la plus petite valeur de tel que :
Figure imgf000016_0001
(14)
More generally, for it is possible to construct
Figure imgf000014_0004
recursively (t) like: )
Figure imgf000014_0005
or, equivalently: (8)
Figure imgf000015_0001
with always:
Figure imgf000015_0002
Noticed :
Figure imgf000015_0003
Between two decoding control exchanges the number of retransmission intervals sufficient to decode source i is decremented at each transmission helping source i For , it comes:
Figure imgf000015_0004
Finally, in the case where no exchange of decoded source sets is carried out, whether before or after
Figure imgf000015_0016
he comes: (11)
Figure imgf000015_0005
In the case where a single exchange of sets of decoded sources is carried out at the start of the 2nd transmission phase then: (12)
Figure imgf000015_0006
is the number of retransmission intervals to assist source i from the retransmission interval
Figure imgf000015_0017
included sufficient for error-free decoding of source i which is estimated by the destination based on its knowledge of
Figure imgf000015_0007
The destination uses as an approximation of
Figure imgf000015_0008
a previous value (closest known) with consequently
Figure imgf000015_0009
Figure imgf000015_0010
Figure imgf000015_0011
1}. The number of retransmission intervals required in practice requires the
Figure imgf000015_0013
knowledge of . It is given by the smallest value of ^^
Figure imgf000015_0012
such as :
Figure imgf000015_0014
, (13) The estimate is x
Figure imgf000015_0015
t the smallest value of such that:
Figure imgf000016_0001
(14)
Comme
Figure imgf000016_0002
il vient que
Figure imgf000016_0003
Dans le cas où il vient :
Figure imgf000016_0004
As
Figure imgf000016_0002
it just comes
Figure imgf000016_0003
In case it comes:
Figure imgf000016_0004
(15)
Figure imgf000016_0005
(15)
Figure imgf000016_0005
En effet, l’entier positif le plus petit tel que : Indeed, the smallest positive integer such that:
(16)
Figure imgf000016_0006
est :
(16)
Figure imgf000016_0006
East :
(17)
Figure imgf000016_0007
(17)
Figure imgf000016_0007
Ainsi, il est certain que l’événement de défaut (outage) n’intervient pas à
Figure imgf000016_0008
La source i est systématiquement décodée correctement par la destination à
Figure imgf000016_0009
si elle est aidée fois à partir de l’intervalle t compris.
Thus, it is certain that the fault event (outage) does not occur at
Figure imgf000016_0008
Source i is systematically decoded correctly by the destination
Figure imgf000016_0009
if it is helped times from the interval t included.
La généralisation de cette démonstration dans le cas de plusieurs échanges de décodage est immédiate. The generalization of this demonstration in the case of several decoding exchanges is immediate.
Il est à noter que l’évaluation du nombre d’intervalles de retransmission suffisant pour une source i est le même quel que soit ts i son intervalle de retransmission choisi pour la première transmission destinée à aider cette source durant la 2nde phase. A un intervalle de retransmission t donné, ne dépend que du nombre de transmissions n1 = t — ts i aidant la source i durant
Figure imgf000016_0012
la 2nde phase et avant t. Ainsi, la notation dénote le nombre nécessaire de transmissions aidant la source i connaissant le nombre de transmissions ni ayant aidé la source i (déjà réalisées) durant la 2nde phase. Par la suite, nous dénotons xt le compteur du nombre de transmissions restantes pour aider la source i, ce compteur étant initialisé à Xj(0) et étant décrémenté à chaque fois que la source i est aidée sans échange de décodage. Ce compteur est mis à jour à chaque échange de contrôle de décodage à l’intervalle de retransmission l = tj j = 0, ... , M — 1 qui permet de connaître Jt d(l).
It should be noted that the evaluation of the number of retransmission intervals sufficient for a source i is the same whatever t if its retransmission interval chosen for the first transmission intended to help this source during the 2nd phase. At a given retransmission interval t, depends only on the number of transmissions n 1 = t — t if helping source i during
Figure imgf000016_0012
the 2nd phase and before t. Thus, the notation denotes the necessary number of transmissions helping source i knowing the number of transmissions neither having helped source i (already carried out) during the 2nd phase. Subsequently, we denote x t the counter of the number of transmissions remaining to help source i, this counter being initialized at Xj(0) and being decremented each time source i is helped without decoding exchange. This counter is updated at each exchange of decoding control at the retransmission interval l = tj j = 0, ..., M — 1 which makes it possible to know Jt d (l).
Si l’estimation de xt est telle qu’il n’y a eu aucune transmission précédente pour aider la source i ou telle que Xi(0) repose uniquement sur la connaissance des liens directs et que pour toutes les sources
Figure imgf000016_0011
l’inégalité suivante est satisfaite : (18)
Figure imgf000016_0010
alors toutes les sources peuvent être décodées sans échange de jeux de sources décodées. Toutes les sources pouvant être décodées correctement par la destination dans le temps restant, le procédé choisi par exemple successivement les sources à aider et de manière aléatoire. Le procédé selon l’invention est particulièrement intéressant lorsque
Figure imgf000017_0001
puisqu’il permet à la destination de décoder correctement un nombre optimal de sources en optimisant l’efficacité spectrale tout en limitant très fortement la surcharge de signalisation en effectuant la sélection de la source à aider selon une certaine stratégie.
If the estimate of x t is such that there has been no previous transmission to help source i or such that Xi(0) relies solely on knowledge of direct links and that for all sources
Figure imgf000016_0011
the following inequality is satisfied: (18)
Figure imgf000016_0010
then all sources can be decoded without exchanging sets of decoded sources. All the sources can be decoded correctly by the destination in the remaining time, the method chooses for example the sources to help successively and randomly. The process according to the invention is particularly interesting when
Figure imgf000017_0001
since it allows the destination to correctly decode an optimal number of sources by optimizing spectral efficiency while very strongly limiting the signaling overhead by selecting the source to help according to a certain strategy.
En outre, selon l’invention l’échange de contrôle de jeux de sources
Figure imgf000017_0002
correctement décodées entre la destination et les nœuds intervient uniquement une fois et au début de la 2nde phase.
Furthermore, according to the invention the exchange of control of source sets
Figure imgf000017_0002
correctly decoded between the destination and the nodes occurs only once and at the start of the 2nd phase.
A t = 1 i.e. au début de la 2nde phase, le procédé comprend un échange de contrôle de décodage entre la destination et les nœuds. Le procédé détermine le nombre suffisant d’intervalles de retransmission pour que la destination décode la source i non encore décodée à l’issue de la lere phase connaissant son débit attribué : At t = 1 ie at the start of the 2nd phase, the method includes an exchange of decoding control between the destination and the nodes. The method determines the sufficient number of retransmission intervals for the destination to decode the source i not yet decoded at the end of the first phase knowing its allocated bit rate:
(19)
Figure imgf000017_0003
avec :
(19)
Figure imgf000017_0003
with :
(20)
Figure imgf000017_0004
ou, encore avec
Figure imgf000017_0005
(20)
Figure imgf000017_0004
or, again with
Figure imgf000017_0005
(21)
Figure imgf000017_0006
avec rtj le nombre de transmissions déjà réalisées pour aider la source i. Suite à l’échange de
Figure imgf000017_0007
contrôle de décodage entre la destination et les nœuds à t = 1, la destination connaît
Figure imgf000017_0008
Figure imgf000017_0009
Sans échange de contrôle de décodage à t=l, la destination se base sur
Figure imgf000017_0010
c.a.d. sur la connaissance du lien direct entre la source i et la destination.
(21)
Figure imgf000017_0006
with rtj the number of transmissions already carried out to help source i. Following the exchange of
Figure imgf000017_0007
decoding control between destination and nodes at t = 1, destination knows
Figure imgf000017_0008
Figure imgf000017_0009
Without exchanging decoding control at t=l, the destination is based on
Figure imgf000017_0010
ie on the knowledge of the direct link between the source i and the destination.
L’estimation du canal entre la source i et la destination est effectuée, par exemple, sur la base des signaux de référence émis par la source i lorsqu’elle transmet pendant la première phase. Comme les canaux sont supposés invariants pendant une trame, cette valeur est indépendante de l’intervalle de transmission ou de retransmission. Cette connaissance de la qualité du canal entre la source i et la destination permet à la destination d’estimer une information mutuelle Ii d représentative de cette qualité et donc de la capacité du canal. The estimation of the channel between source i and the destination is carried out, for example, on the basis of the reference signals emitted by source i when it transmits during the first phase. As channels are assumed to be invariant during a frame, this value is independent of the transmission or retransmission interval. This knowledge of the quality of the channel between source i and the destination allows the destination to estimate mutual information I id representative of this quality and therefore of the capacity of the channel.
Lors de la seconde phase, l’estimation du canal entre le nœud et la destination
Figure imgf000017_0011
est effectuée, par exemple, sur la base d’un signal de référence émis par le nœud j lors de l’échange de contrôle au cours duquel il transmet son jeu ou un sous-ensemble de ce jeu de sources décodées correctement. Cette connaissance de la qualité du canal entre le nœud j et la destination à l’intervalle t = 1 permet à la destination d’estimer une information mutuelle Ji,d(1) représentative de la qualité du canal équivalent entre tous les nœuds ayant décodé la source i et la destination.
During the second phase, the estimation of the channel between the node and the destination
Figure imgf000017_0011
is carried out, for example, on the basis of a reference signal emitted by node j during the control exchange during which it transmits its set or a subset of this set of correctly decoded sources. This knowledge of the quality of the channel between node j and the destination at the interval t = 1 allows the destination to estimate mutual information Ji,d(1) representative of the quality of the equivalent channel between all the nodes having decoded the source i and the destination.
Pour t > 1 le procédé considère que chaque transmission conduit à une information mutuelle
Figure imgf000018_0001
si bien que
Figure imgf000018_0002
diminue en fonction du nombre de transmissions effectuées pour aider la source i.
For t > 1 the process considers that each transmission leads to mutual information
Figure imgf000018_0001
so that
Figure imgf000018_0002
decreases depending on the number of transmissions made to help source i.
La destination sélectionne, selon l’invention, pour chaque intervalle de retransmission t la source i à aider. The destination selects, according to the invention, for each retransmission interval t the source i to help.
A chaque intervalle de retransmission t et avant sélection, le nombre restant d’intervalles de retransmission
Figure imgf000018_0003
At each retransmission interval t and before selection, the remaining number of retransmission intervals
Figure imgf000018_0003
La sélection est déterminée pour maximiser l’efficacité spectrale. La maximisation de l’efficacité spectrale peut s’exprimer sous la forme de la détermination du sous-ensemble A pris parmi l’ensemble des sous-ensembles A possibles de sources pas encore décodées
Figure imgf000018_0012
correctement par la destination à l’intervalle précédent l’intervalle courant t conduisant à la plus grande somme des débits des sources et tel que les sources de ce sous-ensemble A puissent être décodées dans le temps restant, Tav i.e. tel que le temps restant est supérieur ou égal à la somme du nombre d’intervalles de retransmission suffisant pour décoder chacune des sources de ce sous -ensemble A : (22)
Figure imgf000018_0004
est appelé le jeu de puissance de
Figure imgf000018_0005
Figure imgf000018_0006
The selection is determined to maximize spectral efficiency. The maximization of spectral efficiency can be expressed in the form of determining the subset A taken from the set of possible subsets A of sources not yet decoded
Figure imgf000018_0012
correctly by the destination at the interval preceding the current interval t leading to the greatest sum of the flow rates of the sources and such that the sources of this subset A can be decoded in the remaining time, T av ie such that the time remaining is greater than or equal to the sum of the number of retransmission intervals sufficient to decode each of the sources of this subset A: (22)
Figure imgf000018_0004
is called the power play of
Figure imgf000018_0005
Figure imgf000018_0006
Le procédé considère alors successivement chaque source i de ce sous-ensemble
Figure imgf000018_0007
The method then successively considers each source i of this subset
Figure imgf000018_0007
Pour chaque source i considérée de
Figure imgf000018_0008
la destination transmet aux nœuds l’indication de la sélection de la source i à l’intervalle de retransmission t.
For each source i considered of
Figure imgf000018_0008
the destination transmits to the nodes the indication of the selection of source i at the retransmission interval t.
Les nœuds ayant correctement décodé cette source i transmettent une même redondance pendant cet intervalle t pour aider le décodage de la source i par la destination. The nodes having correctly decoded this source i transmit the same redundancy during this interval t to help the decoding of source i by the destination.
La destination réitère la transmission de l’indication de la sélection de la même source i jusqu’à ce que la destination décode correctement cette source. Le nombre d’intervalles de retransmission écoulés avant le décodage correct est au maximum égal à xt (0). The destination repeats the transmission of the indication of the selection of the same source i until the destination correctly decodes this source. The number of retransmission intervals elapsed before correct decoding is at most x t (0).
Selon un mode de réalisation particulièrement efficace, si la destination décode correctement la source i avant l’écoulement du nombre Xi(0) d’intervalles de retransmission, elle recalcule le meilleur sous-ensemble
Figure imgf000018_0009
si et seulement si l’ensemble auquel est retiré la source i ne
Figure imgf000018_0011
contient pas toutes les sources non décodées par la deetination sinon la destination passe à une autre source du sous ensemble
Figure imgf000018_0010
auquel la source i a été retirée préalablement. Ce cas peut apparaître lorsque le jeu des sources correctement décodé par un nœud change pour inclure la source i au cours des Xi(0) intervalles de retransmission. Ainsi, ce nœud devient actif lors de la transmission à l’intervalle l d’une redondance pour la source i ce qui entraîne une augmentation de l’information mutuelle Si la source i est décodée après exactement xi(0) intervalles de retransmission alors la destination passe à une autre source du sous ensemble
Figure imgf000019_0008
auquel la source i a été retirée préalablement.
According to a particularly efficient embodiment, if the destination correctly decodes source i before the number Xi(0) of retransmission intervals has elapsed, it recalculates the best subset
Figure imgf000018_0009
if and only if the set from which source i is removed does not
Figure imgf000018_0011
does not contain all the sources not decoded by deetination otherwise the destination passes to another source in the subset
Figure imgf000018_0010
from which the source was previously removed. This case can appear when the set of sources correctly decoded by a node changes to include source i during Xi(0) retransmission intervals. Thus, this node becomes active during the transmission at interval l of redundancy for source i which leads to an increase in mutual information If source i is decoded after exactly xi(0) retransmission intervals then the destination passes to another source of the subset
Figure imgf000019_0008
from which the source was previously removed.
Exemple de mise en œuvre Implementation example
La description d’un mode de réalisation de l’invention qui suit est illustrée avec une mise en œuvre par un système OMARC à M = 4 sources, S = {1,2, 3, 4}, L = 3 relais, R = {5,6,7}, et une destination. Le paramètre Tmax est fixé à 8. The following description of an embodiment of the invention is illustrated with an implementation by an OMARC system with M = 4 sources, S = {1,2, 3, 4}, L = 3 relays, R = {5,6,7}, and a destination. The T max parameter is set to 8.
A la fin de la lere phase, i.e., t = 0, les jeux des sources correctement décodées par les nœuds sont les suivants :
Figure imgf000019_0002
At the end of the first phase, ie, t = 0, the sets of sources correctly decoded by the nodes are as follows:
Figure imgf000019_0002
Dit autrement, les sources 1, 2, 3, 4 et le relais 7 n’ont encore rien décodé correctement à l’issue de la lere phase mais comme une source connaît son propre message son jeu contient au moins ce message. Le relais 5 a correctement décodé les sources 2 et 3 et le relais 6 a correctement décodé les sources 1, 2 et 3 à l’issue de la lere phase. La destination d n’a encore rien décodé correctement et à l’issue de la lere phase.
Figure imgf000019_0003
In other words, sources 1, 2, 3, 4 and relay 7 have not yet decoded anything correctly at the end of the first phase but as a source knows its own message its game contains at least this message. Relay 5 correctly decoded sources 2 and 3 and relay 6 correctly decoded sources 1, 2 and 3 at the end of the first phase. Destination d has not yet decoded anything correctly and at the end of the first phase.
Figure imgf000019_0003
Pendant la 2nde phase, la détermination par la destination de l’ensemble des sources A
Figure imgf000019_0004
à aider se déroule par exemple selon l’algorithme de l’Annexe A.
During the 2nd phase, the determination by the destination of all sources A
Figure imgf000019_0004
to help takes place for example according to the algorithm in Appendix A.
Pendant la 2nde phase, la sélection de la source i à aider parmi l’ensemble
Figure imgf000019_0005
à chaque intervalle de retransmission se déroule par exemple selon l’algorithme de l’Annexe B qui peut être utilisé puisque
Figure imgf000019_0001
During the 2nd phase, the selection of the source i to help among the set
Figure imgf000019_0005
at each retransmission interval takes place for example according to the algorithm in Appendix B which can be used since
Figure imgf000019_0001
Déroulement de l’Algorithme de l’Annexe B : Process of the Algorithm in Appendix B:
Etape 2. La destination détermine l’estimation du nombre d’intervalles nécessaires
Figure imgf000019_0006
pour que la destination décode une source i non encore décodée sur la base d’une connaissance d’une information mutuelle du lien source i destination et d’un débit attribué à cette source i. La destination calcule donc xi pour tout
Figure imgf000019_0007
Step 2. The destination determines the estimated number of intervals needed
Figure imgf000019_0006
so that the destination decodes a source i not yet decoded on the basis of knowledge of mutual information of the source i destination link and a rate allocated to this source i. The destination therefore calculates x i for all
Figure imgf000019_0007
Pour cet exemple, les variables xi ont les valeurs suivantes connaissant les liens directs sources- destination : x1 = 6, x2 = 2, x3 = 3, x4 = 12 For this example, the variables x i have the following values knowing the direct source-destination links: x 1 = 6, x 2 = 2, x 3 = 3, x 4 = 12
Les débits Rt ont les valeurs suivantes : The flow rates R t have the following values:
R1 = 1, R2 = 2, R 3 = 3, R4 = 4 R1 = 1, R2 = 2, R3 = 3, R4 = 4
Etape 3. La somme des xt dépasse le temps restant : 6 + 2 + 3 + 12 = 23 > Tav = Tmax = 8 Etape 4. Un unique échange de contrôle de décodage intervient entre la destination et les nœuds. Au cours de cet échange les nœuds transmettent leur jeu de sources correctement décodées ou uniquement leur jeu de sources correctement décodées mais pas encore correctement décodées par la destination. Step 3. The sum of x t exceeds the remaining time: 6 + 2 + 3 + 12 = 23 > T av = T max = 8 Step 4. A single exchange of decoding control takes place between the destination and the nodes. During this exchange the nodes transmit their set of sources correctly decoded or only their set of sources correctly decoded but not yet correctly decoded by the destination.
Etape 5. Pour une source i non encore décodée par la destination, la destination met à jour l’estimation du xi en utilisant la qualité du canal équivalent considéré comme étant l’agrégation des canaux entre les nœuds ayant correctement décodé cette source et la destination. Step 5. For a source i not yet decoded by the destination, the destination updates the estimate of x i using the quality of the equivalent channel considered to be the aggregation of channels between the nodes having correctly decoded this source and the destination.
Selon l’exemple, connaissant les liens nœuds-destination, les variables xi deviennent :
Figure imgf000020_0001
According to the example, knowing the node-destination links, the variables x i become:
Figure imgf000020_0001
Bien que x2 ait diminué, la somme des xi : 6 + 1 + 3 + 12 = 22 reste supérieure au temps restant Tav TmaxAlthough x 2 has decreased, the sum of xi: 6 + 1 + 3 + 12 = 22 remains greater than the remaining time T av T max
Etape 7. L’ensemble des sources A à aider à la fin de la 1ere phase est déterminé, selon l’algorithme de l’annexe A, par la destination connaissant les x( et les débits attribués aux sources. Step 7. The set of sources A to be helped at the end of the 1st phase is determined, according to the algorithm in appendix A, by the destination knowing the x ( and the flow rates allocated to the sources.
Selon l’exemple, les choix possibles pour  qui satisfont sont : {1}, {2}, {3},
Figure imgf000020_0002
{1, 2}, {1, 3}, {2, 3}. L’ensemble qui conduit à la somme maximum des débits et qui déterminé selon l’algorithme de l’annexe A est
Figure imgf000020_0003
According to the example, the possible choices for  that satisfy are: {1}, {2}, {3},
Figure imgf000020_0002
{1, 2}, {1, 3}, {2, 3}. The set which leads to the maximum sum of the flow rates and which is determined according to the algorithm in Appendix A is
Figure imgf000020_0003
Etape 8. Le procédé décode la trame tant que t < Tmax et qu’il reste une source i à décoder dans l’ensemble  i.e.  #= Φ . Step 8. The method decodes the frame as long as t < T max and there remains a source i to decode in the set  ie  #= Φ.
Selon l’exemple  = {2, 3}. According to the example  = {2, 3}.
Etape 9. A l’intervalle de retransmission t, la destination sélectionne la source i avec le plus petit Xi. Step 9. At retransmission interval t, the destination selects source i with the smallest Xi.
Selon l’exemple, la destination sélectionne d’abord la source 2. According to the example, the destination first selects source 2.
Etape 10. Le procédé répète les étapes 11-20 tant que la source i n’est pas correctement décodée par la destination. Step 10. The process repeats steps 11-20 until source i is correctly decoded by the destination.
Selon l’exemple, la destination répète pour la source 2 jusqu’à ce qu’elle l’ait correctement décodée puis répète pour la source 3. According to the example, the destination repeats for source 2 until it has correctly decoded it then repeats for source 3.
Etape 11. A chaque intervalle de retransmission t la destination remonte le numéro de la source i à aider par les nœuds. Step 11. At each retransmission interval t the destination sends back the number of source i to be helped by the nodes.
Selon l’exemple, la destination remonte d’abord le numéro 2 tant que celle-ci n’est pas correctement décodée puis le numéro 3 tant que celle-ci n’est pas correctement décodée. Etape 12. Le procédé incrémente la valeur de l’intervalle de retransmission courant, t «- t + 1, décrémente le temps restant, Tav ← Tav — 1 et décrémente la valeur de xt puisque i a été aidée une fois par les nœuds. According to the example, the destination first returns the number 2 as long as this is not correctly decoded then the number 3 as long as this is not correctly decoded. Step 12. The method increments the value of the current retransmission interval, t «- t + 1, decrements the remaining time, T av ← T av — 1 and decrements the value of x t since i was helped once by the nodes.
Selon l’exemple, pour la source i = 2, au premier passage, xi = 0 puisque x2 = 1 et l’intervalle courant devient t = 2 , et Tav =7 Pour la source i = 3, au premier passage, xi = 2 puisque x3 = 3 et l’intervalle courant devient t = 3 et Tav =6. According to the example, for the source i = 2, on the first pass, x i = 0 since x 2 = 1 and the current interval becomes t = 2, and T av =7 For the source i = 3, on the first pass, x i = 2 since x 3 = 3 and the current interval becomes t = 3 and T av =6.
Pour la source i = 3, au deuxième passage, xi = 1 et l’intervalle courant devient t = 4 etFor source i = 3, on the second pass, x i = 1 and the current interval becomes t = 4 and
T = 5 T = 5
Etape 13. Si la destination a décodé correctement la source i à l’intervalle courant alors dérouler les étapes 14-18. Step 13. If the destination has correctly decoded source i at the current interval then follow steps 14-18.
Selon l’exemple, la source i = 2 est correctement décodée en un seul intervalle de retransmission puisque x2 = 1. Sd l = {2}. According to the example, the source i = 2 is correctly decoded in a single retransmission interval since x 2 = 1. S dl = {2}.
Pour la source i = 3, le procédé reboucle à l’étape 11 après un intervalle de retransmission.For source i = 3, the process loops back to step 11 after a retransmission interval.
Sd 2 = {2}- Après un deuxième intervalle de retransmission, la source i = 3 est correctement décodée. Sd 3 = {2,3}. S d 2 = {2}- After a second retransmission interval, the source i = 3 is correctly decoded. S d 3 = {2,3}.
Etape 14. La source i correctement décodée par la destination est supprimée de l’ensemble Â.Step 14. The source i correctly decoded by the destination is removed from the set Â.
Selon l’exemple, au début du 2e intervalle de retransmission,
Figure imgf000021_0005
According to the example, at the start of the 2nd retransmission interval,
Figure imgf000021_0005
A la fin du 2e intervalle de retransmission, A est inchangé : A = {3}. At the end of the 2nd retransmission interval, A is unchanged: A = {3}.
A la fin du 3e intervalle de retransmission,
Figure imgf000021_0004
At the end of the 3rd retransmission interval,
Figure imgf000021_0004
Etape 15. Si les x( intervalles n’ont pas été consommés et que l’ensemble A ne contenait pas toutes les sources non décodées correctement par la destination (lors de la détermination de A la somme des x( dépassait le temps restant) alors le procédé déroule les étapes 16-17. Step 15. If the x ( intervals have not been consumed and the set A did not contain all the sources not decoded correctly by the destination (when determining A the sum of the x ( exceeded the remaining time) then the process proceeds through steps 16-17.
Selon l’exemple, pour la source i = 2, x2 = 1 — 1 = 0 donc la condition xi > 0 n’est pas remplie bien que la condition soit remplie, le procédé passe à l’étape
Figure imgf000021_0001
19, i.e. le procédé reprend les étapes 10-18 pour la source i = 3.
According to the example, for the source i = 2, x 2 = 1 — 1 = 0 therefore the condition xi > 0 is not met although the condition is met, the process goes to step
Figure imgf000021_0001
19, ie the process repeats steps 10-18 for source i = 3.
Pour la source i = 3 elle est correctement décodée selon l’exemple au bout de deux intervalles de retransmission x3 = 3 — 2 = 1. Comme xt > 0 et
Figure imgf000021_0002
alors le procédé met à jour l’ensemble  selon l’étape 16.
For the source i = 3 it is correctly decoded according to the example after two retransmission intervals x 3 = 3 — 2 = 1. As x t > 0 and
Figure imgf000021_0002
then the method updates the set  according to step 16.
Etape 16. Le procédé détermine l’ensemble A selon l’algorithme de l’Annexe A avec le jeu à jour des sources non décodées correctement par la destination. Step 16. The method determines the set A according to the algorithm in Appendix A with the updated set of sources not decoded correctly by the destination.
Selon l’exemple, après le décodage correct de la source i = 3 il est fait appel à l’algorithme de l’annexe A avec pour mettre à jour A.
Figure imgf000021_0003
According to the example, after the correct decoding of the source i = 3, the algorithm in Appendix A is used to update A.
Figure imgf000021_0003
Selon l’algorithme de l’annexe A puisque
Figure imgf000021_0007
et que x1 = 6 > 5 et que x4 = 12 > 5 alors
Figure imgf000021_0006
According to the algorithm in appendix A since
Figure imgf000021_0007
and that x 1 = 6 > 5 and that x 4 = 12 > 5 then
Figure imgf000021_0006
Etape 20. Le procédé reboucle à l’étape 8 avec  mis à jour. Step 20. The process loops back to step 8 with  updated.
Selon l’exemple,
Figure imgf000021_0008
i.e. aucune autre source ne peut être décodée dans le temps restant. La transmission de la trame est interrompue, il y a un défaut de décodage (outage event) des sources 1 et 4. Le procédé passe à la transmission de la trame suivante. Selon un autre mode de réalisation, la sélection d’une source à l’étape 9 peut se faire de manière aléatoire parmi les sources de l’ensemble Â.
According to the example,
Figure imgf000021_0008
ie no other source can be decoded in the remaining time. The transmission of the frame is interrupted, there is a decoding fault (outage event) of sources 1 and 4. The process moves on to the transmission of the next frame. According to another embodiment, the selection of a source in step 9 can be done randomly among the sources of the set Â.
Annexe A Annex A
Détermination de l’ensemble
Figure imgf000023_0001
des sources pouvant être aidées :
Determination of the whole
Figure imgf000023_0001
sources that can help:
[Tableau 1]
Figure imgf000023_0002
Figure imgf000023_0003
Figure imgf000024_0001
Figure imgf000025_0001
[Table 1]
Figure imgf000023_0002
Figure imgf000023_0003
Figure imgf000024_0001
Figure imgf000025_0001

Claims

REVENDICATIONS
1. Procédé de transmission d’une trame transportant des messages destiné à un système de télécommunication OMAMRC à N nœuds dont M sources et une
Figure imgf000026_0001
destination (d), N ≥ M ≥ 2, les nœuds fonctionnant en mode half-duplex, selon un schéma d’accès multiple orthogonal du canal de transmission entre les N nœuds avec un nombre maximum de M + Tmax intervalles de temps par trame transmise répartis entre une lere phase et une 2nde phase, 1 ≤ Tmax, le message d’une source ayant été codé avant transmission selon un codage de type à redondance incrémental qui génère plusieurs redondances, la lere phase comprend M intervalles alloués respectivement aux transmissions successives des M sources et la 2nde phase comprend au moins un intervalle de retransmission pour une transmission de nœuds ayant décodés correctement une même source si telle que ces nœuds transmettent simultanément pendant le même intervalle de retransmission la même redondance du message d’une même source non encore correctement décodée par la destination, dite source à aider, le procédé est tel qu’il comprend : une unique transmission par les nœuds d’au moins leur jeu de sources correctement décodées et non encore correctement décodées par la destination, ces transmissions permettant à la destination de déterminer, pour chacune de ces sources, une qualité d’un canal équivalent basée sur une qualité des canaux entre les nœuds ayant correctement décodés cette source et la destination, une estimation d’un nombre d’intervalles de retransmission suffisant (Xi (0)) pour que la destination décode une source (si) non encore correctement décodée et correctement décodées par au moins un nœud sur la base de la qualité d’un canal équivalent pour cette source entre ce au moins un nœud et la destination et d’un débit (Ri) attribué à cette source (si). une sélection par la destination des sources à aider en tenant compte des nombres (0)) estimés d’intervalles de retransmission suffisant pour que la destination décode les sources non encore correctement décodées et d’une somme de débits (Ri) attribués aux sources.
1. Method for transmitting a frame carrying messages intended for an OMAMRC telecommunications system with N nodes including M sources and one
Figure imgf000026_0001
destination (d), N ≥ M ≥ 2, the nodes operating in half-duplex mode, according to an orthogonal multiple access scheme of the transmission channel between the N nodes with a maximum number of M + T max time slots per frame transmitted distributed between a 1st phase and a 2nd phase, 1 ≤ T max , the message from a source having been coded before transmission according to incremental redundancy type coding which generates several redundancies, the 1st phase includes M allocated intervals respectively to successive transmissions of the M sources and the 2 nd phase includes at least one retransmission interval for a transmission of nodes having correctly decoded the same source if i such that these nodes transmit simultaneously during the same retransmission interval the same redundancy of the message d the same source not yet correctly decoded by the destination, called the source to be helped, the method is such that it comprises: a single transmission by the nodes of at least their set of sources correctly decoded and not yet correctly decoded by the destination , these transmissions allowing the destination to determine, for each of these sources, a quality of an equivalent channel based on a quality of the channels between the nodes having correctly decoded this source and the destination, an estimate of a number of intervals sufficient retransmission (X i (0)) for the destination to decode a source (s i ) not yet correctly decoded and correctly decoded by at least one node on the basis of the quality of an equivalent channel for this source between this at minus a node and the destination and a flow rate (R i ) allocated to this source (s i ). a selection by the destination of the sources to be helped taking into account the estimated numbers (0)) of retransmission intervals sufficient for the destination to decode the sources not yet correctly decoded and a sum of bit rates (R i ) allocated to the sources .
2. Procédé de transmission selon la revendication 1, tel que l’unique transmission par les nœuds d’au moins leur jeu de sources correctement décodées et non encore correctement décodées par la destination est réalisée au début de la 2nde phase. 2. Transmission method according to claim 1, such that the sole transmission by the nodes of at least their set of correctly decoded sources and not yet correctly decoded by the destination is carried out at the start of the 2nd phase.
3. Procédé de transmission selon l’une des revendications 1 et 2, comprenant en outre une comparaison entre une somme de nombres estimés d’intervalles de retransmission suffisant pour aider la destination à décoder des sources non encore correctement décodées et un nombre d’intervalles de temps restant pendant la 2nde phase pour aider la destination à décoder correctement une ou plusieurs sources. 3. Transmission method according to one of claims 1 and 2, further comprising a comparison between a sum of estimated numbers of retransmission intervals sufficient to help the destination decode sources not yet correctly decoded and a number of time slots remaining during the 2nd phase to help the destination correctly decode one or more sources.
4. Procédé de transmission selon la revendication précédente tel que la comparaison est mise à jour après le décodage correct d’une source par la destination. 4. Transmission method according to the preceding claim such that the comparison is updated after the correct decoding of a source by the destination.
5. Procédé de transmission selon l’une des revendications 1-4 tel que l’unique transmission par les nœuds d’au moins leur jeu de sources correctement décodées et non encore correctement décodées par la destination fait partie d’un échange de contrôle au cours duquel la source transmet son jeu de sources correctement décodées. 5. Transmission method according to one of claims 1-4 such that the unique transmission by the nodes of at least their set of sources correctly decoded and not yet correctly decoded by the destination is part of an exchange of control at during which the source transmits its set of correctly decoded sources.
6. Procédé de transmission selon la revendication 5 tel qu’au cours de l’échange, un nœud envoie uniquement son jeu de sources correctement décodées et non encore correctement décodées par la destination. 6. Transmission method according to claim 5 such that during the exchange, a node only sends its set of correctly decoded sources and not yet correctly decoded by the destination.
7. Procédé de transmission selon la revendication 5 tel qu’au cours de l’échange, un nœud envoie son jeu de sources correctement décodées. 7. Transmission method according to claim 5 such that during the exchange, a node sends its set of correctly decoded sources.
8. Procédé de transmission selon l’une des revendications 1-7, comprenant en outre une comparaison entre les nombres estimés d’intervalles de retransmission suffisant pour que la sélection tienne compte d’un ordonnancement de ces nombres estimés d’intervalles de retransmission suffisant. 8. Transmission method according to one of claims 1-7, further comprising a comparison between the estimated numbers of retransmission intervals sufficient for the selection to take into account an ordering of these estimated numbers of retransmission intervals sufficient .
9. Procédé de transmission selon l’une des revendications 1-7, comprenant en outre une détermination d’un ensemble de sources pouvant être aidées tenant compte des nombres (xi(0)) estimés d’intervalles de retransmission suffisant et d’un temps restant avant la fin de la 2nde phase et tel que la sélection des sources à aider se fait de manière aléatoire parmi l’ensemble des sources pouvant être aidées. 9. Transmission method according to one of claims 1-7, further comprising a determination of a set of sources which can be assisted taking into account the estimated numbers (x i (0)) of sufficient retransmission intervals and a time remaining before the end of the 2nd phase and such that the selection of sources to help is done randomly among all the sources that can be helped.
10. Procédé selon la revendication 9 tel que, si aucune source ne peut être aidée dans le temps restant avant la fin de la 2nde phase alors la transmission de la trame est interrompue avant l’utilisation du nombre maximal d’intervalles de retransmission suffisant (Tused < Tmax)-10. Method according to claim 9 such that, if no source can be helped in the time remaining before the end of the 2nd phase then the transmission of the frame is interrupted before the use of the maximum number of sufficient retransmission intervals (T used < Tmax)-
11. Système comprenant N nœuds dont M sources Si i∈{l, ... , M] et une destination (d), N ≥ M > 2, pour une mise en œuvre d’un procédé de transmission selon l’une des revendications 1 à 10. 11. System comprising N nodes including M sources S i i∈{l, ... , M] and a destination (d), N ≥ M > 2, for an implementation of a transmission method according to one of claims 1 to 10.
PCT/EP2023/067145 2022-06-28 2023-06-23 Transmission method and omamrc system with a selection strategy during retransmissions taking into account the throughput of the sources and of a single control exchange WO2024002899A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2206443 2022-06-28
FR2206443A FR3136915A1 (en) 2022-06-28 2022-06-28 Transmission method and OMAMRC system with a selection strategy during retransmissions taking into account the flow rate of the sources and a single exchange of control

Publications (1)

Publication Number Publication Date
WO2024002899A1 true WO2024002899A1 (en) 2024-01-04

Family

ID=86851963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/067145 WO2024002899A1 (en) 2022-06-28 2023-06-23 Transmission method and omamrc system with a selection strategy during retransmissions taking into account the throughput of the sources and of a single control exchange

Country Status (2)

Country Link
FR (1) FR3136915A1 (en)
WO (1) WO2024002899A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019180395A1 (en) * 2018-03-23 2019-09-26 Orange Omamrc transmission method and system with reduced signalling

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019180395A1 (en) * 2018-03-23 2019-09-26 Orange Omamrc transmission method and system with reduced signalling

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AL KHANSA ALI ET AL: "Fast Link Adaptation with Partial Channel State Information for Orthogonal Multiple Access Multiple Relay Channel (OMAMRC)", 2021 IEEE 3RD INTERNATIONAL MULTIDISCIPLINARY CONFERENCE ON ENGINEERING TECHNOLOGY (IMCET), IEEE, 8 December 2021 (2021-12-08), pages 11 - 16, XP033999723, DOI: 10.1109/IMCET53404.2021.9665572 *
S. CEROVICR. VISOZL. MADIER: "14th International Conférence on Wireless and Mobile Computing, Networking and Communications (WiMob", 2018, IEEE, article "Efficient Cooperative HARQ for Multi-Source Multi-Relay Wireless Networks"

Also Published As

Publication number Publication date
FR3136915A1 (en) 2023-12-22

Similar Documents

Publication Publication Date Title
WO2019162592A1 (en) Omamrc transmission method and system with slow link adaptation under bler constraint
EP3639427B1 (en) Omamrc transmission method and system with slow-link adaptation
EP2401830A1 (en) Method for signalling the quality of a transmission channel
EP3387773A1 (en) Relaying method and device and recipient with return in an omamrc system
EP3476071B1 (en) Dynamic and selective transmission of a digital signal for a system with full-duplex relay and a limited return path
WO2019180395A1 (en) Omamrc transmission method and system with reduced signalling
WO2021260308A1 (en) Omamrc method and system with fdm transmission
EP4150808A1 (en) Omamrc transmission method and system with variation in the number of uses of the channel
WO2024002899A1 (en) Transmission method and omamrc system with a selection strategy during retransmissions taking into account the throughput of the sources and of a single control exchange
FR3029375A1 (en) METHOD AND DEVICE FOR SOFT AND SELECTIVE SSDF RELAY
WO2024002886A1 (en) Transmission method and omamrc system with a selection strategy during retransmissions taking into account the throughput of the sources and of one or more control exchanges
WO2017220937A1 (en) Method for transmitting a digital signal for a system having at least one dynamic half-duplex relay with selective logic, corresponding program product and relay device
WO2023275469A1 (en) Method for cooperative retransmission in an omamrc system
WO2024079158A1 (en) Omamrc method and system with fdm transmission and multiple cooperations per sub-band
WO2024079309A1 (en) Cooperative retransmission method in an omamrc system with joint resource allocation and selections of the sources to be helped
WO2024002898A1 (en) Cooperative retransmission method in omamrc system
WO2023242295A1 (en) Method for cooperative retransmission in an omamrc system
EP4268396A1 (en) Method for receiving at least one data frame in an omamrc system, and corresponding destination, computer program and system
FR2934736A1 (en) Data packet transmission method for e.g. mesh wireless communication network, involves selecting transmission mode with or without implementation of coding based on comparison of transmission quality level with predetermined threshold

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23735277

Country of ref document: EP

Kind code of ref document: A1