WO2023238593A1 - Power tool system - Google Patents

Power tool system Download PDF

Info

Publication number
WO2023238593A1
WO2023238593A1 PCT/JP2023/017704 JP2023017704W WO2023238593A1 WO 2023238593 A1 WO2023238593 A1 WO 2023238593A1 JP 2023017704 W JP2023017704 W JP 2023017704W WO 2023238593 A1 WO2023238593 A1 WO 2023238593A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
rotation speed
power tool
user
recommended
Prior art date
Application number
PCT/JP2023/017704
Other languages
French (fr)
Japanese (ja)
Inventor
敦 中村
浩一 橋本
信仁 細川
弘明 村上
Original Assignee
パナソニックホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックホールディングス株式会社 filed Critical パナソニックホールディングス株式会社
Publication of WO2023238593A1 publication Critical patent/WO2023238593A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for

Definitions

  • This disclosure generally relates to power tool systems.
  • the present disclosure more particularly relates to a power tool system that includes a portable tool body.
  • Patent Document 1 discloses a tightening tool and a tightening position management system.
  • the tightening position management system described in Patent Document 1 includes a torque wrench that is a tightening tool, and a management device that manages tightening position information.
  • the torque wrench includes a toggle mechanism and a torque value calculation section.
  • a toggle mechanism is a type of torque limiter that operates when the tightening torque reaches a set torque. Activation of the toggle mechanism is detected by a sensor. The torque value at which the toggle mechanism operates can be adjusted by means of an adjustment knob.
  • the torque value calculation unit calculates the torque value at which the fastening member is tightened by the torque wrench based on the electric signal from the strain gauge. When the toggle mechanism is activated, the torque value calculation unit determines the maximum torque value detected before the toggle mechanism is activated as the tightening torque value for the tightening operation.
  • the torque wrench outputs the tightening torque value used to tighten the fastening parts to the management device via wireless communication.
  • the tightening position is specified based on the signals output from the acceleration sensor, gyro sensor, and geomagnetic sensor, and the tightening position information indicating the tightening position is managed. Output to device.
  • the management device Upon receiving the tightening position information and tightening torque value output from the torque wrench, the management device manages the received tightening position information and tightening torque value.
  • An object of the present disclosure is to provide a power tool system that can prompt control according to the user's condition.
  • a power tool system includes a drive section, an operation section, a control section, a detection section, a tool body, and a recommended value calculation section.
  • the drive unit includes a motor, and rotates the tip tool by rotation of the motor.
  • the operation section is operated by a user, and the control section controls the operation of the drive section in response to the user's operation on the operation section.
  • the detection unit detects a physical quantity related to at least one of the user's skill level and physical condition, which is obtained in response to the user's operation on the operation unit.
  • the tool main body is portable and holds the drive section, the operation section, the control section, and the detection section.
  • the recommended value calculation section calculates a recommended value of a control parameter related to the operation of the drive section based on the physical quantity detected by the detection section.
  • FIG. 1 is a block diagram of a power tool system according to an embodiment.
  • FIG. 2 is a system configuration diagram of the power tool system same as above.
  • FIG. 3 is a schematic diagram of a power tool used in the above power tool system.
  • FIG. 4 is a graph for explaining a method for determining recommended values by the power tool system described above.
  • FIG. 5 is a flowchart illustrating the operation of the above power tool system.
  • FIG. 6 is a block diagram of a power tool system according to modification 1.
  • FIG. 7 is a block diagram of a power tool system according to modification 2.
  • FIG. 8 is a block diagram of a power tool system according to modification 3.
  • a power tool system 100 includes a power tool 1 and a processing device 9.
  • the power tool 1 includes a control section 11, an operation section 12, a drive section 13, a detection section 15, and a tool body 10.
  • the drive unit 13 includes a motor 131.
  • the drive unit 13 rotates the tip tool 20 (see FIG. 3) by rotation of the motor 131.
  • the operation unit 12 is operated by a user (operator).
  • the control unit 11 controls the operation of the drive unit 13 in response to a user's operation on the operation unit 12 .
  • the detection unit 15 detects a physical quantity obtained in response to a user's operation on the operation unit 12.
  • the physical quantity is a quantity related to at least one of the user's skill level and physical condition.
  • the tool main body 10 is portable and holds a drive section 13, an operation section 12, a control section 11, and a detection section 15.
  • the processing device 9 includes a recommended value calculation section 921.
  • the recommended value calculation unit 921 calculates recommended values of control parameters related to the operation of the drive unit 13 based on the physical quantities detected by the detection unit 15.
  • the recommended value calculation unit 921 obtains recommended values for the control parameters so that user status information including at least one of the user's skill level and physical condition is reflected.
  • the power tool system 100 includes a drive section 13, an operation section 12, a control section 11, a detection section 15, a tool main body 10, and a recommended value calculation section 921.
  • the drive unit 13 includes a motor 131, and rotates the tip tool 20 by rotation of the motor 131.
  • the operation unit 12 is operated by a user.
  • the control unit 11 controls the operation of the drive unit 13 in response to a user's operation on the operation unit 12 .
  • the detection unit 15 detects a physical quantity related to at least one of the user's skill level and physical condition, which is obtained in response to the user's operation on the operation unit 12 .
  • the tool main body 10 is portable and holds a drive section 13, an operation section 12, a control section 11, and a detection section 15.
  • the recommended value calculation unit 921 calculates recommended values of control parameters related to the operation of the drive unit 13 based on the physical quantities detected by the detection unit 15.
  • the recommended value calculation unit 921 calculates the recommended value of the control parameter based on the physical quantity related to at least one of the user's skill level and physical condition detected by the detection unit 15. I'm looking for it. Therefore, in the power tool system 100 of the present embodiment, when the user uses the power tool 1, the recommended values of the control parameters obtained by the recommended value calculation unit 921 are used to determine the user's state such as skill level or physical condition. (in this embodiment, the control unit 11 of the power tool 1) can be prompted to perform an operation according to the following. That is, according to the power tool system 100 of this embodiment, it is possible to prompt control according to the user's condition.
  • the power tool system 100 includes the power tool 1 and the processing device 9.
  • the power tool 1 is a power tool for businesses used in factories, construction sites, etc., for example.
  • the power tool 1 is used to tighten a workpiece (for example, a solar panel, etc.) to a workpiece (for example, a frame, etc.) using a plurality of tightening members (for example, screws, bolts, etc.) according to a design drawing, a work instruction, etc., for example. used to do.
  • An example of this type of power tool 1 is an electric impact driver that tightens by rotating a tightening member and applying impact force.
  • the power tool 1 is not limited to an electric impact driver, but may be an electric impact wrench, an electric drill driver that does not apply impact force, an electric torque wrench, or the like.
  • the power tool 1 includes a tool body 10, a control section 11, an operation section 12, a drive section 13, a sensor section 14, a detection section 15, a communication section 16, It includes a storage section 17 and a power supply section 18.
  • the tool body 10 holds a control section 11, an operation section 12, a drive section 13, a sensor section 14, a detection section 15, a communication section 16, a storage section 17, and a power supply section 18.
  • the tool main body 10 includes a cylindrical body portion 101 and a grip portion 102 that protrudes from the circumferential surface of the body portion 101 in the radial direction.
  • An output shaft 133 of the drive section 13 protrudes from one end of the body section 101 in the axial direction.
  • a tip tool mounting portion 134 is provided at the tip of the output shaft 133.
  • the tip tool mounting portion 134 includes, for example, a chuck.
  • a tip tool 20 (for example, a driver bit, a socket bit, etc.) that matches the member to be worked on is detachably attached to the tip tool attachment portion 134 .
  • a battery pack 103 containing a power supply section 18 housed in a resin case is detachably attached to one end (lower end in FIG. 3) of the grip section 102.
  • the control unit 11 controls the operations of the drive unit 13, sensor unit 14, detection unit 15, communication unit 16, etc.
  • the control unit 11 is realized by a computer system having one or more processors and memory.
  • the computer system functions as the control unit 11 by having one or more processors execute programs stored in memory.
  • the program is pre-recorded in the memory of the control unit 11 here, it may also be provided via a telecommunications line such as the Internet or by being recorded on a non-temporary recording medium such as a memory card.
  • the control unit 11 may be configured with, for example, an FPGA (Field-Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit).
  • a computer system (circuit board 110, etc.) constituting the control section 11 is housed inside the grip section 102, for example.
  • the operating section 12 includes a trigger switch 121 provided on the grip section 102.
  • a trigger switch 121 When the trigger switch 121 is operated by the user, an operation signal proportional to the amount of retraction (operation amount) of the trigger switch 121 is output to the control unit 11 .
  • the control section 11 adjusts the rotation speed of the motor 131 of the drive section 13 so that the motor 131 of the drive section 13 rotates at a speed according to the operation signal from the operation section 12 .
  • the rotation speed of the motor 131 is the rotation speed of the motor 131, and means the number of times (speed) [rpm] that the rotor of the motor 131 rotates per unit time.
  • the drive unit 13 includes a motor 131, an impact mechanism 132, an output shaft 133, and a tip tool attachment part 134.
  • the operation (rotation) of the motor 131 is controlled by the control unit 11.
  • the rotation of the output shaft of the motor 131 is transmitted to the output shaft 133 via the impact mechanism 132. If the output torque is below a predetermined level, the impact mechanism 132 is configured to decelerate the rotation of the output shaft of the motor 131 and transmit it to the output shaft 133. When the output torque exceeds a predetermined level, the impact mechanism 132 is configured to apply impact force to the output shaft 133 to rotate the output shaft 133.
  • the motor 131 and impact mechanism 132 are housed within the body portion 101.
  • the sensor unit 14 measures the tightening torque by the output shaft 133.
  • the sensor section 14 includes, for example, a magnetostrictive torque sensor 141 attached to the output shaft 133.
  • the magnetostrictive torque sensor 141 uses a coil installed in a non-rotating part to detect a change in magnetic permeability in response to distortion caused by applying torque to the output shaft 133, and outputs a voltage signal proportional to the distortion.
  • the sensor unit 14 measures the torque applied to the output shaft 133. That is, the sensor unit 14 measures the torque (tightening torque) that the electric tool 1 applies to the tightening member.
  • the sensor unit 14 outputs the measured torque (tightening torque) to the control unit 11.
  • the sensor unit 14 may measure the torque applied to the output shaft of the motor 131.
  • the sensor unit 14 may measure the tightening torque applied to the output shaft 133 based on the measured value of the torque applied to the output shaft of the motor 131, the reduction ratio of the reduction mechanism, and the like.
  • the sensor section 14 is not limited to having the magnetostrictive torque sensor 141, and the means for realizing the sensor section 14 can be changed as appropriate.
  • the sensor unit 14 may measure the torque applied to the output shaft of the motor 131 by detecting the current flowing through the motor 131.
  • the sensor section 14 may count the number of hits applied to the output shaft 133 by the impact mechanism 132 using a vibration sensor, and determine the tightening torque from the number of hits.
  • the control unit 11 includes a drive control unit 111 that controls the operation of the drive unit 13 (motor 131).
  • the drive control section 111 drives the motor 131 according to an operation signal input from the operation section 12.
  • the drive control section 111 includes an inverter circuit that converts the voltage from the power supply section 18 into a drive voltage for the motor 131.
  • the drive voltage is, for example, a three-phase AC voltage including a U-phase voltage, a V-phase voltage, and a W-phase voltage.
  • the inverter circuit can be realized using, for example, a PWM inverter and a PWM converter.
  • the PWM converter generates a pulse width modulated PWM signal according to a target value (voltage command value) of the drive voltage.
  • the PWM inverter drives the motor 131 by applying a drive voltage to the motor 131 according to this PWM signal.
  • a PWM inverter includes, for example, a three-phase half-bridge circuit and a driver.
  • a driver turns on/off switching elements in each half-bridge circuit according to a PWM signal, so that a drive voltage according to a voltage command value is applied to the motor 131.
  • the drive control unit 111 controls the drive unit 13 so that the magnitude of the tightening torque of the tightening member becomes the torque setting value. For example, the drive control unit 111 stops the rotation of the motor 131 of the drive unit 13 when the value of the tightening torque measured by the sensor unit 14 reaches a preset torque setting value. Note that the torque setting value can be changed, and is changed by the control unit 11 based on a setting signal transmitted from the processing device 9 in response to a user's operation, for example.
  • the drive control section 111 controls the operation of the drive section 13 so that the rotation speed of the motor 131 does not exceed the maximum rotation speed. That is, the drive control unit 111 controls the operation of the drive unit 13 so that the rotational speed of the motor 131 does not exceed the maximum rotational speed even if the amount of retraction of the trigger switch 121 is the maximum detectable value.
  • the maximum rotation speed of the motor 131 is a set value of the upper limit of the rotation speed of the motor 131.
  • control section 11 further includes a detection information processing section 112.
  • the detected information processing unit 112 processes the physical quantity detected by the detection unit 15 and related to at least one of the user's skill level and physical condition.
  • control unit 11 further includes a workload determination unit 113.
  • the workload determining unit 113 calculates the cumulative value of the time during which the operating unit 12 was operated within a predetermined period.
  • the predetermined period is, for example, one day starting from midnight.
  • a [m/s 2 ] indicates a triaxial composite value of frequency-corrected vibration acceleration effective values, and is determined according to the specifications of the power tool 1. Further, T [time] indicates the vibration exposure time per day.
  • the work amount determination unit 113 determines whether the operation unit 12 (trigger switch 121) is operated when the cumulative value of the operating time of the operation unit 12 within a predetermined period exceeds a reference value. Rotation of the motor 131 is stopped regardless of the presence or absence of the motor.
  • the reference value is, for example, the smaller of the vibration exposure limit time determined from the triaxial composite value a of the frequency-corrected vibration acceleration effective value of the power tool 1 and 2 [hours]. Note that the reference value is not limited to this, and may be a value smaller than the vibration exposure limit time.
  • the standard value is determined based on the daily vibration exposure countermeasure value (2.5 [m/s 2 ]) instead of the daily vibration exposure limit value (5.0 [m/s 2 ]). Good too.
  • the reference value may be settable by the user.
  • the power tool system 100 includes the work amount determining unit 113, it becomes possible for the user to manage the usage time of the power tool 1, and prevent the user from using the power tool 1 beyond the vibration exposure limit time. This makes it possible to suppress the situation in which this occurs, and it becomes possible to reduce the fatigue accumulated in the user.
  • the detection unit 15 detects a physical quantity related to at least one of the user's skill level and physical condition.
  • the physical quantity detected by the detection unit 15 is a physical quantity obtained in response to the user's operation on the operation unit 12 (when the user is operating the operation unit 12).
  • the detection section 15 includes a vibration measurement section 151.
  • the vibration measurement unit 151 measures parameters related to vibration of the tool body 10.
  • the vibration measurement unit 151 measures parameters related to vibrations of the tool body 10, particularly when the drive unit 13 is operating due to a user's operation on the operation unit 12, that is, when the motor 131 is rotating.
  • the vibration measurement unit 151 includes, for example, a vibration sensor held in the tool body 10.
  • the vibration sensor measures the acceleration of the tool body 10, for example. That is, the vibration measurement unit 151 measures the acceleration of the tool body 10 as a parameter of the vibration of the tool body 10.
  • the vibration measurement unit 151 (vibration sensor) may measure the displacement (amplitude) or speed of vibration of the tool body 10.
  • the vibration sensor may be, for example, a piezoelectric element type acceleration sensor or a capacitance type sensor.
  • the vibration measurement unit 151 outputs the detected physical quantity (acceleration) to the control unit 11.
  • the detection unit 15 further includes a rotation speed detection unit 152.
  • the rotation speed detection unit 152 detects the rotation speed (rotation speed) of the output shaft 133.
  • the rotation speed detection unit 152 converts the rotation speed of the motor 131 into the rotation speed of the output shaft 133 based on, for example, a magnetic rotary encoder or Hall element IC that detects the rotation speed of the motor 131, and a reduction ratio of a reduction mechanism. and an arithmetic unit.
  • the invention is not limited to this, and when the drive control unit 111 controls the operation of the motor 131 by vector control, the rotation speed detection unit 152 uses the value of the d-axis current (excitation current) calculated in the vector control, etc.
  • the rotation speed of the motor 131 may also be detected.
  • the rotation speed detection unit 152 may directly detect the rotation speed of the output shaft 133.
  • the rotation speed detection section 152 outputs the detected physical quantity (rotation speed) to the control section 11.
  • the detection information processing unit 112 of the control unit 11 generates detection data based on the physical quantity detected by the detection unit 15.
  • the detection information processing section 112 links the measured value of the rotation speed of the output shaft 133 received from the rotation speed detection section 152 and the measured value of the acceleration of the tool body 10 received from the vibration measurement section 151.
  • the detection information processing unit 112 calculates the average value of the rotation speed of the motor 131 from when the trigger switch 121 is turned on until it is turned off.
  • the detection information processing unit 112 also obtains a deviation (dispersion) in the acceleration of the tool body 10 from when the trigger switch 121 is turned on until it is turned off.
  • the detection information processing section 112 obtains data (detection data) in which the obtained average value of the rotation speed and the deviation of the acceleration are linked to each other, and stores the data in the storage section 17 .
  • the detection data obtained by the detection information processing unit 112 is not limited to this, and for example, instead of the average value of the rotation speed, the maximum value, median value, minimum value, etc. of the rotation speed may be used. Further, the detection information processing unit 112 may obtain the detection data using the maximum value or average value of acceleration, the maximum value or average value of vibration displacement, or the like instead of the deviation of acceleration.
  • the communication unit 16 is, for example, a communication module for wirelessly communicating with the processing device 9.
  • the communication unit 16 performs short-range wireless communication based on, for example, ZigBee (registered trademark).
  • the communication unit 16 transmits the detection data stored in the storage unit 17 to the processing device 9 using a wireless communication method.
  • the control unit 11 temporarily stores detected data in a memory such as a RAM (Random Access Memory) that the control unit 11 has, and the communication unit 16 stores detected data temporarily stored in a memory such as a RAM. may be transmitted to the processing device 9 using a wireless communication method.
  • the wireless communication method between the communication unit 16 and the processing device 9 is, for example, a specified low power wireless station in the 920 MHz band (a wireless station that does not require a license), Wi-Fi (registered trademark), Bluetooth (registered trademark), etc. ), etc., and may be wireless communication using radio waves as a medium. Further, the communication unit 16 may be connected to the processing device 9 via a communication line and transmit the detection data to the processing device 9 using a wired communication method.
  • the storage unit 17 includes, for example, a ROM (Read Only Memory), a nonvolatile memory, and the like.
  • Non-volatile memory includes, for example, EEPROM or flash memory.
  • the storage unit 17 stores a control program executed by the control unit 11.
  • the storage unit 17 also stores the detection data obtained by the detection information processing unit 112.
  • the power supply unit 18 includes a storage battery. Power supply section 18 is housed within battery pack 103.
  • the battery pack 103 is configured by housing a power supply unit 18 in a resin case. By removing the battery pack 103 from the tool body 10 and connecting the removed battery pack 103 to a charger, the storage battery of the power supply unit 18 can be charged.
  • the power supply unit 18 supplies power necessary for operation to the electric circuit including the control unit 11 and the motor 131 using the power stored in the storage battery.
  • the power supply unit 18 and the battery pack 103 are included in the components of the power tool 1 in this embodiment, they may not be included in the components of the power tool 1.
  • Processing device 9 determines the recommended maximum rotation speed based on the detection data.
  • the form of the processing device 9 is not particularly limited.
  • the processing device 9 may be any device that can communicate directly or indirectly with the power tool 1 and can execute desired processing according to a predetermined program.
  • the processing device 9 may be, for example, a glasses-type, bracelet-type, or other wearable terminal worn by the user.
  • the processing device 9 may be, for example, a portable information terminal such as a smartphone or a tablet terminal.
  • the processing device 9 may be, for example, a stationary information terminal such as a notebook computer or a desktop computer.
  • the processing device 9 may be a server device (which may include a cloud computer).
  • the processing device 9 includes a communication section 91 and a control section 92.
  • the communication unit 91 is a communication module for communicating with the communication unit 16 of the power tool 1.
  • the communication unit 91 performs short-range wireless communication based on, for example, ZigBee (registered trademark).
  • the communication unit 91 receives detection data from the communication unit 16 of the power tool 1 . Furthermore, the communication unit 91 transmits the recommended data generated by the control unit 92 to the communication unit 16 of the power tool 1.
  • the control unit 92 controls the operation of the communication unit 91 and the like.
  • the control unit 92 is realized by a computer system having one or more processors and memory.
  • the computer system functions as the control unit 92 by having one or more processors execute programs stored in memory.
  • the program is pre-recorded in the memory of the control unit 92 here, it may also be provided via a telecommunications line such as the Internet or by being recorded on a non-temporary recording medium such as a memory card.
  • control section 92 includes a recommended value calculation section 921.
  • the recommended value calculation unit 921 calculates recommended values of control parameters regarding the operation of the drive unit 13 of the power tool 1 based on the detection data received from the power tool 1. That is, the recommended value calculation unit 921 calculates the recommended value of the control parameter based on the physical quantity detected by the detection unit 15. Here, the recommended value calculation unit 921 sets the recommended value of the control parameter based on the relationship between the rotation speed of the output shaft 133 (the rotation speed of the tip tool 20) and the vibration-related parameters of the tool body 10, which are included in the detection data. , a recommended maximum rotation speed, which is a recommended value of the maximum rotation speed of the motor 131, is determined.
  • the recommended value calculating section 921 includes a rank determining section 922 and a recommended value determining section 923.
  • the rank determination unit 922 determines the rank of the user based on the detection data received from the power tool 1.
  • a user's rank is an index indicating the state of the user, such as the user's skill level and physical condition.
  • the user's skill level is an index indicating how proficient the user is in using the power tool 1.
  • the rank determination unit 922 determines the user's rank using a graph showing the correspondence between the rotation speed (for example, average rotation speed) of the output shaft 133 and the vibration parameter (for example, acceleration deviation) of the tool body 10. decide.
  • FIG. 4 shows an example of a graph that serves as a reference for determining a user's rank.
  • the horizontal axis represents the average rotational speed of the output shaft 133
  • the vertical axis represents the deviation in acceleration of the tool body 10 (denoted as "vibration" in FIG. 4).
  • Region A1 in FIG. 4 is a region in which vibration (deviation in acceleration) of the tool body 10 is suppressed to a small level even if the rotation speed of the output shaft 133 is high. That is, when the coordinate values indicated by the detection data of a certain user are located within the area A1, the user can suppress the deviation of the acceleration of the tool body 10 to a small value even if the rotation speed of the output shaft 133 is large. In other words, it can be said that the user is a person who is accustomed to using the power tool 1 (an expert) or a person who has a low degree of fatigue. In that case, the rank determining unit 922 determines the rank of this user as advanced level (A1).
  • Region A3 in FIG. 4 is a region where the vibration of the tool body 10 increases as the rotational speed of the output shaft 133 increases.
  • the user is a user for whom the deviation of the acceleration of the tool body 10 increases as the rotation speed of the output shaft 133 increases.
  • the rank determining unit 922 determines the rank of this user to be beginner level (A3).
  • Area A2 in FIG. 4 is an area between area A1 and area A3.
  • the rank determining unit 922 determines that the user is a person who is accustomed to using the power tool 1 to some extent (intermediate user) or has a medium degree of fatigue. The rank of this user is determined to be intermediate level (A2).
  • the recommended value determining unit 923 determines a recommended maximum rotation speed that is a recommended value of the maximum rotation speed of the motor 131 (the upper limit of the rotation speed of the motor 131). The recommended value determining unit 923 determines the recommended maximum rotation speed based on the user's rank determined by the rank determining unit 922. The recommended value determination unit 923 determines the recommended maximum rotation speed based on the correspondence table shown in Table 1, for example.
  • X1, X2, and X3 indicate the recommended maximum rotation speed (numerical value), and X1>X2>X3. That is, the recommended value determination unit 923 increases the recommended maximum rotation speed as the user's rank is higher (the higher the user's skill level and the lower the fatigue level).
  • the recommended value calculation unit 921 calculates the recommended value of the control parameter related to the operation of the drive unit 13 (for example, the recommended maximum (rotation speed).
  • the control unit 92 transmits recommended data including the recommended maximum rotation speed (value) obtained by the recommended value calculation unit 921 to the power tool 1 via the communication unit 91.
  • the control unit 11 of the power tool 1 sets the recommended maximum rotation speed included in the recommended data as the maximum rotation speed. As described above, the control unit 11 (drive control unit 111) adjusts the tightening torque of the tightening member 200 to the torque setting value so that the rotation speed of the motor 131 does not exceed the maximum rotation speed (that is, the recommended maximum rotation speed). The operation of the drive unit 13 is controlled so that
  • the control unit 11 of the power tool 1 controls the operation of the drive unit 13 based on the recommended value of the control parameter determined by the recommended value calculation unit 921.
  • the control parameters include the maximum rotation speed, which is the upper limit of the rotation speed of the motor 131.
  • the recommended value calculation unit 921 calculates a recommended maximum rotational speed, which is a recommended value of the maximum rotational speed, based on the physical quantity detected by the detection unit 15.
  • the control unit 11 controls the operation of the drive unit 13 so that the rotation speed of the motor 131 does not exceed the recommended maximum rotation speed determined by the recommended value calculation unit 921.
  • the motor 131 directly applies power to the tightening member.
  • torque is also imparted by the inertia of the rotating bodies (the rotor of the motor 131, the impact mechanism 132, the output shaft 133, etc.) included in the power tool 1.
  • the drive control unit 111 controls the drive unit 13 so that the tightening torque of the tightening member becomes the torque setting value as described above, but in this control, the torque given by the inertia of the rotating body is also controlled.
  • the drive unit 13 is controlled in consideration.
  • the recommended maximum rotation speed is changed according to the user's rank, thereby suppressing the occurrence of wobbling of the tool body 10 when the tightening member is seated.
  • the rotation speed of the motor 131 is low, even if the user has low skill level or is highly fatigued, it is easy for the user to suppress the occurrence of wobbling (kickback, etc.) of the tool body 10 when the tightening member is seated. It is from. This makes it possible to improve the accuracy of the tightening torque of the tightening member.
  • the control unit 11 calculates the recommended value (recommended maximum rotation speed) of the control parameter obtained by the recommended value calculation unit 921.
  • the driving unit 13 is operated using the following. Thereby, according to the power tool system 100 of the present embodiment, it is possible to cause the power tool 1 to perform control according to the user's condition.
  • the power tool 1 When a user performs work using the power tool 1, the power tool 1 obtains the recommended maximum rotation speed (recommended value) in advance and sets the maximum rotation speed (ST1).
  • the recommended value is a value sent from the processing device 9.
  • the user sets the power tool 1 at a predetermined position and turns on the trigger switch 121 (ST2).
  • the control unit 11 (drive control unit 111) prevents the rotation speed of the motor 131 from exceeding the maximum rotation speed (recommended maximum rotation speed) based on the amount of pull of the trigger switch 121. , controls the drive unit 13. Thereby, the user performs work using the power tool 1 (ST3).
  • the control unit 11 of the power tool 1 determines at any time whether the trigger switch 121 is turned off (ST4). Further, while the trigger switch 121 is maintained on (ST4: No), the control unit 11 determines at any time whether the tightening torque detected by the sensor unit 14 has reached the torque setting value ( ST5). In the state where the tightening torque has not reached the torque setting value (ST5: No), the control unit 11 (work amount determination unit 113) determines whether the cumulative value of the operation time of the operation unit 12 has reached the reference value. Judgment is made at any time (ST6). If the integrated value of the operation time has not reached the reference value (ST6: No), the control unit 11 continues the operation of the drive unit 13.
  • the control unit 11 stops supplying current to the motor 131 and stops the operation of the drive unit 13 (ST7). Further, when the tightening torque reaches the torque setting value (ST5: Yes), the control section 11 stops the operation of the drive section 13 (ST7). Furthermore, even if the trigger switch 121 is turned on and the tightening torque has not reached the torque setting value, if the cumulative value of the operation time reaches the reference value (ST6: Yes), the control unit 11 will forcefully drive the tightening torque. The operation of the section 13 is stopped (ST7).
  • the control unit 11 performs detection based on the measured value of the rotational speed of the output shaft 133 and the measured value of the parameter (acceleration) related to vibration of the tool body 10.
  • Data is acquired (ST8) and the detected data is transmitted to the processing device 9.
  • the processing device 9 determines the user's rank based on the detection data (ST9), determines the recommended maximum rotation speed (recommended value) (ST10), and creates a recommendation including the determined recommended maximum rotation speed.
  • the power tool 1 sets the recommended maximum rotation speed included in the received recommendation data as the maximum rotation speed (ST11), and controls the drive unit 13 based on this maximum rotation speed in the next operation.
  • the operation of the power tool system 100 is not limited to the flowchart in FIG. 5, and the order of steps may be changed, or some steps may be omitted or added.
  • the control unit 11 does not have to forcibly stop the operation of the drive unit 13 when the integrated value of the operation time reaches the reference value in step ST6 (ST6: Yes). Instead, when the cumulative value of the operation time reaches the reference value, the control unit 11 controls the operation time even if the trigger switch 121 is turned on again after the drive unit 13 is stopped due to, for example, the trigger switch 121 being turned off. Control may be performed such that the drive unit 13 is not operated.
  • (4.1) Modification example 1 A power tool system 100A of this modification will be described with reference to FIG. 6.
  • the power tool system 100A of this modification differs from the power tool system 100 of the above-described embodiment mainly in the method by which the rank determination unit 922 determines the user's rank.
  • description of the same configuration as the power tool system 100 of the above embodiment may be omitted as appropriate.
  • the detection unit 15A of the power tool 1A includes an operation speed measurement unit 153.
  • the operation speed measurement unit 153 measures the speed at which the user operates the operation unit 12, in this case, the speed at which the user pulls the trigger switch 121. More specifically, the operation speed measuring unit 153 measures the time from when the user starts pulling the trigger switch 121 to when the pulling is completed (hereinafter also referred to as "operation time").
  • the point in time when the trigger switch 121 starts to be pulled is, for example, the point in time when the amount of pull in the trigger switch 121 reaches a detectable minimum value in one pull operation of the trigger switch 121.
  • the time when the retraction of the trigger switch 121 is completed is, for example, the time when the amount of retraction of the trigger switch 121 reaches the maximum detectable value in one pull operation of the trigger switch 121.
  • the detection information processing unit 112 of the control unit 11 stores the operation time (reciprocal of the operation speed) measured by the operation speed measurement unit 153 in the storage unit 17 as detection data, and sends it to the processing device 9 via the communication unit 16. Let it be sent
  • the rank determination unit 922 of the recommended value calculation unit 921 of the processing device 9 determines the rank of the user based on a plurality of threshold values, for example.
  • the threshold value is a numerical value that is compared with the operation time indicating the operation speed (pulling speed of the trigger switch 121).
  • the rank determining unit 922 determines the rank of this user as advanced level (A1). This is because if the operation time is short and the operation speed is high, the user can be considered to be a person who is accustomed to using the power tool 1A (an expert) or a person with a low degree of fatigue. Further, for example, when the operation time is equal to or greater than the first threshold value and smaller than the second threshold value, the rank determining unit 922 determines the rank of this user to be intermediate level (A2). Furthermore, for example, when the operation time is equal to or greater than the second threshold, the rank determining unit 922 determines the rank of this user to be beginner level (A3).
  • the recommended value determination unit 923 determines the recommended maximum rotation speed, for example, according to Table 1.
  • the control unit 11 drive control unit 111 of the power tool 1A controls the drive unit 13 so that the rotation speed of the motor 131 does not exceed the recommended maximum rotation speed.
  • the operation speed measurement unit 153 may measure the speed at which the trigger switch 121 is pulled (for example, the maximum value, average value, etc. of the speed). Furthermore, the rank determination unit 922 may convert the operation time into an operation speed and compare it with a predetermined threshold (a threshold with which the operation speed is compared).
  • (4.2) Modification 2 A power tool system 100B of this modification will be described with reference to FIG. 7.
  • the power tool system 100B of this modification differs from the power tool system 100 of the above-described embodiment mainly in the method by which the rank determination unit 922 determines the user's rank.
  • description of the same configuration as the power tool system 100 of the above embodiment may be omitted as appropriate.
  • the detection unit 15B of the power tool 1B includes an operation interval measurement unit 154.
  • the operation interval measurement unit 154 measures the time interval or frequency of operations when the operation unit 12 is repeatedly operated.
  • the operation interval measurement unit 154 measures the time interval at which the user turns on the trigger switch 121 (the time from when the trigger switch 121 is turned on, when it is turned off, until when it is turned on again).
  • "turning on the trigger switch 121” may mean that the amount of retraction of the trigger switch 121 reaches a detectable maximum value.
  • the detection information processing unit 112 of the control unit 11 stores the time measured by the operation interval measurement unit 154 (hereinafter also referred to as “on interval”) in the storage unit 17 as detection data, and processes it via the communication unit 16. It is transmitted to the device 9.
  • the work of tightening a plurality of tightening members on one work object may be repeatedly performed in an assembly line manner.
  • the user will perform a task of tightening a plurality of tightening members within a certain takt time for one work object.
  • the time interval at which the trigger switch 121 is turned on reflects the time required for the user to complete the task of tightening multiple tightening members, and the time interval at which the trigger switch 121 is turned on will reflect the time required for the user to complete the task of tightening multiple tightening members, and will depend on the user's skill level, fatigue level, etc. It can be said that it reflects the state of the user. Therefore, in the power tool system 100B of this modification, this "on interval" is used as a parameter indicating the user's state.
  • the rank determination unit 922 of the recommended value calculation unit 921 of the processing device 9 determines the rank of the user based on a plurality of threshold values, for example.
  • the threshold is a numerical value that is compared to the on-interval value.
  • the rank determining unit 922 determines the rank of this user as advanced level (A1). This means that if the value of the on-interval is small, the user can complete the work in a short time, so the user is a person who is accustomed to using the power tool 1B (skilled person) or a person with a low degree of fatigue. This is because it can be considered as Furthermore, for example, when the value of the on-interval is greater than or equal to the first threshold and smaller than the second threshold, the rank determining unit 922 determines the rank of this user to be intermediate level (A2). Furthermore, for example, when the value of the on-interval is equal to or greater than the second threshold, the rank determining unit 922 determines the rank of this user to be beginner level (A3).
  • the recommended value determination unit 923 determines the recommended maximum rotation speed, for example, according to Table 1.
  • the control unit 11 drive control unit 111 of the power tool 1B controls the drive unit 13 so that the rotation speed of the motor 131 does not exceed the recommended maximum rotation speed.
  • the operation interval measurement unit 154 measures the time interval at which the user turns off the trigger switch 121 (from when the trigger switch 121 is turned off, after the trigger switch 121 is turned on, until the next time when the trigger switch 121 is turned off). time) may be measured.
  • the operation interval measuring unit 154 may measure the total working time for one work object (the time from starting to completing the work of tightening a plurality of fastening members).
  • a power tool system 100C of this modification will be described with reference to FIG. 8.
  • the power tool system 100C of this modification differs from the power tool system 100 of the above embodiment mainly in that it includes a notification section 19.
  • description of the same configuration as the power tool system 100 of the above embodiment may be omitted as appropriate.
  • the notification unit 19 includes, for example, an LED (Light Emitting Diode).
  • the emitted light color of the LED is, for example, red.
  • the LED is provided, for example, at the end of the body portion 101 of the tool body 10 on the opposite side to the output shaft 133 so that the user can easily see the LED during work.
  • the control unit 11 (drive control unit 111) of the power tool 1C does not perform control to suppress the rotation speed of the motor 131 to below the recommended maximum rotation speed. Instead, when it is detected that the rotation speed of the motor 131 exceeds the recommended maximum rotation speed determined by the recommended value calculation unit 921 in response to a pulling operation on the trigger switch 121, the control unit 11 causes, for example, an LED to emit light. Then, the notification unit 19 notifies the user. Thereby, the user can be urged to refrain from controlling the rotation speed of the motor 131 to exceed the recommended maximum rotation speed. In short, the power tool system 100C of this modification can also prompt the user (in this modification, the user) to perform control according to the user's condition.
  • the power tool 1C may include a display section that can display a recommended value (recommended maximum rotation speed).
  • the display unit may be able to display other information such as a measured value of the rotation speed of the motor 131 in addition to the recommended maximum rotation speed.
  • the control unit 11 of the power tool 1C may be able to switch between the first mode and the second mode.
  • the first mode is a mode in which the control section 11 (drive control section 111) controls the drive section 13 so that the rotation speed of the motor 131 does not exceed the recommended maximum rotation speed.
  • the second mode is a mode in which the user is notified when it is detected that the number of rotations of the motor 131 exceeds the recommended maximum number of rotations.
  • the first mode and the second mode may be switched according to the operation of a switch provided on the tool body 10 or the processing device 9.
  • the notification unit 19 (and display unit) may be provided in the processing device 9.
  • control parameter related to the operation of the drive unit 13 for which the recommended value calculating unit 921 obtains the recommended value is not limited to the maximum rotation speed of the motor 131, but is, for example, the maximum value of the motor current supplied to the motor 131. It may be the maximum value of the duty of the PWM signal.
  • the control parameter whose physical quantity is detected by the detection unit 15 may be a motor current, a duty of a PWM signal, or the like.
  • the user's rank determined by the rank determination unit 922 is not limited to three levels, but may be two levels, four levels or more, or may be non-level.
  • the recommended value determination unit 923 may determine the recommended value, for example, based on a correspondence table according to the number of rank candidates of the user.
  • the recommended value determination unit 923 may determine the recommended value based on a relational expression that associates the user's rank with the recommended value.
  • the recommended value calculation unit 921 does not need to determine the rank of the user, and may directly determine the recommended value from detected data such as the operation speed described in the first modification, for example.
  • the workload determination unit 113 may notify the user when the cumulative value of the time during which the operation unit 12 is operated exceeds a reference value.
  • the work amount determining unit 113 may calculate the number of times a parameter related to vibration of the tool body 10 exceeds a threshold value within a predetermined period.
  • the predetermined period may be, for example, one day starting from midnight.
  • the parameter related to the vibration of the tool body 10 may be the magnitude of the vibration of the tool body 10 or the magnitude of the acceleration of the tool body 10. For example, if the number of times the magnitude of the acceleration of the tool body 10 exceeds the acceleration threshold within a predetermined period, the work amount determination unit 113 determines whether or not the operation unit 12 (trigger switch 121) has been operated. Regardless, the rotation of the motor 131 may be stopped.
  • the recommended value calculation unit 921 may calculate the recommended value at any time even if the motor 131 is rotating in response to an operation on the operating unit 12.
  • the control unit 11 (drive control unit 111) may control the drive unit 13 based on the recommended value obtained by the recommended value calculation unit 921.
  • recommended values of control parameters are calculated at any time based on the physical quantities detected by the detection unit 15 (15A, 15B), and the drive unit 13 is controlled based on the recommended values. So-called feedback control may be performed in real time.
  • the power tool system (100; 100A; 100B; 100C) of the first aspect includes a drive section (13), an operation section (12), a control section (11), and a detection section (15; 15A; 15B). , a tool body (10), and a recommended value calculation section (921).
  • the drive unit (13) includes a motor (131), and rotates the tip tool (20) by rotation of the motor (131).
  • the operation unit (12) is operated by a user.
  • the control section (11) controls the operation of the drive section (13) in response to a user's operation on the operation section (12).
  • the detection unit (15; 15A; 15B) detects a physical quantity related to at least one of the user's skill level and physical condition, which is obtained in response to the user's operation on the operation unit (12).
  • the tool body (10) is portable and holds a drive section (13), an operation section (12), a control section (11), and a detection section (15; 15A; 15B).
  • the recommended value calculating section (921) obtains recommended values of control parameters related to the operation of the driving section (13) based on the physical quantities detected by the detecting section (15; 15A; 15B).
  • a power tool system (100; 100A; 100B; 100C) that can prompt control according to the user's condition.
  • the detection unit (15) includes a vibration measurement unit (151) that measures parameters related to vibration of the tool body (10).
  • the recommended value calculation unit (921) calculates the rotation speed of the tip tool (20) and the vibration of the tool body (10).
  • the recommended value of the control parameter is determined based on the relationship with the relevant parameter.
  • the power tool system (100; 100A; 100B; 100C) of the fourth aspect further includes a work amount determination unit (113) in any one of the first to third aspects.
  • the work amount determination unit (113) determines the number of times a parameter related to vibration of the tool body (10) exceeds a threshold value within a predetermined period, or the cumulative value of the time during which the operating portion (12) is operated within a predetermined period. seek.
  • the operating section (12) includes a trigger switch (121) that accepts a pull operation.
  • the detection unit (15A) includes an operation speed measurement unit (153) that measures the speed at which the user pulls the trigger switch (121).
  • the detection unit (15B) detects the time interval between operations when the operation unit (12) is repeatedly operated.
  • it includes an operation interval measuring section (154) that measures the frequency of operations.
  • the control parameter includes the maximum rotation speed that is the upper limit of the rotation speed of the motor (131).
  • the recommended value calculation unit (921) calculates a recommended maximum rotational speed, which is a recommended value of the maximum rotational speed, based on the physical quantity detected by the detection unit (15).
  • the power tool system (100C) includes a notification unit (19) that notifies the user when it is detected that the rotation speed of the motor (131) exceeds the recommended maximum rotation speed determined by the recommended value calculation unit (921). , further provided.
  • control unit (11) calculates the control parameters determined by the recommended value calculation unit (921).
  • the operation of the drive unit (13) is controlled based on the recommended value.
  • the control parameter includes the maximum rotation speed that is the upper limit of the rotation speed of the motor (131).
  • the recommended value calculation unit (921) calculates a recommended maximum rotational speed, which is a recommended value of the maximum rotational speed, based on the physical quantity detected by the detection unit (15; 15A; 15B).
  • the control section (11) controls the operation of the drive section (13) so that the rotation speed of the motor (131) does not exceed the recommended maximum rotation speed determined by the recommended value calculation section (921).

Abstract

The present disclosure addresses the problem of encouraging a control which corresponds to the state of a user. A power tool system (100) is equipped with a drive unit (13), an operation unit (12), a control unit (11), a detection unit (15), a tool main body, and a recommended value calculation unit (921). The drive unit (13) is equipped with a motor (131), and rotates and drives a tip-end tool by rotating the motor (131). The operation unit (12) is operated by the user. The control unit (11) controls the operation of the drive unit (13) according to the operation by the user on the operation unit (12). The detection unit (15) detects a physical quantity which pertains to the proficiency of the user or the physical condition thereof, and is obtained in response to an operation by the user on the operation unit (12). The tool main body is portable, and holds the drive unit (13), the operation unit (12), the control unit (11) and the detection unit (15). The recommended value calculation unit (921) obtains a recommended value for a control parameter pertaining to the operation of the drive unit (13) on the basis of the physical quantity detected by the detection unit (15).

Description

電動工具システムpower tool system
 本開示は、一般に電動工具システムに関する。本開示は、より詳細には、可搬型の工具本体を備える電動工具システムに関する。 TECHNICAL FIELD This disclosure generally relates to power tool systems. The present disclosure more particularly relates to a power tool system that includes a portable tool body.
 特許文献1には、締付工具及び締付位置管理システムが開示されている。特許文献1に記載の締付位置管理システムは、締付工具であるトルクレンチと、締付位置情報を管理する管理装置とを備えている。 Patent Document 1 discloses a tightening tool and a tightening position management system. The tightening position management system described in Patent Document 1 includes a torque wrench that is a tightening tool, and a management device that manages tightening position information.
 トルクレンチは、トグル機構とトルク値算出部とを備えている。トグル機構は、締付けトルクが設定トルクに達すると作動するトルクリミッタの一種である。トグル機構の作動は、センサによって検出される。トグル機構が作動するトルク値は、調整つまみによって調整することができる。トルク値算出部は、ストレインゲージからの電気信号に基づいて、トルクレンチによって締結部材が締付けられているトルク値を算出する。トルク値算出部は、トグル機構が作動した場合に、トグル機構が作動するまでに検出された最大のトルク値を、その締付け作業における締付トルク値として決定する。 The torque wrench includes a toggle mechanism and a torque value calculation section. A toggle mechanism is a type of torque limiter that operates when the tightening torque reaches a set torque. Activation of the toggle mechanism is detected by a sensor. The torque value at which the toggle mechanism operates can be adjusted by means of an adjustment knob. The torque value calculation unit calculates the torque value at which the fastening member is tightened by the torque wrench based on the electric signal from the strain gauge. When the toggle mechanism is activated, the torque value calculation unit determines the maximum torque value detected before the toggle mechanism is activated as the tightening torque value for the tightening operation.
 トルクレンチは、締結部品を締め付けた締付トルク値を無線通信により管理装置に出力する。また、トルクレンチは、トルクレンチを移動させた場合に、加速度センサ、ジャイロセンサ及び地磁気センサから出力される信号に基づいて締付位置を特定し、その締付位置を示す締付位置情報を管理装置に出力する。 The torque wrench outputs the tightening torque value used to tighten the fastening parts to the management device via wireless communication. In addition, when the torque wrench is moved, the tightening position is specified based on the signals output from the acceleration sensor, gyro sensor, and geomagnetic sensor, and the tightening position information indicating the tightening position is managed. Output to device.
 管理装置は、トルクレンチから出力された締付位置情報及び締付トルク値を受信すると、受信した締付位置情報及び締付トルク値を管理する。 Upon receiving the tightening position information and tightening torque value output from the torque wrench, the management device manages the received tightening position information and tightening torque value.
特開2013-188858号公報Japanese Patent Application Publication No. 2013-188858
 特許文献1に記載の締付工具のような電動工具では、使用時に、振動或いはキックバック等による工具本体の動き(ぶれ)が発生する場合がある。工具本体の動きが発生すると、所望の締付トルク値での締め付けが行えない場合がある。 In a power tool such as the tightening tool described in Patent Document 1, during use, movement (shaking) of the tool body may occur due to vibration, kickback, or the like. If the tool body moves, it may not be possible to tighten with the desired tightening torque value.
 このような工具本体の動きを抑えて工具本体を安定して保持できるか否かは、工具を使用するユーザの熟練度或いはユーザのその日の体調によって変わり得る。そのため、電動工具では、熟練度或いは体調のような、ユーザの状態に応じた制御が望まれる場合がある。 Whether or not it is possible to suppress such movement of the tool body and hold the tool body stably may vary depending on the skill level of the user using the tool or the user's physical condition on that day. Therefore, it is sometimes desirable for power tools to be controlled in accordance with the state of the user, such as skill level or physical condition.
 本開示の目的は、ユーザの状態に応じた制御を促すことが可能な電動工具システムを提供することにある。 An object of the present disclosure is to provide a power tool system that can prompt control according to the user's condition.
 本開示の一態様の電動工具システムは、駆動部と、操作部と、制御部と、検出部と、工具本体と、推奨値演算部と、を備える。前記駆動部は、モータを備え、前記モータの回転により先端工具を回転駆動させる。前記操作部は、ユーザにより操作される、前記制御部は、前記操作部への前記ユーザの操作に応じて前記駆動部の動作を制御する。前記検出部は、前記操作部への前記ユーザの操作に応じて得られる、前記ユーザの熟練度と体調との少なくとも一方に関連する物理量を検出する。前記工具本体は、可搬型であって、前記駆動部、前記操作部、前記制御部、及び前記検出部を保持する。前記推奨値演算部は、前記検出部で検出された前記物理量に基づいて、前記駆動部の動作に関連する制御パラメータの推奨値を求める。 A power tool system according to one aspect of the present disclosure includes a drive section, an operation section, a control section, a detection section, a tool body, and a recommended value calculation section. The drive unit includes a motor, and rotates the tip tool by rotation of the motor. The operation section is operated by a user, and the control section controls the operation of the drive section in response to the user's operation on the operation section. The detection unit detects a physical quantity related to at least one of the user's skill level and physical condition, which is obtained in response to the user's operation on the operation unit. The tool main body is portable and holds the drive section, the operation section, the control section, and the detection section. The recommended value calculation section calculates a recommended value of a control parameter related to the operation of the drive section based on the physical quantity detected by the detection section.
図1は、実施形態の電動工具システムのブロック図である。FIG. 1 is a block diagram of a power tool system according to an embodiment. 図2は、同上の電動工具システムのシステム構成図である。FIG. 2 is a system configuration diagram of the power tool system same as above. 図3は、同上の電動工具システムに用いられる電動工具の概略図である。FIG. 3 is a schematic diagram of a power tool used in the above power tool system. 図4は、同上の電動工具システムによる推奨値の決定方法を説明するためのグラフである。FIG. 4 is a graph for explaining a method for determining recommended values by the power tool system described above. 図5は、同上の電動工具システムの動作を説明するフローチャートである。FIG. 5 is a flowchart illustrating the operation of the above power tool system. 図6は、変形例1の電動工具システムのブロック図である。FIG. 6 is a block diagram of a power tool system according to modification 1. 図7は、変形例2の電動工具システムのブロック図である。FIG. 7 is a block diagram of a power tool system according to modification 2. 図8は、変形例3の電動工具システムのブロック図である。FIG. 8 is a block diagram of a power tool system according to modification 3.
 本開示の実施形態の電動工具システムについて、図面を用いて説明する。下記の実施形態において説明する各図は、模式的な図であり、図中の各構成要素の大きさ及び厚さそれぞれの比が必ずしも実際の寸法比を反映しているとは限らない。 A power tool system according to an embodiment of the present disclosure will be described using the drawings. Each of the figures described in the embodiments below is a schematic diagram, and the ratio of the size and thickness of each component in the figure does not necessarily reflect the actual size ratio.
 (1)概要
 図1に示すように、本実施形態の電動工具システム100は、電動工具1と、処理装置9と、を備えている。
(1) Overview As shown in FIG. 1, a power tool system 100 according to the present embodiment includes a power tool 1 and a processing device 9.
 図1~図3に示すように、電動工具1は、制御部11と、操作部12と、駆動部13と、検出部15と、工具本体10と、を備えている。 As shown in FIGS. 1 to 3, the power tool 1 includes a control section 11, an operation section 12, a drive section 13, a detection section 15, and a tool body 10.
 駆動部13は、モータ131を備える。駆動部13は、モータ131の回転により先端工具20(図3参照)を回転駆動させる。操作部12は、ユーザ(操作者)により操作される。制御部11は、操作部12へのユーザの操作に応じて駆動部13の動作を制御する。検出部15は、操作部12へのユーザの操作に応じて得られる物理量を検出する。物理量は、ユーザの熟練度と体調との少なくとも一方に関連する量である。工具本体10は、可搬型であり、駆動部13、操作部12、制御部11、及び検出部15を保持する。 The drive unit 13 includes a motor 131. The drive unit 13 rotates the tip tool 20 (see FIG. 3) by rotation of the motor 131. The operation unit 12 is operated by a user (operator). The control unit 11 controls the operation of the drive unit 13 in response to a user's operation on the operation unit 12 . The detection unit 15 detects a physical quantity obtained in response to a user's operation on the operation unit 12. The physical quantity is a quantity related to at least one of the user's skill level and physical condition. The tool main body 10 is portable and holds a drive section 13, an operation section 12, a control section 11, and a detection section 15.
 図1に示すように、処理装置9は、推奨値演算部921を備えている。 As shown in FIG. 1, the processing device 9 includes a recommended value calculation section 921.
 推奨値演算部921は、検出部15で検出された物理量に基づいて、駆動部13の動作に関連する制御パラメータの推奨値を求める。推奨値演算部921は、ユーザの熟練度と体調とのうちの少なくとも一方を含むユーザ状態情報が反映されるように、制御パラメータの推奨値を求める。 The recommended value calculation unit 921 calculates recommended values of control parameters related to the operation of the drive unit 13 based on the physical quantities detected by the detection unit 15. The recommended value calculation unit 921 obtains recommended values for the control parameters so that user status information including at least one of the user's skill level and physical condition is reflected.
 すなわち、電動工具システム100は、駆動部13と、操作部12と、制御部11と、検出部15と、工具本体10と、推奨値演算部921と、を備える。駆動部13は、モータ131を備え、モータ131の回転により先端工具20を回転駆動させる。操作部12は、ユーザにより操作される。制御部11は、操作部12へのユーザの操作に応じて駆動部13の動作を制御する。検出部15は、操作部12へのユーザの操作に応じて得られる、ユーザの熟練度と体調との少なくとも一方に関連する物理量を検出する。工具本体10は、可搬型であって、駆動部13、操作部12、制御部11、及び検出部15を保持する。推奨値演算部921は、検出部15で検出された物理量に基づいて、駆動部13の動作に関連する制御パラメータの推奨値を求める。 That is, the power tool system 100 includes a drive section 13, an operation section 12, a control section 11, a detection section 15, a tool main body 10, and a recommended value calculation section 921. The drive unit 13 includes a motor 131, and rotates the tip tool 20 by rotation of the motor 131. The operation unit 12 is operated by a user. The control unit 11 controls the operation of the drive unit 13 in response to a user's operation on the operation unit 12 . The detection unit 15 detects a physical quantity related to at least one of the user's skill level and physical condition, which is obtained in response to the user's operation on the operation unit 12 . The tool main body 10 is portable and holds a drive section 13, an operation section 12, a control section 11, and a detection section 15. The recommended value calculation unit 921 calculates recommended values of control parameters related to the operation of the drive unit 13 based on the physical quantities detected by the detection unit 15.
 本実施形態の電動工具システム100では、検出部15で検出された、ユーザの熟練度と体調とのうちの少なくとも一方に関連する物理量に基づいて、推奨値演算部921が制御パラメータの推奨値を求めている。そのため、本実施形態の電動工具システム100では、ユーザが電動工具1を使用する際に、推奨値演算部921で求めた制御パラメータの推奨値を用いて、熟練度又は体調のようなユーザの状態に応じた動作を(本実施形態では電動工具1の制御部11に)促すことが可能となる。すなわち、本実施形態の電動工具システム100によれば、ユーザの状態に応じた制御を促すことが可能となる。 In the power tool system 100 of the present embodiment, the recommended value calculation unit 921 calculates the recommended value of the control parameter based on the physical quantity related to at least one of the user's skill level and physical condition detected by the detection unit 15. I'm looking for it. Therefore, in the power tool system 100 of the present embodiment, when the user uses the power tool 1, the recommended values of the control parameters obtained by the recommended value calculation unit 921 are used to determine the user's state such as skill level or physical condition. (in this embodiment, the control unit 11 of the power tool 1) can be prompted to perform an operation according to the following. That is, according to the power tool system 100 of this embodiment, it is possible to prompt control according to the user's condition.
 (2)詳細
 以下、本実施形態に係る電動工具システム100について、図面を参照しながら詳細に説明する。上述のように、電動工具システム100は、電動工具1と処理装置9とを備える。
(2) Details Hereinafter, the power tool system 100 according to the present embodiment will be described in detail with reference to the drawings. As described above, the power tool system 100 includes the power tool 1 and the processing device 9.
 (2.1)電動工具
 電動工具1は、例えば、工場、建築現場等で使用される事業者向けの電動工具である。電動工具1は、例えば、設計図面、作業指図書等に従って、複数の締め付け部材(例えばネジ、ボルト等)で作業対象(例えば太陽電池パネル等)を被取付部材(例えば架台等)に締め付ける作業を行うために使用される。この種の電動工具1としては、例えば、締め付け部材を回転させて衝撃力を加えることによって締め付ける電動式のインパクトドライバーがある。なお、電動工具1は、電動式のインパクトドライバーに限定されず、電動式のインパクトレンチでもよいし、打撃力を与えるタイプではない電動ドリルドライバー、電動式のトルクレンチ等でもよい。
(2.1) Power Tool The power tool 1 is a power tool for businesses used in factories, construction sites, etc., for example. The power tool 1 is used to tighten a workpiece (for example, a solar panel, etc.) to a workpiece (for example, a frame, etc.) using a plurality of tightening members (for example, screws, bolts, etc.) according to a design drawing, a work instruction, etc., for example. used to do. An example of this type of power tool 1 is an electric impact driver that tightens by rotating a tightening member and applying impact force. Note that the power tool 1 is not limited to an electric impact driver, but may be an electric impact wrench, an electric drill driver that does not apply impact force, an electric torque wrench, or the like.
 図1~図3に示すように、電動工具1は、工具本体10と、制御部11と、操作部12と、駆動部13と、センサ部14と、検出部15と、通信部16と、記憶部17と、電源部18と、を備える。 As shown in FIGS. 1 to 3, the power tool 1 includes a tool body 10, a control section 11, an operation section 12, a drive section 13, a sensor section 14, a detection section 15, a communication section 16, It includes a storage section 17 and a power supply section 18.
 工具本体10は、制御部11、操作部12、駆動部13、センサ部14、検出部15、通信部16、記憶部17、及び電源部18を保持する。 The tool body 10 holds a control section 11, an operation section 12, a drive section 13, a sensor section 14, a detection section 15, a communication section 16, a storage section 17, and a power supply section 18.
 図2、図3に示すように、工具本体10は、筒形状の胴体部101と、胴体部101の周面から径方向に突出する握り部102と、を備える。 As shown in FIGS. 2 and 3, the tool main body 10 includes a cylindrical body portion 101 and a grip portion 102 that protrudes from the circumferential surface of the body portion 101 in the radial direction.
 胴体部101の軸方向における一端側からは、駆動部13の出力軸133が突出している。出力軸133の先端には、先端工具取付部134が設けられている。先端工具取付部134は、例えばチャックを備える。先端工具取付部134には、作業対象の部材に合わせた先端工具20(例えば、ドライバービット、ソケットビット等)が着脱自在に取り付けられる。 An output shaft 133 of the drive section 13 protrudes from one end of the body section 101 in the axial direction. A tip tool mounting portion 134 is provided at the tip of the output shaft 133. The tip tool mounting portion 134 includes, for example, a chuck. A tip tool 20 (for example, a driver bit, a socket bit, etc.) that matches the member to be worked on is detachably attached to the tip tool attachment portion 134 .
 握り部102の一端(図3における下端)には、樹脂製のケース内に電源部18を収納した電池パック103が、着脱自在に取り付けられている。 A battery pack 103 containing a power supply section 18 housed in a resin case is detachably attached to one end (lower end in FIG. 3) of the grip section 102.
 制御部11は、駆動部13、センサ部14、検出部15、通信部16等の動作を制御する。制御部11は、1以上のプロセッサ及びメモリを有するコンピュータシステムにて実現されている。1以上のプロセッサがメモリに格納されているプログラムを実行することにより、コンピュータシステムが制御部11として機能する。プログラムは、ここでは制御部11のメモリに予め記録されているが、インターネット等の電気通信回線を通じて、又はメモリカード等の非一時的な記録媒体に記録されて提供されてもよい。制御部11は、例えば、FPGA(Field-Programmable Gate Array)、又はASIC(Application Specific Integrated Circuit)等で構成されてもよい。制御部11を構成するコンピュータシステム(回路基板110等)は、例えば握り部102の内部に収容されている。 The control unit 11 controls the operations of the drive unit 13, sensor unit 14, detection unit 15, communication unit 16, etc. The control unit 11 is realized by a computer system having one or more processors and memory. The computer system functions as the control unit 11 by having one or more processors execute programs stored in memory. Although the program is pre-recorded in the memory of the control unit 11 here, it may also be provided via a telecommunications line such as the Internet or by being recorded on a non-temporary recording medium such as a memory card. The control unit 11 may be configured with, for example, an FPGA (Field-Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit). A computer system (circuit board 110, etc.) constituting the control section 11 is housed inside the grip section 102, for example.
 操作部12は、握り部102に設けられたトリガスイッチ121を備える。トリガスイッチ121がユーザによって操作されると、トリガスイッチ121の引き込み量(操作量)に比例した大きさの操作信号が、制御部11へ出力される。制御部11は、操作部12からの操作信号に応じた速度で回転するように、駆動部13のモータ131の回転数を調整する。モータ131の回転数とは、モータ131の回転速度であり、単位時間当たりにモータ131のロータが回転する回数(速さ)[rpm]を意味する。 The operating section 12 includes a trigger switch 121 provided on the grip section 102. When the trigger switch 121 is operated by the user, an operation signal proportional to the amount of retraction (operation amount) of the trigger switch 121 is output to the control unit 11 . The control section 11 adjusts the rotation speed of the motor 131 of the drive section 13 so that the motor 131 of the drive section 13 rotates at a speed according to the operation signal from the operation section 12 . The rotation speed of the motor 131 is the rotation speed of the motor 131, and means the number of times (speed) [rpm] that the rotor of the motor 131 rotates per unit time.
 駆動部13は、モータ131と、インパクト機構132と、出力軸133と、先端工具取付部134と、を備える。 The drive unit 13 includes a motor 131, an impact mechanism 132, an output shaft 133, and a tip tool attachment part 134.
 モータ131の動作(回転)は、制御部11によって制御される。モータ131の出力軸の回転は、インパクト機構132を介して出力軸133に伝達される。出力トルクが所定レベル以下であれば、インパクト機構132は、モータ131の出力軸の回転を減速して出力軸133に伝達するように構成されている。出力トルクが所定レベルを超えると、インパクト機構132は、出力軸133に打撃力を加えて、出力軸133を回転させるように構成されている。モータ131及びインパクト機構132は胴体部101内に収納されている。 The operation (rotation) of the motor 131 is controlled by the control unit 11. The rotation of the output shaft of the motor 131 is transmitted to the output shaft 133 via the impact mechanism 132. If the output torque is below a predetermined level, the impact mechanism 132 is configured to decelerate the rotation of the output shaft of the motor 131 and transmit it to the output shaft 133. When the output torque exceeds a predetermined level, the impact mechanism 132 is configured to apply impact force to the output shaft 133 to rotate the output shaft 133. The motor 131 and impact mechanism 132 are housed within the body portion 101.
 センサ部14は、出力軸133による締付トルクを測定する。センサ部14は、例えば、出力軸133に取り付けられた磁歪式のトルクセンサ141を備えている。磁歪式のトルクセンサ141は、出力軸133にトルクが加わることにより発生する歪みに応じた透磁率の変化を、非回転部分に設置したコイルで検出し、歪みに比例した電圧信号を出力する。これによりセンサ部14は、出力軸133に加わったトルクを測定する。つまり、センサ部14は、電動工具1が締め付け部材に与えるトルク(締付トルク)を測定する。センサ部14は、測定したトルク(締付トルク)を制御部11へ出力する。センサ部14は、モータ131の出力軸に加わるトルクを測定してもよい。その場合、センサ部14は、モータ131の出力軸に加わるトルクの測定値、及び減速機構の減速比等に基づいて、出力軸133に加わる締付トルクを測定してもよい。なお、センサ部14は磁歪式のトルクセンサ141を備えるものに限定されず、センサ部14の具体化手段は適宜変更が可能である。例えば、センサ部14は、モータ131に流れる電流を検出することによって、モータ131の出力軸に加わるトルクを測定してもよい。或いは、センサ部14は、インパクト機構132が出力軸133に加えた打撃の回数を振動センサを用いて計数し、打撃の回数から締付トルクを求めてもよい。 The sensor unit 14 measures the tightening torque by the output shaft 133. The sensor section 14 includes, for example, a magnetostrictive torque sensor 141 attached to the output shaft 133. The magnetostrictive torque sensor 141 uses a coil installed in a non-rotating part to detect a change in magnetic permeability in response to distortion caused by applying torque to the output shaft 133, and outputs a voltage signal proportional to the distortion. Thereby, the sensor unit 14 measures the torque applied to the output shaft 133. That is, the sensor unit 14 measures the torque (tightening torque) that the electric tool 1 applies to the tightening member. The sensor unit 14 outputs the measured torque (tightening torque) to the control unit 11. The sensor unit 14 may measure the torque applied to the output shaft of the motor 131. In that case, the sensor unit 14 may measure the tightening torque applied to the output shaft 133 based on the measured value of the torque applied to the output shaft of the motor 131, the reduction ratio of the reduction mechanism, and the like. Note that the sensor section 14 is not limited to having the magnetostrictive torque sensor 141, and the means for realizing the sensor section 14 can be changed as appropriate. For example, the sensor unit 14 may measure the torque applied to the output shaft of the motor 131 by detecting the current flowing through the motor 131. Alternatively, the sensor section 14 may count the number of hits applied to the output shaft 133 by the impact mechanism 132 using a vibration sensor, and determine the tightening torque from the number of hits.
 制御部11は、駆動部13(モータ131)の動作を制御する駆動制御部111を備える。 The control unit 11 includes a drive control unit 111 that controls the operation of the drive unit 13 (motor 131).
 駆動制御部111は、操作部12から入力される操作信号に応じてモータ131を駆動する。駆動制御部111は、電源部18からの電圧をモータ131用の駆動電圧に変換するインバータ回路を備えている。駆動電圧は、例えば、U相電圧、V相電圧及びW相電圧を含む三相交流電圧である。インバータ回路は、例えば、PWMインバータとPWM変換器とを利用して実現できる。PWM変換器は、駆動電圧の目標値(電圧指令値)に従って、パルス幅変調されたPWM信号を生成する。PWMインバータは、このPWM信号に応じた駆動電圧をモータ131に与えてモータ131を駆動する。PWMインバータは、例えば、三相分のハーフブリッジ回路とドライバとを備える。PWMインバータでは、ドライバがPWM信号に従って各ハーフブリッジ回路におけるスイッチング素子をオン/オフすることにより、電圧指令値に従った駆動電圧がモータ131に与えられる。 The drive control section 111 drives the motor 131 according to an operation signal input from the operation section 12. The drive control section 111 includes an inverter circuit that converts the voltage from the power supply section 18 into a drive voltage for the motor 131. The drive voltage is, for example, a three-phase AC voltage including a U-phase voltage, a V-phase voltage, and a W-phase voltage. The inverter circuit can be realized using, for example, a PWM inverter and a PWM converter. The PWM converter generates a pulse width modulated PWM signal according to a target value (voltage command value) of the drive voltage. The PWM inverter drives the motor 131 by applying a drive voltage to the motor 131 according to this PWM signal. A PWM inverter includes, for example, a three-phase half-bridge circuit and a driver. In the PWM inverter, a driver turns on/off switching elements in each half-bridge circuit according to a PWM signal, so that a drive voltage according to a voltage command value is applied to the motor 131.
 駆動制御部111は、締め付け部材の締付トルクの大きさがトルク設定値となるように、駆動部13を制御する。駆動制御部111は、例えば、センサ部14で測定された締付トルクの値が、予め設定されたトルク設定値に達すると、駆動部13のモータ131の回転を停止させる。なおトルク設定値は変更可能であり、例えばユーザの操作に応じて処理装置9から送信される設定信号に基づいて、制御部11によって設定変更される。 The drive control unit 111 controls the drive unit 13 so that the magnitude of the tightening torque of the tightening member becomes the torque setting value. For example, the drive control unit 111 stops the rotation of the motor 131 of the drive unit 13 when the value of the tightening torque measured by the sensor unit 14 reaches a preset torque setting value. Note that the torque setting value can be changed, and is changed by the control unit 11 based on a setting signal transmitted from the processing device 9 in response to a user's operation, for example.
 ここで、駆動制御部111は、モータ131の回転数が最大回転数を超えないように、駆動部13の動作を制御する。すなわち、駆動制御部111は、トリガスイッチ121の引き込み量が検出可能な最大値であっても、モータ131の回転数が最大回転数を超えないように、駆動部13の動作を制御する。モータ131の最大回転数とは、モータ131の回転数の上限の設定値である。 Here, the drive control section 111 controls the operation of the drive section 13 so that the rotation speed of the motor 131 does not exceed the maximum rotation speed. That is, the drive control unit 111 controls the operation of the drive unit 13 so that the rotational speed of the motor 131 does not exceed the maximum rotational speed even if the amount of retraction of the trigger switch 121 is the maximum detectable value. The maximum rotation speed of the motor 131 is a set value of the upper limit of the rotation speed of the motor 131.
 図1に示すように、制御部11は、検出情報処理部112を更に備える。検出情報処理部112は、検出部15で検出された、ユーザの熟練度と体調との少なくとも一方に関連する物理量の、処理を行う。 As shown in FIG. 1, the control section 11 further includes a detection information processing section 112. The detected information processing unit 112 processes the physical quantity detected by the detection unit 15 and related to at least one of the user's skill level and physical condition.
 図1に示すように、制御部11は、作業量判定部113を更に備える。作業量判定部113は、所定の期間内に操作部12が操作された時間の積算値を求める。所定の期間は、例えば、午前0時から始まる1日である。 As shown in FIG. 1, the control unit 11 further includes a workload determination unit 113. The workload determining unit 113 calculates the cumulative value of the time during which the operating unit 12 was operated within a predetermined period. The predetermined period is, for example, one day starting from midnight.
 近年、振動障害予防対策の観点から、1日8時間の等価振動加速度実効値(日振動ばく露量A(8))の考え方等に基づく対策の推進が、求められている。日本国では、2009年に厚生労働省労働基準局により通達された「チェーンソー以外の振動工具の取扱い業務に係る振動障害予防対策指針」において、A(8)=a×√(T/8)の式で規定される日振動ばく露量A(8)[m/s]が、日振動ばく露限界値(5.0[m/s])を超えることがないよう振動ばく露時間の抑制、低振動の振動工具の選定等を行うこと、及び、日振動ばく露量A(8)が、日振動ばく露限界値(5.0[m/s])を超えない場合であっても日振動ばく露対策値(2.5[m/s])を超える場合には振動ばく露時間の抑制、低振動の振動工具の選定等の対策に努めること、とされている。ここで、a[m/s]は、周波数補正振動加速度実効値の3軸合成値を示し、電動工具1の仕様に応じて決まる。また、T[時間]は、1日の振動ばく露時間を示す。また、同指針では、日振動ばく露限界値5.0[m/s]に対応した1日の振動ばく露時間(以下、「振動ばく露限界時間」T)を、T=200/aの式により算出し、これが2時間を超える場合には、1日の振動ばく露時間を2時間以下とすること、とされている。 In recent years, from the perspective of vibration disorder prevention measures, there has been a need to promote measures based on the concept of equivalent vibration acceleration effective value for 8 hours a day (daily vibration exposure A(8)). In Japan, in 2009, the Labor Standards Bureau of the Ministry of Health, Labor and Welfare notified the Ministry of Health, Labor and Welfare's Labor Standards Bureau, "Guidelines for Preventing Vibration Hazards Related to Operations Using Vibrating Tools Other than Chainsaws," which states that the formula A(8)=a×√(T/8) is used. Suppression of vibration exposure time so that the prescribed daily vibration exposure amount A (8) [m/s 2 ] does not exceed the daily vibration exposure limit value (5.0 [m/s 2 ]); Even if the daily vibration exposure amount A (8) does not exceed the daily vibration exposure limit value (5.0 [m/s 2 ]), select low-vibration vibrating tools, etc. If the daily vibration exposure countermeasure value (2.5 [m/s 2 ]) is exceeded, efforts should be made to take measures such as reducing the vibration exposure time and selecting low-vibration vibration tools. Here, a [m/s 2 ] indicates a triaxial composite value of frequency-corrected vibration acceleration effective values, and is determined according to the specifications of the power tool 1. Further, T [time] indicates the vibration exposure time per day. In addition, in the same guidelines, the daily vibration exposure time (hereinafter referred to as "vibration exposure limit time" T L ) corresponding to the daily vibration exposure limit value of 5.0 [m/s 2 ] is defined as T L = 200 Calculated using the formula / a2 , and if this exceeds 2 hours, the daily vibration exposure time must be 2 hours or less.
 本実施形態の電動工具1では、作業量判定部113は、所定の期間内に操作部12が操作された時間の積算値が基準値を超えると、操作部12(トリガスイッチ121)への操作の有無にかかわらず、モータ131の回転を停止させる。基準値は、例えば、電動工具1の周波数補正振動加速度実効値の3軸合成値aから求まる振動ばく露限界時間と、2[時間]と、のうちの小さい方である。なお、これに限らず、基準値は、振動ばく露限界時間よりも小さな値であってもよい。例えば、基準値は、日振動ばく露限界値(5.0[m/s])の代わりに、日振動ばく露対策値(2.5[m/s])に基づいて求められてもよい。基準値は、ユーザが設定可能であってもよい。 In the power tool 1 of the present embodiment, the work amount determination unit 113 determines whether the operation unit 12 (trigger switch 121) is operated when the cumulative value of the operating time of the operation unit 12 within a predetermined period exceeds a reference value. Rotation of the motor 131 is stopped regardless of the presence or absence of the motor. The reference value is, for example, the smaller of the vibration exposure limit time determined from the triaxial composite value a of the frequency-corrected vibration acceleration effective value of the power tool 1 and 2 [hours]. Note that the reference value is not limited to this, and may be a value smaller than the vibration exposure limit time. For example, the standard value is determined based on the daily vibration exposure countermeasure value (2.5 [m/s 2 ]) instead of the daily vibration exposure limit value (5.0 [m/s 2 ]). Good too. The reference value may be settable by the user.
 電動工具システム100が作業量判定部113を備えていることで、ユーザが電動工具1を使用する使用時間を管理することが可能となり、振動ばく露限界時間を超えてユーザが電動工具1を使用する事態を抑制することが可能となり、ユーザに蓄積される疲労の軽減を図ることが可能となる。 Since the power tool system 100 includes the work amount determining unit 113, it becomes possible for the user to manage the usage time of the power tool 1, and prevent the user from using the power tool 1 beyond the vibration exposure limit time. This makes it possible to suppress the situation in which this occurs, and it becomes possible to reduce the fatigue accumulated in the user.
 検出部15は、ユーザの熟練度と体調との少なくとも一方に関連する物理量を検出する。検出部15で検出される物理量は、操作部12へのユーザの操作に応じて(ユーザが操作部12を操作している際に)得られる物理量である。 The detection unit 15 detects a physical quantity related to at least one of the user's skill level and physical condition. The physical quantity detected by the detection unit 15 is a physical quantity obtained in response to the user's operation on the operation unit 12 (when the user is operating the operation unit 12).
 本実施形態の電動工具1では、検出部15は、振動計測部151を備える。振動計測部151は、工具本体10の振動に関するパラメータを計測する。振動計測部151は、特に、操作部12へのユーザの操作により駆動部13が動作している状態すなわちモータ131が回転している状態での、工具本体10の振動に関するパラメータを計測する。振動計測部151は、例えば、工具本体10に保持された振動センサを備えている。振動センサは、例えば工具本体10の加速度を計測する。すなわち、振動計測部151は、工具本体10の振動のパラメータとして、工具本体10の加速度を計測する。ただしこれに限らず、振動計測部151(振動センサ)は、工具本体10の振動の変位(振幅)又は速度を計測してもよい。振動センサは、例えば圧電素子型の加速度センサ或いは静電容量式センサ等であってもよい。振動計測部151は、検出した物理量(加速度)を制御部11へ出力する。 In the power tool 1 of this embodiment, the detection section 15 includes a vibration measurement section 151. The vibration measurement unit 151 measures parameters related to vibration of the tool body 10. The vibration measurement unit 151 measures parameters related to vibrations of the tool body 10, particularly when the drive unit 13 is operating due to a user's operation on the operation unit 12, that is, when the motor 131 is rotating. The vibration measurement unit 151 includes, for example, a vibration sensor held in the tool body 10. The vibration sensor measures the acceleration of the tool body 10, for example. That is, the vibration measurement unit 151 measures the acceleration of the tool body 10 as a parameter of the vibration of the tool body 10. However, the present invention is not limited to this, and the vibration measurement unit 151 (vibration sensor) may measure the displacement (amplitude) or speed of vibration of the tool body 10. The vibration sensor may be, for example, a piezoelectric element type acceleration sensor or a capacitance type sensor. The vibration measurement unit 151 outputs the detected physical quantity (acceleration) to the control unit 11.
 検出部15は、回転数検出部152を更に備える。回転数検出部152は、出力軸133の回転数(回転速度)を検出する。回転数検出部152は、例えば、モータ131の回転数を検出する磁気ロータリエンコーダ或いはホール素子IC等と、減速機構の減速比等に基づいてモータ131の回転数を出力軸133の回転数に換算する演算部と、を備える。ただしこれに限らず、回転数検出部152は、駆動制御部111がベクトル制御によりモータ131の動作を制御する場合、ベクトル制御において算出されるd軸電流(励磁電流)の値等を用いて、モータ131の回転数を検出してもよい。或いは、回転数検出部152は、出力軸133の回転数を直接検出してもよい。回転数検出部152は、検出した物理量(回転数)を制御部11へ出力する。 The detection unit 15 further includes a rotation speed detection unit 152. The rotation speed detection unit 152 detects the rotation speed (rotation speed) of the output shaft 133. The rotation speed detection unit 152 converts the rotation speed of the motor 131 into the rotation speed of the output shaft 133 based on, for example, a magnetic rotary encoder or Hall element IC that detects the rotation speed of the motor 131, and a reduction ratio of a reduction mechanism. and an arithmetic unit. However, the invention is not limited to this, and when the drive control unit 111 controls the operation of the motor 131 by vector control, the rotation speed detection unit 152 uses the value of the d-axis current (excitation current) calculated in the vector control, etc. The rotation speed of the motor 131 may also be detected. Alternatively, the rotation speed detection unit 152 may directly detect the rotation speed of the output shaft 133. The rotation speed detection section 152 outputs the detected physical quantity (rotation speed) to the control section 11.
 制御部11の検出情報処理部112は、検出部15で検出された物理量に基づいて、検出データを生成する。ここでは、検出情報処理部112は、回転数検出部152から受け取った出力軸133の回転数の計測値と、振動計測部151から受け取った工具本体10の加速度の計測値と、を紐付ける。例えば、検出情報処理部112は、トリガスイッチ121がオンされてからオフされるまでの、モータ131の回転数の平均値を求める。また、検出情報処理部112は、トリガスイッチ121がオンされてからオフされるまでの、工具本体10の加速度の偏差(ばらつき)を求める。検出情報処理部112は、求めた回転数の平均値と加速度の偏差とを互いに紐付けたデータ(検出データ)を求めて、記憶部17に記憶させる。なお、検出情報処理部112が求める検出データはこれに限られず、例えば、回転数の平均値の代わりに、回転数の最大値、中央値、最小値等を用いてもよい。また、検出情報処理部112は、加速度の偏差の代わりに、加速度の最大値、平均値、或いは、振動の変位の最大値、平均値等を用いて検出データを求めてもよい。 The detection information processing unit 112 of the control unit 11 generates detection data based on the physical quantity detected by the detection unit 15. Here, the detection information processing section 112 links the measured value of the rotation speed of the output shaft 133 received from the rotation speed detection section 152 and the measured value of the acceleration of the tool body 10 received from the vibration measurement section 151. For example, the detection information processing unit 112 calculates the average value of the rotation speed of the motor 131 from when the trigger switch 121 is turned on until it is turned off. The detection information processing unit 112 also obtains a deviation (dispersion) in the acceleration of the tool body 10 from when the trigger switch 121 is turned on until it is turned off. The detection information processing section 112 obtains data (detection data) in which the obtained average value of the rotation speed and the deviation of the acceleration are linked to each other, and stores the data in the storage section 17 . Note that the detection data obtained by the detection information processing unit 112 is not limited to this, and for example, instead of the average value of the rotation speed, the maximum value, median value, minimum value, etc. of the rotation speed may be used. Further, the detection information processing unit 112 may obtain the detection data using the maximum value or average value of acceleration, the maximum value or average value of vibration displacement, or the like instead of the deviation of acceleration.
 通信部16は、例えば、処理装置9と無線通信を行うための通信モジュールである。通信部16は、例えば、ZigBee(登録商標)に準拠した近距離無線通信を行う。通信部16は、記憶部17に記憶されている検出データを、無線通信方式で処理装置9に送信する。なお、制御部11は、制御部11が有するRAM(Random Access Memory)等のメモリに検出データを一時的に記憶し、通信部16は、RAM等のメモリに一時的に記憶されている検出データを、無線通信方式で処理装置9に送信してもよい。また、通信部16と処理装置9との間の無線通信の方式は、例えば、920MHz帯の特定小電力無線局(免許を要しない無線局)、Wi-Fi(登録商標)、Bluetooth(登録商標)等の通信規格に準拠した、電波を媒体とした無線通信であってもよい。また、通信部16は、通信線により処理装置9と接続されて、検出データを有線通信方式で処理装置9に送信してもよい。 The communication unit 16 is, for example, a communication module for wirelessly communicating with the processing device 9. The communication unit 16 performs short-range wireless communication based on, for example, ZigBee (registered trademark). The communication unit 16 transmits the detection data stored in the storage unit 17 to the processing device 9 using a wireless communication method. Note that the control unit 11 temporarily stores detected data in a memory such as a RAM (Random Access Memory) that the control unit 11 has, and the communication unit 16 stores detected data temporarily stored in a memory such as a RAM. may be transmitted to the processing device 9 using a wireless communication method. Further, the wireless communication method between the communication unit 16 and the processing device 9 is, for example, a specified low power wireless station in the 920 MHz band (a wireless station that does not require a license), Wi-Fi (registered trademark), Bluetooth (registered trademark), etc. ), etc., and may be wireless communication using radio waves as a medium. Further, the communication unit 16 may be connected to the processing device 9 via a communication line and transmit the detection data to the processing device 9 using a wired communication method.
 記憶部17は、例えば、ROM(Read Only Memory)、不揮発性メモリ等を含む。不揮発性メモリには、例えばEEPROM又はフラッシュメモリ等がある。記憶部17は、制御部11が実行する制御プログラムを記憶する。また記憶部17は、検出情報処理部112が求めた検出データを記憶する。 The storage unit 17 includes, for example, a ROM (Read Only Memory), a nonvolatile memory, and the like. Non-volatile memory includes, for example, EEPROM or flash memory. The storage unit 17 stores a control program executed by the control unit 11. The storage unit 17 also stores the detection data obtained by the detection information processing unit 112.
 電源部18は、蓄電池を備えている。電源部18は、電池パック103内に収容されている。電池パック103は、樹脂製のケース内に電源部18を収容して構成されている。電池パック103を工具本体10から取り外し、取り外した電池パック103を充電器に接続することによって、電源部18の蓄電池を充電することができる。電源部18は、蓄電池に充電された電力で、制御部11を含む電気回路とモータ131とに動作に必要な電力を供給する。電源部18及び電池パック103は、本実施形態では電動工具1の構成要素に含まれることとするが、電動工具1の構成要素に含まれていなくてもよい。 The power supply unit 18 includes a storage battery. Power supply section 18 is housed within battery pack 103. The battery pack 103 is configured by housing a power supply unit 18 in a resin case. By removing the battery pack 103 from the tool body 10 and connecting the removed battery pack 103 to a charger, the storage battery of the power supply unit 18 can be charged. The power supply unit 18 supplies power necessary for operation to the electric circuit including the control unit 11 and the motor 131 using the power stored in the storage battery. Although the power supply unit 18 and the battery pack 103 are included in the components of the power tool 1 in this embodiment, they may not be included in the components of the power tool 1.
 (2.2)処理装置
 処理装置9は、検出データに基づいて、推奨最大回転数を求める。
(2.2) Processing device The processing device 9 determines the recommended maximum rotation speed based on the detection data.
 処理装置9の形態は、特に限定されない。処理装置9は、電動工具1と直接又は間接的に通信可能であって、所定のプログラムに従って所望の処理を実行できる装置であればよい。処理装置9は、例えば、ユーザに装着されるメガネ型、腕輪型等のウェアラブル端末であってもよい。処理装置9は、例えば、スマートホン、タブレット端末等の携帯型の情報端末であってもよい。処理装置9は、例えば、ノートパソコン、デスクトップパソコン等の据え置き型の情報端末であってもよい。処理装置9は、サーバ装置(クラウドコンピュータを含み得る)であってもよい。 The form of the processing device 9 is not particularly limited. The processing device 9 may be any device that can communicate directly or indirectly with the power tool 1 and can execute desired processing according to a predetermined program. The processing device 9 may be, for example, a glasses-type, bracelet-type, or other wearable terminal worn by the user. The processing device 9 may be, for example, a portable information terminal such as a smartphone or a tablet terminal. The processing device 9 may be, for example, a stationary information terminal such as a notebook computer or a desktop computer. The processing device 9 may be a server device (which may include a cloud computer).
 処理装置9は、図1に示すように、通信部91と、制御部92と、を備える。 As shown in FIG. 1, the processing device 9 includes a communication section 91 and a control section 92.
 通信部91は、電動工具1の通信部16と通信を行うための通信モジュールである。通信部91は、例えば、ZigBee(登録商標)に準拠した近距離無線通信を行う。通信部91は、電動工具1の通信部16から、検出データを受信する。また、通信部91は、制御部92によって生成された推奨データを、電動工具1の通信部16へ送信する。 The communication unit 91 is a communication module for communicating with the communication unit 16 of the power tool 1. The communication unit 91 performs short-range wireless communication based on, for example, ZigBee (registered trademark). The communication unit 91 receives detection data from the communication unit 16 of the power tool 1 . Furthermore, the communication unit 91 transmits the recommended data generated by the control unit 92 to the communication unit 16 of the power tool 1.
 制御部92は、通信部91等の動作を制御する。制御部92は、1以上のプロセッサ及びメモリを有するコンピュータシステムにて実現されている。1以上のプロセッサがメモリに格納されているプログラムを実行することにより、コンピュータシステムが制御部92として機能する。プログラムは、ここでは制御部92のメモリに予め記録されているが、インターネット等の電気通信回線を通じて、又はメモリカード等の非一時的な記録媒体に記録されて提供されてもよい。 The control unit 92 controls the operation of the communication unit 91 and the like. The control unit 92 is realized by a computer system having one or more processors and memory. The computer system functions as the control unit 92 by having one or more processors execute programs stored in memory. Although the program is pre-recorded in the memory of the control unit 92 here, it may also be provided via a telecommunications line such as the Internet or by being recorded on a non-temporary recording medium such as a memory card.
 図1に示すように、制御部92は、推奨値演算部921を備えている。 As shown in FIG. 1, the control section 92 includes a recommended value calculation section 921.
 推奨値演算部921は、電動工具1から受け取った検出データに基づいて、電動工具1の駆動部13の動作に関する制御パラメータの推奨値を求める。すなわち、推奨値演算部921は、検出部15で検出された物理量に基づいて、制御パラメータの推奨値を求める。ここでは、推奨値演算部921は、検出データに含まれる出力軸133の回転数(先端工具20の回転数)と工具本体10の振動に関するパラメータとの関係に基づいて、制御パラメータの推奨値として、モータ131の最大回転数の推奨値である推奨最大回転数を求める。 The recommended value calculation unit 921 calculates recommended values of control parameters regarding the operation of the drive unit 13 of the power tool 1 based on the detection data received from the power tool 1. That is, the recommended value calculation unit 921 calculates the recommended value of the control parameter based on the physical quantity detected by the detection unit 15. Here, the recommended value calculation unit 921 sets the recommended value of the control parameter based on the relationship between the rotation speed of the output shaft 133 (the rotation speed of the tip tool 20) and the vibration-related parameters of the tool body 10, which are included in the detection data. , a recommended maximum rotation speed, which is a recommended value of the maximum rotation speed of the motor 131, is determined.
 図1に示すように、推奨値演算部921は、ランク決定部922と、推奨値決定部923と、を備えている。 As shown in FIG. 1, the recommended value calculating section 921 includes a rank determining section 922 and a recommended value determining section 923.
 ランク決定部922は、電動工具1から受け取った検出データに基づいて、ユーザのランクを決定する。ユーザのランクとは、ユーザの熟練度、体調等、ユーザの状態を示す指標である。ユーザの熟練度とは、ユーザが電動工具1の使用にどの程度熟達しているかを示す指標である。 The rank determination unit 922 determines the rank of the user based on the detection data received from the power tool 1. A user's rank is an index indicating the state of the user, such as the user's skill level and physical condition. The user's skill level is an index indicating how proficient the user is in using the power tool 1.
 ランク決定部922は、ここでは、出力軸133の回転数(例えば平均回転数)と工具本体10の振動のパラメータ(例えば加速度の偏差)との対応関係を示すグラフを用いて、ユーザのランクを決定する。図4は、ユーザのランクを決定するための基準となるグラフの一例を示す。図4では、横軸が出力軸133の平均回転数を示し、縦軸が工具本体10の加速度の偏差(図4では「振動」と表記)を示している。 Here, the rank determination unit 922 determines the user's rank using a graph showing the correspondence between the rotation speed (for example, average rotation speed) of the output shaft 133 and the vibration parameter (for example, acceleration deviation) of the tool body 10. decide. FIG. 4 shows an example of a graph that serves as a reference for determining a user's rank. In FIG. 4, the horizontal axis represents the average rotational speed of the output shaft 133, and the vertical axis represents the deviation in acceleration of the tool body 10 (denoted as "vibration" in FIG. 4).
 図4の領域A1は、出力軸133の回転数が大きくても、工具本体10の振動(加速度の偏差)が小さく抑えられていることを示す領域である。すなわち、あるユーザの検出データで示される座標値が、領域A1内に位置している場合、そのユーザは、出力軸133の回転数が大きくても、工具本体10の加速度の偏差を小さく抑えることが可能なユーザ、言い換えれば、電動工具1の使用に慣れた者(熟練者)又は疲労度が小さい者である、と言える。その場合、ランク決定部922は、このユーザのランクを上級レベル(A1)に決定する。 Region A1 in FIG. 4 is a region in which vibration (deviation in acceleration) of the tool body 10 is suppressed to a small level even if the rotation speed of the output shaft 133 is high. That is, when the coordinate values indicated by the detection data of a certain user are located within the area A1, the user can suppress the deviation of the acceleration of the tool body 10 to a small value even if the rotation speed of the output shaft 133 is large. In other words, it can be said that the user is a person who is accustomed to using the power tool 1 (an expert) or a person who has a low degree of fatigue. In that case, the rank determining unit 922 determines the rank of this user as advanced level (A1).
 図4の領域A3は、出力軸133の回転数が大きくなると、工具本体10の振動が大きくなることを示す領域である。すなわち、あるユーザの検出データで示される座標値が領域A3に含まれている場合、そのユーザは、出力軸133の回転数が大きくなると工具本体10の加速度の偏差が大きくなってしまうユーザ、言い換えれば、電動工具1の使用に不慣れな者(初心者)又は疲労度が大きな者である、と言える。その場合、ランク決定部922は、このユーザのランクを初級レベル(A3)に決定する。 Region A3 in FIG. 4 is a region where the vibration of the tool body 10 increases as the rotational speed of the output shaft 133 increases. In other words, if the coordinate values indicated by the detection data of a certain user are included in the area A3, the user is a user for whom the deviation of the acceleration of the tool body 10 increases as the rotation speed of the output shaft 133 increases. For example, it can be said that the person is inexperienced in using the power tool 1 (beginner) or has a high degree of fatigue. In that case, the rank determining unit 922 determines the rank of this user to be beginner level (A3).
 図4の領域A2は、領域A1と領域A3との間の領域である。あるユーザの検出データで示される座標値が領域A2に含まれている場合、ランク決定部922は、このユーザが、電動工具1の使用にある程度慣れた者(中級者)又は疲労度が中程度の者と判断し、このユーザのランクを中級レベル(A2)に決定する。 Area A2 in FIG. 4 is an area between area A1 and area A3. When the coordinate values indicated by the detection data of a certain user are included in the area A2, the rank determining unit 922 determines that the user is a person who is accustomed to using the power tool 1 to some extent (intermediate user) or has a medium degree of fatigue. The rank of this user is determined to be intermediate level (A2).
 推奨値決定部923は、モータ131の最大回転数(モータ131の回転数の上限)の推奨値である推奨最大回転数を決定する。推奨値決定部923は、ランク決定部922で決定されたユーザのランクに基づいて、推奨最大回転数を決定する。推奨値決定部923は、例えば、表1に示す対応表に基づいて、推奨最大回転数を決定する。 The recommended value determining unit 923 determines a recommended maximum rotation speed that is a recommended value of the maximum rotation speed of the motor 131 (the upper limit of the rotation speed of the motor 131). The recommended value determining unit 923 determines the recommended maximum rotation speed based on the user's rank determined by the rank determining unit 922. The recommended value determination unit 923 determines the recommended maximum rotation speed based on the correspondence table shown in Table 1, for example.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ここで、X1,X2,X3は、推奨最大回転数(数値)を示し、X1>X2>X3である。すなわち、推奨値決定部923は、ユーザのランクが高い程(熟練度が高く、疲労度が小さい程)、推奨最大回転数を大きくする。 Here, X1, X2, and X3 indicate the recommended maximum rotation speed (numerical value), and X1>X2>X3. That is, the recommended value determination unit 923 increases the recommended maximum rotation speed as the user's rank is higher (the higher the user's skill level and the lower the fatigue level).
 このように、推奨値演算部921は、検出部15で検出された物理量(例えば工具本体10の加速度の偏差)に基づいて、駆動部13の動作に関連する制御パラメータの推奨値(例えば推奨最大回転数)を求める。 In this way, the recommended value calculation unit 921 calculates the recommended value of the control parameter related to the operation of the drive unit 13 (for example, the recommended maximum (rotation speed).
 制御部92は、推奨値演算部921で求めた推奨最大回転数(数値)を含む推奨データを、通信部91を介して電動工具1へ送信する。 The control unit 92 transmits recommended data including the recommended maximum rotation speed (value) obtained by the recommended value calculation unit 921 to the power tool 1 via the communication unit 91.
 電動工具1の制御部11は、推奨データに含まれる推奨最大回転数を、最大回転数として設定する。そして制御部11(駆動制御部111)は、上述のように、モータ131の回転数が最大回転数(すなわち推奨最大回転数)を超えないように、締め付け部材200の締付トルクがトルク設定値となるよう駆動部13の動作を制御する。 The control unit 11 of the power tool 1 sets the recommended maximum rotation speed included in the recommended data as the maximum rotation speed. As described above, the control unit 11 (drive control unit 111) adjusts the tightening torque of the tightening member 200 to the torque setting value so that the rotation speed of the motor 131 does not exceed the maximum rotation speed (that is, the recommended maximum rotation speed). The operation of the drive unit 13 is controlled so that
 要するに、本実施形態の電動工具システム100では、電動工具1の制御部11は、推奨値演算部921で求めた制御パラメータの推奨値に基づいて、駆動部13の動作を制御する。制御パラメータは、モータ131の回転数の上限である最大回転数を含んでいる。推奨値演算部921は、検出部15で検出された物理量に基づいて、最大回転数の推奨値である推奨最大回転数を求める。制御部11は、モータ131の回転数が推奨値演算部921で求めた推奨最大回転数を超えないように、駆動部13の動作を制御する。 In short, in the power tool system 100 of the present embodiment, the control unit 11 of the power tool 1 controls the operation of the drive unit 13 based on the recommended value of the control parameter determined by the recommended value calculation unit 921. The control parameters include the maximum rotation speed, which is the upper limit of the rotation speed of the motor 131. The recommended value calculation unit 921 calculates a recommended maximum rotational speed, which is a recommended value of the maximum rotational speed, based on the physical quantity detected by the detection unit 15. The control unit 11 controls the operation of the drive unit 13 so that the rotation speed of the motor 131 does not exceed the recommended maximum rotation speed determined by the recommended value calculation unit 921.
 ここで、電動工具1を用いた締め付け部材(ネジ、ボルト等)の締め付け作業において、締め付け部材が着座して回転が停止する際には、締め付け部材に対して、モータ131から締め付け部材へ直接与えられるトルク以外に、電動工具1に含まれる回転体(モータ131のロータ、インパクト機構132、出力軸133等)の慣性によってもトルクが与えられる。駆動制御部111は、上述のように締め付け部材の締付トルクがトルク設定値となるように駆動部13を制御するのであるが、この制御においては、上記の回転体の慣性によって与えられるトルクも考慮して、駆動部13の制御が行われる。しかしながら、ユーザの熟練度が低かったり疲労が大きかったりすると、締め付け部材の着座の際にキックバック等による工具本体10(ひいては先端工具20)のぶれが生じる可能性がある。その場合、回転体の慣性によるトルクが締め付け部材にうまく伝わらず、締め付け部材の締付トルクがトルク設定値とならない可能性がある。 Here, in the work of tightening a tightening member (screw, bolt, etc.) using the power tool 1, when the tightening member is seated and stops rotating, the motor 131 directly applies power to the tightening member. In addition to the torque generated by the power tool 1, torque is also imparted by the inertia of the rotating bodies (the rotor of the motor 131, the impact mechanism 132, the output shaft 133, etc.) included in the power tool 1. The drive control unit 111 controls the drive unit 13 so that the tightening torque of the tightening member becomes the torque setting value as described above, but in this control, the torque given by the inertia of the rotating body is also controlled. The drive unit 13 is controlled in consideration. However, if the user's skill level is low or the user is highly fatigued, there is a possibility that the tool body 10 (and eventually the tip tool 20) may shake due to kickback or the like when the tightening member is seated. In that case, the torque due to the inertia of the rotating body is not properly transmitted to the tightening member, and the tightening torque of the tightening member may not reach the torque setting value.
 そこで、本実施形態の電動工具1では、ユーザのランクに応じて推奨最大回転数を変更することで、締め付け部材の着座の際の工具本体10のぶれの発生を抑制している。モータ131の回転数が小さい場合には、ユーザの熟練度が低かったり疲労が大きかったりしても、締め付け部材の着座の際の工具本体10のぶれ(キックバック等)の発生をユーザが抑えやすいからである。これにより、締め付け部材の締付トルクの精度の向上を図ることが可能となる。 Therefore, in the power tool 1 of the present embodiment, the recommended maximum rotation speed is changed according to the user's rank, thereby suppressing the occurrence of wobbling of the tool body 10 when the tightening member is seated. When the rotation speed of the motor 131 is low, even if the user has low skill level or is highly fatigued, it is easy for the user to suppress the occurrence of wobbling (kickback, etc.) of the tool body 10 when the tightening member is seated. It is from. This makes it possible to improve the accuracy of the tightening torque of the tightening member.
 このように、本実施形態の電動工具システム100では、ユーザが電動工具1を使用する際に、制御部11は、推奨値演算部921で求めた制御パラメータの推奨値(推奨最大回転数)を用いて駆動部13を動作させている。これにより、本実施形態の電動工具システム100によれば、ユーザの状態に応じた制御を電動工具1に行わせることが可能となる。 In this way, in the power tool system 100 of the present embodiment, when the user uses the power tool 1, the control unit 11 calculates the recommended value (recommended maximum rotation speed) of the control parameter obtained by the recommended value calculation unit 921. The driving unit 13 is operated using the following. Thereby, according to the power tool system 100 of the present embodiment, it is possible to cause the power tool 1 to perform control according to the user's condition.
 (3)動作例
 本実施形態の電動工具システム100の動作の具体例について、図5のフローチャートを参照して説明する。
(3) Operation example A specific example of the operation of the power tool system 100 of this embodiment will be described with reference to the flowchart of FIG. 5.
 電動工具1を用いてユーザが作業を行う場合、電動工具1は予め、推奨最大回転数(推奨値)を取得して最大回転数の設定を行う(ST1)。推奨値は、処理装置9から送信された値である。ユーザは、電動工具1を所定の位置にセットして、トリガスイッチ121をオンする(ST2)。 When a user performs work using the power tool 1, the power tool 1 obtains the recommended maximum rotation speed (recommended value) in advance and sets the maximum rotation speed (ST1). The recommended value is a value sent from the processing device 9. The user sets the power tool 1 at a predetermined position and turns on the trigger switch 121 (ST2).
 トリガスイッチ121がオンされると、制御部11(駆動制御部111)は、トリガスイッチ121の引き込み量に基づいて、モータ131の回転数が最大回転数(推奨最大回転数)を超えないように、駆動部13を制御する。これにより、ユーザは、電動工具1を用いた作業を行う(ST3)。 When the trigger switch 121 is turned on, the control unit 11 (drive control unit 111) prevents the rotation speed of the motor 131 from exceeding the maximum rotation speed (recommended maximum rotation speed) based on the amount of pull of the trigger switch 121. , controls the drive unit 13. Thereby, the user performs work using the power tool 1 (ST3).
 トリガスイッチ121がオンされている間、電動工具1の制御部11は、トリガスイッチ121がオフされたか否かを随時判定する(ST4)。また、トリガスイッチ121がオンに維持されている状態(ST4:No)で、制御部11は、センサ部14で検出された締付トルクがトルク設定値に達したか否かを随時判定する(ST5)。締付トルクがトルク設定値に達していない状態(ST5:No)で、制御部11(作業量判定部113)は、操作部12の操作時間の積算値が基準値に達したか否かを随時判定する(ST6)。操作時間の積算値が基準値に達していない場合(ST6:No)、制御部11は、駆動部13の動作を継続する。 While the trigger switch 121 is turned on, the control unit 11 of the power tool 1 determines at any time whether the trigger switch 121 is turned off (ST4). Further, while the trigger switch 121 is maintained on (ST4: No), the control unit 11 determines at any time whether the tightening torque detected by the sensor unit 14 has reached the torque setting value ( ST5). In the state where the tightening torque has not reached the torque setting value (ST5: No), the control unit 11 (work amount determination unit 113) determines whether the cumulative value of the operation time of the operation unit 12 has reached the reference value. Judgment is made at any time (ST6). If the integrated value of the operation time has not reached the reference value (ST6: No), the control unit 11 continues the operation of the drive unit 13.
 トリガスイッチ121がオフされると(ST4:Yes)、制御部11は、モータ131への電流の供給を停止して駆動部13の動作を停止させる(ST7)。また、締付トルクがトルク設定値に達すると(ST5:Yes)、制御部11は、駆動部13の動作を停止させる(ST7)。また、トリガスイッチ121がオンされており締付トルクがトルク設定値に達していなくても、操作時間の積算値が基準値に達すると(ST6:Yes)、制御部11は、強制的に駆動部13の動作を停止させる(ST7)。 When the trigger switch 121 is turned off (ST4: Yes), the control unit 11 stops supplying current to the motor 131 and stops the operation of the drive unit 13 (ST7). Further, when the tightening torque reaches the torque setting value (ST5: Yes), the control section 11 stops the operation of the drive section 13 (ST7). Furthermore, even if the trigger switch 121 is turned on and the tightening torque has not reached the torque setting value, if the cumulative value of the operation time reaches the reference value (ST6: Yes), the control unit 11 will forcefully drive the tightening torque. The operation of the section 13 is stopped (ST7).
 駆動部13の動作が停止すると、制御部11(検出情報処理部112)は、出力軸133の回転数の計測値と工具本体10の振動に関するパラメータ(加速度)の計測値とに基づいて、検出データを取得し(ST8)、検出データを処理装置9へ送信する。処理装置9は、検出データを受け取ると、検出データに基づいてユーザのランクを決定し(ST9)、推奨最大回転数(推奨値)を決定し(ST10)、決定した推奨最大回転数を含む推奨データを電動工具1へ送信する。電動工具1は、受け取った推奨データに含まれる推奨最大回転数を、最大回転数として設定し(ST11)、次回の作業においては、この最大回転数に基づいて駆動部13を制御する。 When the operation of the drive unit 13 stops, the control unit 11 (detection information processing unit 112) performs detection based on the measured value of the rotational speed of the output shaft 133 and the measured value of the parameter (acceleration) related to vibration of the tool body 10. Data is acquired (ST8) and the detected data is transmitted to the processing device 9. Upon receiving the detection data, the processing device 9 determines the user's rank based on the detection data (ST9), determines the recommended maximum rotation speed (recommended value) (ST10), and creates a recommendation including the determined recommended maximum rotation speed. Send data to power tool 1. The power tool 1 sets the recommended maximum rotation speed included in the received recommendation data as the maximum rotation speed (ST11), and controls the drive unit 13 based on this maximum rotation speed in the next operation.
 なお、電動工具システム100の動作は、図5のフローチャートに限られず、工程の順番が変更されたり一部の工程が省略又は追加されたりしてもよい。例えば、操作時間の積算値が基準値に達した場合(ST6:Yes)、電動工具システム100は、それ以降の工程を省略して作業を終了させてもよい。また、制御部11は、工程ST6において操作時間の積算値が基準値に達した場合(ST6:Yes)強制的に駆動部13の動作を停止させなくてもよい。代わりに、制御部11は、操作時間の積算値が基準値に達した場合には、トリガスイッチ121がオフされる等して駆動部13が停止した後に再度トリガスイッチ121がオンされても、駆動部13を動作させないような制御を行ってもよい。 Note that the operation of the power tool system 100 is not limited to the flowchart in FIG. 5, and the order of steps may be changed, or some steps may be omitted or added. For example, when the integrated value of the operation time reaches the reference value (ST6: Yes), the power tool system 100 may omit the subsequent steps and finish the work. Moreover, the control unit 11 does not have to forcibly stop the operation of the drive unit 13 when the integrated value of the operation time reaches the reference value in step ST6 (ST6: Yes). Instead, when the cumulative value of the operation time reaches the reference value, the control unit 11 controls the operation time even if the trigger switch 121 is turned on again after the drive unit 13 is stopped due to, for example, the trigger switch 121 being turned off. Control may be performed such that the drive unit 13 is not operated.
 (4)変形例
 上記の実施形態は、本開示の様々な実施形態の1つに過ぎない。上記の実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。以下、実施形態の変形例を列挙する。上記の実施形態及び以下に説明する変形例は、適宜組み合わせて適用可能である。
(4) Modifications The above embodiment is just one of various embodiments of the present disclosure. The embodiments described above can be modified in various ways depending on the design, etc., as long as the objective of the present disclosure can be achieved. Modifications of the embodiment will be listed below. The above embodiment and the modified examples described below can be applied in combination as appropriate.
 (4.1)変形例1
 本変形例の電動工具システム100Aについて、図6を参照して説明する。本変形例の電動工具システム100Aは、主としてランク決定部922によるユーザのランクの決定方法において、上記の実施形態の電動工具システム100と相違する。本変形例の電動工具システム100Aにおいて、上記の実施形態の電動工具システム100と同様の構成については、適宜説明を省略する場合がある。
(4.1) Modification example 1
A power tool system 100A of this modification will be described with reference to FIG. 6. The power tool system 100A of this modification differs from the power tool system 100 of the above-described embodiment mainly in the method by which the rank determination unit 922 determines the user's rank. In the power tool system 100A of this modification, description of the same configuration as the power tool system 100 of the above embodiment may be omitted as appropriate.
 図6に示すように、本変形例の電動工具システム100Aにおいて、電動工具1Aの検出部15Aは、操作速度計測部153を備えている。 As shown in FIG. 6, in the power tool system 100A of this modification, the detection unit 15A of the power tool 1A includes an operation speed measurement unit 153.
 操作速度計測部153は、ユーザが操作部12を操作する速度、ここでは、ユーザがトリガスイッチ121を引く速度を計測する。より詳細には、操作速度計測部153は、ユーザがトリガスイッチ121を引き始めた時点から引き込みが完了した時点までの時間(以下、「操作時間」ともいう)を計測する。トリガスイッチ121を引き始めた時点とは、例えば、トリガスイッチ121の一回の引き操作において、トリガスイッチ121の引き込み量が、検出可能な最小値となる時点である。トリガスイッチ121の引き込みが完了した時点とは、例えば、トリガスイッチ121の一回の引き操作において、トリガスイッチ121の引き込み量が、検出可能な最大値となる時点である。制御部11の検出情報処理部112は、操作速度計測部153によって計測された操作時間(操作速度の逆数)を検出データとして、記憶部17に記憶させ、通信部16を介して処理装置9へ送信させる。 The operation speed measurement unit 153 measures the speed at which the user operates the operation unit 12, in this case, the speed at which the user pulls the trigger switch 121. More specifically, the operation speed measuring unit 153 measures the time from when the user starts pulling the trigger switch 121 to when the pulling is completed (hereinafter also referred to as "operation time"). The point in time when the trigger switch 121 starts to be pulled is, for example, the point in time when the amount of pull in the trigger switch 121 reaches a detectable minimum value in one pull operation of the trigger switch 121. The time when the retraction of the trigger switch 121 is completed is, for example, the time when the amount of retraction of the trigger switch 121 reaches the maximum detectable value in one pull operation of the trigger switch 121. The detection information processing unit 112 of the control unit 11 stores the operation time (reciprocal of the operation speed) measured by the operation speed measurement unit 153 in the storage unit 17 as detection data, and sends it to the processing device 9 via the communication unit 16. Let it be sent.
 処理装置9の推奨値演算部921のランク決定部922は、例えば、複数の閾値に基づいて、ユーザのランクを決定する。閾値は、操作速度(トリガスイッチ121の引き速度)を示す操作時間と比較される数値である。 The rank determination unit 922 of the recommended value calculation unit 921 of the processing device 9 determines the rank of the user based on a plurality of threshold values, for example. The threshold value is a numerical value that is compared with the operation time indicating the operation speed (pulling speed of the trigger switch 121).
 ランク決定部922は、例えば、操作時間が第1閾値よりも小さい場合、このユーザのランクを上級レベル(A1)に決定する。これは、操作時間が短く操作速度が速い場合、そのユーザは、電動工具1Aの使用に慣れた者(熟練者)又は疲労度が小さい者であるとみなせるからである。また、ランク決定部922は、例えば、操作時間が第1閾値以上であって第2閾値よりも小さい場合、このユーザのランクを中級レベル(A2)に決定する。また、ランク決定部922は、例えば、操作時間が第2閾値以上の場合、このユーザのランクを初級レベル(A3)に決定する。 For example, if the operation time is smaller than the first threshold, the rank determining unit 922 determines the rank of this user as advanced level (A1). This is because if the operation time is short and the operation speed is high, the user can be considered to be a person who is accustomed to using the power tool 1A (an expert) or a person with a low degree of fatigue. Further, for example, when the operation time is equal to or greater than the first threshold value and smaller than the second threshold value, the rank determining unit 922 determines the rank of this user to be intermediate level (A2). Furthermore, for example, when the operation time is equal to or greater than the second threshold, the rank determining unit 922 determines the rank of this user to be beginner level (A3).
 推奨値決定部923は、例えば表1に従って、推奨最大回転数を決定する。電動工具1Aの制御部11(駆動制御部111)は、モータ131の回転数が推奨最大回転数を超えないように、駆動部13を制御する。 The recommended value determination unit 923 determines the recommended maximum rotation speed, for example, according to Table 1. The control unit 11 (drive control unit 111) of the power tool 1A controls the drive unit 13 so that the rotation speed of the motor 131 does not exceed the recommended maximum rotation speed.
 本変形例の電動工具システム100Aにおいても、ユーザの状態に応じた制御を促すことが可能となる。 Also in the power tool system 100A of this modification, it is possible to prompt control according to the user's condition.
 なお、操作速度計測部153は、トリガスイッチ121を引く速度(例えば、速度の最大値、平均値等)を計測してもよい。また、ランク決定部922は、操作時間を操作速度に換算して、所定の閾値(操作速度と比較される閾値)と比較してもよい。 Note that the operation speed measurement unit 153 may measure the speed at which the trigger switch 121 is pulled (for example, the maximum value, average value, etc. of the speed). Furthermore, the rank determination unit 922 may convert the operation time into an operation speed and compare it with a predetermined threshold (a threshold with which the operation speed is compared).
 (4.2)変形例2
 本変形例の電動工具システム100Bについて、図7を参照して説明する。本変形例の電動工具システム100Bは、主としてランク決定部922によるユーザのランクの決定方法において、上記の実施形態の電動工具システム100と相違する。本変形例の電動工具システム100Bにおいて、上記の実施形態の電動工具システム100と同様の構成については、適宜説明を省略する場合がある。
(4.2) Modification 2
A power tool system 100B of this modification will be described with reference to FIG. 7. The power tool system 100B of this modification differs from the power tool system 100 of the above-described embodiment mainly in the method by which the rank determination unit 922 determines the user's rank. In the power tool system 100B of this modification, description of the same configuration as the power tool system 100 of the above embodiment may be omitted as appropriate.
 図7に示すように、本変形例の電動工具システム100Bにおいて、電動工具1Bの検出部15Bは、操作間隔計測部154を備えている。 As shown in FIG. 7, in the power tool system 100B of this modification, the detection unit 15B of the power tool 1B includes an operation interval measurement unit 154.
 操作間隔計測部154は、操作部12が繰り返し操作される場合の、操作の時間間隔又は操作の頻度を計測する。ここでは、操作間隔計測部154は、ユーザがトリガスイッチ121をオンする時間間隔(トリガスイッチ121をオンしてから、オフして、次にオンするまでの時間)を計測する。本変形例での「トリガスイッチ121をオン」とは、トリガスイッチ121の引き込み量が検出可能な最大値となること、であってもよい。制御部11の検出情報処理部112は、操作間隔計測部154によって計測された時間(以下、「オン間隔」ともいう)を検出データとして、記憶部17に記憶させ、通信部16を介して処理装置9へ送信させる。 The operation interval measurement unit 154 measures the time interval or frequency of operations when the operation unit 12 is repeatedly operated. Here, the operation interval measurement unit 154 measures the time interval at which the user turns on the trigger switch 121 (the time from when the trigger switch 121 is turned on, when it is turned off, until when it is turned on again). In this modification, "turning on the trigger switch 121" may mean that the amount of retraction of the trigger switch 121 reaches a detectable maximum value. The detection information processing unit 112 of the control unit 11 stores the time measured by the operation interval measurement unit 154 (hereinafter also referred to as “on interval”) in the storage unit 17 as detection data, and processes it via the communication unit 16. It is transmitted to the device 9.
 例えば、工場の組立ライン等では、一つの作業対象(例えば板状の部材)に対して複数個の締め付け部材を締め付ける作業を、流れ作業的に繰り返し行う場合がある。そのような場合、ユーザは、一つの作業対象に対して、ある決められたタクトタイム内に複数個の締め付け部材を締め付ける作業を行うことになる。このような場合、トリガスイッチ121をオンする時間間隔は、ユーザが複数個の締め付け部材を締め付ける作業を完了するのに要する時間を反映していることになり、ユーザの熟練度、疲労度等のユーザの状態を反映していると言える。そこで、本変形例の電動工具システム100Bでは、この「オン間隔」を、ユーザの状態を示すパラメータとして用いている。 For example, on a factory assembly line or the like, the work of tightening a plurality of tightening members on one work object (for example, a plate-shaped member) may be repeatedly performed in an assembly line manner. In such a case, the user will perform a task of tightening a plurality of tightening members within a certain takt time for one work object. In such a case, the time interval at which the trigger switch 121 is turned on reflects the time required for the user to complete the task of tightening multiple tightening members, and the time interval at which the trigger switch 121 is turned on will reflect the time required for the user to complete the task of tightening multiple tightening members, and will depend on the user's skill level, fatigue level, etc. It can be said that it reflects the state of the user. Therefore, in the power tool system 100B of this modification, this "on interval" is used as a parameter indicating the user's state.
 処理装置9の推奨値演算部921のランク決定部922は、例えば、複数の閾値に基づいて、ユーザのランクを決定する。閾値は、オン間隔の値と比較される数値である。 The rank determination unit 922 of the recommended value calculation unit 921 of the processing device 9 determines the rank of the user based on a plurality of threshold values, for example. The threshold is a numerical value that is compared to the on-interval value.
 ランク決定部922は、例えば、オン間隔の値が第1閾値よりも小さい場合、このユーザのランクを上級レベル(A1)に決定する。これは、オン間隔の値が小さい場合、そのユーザは、短時間で作業を完了できることを意味しているので、電動工具1Bの使用に慣れた者(熟練者)又は疲労度が小さい者であるとみなせるからである。また、ランク決定部922は、例えば、オン間隔の値が第1閾値以上であって第2閾値よりも小さい場合、このユーザのランクを中級レベル(A2)に決定する。また、ランク決定部922は、例えば、オン間隔の値が第2閾値以上の場合、このユーザのランクを初級レベル(A3)に決定する。 For example, if the value of the on-interval is smaller than the first threshold, the rank determining unit 922 determines the rank of this user as advanced level (A1). This means that if the value of the on-interval is small, the user can complete the work in a short time, so the user is a person who is accustomed to using the power tool 1B (skilled person) or a person with a low degree of fatigue. This is because it can be considered as Furthermore, for example, when the value of the on-interval is greater than or equal to the first threshold and smaller than the second threshold, the rank determining unit 922 determines the rank of this user to be intermediate level (A2). Furthermore, for example, when the value of the on-interval is equal to or greater than the second threshold, the rank determining unit 922 determines the rank of this user to be beginner level (A3).
 推奨値決定部923は、例えば表1に従って、推奨最大回転数を決定する。電動工具1Bの制御部11(駆動制御部111)は、モータ131の回転数が推奨最大回転数を超えないように、駆動部13を制御する。 The recommended value determination unit 923 determines the recommended maximum rotation speed, for example, according to Table 1. The control unit 11 (drive control unit 111) of the power tool 1B controls the drive unit 13 so that the rotation speed of the motor 131 does not exceed the recommended maximum rotation speed.
 本変形例の電動工具システム100Bにおいても、ユーザの状態に応じた制御を促すことが可能となる。 Also in the power tool system 100B of this modification, it is possible to prompt control according to the user's condition.
 なお、操作間隔計測部154は、「オン間隔」に代えて又は加えて、ユーザがトリガスイッチ121をオフする時間間隔(トリガスイッチ121をオフしてから、オンした後に、次にオフするまでの時間)を計測してもよい。操作間隔計測部154は、一つの作業対象に対する総作業時間(複数個の締め付け部材を締め付ける作業を始めてから完了するまでの時間)を計測してもよい。 In addition, instead of or in addition to the "on interval," the operation interval measurement unit 154 measures the time interval at which the user turns off the trigger switch 121 (from when the trigger switch 121 is turned off, after the trigger switch 121 is turned on, until the next time when the trigger switch 121 is turned off). time) may be measured. The operation interval measuring unit 154 may measure the total working time for one work object (the time from starting to completing the work of tightening a plurality of fastening members).
 (4.3)変形例3
 本変形例の電動工具システム100Cについて、図8を参照して説明する。本変形例の電動工具システム100Cは、主として通知部19を備えている点において、上記の実施形態の電動工具システム100と相違する。本変形例の電動工具システム100Cにおいて、上記の実施形態の電動工具システム100と同様の構成については、適宜説明を省略する場合がある。
(4.3) Modification 3
A power tool system 100C of this modification will be described with reference to FIG. 8. The power tool system 100C of this modification differs from the power tool system 100 of the above embodiment mainly in that it includes a notification section 19. In the power tool system 100C of this modification, description of the same configuration as the power tool system 100 of the above embodiment may be omitted as appropriate.
 通知部19は、例えば、LED(Light Emitting Diode)を備えている。LEDの発光色は、例えば赤色である。LEDは、例えば、ユーザが作業中に目視しやすいように、工具本体10の胴体部101における出力軸133とは反対側の端部に設けられている。 The notification unit 19 includes, for example, an LED (Light Emitting Diode). The emitted light color of the LED is, for example, red. The LED is provided, for example, at the end of the body portion 101 of the tool body 10 on the opposite side to the output shaft 133 so that the user can easily see the LED during work.
 本変形例の電動工具システム100Cにおいて、電動工具1Cの制御部11(駆動制御部111)は、モータ131の回転数を推奨最大回転数以下に抑える制御は行わない。代わりに、制御部11は、トリガスイッチ121への引き操作に応じてモータ131の回転数が推奨値演算部921で求めた推奨最大回転数を超えることが検出された場合に、例えばLEDを発光させて、通知部19によりユーザへ通知を行う。これにより、モータ131の回転数が推奨最大回転数を超えるような制御を自制するよう、ユーザに促すことができる。要するに、本変形例の電動工具システム100Cでも、ユーザの状態に応じた制御を(本変形例ではユーザに)促すことが可能となる。 In the power tool system 100C of this modification, the control unit 11 (drive control unit 111) of the power tool 1C does not perform control to suppress the rotation speed of the motor 131 to below the recommended maximum rotation speed. Instead, when it is detected that the rotation speed of the motor 131 exceeds the recommended maximum rotation speed determined by the recommended value calculation unit 921 in response to a pulling operation on the trigger switch 121, the control unit 11 causes, for example, an LED to emit light. Then, the notification unit 19 notifies the user. Thereby, the user can be urged to refrain from controlling the rotation speed of the motor 131 to exceed the recommended maximum rotation speed. In short, the power tool system 100C of this modification can also prompt the user (in this modification, the user) to perform control according to the user's condition.
 なお、電動工具1Cは、通知部19に代えて又は加えて、推奨値(推奨最大回転数)を表示可能な表示部を備えていてもよい。表示部には、推奨値最大回転数に加えて、モータ131の回転数の計測値等の他の情報が更に表示可能であってもよい。 Note that, instead of or in addition to the notification section 19, the power tool 1C may include a display section that can display a recommended value (recommended maximum rotation speed). The display unit may be able to display other information such as a measured value of the rotation speed of the motor 131 in addition to the recommended maximum rotation speed.
 また、電動工具1Cの制御部11は、第1モードと第2モードとを切り替え可能であってもよい。第1モードは、上記の実施形態で説明したように、モータ131の回転数が推奨最大回転数を超えないように制御部11(駆動制御部111)が駆動部13を制御するモードである。第2モードは、モータ131の回転数が推奨最大回転数を超えることが検出された場合に、ユーザへ通知を行うモードである。第1モードと第2モードとは、工具本体10又は処理装置9に設けられたスイッチへの操作に応じて切り替えられてもよい。 Furthermore, the control unit 11 of the power tool 1C may be able to switch between the first mode and the second mode. As described in the above embodiment, the first mode is a mode in which the control section 11 (drive control section 111) controls the drive section 13 so that the rotation speed of the motor 131 does not exceed the recommended maximum rotation speed. The second mode is a mode in which the user is notified when it is detected that the number of rotations of the motor 131 exceeds the recommended maximum number of rotations. The first mode and the second mode may be switched according to the operation of a switch provided on the tool body 10 or the processing device 9.
 通知部19(及び表示部)は、処理装置9に設けられていてもよい。 The notification unit 19 (and display unit) may be provided in the processing device 9.
 (4.4)その他の変形例
 一変形例において、推奨値演算部921が電動工具1(1A,1B,1C)と別体の処理装置9に設けられていることは必須ではなく、電動工具1(1A,1B,1C)の制御部11が推奨値演算部921の機能を有していてもよい。
(4.4) Other Modifications In a modification, it is not essential that the recommended value calculation unit 921 be provided in the processing device 9 separate from the power tool 1 (1A, 1B, 1C); 1 (1A, 1B, 1C) control section 11 may have the function of the recommended value calculation section 921.
 一変形例において、推奨値演算部921がその推奨値を求める駆動部13の動作に関連する制御パラメータは、モータ131の最大回転数に限られず、例えばモータ131に供給するモータ電流の最大値であってもよいし、PWM信号のデューティの最大値であってもよい。検出部15が物理量を検出する制御パラメータは、モータ電流、PWM信号のデューティ等であってもよい。 In a modified example, the control parameter related to the operation of the drive unit 13 for which the recommended value calculating unit 921 obtains the recommended value is not limited to the maximum rotation speed of the motor 131, but is, for example, the maximum value of the motor current supplied to the motor 131. It may be the maximum value of the duty of the PWM signal. The control parameter whose physical quantity is detected by the detection unit 15 may be a motor current, a duty of a PWM signal, or the like.
 一変形例において、ランク決定部922により決定されるユーザのランクは、3段階に限られず、2段階又は4段階以上であってもよく、無段階であってもよい。その場合、推奨値決定部923は、例えば、ユーザのランクの候補の数に応じた対応表に基づいて、推奨値を決定してもよい。推奨値決定部923は、ユーザのランクと推奨値とを関連付けた関係式に基づいて、推奨値を決定してもよい。 In a modification, the user's rank determined by the rank determination unit 922 is not limited to three levels, but may be two levels, four levels or more, or may be non-level. In that case, the recommended value determination unit 923 may determine the recommended value, for example, based on a correspondence table according to the number of rank candidates of the user. The recommended value determination unit 923 may determine the recommended value based on a relational expression that associates the user's rank with the recommended value.
 一変形例において、推奨値演算部921は、ユーザのランクを決定しなくてもよく、例えば、変形例1で説明した操作速度のような検出データから推奨値を直接決定してもよい。 In one modification, the recommended value calculation unit 921 does not need to determine the rank of the user, and may directly determine the recommended value from detected data such as the operation speed described in the first modification, for example.
 一変形例において、作業量判定部113は、操作部12が操作された時間の積算値が基準値を超えると、ユーザへ通知を行ってもよい。 In a modification, the workload determination unit 113 may notify the user when the cumulative value of the time during which the operation unit 12 is operated exceeds a reference value.
 一変形例において、作業量判定部113は、所定の期間内に工具本体10の振動に関するパラメータが閾値以上となった回数を求めてもよい。所定の期間は、例えば、午前0時から始まる1日であってもよい。工具本体10の振動に関するパラメータは、工具本体10の振動の大きさであってもよいし、工具本体10の加速度の大きさであってもよい。例えば、作業量判定部113は、工具本体10の加速度の大きさが加速度閾値を超えた回数が、所定の期間内に回数閾値を超えると、操作部12(トリガスイッチ121)への操作の有無にかかわらず、モータ131の回転を停止させてもよい。 In a modification, the work amount determining unit 113 may calculate the number of times a parameter related to vibration of the tool body 10 exceeds a threshold value within a predetermined period. The predetermined period may be, for example, one day starting from midnight. The parameter related to the vibration of the tool body 10 may be the magnitude of the vibration of the tool body 10 or the magnitude of the acceleration of the tool body 10. For example, if the number of times the magnitude of the acceleration of the tool body 10 exceeds the acceleration threshold within a predetermined period, the work amount determination unit 113 determines whether or not the operation unit 12 (trigger switch 121) has been operated. Regardless, the rotation of the motor 131 may be stopped.
 一変形例において、推奨値演算部921は、操作部12への操作に応じてモータ131が回転中であっても、推奨値を随時求めてもよい。制御部11(駆動制御部111)は、推奨値演算部921で求めた推奨値に基づいて、駆動部13を制御してもよい。要するに、電動工具システム100(100A,100B,100C)では、検出部15(15A,15B)で検出された物理量に基づいて、制御パラメータの推奨値を随時演算してそれに基づいて駆動部13の制御を行う、いわゆるフィードバック制御をリアルタイムで行ってもよい。 In a modification, the recommended value calculation unit 921 may calculate the recommended value at any time even if the motor 131 is rotating in response to an operation on the operating unit 12. The control unit 11 (drive control unit 111) may control the drive unit 13 based on the recommended value obtained by the recommended value calculation unit 921. In short, in the power tool system 100 (100A, 100B, 100C), recommended values of control parameters are calculated at any time based on the physical quantities detected by the detection unit 15 (15A, 15B), and the drive unit 13 is controlled based on the recommended values. So-called feedback control may be performed in real time.
 (5)態様
 以上説明した実施形態及び変形例から明らかなように、本明細書には以下の態様が開示されている。
(5) Aspects As is clear from the embodiments and modifications described above, the following aspects are disclosed in this specification.
 第1の態様の電動工具システム(100;100A;100B;100C)は、駆動部(13)と、操作部(12)と、制御部(11)と、検出部(15;15A;15B)と、工具本体(10)と、推奨値演算部(921)と、を備える。駆動部(13)は、モータ(131)を備え、モータ(131)の回転により先端工具(20)を回転駆動させる。操作部(12)は、ユーザにより操作される。制御部(11)は、操作部(12)へのユーザの操作に応じて駆動部(13)の動作を制御する。検出部(15;15A;15B)は、操作部(12)へのユーザの操作に応じて得られる、ユーザの熟練度と体調との少なくとも一方に関連する物理量を検出する。工具本体(10)は、可搬型であって、駆動部(13)、操作部(12)、制御部(11)、及び検出部(15;15A;15B)を保持する。推奨値演算部(921)は、検出部(15;15A;15B)で検出された物理量に基づいて、駆動部(13)の動作に関連する制御パラメータの推奨値を求める。 The power tool system (100; 100A; 100B; 100C) of the first aspect includes a drive section (13), an operation section (12), a control section (11), and a detection section (15; 15A; 15B). , a tool body (10), and a recommended value calculation section (921). The drive unit (13) includes a motor (131), and rotates the tip tool (20) by rotation of the motor (131). The operation unit (12) is operated by a user. The control section (11) controls the operation of the drive section (13) in response to a user's operation on the operation section (12). The detection unit (15; 15A; 15B) detects a physical quantity related to at least one of the user's skill level and physical condition, which is obtained in response to the user's operation on the operation unit (12). The tool body (10) is portable and holds a drive section (13), an operation section (12), a control section (11), and a detection section (15; 15A; 15B). The recommended value calculating section (921) obtains recommended values of control parameters related to the operation of the driving section (13) based on the physical quantities detected by the detecting section (15; 15A; 15B).
 この態様によれば、ユーザの状態に応じた制御を促すことが可能な電動工具システム(100;100A;100B;100C)を提供することが可能となる。 According to this aspect, it is possible to provide a power tool system (100; 100A; 100B; 100C) that can prompt control according to the user's condition.
 第2の態様の電動工具システム(100;100C)では、第1の態様において、検出部(15)は、工具本体(10)の振動に関するパラメータを計測する振動計測部(151)を備える。 In the power tool system (100; 100C) of the second aspect, in the first aspect, the detection unit (15) includes a vibration measurement unit (151) that measures parameters related to vibration of the tool body (10).
 この態様によれば、工具本体(10)の振動に関するパラメータを用いることで、ユーザの熟練度、体調等を反映しやすい物理量を検出することが可能となる。 According to this aspect, by using parameters related to the vibration of the tool body (10), it is possible to detect physical quantities that easily reflect the user's skill level, physical condition, etc.
 第3の態様の電動工具システム(100;100A;100B;100C)では、第2の態様において、推奨値演算部(921)は、先端工具(20)の回転数と工具本体(10)の振動に関するパラメータとの関係に基づいて、制御パラメータの推奨値を求める。 In the power tool system (100; 100A; 100B; 100C) of the third aspect, in the second aspect, the recommended value calculation unit (921) calculates the rotation speed of the tip tool (20) and the vibration of the tool body (10). The recommended value of the control parameter is determined based on the relationship with the relevant parameter.
 この態様によれば、ユーザの熟練度、体調等を反映した推奨値を求めることが可能となる。 According to this aspect, it is possible to obtain recommended values that reflect the user's skill level, physical condition, etc.
 第4の態様の電動工具システム(100;100A;100B;100C)は、第1~第3のいずれか1つの態様において、作業量判定部(113)をさらに備える。作業量判定部(113)は、所定の期間内に工具本体(10)の振動に関するパラメータが閾値以上となった回数、又は所定の期間内に操作部(12)が操作された時間の積算値を求める。 The power tool system (100; 100A; 100B; 100C) of the fourth aspect further includes a work amount determination unit (113) in any one of the first to third aspects. The work amount determination unit (113) determines the number of times a parameter related to vibration of the tool body (10) exceeds a threshold value within a predetermined period, or the cumulative value of the time during which the operating portion (12) is operated within a predetermined period. seek.
 この態様によれば、ユーザが電動工具(1;1A;1B;1C)を使用する使用時間を管理することが可能となる。 According to this aspect, it becomes possible for the user to manage the usage time of the power tool (1; 1A; 1B; 1C).
 第5の態様の電動工具システム(100A)では、第1~第4のいずれか1つの態様において、操作部(12)は、引き操作を受け付けるトリガスイッチ(121)を備える。検出部(15A)は、ユーザがトリガスイッチ(121)を引く速度を計測する操作速度計測部(153)を備える。 In the power tool system (100A) of the fifth aspect, in any one of the first to fourth aspects, the operating section (12) includes a trigger switch (121) that accepts a pull operation. The detection unit (15A) includes an operation speed measurement unit (153) that measures the speed at which the user pulls the trigger switch (121).
 この態様によれば、ユーザの熟練度、体調等を反映しやすい物理量を検出することが可能となる。 According to this aspect, it is possible to detect a physical quantity that easily reflects the user's skill level, physical condition, etc.
 第6の態様の電動工具システム(100B)では、第1~第5のいずれか1つの態様において、検出部(15B)は、操作部(12)が繰り返し操作される場合の、操作の時間間隔又は操作の頻度を計測する操作間隔計測部(154)を備える。 In the power tool system (100B) of the sixth aspect, in any one of the first to fifth aspects, the detection unit (15B) detects the time interval between operations when the operation unit (12) is repeatedly operated. Alternatively, it includes an operation interval measuring section (154) that measures the frequency of operations.
 この態様によれば、ユーザの熟練度、体調等を反映しやすい物理量を検出することが可能となる。 According to this aspect, it is possible to detect a physical quantity that easily reflects the user's skill level, physical condition, etc.
 第7の態様の電動工具システム(100C)では、第1~第6のいずれか1つの態様において、制御パラメータは、モータ(131)の回転数の上限である最大回転数を含む。推奨値演算部(921)は、検出部(15)で検出された物理量に基づいて、最大回転数の推奨値である推奨最大回転数を求める。電動工具システム(100C)は、モータ(131)の回転数が推奨値演算部(921)で求めた推奨最大回転数を超えることが検出された場合にユーザへ通知を行う通知部(19)を、更に備える。 In the power tool system (100C) of the seventh aspect, in any one of the first to sixth aspects, the control parameter includes the maximum rotation speed that is the upper limit of the rotation speed of the motor (131). The recommended value calculation unit (921) calculates a recommended maximum rotational speed, which is a recommended value of the maximum rotational speed, based on the physical quantity detected by the detection unit (15). The power tool system (100C) includes a notification unit (19) that notifies the user when it is detected that the rotation speed of the motor (131) exceeds the recommended maximum rotation speed determined by the recommended value calculation unit (921). , further provided.
 この態様によれば、ユーザの状態に応じた制御を促すことが可能となる。 According to this aspect, it is possible to prompt control according to the user's condition.
 第8の態様の電動工具システム(100;100A;100B)では、第1~第7のいずれか1つの態様において、制御部(11)は、推奨値演算部(921)で求めた制御パラメータの推奨値に基づいて、駆動部(13)の動作を制御する。 In the power tool system (100; 100A; 100B) of the eighth aspect, in any one of the first to seventh aspects, the control unit (11) calculates the control parameters determined by the recommended value calculation unit (921). The operation of the drive unit (13) is controlled based on the recommended value.
 この態様によれば、ユーザの状態に応じた制御を行わせることが可能となる。 According to this aspect, it is possible to perform control according to the state of the user.
 第9の態様の電動工具システム(100;100A;100B)では、第8の態様において、制御パラメータは、モータ(131)の回転数の上限である最大回転数を含む。推奨値演算部(921)は、検出部(15;15A;15B)で検出された物理量に基づいて、最大回転数の推奨値である推奨最大回転数を求める。制御部(11)は、モータ(131)の回転数が推奨値演算部(921)で求めた推奨最大回転数を超えないように、駆動部(13)の動作を制御する。 In the power tool system (100; 100A; 100B) of the ninth aspect, in the eighth aspect, the control parameter includes the maximum rotation speed that is the upper limit of the rotation speed of the motor (131). The recommended value calculation unit (921) calculates a recommended maximum rotational speed, which is a recommended value of the maximum rotational speed, based on the physical quantity detected by the detection unit (15; 15A; 15B). The control section (11) controls the operation of the drive section (13) so that the rotation speed of the motor (131) does not exceed the recommended maximum rotation speed determined by the recommended value calculation section (921).
 この態様によれば、ユーザの状態に応じた最大回転数での制御を行わせることが可能となる。 According to this aspect, it is possible to perform control at the maximum rotation speed according to the user's condition.
 100,100A,100B,100C 電動工具システム
 10 工具本体
 11 制御部
 113 作業量判定部
 12 操作部
 121 トリガスイッチ
 13 駆動部
 131 モータ
 15,15A,15B 検出部
 151 振動計測部
 153 操作速度計測部
 154 操作間隔計測部
 19 通知部
 20 先端工具
 921 推奨値演算部
100, 100A, 100B, 100C Power tool system 10 Tool main body 11 Control section 113 Work amount determination section 12 Operation section 121 Trigger switch 13 Drive section 131 Motor 15, 15A, 15B Detection section 151 Vibration measurement section 153 Operation speed measurement section 154 Operation Interval measurement section 19 Notification section 20 Tip tool 921 Recommended value calculation section

Claims (9)

  1.  モータを備え、前記モータの回転により先端工具を回転駆動させる駆動部と、
     ユーザにより操作される操作部と、
     前記操作部への前記ユーザの操作に応じて前記駆動部の動作を制御する制御部と、
     前記操作部への前記ユーザの操作に応じて得られる、前記ユーザの熟練度と体調との少なくとも一方に関連する物理量を検出する検出部と、
     前記駆動部、前記操作部、前記制御部、及び前記検出部を保持する、可搬型の工具本体と、
     前記検出部で検出された前記物理量に基づいて、前記駆動部の動作に関連する制御パラメータの推奨値を求める推奨値演算部と、
    を備える、
     電動工具システム。
    a drive unit that includes a motor and rotates the tip tool by rotation of the motor;
    an operation unit operated by a user;
    a control unit that controls the operation of the drive unit according to the user's operation on the operation unit;
    a detection unit that detects a physical quantity related to at least one of the user's skill level and physical condition obtained in response to the user's operation on the operation unit;
    a portable tool body that holds the drive section, the operation section, the control section, and the detection section;
    a recommended value calculation unit that calculates a recommended value of a control parameter related to the operation of the drive unit based on the physical quantity detected by the detection unit;
    Equipped with
    Power tool system.
  2.  前記検出部は、前記工具本体の振動に関するパラメータを計測する振動計測部を備える、
     請求項1に記載の電動工具システム。
    The detection unit includes a vibration measurement unit that measures parameters related to vibration of the tool body.
    The power tool system according to claim 1.
  3.  前記推奨値演算部は、前記先端工具の回転数と前記工具本体の振動に関するパラメータとの関係に基づいて、前記制御パラメータの推奨値を求める、
     請求項2に記載の電動工具システム。
    The recommended value calculation unit calculates the recommended value of the control parameter based on the relationship between the rotation speed of the tip tool and a parameter related to vibration of the tool body.
    The power tool system according to claim 2.
  4.  所定の期間内に前記工具本体の振動に関するパラメータが閾値以上となった回数、又は前記所定の期間内に前記操作部が操作された時間の積算値を求める作業量判定部を、更に備える、
     請求項1~3のいずれか1項に記載の電動工具システム。
    further comprising a work amount determination unit that calculates the number of times a parameter related to the vibration of the tool body exceeds a threshold value within a predetermined period, or an integrated value of the time during which the operating section is operated within the predetermined period;
    The power tool system according to any one of claims 1 to 3.
  5.  前記操作部は、引き操作を受け付けるトリガスイッチを備え、
     前記検出部は、前記ユーザが前記トリガスイッチを引く速度を計測する操作速度計測部を備える、
     請求項1~4のいずれか1項に記載の電動工具システム。
    The operation unit includes a trigger switch that accepts a pull operation,
    The detection unit includes an operation speed measurement unit that measures the speed at which the user pulls the trigger switch.
    The power tool system according to any one of claims 1 to 4.
  6.  前記検出部は、前記操作部が繰り返し操作される場合の、操作の時間間隔又は操作の頻度を計測する操作間隔計測部を備える、
     請求項1~5のいずれか1項に記載の電動工具システム。
    The detection unit includes an operation interval measurement unit that measures an operation time interval or an operation frequency when the operation unit is repeatedly operated.
    The power tool system according to any one of claims 1 to 5.
  7.  前記制御パラメータは、前記モータの回転数の上限である最大回転数を含み、
     前記推奨値演算部は、前記検出部で検出された前記物理量に基づいて、前記最大回転数の推奨値である推奨最大回転数を求め、
     前記電動工具システムは、前記モータの回転数が前記推奨値演算部で求めた前記推奨最大回転数を超えることが検出された場合に前記ユーザへ通知を行う通知部を、更に備える、
     請求項1~6のいずれか1項に記載の電動工具システム。
    The control parameter includes a maximum rotation speed that is an upper limit of the rotation speed of the motor,
    The recommended value calculation unit calculates a recommended maximum rotation speed that is a recommended value of the maximum rotation speed based on the physical quantity detected by the detection unit,
    The power tool system further includes a notification unit that notifies the user when it is detected that the rotation speed of the motor exceeds the recommended maximum rotation speed determined by the recommended value calculation unit.
    The power tool system according to any one of claims 1 to 6.
  8.  前記制御部は、前記推奨値演算部で求めた前記制御パラメータの推奨値に基づいて、前記駆動部の動作を制御する、
     請求項1~7のいずれか1項に記載の電動工具システム。
    The control unit controls the operation of the drive unit based on the recommended value of the control parameter obtained by the recommended value calculation unit.
    The power tool system according to any one of claims 1 to 7.
  9.  前記制御パラメータは、前記モータの回転数の上限である最大回転数を含み、
     前記推奨値演算部は、前記検出部で検出された前記物理量に基づいて、前記最大回転数の推奨値である推奨最大回転数を求め、
     前記制御部は、前記モータの回転数が前記推奨値演算部で求めた前記推奨最大回転数を超えないように、前記駆動部の動作を制御する、
     請求項8に記載の電動工具システム。
    The control parameter includes a maximum rotation speed that is an upper limit of the rotation speed of the motor,
    The recommended value calculation unit calculates a recommended maximum rotation speed that is a recommended value of the maximum rotation speed based on the physical quantity detected by the detection unit,
    The control unit controls the operation of the drive unit so that the rotation speed of the motor does not exceed the recommended maximum rotation speed determined by the recommended value calculation unit.
    The power tool system according to claim 8.
PCT/JP2023/017704 2022-06-08 2023-05-11 Power tool system WO2023238593A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-093312 2022-06-08
JP2022093312A JP2023180159A (en) 2022-06-08 2022-06-08 Electric tool system

Publications (1)

Publication Number Publication Date
WO2023238593A1 true WO2023238593A1 (en) 2023-12-14

Family

ID=89118160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017704 WO2023238593A1 (en) 2022-06-08 2023-05-11 Power tool system

Country Status (2)

Country Link
JP (1) JP2023180159A (en)
WO (1) WO2023238593A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020157446A (en) * 2019-03-27 2020-10-01 オムロン株式会社 Work tool and control system provided with the same
JP2021040579A (en) * 2019-09-12 2021-03-18 株式会社マキタ Work machine
JP2021142607A (en) * 2020-03-12 2021-09-24 オムロン株式会社 Working tool
WO2022024715A1 (en) * 2020-07-31 2022-02-03 工機ホールディングス株式会社 Electrical equipment and electrical equipment system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020157446A (en) * 2019-03-27 2020-10-01 オムロン株式会社 Work tool and control system provided with the same
JP2021040579A (en) * 2019-09-12 2021-03-18 株式会社マキタ Work machine
JP2021142607A (en) * 2020-03-12 2021-09-24 オムロン株式会社 Working tool
WO2022024715A1 (en) * 2020-07-31 2022-02-03 工機ホールディングス株式会社 Electrical equipment and electrical equipment system

Also Published As

Publication number Publication date
JP2023180159A (en) 2023-12-20

Similar Documents

Publication Publication Date Title
EP2607020B1 (en) Rotary impact tool
JP6399437B2 (en) Control device and work management system using the same
JP6837061B2 (en) Pulse tool
WO2012025820A1 (en) Impact tightening tool
JP5353516B2 (en) Portable tools
US11273542B2 (en) Electric pulse tool with controlled reaction force
JP6544700B2 (en) Control device and work management system using the same
US9022135B2 (en) Torque-applying tool and torque controller therefor
JP5446253B2 (en) Impact type screw tightening device
WO2023238593A1 (en) Power tool system
JP5299668B2 (en) Electric tool
US9366299B2 (en) Handheld drill/driver device
JP2019188599A (en) Control device and work management system using the same
CN111788053A (en) Simulated stagnation systems and methods for power tools
JP7350978B2 (en) How to operate a manual machine tool and a manual machine tool
KR20160146052A (en) Portable electric power tool having overload warning means
WO2018210730A1 (en) Electric pulse tool
WO2024009639A1 (en) Electric tool system
US11945080B2 (en) Power tool with adaptive speed during tightening cycle
WO2024009826A1 (en) Power tool system
JP2022536154A (en) Method and power tool for detecting a slip clutch release event
JP3110344U (en) Electric spanner
CN110520249A (en) Electric pulse tool
JP6621013B2 (en) Method and system for determining whether screw tightening is good or bad
US20240075600A1 (en) Electric tool, method for controlling electric tool, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819577

Country of ref document: EP

Kind code of ref document: A1