WO2023204113A1 - Control information generation device, additive manufacturing system and program - Google Patents

Control information generation device, additive manufacturing system and program Download PDF

Info

Publication number
WO2023204113A1
WO2023204113A1 PCT/JP2023/014783 JP2023014783W WO2023204113A1 WO 2023204113 A1 WO2023204113 A1 WO 2023204113A1 JP 2023014783 W JP2023014783 W JP 2023014783W WO 2023204113 A1 WO2023204113 A1 WO 2023204113A1
Authority
WO
WIPO (PCT)
Prior art keywords
modeling
route
control information
routes
pair
Prior art date
Application number
PCT/JP2023/014783
Other languages
French (fr)
Japanese (ja)
Inventor
諭史 近口
碩 黄
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2023204113A1 publication Critical patent/WO2023204113A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/127Means for tracking lines during arc welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a control information generation device, an additive manufacturing system, and a program.
  • Patent Document 1 proposes a method of improving the modeling quality by correcting the bead formation trajectory (modeling path) in layered manufacturing so that the overlapping of beads and the deviation of processed materials are reduced.
  • the bead width is adjusted based on the modeling path and the reference width of the bead cross section, and then the modeling path is corrected.
  • a desired shape is created using multiple modeling paths adjacent to each other.
  • the modeling path is often mechanically generated during the modeling planning stage.
  • the spacing between the beads may become relatively wide, resulting in areas where the beads are sparsely arranged. If additive manufacturing is performed under such conditions, there is a risk that welding defects such as voids may occur between beads. Therefore, although it is possible to modify the modeling paths to appropriate intervals, the more complex the shape to be formed, the more difficult it becomes to determine what kind of modeling path to add.
  • the present invention aims to provide a control information generation device, an additive manufacturing system, and a program that can efficiently set a modeling path for forming a bead while suppressing the occurrence of welding defects due to voids and the like.
  • the present invention consists of the following configuration. (1) Lamination in an additive manufacturing apparatus that shapes a layered shape using a bead that forms a molten processing material on a surface to be modeled along a modeling path, and then laminates the layered shape to produce a three-dimensional shaped object.
  • a control information generation device that generates control information for controlling a modeling device, an information acquisition unit that acquires information on the modeling route; a modeling route addition unit that adds a new inner modeling route to a filling part sandwiched between an outer modeling route that forms an outer wall of the modeled object among the modeling routes; Equipped with The modeling route addition unit extracts a pair of mutually opposing routes of the outer modeling route, and adds the inner part to a position where the interval between the pair of routes is equally divided along the longitudinal direction of the pair of extracted routes. adding a modeling route and incorporating information on the outer modeling route and the inner modeling route into the control information as trajectory information for forming the bead; Control information generation device.
  • the inner modeling route is added at a position where the interval between the pair of extracted routes is equally divided along the longitudinal direction of the pair of routes, and the information on the outer modeling route and the inner modeling route is a function of incorporating into the control information as trajectory information for forming the bead; A program that makes this possible.
  • the shaping path for forming the bead can be efficiently set while suppressing the occurrence of welding defects due to voids and the like.
  • FIG. 1 is a schematic diagram showing the overall configuration of an additive manufacturing system.
  • FIG. 2 is a block diagram showing the functional configuration of the modeling control device and the control information generation device.
  • FIG. 3 is a schematic diagram of a forming path in a single layer when forming a modeled object.
  • FIG. 4 is a flowchart illustrating a procedure for finding an inner modeling route that fills the filling portion without any gaps and outputting this modeling route as control information.
  • FIG. 5A is a schematic diagram for explaining the definition of the interval between a pair of routes.
  • FIG. 5B is a schematic diagram for explaining the definition of the interval between a pair of routes.
  • FIG. 6 is an explanatory diagram showing a case where one inner modeling path is provided at an intermediate position between a pair of outer modeling paths.
  • FIG. 7 is an explanatory diagram showing step-by-step the process of setting the inner modeling path.
  • FIG. 8 is an explanatory diagram showing a modeling route when a plurality of inner modeling routes are provided inside the outer modeling route.
  • FIG. 9 is an explanatory diagram when a plurality of inner modeling paths are added between a pair of paths.
  • FIG. 10A is an explanatory diagram showing an example of a combination of a pair of modeling paths.
  • FIG. 10B is an explanatory diagram showing an example of a combination of a pair of modeling paths.
  • FIG. 10C is an explanatory diagram showing an example of a combination of a pair of modeling paths.
  • FIG. 11 is an explanatory diagram showing how a plurality of inner modeling paths are added by equally dividing a pair of paths.
  • FIG. 11 is an explanatory diagram showing how a plurality of inner modeling paths are added by equally dividing a pair of paths.
  • FIG. 12 is an explanatory diagram showing a method of reducing an annular outer modeling route to obtain an inner modeling route.
  • FIG. 13 is an explanatory diagram showing an outer modeling path and an inner modeling path in a cross section of a cylindrical object.
  • FIG. 14 is an explanatory diagram showing an outer modeling path and an inner modeling path in a cross section of a molded object in which three cylindrical parts are integrated.
  • a bead is formed by adding molten processing material to a surface to be modeled along a modeling path using an additive manufacturing apparatus. These beads form a layered shape, and further layered beads are stacked to form a three-dimensional shape.
  • the control information generating device generates control information for controlling the layered manufacturing device when modeling the object in this way.
  • FIG. 1 is a schematic diagram showing the overall configuration of the additive manufacturing system.
  • the additive manufacturing system 100 includes a modeling control device 11, an additive manufacturing device 13, and a control information generation device 15.
  • the additive manufacturing apparatus 13 is configured to include a manipulator 14 , a filler material supply device 17 , a manipulator control device 19 , and a heat source control device 21 .
  • the manipulator control device 19 controls the manipulator 14 and the heat source control device 21.
  • a controller (not shown) is connected to the manipulator control device 19, and an operator can instruct any operation of the manipulator control device 19 via the controller.
  • the manipulator 14 is, for example, a multi-joint robot, and a torch 23 provided on the tip shaft supports a filler metal (welding wire) M so as to be continuously supplied.
  • the torch 23 holds the filler metal M in a state protruding from its tip.
  • the position and orientation of the torch 23 can be arbitrarily set three-dimensionally within the degree of freedom of the robot arm constituting the manipulator 14.
  • the manipulator 14 preferably has six or more degrees of freedom, and is preferably capable of arbitrarily changing the axial direction of the heat source at its tip.
  • the manipulator 14 may be in various forms, such as an articulated robot with four or more axes shown in FIG. 1, a robot with angle adjustment mechanisms on two or more orthogonal axes, and the like.
  • the torch 23 has a shield nozzle (not shown), and shield gas is supplied from the shield nozzle.
  • the shielding gas blocks the atmosphere and prevents oxidation and nitridation of the molten metal during welding, thereby suppressing welding defects.
  • the arc welding method used in this configuration may be a consumable electrode type such as coated arc welding or carbon dioxide arc welding, or a non-consumable electrode type such as TIG (Tungsten Inert Gas) welding or plasma arc welding. It is selected as appropriate depending on W.
  • TIG Tin Inert Gas
  • gas metal arc welding will be explained as an example.
  • a contact tip is arranged inside the shield nozzle, and the filler metal M to which a current is supplied is held in the contact tip.
  • the torch 23 holds the filler metal M and generates an arc from the tip of the filler metal M in a shielding gas atmosphere.
  • the filler material supply device 17 supplies the filler material M toward the torch 23 of the manipulator 14.
  • the filler material supply device 17 includes a reel 17a around which the filler material M is wound, and a feeding mechanism 17b that feeds out the filler material M from the reel 17a.
  • the filler material M is fed to the torch 23 while being fed in the forward direction or the reverse direction as required by the feeding mechanism 17b.
  • the feeding mechanism 17b is not limited to a push type disposed on the filler material supplying device 17 side and pushes out the filler material M, but may also be a pull type or push-pull type disposed on a robot arm or the like.
  • the heat source control device 21 is a welding power source that supplies the power required for welding by the manipulator 14.
  • the heat source control device 21 adjusts the welding current and welding voltage that are supplied during bead formation in which the filler metal is melted and solidified. Further, the filler metal supply speed of the filler metal supply device 17 is adjusted in conjunction with welding conditions such as welding current and welding voltage set by the heat source control device 21.
  • the heat source for melting the filler metal M is not limited to the above-mentioned arc.
  • heat sources using other methods may be used, such as a heating method using a combination of an arc and a laser, a heating method using plasma, a heating method using an electron beam or a laser.
  • the amount of heating can be controlled more precisely, the state of the formed beads can be maintained more appropriately, and this can contribute to further improving the quality of the laminated structure.
  • the material of the filler metal M is not particularly limited.
  • the filler material used may be mild steel, high-strength steel, aluminum, aluminum alloy, nickel, or nickel-based alloy, depending on the characteristics of the shaped object W.
  • the types of M may be different.
  • the layered manufacturing system 100 configured as described above is driven according to a modeling program created based on a modeling plan for the object W.
  • the modeling program is composed of a large number of instruction codes, and is created based on an appropriate algorithm depending on various conditions such as the shape, material, and amount of heat input of the object.
  • a linear bead which is a molten solidified body of the filler material M, is formed on the base 25. That is, the manipulator control device 19 drives each part of the manipulator 14, the heat source control device 21, etc. based on a predetermined modeling program provided by the modeling control device 11.
  • the manipulator 14 moves the torch 23 to form the bead B while melting the filler material M with an arc according to a command from the manipulator control device 19 .
  • a shaped article W having a desired shape can be obtained.
  • the shape of the base 25 is not limited to this.
  • the base 25 may have a cylindrical shape and a bead may be formed on the outer periphery of the side surface of the cylinder.
  • the coordinate system of the modeling shape data handled by the additive manufacturing system 100 and the coordinate system on the base 25 on which the object W is formed are associated with each other.
  • an orthogonal coordinate system having an X-axis, a Y-axis, and a Z-axis will be defined and explained, with the upper surface of the base 25 being the XY plane and the normal direction of the upper surface of the base 25 being the Z direction.
  • FIG. 2 is a block diagram showing the functional configuration of the modeling control device 11 and the control information generation device 15.
  • the modeling control device 11 includes an input section 31, a storage section 33, a modeling program creation section 35, and an output section 37.
  • the input unit 31 acquires various information from the outside, for example, via an appropriate network or with an appropriate input device.
  • Examples of the information acquired here include shape data including shape information of the object to be subjected to additive manufacturing such as CAD/CAM data, welding condition setting data, instruction information from the operator, and the like.
  • the storage unit 33 stores various information acquired by the input unit 31 and the above-mentioned modeling program.
  • the storage unit 33 also maintains a database storing information such as operating speed of the manipulator 14 when modeling various shapes, drive conditions such as movable range, and various welding conditions that can be set by the heat source control device 21. You may.
  • the modeling program creation unit 35 determines a modeling plan, such as a modeling path representing a path along which the torch 23 is moved to form a bead, and welding conditions during bead formation, while referring to the database in the storage unit 33. Further, based on the created modeling plan, a modeling program is created according to the types and specifications of the manipulator 14 and the heat source control device 21.
  • the output unit 37 outputs the modeling program created by the modeling program creation unit 35 to the manipulator control device 19, the heat source control device 21, etc. Further, information on the modeling route when creating the modeling program may be output to the control information generation device 15. Note that the output unit 37 may further include a configuration that displays the contents of the modeling plan for the shape of the shape data using an output device (not shown) such as a display included in the modeling control device 11.
  • the control information generation device 15 includes an information acquisition section 41, a modeling route addition section 43, and a determination section 45.
  • Information on the modeling route is input to the information acquisition unit 41 from the modeling control device 11 or from the outside.
  • the modeling route addition unit 43 adds a new modeling route to the inputted modeling route information as needed, and outputs this to the modeling control device 11 as control information.
  • This control information includes modeling route information.
  • the modeling route addition unit 43 includes a virtual line generation unit 46, the details of which will be described later, a crossing line generation unit 47, and an inner modeling route setting unit 49. Although the details will be described later, the determination unit 45 determines whether or not a further modeling route is required for the inputted modeling route.
  • the modeling control device 11 and the control information generation device 15 are configured by, for example, an information processing device such as a PC (Personal Computer).
  • the functions of each unit described above are realized by a processor provided in each unit reading a program having a specific function and executing the program.
  • a processor such as a CPU (Central Processing Unit) or an MPU (Micro Processor Unit), or a dedicated circuit uses RAM (Random Access Memory), a volatile storage area, and ROM (ROM), a non-volatile storage area.
  • Reads and executes programs stored in memory such as Read Only Memory, HDD (Hard Disk Drive), and SSD (Solid State Drive).
  • the above-described modeling control device 11 and control information generation device 15 may be connected to the additive manufacturing device 13, or may be connected to the additive manufacturing device 13 from a remote location via communication or the like.
  • FIG. 3 is a schematic diagram of a forming path in a single layer when forming a modeled object.
  • the shaped object W illustrated here has an annular outer wall portion 51 and a filling portion 53 inside the outer wall portion 51.
  • the modeling paths include an outside modeling path 55 that forms the outer wall portion 51 and an inside modeling path 57 that is arranged in the filling part 53 sandwiched between the outside modeling path 55.
  • Linear beads B are formed by melting and solidifying the filler metal M while moving the torch 23 shown in FIG. 1 along each path, and a layered shape in which a plurality of beads B are adjacent to each other is modeled.
  • FIG. 3 shows an example in which three inner modeling paths 57 are provided and the filling portion 53 is filled with three beads B
  • the bead width changes depending on various conditions such as welding conditions. Therefore, the number of beads to fill the filling part 53 with beads B without any gaps increases or decreases depending on the conditions, and welding defects occur due to gaps between the beads. Therefore, at the modeling planning stage, it is necessary to optimize the number of beads in the filling portion 53 and to make settings to prevent welding defects.
  • FIG. 4 is a flowchart showing a procedure for finding an inner modeling path that fills the filling portion 53 without any gaps and outputting this modeling path as control information. Each procedure will be explained in order according to this flowchart.
  • the information acquisition unit 41 of the control information generation device 15 acquires information on a modeling path set by a predetermined algorithm according to the shape of the object to be manufactured (S1).
  • This modeling path may be information on a printing path included in a printing program created by the printing control device 11 for the shape of the CAD data, or may be information on a printing path created and stored in advance. good.
  • Information on the modeling route includes, for example, coordinate information (X, Y, Z) of points included in the modeling route (pass), the pitch between adjacent passes, the interval between stacked layers, the stacking order of each pass, etc. Can be mentioned.
  • the information on the modeling path may be information on a slice cross section of one layer when the shape of the object is sliced to a predetermined thickness. In that case, an outer modeling path corresponding to the outer wall portion that becomes the outer shell in the sliced cross section is determined in advance.
  • the information acquisition unit 41 outputs the acquired information to the modeling route addition unit 43.
  • the modeling route addition unit 43 extracts a pair of mutually opposing outer modeling routes from the input modeling route information.
  • a pair of paths facing each other for example, paths 55a and 55c
  • an inner modeling route 57 is added at a position where the interval between the pair of routes 55a, 55c is equally divided. It is preferable that the inner modeling path 57 be shorter than the lengths of the outer modeling paths 55a and 55c. By making it shorter, it is possible to avoid collision between the modeling path added in a later process and the outside modeling path.
  • the interval between a pair of routes means the interval defined as follows.
  • 5A and 5B are schematic diagrams for explaining the definition of the interval between a pair of routes.
  • the points where the pair of routes La and Lb and one straight line Lc intersect are defined as an intersection point Pa and an intersection point Pb.
  • the intersection points Pa and Pb are taken as the vertices of the angles, and the intersecting angles that are in a mutually opposing positional relationship are respectively ⁇ and ⁇ .
  • the above-mentioned single straight line Lc is ).
  • the line segment length Lt between the intersection point Pa and the intersection point Pb (between the intersections) at this time is defined as "the interval between a pair of routes.”
  • the intersection angles ⁇ and ⁇ which are in a positional relationship opposite to each other, are corners outside the area sandwiched by the pair of paths La and Lb, and are the corners of one straight line of the paths La and Lb. This is a corner located on one side (right side in FIG. 5A) with Lc as a boundary.
  • the path is sandwiched between the pair of paths La, Lb.
  • intersection angle ⁇ (right side in FIG. 5B).
  • the upper corner of FIG. 5B.
  • the line segment length Lt between the intersection Pa and the intersection Pb (between the intersections) is the "interval between the pair of routes.” Note that if at least one of the routes is a curve, the "distance between a pair of routes" may be determined by using a tangent passing through a point on the route instead.
  • FIG. 6 is an explanatory diagram showing a case where one inner modeling path 57 is provided at an intermediate position between a pair of the outer modeling paths 55.
  • the distances L1, L1 between the inner modeling path 57 and the outer modeling paths 55a, 55c are the same at any position along its longitudinal direction.
  • FIG. 7 is an explanatory diagram showing step-by-step the process of setting the inner modeling path 57.
  • a pair of mutually opposing paths are extracted from the outer modeling paths 55a, 55b, 55c, and 55d.
  • routes 55a and 55c may also be extracted.
  • the virtual line generation unit 46 shown in FIG. 2 defines the extracted pair of routes as a first virtual line LV1 and a second virtual line LV2 (S2).
  • the lengths of the first imaginary line LV1 and the second imaginary line LV2 are set shorter than the lengths of the paths 55b and 55d, which are reference sources, according to the bead width.
  • the intersecting line generation unit 47 moves the defined first virtual line LV1 and second virtual line LV2 in parallel at a constant speed in a direction in which they approach each other.
  • the moving direction may be set in a direction parallel to the short axis direction of the region to be modeled. However, this is a linear movement in one direction and does not include rotational movement.
  • the parallel movement produces an intersection point P1 where the first virtual line LV1 and the second virtual line LV2 intersect.
  • multiple intersections will occur, such as the first virtual line LV1 and the second virtual line LV2 moving and generating the intersections P2, P3, P4, and P5. .
  • These intersection points P1, P2, P3, P4, and P5 are sequentially connected to obtain an intersection line LC.
  • the intersecting line LC may be a straight line or a curved line.
  • the inner modeling route setting unit 49 sets the obtained intersecting line LC as the newly added inner modeling route 57 (S3).
  • the above-mentioned intersection points P1 to P5 are points for explanation of the intersection line LC, and their number and interval are arbitrary.
  • the inner modeling path 57 shown in FIG. 6 is obtained.
  • the pair of paths 55a and 55c are straight lines that are non-parallel to each other, and the inner modeling path 57 is a bisector of the intersection angle ⁇ at the intersection O of the extension lines of the paths 55a and 55c.
  • the inner modeling route 57 can be made into a route with less deviation from the routes 55a and 55c located on both sides thereof.
  • the inner modeling path 57 is set to have a shorter path length than the pair of paths 55a and 55c. That is, by separating the end point of the added inner modeling path 57 from another adjacent trajectory by a predetermined distance, it is possible to suppress excessive stacking of beads due to overlap with an adjacent path.
  • the predetermined distance separating the end points may be, for example, about half the width of the bead forming the outer modeling path.
  • the determination unit 45 determines whether the interval L1 between the inner modeling route 57 and the outer modeling route 55 is a necessary and sufficient interval at all positions along the inner modeling route 57.
  • the distance between the inner modeling path 57 and the outer modeling path 55 that are adjacent to each other is such that the beads formed along these paths do not have a sufficient amount of lamination (accumulation, area) and are separated from each other. This creates gaps between the beads that induce welding defects. Therefore, when the distance L1 is compared with a predetermined reference value, and if there is at least a portion where the distance is larger than the reference value, an inner modeling path 57 is added in order to eliminate the lack of lamination between the beads. The additional signal is output to the modeling path adding section 43.
  • the weaving width when filling the inner modeling path by weaving may be finely adjusted to be larger than the reference value.
  • an inner modeling path 57 may be further added.
  • step S2 it is determined whether the number of inner modeling paths 57 is sufficient for the amount of bead stacking required to fill the spaces between the paths (S4), and if it is necessary to add the inner modeling paths 57, step Returning to S2, the inner modeling path 57 is added again (S2, S3). As the number of times the addition of the inner modeling path 57 is repeated increases, the number of passes increases, resulting in an increase in production time. Therefore, an upper limit may be set for the number of repetitions.
  • FIG. 8 is an explanatory diagram showing a forming path when a plurality of inner forming paths 57, 57A, and 67B are provided inside the outer forming path 55.
  • An inner modeling path 57 is provided between the pair of paths 55a and 55c, which are the outer modeling paths, according to the procedure described above.
  • New inner modeling paths 57A and 57B are added between the path 55c and the path 55c.
  • the inner modeling paths 57A and 57B are arranged at equal intervals (distance L1/2) from adjacent paths.
  • the determining unit 45 determines that according to the total of three inner modeling paths 57A, 57, and 57B arranged at the interval L1/2, the number is necessary and sufficient to obtain the required bead stacking amount.
  • the modeling route addition unit 43 incorporates information on the additionally obtained modeling routes of the inner modeling routes 57A, 57, 57B and the outer modeling route 55 into the control information as trajectory information for forming a bead, and Control information is output from the control information generation device 15 to the modeling control device 11 (S5).
  • the inner modeling path 57A and New inner modeling routes are added between the inner modeling route 57, between the inner modeling route 57 and the inner modeling route 57B, and between the inner modeling route 57B and the outer modeling route 55c. (not shown).
  • the modeling control device 11 creates a modeling program based on the input control information including the above trajectory information, and outputs the modeling program to the additive manufacturing device 13.
  • the layered manufacturing device 13 moves the torch 23 according to the modeling program to form a bead.
  • a modeled object W including a bead layer consisting of the above-mentioned inner modeling paths 57A, 57, 57B and beads B (see FIG. 3) along the outer modeling path 55 is modeled.
  • a modeling path for modeling the object W can be mechanically added when the amount of bead stacking is insufficient, and adjustment of the modeling path does not become complicated. Furthermore, since the added inner modeling paths are non-parallel to each other, compared to the case where they are parallel, the modeling paths can be arranged more flexibly and the number of paths can be easily saved.
  • FIG. 9 is an explanatory diagram when a plurality of (four as an example) inner modeling paths 57 are added between a pair of paths.
  • the inner modeling paths 57 to be added are arranged at positions where the intervals between adjacent paths are equal on one side and the other side in the direction in which the inner modeling paths 57 are lined up. That is, a plurality of inner modeling paths 57 are newly added at positions where the distance between the pair of paths of the outer modeling path 55 is equally divided. Furthermore, a plurality of new inner modeling paths may be added at positions where the distance between the pair of inner modeling paths 57 facing each other is equally divided.
  • the distance between a pair of paths is wide compared to the bead width, the distance is narrowed all at once to such an extent that adjacent beads can appropriately overlap each other. Therefore, the number of repetitions of the inner modeling path addition process can be reduced, and the calculation time can be shortened.
  • FIG. 10A, FIG. 10B, and FIG. 10C are explanatory diagrams showing examples of combinations of a pair of modeling paths.
  • the pair of routes described above are routes 55a and 55c shown in FIG. 10A, but may also be a set of routes 55b and 55d shown in FIG. 10B, or a set of routes 55c and 55d shown in FIG. , 55b).
  • the inner modeling route 57 in the case shown in FIG. 10C is arranged at a position equidistant from the route 55c and the route 55d.
  • the set of paths 55b and 55d shown in FIG. 10B is used as a pair of modeling paths, and a plurality of inner modeling paths are added by equally dividing the path, the modeling paths shown in FIG. 11 are obtained.
  • FIG. 11 is an explanatory diagram showing how a plurality of inner modeling paths are added by equally dividing the pair of paths 55b and 55d.
  • the inner modeling paths 57 are parallel to each other.
  • a method such as setting an upper limit on the number of permissible paths and extracting a pattern that satisfies the limit from among candidates registered in advance may be adopted. In that case, it is sufficient to register various patterns in the database in advance and select a pattern that meets the conditions from the database, thereby improving the processing speed.
  • FIG. 12 is an explanatory diagram illustrating a method of shrinking an annular outer forming path to obtain an inner forming path.
  • the line of the arcuate outer modeling path 55 is reduced inward.
  • the shape of the outer modeling path 55 is made into a single line.
  • this reduction processing integrates multiple pixels placed around the pixel of the image including the outer modeling path into one new pixel. This can be achieved by repeatedly applying this to the entire image and reducing the size of the entire image.
  • the inner modeling path can be determined mechanically regardless of the shape of the annular outer modeling path, so the inner modeling path can be easily set.
  • FIG. 13 is an explanatory diagram showing an outer modeling path and an inner modeling path in a cross section of a cylindrical object.
  • the annular line of the outer path 55out is contracted inward
  • the annular line of the inner path 55in is expanded outward
  • the annular line when each annular line intersects The position of the line is set on the inner modeling path 57.
  • the expansion process is a well-known image processing technique similar to the reduction process, so a description thereof will be omitted here.
  • FIG. 14 is an explanatory diagram showing an outer modeling path and an inner modeling path in a cross section of a molded object in which three cylindrical parts are integrated.
  • the inner modeling route 57 can be set by moving the opposing routes toward each other and connecting the positions where the lines intersect.
  • the shape of an actual object is often more complex than the simple shape described above, even in that case, the inner modeling path can be easily set.
  • a portion for which an inner modeling path is set by the reduction and expansion processing shown in FIGS. 12 to 14 and a portion for setting an inner modeling path by moving a virtual line shown in FIG. 7 may be mixed. In that case, it is possible to set the modeling route with increased design freedom by separating the location where the inner modeling route is to be adjusted intentionally and the location where the inner modeling route is uniquely set.
  • the present invention is not limited to the embodiments described above, and those skilled in the art can modify and apply them based on the mutual combination of the configurations of the embodiments, the description of the specification, and well-known techniques. It is also contemplated by the present invention to do so, and is within the scope for which protection is sought.
  • a control information generation device that generates control information for controlling a modeling device, an information acquisition unit that acquires information on the modeling route; a modeling route addition unit that adds a new inner modeling route to a filling part sandwiched between an outer modeling route that forms an outer wall of the modeled object among the modeling routes; Equipped with The modeling route addition unit extracts a pair of mutually opposing routes of the outer modeling route, and adds the inner part to a position where the interval between the pair of routes is equally divided along the longitudinal direction of the pair of extracted routes. adding a modeling route and incorporating information on the outer modeling route and the inner modeling route into the control information as trajectory information for forming the bead; Control information generation device.
  • control information generation device it is possible to output startup information in which an inner modeling path is newly added to the filled part sandwiched between the outer modeling path, and to control the forming path for forming a bead to prevent welding defects due to voids, etc. This can be set efficiently by suppressing occurrences.
  • the modeling route addition unit extracts a pair of mutually opposing routes, the inner modeling route and the outer modeling route, and adds a new inner modeling route to a position where the interval between the extracted pair of routes is equally divided.
  • the control information generation device according to (1) which adds a route. According to this control information generation device, it is possible to arrange the inner modeling route evenly between the inner modeling route and the outer modeling route.
  • the modeling route addition section is a virtual line generation unit that defines the pair of extracted routes as a first virtual line and a second virtual line; When the first imaginary line and the second imaginary line are moved in parallel at a constant speed in a direction in which they approach each other, the first imaginary line and the second imaginary line intersect while moving, sequentially.
  • an intersection line generation unit that connects and generates an intersection line;
  • an inner modeling route setting unit that sets the intersection line to the inner modeling route to which the new line is added;
  • the control information generation device according to (1) or (2), comprising: According to this control information generation device, by parallel movement of the first virtual line and the second virtual line, the inner modeling path can be arranged at a position equidistant from the other opposing path.
  • the pair of extracted routes are straight lines that are non-parallel to each other,
  • the control information generation device according to any one of (1) to (4), wherein the inner modeling path is a bisector of an intersection angle formed by the pair of paths. According to this control information generation device, it is possible to make the inner modeling route a route that is less biased from the modeling routes located on both sides thereof.
  • the control information generation device according to any one of (1) to (7); the layered manufacturing device that shapes the object according to the control information output from the control information generation device; An additive manufacturing system equipped with According to this additive manufacturing system, it is possible to manufacture high-quality molded objects with few welding defects.
  • An additive manufacturing device that creates a layered shape using beads formed by adding molten processing material to a surface to be modeled along a modeling path, and builds a three-dimensional shaped object by stacking the layered shapes.
  • a program that generates control information for controlling the to the computer, a function of acquiring information on the modeling route; When adding a new inner modeling route to a region between the outer modeling routes that form the outermost shell of the three-dimensional shape among the modeling routes, a pair of mutually opposing routes of the outer modeling routes are extracted.
  • the inner modeling route is added at a position where the interval between the pair of extracted routes is equally divided along the longitudinal direction of the pair of routes, and the information on the outer modeling route and the inner modeling route is a function of incorporating into the control information as trajectory information for forming the bead;
  • a program that makes this possible. According to this program, it is possible to output startup information that adds a new inner modeling route to the filled part sandwiched between the outer modeling route as control information, and suppresses the occurrence of welding defects due to voids etc. in the modeling route that forms the bead. settings can be done efficiently.
  • Molding control device 13 Additive manufacturing device 14 Manipulator 15 Control information generation device 17
  • Manipulator control device 21 Heat source control device 23 Torch 25 Base 31
  • Input section 33 Storage section 35
  • Molding program creation section 37
  • Output section 41
  • Information acquisition section 43
  • Molding route addition section 45
  • Judgment section 46
  • Virtual line generation section 47
  • Inner modeling route setting section 51
  • Outer wall section 53 Filling section 55 Outer modeling route 55a, 55b, 55c, 55d Route (outside modeling route) 55in inner route (outer modeling route) 55out outer route (outer modeling route) 57, 57A, 57B
  • Inner modeling path 100 Laminated manufacturing system B Bead L, L1 Interval LC Intersection line LV1 First imaginary line LV2 Second imaginary line M
  • Filler metal (welding wire) O
  • P1, P2, P3, P4, P5 W Modeled object ⁇ Intersection angle

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)

Abstract

This control information generation device comprises an information acquisition unit that acquires information about manufacturing paths, and a manufacturing path addition unit that adds a new inner manufacturing path to a filling portion sandwiched by, among the manufacturing paths, outer manufacturing paths that constitute an outer wall of a manufacturing object. The manufacturing path addition unit extracts a pair of mutually opposing paths of the outer manufacturing paths, adds an inner manufacturing path along the longitudinal direction of the pair of extracted paths, at a location along which the space between the pair of paths is equally divided, and incorporates information about the outer manufacturing paths and the inner manufacturing path to control information as trajectory information for forming beads.

Description

制御情報生成装置、積層造形システム及びプログラムControl information generation device, additive manufacturing system and program
 本発明は、制御情報生成装置、積層造形システム及びプログラムに関する。 The present invention relates to a control information generation device, an additive manufacturing system, and a program.
 近年、3Dプリンタを用いた積層造形による部品製造のニーズが高まっており、金属材料を用いた造形の実用化に向けて研究開発が進められている。例えば特許文献1には、積層造形におけるビード形成軌道(造形経路)を、ビードの重なり及び加工材料の偏りが低減されるように修正して、造形品質を向上させる方法が提案されている。この方法では、造形経路とビード断面の基準幅に基づいてビード幅を調整した後に、造形経路を修正している。 In recent years, there has been an increasing need for parts manufacturing through additive manufacturing using 3D printers, and research and development is progressing toward the practical application of modeling using metal materials. For example, Patent Document 1 proposes a method of improving the modeling quality by correcting the bead formation trajectory (modeling path) in layered manufacturing so that the overlapping of beads and the deviation of processed materials are reduced. In this method, the bead width is adjusted based on the modeling path and the reference width of the bead cross section, and then the modeling path is corrected.
日本国特許第664780号公報Japanese Patent No. 664780
 積層造形においては、複数の造形経路を隣接させて所望の形状を造形する。その造形経路は、造形の計画段階において機械的に生成することが多い。しかし、造形場所によってはビード同士の間隔が比較的広がってしまい、ビードの配置密度が疎になる領域が生じ得る。そのような状況下で積層造形を行うと、ビード同士の間に空隙等の溶接欠陥が生じるおそれを生じる。そこで、造形経路を適切な間隔に修正することもできるが、造形する形状が複雑であるほど、どのような造形経路を追加すべかの判断が難しくなる。 In layered manufacturing, a desired shape is created using multiple modeling paths adjacent to each other. The modeling path is often mechanically generated during the modeling planning stage. However, depending on the modeling location, the spacing between the beads may become relatively wide, resulting in areas where the beads are sparsely arranged. If additive manufacturing is performed under such conditions, there is a risk that welding defects such as voids may occur between beads. Therefore, although it is possible to modify the modeling paths to appropriate intervals, the more complex the shape to be formed, the more difficult it becomes to determine what kind of modeling path to add.
 そこで本発明は、ビードを形成する造形経路を、空隙等による溶接欠陥の発生を抑制して効率よく設定できる制御情報生成装置、積層造形システム及びプログラムの提供を目的とする。 Therefore, the present invention aims to provide a control information generation device, an additive manufacturing system, and a program that can efficiently set a modeling path for forming a bead while suppressing the occurrence of welding defects due to voids and the like.
 本発明は、下記の構成からなる。
(1) 溶融した加工材料を造形経路に沿って造形対象面に形成するビードにより層形状を造形し、前記層形状を積層して三次元形状の造形物を製造する積層造形装置における、該積層造形装置を制御するための制御情報を生成する制御情報生成装置であって、
 前記造形経路の情報を取得する情報取得部と、
 前記造形経路のうち前記造形物の外壁部を形成する外側造形経路に挟まれた充填部に、新たに内側造形経路を追加する造形経路追加部と、
を備え、
 前記造形経路追加部は、前記外側造形経路の互いに対向する一対の経路を抽出し、抽出された前記一対の経路の長手方向に沿って該一対の経路同士の間隔を等分割した位置に前記内側造形経路を追加して、前記外側造形経路と前記内側造形経路の情報を、前記ビードを形成する軌道情報として前記制御情報に組み入れる、
制御情報生成装置。
(2) (1)に記載の制御情報生成装置と、
 前記制御情報生成装置から出力される前記制御情報に応じて前記造形物を造形する前記積層造形装置と、
を備える積層造形システム。
(3) 溶融した加工材料を造形経路に沿って造形対象面に付加して形成されるビードによって層形状を造形し、前記層形状を積層して三次元形状の造形物を造形する積層造形装置を制御するための制御情報を生成するプログラムであって、
 コンピュータに、
 前記造形経路の情報を取得する機能と、
 前記造形経路のうち前記三次元形状の最外殻を形成する外側造形経路に挟まれた領域に、新たに内側造形経路を追加する際に、前記外側造形経路の互いに対向する一対の経路を抽出し、抽出された前記一対の経路の長手方向に沿って該一対の経路同士の間隔を等分割した位置に前記内側造形経路を追加して、前記外側造形経路と前記内側造形経路の情報を、前記ビードを形成する軌道情報として前記制御情報に組み入れる機能と、
を実現させるプログラム。
The present invention consists of the following configuration.
(1) Lamination in an additive manufacturing apparatus that shapes a layered shape using a bead that forms a molten processing material on a surface to be modeled along a modeling path, and then laminates the layered shape to produce a three-dimensional shaped object. A control information generation device that generates control information for controlling a modeling device,
an information acquisition unit that acquires information on the modeling route;
a modeling route addition unit that adds a new inner modeling route to a filling part sandwiched between an outer modeling route that forms an outer wall of the modeled object among the modeling routes;
Equipped with
The modeling route addition unit extracts a pair of mutually opposing routes of the outer modeling route, and adds the inner part to a position where the interval between the pair of routes is equally divided along the longitudinal direction of the pair of extracted routes. adding a modeling route and incorporating information on the outer modeling route and the inner modeling route into the control information as trajectory information for forming the bead;
Control information generation device.
(2) The control information generation device according to (1);
the layered manufacturing device that shapes the object according to the control information output from the control information generation device;
An additive manufacturing system equipped with
(3) An additive manufacturing device that adds molten processing material to a surface to be modeled along a modeling path, forms a layered shape using beads formed, and stacks the layered shapes to create a three-dimensional shaped object. A program that generates control information for controlling the
to the computer,
a function of acquiring information on the modeling route;
When adding a new inner modeling route to a region between the outer modeling routes that form the outermost shell of the three-dimensional shape among the modeling routes, a pair of mutually opposing routes of the outer modeling routes are extracted. Then, the inner modeling route is added at a position where the interval between the pair of extracted routes is equally divided along the longitudinal direction of the pair of routes, and the information on the outer modeling route and the inner modeling route is a function of incorporating into the control information as trajectory information for forming the bead;
A program that makes this possible.
 本発明によれば、ビードを形成する造形経路を、空隙等による溶接欠陥の発生を抑制して効率よく設定できる。 According to the present invention, the shaping path for forming the bead can be efficiently set while suppressing the occurrence of welding defects due to voids and the like.
図1は、積層造形システムの全体構成を示す概略図である。FIG. 1 is a schematic diagram showing the overall configuration of an additive manufacturing system. 図2は、造形制御装置及び制御情報生成装置の機能構成を示すブロック図である。FIG. 2 is a block diagram showing the functional configuration of the modeling control device and the control information generation device. 図3は、造形物を造形する際の単層における造形経路の模式図である。FIG. 3 is a schematic diagram of a forming path in a single layer when forming a modeled object. 図4は、充填部を隙間なく埋める内側造形経路を求めて、この造形経路を制御情報として出力する手順を示すフローチャートである。FIG. 4 is a flowchart illustrating a procedure for finding an inner modeling route that fills the filling portion without any gaps and outputting this modeling route as control information. 図5Aは、一対の経路同士の間隔の定義を説明するための概略図である。FIG. 5A is a schematic diagram for explaining the definition of the interval between a pair of routes. 図5Bは、一対の経路同士の間隔の定義を説明するための概略図である。FIG. 5B is a schematic diagram for explaining the definition of the interval between a pair of routes. 図6は、外側造形経路のうちの一対の経路の中間位置に、一本の内側造形経路を設けた場合を示す説明図である。FIG. 6 is an explanatory diagram showing a case where one inner modeling path is provided at an intermediate position between a pair of outer modeling paths. 図7は、内側造形経路を設定する処理を段階的に示す説明図である。FIG. 7 is an explanatory diagram showing step-by-step the process of setting the inner modeling path. 図8は、外側造形経路の内側に複数の内側造形経路を設けた場合の造形経路を示す説明図である。FIG. 8 is an explanatory diagram showing a modeling route when a plurality of inner modeling routes are provided inside the outer modeling route. 図9は、一対の経路同士の間に、複数本の内側造形経路を追加した場合の説明図である。FIG. 9 is an explanatory diagram when a plurality of inner modeling paths are added between a pair of paths. 図10Aは、一対の造形経路の組み合わせ例を示す説明図である。FIG. 10A is an explanatory diagram showing an example of a combination of a pair of modeling paths. 図10Bは、一対の造形経路の組み合わせ例を示す説明図である。FIG. 10B is an explanatory diagram showing an example of a combination of a pair of modeling paths. 図10Cは、一対の造形経路の組み合わせ例を示す説明図である。FIG. 10C is an explanatory diagram showing an example of a combination of a pair of modeling paths. 図11は、一対の経路の間を等分割して、複数の内側造形経路を追加した様子を示す説明図である。FIG. 11 is an explanatory diagram showing how a plurality of inner modeling paths are added by equally dividing a pair of paths. 図12は、環状の外側造形経路を縮小処理して内側造形経路を求める方法を示す説明図である。FIG. 12 is an explanatory diagram showing a method of reducing an annular outer modeling route to obtain an inner modeling route. 図13は、円筒状の造形物の断面における外側造形経路と内側造形経路を示す説明図である。FIG. 13 is an explanatory diagram showing an outer modeling path and an inner modeling path in a cross section of a cylindrical object. 図14は、3つの円筒状の部位が一体にされた造形物の断面における外側造形経路と内側造形経路を示す説明図である。FIG. 14 is an explanatory diagram showing an outer modeling path and an inner modeling path in a cross section of a molded object in which three cylindrical parts are integrated.
 以下、本発明の実施形態について、図面を参照して詳細に説明する。ここでは、積層造形装置により、溶融した加工材料を造形経路に沿って造形対象面に付加してビードを形成する。このビードにより層形状を造形し、更に層形状のビードを積層して三次元形状を造形する。このようにして造形物を造形する際に積層造形装置を制御する制御情報を、制御情報生成装置によって生成する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Here, a bead is formed by adding molten processing material to a surface to be modeled along a modeling path using an additive manufacturing apparatus. These beads form a layered shape, and further layered beads are stacked to form a three-dimensional shape. The control information generating device generates control information for controlling the layered manufacturing device when modeling the object in this way.
 図1は、積層造形システムの全体構成を示す概略図である。本実施形態に係る積層造形システム100は、造形制御装置11と、積層造形装置13と、制御情報生成装置15とを備える。積層造形装置13は、マニピュレータ14と、溶加材供給装置17と、マニピュレータ制御装置19と、熱源制御装置21とを含んで構成される。 FIG. 1 is a schematic diagram showing the overall configuration of the additive manufacturing system. The additive manufacturing system 100 according to this embodiment includes a modeling control device 11, an additive manufacturing device 13, and a control information generation device 15. The additive manufacturing apparatus 13 is configured to include a manipulator 14 , a filler material supply device 17 , a manipulator control device 19 , and a heat source control device 21 .
 マニピュレータ制御装置19は、マニピュレータ14と、熱源制御装置21とを制御する。マニピュレータ制御装置19には不図示のコントローラが接続されて、マニピュレータ制御装置19の任意の操作がコントローラを介して操作者から指示可能となっている。 The manipulator control device 19 controls the manipulator 14 and the heat source control device 21. A controller (not shown) is connected to the manipulator control device 19, and an operator can instruct any operation of the manipulator control device 19 via the controller.
 マニピュレータ14は、例えば多関節ロボットであり、先端軸に設けたトーチ23には、溶加材(溶接ワイヤ)Mが連続供給可能に支持される。トーチ23は、溶加材Mを先端から突出した状態に保持する。トーチ23の位置及び姿勢は、マニピュレータ14を構成するロボットアームの自由度の範囲で3次元的に任意に設定可能となっている。マニピュレータ14は、6軸以上の自由度を有するものが好ましく、先端の熱源の軸方向を任意に変化させられるものが好ましい。マニピュレータ14は、図1に示す4軸以上の多関節ロボットの他、2軸以上の直交軸に角度調整機構を備えたロボット等、種々の形態であってもよい。 The manipulator 14 is, for example, a multi-joint robot, and a torch 23 provided on the tip shaft supports a filler metal (welding wire) M so as to be continuously supplied. The torch 23 holds the filler metal M in a state protruding from its tip. The position and orientation of the torch 23 can be arbitrarily set three-dimensionally within the degree of freedom of the robot arm constituting the manipulator 14. The manipulator 14 preferably has six or more degrees of freedom, and is preferably capable of arbitrarily changing the axial direction of the heat source at its tip. The manipulator 14 may be in various forms, such as an articulated robot with four or more axes shown in FIG. 1, a robot with angle adjustment mechanisms on two or more orthogonal axes, and the like.
 トーチ23は、不図示のシールドノズルを有し、シールドノズルからシールドガスが供給される。シールドガスは、大気を遮断し、溶接中の溶融金属の酸化、窒化などを防いで溶接不良を抑制する。本構成で用いるアーク溶接法としては、被覆アーク溶接又は炭酸ガスアーク溶接等の消耗電極式、TIG(Tungsten Inert Gas)溶接又はプラズマアーク溶接等の非消耗電極式のいずれであってもよく、造形物Wに応じて適宜選定される。ここでは、ガスメタルアーク溶接を例に挙げて説明する。消耗電極式の場合、シールドノズルの内部にはコンタクトチップが配置され、電流が給電される溶加材Mがコンタクトチップに保持される。トーチ23は、溶加材Mを保持しつつ、シールドガス雰囲気で溶加材Mの先端からアークを発生する。 The torch 23 has a shield nozzle (not shown), and shield gas is supplied from the shield nozzle. The shielding gas blocks the atmosphere and prevents oxidation and nitridation of the molten metal during welding, thereby suppressing welding defects. The arc welding method used in this configuration may be a consumable electrode type such as coated arc welding or carbon dioxide arc welding, or a non-consumable electrode type such as TIG (Tungsten Inert Gas) welding or plasma arc welding. It is selected as appropriate depending on W. Here, gas metal arc welding will be explained as an example. In the case of the consumable electrode type, a contact tip is arranged inside the shield nozzle, and the filler metal M to which a current is supplied is held in the contact tip. The torch 23 holds the filler metal M and generates an arc from the tip of the filler metal M in a shielding gas atmosphere.
 溶加材供給装置17は、マニピュレータ14のトーチ23に向けて溶加材Mを供給する。溶加材供給装置17は、溶加材Mが巻回されたリール17aと、リール17aから溶加材Mを繰り出す繰り出し機構17bとを備える。溶加材Mは、繰り出し機構17bによって必要に応じて正方向又は逆方向に送られながら、トーチ23へ送給される。繰り出し機構17bは、溶加材供給装置17側に配置されて溶加材Mを押し出すプッシュ式に限らず、ロボットアーム等に配置されるプル式、又はプッシュ-プル式でもよい。 The filler material supply device 17 supplies the filler material M toward the torch 23 of the manipulator 14. The filler material supply device 17 includes a reel 17a around which the filler material M is wound, and a feeding mechanism 17b that feeds out the filler material M from the reel 17a. The filler material M is fed to the torch 23 while being fed in the forward direction or the reverse direction as required by the feeding mechanism 17b. The feeding mechanism 17b is not limited to a push type disposed on the filler material supplying device 17 side and pushes out the filler material M, but may also be a pull type or push-pull type disposed on a robot arm or the like.
 熱源制御装置21は、マニピュレータ14による溶接に要する電力を供給する溶接電源である。熱源制御装置21は、溶加材を溶融、凝固させるビード形成時に供給する溶接電流及び溶接電圧を調整する。また、熱源制御装置21が設定する溶接電流及び溶接電圧等の溶接条件に連動して、溶加材供給装置17の溶加材供給速度が調整される。 The heat source control device 21 is a welding power source that supplies the power required for welding by the manipulator 14. The heat source control device 21 adjusts the welding current and welding voltage that are supplied during bead formation in which the filler metal is melted and solidified. Further, the filler metal supply speed of the filler metal supply device 17 is adjusted in conjunction with welding conditions such as welding current and welding voltage set by the heat source control device 21.
 溶加材Mを溶融させる熱源としては、上記したアークに限らない。例えば、アークとレーザーとを併用した加熱方式、プラズマを用いる加熱方式、電子ビーム又はレーザーを用いる加熱方式等、他の方式による熱源を採用してもよい。電子ビーム又はレーザーにより加熱する場合、加熱量を更に細かく制御でき、形成するビードの状態をより適正に維持して、積層構造物の更なる品質向上に寄与できる。また、溶加材Mの材質についても特に限定するものではなく、例えば、軟鋼、高張力鋼、アルミ、アルミ合金、ニッケル、ニッケル基合金など、造形物Wの特性に応じて、用いる溶加材Mの種類が異なっていてよい。 The heat source for melting the filler metal M is not limited to the above-mentioned arc. For example, heat sources using other methods may be used, such as a heating method using a combination of an arc and a laser, a heating method using plasma, a heating method using an electron beam or a laser. When heating with an electron beam or laser, the amount of heating can be controlled more precisely, the state of the formed beads can be maintained more appropriately, and this can contribute to further improving the quality of the laminated structure. Furthermore, the material of the filler metal M is not particularly limited. For example, the filler material used may be mild steel, high-strength steel, aluminum, aluminum alloy, nickel, or nickel-based alloy, depending on the characteristics of the shaped object W. The types of M may be different.
 上記した構成の積層造形システム100は、造形物Wの造形計画に基づいて作成された造形プログラムに従って駆動される。造形プログラムは、多数の命令コードにより構成され、造形物の形状、材質、入熱量等の諸条件に応じて、適宜なアルゴリズムに基づいて作成される。この造形プログラムに従って、トーチ23を移動させつつ、送給される溶加材Mを溶融及び凝固させると、溶加材Mの溶融凝固体である線状のビードがベース25上に形成される。つまり、マニピュレータ制御装置19は、造形制御装置11から提供される所定の造形プログラムに基づいてマニピュレータ14、熱源制御装置21等の各部を駆動する。マニピュレータ14は、マニピュレータ制御装置19からの指令により、溶加材Mをアークで溶融させながらトーチ23を移動させてビードBを形成する。このようにしてビードBを順次に形成、積層することで、目的とする形状の造形物Wが得られる。 The layered manufacturing system 100 configured as described above is driven according to a modeling program created based on a modeling plan for the object W. The modeling program is composed of a large number of instruction codes, and is created based on an appropriate algorithm depending on various conditions such as the shape, material, and amount of heat input of the object. When the supplied filler material M is melted and solidified while moving the torch 23 according to this modeling program, a linear bead, which is a molten solidified body of the filler material M, is formed on the base 25. That is, the manipulator control device 19 drives each part of the manipulator 14, the heat source control device 21, etc. based on a predetermined modeling program provided by the modeling control device 11. The manipulator 14 moves the torch 23 to form the bead B while melting the filler material M with an arc according to a command from the manipulator control device 19 . By sequentially forming and laminating the beads B in this manner, a shaped article W having a desired shape can be obtained.
 ここでは平面状のベース25を用いているが、ベース25の形状はこれに限らない。例えば、ベース25を円柱状にして、円柱の側面外周にビードを形成する形態にしてもよい。 Although a planar base 25 is used here, the shape of the base 25 is not limited to this. For example, the base 25 may have a cylindrical shape and a bead may be formed on the outer periphery of the side surface of the cylinder.
 また、積層造形システム100で扱う造形形状データの座標系と、造形物Wが造形されるベース25上での座標系は対応付けられている。ここでは、ベース25の上面をXY平面とし、ベース25の上面の法線方向がZ方向となる、X軸、Y軸、Z軸を有する直交座標系を定義して説明する。 Furthermore, the coordinate system of the modeling shape data handled by the additive manufacturing system 100 and the coordinate system on the base 25 on which the object W is formed are associated with each other. Here, an orthogonal coordinate system having an X-axis, a Y-axis, and a Z-axis will be defined and explained, with the upper surface of the base 25 being the XY plane and the normal direction of the upper surface of the base 25 being the Z direction.
<造形制御装置の機能構成>
 図2は、造形制御装置11及び制御情報生成装置15の機能構成を示すブロック図である。造形制御装置11は、入力部31、記憶部33、造形プログラム作成部35及び出力部37を含んで構成される。
<Functional configuration of printing control device>
FIG. 2 is a block diagram showing the functional configuration of the modeling control device 11 and the control information generation device 15. The modeling control device 11 includes an input section 31, a storage section 33, a modeling program creation section 35, and an output section 37.
 入力部31は、例えば、適宜なネットワークを介して、又は適宜な入力デバイスにより、外部から各種の情報を取得する。ここで取得される情報としては、例えば、CAD/CAMデータなどの積層造形を行う対象物の形状情報を含む形状データ、溶接条件の設定データ、作業者からの指示情報などが挙げられる。 The input unit 31 acquires various information from the outside, for example, via an appropriate network or with an appropriate input device. Examples of the information acquired here include shape data including shape information of the object to be subjected to additive manufacturing such as CAD/CAM data, welding condition setting data, instruction information from the operator, and the like.
 記憶部33は、入力部31にて取得された各種情報、前述した造形プログラムを記憶する。また、記憶部33は、各種形状を造形する際のマニピュレータ14の動作速度、動作可能範囲などの駆動条件、熱源制御装置21により設定可能な種々の溶接条件などの情報が記憶されたデータベースを保持してもよい。 The storage unit 33 stores various information acquired by the input unit 31 and the above-mentioned modeling program. The storage unit 33 also maintains a database storing information such as operating speed of the manipulator 14 when modeling various shapes, drive conditions such as movable range, and various welding conditions that can be set by the heat source control device 21. You may.
 造形プログラム作成部35は、ビード形成するためにトーチ23を移動させる経路を表す造形経路、及びビード形成時の溶接条件などの造形計画を、記憶部33のデータベースを参照しつつ決定する。また、作成した造形計画に基づいて、マニピュレータ14、熱源制御装置21の種類及び仕様に応じた造形プログラムを作成する。 The modeling program creation unit 35 determines a modeling plan, such as a modeling path representing a path along which the torch 23 is moved to form a bead, and welding conditions during bead formation, while referring to the database in the storage unit 33. Further, based on the created modeling plan, a modeling program is created according to the types and specifications of the manipulator 14 and the heat source control device 21.
 出力部37は、造形プログラム作成部35により作成された造形プログラムをマニピュレータ制御装置19、熱源制御装置21などに出力する。また、造形プログラムを作成した際の造形経路の情報を制御情報生成装置15に出力してもよい。なお、出力部37は更に、造形制御装置11が備えるディスプレイなどの不図示の出力装置を用いて、形状データの形状に対する造形計画の内容を表示する構成を備えてもよい。 The output unit 37 outputs the modeling program created by the modeling program creation unit 35 to the manipulator control device 19, the heat source control device 21, etc. Further, information on the modeling route when creating the modeling program may be output to the control information generation device 15. Note that the output unit 37 may further include a configuration that displays the contents of the modeling plan for the shape of the shape data using an output device (not shown) such as a display included in the modeling control device 11.
 制御情報生成装置15は、情報取得部41と、造形経路追加部43と、判定部45とを備える。情報取得部41には、造形制御装置11又は外部から造形経路の情報が入力される。造形経路追加部43は、入力された造形経路の情報に、必要に応じて新たな造形経路を追加して、これを制御情報として造形制御装置11に出力する。この制御情報には、造形経路情報が含まれる。造形経路追加部43は、詳細を後述する仮想線生成部46と、交差線生成部47と内側造形経路設定部49とを有する。判定部45は、詳細は後述するが、入力された造形経路に更なる造形経路が必要か否かを判定する。 The control information generation device 15 includes an information acquisition section 41, a modeling route addition section 43, and a determination section 45. Information on the modeling route is input to the information acquisition unit 41 from the modeling control device 11 or from the outside. The modeling route addition unit 43 adds a new modeling route to the inputted modeling route information as needed, and outputs this to the modeling control device 11 as control information. This control information includes modeling route information. The modeling route addition unit 43 includes a virtual line generation unit 46, the details of which will be described later, a crossing line generation unit 47, and an inner modeling route setting unit 49. Although the details will be described later, the determination unit 45 determines whether or not a further modeling route is required for the inputted modeling route.
 造形制御装置11及び制御情報生成装置15は、例えば、PC(Personal Computer)などの情報処理装置により構成される。上記した各部の機能は、それぞれに用意されたプロセッサが特定の機能を有するプログラムを読み出し、これを実行することで実現される。具体的には、CPU(Central Processing Unit)、MPU(Micro Processor Unit)などのプロセッサ、又は専用回路が、揮発性の記憶領域であるRAM(Random Access Memory)、不揮発性の記憶領域であるROM(Read Only Memory)などのメモリ、HDD(Hard Disk Drive)、SSD(Solid State Drive)などのストレージに記憶されたプログラムを読み出して、実行する。 The modeling control device 11 and the control information generation device 15 are configured by, for example, an information processing device such as a PC (Personal Computer). The functions of each unit described above are realized by a processor provided in each unit reading a program having a specific function and executing the program. Specifically, a processor such as a CPU (Central Processing Unit) or an MPU (Micro Processor Unit), or a dedicated circuit uses RAM (Random Access Memory), a volatile storage area, and ROM (ROM), a non-volatile storage area. Reads and executes programs stored in memory such as Read Only Memory, HDD (Hard Disk Drive), and SSD (Solid State Drive).
 上記した造形制御装置11及び制御情報生成装置15は、積層造形装置13に接続された形態でもよいが、通信等により積層造形装置13に遠隔地から接続される形態であってもよい。 The above-described modeling control device 11 and control information generation device 15 may be connected to the additive manufacturing device 13, or may be connected to the additive manufacturing device 13 from a remote location via communication or the like.
<造形物の造形手順>
 次に、上記した積層造形システム100により造形物を造形する手順を説明する。
 図3は、造形物を造形する際の単層における造形経路の模式図である。ここで例示する造形物Wは、環状の外壁部51と、外壁部51の内側の充填部53とを有する。造形経路には、外壁部51を形成する外側造形経路55と、外側造形経路55に挟まれた充填部53に配置される内側造形経路57とがある。各経路に沿って図1に示すトーチ23を移動しながら溶加材Mを溶融、凝固させることで線状のビードBが形成され、複数のビードB同士が隣接した層形状が造形される。
<Procedure for creating a model>
Next, a procedure for manufacturing a molded object using the above-described layered manufacturing system 100 will be explained.
FIG. 3 is a schematic diagram of a forming path in a single layer when forming a modeled object. The shaped object W illustrated here has an annular outer wall portion 51 and a filling portion 53 inside the outer wall portion 51. The modeling paths include an outside modeling path 55 that forms the outer wall portion 51 and an inside modeling path 57 that is arranged in the filling part 53 sandwiched between the outside modeling path 55. Linear beads B are formed by melting and solidifying the filler metal M while moving the torch 23 shown in FIG. 1 along each path, and a layered shape in which a plurality of beads B are adjacent to each other is modeled.
 図3には、3本の内側造形経路57を設けて充填部53を3本のビードBで埋めている例を示したが、ビード幅は溶接条件等の諸条件によって変化する。そのため、充填部53を隙間なくビードBで埋めるためのビード本数は条件によって増減し、ビード間に空隙による溶接欠陥が生じてしまう。そこで、造形計画の段階で、充填部53におけるビード本数を最適化し、溶接欠陥を未然に防止する設定にする必要がある。 Although FIG. 3 shows an example in which three inner modeling paths 57 are provided and the filling portion 53 is filled with three beads B, the bead width changes depending on various conditions such as welding conditions. Therefore, the number of beads to fill the filling part 53 with beads B without any gaps increases or decreases depending on the conditions, and welding defects occur due to gaps between the beads. Therefore, at the modeling planning stage, it is necessary to optimize the number of beads in the filling portion 53 and to make settings to prevent welding defects.
 図4は、充填部53を隙間なく埋める内側造形経路を求めて、この造形経路を制御情報として出力する手順を示すフローチャートである。このフローチャートに従って各手順を順に説明する。 FIG. 4 is a flowchart showing a procedure for finding an inner modeling path that fills the filling portion 53 without any gaps and outputting this modeling path as control information. Each procedure will be explained in order according to this flowchart.
 まず、制御情報生成装置15の情報取得部41は、製造する造形物の形状に応じて、所定のアルゴリズムで設定された造形経路の情報を取得する(S1)。この造形経路は、CADデータの形状に対して造形制御装置11によって作成された造形プログラムに含まれる造形経路の情報であってもよく、予め作成され、記憶された造形経路の情報であってもよい。造形経路の情報としては、例えば造形経路(パス)中に含まれる点の座標情報(X,Y,Z)、隣接するパス同士のピッチ、積層する層ごとの間隔、各パスの積層順序などが挙げられる。また、造形経路の情報は、造形物の形状を所定の厚さでスライスした際の1層のスライス断面の情報であってもよい。その場合には、スライス断面において外殻となる外壁部に相当する外側造形経路を求めておく。情報取得部41は、取得した情報を造形経路追加部43に出力する。 First, the information acquisition unit 41 of the control information generation device 15 acquires information on a modeling path set by a predetermined algorithm according to the shape of the object to be manufactured (S1). This modeling path may be information on a printing path included in a printing program created by the printing control device 11 for the shape of the CAD data, or may be information on a printing path created and stored in advance. good. Information on the modeling route includes, for example, coordinate information (X, Y, Z) of points included in the modeling route (pass), the pitch between adjacent passes, the interval between stacked layers, the stacking order of each pass, etc. Can be mentioned. Further, the information on the modeling path may be information on a slice cross section of one layer when the shape of the object is sliced to a predetermined thickness. In that case, an outer modeling path corresponding to the outer wall portion that becomes the outer shell in the sliced cross section is determined in advance. The information acquisition unit 41 outputs the acquired information to the modeling route addition unit 43.
 次に、造形経路追加部43は、入力された造形経路の情報から外側造形経路の互いに対向する一対の経路を抽出する。図3に示すように、外側造形経路55が直線状の四辺を有する四角形である場合、互いに対向する一対の経路、例えば経路55a,55cを抽出する。そして、抽出した一対の経路55a,55cの長手方向に沿って、その一対の経路55a,55c同士の間隔を等分割した位置に内側造形経路57を追加する。内側造形経路57は、外側造形経路の経路55a,55cの長さよりも短くすることが好ましい。短くすることで、後の工程で追加される造形経路と外側造形経路との衝突を回避できる。 Next, the modeling route addition unit 43 extracts a pair of mutually opposing outer modeling routes from the input modeling route information. As shown in FIG. 3, when the outer modeling path 55 is a quadrilateral with four straight sides, a pair of paths facing each other, for example, paths 55a and 55c, are extracted. Then, along the longitudinal direction of the pair of extracted routes 55a, 55c, an inner modeling route 57 is added at a position where the interval between the pair of routes 55a, 55c is equally divided. It is preferable that the inner modeling path 57 be shorter than the lengths of the outer modeling paths 55a and 55c. By making it shorter, it is possible to avoid collision between the modeling path added in a later process and the outside modeling path.
 本明細書でいう「一対の経路同士の間隔」は、次のように定義した間隔を意味する。図5A,図5Bは、一対の経路同士の間隔の定義を説明するための概略図である。図5Aに示すように、一対の経路La,Lbと一本の直線Lcとが交差する点を交点Pa、交点Pbとする。このときの交点Pa,Pbを角の頂点として、互いに対向した位置関係にある交差角をそれぞれα,βとし、上記した一本の直線Lcをこれら交差角αとβとが等しく(α=β)なるように設ける。このときの交点Paと交点Pbとの間(交差点間)の線分長さLtを「一対の経路同士の間隔」と定義する。 In this specification, "the interval between a pair of routes" means the interval defined as follows. 5A and 5B are schematic diagrams for explaining the definition of the interval between a pair of routes. As shown in FIG. 5A, the points where the pair of routes La and Lb and one straight line Lc intersect are defined as an intersection point Pa and an intersection point Pb. At this time, the intersection points Pa and Pb are taken as the vertices of the angles, and the intersecting angles that are in a mutually opposing positional relationship are respectively α and β.The above-mentioned single straight line Lc is ). The line segment length Lt between the intersection point Pa and the intersection point Pb (between the intersections) at this time is defined as "the interval between a pair of routes."
 図5Aに示す場合では、互いに対向した位置関係にある交差角α,βは、一対の経路La,Lbにより挟まれた領域よりも外側の角であって、経路La,Lbの一本の直線Lcを境として一方の側(図5Aの右側)に配置された角である。図5Bに示す場合も同様に、屈曲点Pxで屈曲して二方向に延びる一対の経路La,Lbと、一本の直線Lcとの交点Pa,Pbにおいて、一対の経路La,Lbにより挟まれて交点Pa,b同士を結ぶ線分を含む側の領域よりも外側の角であって、一本の直線Lcを境として屈曲点Px側に形成される角が交差角α(図5Bの右側の角),β(図5Bの上側の角)となる。いずれの場合も交点Paと交点Pbとの間(交差点間)の線分長さLtが「一対の経路同士の間隔」となる。なお、経路の少なくとも一方が曲線である場合は、経路上の点を通る接線を代わりに用いて「一対の経路同士の間隔」を求めてもよい。 In the case shown in FIG. 5A, the intersection angles α and β, which are in a positional relationship opposite to each other, are corners outside the area sandwiched by the pair of paths La and Lb, and are the corners of one straight line of the paths La and Lb. This is a corner located on one side (right side in FIG. 5A) with Lc as a boundary. Similarly, in the case shown in FIG. 5B, at the intersection Pa, Pb of a pair of paths La, Lb that bends at a bending point Px and extends in two directions, and a single straight line Lc, the path is sandwiched between the pair of paths La, Lb. The corner on the outside of the area including the line segment connecting the intersections Pa and b, and formed on the side of the bending point Px with one straight line Lc as the boundary, is the intersection angle α (right side in FIG. 5B). ), and β (the upper corner of FIG. 5B). In either case, the line segment length Lt between the intersection Pa and the intersection Pb (between the intersections) is the "interval between the pair of routes." Note that if at least one of the routes is a curve, the "distance between a pair of routes" may be determined by using a tangent passing through a point on the route instead.
 ここで、内側造形経路57を追加する手順をより詳細に説明する。
 図6は、外側造形経路55のうちの一対の経路の中間位置に、一本の内側造形経路57を設けた場合を示す説明図である。内側造形経路57は、その長手方向に沿ったいずれの位置でも外側造形経路55a,55cとの間隔L1,L1は同じである。
Here, the procedure for adding the inner modeling path 57 will be explained in more detail.
FIG. 6 is an explanatory diagram showing a case where one inner modeling path 57 is provided at an intermediate position between a pair of the outer modeling paths 55. The distances L1, L1 between the inner modeling path 57 and the outer modeling paths 55a, 55c are the same at any position along its longitudinal direction.
 図7は、内側造形経路57を設定する処理を段階的に示す説明図である。まず、外側造形経路55a,55b,55c,55dのうち互いに対向する一対の経路を抽出する。ここでは経路55a,55cを抽出した場合の例を示すが、経路55b,55dを抽出してもよい。図2に示す仮想線生成部46は、抽出した一対の経路を、第一仮想線LV1、第二仮想線LV2と定義する(S2)。第一仮想線LV1,第二仮想線LV2の長さは、参照元となる経路55b,55dの長さよりもビード幅に応じて短く設定する。 FIG. 7 is an explanatory diagram showing step-by-step the process of setting the inner modeling path 57. First, a pair of mutually opposing paths are extracted from the outer modeling paths 55a, 55b, 55c, and 55d. Although an example in which routes 55a and 55c are extracted is shown here, routes 55b and 55d may also be extracted. The virtual line generation unit 46 shown in FIG. 2 defines the extracted pair of routes as a first virtual line LV1 and a second virtual line LV2 (S2). The lengths of the first imaginary line LV1 and the second imaginary line LV2 are set shorter than the lengths of the paths 55b and 55d, which are reference sources, according to the bead width.
 次に、交差線生成部47は、定義した第一仮想線LV1と第二仮想線LV2とを互いに接近する方向へ等速で平行移動させた場合を想定する。移動方向は、造形する領域の短軸方向に平行な方向に設定してもよい。ただし、一方向への直線移動であって回転移動は含まない。平行移動させると、第一仮想線LV1と第二仮想線LV2とが交差する交点P1を生じる。交点P1を生じた後、更に平行移動を進めると、第一仮想線LV1と第二仮想線LV2とが移動しながら交点P2,P3,P4,P5を生じる、というように、複数の交点が生じる。これら交点P1,P2,P3,P4,P5を順次に接続して交差線LCを求める。交差線LCは直線であってもよく、曲線であってもよい。 Next, assume that the intersecting line generation unit 47 moves the defined first virtual line LV1 and second virtual line LV2 in parallel at a constant speed in a direction in which they approach each other. The moving direction may be set in a direction parallel to the short axis direction of the region to be modeled. However, this is a linear movement in one direction and does not include rotational movement. The parallel movement produces an intersection point P1 where the first virtual line LV1 and the second virtual line LV2 intersect. After the intersection P1 is generated, if the parallel movement is further advanced, multiple intersections will occur, such as the first virtual line LV1 and the second virtual line LV2 moving and generating the intersections P2, P3, P4, and P5. . These intersection points P1, P2, P3, P4, and P5 are sequentially connected to obtain an intersection line LC. The intersecting line LC may be a straight line or a curved line.
 内側造形経路設定部49は、得られた交差線LCを、新たに追加する内側造形経路57として設定する(S3)。なお、上記の交点P1~P5は交差線LCの説明用の点であり、その個数、間隔は任意である。以上の処理の結果、図6に示す内側造形経路57が求められる。この場合の一対の経路55a,55cは互いに非平行な直線であり、内側造形経路57は、経路55a,55cの延長線同士の交点Oにおける交差角θの二等分線となる。これにより、内側造形経路57を、その両脇に位置する経路55a,55cとの偏りが少ない経路にできる。 The inner modeling route setting unit 49 sets the obtained intersecting line LC as the newly added inner modeling route 57 (S3). Note that the above-mentioned intersection points P1 to P5 are points for explanation of the intersection line LC, and their number and interval are arbitrary. As a result of the above processing, the inner modeling path 57 shown in FIG. 6 is obtained. In this case, the pair of paths 55a and 55c are straight lines that are non-parallel to each other, and the inner modeling path 57 is a bisector of the intersection angle θ at the intersection O of the extension lines of the paths 55a and 55c. Thereby, the inner modeling route 57 can be made into a route with less deviation from the routes 55a and 55c located on both sides thereof.
 また、内側造形経路57は、外側造形経路55が環状である場合に、一対の経路55a,55cよりも経路長が短く設定される。つまり、追加される内側造形経路57の端点が、近接する別の軌跡から所定の間隔だけ離れることで、近接する経路との重なりによる過剰なビードの積層を抑制できる。端点を離す所定の間隔としては、例えば、外側造形経路を形成するビードの幅の半分程度でもよい。 Furthermore, when the outer modeling path 55 is annular, the inner modeling path 57 is set to have a shorter path length than the pair of paths 55a and 55c. That is, by separating the end point of the added inner modeling path 57 from another adjacent trajectory by a predetermined distance, it is possible to suppress excessive stacking of beads due to overlap with an adjacent path. The predetermined distance separating the end points may be, for example, about half the width of the bead forming the outer modeling path.
 ここで、判定部45は、内側造形経路57と外側造形経路55との間隔L1が全ての内側造形経路57に沿った位置で必要十分な間隔であるかを判定する。つまり、内側造形経路57及び外側造形経路55の互いに隣接する経路同士の間隔が、これら経路に沿って形成されるビード同士が十分な積層量(堆積、面積)を有さずに離れてしまう間隔であると、ビード間に溶接欠陥を誘引する間隙が生じる。そこで、間隔L1と予め定めた基準値とを比較して、少なくとも基準値より大きい箇所が存在する場合、ビード同士の積層量の不足を解消させるために、内側造形経路57を更に追加するための追加信号を、造形経路追加部43に出力する。なお、間隔L1の最大値と最小値を算出して、その差分が一定の基準値以下である場合は、例えば、内側造形経路をウィービングにより埋める際のウィービング幅を微調整し、基準値より大きい場合は、内側造形経路57を更に追加させてもよい。 Here, the determination unit 45 determines whether the interval L1 between the inner modeling route 57 and the outer modeling route 55 is a necessary and sufficient interval at all positions along the inner modeling route 57. In other words, the distance between the inner modeling path 57 and the outer modeling path 55 that are adjacent to each other is such that the beads formed along these paths do not have a sufficient amount of lamination (accumulation, area) and are separated from each other. This creates gaps between the beads that induce welding defects. Therefore, when the distance L1 is compared with a predetermined reference value, and if there is at least a portion where the distance is larger than the reference value, an inner modeling path 57 is added in order to eliminate the lack of lamination between the beads. The additional signal is output to the modeling path adding section 43. Note that when the maximum and minimum values of the interval L1 are calculated and the difference is less than a certain reference value, for example, the weaving width when filling the inner modeling path by weaving may be finely adjusted to be larger than the reference value. In this case, an inner modeling path 57 may be further added.
 このように、経路間を埋めるために必要となるビード積層量に対して、内側造形経路57の本数が十分かを判定して(S4)、内側造形経路57の追加が必要な場合は、ステップS2に戻り、再び内側造形経路57を追加する(S2,S3)。内側造形経路57の追加を繰り返す回数が増加すると、パス数が増えるために生産時間が増加する。そのため、この繰り返し回数に上限設けてもよい。 In this way, it is determined whether the number of inner modeling paths 57 is sufficient for the amount of bead stacking required to fill the spaces between the paths (S4), and if it is necessary to add the inner modeling paths 57, step Returning to S2, the inner modeling path 57 is added again (S2, S3). As the number of times the addition of the inner modeling path 57 is repeated increases, the number of passes increases, resulting in an increase in production time. Therefore, an upper limit may be set for the number of repetitions.
 図8は、外側造形経路55の内側に複数の内側造形経路57,57A,67Bを設けた場合の造形経路を示す説明図である。外側造形経路である一対の経路55a,55c同士の間には、前述した手順によって内側造形経路57を設けてある。この場合、経路間を埋めるために必要なビード積層量が不足すると判断され、内側造形経路57と外側造形経路のうち一方の経路55aとの間、及び内側造形経路57と外側造形経路のうち他方の経路55cとの間に、それぞれ新たな内側造形経路57A,57Bを追加している。内側造形経路57A,57Bは、隣接する経路から等間隔(間隔L1/2)の位置に配置される。 FIG. 8 is an explanatory diagram showing a forming path when a plurality of inner forming paths 57, 57A, and 67B are provided inside the outer forming path 55. An inner modeling path 57 is provided between the pair of paths 55a and 55c, which are the outer modeling paths, according to the procedure described above. In this case, it is determined that the amount of bead stacking required to fill the spaces between the paths is insufficient, and the amount of bead stacking required to fill the spaces between the paths is insufficient, and the amount of bead stacking required to fill the spaces between the paths 55a and 55a, and between the inside modeling path 57 and the outside modeling path, New inner modeling paths 57A and 57B are added between the path 55c and the path 55c. The inner modeling paths 57A and 57B are arranged at equal intervals (distance L1/2) from adjacent paths.
 そして、判定部45が、間隔L1/2の間隔で配置された合計3本の内側造形経路57A,57,57Bによれば、必要なビード積層量を得るに必要十分な本数であると判定した場合、造形経路追加部43は、追加して得られた内側造形経路57A,57,57Bと、外側造形経路55との造形経路の情報を、ビードを形成する軌道情報として制御情報に組み入れ、その制御情報を制御情報生成装置15から造形制御装置11へ出力する(S5)。なお、3本の内側造形経路57A,67,57Bでもビード積層量が不足すると判定された場合には、更に、外側造形経路である経路55aと内側造形経路57Aとの間、内側造形経路57Aと内側造形経路57との間、内側造形経路57と内側造形経路57Bとの間、内側造形経路57Bと外側造形経路である経路55cとの間のそれぞれに、新たな内側造形経路を追加することになる(不図示)。 Then, the determining unit 45 determines that according to the total of three inner modeling paths 57A, 57, and 57B arranged at the interval L1/2, the number is necessary and sufficient to obtain the required bead stacking amount. In this case, the modeling route addition unit 43 incorporates information on the additionally obtained modeling routes of the inner modeling routes 57A, 57, 57B and the outer modeling route 55 into the control information as trajectory information for forming a bead, and Control information is output from the control information generation device 15 to the modeling control device 11 (S5). In addition, if it is determined that the bead stacking amount is insufficient even with the three inner modeling paths 57A, 67, and 57B, furthermore, between the outer modeling path 55a and the inner modeling path 57A, the inner modeling path 57A and New inner modeling routes are added between the inner modeling route 57, between the inner modeling route 57 and the inner modeling route 57B, and between the inner modeling route 57B and the outer modeling route 55c. (not shown).
 造形制御装置11は、入力された上記の軌道情報を含む制御情報に基づいて、造形プログラムを作成し、造形プログラムを積層造形装置13に出力する。積層造形装置13は、造形プログラムに従ってトーチ23を移動してビードを形成する。これにより、上記した内側造形経路57A,57,57Bと、外側造形経路55に沿ったビードB(図3参照)からなるビード層を含む造形物Wが造形される。 The modeling control device 11 creates a modeling program based on the input control information including the above trajectory information, and outputs the modeling program to the additive manufacturing device 13. The layered manufacturing device 13 moves the torch 23 according to the modeling program to form a bead. As a result, a modeled object W including a bead layer consisting of the above-mentioned inner modeling paths 57A, 57, 57B and beads B (see FIG. 3) along the outer modeling path 55 is modeled.
 こうして得られた造形物Wによれば、ビードB同士の間に溶接欠陥が生じにくくなり、高品質な造形物Wが安定して得られる。また、造形物Wを造形するための造形経路を、ビード積層量が不足する場合に機械的に追加でき、造形経路の調整が煩雑にならない。また、追加される内側造形経路が互いに非平行であることで、平行である場合と比較して、より柔軟に造形経路の配置が行え、経路数を節約しやすくなる。 According to the shaped article W thus obtained, welding defects are less likely to occur between the beads B, and a high-quality shaped article W can be stably obtained. Moreover, a modeling path for modeling the object W can be mechanically added when the amount of bead stacking is insufficient, and adjustment of the modeling path does not become complicated. Furthermore, since the added inner modeling paths are non-parallel to each other, compared to the case where they are parallel, the modeling paths can be arranged more flexibly and the number of paths can be easily saved.
<他の内側造形経路の追加形態>
(複数本の内側造形経路を等分割配置)
 前述した図6に示すように、外側造形経路55の互いに対向する一対の経路55a,55cの長手方向に沿って、その一対の経路55a,55c同士の間隔2L1を二分割した位置に一本の内側造形経路57を追加していたが、間隔2L1を等分割して複数本の内側造形経路57を追加してもよい。
<Additional forms of other inner modeling paths>
(Multiple inner modeling paths are equally divided)
As shown in FIG. 6 described above, along the longitudinal direction of the pair of opposing paths 55a, 55c of the outer modeling path 55, one line is placed at a position where the distance 2L1 between the pair of paths 55a, 55c is divided into two. Although the inner modeling route 57 was added, a plurality of inner modeling routes 57 may be added by equally dividing the interval 2L1.
 図9は、一対の経路同士の間に、複数本(一例として4本)の内側造形経路57を追加した場合の説明図である。追加する内側造形経路57を、互いに隣接する経路同士の間隔が、内側造形経路57の並び方向の一方の側と他方の側で均等になる位置に配置する。つまり、外側造形経路55の一対の経路同士の間隔を等分割した位置に、新たに複数本の内側造形経路57を追加する。また、互いに対向する一対の内側造形経路57同士の間隔を等分割した位置に、新たに複数本の内側造形経路を追加してもよい。 FIG. 9 is an explanatory diagram when a plurality of (four as an example) inner modeling paths 57 are added between a pair of paths. The inner modeling paths 57 to be added are arranged at positions where the intervals between adjacent paths are equal on one side and the other side in the direction in which the inner modeling paths 57 are lined up. That is, a plurality of inner modeling paths 57 are newly added at positions where the distance between the pair of paths of the outer modeling path 55 is equally divided. Furthermore, a plurality of new inner modeling paths may be added at positions where the distance between the pair of inner modeling paths 57 facing each other is equally divided.
 この場合、一対の経路同士の間隔がビード幅と比較して大きく広がっている場合に、隣接するビード同士が適切に重なり合う程度の間隔に一度に狭められる。よって、内側造形経路の追加処理の繰り返し回数を低減して、演算時間を短縮できる。 In this case, if the distance between a pair of paths is wide compared to the bead width, the distance is narrowed all at once to such an extent that adjacent beads can appropriately overlap each other. Therefore, the number of repetitions of the inner modeling path addition process can be reduced, and the calculation time can be shortened.
(一対の造形経路)
 図10A,図10B,図10Cは、一対の造形経路の組み合わせ例を示す説明図である。
 前述した一対の経路は、図10Aに示す経路55a,55cであったが、図10Bに示す経路55b,55dの組であってもよく、図10Cに示す経路55c,55dの組(又は経路55a,55bの組)であってもよい。図10Cに示す場合の内側造形経路57は、経路55cと経路55dとから等間隔となる位置に配置される。また、図10Bに示す経路55b,55dの組を一対の造形経路として、その間を等分割して複数の内側造形経路を追加する場合、図11に示す造形経路となる。
(Pair of modeling paths)
10A, FIG. 10B, and FIG. 10C are explanatory diagrams showing examples of combinations of a pair of modeling paths.
The pair of routes described above are routes 55a and 55c shown in FIG. 10A, but may also be a set of routes 55b and 55d shown in FIG. 10B, or a set of routes 55c and 55d shown in FIG. , 55b). The inner modeling route 57 in the case shown in FIG. 10C is arranged at a position equidistant from the route 55c and the route 55d. Furthermore, when the set of paths 55b and 55d shown in FIG. 10B is used as a pair of modeling paths, and a plurality of inner modeling paths are added by equally dividing the path, the modeling paths shown in FIG. 11 are obtained.
 図11は、一対の経路55b,55dの間を等分割して、複数の内側造形経路を追加した様子を示す説明図である。この場合、各内側造形経路57は互いに平行となる。このように、内側造形経路を設けるパターンには複数のパターンが存在する。そこで、許容されるパス数の上限を設けて、その制約を満たすパターンを予め登録された候補の中から抽出する等の手法を採用してもよい。その場合、種々のパターンを予めデータベースに登録しておき、条件に見合ったパターンをデータベースから選定することで済み、処理速度を向上できる。 FIG. 11 is an explanatory diagram showing how a plurality of inner modeling paths are added by equally dividing the pair of paths 55b and 55d. In this case, the inner modeling paths 57 are parallel to each other. In this way, there are a plurality of patterns in which the inner modeling path is provided. Therefore, a method such as setting an upper limit on the number of permissible paths and extracting a pattern that satisfies the limit from among candidates registered in advance may be adopted. In that case, it is sufficient to register various patterns in the database in advance and select a pattern that meets the conditions from the database, thereby improving the processing speed.
(縮小、膨張処理による内側造形経路の位置の決定)
 図12は、環状の外側造形経路を縮小(シュリンク)処理して内側造形経路を求める方法を示す説明図である。例えば、円弧状の外側造形経路55の内側に内側造形経路を設ける場合、円弧状の外側造形経路55の線を内側に向けて縮小する。つまり、外側造形経路55の形状を一本の線にする。この縮小処理は、一般的な画像処理技術で用いられる縮小処理と同様に、外側造形経路を含む画像の画素について、その画素の周囲に配置される複数の画素を1つの新たな画素に統合することを画像全体に施すことを繰り返し、画像全体のサイズを縮小する等の手法により実現できる。この場合、環状の外側造形経路の形状によらずに内側造形経路が機械的に求められるため、内側造形経路を簡単に設定できる。
(Determination of the position of the inner modeling path by reduction and expansion processing)
FIG. 12 is an explanatory diagram illustrating a method of shrinking an annular outer forming path to obtain an inner forming path. For example, when providing an inner modeling path inside the arcuate outer modeling path 55, the line of the arcuate outer modeling path 55 is reduced inward. In other words, the shape of the outer modeling path 55 is made into a single line. Similar to the reduction processing used in general image processing technology, this reduction processing integrates multiple pixels placed around the pixel of the image including the outer modeling path into one new pixel. This can be achieved by repeatedly applying this to the entire image and reducing the size of the entire image. In this case, the inner modeling path can be determined mechanically regardless of the shape of the annular outer modeling path, so the inner modeling path can be easily set.
 図13は、円筒状の造形物の断面における外側造形経路と内側造形経路を示す説明図である。この場合は、二重の外側造形経路のうち、外側経路55outの環状線を内側に向けて縮小し、内側経路55inの環状線を外側に向けて膨張させ、各環状線が交わったときの環状線の位置を内側造形経路57に設定する。膨張処理については、縮小処理と同様に公知の画像処理技術であるため、ここでは説明を省略する。 FIG. 13 is an explanatory diagram showing an outer modeling path and an inner modeling path in a cross section of a cylindrical object. In this case, among the double outer modeling paths, the annular line of the outer path 55out is contracted inward, the annular line of the inner path 55in is expanded outward, and the annular line when each annular line intersects The position of the line is set on the inner modeling path 57. The expansion process is a well-known image processing technique similar to the reduction process, so a description thereof will be omitted here.
 図14は、3つの円筒状の部位が一体にされた造形物の断面における外側造形経路と内側造形経路を示す説明図である。このように、形状が複雑化しても、互いに対向する経路同士を接近する方向に移動させ、線同士が交わる位置を連結することで内側造形経路57を設定できる。実際の造形物の形状は、上記のような単純な形状よりも複雑な場合が多いが、その場合でも、内側造形経路を簡単に設定できる。また、図12~図14に示す縮小、膨張処理により内側造形経路を設定する部位と、図7に示す仮想線の移動により内側造形経路を設定する部位とを混在させてもよい。その場合、意図的に内側造形経路を調整したい箇所と、一義的に内側造形経路を設定する箇所とを切り分けて、設計自由度を高めて造形経路を設定できる。 FIG. 14 is an explanatory diagram showing an outer modeling path and an inner modeling path in a cross section of a molded object in which three cylindrical parts are integrated. In this way, even if the shape becomes complicated, the inner modeling route 57 can be set by moving the opposing routes toward each other and connecting the positions where the lines intersect. Although the shape of an actual object is often more complex than the simple shape described above, even in that case, the inner modeling path can be easily set. Further, a portion for which an inner modeling path is set by the reduction and expansion processing shown in FIGS. 12 to 14 and a portion for setting an inner modeling path by moving a virtual line shown in FIG. 7 may be mixed. In that case, it is possible to set the modeling route with increased design freedom by separating the location where the inner modeling route is to be adjusted intentionally and the location where the inner modeling route is uniquely set.
 このように、本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせること、及び明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。 As described above, the present invention is not limited to the embodiments described above, and those skilled in the art can modify and apply them based on the mutual combination of the configurations of the embodiments, the description of the specification, and well-known techniques. It is also contemplated by the present invention to do so, and is within the scope for which protection is sought.
 以上の通り、本明細書には次の事項が開示されている。
(1) 溶融した加工材料を造形経路に沿って造形対象面に形成するビードにより層形状を造形し、前記層形状を積層して三次元形状の造形物を製造する積層造形装置における、該積層造形装置を制御するための制御情報を生成する制御情報生成装置であって、
 前記造形経路の情報を取得する情報取得部と、
 前記造形経路のうち前記造形物の外壁部を形成する外側造形経路に挟まれた充填部に、新たに内側造形経路を追加する造形経路追加部と、
を備え、
 前記造形経路追加部は、前記外側造形経路の互いに対向する一対の経路を抽出し、抽出された前記一対の経路の長手方向に沿って該一対の経路同士の間隔を等分割した位置に前記内側造形経路を追加して、前記外側造形経路と前記内側造形経路の情報を、前記ビードを形成する軌道情報として前記制御情報に組み入れる、
制御情報生成装置。
 この制御情報生成装置によれば、外側造形経路に挟まれた充填部に新たに内側造形経路を追加した起動情報を制御情報として出力でき、ビードを形成する造形経路を、空隙等による溶接欠陥の発生を抑制して効率よく設定できる。
As mentioned above, the following matters are disclosed in this specification.
(1) Lamination in an additive manufacturing apparatus that shapes a layered shape using a bead that forms a molten processing material on a surface to be modeled along a modeling path, and then laminates the layered shape to produce a three-dimensional shaped object. A control information generation device that generates control information for controlling a modeling device,
an information acquisition unit that acquires information on the modeling route;
a modeling route addition unit that adds a new inner modeling route to a filling part sandwiched between an outer modeling route that forms an outer wall of the modeled object among the modeling routes;
Equipped with
The modeling route addition unit extracts a pair of mutually opposing routes of the outer modeling route, and adds the inner part to a position where the interval between the pair of routes is equally divided along the longitudinal direction of the pair of extracted routes. adding a modeling route and incorporating information on the outer modeling route and the inner modeling route into the control information as trajectory information for forming the bead;
Control information generation device.
According to this control information generation device, it is possible to output startup information in which an inner modeling path is newly added to the filled part sandwiched between the outer modeling path, and to control the forming path for forming a bead to prevent welding defects due to voids, etc. This can be set efficiently by suppressing occurrences.
(2) 前記造形経路追加部は、前記内側造形経路と前記外側造形経路の互いに対向する一対の経路を抽出し、抽出された前記一対の経路同士の間隔を等分割した位置に新たに内側造形経路を追加する、(1)に記載の制御情報生成装置。
 この制御情報生成装置によれば、内側造形経路を外側造形経路との間で偏りなく配置できる。
(2) The modeling route addition unit extracts a pair of mutually opposing routes, the inner modeling route and the outer modeling route, and adds a new inner modeling route to a position where the interval between the extracted pair of routes is equally divided. The control information generation device according to (1), which adds a route.
According to this control information generation device, it is possible to arrange the inner modeling route evenly between the inner modeling route and the outer modeling route.
(3) 前記造形経路追加部は、
 抽出した前記一対の経路を第一仮想線と第二仮想線と定義する仮想線生成部と、
 前記第一仮想線と前記第二仮想線とを互いに接近する方向へ等速で平行移動させたときに、前記第一仮想線と前記第二仮想線とが移動しながら交差する交点を順次に接続して交差線を生成する交差線生成部と、
 前記交差線を新たに追加する前記内側造形経路に設定する内側造形経路設定部と、
を備える、(1)又は(2)に記載の制御情報生成装置。
 この制御情報生成装置によれば、第一仮想線と第二仮想線の平行移動によって、内側造形経路を対向する他の経路から等間隔となる位置に配置できる。
(3) The modeling route addition section is
a virtual line generation unit that defines the pair of extracted routes as a first virtual line and a second virtual line;
When the first imaginary line and the second imaginary line are moved in parallel at a constant speed in a direction in which they approach each other, the first imaginary line and the second imaginary line intersect while moving, sequentially. an intersection line generation unit that connects and generates an intersection line;
an inner modeling route setting unit that sets the intersection line to the inner modeling route to which the new line is added;
The control information generation device according to (1) or (2), comprising:
According to this control information generation device, by parallel movement of the first virtual line and the second virtual line, the inner modeling path can be arranged at a position equidistant from the other opposing path.
(4) 前記造形経路追加部が追加した複数の前記内側造形経路は、互いに非平行である、(1)から(3)のいずれか1つに記載の制御情報生成装置。
 この制御情報生成装置によれば、追加される内側造形経路が互いに非平行であることで、平行である場合と比較して、より柔軟に造形経路の配置が行え、経路数を節約しやすくなる。
(4) The control information generation device according to any one of (1) to (3), wherein the plurality of inner modeling paths added by the modeling path addition unit are non-parallel to each other.
According to this control information generation device, since the added inner printing paths are non-parallel to each other, compared to the case where they are parallel, the printing paths can be arranged more flexibly, making it easier to save the number of paths. .
(5) 抽出した前記一対の経路は互いに非平行な直線であり、
 前記内側造形経路は、前記一対の経路同士がなす交差角の二等分線である、(1)から(4)のいずれか1つに記載の制御情報生成装置。
 この制御情報生成装置によれば、内側造形経路を、その両脇に位置する造形経路との偏りが少ない経路にできる。
(5) The pair of extracted routes are straight lines that are non-parallel to each other,
The control information generation device according to any one of (1) to (4), wherein the inner modeling path is a bisector of an intersection angle formed by the pair of paths.
According to this control information generation device, it is possible to make the inner modeling route a route that is less biased from the modeling routes located on both sides thereof.
(6) 前記内側造形経路は、前記一対の経路よりも経路長が短い、(1)から(5)のいずれか1つに記載の制御情報生成装置。
 この制御情報生成装置によれば、近接する経路との重なりによる過剰なビードの積層を抑制できる。
(6) The control information generation device according to any one of (1) to (5), wherein the inner modeling path has a shorter path length than the pair of paths.
According to this control information generation device, excessive stacking of beads due to overlap with adjacent paths can be suppressed.
(7) 前記内側造形経路及び前記外側造形経路の互いに隣接する経路同士の間隔のうち、予め定めた基準値より大きい間隔が存在する場合に、積層される前記ビードのビード体積に不足があると判定する判定部をさらに備え、
 前記造形経路追加部は、前記判定部が前記ビード積層量に不足があると判定した場合に、前記内側造形経路の追加を繰り返す、(1)から(6)のいずれか1つに記載の制御情報生成装置。
 この制御情報生成装置によれば、隣接する経路に沿ってビードを形成した際に、ビード同士の重なりが不十分となって隙間による溶接不良が生じるおそれのある部位に、更に内側造形経路が追加され、溶接欠陥の発生を抑制できる。
(7) If there is an interval greater than a predetermined reference value among the intervals between adjacent routes of the inner modeling route and the outer modeling route, it is determined that there is a shortage in the bead volume of the stacked beads. further comprising a determination unit that determines;
The control according to any one of (1) to (6), wherein the modeling route addition unit repeats adding the inner modeling route when the determination unit determines that the bead stacking amount is insufficient. Information generation device.
According to this control information generation device, an inner modeling path is added to areas where there is a risk of welding defects due to gaps due to insufficient overlap between beads when beads are formed along adjacent paths. Therefore, the occurrence of welding defects can be suppressed.
(8) (1)から(7)のいずれか1つに記載の制御情報生成装置と、
 前記制御情報生成装置から出力される前記制御情報に応じて前記造形物を造形する前記積層造形装置と、
を備える積層造形システム。
 この積層造形システムによれば、溶接欠陥の少ない高品位な造形物を製造できる。
(8) The control information generation device according to any one of (1) to (7);
the layered manufacturing device that shapes the object according to the control information output from the control information generation device;
An additive manufacturing system equipped with
According to this additive manufacturing system, it is possible to manufacture high-quality molded objects with few welding defects.
(9) 溶融した加工材料を造形経路に沿って造形対象面に付加して形成されるビードによって層形状を造形し、前記層形状を積層して三次元形状の造形物を造形する積層造形装置を制御するための制御情報を生成するプログラムであって、
 コンピュータに、
 前記造形経路の情報を取得する機能と、
 前記造形経路のうち前記三次元形状の最外殻を形成する外側造形経路に挟まれた領域に、新たに内側造形経路を追加する際に、前記外側造形経路の互いに対向する一対の経路を抽出し、抽出された前記一対の経路の長手方向に沿って該一対の経路同士の間隔を等分割した位置に前記内側造形経路を追加して、前記外側造形経路と前記内側造形経路の情報を、前記ビードを形成する軌道情報として前記制御情報に組み入れる機能と、
を実現させるプログラム。
 このプログラムによれば、外側造形経路に挟まれた充填部に新たに内側造形経路を追加した起動情報を制御情報として出力でき、ビードを形成する造形経路を、空隙等による溶接欠陥の発生を抑制して効率よく設定できる。
(9) An additive manufacturing device that creates a layered shape using beads formed by adding molten processing material to a surface to be modeled along a modeling path, and builds a three-dimensional shaped object by stacking the layered shapes. A program that generates control information for controlling the
to the computer,
a function of acquiring information on the modeling route;
When adding a new inner modeling route to a region between the outer modeling routes that form the outermost shell of the three-dimensional shape among the modeling routes, a pair of mutually opposing routes of the outer modeling routes are extracted. Then, the inner modeling route is added at a position where the interval between the pair of extracted routes is equally divided along the longitudinal direction of the pair of routes, and the information on the outer modeling route and the inner modeling route is a function of incorporating into the control information as trajectory information for forming the bead;
A program that makes this possible.
According to this program, it is possible to output startup information that adds a new inner modeling route to the filled part sandwiched between the outer modeling route as control information, and suppresses the occurrence of welding defects due to voids etc. in the modeling route that forms the bead. settings can be done efficiently.
 なお、本出願は、2022年4月22日出願の日本特許出願(特願2022-071117)に基づくものであり、その内容は本出願の中に参照として援用される。 Note that this application is based on a Japanese patent application (Japanese Patent Application No. 2022-071117) filed on April 22, 2022, and the contents thereof are incorporated as a reference in this application.
 11 造形制御装置
 13 積層造形装置
 14 マニピュレータ
 15 制御情報生成装置
 17 溶加材供給装置
 17a リール
 17b 繰り出し機構
 19 マニピュレータ制御装置
 21 熱源制御装置
 23 トーチ
 25 ベース
 31 入力部
 33 記憶部
 35 造形プログラム作成部
 37 出力部
 41 情報取得部
 43 造形経路追加部
 45 判定部
 46 仮想線生成部
 47 交差線生成部
 49 内側造形経路設定部
 51 外壁部
 53 充填部
 55 外側造形経路
 55a,55b,55c,55d 経路(外側造形経路)
 55in 内側経路(外側造形経路)
 55out 外側経路(外側造形経路)
 57,57A,57B 内側造形経路
100 積層造形システム
 B ビード
 L,L1 間隔
 LC 交差線
 LV1 第一仮想線
 LV2 第二仮想線
 M 溶加材(溶接ワイヤ)
 O 交点
 P1,P2,P3,P4,P5 交点
 W 造形物
 θ 交差角
11 Molding control device 13 Additive manufacturing device 14 Manipulator 15 Control information generation device 17 Filler material supply device 17a Reel 17b Feeding mechanism 19 Manipulator control device 21 Heat source control device 23 Torch 25 Base 31 Input section 33 Storage section 35 Molding program creation section 37 Output section 41 Information acquisition section 43 Molding route addition section 45 Judgment section 46 Virtual line generation section 47 Intersection line generation section 49 Inner modeling route setting section 51 Outer wall section 53 Filling section 55 Outer modeling route 55a, 55b, 55c, 55d Route (outside modeling route)
55in inner route (outer modeling route)
55out outer route (outer modeling route)
57, 57A, 57B Inner modeling path 100 Laminated manufacturing system B Bead L, L1 Interval LC Intersection line LV1 First imaginary line LV2 Second imaginary line M Filler metal (welding wire)
O Intersection P1, P2, P3, P4, P5 Intersection W Modeled object θ Intersection angle

Claims (13)

  1.  溶融した加工材料を造形経路に沿って造形対象面に形成するビードにより層形状を造形し、前記層形状を積層して三次元形状の造形物を製造する積層造形装置における、該積層造形装置を制御するための制御情報を生成する制御情報生成装置であって、
     前記造形経路の情報を取得する情報取得部と、
     前記造形経路のうち前記造形物の外壁部を形成する外側造形経路に挟まれた充填部に、新たに内側造形経路を追加する造形経路追加部と、
    を備え、
     前記造形経路追加部は、前記外側造形経路の互いに対向する一対の経路を抽出し、抽出された前記一対の経路の長手方向に沿って該一対の経路同士の間隔を等分割した位置に前記内側造形経路を追加して、前記外側造形経路と前記内側造形経路の情報を、前記ビードを形成する軌道情報として前記制御情報に組み入れる、
    制御情報生成装置。
    A layered manufacturing device for manufacturing a three-dimensional shaped object by forming a layered shape using a bead that forms a molten processing material on a surface to be modeled along a modeling path, and laminating the layered shape. A control information generation device that generates control information for controlling,
    an information acquisition unit that acquires information on the modeling route;
    a modeling route addition unit that adds a new inner modeling route to a filling part sandwiched between an outer modeling route that forms an outer wall of the modeled object among the modeling routes;
    Equipped with
    The modeling route addition unit extracts a pair of mutually opposing routes of the outer modeling route, and adds the inner part to a position where the interval between the pair of routes is equally divided along the longitudinal direction of the pair of extracted routes. adding a modeling route and incorporating information on the outer modeling route and the inner modeling route into the control information as trajectory information for forming the bead;
    Control information generation device.
  2.  前記造形経路追加部は、前記内側造形経路と前記外側造形経路の互いに対向する一対の経路を抽出し、抽出された前記一対の経路同士の間隔を等分割した位置に新たに内側造形経路を追加する、
    請求項1に記載の制御情報生成装置。
    The modeling route addition unit extracts a pair of mutually opposing routes, the inner modeling route and the outer modeling route, and adds a new inner modeling route at a position where the interval between the extracted pair of routes is equally divided. do,
    The control information generation device according to claim 1.
  3.  前記造形経路追加部は、
     抽出した前記一対の経路を第一仮想線と第二仮想線と定義する仮想線生成部と、
     前記第一仮想線と前記第二仮想線とを互いに接近する方向へ等速で平行移動させたときに、前記第一仮想線と前記第二仮想線とが移動しながら交差する交点を順次に接続して交差線を生成する交差線生成部と、
     前記交差線を新たに追加する前記内側造形経路に設定する内側造形経路設定部と、
    を備える、請求項1に記載の制御情報生成装置。
    The modeling route addition section is
    a virtual line generation unit that defines the pair of extracted routes as a first virtual line and a second virtual line;
    When the first imaginary line and the second imaginary line are moved in parallel at a constant speed in a direction in which they approach each other, the first imaginary line and the second imaginary line intersect while moving, sequentially. an intersection line generation unit that connects and generates an intersection line;
    an inner modeling route setting unit that sets the intersection line to the inner modeling route to which the new line is added;
    The control information generation device according to claim 1, comprising:
  4.  前記造形経路追加部は、
     抽出した前記一対の経路を第一仮想線と第二仮想線と定義する仮想線生成部と、
     前記第一仮想線と前記第二仮想線とを互いに接近する方向へ等速で平行移動させたときに、前記第一仮想線と前記第二仮想線とが移動しながら交差する交点を順次に接続して交差線を生成する交差線生成部と、
     前記交差線を新たに追加する前記内側造形経路に設定する内側造形経路設定部と、
    を備える、請求項2に記載の制御情報生成装置。
    The modeling route addition section is
    a virtual line generation unit that defines the pair of extracted routes as a first virtual line and a second virtual line;
    When the first imaginary line and the second imaginary line are moved in parallel at a constant speed in a direction in which they approach each other, the first imaginary line and the second imaginary line intersect while moving, sequentially. an intersection line generation unit that connects and generates an intersection line;
    an inner modeling route setting unit that sets the intersection line to the inner modeling route to which the new line is added;
    The control information generation device according to claim 2, comprising:
  5.  前記造形経路追加部が追加した複数の前記内側造形経路は、互いに非平行である、請求項1に記載の制御情報生成装置。 The control information generation device according to claim 1, wherein the plurality of inner modeling paths added by the modeling path adding unit are non-parallel to each other.
  6.  前記造形経路追加部が追加した複数の前記内側造形経路は、互いに非平行である、請求項2に記載の制御情報生成装置。 The control information generation device according to claim 2, wherein the plurality of inner modeling paths added by the modeling path adding unit are non-parallel to each other.
  7.  前記造形経路追加部が追加した複数の前記内側造形経路は、互いに非平行である、請求項3に記載の制御情報生成装置。 The control information generation device according to claim 3, wherein the plurality of inner modeling routes added by the modeling route addition unit are non-parallel to each other.
  8.  前記造形経路追加部が追加した複数の前記内側造形経路は、互いに非平行である、請求項4に記載の制御情報生成装置。 The control information generation device according to claim 4, wherein the plurality of inner modeling routes added by the modeling route addition unit are non-parallel to each other.
  9.  抽出した前記一対の経路は互いに非平行な直線であり、
     前記内側造形経路は、前記一対の経路同士がなす交差角の二等分線である、
    請求項1から8のいずれか1項に記載の制御情報生成装置。
    The pair of extracted paths are straight lines that are non-parallel to each other,
    The inner modeling path is a bisector of the intersection angle formed by the pair of paths,
    The control information generation device according to any one of claims 1 to 8.
  10.  前記内側造形経路は、前記一対の経路よりも経路長が短い、
    請求項1から8のいずれか1項に記載の制御情報生成装置。
    The inner modeling path has a shorter path length than the pair of paths.
    The control information generation device according to any one of claims 1 to 8.
  11.  前記内側造形経路及び前記外側造形経路の互いに隣接する経路同士の間隔のうち、予め定めた基準値より大きい間隔が存在する場合に、積層される前記ビードのビード体積に不足があると判定する判定部をさらに備え、
     前記造形経路追加部は、前記判定部が前記ビード体積に不足があると判定した場合に、前記内側造形経路の追加を繰り返す、
    請求項1から8のいずれか1項に記載の制御情報生成装置。
    Determining that there is a shortage in the bead volume of the stacked beads when there is an interval larger than a predetermined reference value among the intervals between mutually adjacent routes of the inner modeling route and the outer modeling route. further equipped with a department;
    The modeling route addition unit repeats adding the inner modeling route when the determination unit determines that the bead volume is insufficient.
    The control information generation device according to any one of claims 1 to 8.
  12.  請求項1から8のいずれか1項に記載の制御情報生成装置と、
     前記制御情報生成装置から出力される前記制御情報に応じて前記造形物を造形する前記積層造形装置と、
    を備える積層造形システム。
    A control information generation device according to any one of claims 1 to 8,
    the layered manufacturing device that shapes the object according to the control information output from the control information generation device;
    An additive manufacturing system equipped with
  13.  溶融した加工材料を造形経路に沿って造形対象面に付加して形成されるビードによって層形状を造形し、前記層形状を積層して三次元形状の造形物を造形する積層造形装置を制御するための制御情報を生成するプログラムであって、
     コンピュータに、
     前記造形経路の情報を取得する機能と、
     前記造形経路のうち前記三次元形状の最外殻を形成する外側造形経路に挟まれた領域に、新たに内側造形経路を追加する際に、前記外側造形経路の互いに対向する一対の経路を抽出し、抽出された前記一対の経路の長手方向に沿って該一対の経路同士の間隔を等分割した位置に前記内側造形経路を追加して、前記外側造形経路と前記内側造形経路の情報を、前記ビードを形成する軌道情報として前記制御情報に組み入れる機能と、
    を実現させるプログラム。
    Controls an additive manufacturing device that adds molten processing material to a surface to be modeled along a modeling path to form a layer shape using beads formed, and laminates the layer shapes to form a three-dimensional object. A program that generates control information for,
    to the computer,
    a function of acquiring information on the modeling route;
    When adding a new inner modeling route to a region between the outer modeling routes that form the outermost shell of the three-dimensional shape among the modeling routes, a pair of mutually opposing routes of the outer modeling routes are extracted. Then, the inner modeling route is added at a position where the interval between the pair of extracted routes is equally divided along the longitudinal direction of the pair of routes, and the information on the outer modeling route and the inner modeling route is a function of incorporating into the control information as trajectory information for forming the bead;
    A program that makes this possible.
PCT/JP2023/014783 2022-04-22 2023-04-11 Control information generation device, additive manufacturing system and program WO2023204113A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-071117 2022-04-22
JP2022071117 2022-04-22

Publications (1)

Publication Number Publication Date
WO2023204113A1 true WO2023204113A1 (en) 2023-10-26

Family

ID=88420052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014783 WO2023204113A1 (en) 2022-04-22 2023-04-11 Control information generation device, additive manufacturing system and program

Country Status (2)

Country Link
JP (1) JP2023160808A (en)
WO (1) WO2023204113A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021007960A (en) * 2019-06-28 2021-01-28 株式会社神戸製鋼所 Method of manufacturing lamination molding object
JP2021016967A (en) * 2019-07-19 2021-02-15 セイコーエプソン株式会社 Manufacturing method of three-dimensional molded article and three-dimensional molding device
JP2021126673A (en) * 2020-02-13 2021-09-02 株式会社神戸製鋼所 Manufacturing method of laminated molding
JP2022054204A (en) * 2020-09-25 2022-04-06 株式会社神戸製鋼所 Molding condition setting method, lamination molding method, lamination molding system, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021007960A (en) * 2019-06-28 2021-01-28 株式会社神戸製鋼所 Method of manufacturing lamination molding object
JP2021016967A (en) * 2019-07-19 2021-02-15 セイコーエプソン株式会社 Manufacturing method of three-dimensional molded article and three-dimensional molding device
JP2021126673A (en) * 2020-02-13 2021-09-02 株式会社神戸製鋼所 Manufacturing method of laminated molding
JP2022054204A (en) * 2020-09-25 2022-04-06 株式会社神戸製鋼所 Molding condition setting method, lamination molding method, lamination molding system, and program

Also Published As

Publication number Publication date
JP2023160808A (en) 2023-11-02

Similar Documents

Publication Publication Date Title
CN112368099B (en) Method and apparatus for manufacturing layered structure
CN110312588B (en) Stacking control device, stacking control method, and storage medium
WO2017141639A1 (en) Layering control device, layering control method, and program
JP7477723B2 (en) How to generate an arc fuse additive manufacturing pathway
WO2019107506A1 (en) Method for designing laminate molded article, production method, production device, and program
JP6552771B1 (en) Additive manufacturing method and processing path generation method
JP7120774B2 (en) Laminate-molded article modeling procedure design method, laminate-molded article modeling method, manufacturing apparatus, and program
WO2019220867A1 (en) Production method and production apparatus for additive manufacturing product, and program
JP2021016885A (en) Lamination planning method for laminate molded object, manufacturing method and manufacturing apparatus for laminate molded object
WO2023204113A1 (en) Control information generation device, additive manufacturing system and program
JP7381422B2 (en) Manufacturing method of modeled object and modeled object
JP7181163B2 (en) Laminated structure manufacturing method
WO2022064941A1 (en) Method for setting manufacturing condition, additive manufacturing method, additive manufacturing system, and program
JP6997044B2 (en) Laminated modeling plan Design method, manufacturing method, manufacturing equipment, and program of laminated model
JP2024025180A (en) Control information generation device, control information generation method, program, and laminate molding method
JP2021126673A (en) Manufacturing method of laminated molding
WO2024014277A1 (en) Control information generating device, control information generating method, and program
JP2021016988A (en) Excess thickness setting method of lamination molded article, manufacturing method and manufacturing apparatus of lamination molded article
WO2024053281A1 (en) Control information generation device, control information generation method, and program
JP2024013527A (en) Orbit planning support device, orbit planning support method and program
JP7311481B2 (en) Layered manufacturing method, layered manufacturing apparatus, and model display device
WO2023149143A1 (en) Control information generation device, control information generation method, program, welding control device, and welding device
WO2022091762A1 (en) Stacking plan creating method
WO2024095596A1 (en) Method for correcting control information for additive manufacturing device, device for correcting control information, and program
JP6783964B1 (en) Manufacturing method of laminated model

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791761

Country of ref document: EP

Kind code of ref document: A1