JP2021016885A - Lamination planning method for laminate molded object, manufacturing method and manufacturing apparatus for laminate molded object - Google Patents

Lamination planning method for laminate molded object, manufacturing method and manufacturing apparatus for laminate molded object Download PDF

Info

Publication number
JP2021016885A
JP2021016885A JP2019133937A JP2019133937A JP2021016885A JP 2021016885 A JP2021016885 A JP 2021016885A JP 2019133937 A JP2019133937 A JP 2019133937A JP 2019133937 A JP2019133937 A JP 2019133937A JP 2021016885 A JP2021016885 A JP 2021016885A
Authority
JP
Japan
Prior art keywords
model
laminated
shape
laminated model
base plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019133937A
Other languages
Japanese (ja)
Other versions
JP7197437B2 (en
Inventor
碩 黄
Shuo Huang
碩 黄
山田 岳史
Takeshi Yamada
岳史 山田
伸志 佐藤
Shinji Sato
伸志 佐藤
正俊 飛田
Masatoshi Hida
正俊 飛田
藤井 達也
Tatsuya Fujii
達也 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2019133937A priority Critical patent/JP7197437B2/en
Publication of JP2021016885A publication Critical patent/JP2021016885A/en
Application granted granted Critical
Publication of JP7197437B2 publication Critical patent/JP7197437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

To provide a lamination planning method for a laminate molded object, a manufacturing method and a manufacturing apparatus for a laminate molded object capable of forming a target shape with high accuracy while suppressing influence of release of residual stress generated when the object is separated from the base plate.SOLUTION: A lamination planning method for a laminate molded object comprises, to be performed in the following arranged order: a lamination plan creation step for obtaining a shape model MA of a laminate molded object W to be laminate molded on a base plate 23 on the basis of three-dimensional shape data, and creating a lamination plan for forming the laminate molded object W of the shape model MA; a shape error setting step for setting an allowable shape error α for the laminate molded object W formed on the basis of the shape model MA; a deformation amount calculation step for obtaining a deformation amount δP caused by a release strain generated when the laminate molded object W formed based on the shape model MA is separated from the base plate 23; and a correction step for correcting the shape model MA and the lamination plan until the deformation amount δP falls within a range of the shape error α.SELECTED DRAWING: Figure 5

Description

本発明は、積層造形物の積層計画方法、積層造形物の製造方法及び製造装置に関する。 The present invention relates to a method for planning a laminate of a laminated model, a method for producing a laminated model, and a manufacturing apparatus.

近年になって、生産手段として3Dプリンタを用いた造形のニーズが高まっており、金属材料を用いた造形の実用化に向けて研究開発が進められている。金属材料を造形する3Dプリンタは、レーザ、電子ビーム、アーク等の熱源を用い、金属粉体や金属ワイヤを溶融させ、溶融金属を積層させることで積層造形物を作製する。 In recent years, there has been an increasing need for modeling using a 3D printer as a means of production, and research and development are being promoted toward the practical application of modeling using metal materials. A 3D printer for modeling a metal material uses a heat source such as a laser, an electron beam, or an arc to melt a metal powder or a metal wire and laminate the molten metal to produce a laminated model.

ベースプレート上にアーク溶接で造形物を造形する金属3Dプリンタとして、スペーサによって造形テーブルと基台とをそれぞれ離間させた剛性プレートを、造形テーブルと基台に対して着脱可能に設け、基台の上に造形物を造形する際に剛性プレートを冷却媒体に水没させ、造形後に剛性プレートごと2次加工を行うものが知られている(特許文献1参照)。 As a metal 3D printer that shapes a modeled object by arc welding on the base plate, a rigid plate with the modeling table and the base separated by spacers is provided detachably from the modeling table and the base, and on the base. It is known that a rigid plate is submerged in a cooling medium when a modeled object is modeled, and the rigid plate is subjected to secondary processing after modeling (see Patent Document 1).

また、積層造形によって造形される造形物についての材料物性値、造形条件、及び造形物サイズに関する条件を受け付け、この条件及び造形時に生成される溶融池周辺の拘束状態を定量化した拘束条件に基づいて導かれる固有ひずみの線形式から固有ひずみを算出する技術が知られている(特許文献2参照)。 In addition, it accepts the material property values, modeling conditions, and conditions related to the size of the modeled object for the modeled object formed by laminated modeling, and is based on these conditions and the constraint conditions that quantify the restraint state around the molten pool generated during modeling. A technique for calculating the intrinsic strain from the linear form of the intrinsic strain derived from the above is known (see Patent Document 2).

特開2017−144446号公報JP-A-2017-144446 特開2018−184623号公報JP-A-2018-184623

ところで、母材に対して溶着ビードを積層して造形物を造形する積層造形では、材料を溶融・凝固させ造形していくため、熱収縮等によって造形物内部に残留応力が発生していることがある。この状態にて、母材を切削除去すると、残留応力の解放により、造形物に変形が発生し、目標形状に対して誤差が発生するおそれがある。 By the way, in laminated modeling in which a welded bead is laminated on a base material to form a modeled object, the material is melted and solidified to form the model, so that residual stress is generated inside the modeled object due to heat shrinkage or the like. There is. If the base metal is cut and removed in this state, the modeled object may be deformed due to the release of the residual stress, and an error may occur with respect to the target shape.

ベースプレートの変形を矯正する特許文献1の技術、及び造形される造形物の固有ひずみを算出する特許文献2の技術では、母材の切削除去後の造形物の目標形状に対する誤差を抑えることは困難である。 With the technique of Patent Document 1 for correcting the deformation of the base plate and the technique of Patent Document 2 for calculating the intrinsic strain of the modeled object to be modeled, it is difficult to suppress an error with respect to the target shape of the modeled object after cutting and removing the base material. Is.

そこで本発明は、ベースプレートから分離した際の残留応力の解放による影響を抑えて高精度で目標形状に造形することが可能な積層造形物の積層計画方法、積層造形物の製造方法及び製造装置を提供することを目的とする。 Therefore, the present invention provides a laminating planning method, a laminating model manufacturing method, and a manufacturing apparatus for a laminated model capable of forming a target shape with high accuracy by suppressing the influence of release of residual stress when separated from the base plate. The purpose is to provide.

本発明は下記構成からなる。
(1) 溶融金属をベースプレート上に積層する造形部により、積層造形物を該積層造形物の3次元形状データを用いて造形する積層造形物の積層計画方法であって、
前記3次元形状データに基づいて、前記ベースプレート上に積層造形する前記積層造形物の形状モデルを求め、前記形状モデルの前記積層造形物を積層造形するための積層計画を作成する積層計画作成工程と、
前記形状モデルに基づいて造形した前記積層造形物に対する許容可能な形状誤差を設定する形状誤差設定工程と、
前記形状モデルにより造形した前記積層造形物を前記ベースプレートから分離した際の解放ひずみによる変形量を求める変形量計算工程と、
前記変形量が前記形状誤差の範囲に収まるまで、前記形状モデル及び前記積層計画を補正する補正工程と、
をこの順で実施する積層造形物の積層計画方法。
(2) 上記(1)に記載の積層造形物の積層計画方法により作成した前記積層計画に基づいて、前記積層造形物を積層造形する積層造形物の製造方法。
(3) 溶融金属をベースプレート上に積層する造形部により、積層造形物を該積層造形物の3次元形状データを用いて造形する積層造形物の製造装置であって、
前記3次元形状データに基づいて、前記ベースプレート上に積層造形する前記積層造形物の形状モデルを求め、前記形状モデルの前記積層造形物を積層造形するための積層計画を作成する積層計画作成部と、
前記形状モデルに基づいて造形した前記積層造形物に対する許容可能な形状誤差を設定する設定部と、
前記形状モデルにより造形した前記積層造形物を前記ベースプレートから分離した際の解放ひずみによる変形量を求める変形量計算部と、
前記変形量が前記形状誤差の範囲に収まるまで、前記形状モデル及び前記積層計画を補正する補正部と、
を備える積層造形物の製造装置。
The present invention has the following configuration.
(1) A method of laminating a laminated model in which a laminated model is modeled using the three-dimensional shape data of the laminated model by a modeling portion in which molten metal is laminated on a base plate.
Based on the three-dimensional shape data, a stacking plan creation step of obtaining a shape model of the laminated model to be laminated on the base plate and creating a stacking plan for laminating the laminated model of the shape model. ,
A shape error setting step for setting an acceptable shape error for the laminated model formed based on the shape model, and a shape error setting step.
A deformation amount calculation step for obtaining the amount of deformation due to release strain when the laminated model formed by the shape model is separated from the base plate.
A correction step of correcting the shape model and the stacking plan until the deformation amount falls within the range of the shape error, and
A method of laminating a laminated model in which the above steps are carried out in this order.
(2) A method for manufacturing a laminated model in which the laminated model is laminated based on the laminated plan created by the method for planning the lamination of the laminated model according to the above (1).
(3) An apparatus for manufacturing a laminated model, in which a laminated model is modeled using the three-dimensional shape data of the laminated model by a modeling unit in which molten metal is laminated on a base plate.
Based on the three-dimensional shape data, a stacking plan creation unit that obtains a shape model of the laminated model to be laminated on the base plate and creates a stacking plan for laminating the laminated model of the shape model. ,
A setting unit that sets an acceptable shape error for the laminated model formed based on the shape model, and a setting unit.
A deformation amount calculation unit for obtaining the amount of deformation due to release strain when the laminated model formed by the shape model is separated from the base plate.
A correction unit that corrects the shape model and the stacking plan until the amount of deformation falls within the range of the shape error.
Equipment for manufacturing laminated objects.

本発明によれば、ベースプレートから分離した際の残留応力の解放による影響を抑えて高精度で目標形状に造形することができる。 According to the present invention, it is possible to form a target shape with high accuracy by suppressing the influence of release of residual stress when separated from the base plate.

本発明に係る積層造形物の製造装置の概略構成図である。It is a schematic block diagram of the manufacturing apparatus of the laminated model which concerns on this invention. 積層造形物の上下方向に沿う概略断面図である。It is a schematic cross-sectional view along the vertical direction of a laminated model. 積層造形物の基本的な積層造形の手順を説明する上下方向に沿う概略断面図である。It is schematic cross-sectional view along the vertical direction explaining the procedure of the basic laminated modeling of a laminated model. 積層造形物の基本的な積層造形の手順を説明する上下方向に沿う概略断面図である。It is schematic cross-sectional view along the vertical direction explaining the procedure of the basic laminated modeling of a laminated model. 積層造形物の基本的な積層造形の手順を説明する上下方向に沿う概略断面図である。It is schematic cross-sectional view along the vertical direction explaining the procedure of the basic laminated modeling of a laminated model. ベースプレートを除去した際の積層造形物の変形について説明する積層造形物の上下方向に沿う概略断面図である。It is schematic cross-sectional view along the vertical direction of the laminated model article explaining the deformation of the laminated model object when the base plate is removed. 積層造形物の積層計画の手順を示すフローチャートである。It is a flowchart which shows the procedure of the stacking plan of a laminated model. 積層造形物の積層計画の手順を説明する積層造形物の模式図である。It is a schematic diagram of a laminated model which explains the procedure of the laminating plan of a laminated model. 積層造形物の積層計画の手順を説明する積層造形物の模式図である。It is a schematic diagram of a laminated model which explains the procedure of the laminating plan of a laminated model. 積層造形物の積層計画の手順を説明する積層造形物の模式図である。It is a schematic diagram of a laminated model which explains the procedure of the laminating plan of a laminated model.

以下、本発明の実施形態について、図面を参照して詳細に説明する。
<積層造形物の製造装置>
図1は本発明に係る積層造形物の製造装置の概略構成図である。
本構成の積層造形物の製造装置100は、造形部11と、造形部11を統括制御するコントローラ13と、電源装置15と、を備える。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
<Manufacturing equipment for laminated objects>
FIG. 1 is a schematic configuration diagram of a manufacturing apparatus for a laminated model according to the present invention.
The laminated model manufacturing apparatus 100 having this configuration includes a modeling unit 11, a controller 13 that controls the modeling unit 11, and a power supply device 15.

造形部11は、先端軸にトーチ17が設けられた溶接ロボット19と、トーチ17に溶加材(溶接ワイヤ)Mを供給する溶加材供給部21とを有する。 The modeling unit 11 includes a welding robot 19 provided with a torch 17 on the tip shaft, and a filler material supply unit 21 that supplies the filler metal (welding wire) M to the torch 17.

溶接ロボット19は、多関節ロボットであり、ロボットアームの先端軸に取り付けたトーチ17には、溶加材Mが連続供給可能に支持される。トーチ17の位置や姿勢は、ロボットアームの自由度の範囲で3次元的に任意に設定可能となっている。 The welding robot 19 is an articulated robot, and the filler metal M is continuously supplied to the torch 17 attached to the tip shaft of the robot arm. The position and posture of the torch 17 can be arbitrarily set three-dimensionally within the range of the degree of freedom of the robot arm.

トーチ17は、溶加材Mを保持しつつ、シールドガス雰囲気で溶加材Mの先端からアークを発生させる。トーチ17は、不図示のシールドノズルを有し、シールドノズルからシールドガスが供給される。アーク溶接法としては、被覆アーク溶接や炭酸ガスアーク溶接等の消耗電極式、TIG溶接やプラズマアーク溶接等の非消耗電極式のいずれであってもよく、作製する積層造形物に応じて適宜選定される。 The torch 17 generates an arc from the tip of the filler metal M in a shield gas atmosphere while holding the filler metal M. The torch 17 has a shield nozzle (not shown), and shield gas is supplied from the shield nozzle. The arc welding method may be either a consumable electrode type such as shielded metal arc welding or carbon dioxide arc welding, or a non-consumable electrode type such as TIG welding or plasma arc welding, and is appropriately selected according to the laminated model to be manufactured. Weld.

例えば、消耗電極式の場合、シールドノズルの内部にはコンタクトチップが配置され、溶融電流が給電される溶加材Mがコンタクトチップに保持される。トーチ17は、溶加材Mを保持しつつ、シールドガス雰囲気で溶加材Mの先端からアークを発生する。溶加材Mは、ロボットアーム等に取り付けた不図示の繰り出し機構により、溶加材供給部21からトーチ17に送給される。そして、トーチ17を移動しつつ、連続送給される溶加材Mを溶融及び凝固させると、ベースプレート23上に溶加材Mの溶融凝固体である線状の溶着ビードBが形成される。 For example, in the case of the consumable electrode type, the contact tip is arranged inside the shield nozzle, and the filler metal M to which the melting current is supplied is held by the contact tip. The torch 17 generates an arc from the tip of the filler metal M in a shield gas atmosphere while holding the filler metal M. The filler metal M is fed from the filler metal supply unit 21 to the torch 17 by a feeding mechanism (not shown) attached to a robot arm or the like. Then, when the filler metal M that is continuously fed is melted and solidified while moving the torch 17, a linear welded bead B that is a molten solidified body of the filler metal M is formed on the base plate 23.

溶加材Mは、溶接ロボット19のロボットアーム等に取り付けた不図示の繰り出し機構により、溶加材供給部21からトーチ17に送給される。そして、トーチ17は、コントローラ13からの指令によりロボットアームが駆動されることで、所望の溶接ラインに沿って移動する。また、連続送給される溶加材Mは、トーチ17の先端で発生するアークによってシールドガス雰囲気で溶融され、凝固する。これにより、溶加材Mの溶融凝固体である溶着ビードBが形成される。このように、造形部11は、溶加材Mの溶融金属を積層する積層造形装置であって、ベースプレート23上に多層状に溶着ビードBを積層することで、積層造形物Wを造形する。 The filler metal M is fed from the filler metal supply unit 21 to the torch 17 by a feeding mechanism (not shown) attached to the robot arm or the like of the welding robot 19. Then, the torch 17 moves along a desired welding line by driving the robot arm by a command from the controller 13. Further, the filler metal M that is continuously fed is melted and solidified in a shield gas atmosphere by an arc generated at the tip of the torch 17. As a result, the welded bead B, which is a molten solidified body of the filler metal M, is formed. As described above, the modeling unit 11 is a laminated modeling device for laminating the molten metal of the filler metal M, and the laminated model W is modeled by laminating the welded beads B in a multi-layered manner on the base plate 23.

溶加材Mを溶融させる熱源としては、上記したアークに限らない。例えば、アークとレーザとを併用した加熱方式、プラズマを用いる加熱方式、電子ビームやレーザを用いる加熱方式等、他の方式による熱源を採用してもよい。アークを用いる場合は、シールド性を確保しつつ、素材、構造によらずに簡単に溶着ビードBを形成できる。電子ビームやレーザにより加熱する場合は、加熱量を更に細かく制御でき、溶着ビードBの状態をより適正に維持して、積層造形物Wの更なる品質向上に寄与できる。 The heat source for melting the filler metal M is not limited to the above-mentioned arc. For example, a heat source by another method such as a heating method using an arc and a laser in combination, a heating method using plasma, a heating method using an electron beam or a laser may be adopted. When an arc is used, the welded bead B can be easily formed regardless of the material and structure while ensuring the shielding property. When heating with an electron beam or a laser, the amount of heating can be controlled more finely, the state of the welded bead B can be maintained more appropriately, and the quality of the laminated model W can be further improved.

コントローラ13は、積層計画作成部31と、変形量計算部33と、余肉量設定部34と、プログラム生成部35と、記憶部37と、入力部39と、表示部40と、これら各部が接続される制御部41と、を有する。制御部41には、作製しようとする積層造形物Wの形状を表す3次元形状データ(CADデータ等)や、各種の指示情報が入力部39から入力される。表示部40は、制御部41から送信される画像情報に基づいて各種の画像を表示する。 The controller 13 includes a stacking plan creation unit 31, a deformation amount calculation unit 33, a surplus thickness setting unit 34, a program generation unit 35, a storage unit 37, an input unit 39, a display unit 40, and each of these units. It has a control unit 41 to be connected. Three-dimensional shape data (CAD data, etc.) representing the shape of the laminated model W to be manufactured and various instruction information are input to the control unit 41 from the input unit 39. The display unit 40 displays various images based on the image information transmitted from the control unit 41.

本構成の積層造形物の製造装置100は、入力された3次元形状データを用いてビード形成用の形状モデルを生成し、トーチ17の移動軌跡や溶接条件等の積層計画を作成する。制御部41は、積層計画に応じた動作プログラムを作成し、この動作プログラムに従って各部を駆動して、所望の形状の積層造形物Wを積層造形する。 The laminated model manufacturing apparatus 100 having this configuration generates a shape model for bead formation using the input three-dimensional shape data, and creates a stacking plan such as a movement locus of the torch 17 and welding conditions. The control unit 41 creates an operation program according to the stacking plan, and drives each unit according to this operation program to laminate and model the laminated model W having a desired shape.

積層計画作成部31は、入力された3次元形状データの形状モデルを溶着ビードBの高さに応じた複数の層に分解する。そして、分解された形状モデルの各層について、溶着ビードBを形成するためのトーチ17の軌道、及び溶着ビードBを形成する加熱条件(ビード幅、ビード積層高さ等を得るための溶接条件等を含む)を定める積層計画を作成する。 The stacking plan creation unit 31 decomposes the shape model of the input three-dimensional shape data into a plurality of layers according to the height of the welding bead B. Then, for each layer of the disassembled shape model, the trajectory of the torch 17 for forming the welded bead B and the heating conditions (bead width, bead stacking height, etc.) for forming the welded bead B are set. Create a stacking plan that defines (including).

変形量計算部33は、積層計画に従って造形した積層造形物Wからベースプレート23を除去した際に、積層造形物Wの残留応力の解放によって生じる変形量を解析的に求める。 The deformation amount calculation unit 33 analytically obtains the deformation amount generated by the release of the residual stress of the laminated model W when the base plate 23 is removed from the laminated model W formed according to the lamination plan.

余肉量設定部34は、機械加工後の構造体W1から積層造形物Wの外縁までの削り代となる余肉量を設定する。 The surplus wall amount setting unit 34 sets the surplus wall amount to be a cutting allowance from the machined structure W1 to the outer edge of the laminated model W.

プログラム生成部35は、造形部11の各部を駆動して積層造形物Wの造形手順を設定し、この手順をコンピュータに実行させる動作プログラムを作成する。作成された動作プログラムは、記憶部37に記憶される。 The program generation unit 35 drives each part of the modeling unit 11 to set a modeling procedure for the laminated model W, and creates an operation program for causing the computer to execute this procedure. The created operation program is stored in the storage unit 37.

記憶部37には、動作プログラムが記憶される他、造形部11が有する各種駆動部の仕様や溶加材Mの材料の情報等も記憶され、プログラム生成部35で動作プログラムを作成する際、動作プログラムを実行する際等に、記憶された情報が適宜参照される。この記憶部37は、メモリやハードディスク等の記憶媒体からなり、各種情報の入出力が可能となっている。 In addition to storing the operation program in the storage unit 37, the specifications of various drive units of the modeling unit 11 and the material information of the filler metal M are also stored, and when the program generation unit 35 creates the operation program, The stored information is appropriately referred to when executing the operation program. The storage unit 37 is composed of a storage medium such as a memory or a hard disk, and can input and output various types of information.

制御部41を含むコントローラ13は、CPU、メモリ、I/Oインターフェース等を備えるコンピュータ装置である。コントローラ13は、記憶部37に記憶されたデータやプログラムを読み込み、データの処理や動作プログラムを実行する機能、及び造形部11の各部を駆動制御する機能を有する。制御部41は、入力部39からの操作や通信等による指示に基づいて、動作プログラムの作成や実行がなされる。 The controller 13 including the control unit 41 is a computer device including a CPU, a memory, an I / O interface, and the like. The controller 13 has a function of reading data and programs stored in the storage unit 37, executing data processing and an operation program, and a function of driving and controlling each part of the modeling unit 11. The control unit 41 creates and executes an operation program based on an operation from the input unit 39 or an instruction by communication or the like.

制御部41が動作プログラムを実行すると、溶接ロボット19や電源装置15等の各部が、プログラムされた所定の手順に従って駆動される。溶接ロボット19は、コントローラ13からの指令により、プログラムされた軌道軌跡に沿ってトーチ17を移動させるとともに、溶加材Mを所定のタイミングでアークにより溶融させて、所望の位置に溶着ビードBを形成する。 When the control unit 41 executes the operation program, each unit such as the welding robot 19 and the power supply device 15 is driven according to a predetermined programmed procedure. The welding robot 19 moves the torch 17 along the programmed trajectory according to the command from the controller 13, and melts the filler metal M by an arc at a predetermined timing to bring the welding bead B to a desired position. Form.

ここでいう動作プログラムとは、入力された積層造形物Wの3次元形状データから、所定の演算により設計された溶着ビードBの形成手順を、造形部11により実施させるための命令コードである。制御部41は、記憶部37に記憶された動作プログラムを実行することで、造形部11によって積層造形物Wを製造させる。つまり、制御部41は、記憶部37から所望の動作プログラムを読み込み、この動作プログラムに従って、トーチ17を溶接ロボット19の駆動により移動させるとともに、トーチ17先端からアークを発生させる。これにより、ベースプレート23に溶着ビードBが繰り返し形成されて積層造形物Wが造形される。 The operation program referred to here is an instruction code for causing the modeling unit 11 to carry out the procedure for forming the welded bead B designed by a predetermined calculation from the input three-dimensional shape data of the laminated model W. The control unit 41 causes the modeling unit 11 to manufacture the laminated model W by executing the operation program stored in the storage unit 37. That is, the control unit 41 reads a desired operation program from the storage unit 37, moves the torch 17 by driving the welding robot 19 according to this operation program, and generates an arc from the tip of the torch 17. As a result, the welded bead B is repeatedly formed on the base plate 23, and the laminated model W is formed.

積層計画作成部31、変形量計算部33、余肉量設定部34、プログラム生成部35等の各演算部は、コントローラ13に設けられるがこれに限らない。図示はしないが、例えば積層造形物の製造装置100とは別体に、ネットワーク等の通信手段や記憶媒体を介して離間して配置されたサーバや端末等の外部コンピュータに、上記した演算部が設けられてもよい。外部コンピュータに上記した演算部が設けられることで、積層造形物の製造装置100を要せずに、所望の動作プログラムを作成でき、プログラム作成作業が繁雑にならない。また、作成した動作プログラムを、コントローラ13の記憶部37に転送することで、コントローラ13で動作プログラムを作成した場合と同様に、造形部11を動作させることができる。 Each calculation unit such as the stacking plan creation unit 31, the deformation amount calculation unit 33, the surplus thickness setting unit 34, and the program generation unit 35 is provided in the controller 13, but is not limited thereto. Although not shown, the above-mentioned arithmetic unit is provided on an external computer such as a server or a terminal which is separately arranged from the manufacturing apparatus 100 for a laminated model, for example, via a communication means such as a network or a storage medium. It may be provided. By providing the above-mentioned calculation unit in the external computer, it is possible to create a desired operation program without requiring the manufacturing apparatus 100 for the laminated model, and the program creation work is not complicated. Further, by transferring the created operation program to the storage unit 37 of the controller 13, the modeling unit 11 can be operated in the same manner as when the operation program is created by the controller 13.

<基本的な積層造形の手順>
次に、単純なモデルとして例示した図示例の積層造形物Wに対する積層造形の手順を簡単に説明する。
図2は積層造形物Wの上下方向に沿う概略断面図である。図3A〜図3Cは積層造形物Wの基本的な積層造形の手順を説明する上下方向に沿う概略断面図である。図4はベースプレートを除去した際の積層造形物Wの変形について説明する積層造形物Wの上下方向に沿う概略断面図である。
<Basic procedure for laminated molding>
Next, the procedure of the laminated modeling for the laminated model W of the illustrated example illustrated as a simple model will be briefly described.
FIG. 2 is a schematic cross-sectional view of the laminated model W along the vertical direction. 3A to 3C are schematic cross-sectional views taken along the vertical direction for explaining the basic procedure for laminating the laminated model W. FIG. 4 is a schematic cross-sectional view taken along the vertical direction of the laminated model W for explaining the deformation of the laminated model W when the base plate is removed.

図2に示すように、一例に係る積層造形物Wは、円筒状に形成されている。この積層造形物Wは、ベースプレート23上に造形されている。ベースプレート23は、鋼板等の金属板からなり、基本的には積層造形物Wの底面(最下層の面)より大きいものが使用される。なお、このベースプレート23は、板状に限らず、ブロック体や棒状等、他の形状のベースであってもよい。また、図2においては、一本の溶着ビードBにより一層分のビード層BLを形成する例を示しているが、複数本の溶着ビードBによりビード層BLを形成することもできる。 As shown in FIG. 2, the laminated model W according to an example is formed in a cylindrical shape. The laminated model W is modeled on the base plate 23. The base plate 23 is made of a metal plate such as a steel plate, and basically, a base plate 23 larger than the bottom surface (bottom layer surface) of the laminated model W is used. The base plate 23 is not limited to a plate shape, and may be a base having another shape such as a block body or a rod shape. Further, although FIG. 2 shows an example in which one welded bead B forms the bead layer BL for one layer, it is also possible to form the bead layer BL by a plurality of welded beads B.

図3Aに示すように、積層造形物Wを造形するには、予め設置したベースプレート23上に、動作プログラムに従って溶接ロボット19が指示された軌道に沿ってトーチ17を移動させる。そして、このトーチ17の移動と共にアークを発生させ、トーチ17が移動する軌道に沿って溶着ビードBを形成する。溶着ビードBは、溶加材Mを溶融及び凝固させて形成され、形成されたビード層BLに次層のビード層BLが繰り返し積層される。 As shown in FIG. 3A, in order to form the laminated model W, the welding robot 19 moves the torch 17 along the instructed trajectory according to the operation program on the base plate 23 installed in advance. Then, an arc is generated with the movement of the torch 17, and the welding bead B is formed along the trajectory in which the torch 17 moves. The welded bead B is formed by melting and solidifying the filler metal M, and the bead layer BL of the next layer is repeatedly laminated on the formed bead layer BL.

図3Bに示すように、ベースプレート23上に積層造形物Wを造形したら、ベースプレート23を、ワイヤーソーやダイヤモンドカッター等による切断機で切断してベースプレート23を積層造形物Wから除去し、積層造形物Wを分離する。その後、図3Cに示すように、例えば、積層造形物Wに対して余肉量設定部34で設定した余肉部分を切削して製品に加工する。なお、積層造形物Wに対して余肉部分を切削した後にベースプレート23を除去してもよい。 As shown in FIG. 3B, after the laminated model W is formed on the base plate 23, the base plate 23 is cut with a cutting machine such as a wire saw or a diamond cutter to remove the base plate 23 from the laminated model W, and the laminated model W is removed. W is separated. After that, as shown in FIG. 3C, for example, the surplus portion set by the surplus amount setting unit 34 is cut with respect to the laminated model W and processed into a product. The base plate 23 may be removed after cutting the surplus portion of the laminated model W.

ところで、ベースプレート23に溶着ビードBを積層して積層造形物Wを造形する積層造形法では、材料を溶融・凝固させ造形していくため、熱収縮等によって積層造形物Wの内部に残留応力が発生していることがある。すると、ベースプレート23を切断して積層造形物Wから除去すると、積層造形物Wが残留応力の解放によって変形することがある。例えば、図4に示すように、円筒状に造形した積層造形物Wは、ベースプレート23を除去することによって、そのベースプレート23と接合されていた端部側が残留応力の解放によって拡径し、目標形状である形状モデルMA(図4中点線で示す)に対して誤差が生じることがある。このため、その後に余肉部分を切削して構造体W1とすることが困難となることがある。 By the way, in the layered manufacturing method in which the welded beads B are laminated on the base plate 23 to form the layered model W, since the material is melted and solidified to form the model, residual stress is generated inside the layered model W due to heat shrinkage or the like. It may have occurred. Then, when the base plate 23 is cut and removed from the laminated model W, the laminated model W may be deformed by releasing the residual stress. For example, as shown in FIG. 4, in the laminated model W formed into a cylindrical shape, by removing the base plate 23, the end side joined to the base plate 23 is expanded in diameter by releasing the residual stress, and the target shape is formed. An error may occur with respect to the shape model MA (indicated by the dotted line in FIG. 4). For this reason, it may be difficult to cut the surplus portion portion thereafter to obtain the structure W1.

ここで、積層造形物の溶接変形及び残留応力は、一般に、有限要素法(Finite Element Method:FEM)を用いた熱弾塑性解析法又は弾性解析等を利用したコンピュータシミュレーションによって解析される。 Here, the welding deformation and residual stress of the laminated model are generally analyzed by a thermal elasto-plastic analysis method using a finite element method (FEM) or a computer simulation using an elastic analysis or the like.

熱弾塑性解析法では、多数の微小時間ステップごとに各種の非線形要素まで考慮して現象を計算するので、高精度な解析をすることができる。一方、弾性解析では、線形要素のみを考慮して解析をするため、短時間で解析をすることができる。溶着ビードBを積層する積層造形によって積層造形物Wを造形すると、積層造形物Wの全箇所が金属の溶融・凝固プロセスを経ることになる。金属が溶融・凝固すると、積層造形物Wに固有ひずみ(塑性ひずみ、熱ひずみ)が発生する。この固有ひずみに起因した残留応力が積層造形物Wの内部に発生する。変形量計算部33は、このような積層造形による形状変化を解析的に求める。 In the thermo-elasto-plastic analysis method, the phenomenon is calculated in consideration of various non-linear elements for each of a large number of minute time steps, so that highly accurate analysis can be performed. On the other hand, in the elastic analysis, since the analysis is performed considering only the linear elements, the analysis can be performed in a short time. When the laminated model W is modeled by the laminated modeling in which the welded beads B are laminated, all the portions of the laminated model W undergo a metal melting / solidification process. When the metal melts and solidifies, natural strain (plastic strain, thermal strain) is generated in the laminated model W. Residual stress due to this natural strain is generated inside the laminated model W. The deformation amount calculation unit 33 analytically obtains a shape change due to such laminated modeling.

変形量計算部33は、例えば、部分モデル熱弾塑性解析部と、全体モデル弾性解析部とを備えた構成であってもよい。部分モデル熱弾塑性解析部は、入力された解析条件(積層造形条件,材料物性条件)に基づいて、造形物の部分的なモデルを用いて熱弾塑性解析をして固有ひずみ(塑性ひずみ、熱ひずみ)を算出する。全体モデル弾性解析部は、算出した固有ひずみに基づいて造形物の全体モデルについて弾性解析をして残留応力等を導出する。解析に使用される条件としては、熱源の出力、熱源の種類、ビームプロファイル、走査速度、走査シーケンス、ラインオフセット又は予熱温度等をパラメータとする積層造形条件と、材料のヤング率、耐力、線膨張係数、加工硬化指数等の機械的物性値と、熱伝導率又は比熱等の熱物性値等の材料物性条件とがある。 The deformation amount calculation unit 33 may be configured to include, for example, a partial model thermal elasto-plastic analysis unit and an overall model elasticity analysis unit. The partial model thermal elasto-plastic analysis unit performs thermal elasto-plastic analysis using a partial model of the modeled object based on the input analysis conditions (laminated modeling conditions, material physical characteristics conditions), and the intrinsic strain (plastic strain, Thermal strain) is calculated. The overall model elasticity analysis unit performs elastic analysis on the entire model of the modeled object based on the calculated intrinsic strain and derives residual stress and the like. The conditions used for the analysis include laminated molding conditions with parameters such as heat source output, heat source type, beam profile, scanning speed, scanning sequence, line offset or preheating temperature, and material Young ratio, proof stress, and linear expansion. There are mechanical property values such as a coefficient and a work hardening index, and material property conditions such as a thermal property value such as thermal conductivity or specific heat.

このような解析処理は、プログラムに沿ってコンピュータで実行される。つまり、変形量計算部33は、CPU等のプロセッサ、ROM(Read Only Memory)、RAM(Random Access Memory)、HDD(Hard Disk Drive)、SSD(Solid State Drive)等の記憶装置、を具備するコンピュータとして構成することができる。この場合、各部の機能は記憶装置からなる記憶部37に記憶された所定のプログラムをプロセッサが実行することによって実現することができる。 Such analysis processing is executed by the computer according to the program. That is, the deformation amount calculation unit 33 is a computer including a processor such as a CPU and a storage device such as a ROM (Read Only Memory), a RAM (Random Access Memory), an HDD (Hard Disk Drive), and an SSD (Solid State Drive). Can be configured as. In this case, the functions of each unit can be realized by the processor executing a predetermined program stored in the storage unit 37 including the storage device.

<積層造形物の積層計画>
本実施形態では、ベースプレート23を除去した後の積層造形物Wの変形量を変形量計算部33が予測し、その予測に基づいて高精度で目標の形状モデルMAで造形するための積層計画を作成する。以下、本実施形態に係る積層造形物Wの積層計画について詳述する。
<Laminating plan for laminated objects>
In the present embodiment, the deformation amount calculation unit 33 predicts the deformation amount of the laminated model W after removing the base plate 23, and based on the prediction, a stacking plan for modeling with the target shape model MA with high accuracy is performed. create. Hereinafter, the stacking plan of the laminated model W according to the present embodiment will be described in detail.

図5は積層造形物の積層計画の手順を示すフローチャートである。図6A〜図6Cは積層造形物Wの積層計画の手順を説明する積層造形物Wの模式図である。 FIG. 5 is a flowchart showing a procedure for laminating a laminated model. 6A to 6C are schematic views of the laminated model W for explaining the procedure of the laminating plan of the laminated model W.

まず、コントローラ13は、造形しようとする積層造形物のCADデータである3次元形状(3D)データを入力部39から取得する(S1)。 First, the controller 13 acquires the three-dimensional shape (3D) data, which is the CAD data of the laminated model to be modeled, from the input unit 39 (S1).

コントローラ13の積層計画作成部31は、取得した3次元形状データの形状に応じて形状モデルMAを決定し、その形状モデルMAに基づいて溶着ビードBで形成する積層計画を作成するとともに、溶着ビードBを形成する条件決定を行う(S2)。条件決定には、トーチ17を移動させる軌道を表す軌道計画を作成すること、アークを加熱源として溶着ビードBを形成する際の、溶接電流、アーク電圧、溶接速度、トーチ角等の溶接条件を設定することが含まれる。 The stacking plan creation unit 31 of the controller 13 determines the shape model MA according to the shape of the acquired three-dimensional shape data, creates a stacking plan to be formed by the welding bead B based on the shape model MA, and creates a welding bead. The conditions for forming B are determined (S2). To determine the conditions, create a trajectory plan that represents the trajectory that moves the torch 17, and determine the welding conditions such as welding current, arc voltage, welding speed, and torch angle when forming the welding bead B using an arc as a heating source. Includes setting.

具体的には、図6Aに示すように、積層造形物Wの形状モデルMAを生成し、この形状モデルMAを垂直方向に複数のビード層(図示例では10層)BLに分割し、各ビード層BLに対応して、それぞれトーチ17を移動させる軌道を求める。軌道の決定には、所定のアルゴリズムに基づく演算等により決定される。軌道の情報としては、例えば、トーチ17を移動させる経路の空間座標、経路の半径、経路長等の経路の情報や、形成する溶着ビードBのビード幅やビード高さ等のビード情報等が含まれる。ビード層BLの高さは、溶接条件により設定される溶着ビードBの高さに応じて決定される。 Specifically, as shown in FIG. 6A, a shape model MA of the laminated model W is generated, and this shape model MA is vertically divided into a plurality of bead layers (10 layers in the illustrated example) BL, and each bead. Corresponding to the layer BL, the orbits for moving the torches 17 are obtained. The trajectory is determined by an operation or the like based on a predetermined algorithm. The orbital information includes, for example, path information such as the spatial coordinates of the path for moving the torch 17, the radius of the path, and the path length, and bead information such as the bead width and bead height of the welded bead B to be formed. Is done. The height of the bead layer BL is determined according to the height of the welded bead B set by the welding conditions.

次に、ベースプレート23を除去することにより変形する積層造形物Wの変形後の許容形状を設定し、形状モデルMAに対する許容形状の形状誤差αを制御部41が設定する(S3)。許容形状としては、例えば、ベースプレート23を除去して変形した積層造形物Wを加工して構造体W1とすることが可能な形状である。 Next, the allowable shape of the laminated model W that is deformed by removing the base plate 23 after deformation is set, and the shape error α of the allowable shape with respect to the shape model MA is set by the control unit 41 (S3). The allowable shape is, for example, a shape that can be formed into a structure W1 by removing the base plate 23 and processing the deformed laminated model W.

次に、変形量計算部33が、作成された軌道計画を、設定された溶接条件で実施した場合の積層造形物Wに生じる熱収縮等による残留応力を求め、ベースプレート23を除去して残留応力が解放された際の積層造形物Wの変形量δPを解析的に求める(S4)。この変形量δPは、熱弾塑性解析、固有ひずみ法解析、熱弾性解析のいずれかを用いて求めることができる。例えば、有限要素法を用いた解析(FEM解析)により、上記いずれかの理論を選択的に指定して解析を行うことで、図6Bに示すように、ベースプレート23を除去した際の積層造形物Wの形状(図6B中点線で示す)を予測し、形状モデルMAに対する変形量δPを求める。なお、記憶部37には、溶加材Mの材質に応じた物性情報等が記憶され、これら情報が解析に適宜使用される。 Next, the deformation amount calculation unit 33 obtains the residual stress due to heat shrinkage or the like that occurs in the laminated model W when the created track plan is carried out under the set welding conditions, removes the base plate 23, and removes the residual stress. The amount of deformation δP of the laminated model W when is released is analytically obtained (S4). The amount of deformation δP can be obtained by using any of thermal elasto-plastic analysis, intrinsic strain analysis, and thermoelastic analysis. For example, by performing an analysis by selectively designating one of the above theories by an analysis using the finite element method (FEM analysis), as shown in FIG. 6B, a laminated model when the base plate 23 is removed. The shape of W (shown by the middle dotted line in FIG. 6B) is predicted, and the amount of deformation δP with respect to the shape model MA is obtained. The storage unit 37 stores physical property information and the like according to the material of the filler metal M, and these information are appropriately used for analysis.

変形量δPと形状誤差αとを比較し、変形量δPが形状誤差α以下であるか否かを判定する(S5)。この変形量δPが形状誤差αより大きいと、造形後にベースプレート23を除去した積層造形物Wは、変形が大きすぎ、例えば、その後に周囲を切削するために設けられる削り代である余肉がなくなり、切削加工が困難となる。 The deformation amount δP is compared with the shape error α, and it is determined whether or not the deformation amount δP is equal to or less than the shape error α (S5). When this deformation amount δP is larger than the shape error α, the laminated model W from which the base plate 23 has been removed after modeling has too much deformation, for example, there is no surplus thickness which is a cutting allowance provided for cutting the surroundings thereafter. , Cutting becomes difficult.

この変形量δPと形状誤差αとの比較において、変形量δPが形状誤差αより大きい場合(S5:No)、解析的に求めた変形量δPを見越して形状モデルMAを補正する。そして、その補正した形状モデルMAに基づいて溶着ビードBで積層造形物Wを形成する積層計画を補正するとともに、溶着ビードBを形成する条件決定を行う(S2)。ここで、図6Cは、変形量δPを見越して補正した形状モデルMAを示す。図6Cに示すように、例えば、ベースプレート23の除去による残留応力の解放によって、ベースプレート23側の端部側が変形量δPで拡径するように変形すると予測された場合では、元の形状モデルMA(図6C中点線で示す)を、変形量δPを見越して補正する。つまり、ベースプレート23側の端部が変形量δPで拡径する変形とは逆方向に縮径した形状モデルMA(図6C中実線で示す)に補正する。そして、この補正した形状モデルMAを用いて補正部である制御部41が積層計画を補正する。積層計画は、軌道計画のみを補正してもよいが、必要に応じて加熱条件の再設定を行ってもよい。例えば、溶接電流を増減制御して、入熱量を変更することで、ビード幅やビード高さ等の各種形状パラメータを調整できる。その場合、調整代を拡大でき、効率よく最適な積層計画の補正が行える。 In the comparison between the deformation amount δP and the shape error α, when the deformation amount δP is larger than the shape error α (S5: No), the shape model MA is corrected in anticipation of the analytically obtained deformation amount δP. Then, based on the corrected shape model MA, the lamination plan for forming the laminated model W with the welded bead B is corrected, and the conditions for forming the welded bead B are determined (S2). Here, FIG. 6C shows a shape model MA corrected in anticipation of the deformation amount δP. As shown in FIG. 6C, for example, when it is predicted that the end side on the base plate 23 side is deformed so as to expand in diameter by the deformation amount δP due to the release of the residual stress by removing the base plate 23, the original shape model MA ( (Shown by the middle dotted line in FIG. 6C) is corrected in anticipation of the deformation amount δP. That is, the end portion on the base plate 23 side is corrected to the shape model MA (shown by the solid line in FIG. 6C) whose diameter is reduced in the direction opposite to the deformation in which the diameter is expanded by the deformation amount δP. Then, the control unit 41, which is a correction unit, corrects the stacking plan using the corrected shape model MA. In the stacking plan, only the trajectory plan may be corrected, but the heating conditions may be reset as needed. For example, various shape parameters such as bead width and bead height can be adjusted by controlling the increase / decrease of the welding current and changing the amount of heat input. In that case, the adjustment allowance can be expanded, and the optimum stacking plan can be efficiently corrected.

その後、補正した形状モデルMAに対する許容形状の形状誤差αを設定し(S3)、補正した形状モデルMAに基づいた積層計画によって造形した積層造形物Wについて、ベースプレート23を除去した際に変形する変形量δPを解析的に求める(S4)。そして、変形量δPと形状誤差αとを比較し、変形量δPが形状誤差α以下であるか否かを判定する(S5)。 After that, the shape error α of the allowable shape for the corrected shape model MA is set (S3), and the laminated model W formed by the stacking plan based on the corrected shape model MA is deformed when the base plate 23 is removed. The quantity δP is analytically obtained (S4). Then, the deformation amount δP and the shape error α are compared, and it is determined whether or not the deformation amount δP is equal to or less than the shape error α (S5).

変形量δPが形状誤差α以下となるまで(S5:Yes)、S2〜S5の工程を繰り返す。 The steps S2 to S5 are repeated until the deformation amount δP becomes equal to or less than the shape error α (S5: Yes).

変形量δPが形状誤差α以下となったら、プログラム生成部35が、形状モデルMAから作成した積層計画(軌道計画、加熱条件)に基づいて、溶着ビードBを形成する手順を示す動作プログラムを作成し、この動作プログラムに基づいて、溶着ビードBをベースプレート23上に積層させて積層造形物Wを造形する。なお、最初に作成された形状モデルMAの変形量δPが形状誤差α以下であった場合は、その形状モデルMAから作成した積層計画(軌道計画、加熱条件)に基づいて、溶着ビードBを形成する手順を示す動作プログラムを作成し、この動作プログラムに基づいて、溶着ビードBをベースプレート23上に積層させて積層造形物Wを造形する。 When the deformation amount δP becomes the shape error α or less, the program generation unit 35 creates an operation program showing the procedure for forming the welding bead B based on the stacking plan (track plan, heating conditions) created from the shape model MA. Then, based on this operation program, the welded bead B is laminated on the base plate 23 to form the laminated model W. If the deformation amount δP of the shape model MA created first is less than or equal to the shape error α, the welding bead B is formed based on the lamination plan (track plan, heating conditions) created from the shape model MA. An operation program showing the procedure to be performed is created, and based on this operation program, the welded bead B is laminated on the base plate 23 to form the laminated model W.

以上説明したように、本構成の積層造形物の積層計画方法によれば、積層造形物Wをベースプレート23から分離した際に生じる解放ひずみによる変形量δPに応じて形状モデルMA及び積層計画を補正する。これにより、ベースプレート23からの分離後の解放ひずみによる変形量δPを考慮し、より高い形状精度の積層造形物Wの作製が可能となる。 As described above, according to the laminating planning method of the laminated model of the present configuration, the shape model MA and the laminating plan are corrected according to the deformation amount δP due to the release strain generated when the laminated model W is separated from the base plate 23. To do. This makes it possible to manufacture the laminated model W with higher shape accuracy in consideration of the amount of deformation δP due to the release strain after separation from the base plate 23.

また、変形量を、熱弾塑性解析、固有ひずみ法解析、熱弾性解析のいずれかを用いて求めるので、熱弾塑性解析、固有ひずみ法解析、熱弾性解析によって、高精度な変形量の予測が可能となる。 Moreover, since the deformation amount is obtained by using any of the thermoelastic plasticity analysis, the intrinsic strain method analysis, and the thermoelasticity analysis, the deformation amount can be predicted with high accuracy by the thermoelastic plasticity analysis, the intrinsic strain method analysis, and the thermoelasticity analysis. Is possible.

さらに、解放ひずみによる変形が生じる方向と逆方向に形状モデルMAを補正するので、発生する変形を複雑な演算を要することなく簡単にキャンセルできる。 Further, since the shape model MA is corrected in the direction opposite to the direction in which the deformation due to the release strain occurs, the generated deformation can be easily canceled without requiring complicated calculation.

そして、本構成の積層造形物の製造方法及び製造装置によれば、積層造形物Wをベースプレート23から分離した際に生じる解放ひずみによる変形量δPに応じて形状モデルMA及び積層計画が補正される。これにより、ベースプレート23からの分離後の解放ひずみによる変形量δPが考慮された高い形状精度の積層造形物Wを作製することができる。 Then, according to the manufacturing method and manufacturing apparatus of the laminated model having the present configuration, the shape model MA and the stacking plan are corrected according to the deformation amount δP due to the release strain generated when the laminated model W is separated from the base plate 23. .. As a result, it is possible to produce a laminated model W having high shape accuracy in consideration of the amount of deformation δP due to the release strain after separation from the base plate 23.

このように、本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせることや、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。 As described above, the present invention is not limited to the above-described embodiment, and can be modified or applied by those skilled in the art based on the combination of the configurations of the embodiments with each other, the description of the specification, and the well-known technique. This is also the subject of the present invention and is included in the scope for which protection is sought.

例えば、上記例では積層造形物Wを単純な円筒形状としたが、積層造形物Wの形状は、これに限らない。積層造形物Wがより複雑な形状であるほど、上記した積層計画、及び製造方法による効果が顕著となるため、好適に適用することができる。 For example, in the above example, the laminated model W has a simple cylindrical shape, but the shape of the laminated model W is not limited to this. The more complicated the shape of the laminated model W is, the more remarkable the effects of the above-mentioned lamination plan and manufacturing method are, so that it can be suitably applied.

また、本技術は、溶接により積層造形物を作製する場合に限らず、例えば、粉体材料に対面する加工ヘッドを走査させて、粉体材料を選択的に溶融、凝固させた層を積層し、3次元形状の積層造形物を得る場合にも好適に適用可能である。 In addition, this technology is not limited to the case of producing a laminated model by welding, for example, by scanning the processing head facing the powder material, the layers in which the powder material is selectively melted and solidified are laminated. It can also be suitably applied to obtain a laminated model having a three-dimensional shape.

以上の通り、本明細書には次の事項が開示されている。
(1) 溶融金属をベースプレート上に積層する造形部により、積層造形物を該積層造形物の3次元形状データを用いて造形する積層造形物の積層計画方法であって、
前記3次元形状データに基づいて、前記ベースプレート上に積層造形する前記積層造形物の形状モデルを求め、前記形状モデルの前記積層造形物を積層造形するための積層計画を作成する積層計画作成工程と、
前記形状モデルに基づいて造形した前記積層造形物に対する許容可能な形状誤差を設定する形状誤差設定工程と、
前記形状モデルにより造形した前記積層造形物を前記ベースプレートから分離した際の解放ひずみによる変形量を求める変形量計算工程と、
前記変形量が前記形状誤差の範囲に収まるまで、前記形状モデル及び前記積層計画を補正する補正工程と、
をこの順で実施する積層造形物の積層計画方法。
この積層造形物の積層計画方法によれば、積層造形物をベースプレートから分離した際に生じる解放ひずみによる変形量に応じて形状モデル及び積層計画を補正する。これにより、ベースプレートからの分離後の解放ひずみによる変形量を考慮し、より高い形状精度の積層造形物の作製が可能となる。
As described above, the following matters are disclosed in this specification.
(1) A method of laminating a laminated model in which a laminated model is modeled using the three-dimensional shape data of the laminated model by a modeling portion in which molten metal is laminated on a base plate.
Based on the three-dimensional shape data, a stacking plan creation step of obtaining a shape model of the laminated model to be laminated on the base plate and creating a stacking plan for laminating the laminated model of the shape model. ,
A shape error setting step for setting an acceptable shape error for the laminated model formed based on the shape model, and a shape error setting step.
A deformation amount calculation step for obtaining the amount of deformation due to release strain when the laminated model formed by the shape model is separated from the base plate.
A correction step of correcting the shape model and the stacking plan until the deformation amount falls within the range of the shape error, and
A method of laminating a laminated model in which the above steps are carried out in this order.
According to this laminating planning method of the laminated model, the shape model and the laminating plan are corrected according to the amount of deformation due to the release strain generated when the laminated model is separated from the base plate. As a result, it is possible to manufacture a laminated model with higher shape accuracy in consideration of the amount of deformation due to the release strain after separation from the base plate.

(2) 前記変形量計算工程は、前記変形量を、熱弾塑性解析、固有ひずみ法解析、熱弾性解析のいずれかを用いて求める(1)に記載の積層造形物の積層計画方法。
この積層造形物の積層計画方法によれば、熱弾塑性解析、固有ひずみ法解析、熱弾性解析によって、高精度な変形量の予測が可能となる。
(2) The method for planning the lamination of a laminated model according to (1), wherein the deformation amount calculation step obtains the deformation amount by using any of thermal elasto-plastic analysis, intrinsic strain analysis, and thermoelastic analysis.
According to this laminating planning method for laminated shaped objects, it is possible to predict the amount of deformation with high accuracy by thermo-elasto-plastic analysis, intrinsic strain analysis, and thermoelastic analysis.

(3) 前記補正工程は、前記解放ひずみによる変形が生じる方向と逆方向に前記形状モデルを補正する(1)または(2)に記載の積層造形物の積層計画方法。
この積層造形物の積層計画方法によれば、発生する変形を複雑な演算を要することなく簡単にキャンセルできる。
(3) The laminating planning method for a laminated model according to (1) or (2), wherein the correction step corrects the shape model in a direction opposite to the direction in which deformation due to the release strain occurs.
According to this laminating planning method of the laminated model, the deformation that occurs can be easily canceled without requiring complicated calculation.

(4) 前記積層造形物は、溶加材を溶融及び凝固させた複数の溶着ビードでビード層を形成し、該形成されたビード層に次層のビード層を繰り返し積層して造形される(1)〜(3)のいずれか一つに記載の積層造形物の積層計画方法。
この積層造形物の積層計画方法によれば、溶着ビードで形成される高強度な積層造形物を造形する積層計画が得られる。
(4) The laminated model is formed by forming a bead layer with a plurality of welded beads obtained by melting and solidifying a filler metal, and repeatedly laminating a next layer of bead layers on the formed bead layer ( The method for planning the lamination of a laminated model according to any one of 1) to (3).
According to this laminating planning method of the laminated model, a laminating plan for forming a high-strength laminated model formed by the welding bead can be obtained.

(5) 前記溶着ビードは、多軸ロボットのロボットアームの先端に支持されたトーチから発生させたアークにより、前記溶加材を溶融させて形成される(4)に記載の積層造形物の積層計画方法。
この積層造形物の積層計画方法によれば、高い自由度で任意形状の積層造形物を造形する造形計画が得られる。
(5) The welded bead is formed by melting the filler metal by an arc generated from a torch supported by the tip of a robot arm of a multi-axis robot, and is formed by laminating the laminated model according to (4). Planning method.
According to this laminating planning method of the laminated model, a modeling plan for modeling the laminated model of an arbitrary shape with a high degree of freedom can be obtained.

(6) 前記積層計画作成工程は、前記溶着ビードを形成する溶接電流、アーク電圧、溶接速度、トーチ角度の少なくともいずれかを含む加熱条件を定める(5)に記載の積層造形物の積層計画方法。
この積層造形物の積層計画方法によれば、積層造形物への入熱量を正確に把握でき、ベースプレートから分離した際に発生する変形量を正確に予測できる。これにより、より高い形状精度の積層造形物を造形する積層計画が得られる。
(6) The laminating planning method for a laminated model according to (5), wherein the laminating plan creating step determines heating conditions including at least one of a welding current, an arc voltage, a welding speed, and a torch angle for forming the welding bead. ..
According to this laminating planning method of the laminated model, the amount of heat input to the laminated model can be accurately grasped, and the amount of deformation generated when separated from the base plate can be accurately predicted. As a result, it is possible to obtain a laminating plan for modeling a laminated model with higher shape accuracy.

(7) (6)に記載の積層造形物の積層計画方法により作成した前記積層計画に基づいて、前記積層造形物を積層造形する積層造形物の製造方法。
この積層造形物の製造方法によれば、より高い形状精度の積層造形物の作製が可能となる。
(7) A method for manufacturing a laminated model in which the laminated model is laminated based on the laminated plan created by the method for planning the lamination of the laminated model according to (6).
According to this method for manufacturing a laminated model, it is possible to produce a laminated model with higher shape accuracy.

(8) 溶融金属をベースプレート上に積層する造形部により、積層造形物を該積層造形物の3次元形状データを用いて造形する積層造形物の製造装置であって、
前記3次元形状データに基づいて、前記ベースプレート上に積層造形する前記積層造形物の形状モデルを求め、前記形状モデルの前記積層造形物を積層造形するための積層計画を作成する積層計画作成部と、
前記形状モデルに基づいて造形した前記積層造形物に対する許容可能な形状誤差を設定する設定部と、
前記形状モデルにより造形した前記積層造形物を前記ベースプレートから分離した際の解放ひずみによる変形量を求める変形量計算部と、
前記変形量が前記形状誤差の範囲に収まるまで、前記形状モデル及び前記積層計画を補正する補正部と、
を備える積層造形物の製造装置。
この積層造形物の製造装置によれば、積層造形物をベースプレートから分離した際に生じる解放ひずみによる変形量に応じて形状モデル及び積層計画が補正される。これにより、ベースプレートからの分離後の解放ひずみによる変形量が考慮された高い形状精度の積層造形物を作製することができる。
(8) An apparatus for manufacturing a laminated model, in which a laminated model is modeled using the three-dimensional shape data of the laminated model by a modeling unit in which molten metal is laminated on a base plate.
Based on the three-dimensional shape data, a stacking plan creation unit that obtains a shape model of the laminated model to be laminated on the base plate and creates a stacking plan for laminating the laminated model of the shape model. ,
A setting unit that sets an acceptable shape error for the laminated model formed based on the shape model, and a setting unit.
A deformation amount calculation unit for obtaining the amount of deformation due to release strain when the laminated model formed by the shape model is separated from the base plate.
A correction unit that corrects the shape model and the stacking plan until the amount of deformation falls within the range of the shape error.
Equipment for manufacturing laminated objects.
According to this laminated model manufacturing apparatus, the shape model and the laminated plan are corrected according to the amount of deformation due to the release strain generated when the laminated model is separated from the base plate. As a result, it is possible to produce a laminated model with high shape accuracy in which the amount of deformation due to the release strain after separation from the base plate is taken into consideration.

11 造形部
17 トーチ
19 溶接ロボット
23 ベースプレート
31 積層計画作成部
33 変形量計算部
41 制御部(設定部,補正部)
100 製造装置
B 溶着ビード
BL ビード層
M 溶加材
MA 形状モデル
W 積層造形物
α 形状誤差
δP 変形量
11 Modeling part 17 Torch 19 Welding robot
23 Base plate 31 Lamination plan creation unit 33 Deformation amount calculation unit 41 Control unit (setting unit, correction unit)
100 Manufacturing equipment B Welding bead BL bead layer M Welding material MA Shape model W Laminated model α Shape error δP Deformation amount

Claims (8)

溶融金属をベースプレート上に積層する造形部により、積層造形物を該積層造形物の3次元形状データを用いて造形する積層造形物の積層計画方法であって、
前記3次元形状データに基づいて、前記ベースプレート上に積層造形する前記積層造形物の形状モデルを求め、前記形状モデルの前記積層造形物を積層造形するための積層計画を作成する積層計画作成工程と、
前記形状モデルに基づいて造形した前記積層造形物に対する許容可能な形状誤差を設定する形状誤差設定工程と、
前記形状モデルにより造形した前記積層造形物を前記ベースプレートから分離した際の解放ひずみによる変形量を求める変形量計算工程と、
前記変形量が前記形状誤差の範囲に収まるまで、前記形状モデル及び前記積層計画を補正する補正工程と、
をこの順で実施する積層造形物の積層計画方法。
It is a laminating planning method of a laminated model in which a laminated model is modeled using the three-dimensional shape data of the laminated model by a modeling unit in which molten metal is laminated on a base plate.
Based on the three-dimensional shape data, a stacking plan creation step of obtaining a shape model of the laminated model to be laminated on the base plate and creating a stacking plan for laminating the laminated model of the shape model. ,
A shape error setting step for setting an acceptable shape error for the laminated model formed based on the shape model, and a shape error setting step.
A deformation amount calculation step for obtaining the amount of deformation due to release strain when the laminated model formed by the shape model is separated from the base plate.
A correction step of correcting the shape model and the stacking plan until the deformation amount falls within the range of the shape error, and
A method of laminating a laminated model in which the above steps are carried out in this order.
前記変形量計算工程は、前記変形量を、熱弾塑性解析、固有ひずみ法解析、熱弾性解析のいずれかを用いて求める請求項1に記載の積層造形物の積層計画方法。 The method for planning the lamination of a laminated model according to claim 1, wherein the deformation amount calculation step obtains the deformation amount by using any one of a thermal elasto-plastic analysis, an intrinsic strain method analysis, and a thermoelastic analysis. 前記補正工程は、前記解放ひずみによる変形が生じる方向と逆方向に前記形状モデルを補正する請求項1または請求項2に記載の積層造形物の積層計画方法。 The laminating planning method for a laminated model according to claim 1 or 2, wherein the correction step corrects the shape model in a direction opposite to the direction in which deformation due to the release strain occurs. 前記積層造形物は、溶加材を溶融及び凝固させた複数の溶着ビードでビード層を形成し、該形成されたビード層に次層のビード層を繰り返し積層して造形される請求項1〜3のいずれか一項に記載の積層造形物の積層計画方法。 The laminated model is formed by forming a bead layer with a plurality of welded beads obtained by melting and solidifying a filler metal, and repeatedly laminating a next layer of bead layers on the formed bead layer. The method for planning the lamination of a laminated model according to any one of 3. 前記溶着ビードは、多軸ロボットのロボットアームの先端に支持されたトーチから発生させたアークにより、前記溶加材を溶融させて形成される請求項4に記載の積層造形物の積層計画方法。 The laminating planning method according to claim 4, wherein the welding bead is formed by melting the filler metal by an arc generated from a torch supported at the tip of a robot arm of a multi-axis robot. 前記積層計画作成工程は、前記溶着ビードを形成する溶接電流、アーク電圧、溶接速度、トーチ角度の少なくともいずれかを含む加熱条件を定める請求項5に記載の積層造形物の積層計画方法。 The laminating planning method according to claim 5, wherein the laminating plan creating step defines heating conditions including at least one of a welding current, an arc voltage, a welding speed, and a torch angle for forming the welding bead. 請求項6に記載の積層造形物の積層計画方法により作成した前記積層計画に基づいて、前記積層造形物を積層造形する積層造形物の製造方法。 A method for manufacturing a laminated model in which the laminated model is laminated based on the laminated plan created by the method for planning the lamination of the laminated model according to claim 6. 溶融金属をベースプレート上に積層する造形部により、積層造形物を該積層造形物の3次元形状データを用いて造形する積層造形物の製造装置であって、
前記3次元形状データに基づいて、前記ベースプレート上に積層造形する前記積層造形物の形状モデルを求め、前記形状モデルの前記積層造形物を積層造形するための積層計画を作成する積層計画作成部と、
前記形状モデルに基づいて造形した前記積層造形物に対する許容可能な形状誤差を設定する設定部と、
前記形状モデルにより造形した前記積層造形物を前記ベースプレートから分離した際の解放ひずみによる変形量を求める変形量計算部と、
前記変形量が前記形状誤差の範囲に収まるまで、前記形状モデル及び前記積層計画を補正する補正部と、
を備える積層造形物の製造装置。
It is a manufacturing apparatus for a laminated model that uses a three-dimensional shape data of the laminated model to model a laminated model by a modeling unit that laminates molten metal on a base plate.
Based on the three-dimensional shape data, a stacking plan creation unit that obtains a shape model of the laminated model to be laminated on the base plate and creates a stacking plan for laminating the laminated model of the shape model. ,
A setting unit that sets an acceptable shape error for the laminated model formed based on the shape model, and a setting unit.
A deformation amount calculation unit for obtaining the amount of deformation due to release strain when the laminated model formed by the shape model is separated from the base plate.
A correction unit that corrects the shape model and the stacking plan until the amount of deformation falls within the range of the shape error.
Equipment for manufacturing laminated objects.
JP2019133937A 2019-07-19 2019-07-19 LAMINATED PRODUCT LAYER PLANNING METHOD, LAMINATED PRODUCT MANUFACTURING METHOD AND MANUFACTURING APPARATUS Active JP7197437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019133937A JP7197437B2 (en) 2019-07-19 2019-07-19 LAMINATED PRODUCT LAYER PLANNING METHOD, LAMINATED PRODUCT MANUFACTURING METHOD AND MANUFACTURING APPARATUS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019133937A JP7197437B2 (en) 2019-07-19 2019-07-19 LAMINATED PRODUCT LAYER PLANNING METHOD, LAMINATED PRODUCT MANUFACTURING METHOD AND MANUFACTURING APPARATUS

Publications (2)

Publication Number Publication Date
JP2021016885A true JP2021016885A (en) 2021-02-15
JP7197437B2 JP7197437B2 (en) 2022-12-27

Family

ID=74566259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019133937A Active JP7197437B2 (en) 2019-07-19 2019-07-19 LAMINATED PRODUCT LAYER PLANNING METHOD, LAMINATED PRODUCT MANUFACTURING METHOD AND MANUFACTURING APPARATUS

Country Status (1)

Country Link
JP (1) JP7197437B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021016988A (en) * 2019-07-19 2021-02-15 株式会社神戸製鋼所 Excess thickness setting method of lamination molded article, manufacturing method and manufacturing apparatus of lamination molded article
WO2023068268A1 (en) * 2021-10-19 2023-04-27 株式会社プロテリアル Method for measuring deformation amount of deformation part of additively fabricated test object and method for determining proper conditions for additive fabrication
WO2024018803A1 (en) * 2022-07-20 2024-01-25 株式会社神戸製鋼所 Image-information generating device and image-information generating method, image processing device and image processing method, defect predicting device and defect predicting method, and program

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011101900A (en) * 2010-11-22 2011-05-26 Kawasaki Heavy Ind Ltd Deformation estimating method, program and recording medium
US20140034626A1 (en) * 2012-08-06 2014-02-06 Materials Solutions Additive manufacturing
JP2017077671A (en) * 2015-10-20 2017-04-27 東レエンジニアリング株式会社 Method of supporting lamination molding of three dimensional article, computer software, record medium, and laminate-molding system
JP2017161981A (en) * 2016-03-07 2017-09-14 株式会社東芝 Analyzer, analysis method and analysis program
JP2017530027A (en) * 2014-06-05 2017-10-12 ザ・ボーイング・カンパニーThe Boeing Company Prediction and minimization of distortion in additive manufacturing
WO2018123858A1 (en) * 2016-12-26 2018-07-05 三菱重工業株式会社 Thermal deformation amount calculation device, three-dimensional lamination system, three-dimensional lamination method, and program
JP2020001059A (en) * 2018-06-27 2020-01-09 株式会社神戸製鋼所 Lamination plan method of lamination molded article, production method and production device of lamination molded article
JP2020097193A (en) * 2018-12-19 2020-06-25 株式会社神戸製鋼所 Excess amount setting method, excess amount setting device, manufacturing method of molded object, and program

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011101900A (en) * 2010-11-22 2011-05-26 Kawasaki Heavy Ind Ltd Deformation estimating method, program and recording medium
US20140034626A1 (en) * 2012-08-06 2014-02-06 Materials Solutions Additive manufacturing
JP2017530027A (en) * 2014-06-05 2017-10-12 ザ・ボーイング・カンパニーThe Boeing Company Prediction and minimization of distortion in additive manufacturing
JP2017077671A (en) * 2015-10-20 2017-04-27 東レエンジニアリング株式会社 Method of supporting lamination molding of three dimensional article, computer software, record medium, and laminate-molding system
JP2017161981A (en) * 2016-03-07 2017-09-14 株式会社東芝 Analyzer, analysis method and analysis program
WO2018123858A1 (en) * 2016-12-26 2018-07-05 三菱重工業株式会社 Thermal deformation amount calculation device, three-dimensional lamination system, three-dimensional lamination method, and program
JP2020001059A (en) * 2018-06-27 2020-01-09 株式会社神戸製鋼所 Lamination plan method of lamination molded article, production method and production device of lamination molded article
JP2020097193A (en) * 2018-12-19 2020-06-25 株式会社神戸製鋼所 Excess amount setting method, excess amount setting device, manufacturing method of molded object, and program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021016988A (en) * 2019-07-19 2021-02-15 株式会社神戸製鋼所 Excess thickness setting method of lamination molded article, manufacturing method and manufacturing apparatus of lamination molded article
JP7160768B2 (en) 2019-07-19 2022-10-25 株式会社神戸製鋼所 Laminate-molded article setting method, laminate-molded article manufacturing method, and manufacturing apparatus
WO2023068268A1 (en) * 2021-10-19 2023-04-27 株式会社プロテリアル Method for measuring deformation amount of deformation part of additively fabricated test object and method for determining proper conditions for additive fabrication
WO2024018803A1 (en) * 2022-07-20 2024-01-25 株式会社神戸製鋼所 Image-information generating device and image-information generating method, image processing device and image processing method, defect predicting device and defect predicting method, and program

Also Published As

Publication number Publication date
JP7197437B2 (en) 2022-12-27

Similar Documents

Publication Publication Date Title
JP7048435B2 (en) Laminating planning method of laminated model, manufacturing method and manufacturing equipment of laminated model
JP6936580B2 (en) Stacking control device, stacking control method and program
JP7197437B2 (en) LAMINATED PRODUCT LAYER PLANNING METHOD, LAMINATED PRODUCT MANUFACTURING METHOD AND MANUFACTURING APPARATUS
JP6822881B2 (en) Manufacturing method and manufacturing system for laminated models
CN111770806B (en) Method for forming layered formed article, apparatus for producing layered formed article, and recording medium
JP6978350B2 (en) Work posture adjustment method, model manufacturing method and manufacturing equipment
JP6981957B2 (en) Surplus wall amount setting method, surplus wall amount setting device, manufacturing method of modeled object, and program
JP7010799B2 (en) Structure manufacturing method and structure
JP2022034759A (en) Laminated molding manufacturing system, laminated molding manufacturing method, and laminated molding manufacturing program
WO2022019013A1 (en) Machine learning device, laminate molding system, machine learning method for welding condition, welding condition determination method, and program
JP6964544B2 (en) Manufacturing method of modeled object and modeled object
JP6753990B1 (en) Laminate planning method of laminated model, manufacturing method and manufacturing equipment of laminated model
JP7160768B2 (en) Laminate-molded article setting method, laminate-molded article manufacturing method, and manufacturing apparatus
JP6753989B1 (en) Laminate planning method of laminated model, manufacturing method and manufacturing equipment of laminated model
WO2021029297A1 (en) Lamination planning method for laminate molded object, and laminate molded object manufacturing method and manufacturing device
JP6997044B2 (en) Laminated modeling plan Design method, manufacturing method, manufacturing equipment, and program of laminated model
JP2021126673A (en) Manufacturing method of laminated molding
JP2020189322A (en) Laminate modeled product manufacturing method and laminate modeled product
JP7303162B2 (en) Laminate-molded article manufacturing method
JP2024025180A (en) Control information generation device, control information generation method, program, and laminate molding method
JP2024072588A (en) Shape information generating method and control information generating method
JP2024071271A (en) Cross-sectional shape data generating method, cross-sectional shape data generating device, and program
JP2022071692A (en) Lamination plan creation method
CN116829290A (en) Deformation prediction method for laminated molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221215

R150 Certificate of patent or registration of utility model

Ref document number: 7197437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150