WO2023153404A1 - Flow path structure and method for manufacturing self-organizing material particles using same - Google Patents

Flow path structure and method for manufacturing self-organizing material particles using same Download PDF

Info

Publication number
WO2023153404A1
WO2023153404A1 PCT/JP2023/004007 JP2023004007W WO2023153404A1 WO 2023153404 A1 WO2023153404 A1 WO 2023153404A1 JP 2023004007 W JP2023004007 W JP 2023004007W WO 2023153404 A1 WO2023153404 A1 WO 2023153404A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
self
flow path
flow
channel structure
Prior art date
Application number
PCT/JP2023/004007
Other languages
French (fr)
Japanese (ja)
Inventor
正寿 真栄城
学 渡慶次
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Publication of WO2023153404A1 publication Critical patent/WO2023153404A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus

Definitions

  • the present invention relates to a channel structure and a method for producing self-organizing material particles using the same.
  • CROSS REFERENCE TO RELATED APPLICATIONS This application claims priority from Japanese Patent Application No. 2022-17619 filed on February 8, 2022, the entire disclosure of which is specifically incorporated herein by reference.
  • Amphiphilic molecules such as lipids self-assemble multiple lipid molecules in a polar solvent such as water, exposing the polar groups of each lipid molecule to the solvent side (nonpolar groups are isolated from the solvent). ) particles (lipid nanoparticles).
  • lipid nanoparticles In recent years, such self-assembling material particles have been put to practical use as nucleic acid delivery carrier particles.
  • SARS-CoV-2 novel coronavirus
  • mRNA vaccine that was granted emergency use in 2020 also uses lipid nanoparticles as mRNA delivery carriers. Recently, it has been reported that nucleic acid delivery efficiency and activity differ depending on the particle size of lipid nanoparticles.
  • microfluidic devices have attracted attention as a fabrication method for precisely controlling the particle size of lipid nanoparticles (Patent Documents 1 and 2).
  • Patent Documents 1 and 2 By using a microfluidic device, it is possible to control the particle size of lipid nanoparticles in a flow-dependent manner, and it is also used in the development of Onpattro (registered trademark), the world's first siRNA preparation.
  • Patent Document 1 WO2018/190423
  • Patent Document 2 WO2021/064998
  • Patent Document 3 Special table 2019-503271 (WO2017/117647)
  • the microfluidic devices reported so far have the problem that the particle size becomes small when the particles are produced under high flow conditions for mass production.
  • the average particle size is large, it is also possible to selectively deliver drugs to different tissues than small particles. be. Therefore, there is a great demand for lipid nanoparticles with a relatively large average particle size and high size uniformity.
  • a similar demand is expected in the future for self-assembled material particles made from materials other than lipids.
  • lipid nanoparticles of around 100 nm can be prepared at a total flow rate of 100 ⁇ L/min under the conditions used in the study by the present inventors.
  • the average particle size of the lipid nanoparticles obtained at a total flow rate of 500 ⁇ L/min was around 30 nm.
  • the particle size of the lipid nanoparticles obtained at a total flow rate of 2 to 10 mL/min was all about 80 nm or less.
  • the microfluidic devices described in Patent Documents 1 and 2 have a structure in which the channel width (cross-sectional area) intermittently changes by half or less midway. Therefore, under high flow conditions, the pressure loss increases and the device may be damaged, making it unsuitable for mass production of lipid nanoparticles, which requires a high flow rate.
  • the problem to be solved by the present invention and the object of the present invention are self-organization such as relatively large lipid nanoparticles with an average particle size of 100 nm or more even when the flow rate is relatively high, for example, the total flow rate is 2 mL / min.
  • An object of the present invention is to provide a fluid structure capable of producing organic material particles, and a method for producing self-organizing material particles such as lipid nanoparticles using this fluid structure.
  • the average particle diameter in the specification of the present application means the Z average particle diameter defined in ISO 13321.
  • the present invention is based on the principle of forming self-assembled material particles, and does not intend to shorten the time required for complete mixing of two liquids as much as possible as in Patent Document 3, for example. This is the result of an investigation into a channel shape that can achieve a relatively high flow rate while considering the dilution time of the substance-containing solution. Specifically, it is as follows.
  • the cross-sectional area of the straight portion of the flow path B (20) is constant or varies periodically from the inlet (11) to the confluence (30) or the outlet (22), [1]- The channel structure according to any one of [7].
  • the crossing angle of the flow paths A and B (10, 20) is such that the angle ⁇ formed by the center line of the flow path A and the center line of the flow path B is in the range of 30° to 150°.
  • the widths of channels A and B (10, 20) each independently range from 10 to 2000 ⁇ m, and the heights of channels A and B (10, 20) each independently range from 10 to 1000 ⁇ m.
  • the channel structure according to any one of [1] to [9].
  • the planar shape of the outer edge and inner edge of the bent portion of the flow path A (10) that is two-dimensionally or three-dimensionally bent is polygonal or substantially circular, According to any one of [1] to [10], wherein the planar shape of the outer edge and inner edge of the bent portion of the flow path B (20) that is two-dimensionally or three-dimensionally bent is polygonal or substantially circular. channel structure.
  • a substrate A having a continuous groove A for the flow channel A and at least one main surface of the substrate having a flat main surface, for the flow channel B It has a structure in which a substrate B having a continuous groove B is laminated so that the continuous groove A and the continuous groove B face each other,
  • the flow path A is two-dimensionally regularly or irregularly curved or straight
  • the flow path B is two-dimensionally regularly or irregularly curved or straight.
  • a method for producing self-assembling material particles comprising the step of diluting a self-assembling material-containing solution with a diluent medium to obtain a liquid containing self-assembling material particles, The manufacturing method, wherein the steps are performed using the channel structure according to any one of [1] to [13].
  • the solution containing the self-assembling substance is introduced from the inlet of the channel A and the dilution medium is introduced from the inlet of the channel B, or the solution containing the self-assembling substance is introduced from the inlet of the channel B and the dilution medium is introduced from the inlet of the flow path A.
  • At least a portion of the self-assembling substance-containing solution flow diverges and merges with the dilution medium flow at the common hole of the intersection region of the channel structure, and at least a portion of the dilution medium flow diverges into the self-assembling substance-containing solution flow.
  • a diluted layer of the self-assembling substance-containing solution is formed at the interface between the self-assembling substance-containing solution flow and the dilution medium flow, and self- 16.
  • the total flow rate of the solution containing the self-assembling substance and the dilution medium to channel A and channel B is in the range of 1 ⁇ l/min to 1000 ml/min.
  • Production method. Any one of [14] to [17], wherein the ratio of the flow rate V2 of the dilution medium to the flow rate V1 of the self-assembling substance-containing solution (V2/V1) is in the range of 1:1 to 1:20. manufacturing method.
  • the diluent medium is selected from aqueous solutions, buffer solutions, nucleic acid-containing aqueous solutions, protein-containing aqueous solutions, peptide-containing aqueous solutions, adjuvant-containing aqueous solutions, and mixtures thereof.
  • Production method [21] The production method according to any one of [14] to [20], wherein the self-assembling material particles contained in the liquid containing self-assembling material particles are nano-sized.
  • the nano-sized self-assembled material particles have a Z-average particle diameter in the range of 10 to 1000 nm.
  • the nano-sized self-assembled material particles have a Z-average particle size in the range of 20 to 200 nm.
  • the present invention it is possible to provide a fluid structure capable of producing self-organizing substance particles such as lipid nanoparticles having a relatively large average particle size of 100 nm or more even under relatively high flow conditions. can. Furthermore, according to the present invention, by using the fluid structure of the present invention, self-organizing substance particles such as lipid nanoparticles having a relatively large average particle size of 100 nm or more can be obtained even under conditions of a relatively large flow rate. can be manufactured.
  • FIG. 1-1 is a perspective view showing only the flow channel of the flow channel structure, showing an example of the flow channel structure of the present invention.
  • 1-2 are a plan view, a front view, and a side view showing only the channels of the channel structure of FIG. 1-1.
  • FIG. 1-3 is a plan view showing only the channels of the channel structure of FIG. 1-1, and indicates dimensions W1 to W8.
  • 2A and 2B are a perspective view, a plan view, a front view and a side view showing only the flow path of one example of the flow path structure of the present invention.
  • 3A and 3B are a perspective view, a plan view, a front view and a side view showing only the flow path of one example of the flow path structure of the present invention.
  • FIG. 4A and 4B are a perspective view, a plan view, a front view, and a side view showing only the flow path of one example of the flow path structure of the present invention.
  • FIG. 5-1 is a schematic explanatory diagram showing an example of the flow channel structure of the present invention.
  • FIG. 5-2 is a schematic explanatory diagram showing an example of the flow channel structure of the present invention.
  • FIG. 5-3 is a schematic explanatory diagram showing an example of the flow channel structure of the present invention.
  • FIG. 5-4 is a schematic explanatory diagram showing an example of the flow channel structure of the present invention.
  • FIG. 5-5 is a schematic explanatory diagram showing an example of the flow channel structure of the present invention.
  • 5-6 are schematic explanatory diagrams showing an example of the flow channel structure of the present invention.
  • FIG. 5-7 are schematic explanatory diagrams showing an example of the flow path structure of the present invention.
  • FIG. 5-8 are schematic explanatory diagrams showing an example of the flow channel structure of the present invention.
  • FIG. 6 is a plan view of an example of the flow channel structure of the present invention.
  • FIG. 7 is an explanatory diagram of a flow path structure used in Examples. 8 shows the experimental results of Example 1.
  • FIG. 9 shows the experimental results of Example 1.
  • FIG. 10 shows the experimental results of Example 1.
  • FIG. 11 shows the experimental results of Example 2.
  • FIG. 12 shows the experimental results of Example 3.
  • FIG. FIG. 13 shows the simulation results of Reference Example 2-1.
  • FIG. 14 shows the simulation results of Reference Example 2-2.
  • FIG. 15 shows the simulation results of Reference Example 2-3.
  • FIG. 16 shows simulation results of Reference Example 2-4.
  • FIG. 17 shows the simulation results of Reference Example 2-5.
  • 18 shows the particle size measurement results of Example 5.
  • FIG. 19 shows the results of relative luminescence intensity measurement of Example
  • the flow channel structure of the present invention is Having a channel A (10) having an inlet (11) and a channel B (20) having an inlet (21), Channels A and B (10, 20) three-dimensionally intersect at one or more locations downstream of inlets (11, 21), and communicate with channel walls of channels A and B (10, 20), respectively.
  • Flow paths A and B (10, 20) join at a confluence (30) located in the most downstream intersection region, and have at least one outlet (31) downstream of the confluence (30) (however, A part or the whole from the most upstream intersection area to the outlet port (31) is a site for diluting the fluid flowing through the channel) (hereinafter sometimes referred to as a dilution site 1), or the flow Paths A and B (10, 20) have outlets (12) and (22) independently without merging (however, from the intersection area to outlets (12) and (22) A part or the whole of each is a part for diluting the fluid flowing through the channel) (hereinafter sometimes referred to as a dilution part 2).
  • the flow path structure of the present invention is preferably for producing self-assembled material particles, and includes self The assembling material-containing solution is diluted by the diluent medium introduced from the other inlet to form self-assembling material particles.
  • Channel A (10) is regularly or irregularly curved or straight in two or three dimensions and Channel B (20) is regularly or irregularly in two or three dimensions. It can be curved or straight.
  • the flow path structure of the present invention has one or more intersection areas, and may have two or more intersection areas. If there is a single intersection area, one or both of Channel A (10) and Channel B (20) can be linear, and if not linear, regularly in two or three dimensions or It may be irregularly curved. An embodiment in which both Channel A (10) and Channel B (20) are straight is shown in FIGS. 5-7 and 5-8.
  • FIG. 1-1 is a perspective view showing only the channels of the channel structure, and the channels are incorporated in the main body of the structure (not shown).
  • 1-2 are a plan view, a front view, and a side view showing only the channels of the channel structure of FIG. 1-1.
  • FIG. 1-3 is a plan view showing only the channels of the channel structure of FIG. 1-1, and indicates dimensions W1 to W8.
  • a channel structure having a dilution site 1 has a channel A indicated by 10 having an inlet 11 and a channel B indicated by 20 having an inlet 21 .
  • the flow path A and the flow path B merge at a junction 30 located downstream of the inlets 11 and 21 and can have at least one outlet 31 downstream of the junction 30 .
  • the confluence portion 30 is located at the most downstream intersection region of the flow path A and the flow path B. As shown in FIG. A portion or the entire portion between the most upstream intersection region and the outlet port 31 is a portion for diluting the fluid flowing through the channel.
  • dilution may be completed in a portion between the intersection region at the most upstream and the outlet port 31, or may be completed at the maximum. Dilution may continue all the way from the upstream intersection region to outlet 31 .
  • a portion between the most upstream intersection region and the outlet port 31 is a portion for diluting the fluid flowing through the channel. be.
  • the entire area from the most upstream intersection area to the outlet port 31 is a site for diluting the fluid flowing through the channel.
  • the channel A and the channel B each have an outlet without merging.
  • a part or the whole of each section from the intersection region to the outlet 12 and the outlet 22 is a section for diluting the fluid flowing through the channel.
  • dilution site 1 depending on the fluid flow rate, the ratio of the fluid to be diluted and the diluent medium, and the length of the dilution site, the distance from the intersection region to outlet 12 and outlet 22 respectively. Dilution is completed in part, dilution continues in the entire area from the intersection area to outlet 12 and outlet 22, and dilution is completed in part from the intersection area to outlet 12.
  • dilution is completed in the entire area from the intersection area to the outlet 22, dilution is completed in the entire area from the intersection area to the outlet 12, and in a part from the intersection area to the outlet 22 It may be the case that the dilution is complete.
  • the distance between the intersection region and the outlet port 12 and between the intersection region and the outlet port 22 is A portion is a portion for diluting the fluid flowing through each channel.
  • flow path A and flow path B have independent outlets 12 and 22 without merging, and outlets 12 and outlets 12 and 22 are drawn from the intersection area. Each of them has a dilution site up to the outlet 22 .
  • the number of crossings of the channels A and B is not particularly limited, and can be appropriately determined in consideration of the purpose of use of the channel structure and the dimensions of the channels A and B.
  • the minimum number of times can be, for example, 1, 2, 3, 4, 5 times, and the maximum number of times, for example, 30, 25 , 20 times, 15 times, 10 times.
  • the flow path A and the flow path B three-dimensionally intersect at two or more points between the introduction ports 11 and 21 and the confluence portion 30, or three-dimensionally intersect at one point between the introduction ports 11 and 21 and the outlet ports 12 and 22. and has a common hole 32 that communicates the flow path A and the flow path B in the flow path side wall at each intersection region.
  • the opening surface of the common hole of the flow channel A and the opening surface of the common hole of the flow channel B can constitute substantially the same plane.
  • the common hole can be a passage (connecting passage) that connects the opening of the common hole of the flow path A and the opening of the common hole of the flow path B.
  • part of the fluid flowing through the flow path A and part of the fluid flowing through the flow path B flow into the communication flow path to form a contact surface between the two fluids.
  • channels A and B can intersect to have a common channel with each other at a common hole. In this case, since they have a common flow path, the fluids flowing through the two flow paths mix at that portion.
  • the cross-sectional area of the flow path A can be constant from the inlet 11 to the confluence portion 30 or the outlet 12, or can vary periodically at least in part. From the viewpoint of maintaining laminar flow, it is preferable to be constant, and from the viewpoint of promoting diffusion in the fluid, it is preferable to vary periodically.
  • the cross-sectional area of the flow path B can be constant from the introduction port 21 to the confluence portion 20 or the outlet port 22, or can vary periodically at least in part. From the viewpoint of maintaining a laminar flow, it is preferable to be constant, and from the viewpoint of promoting diffusion without a fluid, it is preferable to vary periodically.
  • the dimensions of the channels A and B can be determined as appropriate in consideration of the purpose of use of the channel structure, and are not intended to be limited.
  • the width and height of channel A can range, for example, from 1 ⁇ m to 10 mm and 1 ⁇ m to 10 mm, respectively, and the width and height of channel B can range, for example, from 1 ⁇ m to 10 mm and 1 ⁇ m to 10 mm, respectively.
  • the width and height of channel A are preferably in the range of 10 ⁇ m to 2 mm (2000 ⁇ m) and 10 ⁇ m to 1 mm (1000 ⁇ m) respectively, the width and height of channel B are preferably in the range of 10 ⁇ m to 2 mm (2000 ⁇ m) and 10 ⁇ m to 1 mm respectively.
  • the widths of the channels A and B are both 200 ⁇ m, and the heights of the channels A and B are both 100 ⁇ m.
  • the larger the size the more suitable for mass production at a large flow rate, but the size can be appropriately selected as long as particles having the desired particle size (average particle size) can be obtained.
  • FIGS. 3 and 4 show examples of channel structures having channel dimensions different from the channel structure in FIG.
  • the flow channel structure shown in FIGS. 3 and 4 is an example of a flow channel structure in which the cross-sectional area of the straight portion of the flow channel A varies periodically.
  • the flow path B is straight, the flow path A is regularly bent in two dimensions, and the bent portion has a curved planar shape.
  • the flow path B is straight, the flow path A is regularly bent in two dimensions, the plane shape of the bent portion is a bent shape, and the crossing angle of the flow paths A and B is This is an example that is not 90°.
  • the flow path B is straight, the flow path A is regularly bent in two dimensions, and the bent portion has a curved planar shape as in FIG. The path A is discontinued, and the path A joins with the path B in the intersection region.
  • the flow path B is straight, the flow path B is regularly bent in two dimensions, the plane shape of the bent portion is curved, and the crossing angle of the flow paths A and B is This is an example that is not 90°.
  • the flow path B is straight, the flow path A is regularly curved in three dimensions, and the curved portion has a curved planar shape as in FIG. 5-6
  • channel B is straight
  • channel A consists of two channels, both of which are regularly bent in two dimensions, and the bent portions have a planar shape similar to that in FIG. It is a refraction shape.
  • the two channels A have a sequential intersecting area in the longitudinal direction of the channel B. As shown in FIG.
  • the two channels A each have an inlet and an outlet.
  • channel B is straight and channel A consists of three channels, all of which are straight.
  • Each of the three channels A has one intersecting area in succession in the longitudinal direction of the channel B.
  • Each of the three channels A has an inlet and an outlet.
  • channel B is straight and channel A is also straight.
  • Channel A and channel B have one intersection area.
  • Channel A and channel B each have an inlet and an outlet.
  • the angle ⁇ formed by the center line of flow path A and the center line of flow path B is, for example, 30°. It can range from ⁇ 150°. Typically 90°, but preferably in the range 45° to 120°. Typically, it is 90° as shown in FIG. 1, but if the angle ⁇ is other than 90°, such as alternating between about 60° and about 120°, as shown in FIGS. There is also a mode that appears in
  • the flow path A is two-dimensionally or three-dimensionally or irregularly curved
  • the flow path B is two-dimensionally or three-dimensionally regularly or irregularly curved or linear.
  • the flow path A is two-dimensionally curved
  • the flow path B is straight
  • the flow paths A and B intersect periodically.
  • Channels A and B can intersect irregularly.
  • FIG. 5-5 shows an example in which the channel A is straight and the channel B is regularly curved in three dimensions.
  • the planar shape of the outer edge and inner edge of the curved portion of the flow path A that is bent two-dimensionally or three-dimensionally can be polygonal or substantially circular, and the curved portion of the flow path B that is bent two-dimensionally or three-dimensionally
  • the planar shape of the outer and inner edges of can be polygonal or substantially circular.
  • FIG. 5-1 shows a case of a substantially circular shape
  • FIG. 5-2 shows a case of a polygonal shape.
  • the channel structure of the present invention comprises, for example, a substrate having flat surfaces and a continuous groove A for the flow channel A on at least one main surface of the substrate and at least one of the substrate having flat main surfaces. It has a structure in which a substrate B having a continuous groove B for the flow channel B is attached to the main surface so that the continuous groove A and the continuous groove B face each other, and the flow channel A is two-dimensionally regular or irregular. It can be a channel structure in which the channel B is regularly or irregularly curved or linear in two dimensions.
  • FIG. 6 is a plan view showing the main bodies and channels of four types of channel structures (1) to (4) with different Ws.
  • the flow channel A is two-dimensionally curved, and the flow channel B is linear.
  • inlet ports (two places) for each of the flow paths A and B, and one outlet port for the flow path where the flow paths A and B join are shown.
  • (1), (2), (3) and (4) are examples in which the width W of the flow path A that is regularly curved two-dimensionally is 200 ⁇ m, 400 ⁇ m, 600 ⁇ m and 800 ⁇ m, respectively.
  • the flow channel structure of the present invention can further have a second flow channel structure downstream of the outlet port of the first flow channel structure.
  • the channel structures may be the same or different.
  • the outlet port of the first channel structure is connected to the inlet port of the channel A of the second channel structure or connected to the inlet port of the channel B of the second channel structure. More specifically, the outlet of the channel structure having the dilution part 1 and the inlet of the channel A or the channel B of the channel structure having the dilution part 2 are connected, and the dilution part 2 is provided.
  • 5-6 shows a configuration in which the outlet of the channel B of the channel structure having the dilution portion 2 and the inlet of the channel B of the channel structure having the dilution portion 1 are connected.
  • 5-7 shows an example in which three channel structures having dilution sites 1 and 2 are connected, the most upstream channel structure has dilution site 1, and the outlet of channel B is Connected to the inlet of the intermediate channel B, the intermediate channel structure has the dilution part 1, and the outlet of the channel B is the most downstream channel structure having the dilution part 2 It is the form connected with the inlet of the flow path B.
  • the present invention provides a method for producing self-assembling material particles, comprising a step of diluting a self-assembling material-containing solution with a diluent medium to obtain a liquid containing self-assembling material particles, wherein It includes a method implemented with a tract structure.
  • the solution containing the self-assembling substance is introduced from the inlet of the channel A and the dilution medium is introduced from the inlet of the channel B, or the solution containing the self-assembling substance is introduced from the inlet of the channel B and the dilution medium is introduced from the inlet of the channel A.
  • the self-assembling substance-containing solution fluid and the dilution medium fluid introduced into the channel from each inlet come into contact with the common hole of the channel structure, and the self-assembling substance-containing solution is diluted with the dilution medium to self-assemble. form particles of matter. More specifically, at least a portion of the self-assembling substance-containing solution flow branches into the dilution medium flow and merges with the dilution medium flow at the common hole of the intersection region of the channel structure, and at least the dilution medium flow A portion of the flow branches into the self-assembling substance-containing solution flow and merges with the self-assembling substance-containing solution flow.
  • a diluted layer of the self-assembling material-containing solution is formed at the interface between the converged self-assembling material-containing solution flow and the diluent medium flow, and self-assembling material particles are formed in the diluted layer.
  • a continuous dilution layer in the flow direction suitable for forming relatively large-diameter particles can be formed.
  • the flow channel structure of the present invention is a structure capable of realizing the above fluid behavior and thus particle formation.
  • the mechanism by which a diluted layer of a self-assembled substance-containing solution is formed and self-assembled substance particles are formed in the diluted layer is described in PLoS ONE 12(11): e0187962. (2017) (hereafter abbreviated as PLoS literature), the mechanism described in FIG.
  • the EtOH stream contacts the water stream at the first common hole, partially diverges and joins the intersecting water stream, and flows into the water stream flow path, while the water stream also contacts the EtOH stream at the first common hole. , diverges and joins the intersecting EtOH streams and flows into the EtOH stream flow path.
  • the EtOH stream entrained in the water streams that intersect at the common hole flows into the water stream flow path.
  • the cross-sectional view it can be seen that the water flow drawn into the EtOH flow crossing at the common hole flows into the flow path of the EtOH flow.
  • the self-assembled material particles are formed in the concentration range in which the solvent that dissolves the self-assembled material is in the dilution layer (the literature In the case of POPC lipid nanoparticles, they are formed when the EtOH concentration is generally in the range of 60 to 80%), and the longer the residence time in the diluted layer in this solvent concentration range, the larger the particle size, and the shorter the residence time, the larger the particle size.
  • the diameter tends to be smaller. From the results of FIG.
  • Reference Example 2-2 is a simulation result using a channel structure similar to that of Reference Example 1 with a total flow rate of 1000 ⁇ L/min. Results are shown in FIG. It is presumed that the dilution of the EtOH flow progresses rapidly, the time during which the solvent concentration capable of forming particles can be maintained becomes shorter than in Reference Example 1, and the particle size tends to become smaller.
  • Reference Example 2-3 is a simulation result using a channel structure similar to Reference Examples 1 and 2, with a total flow rate of 2000 ⁇ L/min. Results are shown in FIG. It is presumed that the EtOH stream is diluted more rapidly, the time during which the solvent concentration capable of forming particles can be maintained becomes shorter than in Reference Examples 1 and 2, and the particle size tends to become smaller.
  • Reference Example 2-5 is a simulation result using a channel structure similar to that of Reference Example 2-4 with a total flow rate of 2000 ⁇ L/min. Results are shown in FIG. Dilution of the EtOH flow progresses rapidly, and the time during which the solvent concentration capable of forming particles can be maintained is shorter than in Reference Example 2-4, and the particle size tends to be smaller.
  • the channel structure of the present invention by controlling the width and depth of the two channels, the flow rate ratio of the self-assembling substance-containing solution flow and the dilution medium flow, and the total flow rate, particles It can be seen that the diameter can be controlled and the uniformity of the particle size can also be controlled. Furthermore, in the examples, when the actual self-assembling substance-containing solution flow and the diluent medium flow are used, by controlling the above conditions, self-assembly having a highly uniform particle size and a desired particle size It shows that substance particles can be manufactured.
  • the formed self-assembled material particles are particles containing the self-assembled material as a particle constituent.
  • Particles containing a self-assembled substance as a particle constituent are particles obtained by association of the self-assembled substances to form particles. can be taken inside.
  • the constituent components of the particles formed under the condition where the substance to be encapsulated coexist are at least the self-assembling substance and the substance to be encapsulated.
  • the solution containing the self-assembling substance and the diluent medium to channel A and channel B can be flowed into the channel structure so that the total flow rate is, for example, 1 ⁇ l/min to 1000 ml/min.
  • the total flow rate is not intended to be limited to this range. It can be determined as appropriate in consideration of the encapsulation efficiency of the substance and the like.
  • the total flow rate of the self-assembling material-containing solution and the dilution medium is, for example, in the range of 100 ⁇ l/min to 1000 ml/min. From the viewpoint of obtaining substance particles, it can be in the range of 100 ⁇ l/min to 100 ml/min.
  • the ratio (V1:V2) between the flow rate V1 of the self-assembling substance-containing solution and the flow rate V2 of the dilution medium can be, for example, in the range of 1:1 to 1:20. However, it is not intended to be limited to this range, and can be appropriately selected within a range in which the desired particles can be obtained.
  • a self-assembling substance can be, for example, a lipid or an amphiphilic substance.
  • the self-assembling substance-containing solution can be, for example, any solution selected from the group consisting of a neutral lipid-containing solution, an anionic lipid-containing solution, a cationic lipid-containing solution, and a polymer-containing solution. It is not intended to be limiting.
  • the self-assembling substance in the present invention may be any substance as long as it has a self-assembling function and can associate with each other and form particles as described above.
  • Examples of lipids that are self-organizing substances include, but are not limited to, soybean lecithin, hydrogenated soybean lecithin, egg yolk lecithin, phosphatidylcholines (eg, egg-derived eggPC), phosphatidylserines, and phosphatidyl.
  • Ethanolamines phosphatidylinositols, phosphasphingomyelins, phosphatidic acids, long-chain alkyl phosphates, gangliosides, glycolipids, phosphatidylglycerols, sphingolipids, sterols, naturally-derived lipids such as lysophospholipids, and N-(2 ,3-dioleyloxy)propyl)-N,N,N-trimethylammonium chloride (DOTMA); N,N-distearyl-N,N-dimethylammonium bromide (DDAB); oiloxy)propyl)-N,N,N-trimethylammonium chloride (DOTAP); 3-(N-(N',N'-dimethylaminoethane)-carbamoyl)cholesterol (DC-Chol) and N-(1, 2-Dimyristyloxyprop-3-yl)-N,N-d
  • Amphiphilic substances which are another example of self-assembling substances, include, but are not particularly limited to, amphiphilic polymer compounds such as polystyrene-polyethylene oxide block copolymers, polyethylene oxide-polypropylene oxide block copolymers, Examples include polymers, amphiphilic block copolymers such as polylactic acid polyethylene glycol copolymers, polycaprolactone-polyethylene glycol copolymers, and the like.
  • the substance to be encapsulated is not particularly limited, but includes substances such as biopolymers such as nucleic acids, peptides, proteins, and sugar chains, metal ions, low-molecular-weight or middle-molecular-weight organic compounds, organometallic complexes, and metal particles.
  • drugs such as anticancer agents, antioxidants, antibacterial agents, anti-inflammatory agents, vitamins, artificial blood (hemoglobin), vaccines, hair growth agents, moisturizers, pigments, whitening agents, pigments, etc.
  • Physiologically active substances, cosmetics and the like can be exemplified.
  • These encapsulating substances can be included in the aqueous phase of the formed particles if they are water soluble.
  • the particles are included in the hydrophobic part of the self-assembled film formed by the self-assembled material, or as aggregates that are combined with the hydrophobic part of the self-assembled material and aggregated.
  • the substance to be encapsulated can be made water-soluble or sparingly soluble in advance in a pretreatment step, or can be made into an aggregate, and the pretreatment step can also be performed in an appropriate channel for the treatment.
  • the discharge port of the channel in which the pretreatment process is carried out can be connected to the first or second introduction channel of the channel structure of the present invention.
  • the water-miscible organic solvent used for dissolving the self-assembling material to prepare the particle solution is not particularly limited, but examples thereof include alcohols, ethers, esters, ketones, and acetals. and water-miscible organic solvents such as Alcohols such as methanol, ethanol, t-butanol, butanediols, 1-propanol, 2-propanol, and 2-butoxyethanol, particularly alkanols having 1 to 6 carbon atoms, are particularly preferred. Ethers such as tetrahydrofuran, acetonitrile, and acetone are also included.
  • diluent medium water or an aqueous solution containing essentially water as a main component, for example, physiological saline, phosphate buffer, acetate buffer, citrate buffer, malate buffer, etc., is to be formed. It is used as appropriate depending on the intended use of the particles.
  • Dilution media can also be aqueous solutions, buffers, as well as solutions that further contain water-soluble substances in these solutions.
  • the water-soluble substance can be low molecular weight, middle molecular weight, high molecular weight, nucleic acid, protein, peptide, and physiologically active substances containing them, pharmaceuticals, cosmetic materials, vaccines, adjuvants, and the like.
  • the diluent medium further containing a water-soluble substance is, for example, a low-molecular-weight aqueous solution, an intermediate-molecular-weight aqueous solution, a high-molecular-weight aqueous solution, a nucleic acid-containing aqueous solution, a protein-containing aqueous solution, a peptide-containing aqueous solution, a physiologically active substance-containing aqueous solution, a drug-containing aqueous solution, It may be an aqueous solution containing cosmetic material, an aqueous solution containing vaccine, an aqueous solution containing adjuvant, or a mixture thereof.
  • the self-assembled material particles encapsulating the material to be encapsulated obtained by the method of the present invention can be nano-sized, and can have a Z-average particle size in the range of, for example, 10 to 1000 nm, such as 20 to 200 nm. can range from However, it is not intended to be limited to this range.
  • the Z-average particle size is also called cumulative average (harmonic intensity obtained by averaging particle diameters), and is defined in ISO 13321.
  • Example 1 Lipid particles were prepared using six channel structures shown in Tables 1-1 and 1-2 below.
  • W5, W7, W2, and W4 in Table 1-2 are the dimensions of the portion shown in FIG. and B from the confluence to the outlet (mm).
  • ⁇ Upper channel buffer flow [25 mM acetate buffer (pH 4.0)] - Lower flow path: lipid EtOH liquid flow - Lipid solution: 10 mM DOTAP/DSPC/cholesterol/DMG-PEG 2K (40/11.5/47.5/1%) ⁇ Dialysis: D-PBS (-) ⁇ Particle size measurement: DLS
  • the results are shown in Figures 8-10.
  • the particle size on the vertical axis in FIGS. 8 to 10 means the Z-average particle size, and the particle size in the following description also means the average particle size.
  • the upper channel width increases from 200 nm to 800 nm in FRR3.
  • the flow rate increases, particles with a diameter of 100 nm or more are formed even at a high flow rate of 1000 ⁇ L/min or more.
  • FRR5 and FRR7 show the same tendency.
  • channel No. 6 With FRR3, particles with a particle diameter of 100 nm or more can be obtained even at 2000 ⁇ L/min. Smaller FRR tends to make it easier to obtain particles with a large particle size at a high flow rate.
  • the width of the upper flow path is increased, it tends to become easier to form particles having a particle diameter of 100 nm or more.
  • the chamfering of the channel is a structure in which the corners of the inner surface of the side wall of the channel are curved, and is intended to smooth the flow of the fluid.
  • the results are shown in FIG.
  • the particle size on the vertical axis of FIG. 11 means the Z-average particle size.
  • the particle size of the obtained lipid particles did not change significantly depending on whether the upper channel of the channel structure was chamfered or not, but the particle size was larger in the case of having the chamfered structure.
  • Example 4 Lipid particles encapsulating nucleic acids were prepared using three types of channel structures shown in Table 2 below.
  • Z-average indicates Z-average particle size
  • Number indicates number-average particle size
  • PDI indicates polydispersity.
  • the Z-average particle size is the average particle size determined based on the measured scattering intensity (light intensity), and the number-average particle size is the average particle size weighted by the number of particles.
  • ⁇ Nucleic acid solution 60 (FRR7) or 70 (FRR3) ⁇ g/mL siRNA in 25 mM acetate buffer (pH 4.0) - Lipid solution: 10 mM DOTAP/DSPC/cholesterol/DMG-PEG 2K (40/11.5/47.5/1%) ⁇ Dialysis: D-PBS (-) - Particle size measurement: A dynamic light scattering method (DLS) was used. - Measurement of nucleic acid encapsulation rate: Ribogreen (registered trademark) assay was used.
  • the channel structure used in the examples of the present invention can produce lipid particles encapsulating nucleic acid with a Z-average particle size in the range of 100 to 200 nm.
  • Nucleic acid encapsulation was as high as 96% or more.
  • channel no. 4 flow rate 300 ⁇ L/min, 2000 ⁇ L/min
  • channel No. 6 flow rate of 2000 ⁇ L/min
  • particles with a PDI of 0.1 or less could be produced.
  • Example 5 Using the channel (W800) in FIG. 6(4), mRNA-LNP was produced.
  • the dialyzed three types of mRNA-LNP were diluted with medium to a concentration of 200 ng/mL mRNA and dosed to HeLa cells. After incubation for 24 hours, the luminescence intensity and total protein concentration of Luciferase were measured using ONE-Glo and BCA assay kit. From this, the relative luminescence intensity (RLU/mg protein) was obtained. The results are shown in FIG. In all three cases, the Z-average particle size was 100 nm or more (Fig. 18), and the relative emission intensity did not change significantly (Fig. 19).
  • Example 6 mRNA-LNP was prepared using the channel (W800) in FIG. .
  • Reference example 2-1 The upper channel with a width (W) of 200 ⁇ m and a depth (D) of 100 ⁇ m shown in FIG. This is an image of the formation of a diluted layer when the total flow rate is 500 ⁇ L/min and the water/EtOH flow rate ratio is 5 in a flow channel structure having six crossing regions and a structure that merges to reach an inlet. be. Results are shown in FIG.
  • Reference example 2-2 This is the result of a simulation using a channel structure similar to that of Reference Example 2-1 and with a total flow rate of 1000 ⁇ L/min. Results are shown in FIG.
  • Reference example 2-3 This is the result of a simulation using a channel structure similar to that of Reference Example 2-1 and with a total flow rate of 2000 ⁇ L/min. Results are shown in FIG.
  • Reference example 2-4 The upper channel with a width (W) of 400 ⁇ m and a depth (D) of 100 ⁇ m shown in FIG. This is an image of the formation of a diluted layer when the total flow rate is 500 ⁇ L/min and the water/EtOH flow rate ratio is 5 in a flow channel structure having seven intersection regions and a structure that merges to reach an inlet. be. Results are shown in FIG.
  • Reference example 2-5 This is the result of a simulation using a channel structure similar to that of Reference Example 2-4 and with a total flow rate of 2000 ⁇ L/min. Results are shown in FIG.
  • the present invention is useful in fields related to production of channel structures and self-assembled material nanoparticles using channel structures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)

Abstract

The present invention relates to a flow path structure that includes a flow path A10 having an inlet port 11 and a flow path B20 having an inlet port 21. The flow paths A10, B20 intersect three-dimensionally at one or more locations downstream of the inlet ports 11, 21, and include, in the intersection regions, a mutual hole 32 in respective flow path walls through which the flow paths A10, B20 communicate. The flow paths A10, B20 merge at a merging section 30 positioned downstream of the furthest-downstream intersection region and have at least one outlet port 31 downstream of the merging section 30. Alternatively, the flow paths A10, B20 do not merge, and independently have an outlet port 12 and an outlet port 22. The present invention relates to a method for manufacturing self-organizing material particles, the method using said flow path structure and including a step for obtaining a liquid that contains self-organizing material particles by diluting, in a dilution medium, a solution containing a self-organizing material. The present invention provides: a fluid structure with which it is possible to produce self-organizing material particles having an average particle diameter of 100 nm or more even under conditions in which the flow rate is relatively high; and a method for manufacturing self-organizing material particles, the method using said fluid structure.

Description

流路構造体およびこれを用いた自己組織化物質粒子の製造方法Channel structure and method for producing self-organizing material particles using the same
 本発明は、流路構造体およびこれを用いた自己組織化物質粒子の製造方法に関する。
関連出願の相互参照
 本出願は、2022年2月8日出願の日本特願2022-17619号の優先権を主張し、その全記載は、ここに特に開示として援用される。
The present invention relates to a channel structure and a method for producing self-organizing material particles using the same.
CROSS REFERENCE TO RELATED APPLICATIONS This application claims priority from Japanese Patent Application No. 2022-17619 filed on February 8, 2022, the entire disclosure of which is specifically incorporated herein by reference.
 脂質のような両親媒性分子は、水のような極性溶媒中では複数の脂質分子が自己組織化して、各脂質分子の極性基が溶媒側に露出した(非極性基が溶媒から隔離された)粒子(脂質ナノ粒子)を形成することが知られている。この様な自己組織化物質粒子は、近年では核酸送達キャリア粒子として実用化が進んでいる。例えば、2020年に緊急使用許可された新型コロナウイルス(SARS-CoV-2)のmRNAワクチンにおいても、mRNA送達キャリアとして脂質ナノ粒子が用いられている。最近、脂質ナノ粒子の粒径によって、核酸の送達効率や活性が異なることが報告された。そこで、脂質ナノ粒子の粒径を精密に制御するための作製方法として、マイクロ流体デバイスが注目されている(特許文献1、2)。マイクロ流体デバイスを用いることで、脂質ナノ粒子の粒径を流量依存的に制御することができ、世界初のsiRNA製剤であるオンパットロ(Onpattro)(登録商標)の開発にも用いられている。 Amphiphilic molecules such as lipids self-assemble multiple lipid molecules in a polar solvent such as water, exposing the polar groups of each lipid molecule to the solvent side (nonpolar groups are isolated from the solvent). ) particles (lipid nanoparticles). In recent years, such self-assembling material particles have been put to practical use as nucleic acid delivery carrier particles. For example, the novel coronavirus (SARS-CoV-2) mRNA vaccine that was granted emergency use in 2020 also uses lipid nanoparticles as mRNA delivery carriers. Recently, it has been reported that nucleic acid delivery efficiency and activity differ depending on the particle size of lipid nanoparticles. Therefore, microfluidic devices have attracted attention as a fabrication method for precisely controlling the particle size of lipid nanoparticles (Patent Documents 1 and 2). By using a microfluidic device, it is possible to control the particle size of lipid nanoparticles in a flow-dependent manner, and it is also used in the development of Onpattro (registered trademark), the world's first siRNA preparation.
特許文献1:WO2018/190423
特許文献2:WO2021/064998
特許文献3:特表2019-503271(WO2017/117647)
Patent Document 1: WO2018/190423
Patent Document 2: WO2021/064998
Patent Document 3: Special table 2019-503271 (WO2017/117647)
 一方で、これまでに報告されているマイクロ流体デバイスは、大量生産のために高流量条件で粒子を作製すると、粒子の粒径が小さくなるという課題があった。例えば平均粒径が100nm以上の大きな脂質ナノ粒子の方が、薬効が高い例もあり、また、平均粒径が大きいと、小さな粒子とは異なる組織に選択的に薬剤を送達することも可能である。そのため、平均粒径が比較的大きく、かつサイズ均一性が高い脂質ナノ粒子の需要は大きい。なお脂質以外を原料とする自己組織化物質粒子も同様の需要が今後見込まれる。 On the other hand, the microfluidic devices reported so far have the problem that the particle size becomes small when the particles are produced under high flow conditions for mass production. For example, there are cases in which large lipid nanoparticles with an average particle size of 100 nm or more have higher efficacy, and if the average particle size is large, it is also possible to selectively deliver drugs to different tissues than small particles. be. Therefore, there is a great demand for lipid nanoparticles with a relatively large average particle size and high size uniformity. A similar demand is expected in the future for self-assembled material particles made from materials other than lipids.
 例えば、特許文献1及び2に記載のマイクロ流体デバイスを用いた場合、本発明者らが検討に用いた条件においては、総流量が100μL/分では100nm前後の脂質ナノ粒子を調製することができるが、総流量を500μL/分にすると得られる脂質ナノ粒子の平均粒径は30nm前後であった。 For example, when the microfluidic devices described in Patent Documents 1 and 2 are used, lipid nanoparticles of around 100 nm can be prepared at a total flow rate of 100 μL/min under the conditions used in the study by the present inventors. However, the average particle size of the lipid nanoparticles obtained at a total flow rate of 500 μL/min was around 30 nm.
 また特許文献3に記載のディーン渦分岐マイクロ流体デバイスを用いた場合では、総流量2~10mL/分において得られる脂質ナノ粒子の粒径はいずれも約80nmかそれ未満であった。 Also, when using the Dean vortex branching microfluidic device described in Patent Document 3, the particle size of the lipid nanoparticles obtained at a total flow rate of 2 to 10 mL/min was all about 80 nm or less.
 また、特許文献1及び2に記載のマイクロ流体デバイスは、流路幅(断面積)が途中で半分以下かつ断続的に変化する構造を有する。そのため、高流量条件では圧力損失が大きくなり、デバイスの破損のおそれもあり、高流量を必要とする、脂質ナノ粒子の大量生産には不向きであった。 In addition, the microfluidic devices described in Patent Documents 1 and 2 have a structure in which the channel width (cross-sectional area) intermittently changes by half or less midway. Therefore, under high flow conditions, the pressure loss increases and the device may be damaged, making it unsuitable for mass production of lipid nanoparticles, which requires a high flow rate.
 本発明が解決すべき課題及び本発明の目的は、流量が比較的大きい条件、例えば総流量が2mL/分であっても平均粒径が100nm以上の比較的大きな脂質ナノ粒子の様な自己組織化物質粒子の作製が可能な流体構造体、及びこの流体構造体を用いた脂質ナノ粒子の様な自己組織化物質粒子の製造方法を提供することである。尚、本願明細書における平均粒径は、ISO 13321に規定されているZ平均粒子径を意味する。 The problem to be solved by the present invention and the object of the present invention are self-organization such as relatively large lipid nanoparticles with an average particle size of 100 nm or more even when the flow rate is relatively high, for example, the total flow rate is 2 mL / min. An object of the present invention is to provide a fluid structure capable of producing organic material particles, and a method for producing self-organizing material particles such as lipid nanoparticles using this fluid structure. In addition, the average particle diameter in the specification of the present application means the Z average particle diameter defined in ISO 13321.
 本発明は、自己組織化物質粒子の形成原理に基づき、例えば特許文献3のように2液の完全混合に至る時間を極力短縮することを企図せず、大粒径化に必要な自己組織化物質含有溶液の希釈時間を考慮しつつ更に比較的高流量での送液を達成可能な流路形状を検討した結果至ったものである。具体的には以下の通りである。 The present invention is based on the principle of forming self-assembled material particles, and does not intend to shorten the time required for complete mixing of two liquids as much as possible as in Patent Document 3, for example. This is the result of an investigation into a channel shape that can achieve a relatively high flow rate while considering the dilution time of the substance-containing solution. Specifically, it is as follows.
[1]
導入口(11)を有する流路A(10)及び導入口(21)を有する流路B(20)を有し、
流路A及びB(10、20)は、導入口(11、21)の下流の1箇所以上で立体的に交差し、かつそれぞれ流路壁に流路A及びB(10、20)を連通する共通孔(32)を交差領域において有し、
流路A及びB(10、20)は、最下流の交差領域に位置する合流部(30)で合流し、合流部(30)の下流に少なくとも1つの導出口(31)を有する(但し、最上流の交差領域から導出口(31)までの間の一部又は全部が流路を流れる流体を希釈するための部位である)か、または
流路A及びB(10、20)は、合流することなく、独立に導出口(12)及び導出口(22)を有する(但し、交差領域から導出口(12)及び導出口(22)までの間それぞれの一部又は全部が流路を流れる流体を希釈するための部位である)、
流路構造体。
[2]
自己組織化物質粒子の製造用であって、前記流体を希釈するための部位において、導入口(11)又は導入口(21)から導入された自己組織化物質含有溶液が、他方の導入口から導入された希釈媒体により希釈されて自己組織化物質粒子が形成される、[1]に記載の流路構造体。
[3]
流路A(10)は2次元または3次元に規則的にまたは不規則に曲折しているかまたは直線状であり、流路B(20)は2次元または3次元に規則的にまたは不規則に曲折しているかまたは直線状である、[1]または[2]に記載の流路構造体。
[4]
2箇所以上の交差領域を有する、[1]~[3]のいずれか1項に記載の流路構造体。
[5]
流路A(10)の共通孔の開口面と流路B(20)の共通孔の開口面とが略同一面を構成する、[1]~[4]のいずれか1項に記載の流路構造体。
[6]
流路A及びB(10、20)は、周期的に交差する、[1]~[5]のいずれか1項に記載の流路構造体。
[7]
流路A(10)の断面積は、導入口(11)から合流部(30)または導出口(12)の間で一定であるか、または少なくとも一部で周期的に変動する、[1]~[6]のいずれか1項に記載の流路構造体。
[8]
流路B(20)の直線部の断面積は、導入口(11)から合流部(30)または導出口(22)の間で一定であるか、または周期的に変動する、[1]~[7]のいずれか1項に記載の流路構造体。
[9]
流路A及びB(10、20)の交差角度は、流路Aの流路方向の中心線と流路Bの流路方向の中心線とが形成する角度θが30°~150°の範囲である、[1]~[8]のいずれか1項に記載の流路構造体。
[10]
流路A及びB(10、20)の幅は、それぞれ独立に10~2000μmの範囲であり、流路A及びB(10、20)の高さは、それぞれ独立に10~1000μmの範囲である、[1]~[9]のいずれか1項に記載の流路構造体。
[11]
2次元または3次元に曲折する流路A(10)の曲折部の外縁及び内縁の平面の形状は、多角形状または略円形状であり、
2次元または3次元に曲折する流路B(20)の曲折部の外縁及び内縁の平面の形状は、多角形状または略円形状である、[1]~[10]のいずれか1項に記載の流路構造体。
[12]
主表面が平板状の基板の少なくとも一方の主表面に、流路Aのための連続溝Aを有する基板Aと
主表面が平板状の基板の少なくとも一方の主表面に、流路Bのための連続溝Bを有する基板Bとを
連続溝Aと連続溝Bとが対向するように張り合わせた構造を有し、
流路Aが2次元に規則的または不規則に曲折しているか又は直線状であり、流路Bが2次元に規則的または不規則に曲折しているかまたは直線状である、
[1]~[11]のいずれか1項に記載の流路構造体。
[13]
第1の流路構造体の導出口の下流に第2の流路構造体をさらに有する、[1]~[12]のいずれか1項に記載の流路構造体。
[14]
自己組織化物質含有溶液を希釈媒体で希釈して自己組織化物質粒子を含む液体を得る工程を含む、自己組織化物質粒子の製造方法であって、
前記工程を[1]~[13]のいずれか1項に記載の流路構造体を用いて実施する、前記製造方法。
[15]
自己組織化物質含有溶液を流路Aの導入口から導入し、希釈媒体を流路Bの導入口から導入する、または自己組織化物質含有溶液を流路Bの導入口から導入し、希釈媒体を流路Aの導入口から導入する[14]に記載の製造方法。
[16]
流路構造体の交差領域の共通孔において、自己組織化物質含有溶液流の少なくとも一部が希釈媒体流に分岐して合流し、かつ希釈媒体流の少なくとも一部が自己組織化物質含有溶液流に分岐して合流し、流路構造体の希釈部において、合流した自己組織化物質含有溶液流と希釈媒体流の界面において自己組織化物質含有溶液の希釈層が形成され、希釈層中で自己組織化物質粒子が形成される、請求項14または15に記載の製造方法。
[17]
流路A及び流路Bへの自己組織化物質含有溶液及び希釈媒体の総流量は、1μl/分~1000ml/分の範囲である、[14]~[16]のいずれか1項に記載の製造方法。
[18]
自己組織化物質含有溶液の流量V1に対する希釈媒体の流量V2の比率(V2/V1)が、1:1~1:20の範囲である、[14]~[17]のいずれか1項に記載の製造方法。
[19]
自己組織化物質が、脂質または両親媒性物質である、[14]~[18]のいずれか1項に記載の製造方法。
[20]
希釈媒体が、水性溶液、緩衝液、核酸含有水溶液、タンパク質含有水溶液、ペプチド含有水溶液、アジュバント含有水溶液およびそれらの混合液から選択される、[14]~[19]のいずれか1項に記載の製造方法。
[21]
自己組織化物質粒子を含む液体に含まれる自己組織化物質粒子はナノサイズである、[14]~[20]のいずれか1項に記載の製造方法。
[22]
ナノサイズの自己組織化物質粒子のZ平均粒子径は、10~1000nmの範囲である、[14]~[21]のいずれか1項に記載の製造方法。
[23]
ナノサイズの自己組織化物質粒子のZ平均粒子径は、20~200nmの範囲である、[14]~[22]のいずれか1項に記載の製造方法。
[1]
Having a channel A (10) having an inlet (11) and a channel B (20) having an inlet (21),
Channels A and B (10, 20) three-dimensionally intersect at one or more locations downstream of inlets (11, 21), and communicate with channel walls of channels A and B (10, 20), respectively. having a common hole (32) at the intersection region for
Flow paths A and B (10, 20) join at a confluence (30) located in the most downstream intersection region, and have at least one outlet (31) downstream of the confluence (30) (however, part or all of the area from the most upstream intersection area to the outlet port (31) is a site for diluting the fluid flowing through the flow path), or the flow paths A and B (10, 20) converge. It has an outlet (12) and an outlet (22) independently (however, from the intersection area to the outlet (12) and the outlet (22), part or all of each flows through the flow channel. site for diluting the fluid),
channel structure.
[2]
In the site for producing self-assembling material particles and for diluting the fluid, the self-assembling material-containing solution introduced from the inlet (11) or the inlet (21) is introduced from the other inlet The channel structure according to [1], wherein the self-assembled material particles are formed by being diluted with the introduced diluent medium.
[3]
Channel A (10) is regularly or irregularly curved or straight in two or three dimensions and Channel B (20) is regularly or irregularly in two or three dimensions. The channel structure according to [1] or [2], which is curved or linear.
[4]
The channel structure according to any one of [1] to [3], which has two or more intersection regions.
[5]
The flow according to any one of [1] to [4], wherein the opening surface of the common hole of the flow channel A (10) and the opening surface of the common hole of the flow channel B (20) constitute substantially the same plane. road structure.
[6]
The channel structure according to any one of [1] to [5], wherein the channels A and B (10, 20) intersect periodically.
[7]
the cross-sectional area of the flow path A (10) is constant from the inlet (11) to the confluence (30) or the outlet (12) or varies periodically at least in part [1] The channel structure according to any one of [6].
[8]
The cross-sectional area of the straight portion of the flow path B (20) is constant or varies periodically from the inlet (11) to the confluence (30) or the outlet (22), [1]- The channel structure according to any one of [7].
[9]
The crossing angle of the flow paths A and B (10, 20) is such that the angle θ formed by the center line of the flow path A and the center line of the flow path B is in the range of 30° to 150°. The channel structure according to any one of [1] to [8].
[10]
The widths of channels A and B (10, 20) each independently range from 10 to 2000 μm, and the heights of channels A and B (10, 20) each independently range from 10 to 1000 μm. , the channel structure according to any one of [1] to [9].
[11]
The planar shape of the outer edge and inner edge of the bent portion of the flow path A (10) that is two-dimensionally or three-dimensionally bent is polygonal or substantially circular,
According to any one of [1] to [10], wherein the planar shape of the outer edge and inner edge of the bent portion of the flow path B (20) that is two-dimensionally or three-dimensionally bent is polygonal or substantially circular. channel structure.
[12]
On at least one main surface of the substrate having a flat main surface, a substrate A having a continuous groove A for the flow channel A and at least one main surface of the substrate having a flat main surface, for the flow channel B It has a structure in which a substrate B having a continuous groove B is laminated so that the continuous groove A and the continuous groove B face each other,
The flow path A is two-dimensionally regularly or irregularly curved or straight, and the flow path B is two-dimensionally regularly or irregularly curved or straight.
The channel structure according to any one of [1] to [11].
[13]
The channel structure according to any one of [1] to [12], further comprising a second channel structure downstream of the outlet port of the first channel structure.
[14]
A method for producing self-assembling material particles, comprising the step of diluting a self-assembling material-containing solution with a diluent medium to obtain a liquid containing self-assembling material particles,
The manufacturing method, wherein the steps are performed using the channel structure according to any one of [1] to [13].
[15]
The solution containing the self-assembling substance is introduced from the inlet of the channel A and the dilution medium is introduced from the inlet of the channel B, or the solution containing the self-assembling substance is introduced from the inlet of the channel B and the dilution medium is introduced from the inlet of the flow path A. The manufacturing method according to [14].
[16]
At least a portion of the self-assembling substance-containing solution flow diverges and merges with the dilution medium flow at the common hole of the intersection region of the channel structure, and at least a portion of the dilution medium flow diverges into the self-assembling substance-containing solution flow. In the dilution part of the channel structure, a diluted layer of the self-assembling substance-containing solution is formed at the interface between the self-assembling substance-containing solution flow and the dilution medium flow, and self- 16. A method of manufacture according to claim 14 or 15, wherein structured material particles are formed.
[17]
According to any one of [14] to [16], the total flow rate of the solution containing the self-assembling substance and the dilution medium to channel A and channel B is in the range of 1 μl/min to 1000 ml/min. Production method.
[18]
Any one of [14] to [17], wherein the ratio of the flow rate V2 of the dilution medium to the flow rate V1 of the self-assembling substance-containing solution (V2/V1) is in the range of 1:1 to 1:20. manufacturing method.
[19]
The production method according to any one of [14] to [18], wherein the self-assembling substance is a lipid or an amphipathic substance.
[20]
[14] to [19], wherein the diluent medium is selected from aqueous solutions, buffer solutions, nucleic acid-containing aqueous solutions, protein-containing aqueous solutions, peptide-containing aqueous solutions, adjuvant-containing aqueous solutions, and mixtures thereof. Production method.
[21]
The production method according to any one of [14] to [20], wherein the self-assembling material particles contained in the liquid containing self-assembling material particles are nano-sized.
[22]
The production method according to any one of [14] to [21], wherein the nano-sized self-assembled material particles have a Z-average particle diameter in the range of 10 to 1000 nm.
[23]
The production method according to any one of [14] to [22], wherein the nano-sized self-assembled material particles have a Z-average particle size in the range of 20 to 200 nm.
 本発明によれば、流量が比較的大きい条件であっても平均粒径が100nm以上の比較的大きな脂質ナノ粒子の様な自己組織化物質粒子の作製が可能な流体構造体を提供することができる。さらに、本発明によれば、本発明の流体構造体を用いることで、流量が比較的大きい条件であっても平均粒径が100nm以上の比較的大きな脂質ナノ粒子の様な自己組織化物質粒子を製造することができる。 According to the present invention, it is possible to provide a fluid structure capable of producing self-organizing substance particles such as lipid nanoparticles having a relatively large average particle size of 100 nm or more even under relatively high flow conditions. can. Furthermore, according to the present invention, by using the fluid structure of the present invention, self-organizing substance particles such as lipid nanoparticles having a relatively large average particle size of 100 nm or more can be obtained even under conditions of a relatively large flow rate. can be manufactured.
 本発明の一態様においては、平均粒径が100nm未満のサイズ均一性が高い自己組織化物質粒子を製造することもできる。 In one aspect of the present invention, it is also possible to produce self-assembled material particles with an average particle size of less than 100 nm and high size uniformity.
図1-1は、本発明の流路構造体を流路構造体の一例を示す、流路構造体の流路のみを示す斜視図である。FIG. 1-1 is a perspective view showing only the flow channel of the flow channel structure, showing an example of the flow channel structure of the present invention. 図1-2は、図1-1の流路構造体の流路のみを示す、平面図、正面図、側面図である。1-2 are a plan view, a front view, and a side view showing only the channels of the channel structure of FIG. 1-1. 図1-3は、図1-1の流路構造体の流路のみを示す平面図であり、W1~W8の寸法を表示する。FIG. 1-3 is a plan view showing only the channels of the channel structure of FIG. 1-1, and indicates dimensions W1 to W8. 図2は、本発明の流路構造体を流路構造体の一例の流路のみを示す斜視図、平面図、正面図、側面図である。2A and 2B are a perspective view, a plan view, a front view and a side view showing only the flow path of one example of the flow path structure of the present invention. 図3は、本発明の流路構造体を流路構造体の一例の流路のみを示す斜視図、平面図、正面図、側面図である。3A and 3B are a perspective view, a plan view, a front view and a side view showing only the flow path of one example of the flow path structure of the present invention. 図4は、本発明の流路構造体を流路構造体の一例の流路のみを示す斜視図、平面図、正面図、側面図である。4A and 4B are a perspective view, a plan view, a front view, and a side view showing only the flow path of one example of the flow path structure of the present invention. 図5-1は、本発明の流路構造体を流路構造体の一例を示す概略説明図である。FIG. 5-1 is a schematic explanatory diagram showing an example of the flow channel structure of the present invention. 図5-2は、本発明の流路構造体を流路構造体の一例を示す概略説明図である。FIG. 5-2 is a schematic explanatory diagram showing an example of the flow channel structure of the present invention. 図5-3は、本発明の流路構造体を流路構造体の一例を示す概略説明図である。FIG. 5-3 is a schematic explanatory diagram showing an example of the flow channel structure of the present invention. 図5-4は、本発明の流路構造体を流路構造体の一例を示す概略説明図である。FIG. 5-4 is a schematic explanatory diagram showing an example of the flow channel structure of the present invention. 図5-5は、本発明の流路構造体を流路構造体の一例を示す概略説明図である。FIG. 5-5 is a schematic explanatory diagram showing an example of the flow channel structure of the present invention. 図5-6は、本発明の流路構造体を流路構造体の一例を示す概略説明図である。5-6 are schematic explanatory diagrams showing an example of the flow channel structure of the present invention. 図5-7は、本発明の流路構造体を流路構造体の一例を示す概略説明図である。5-7 are schematic explanatory diagrams showing an example of the flow path structure of the present invention. 図5-8は、本発明の流路構造体を流路構造体の一例を示す概略説明図である。5-8 are schematic explanatory diagrams showing an example of the flow channel structure of the present invention. 図6は、本発明の流路構造体を流路構造体の一例の平面図である。FIG. 6 is a plan view of an example of the flow channel structure of the present invention. 図7は、実施例で用いた流路構造体の説明図である。FIG. 7 is an explanatory diagram of a flow path structure used in Examples. 図8は、実施例1の実験結果を示す。8 shows the experimental results of Example 1. FIG. 図9は、実施例1の実験結果を示す。9 shows the experimental results of Example 1. FIG. 図10は、実施例1の実験結果を示す。10 shows the experimental results of Example 1. FIG. 図11は、実施例2の実験結果を示す。11 shows the experimental results of Example 2. FIG. 図12は、実施例3の実験結果を示す。12 shows the experimental results of Example 3. FIG. 図13は、参考例2-1のシミュレーション結果を示す。FIG. 13 shows the simulation results of Reference Example 2-1. 図14は、参考例2-2のシミュレーション結果を示す。FIG. 14 shows the simulation results of Reference Example 2-2. 図15は、参考例2-3のシミュレーション結果を示す。FIG. 15 shows the simulation results of Reference Example 2-3. 図16は、参考例2-4のシミュレーション結果を示す。FIG. 16 shows simulation results of Reference Example 2-4. 図17は、参考例2-5のシミュレーション結果を示す。FIG. 17 shows the simulation results of Reference Example 2-5. 図18は、実施例5の粒径測定結果を示す。18 shows the particle size measurement results of Example 5. FIG. 図19は、実施例5の相対発光強度測定結果を示す。19 shows the results of relative luminescence intensity measurement of Example 5. FIG. 図20は、実施例6の相対発光強度測定結果を示す。20 shows the results of relative luminous intensity measurement of Example 6. FIG.
<流路構造体>
 本発明の流路構造体は、
導入口(11)を有する流路A(10)及び導入口(21)を有する流路B(20)を有し、
流路A及びB(10、20)は、導入口(11、21)の下流の1箇所以上で立体的に交差し、かつそれぞれ流路壁に流路A及びB(10、20)を連通する共通孔(32)を交差領域において有し、
流路A及びB(10、20)は、最下流の交差領域に位置する合流部(30)で合流し、合流部(30)の下流に少なくとも1つの導出口(31)を有する(但し、最上流の交差領域から導出口(31)までの間の一部又は全部が流路を流れる流体を希釈するための部位である)(以下、希釈部位1と呼ぶことがある)か、または
流路A及びB(10、20)は、合流することなく、独立に導出口(12)及び導出口(22)を有する(但し、交差領域から導出口(12)及び導出口(22)までの間それぞれの一部又は全部が流路を流れる流体を希釈するための部位である)(以下、希釈部位2と呼ぶことがある)。
<Flow path structure>
The flow channel structure of the present invention is
Having a channel A (10) having an inlet (11) and a channel B (20) having an inlet (21),
Channels A and B (10, 20) three-dimensionally intersect at one or more locations downstream of inlets (11, 21), and communicate with channel walls of channels A and B (10, 20), respectively. having a common hole (32) at the intersection region for
Flow paths A and B (10, 20) join at a confluence (30) located in the most downstream intersection region, and have at least one outlet (31) downstream of the confluence (30) (however, A part or the whole from the most upstream intersection area to the outlet port (31) is a site for diluting the fluid flowing through the channel) (hereinafter sometimes referred to as a dilution site 1), or the flow Paths A and B (10, 20) have outlets (12) and (22) independently without merging (however, from the intersection area to outlets (12) and (22) A part or the whole of each is a part for diluting the fluid flowing through the channel) (hereinafter sometimes referred to as a dilution part 2).
 本発明の流路構造体は、好ましくは、自己組織化物質粒子の製造用であって、前記流体を希釈するための部位において、導入口(11)又は導入口(21)から導入された自己組織化物質含有溶液が、他方の導入口から導入された希釈媒体により希釈されて自己組織化物質粒子が形成される。 The flow path structure of the present invention is preferably for producing self-assembled material particles, and includes self The assembling material-containing solution is diluted by the diluent medium introduced from the other inlet to form self-assembling material particles.
 流路A(10)は2次元または3次元に規則的にまたは不規則に曲折しているかまたは直線状であり、流路B(20)は2次元または3次元に規則的にまたは不規則に曲折しているかまたは直線状であることができる。 Channel A (10) is regularly or irregularly curved or straight in two or three dimensions and Channel B (20) is regularly or irregularly in two or three dimensions. It can be curved or straight.
 本発明の流路構造体は、1箇所以上の交差領域を有するものであり、2箇所以上の交差領域を有することもできる。交差領域が1個所の場合、流路A(10)及び流路B(20)の一方または両方が、直線状であることができ、直線状でない場合、2次元または3次元に規則的にまたは不規則に曲折していてもよい。流路A(10)及び流路B(20)の両方が、直線状である態様を図5-7及び図5-8に示す。 The flow path structure of the present invention has one or more intersection areas, and may have two or more intersection areas. If there is a single intersection area, one or both of Channel A (10) and Channel B (20) can be linear, and if not linear, regularly in two or three dimensions or It may be irregularly curved. An embodiment in which both Channel A (10) and Channel B (20) are straight is shown in FIGS. 5-7 and 5-8.
 以下、本発明の流路構造体を流路構造体の一例を示す図1に基づいて説明する。図1-1は、流路構造体の流路のみを示す斜視図であり、流路は図示されていない構造体の本体に組み込まれたものである。図1-2は、図1-1の流路構造体の流路のみを示す、平面図、正面図、側面図である。図1-3は、図1-1の流路構造体の流路のみを示す平面図であり、W1~W8の寸法を表示する。 The flow path structure of the present invention will be described below with reference to FIG. 1 showing an example of the flow path structure. FIG. 1-1 is a perspective view showing only the channels of the channel structure, and the channels are incorporated in the main body of the structure (not shown). 1-2 are a plan view, a front view, and a side view showing only the channels of the channel structure of FIG. 1-1. FIG. 1-3 is a plan view showing only the channels of the channel structure of FIG. 1-1, and indicates dimensions W1 to W8.
 希釈部位1を有する流路構造体は、導入口11を有する10で示される流路A及び導入口21を有する20で示される流路Bを有する。流路A及び流路Bは、導入口11、21の下流に位置する合流部30で合流し、合流部30の下流に少なくとも1つの導出口31を有することができる。合流部30は、流路A及び流路Bの最下流の交差領域に位置する。最上流の交差領域から導出口31までの間の一部又は全部が流路を流れる流体を希釈するための部位である。流体の流速、被希釈流体及び希釈媒体の流体の比率、並びに希釈部位の長さなどに応じて、最上流の交差領域から導出口31までの間の一部において希釈が完了する場合と、最上流の交差領域から導出口31までの間の全部において希釈が継続する場合があり得る。最上流の交差領域から導出口31までの間の一部において希釈が完了する場合、最上流の交差領域から導出口31までの間の一部が流路を流れる流体を希釈するための部位である。最上流の交差領域から導出口31までの間の全部において希釈が継続する場合、最上流の交差領域から導出口31までの間の全部が流路を流れる流体を希釈するための部位である。 A channel structure having a dilution site 1 has a channel A indicated by 10 having an inlet 11 and a channel B indicated by 20 having an inlet 21 . The flow path A and the flow path B merge at a junction 30 located downstream of the inlets 11 and 21 and can have at least one outlet 31 downstream of the junction 30 . The confluence portion 30 is located at the most downstream intersection region of the flow path A and the flow path B. As shown in FIG. A portion or the entire portion between the most upstream intersection region and the outlet port 31 is a portion for diluting the fluid flowing through the channel. Depending on the flow rate of the fluid, the ratio of the fluid to be diluted and the fluid of the dilution medium, and the length of the dilution site, dilution may be completed in a portion between the intersection region at the most upstream and the outlet port 31, or may be completed at the maximum. Dilution may continue all the way from the upstream intersection region to outlet 31 . When dilution is completed in a portion between the most upstream intersection region and the outlet port 31, a portion between the most upstream intersection region and the outlet port 31 is a portion for diluting the fluid flowing through the channel. be. When dilution continues in the entire area from the most upstream intersection area to the outlet port 31, the entire area from the most upstream intersection area to the outlet port 31 is a site for diluting the fluid flowing through the channel.
 希釈部位2を有する流路構造体においては、流路A及び流路Bは、合流することなく、それぞれが導出口を有する。交差領域から導出口12及び導出口22までの間それぞれの一部又は全部が流路を流れる流体を希釈するための部位である。希釈部位1の場合と同様に、流体の流速、被希釈流体及び希釈媒体の流体の比率、並びに希釈部位の長さなどに応じて、交差領域から導出口12及び導出口22までの間それぞれの一部において希釈が完了する場合と、交差領域から導出口12及び導出口22までの間それぞれの全部において希釈が継続する場合と、交差領域から導出口12までの間の一部において希釈が完了し、交差領域から導出口22までの間の全部において希釈が完了する場合、交差領域から導出口12までの間の全部において希釈が完了し、交差領域から導出口22までの間の一部において希釈が完了する場合があり得る。交差領域から導出口12までの間、及び交差領域から導出口22までの間の一部において希釈が完了する場合、交差領域から導出口12の間、及び交差領域から導出口22までの間の一部がそれぞれ流路を流れる流体を希釈するための部位である。交差領域から導出口12の間、及び交差領域から導出口22までの間の全部において希釈が継続する場合、交差領域から導出口12の間、及び交差領域から導出口22までの間の全部がそれぞれ流路を流れる流体を希釈するための部位である。図5-7及び5-8に示す態様のように、流路A及び流路Bは、合流することなく、独立に導出口12及び導出口22を有し、交差領域から導出口12及び導出口22までの間にそれぞれ希釈部位を有する。 In the channel structure having the dilution part 2, the channel A and the channel B each have an outlet without merging. A part or the whole of each section from the intersection region to the outlet 12 and the outlet 22 is a section for diluting the fluid flowing through the channel. As with dilution site 1, depending on the fluid flow rate, the ratio of the fluid to be diluted and the diluent medium, and the length of the dilution site, the distance from the intersection region to outlet 12 and outlet 22 respectively. Dilution is completed in part, dilution continues in the entire area from the intersection area to outlet 12 and outlet 22, and dilution is completed in part from the intersection area to outlet 12. When dilution is completed in the entire area from the intersection area to the outlet 22, dilution is completed in the entire area from the intersection area to the outlet 12, and in a part from the intersection area to the outlet 22 It may be the case that the dilution is complete. When the dilution is completed in a part between the intersection region and the outlet port 12 and between the intersection region and the outlet port 22, the distance between the intersection region and the outlet port 12 and between the intersection region and the outlet port 22 is A portion is a portion for diluting the fluid flowing through each channel. If dilution continues all the way from the intersection area to the outlet 12 and from the intersection area to the outlet 22, all the way from the intersection area to the outlet 12 and from the intersection area to the outlet 22 It is a part for diluting the fluid which flows through each flow path. As in the embodiments shown in FIGS. 5-7 and 5-8, flow path A and flow path B have independent outlets 12 and 22 without merging, and outlets 12 and outlets 12 and 22 are drawn from the intersection area. Each of them has a dilution site up to the outlet 22 .
 流路A及びBの交差の回数には特に制限はなく、流路構造体の使用目的や流路A及びBの寸法などを考慮して適宜決定することができ、例えば、1回または2回~100回の範囲とすることができ、最低の回数は、例えば、1回、2回、3回、4回、5回であることができ、最大の回数は、例えば、30回、25回、20回、15回、10回であることができる。 The number of crossings of the channels A and B is not particularly limited, and can be appropriately determined in consideration of the purpose of use of the channel structure and the dimensions of the channels A and B. For example, once or twice ~100 times, the minimum number of times can be, for example, 1, 2, 3, 4, 5 times, and the maximum number of times, for example, 30, 25 , 20 times, 15 times, 10 times.
 流路A及び流路Bは、導入口11、21から合流部30間の2箇所以上で立体的に交差し、または導入口11、21から導出口12、22の間の1箇所で立体的に交差し、各交差領域において、流路側壁に流路A及び流路Bを連通する共通孔32を有する。 The flow path A and the flow path B three-dimensionally intersect at two or more points between the introduction ports 11 and 21 and the confluence portion 30, or three-dimensionally intersect at one point between the introduction ports 11 and 21 and the outlet ports 12 and 22. and has a common hole 32 that communicates the flow path A and the flow path B in the flow path side wall at each intersection region.
 流路Aの共通孔の開口面と流路Bの共通孔の開口面とが略同一面を構成することができる。この場合、流路Aを流通する流体と流路Bを流通する流体とは、共通孔において接触面を形成しつつ流通する。あるいは、共通孔は、流路Aの共通孔の開口と流路Bの共通孔の開口を連絡する通路(連絡通路)であることもできる。この場合は、流路Aを流通する流体の一部及び流路Bを流通する流体の一部が連絡流路に流れ込み2つの流体の接触面を形成する。あるいは、流路AとBは、共通孔において、互いに共通の流路を有するように交差することもできる。この場合は、互いに共通の流路を有するので、その部分で2つの流路を流通する流体は、混合することになる。 The opening surface of the common hole of the flow channel A and the opening surface of the common hole of the flow channel B can constitute substantially the same plane. In this case, the fluid flowing through the flow path A and the fluid flowing through the flow path B flow while forming a contact surface in the common hole. Alternatively, the common hole can be a passage (connecting passage) that connects the opening of the common hole of the flow path A and the opening of the common hole of the flow path B. In this case, part of the fluid flowing through the flow path A and part of the fluid flowing through the flow path B flow into the communication flow path to form a contact surface between the two fluids. Alternatively, channels A and B can intersect to have a common channel with each other at a common hole. In this case, since they have a common flow path, the fluids flowing through the two flow paths mix at that portion.
 流路Aの断面積は、導入口11から合流部30または導出口12の間で一定であるか、または少なくとも一部で周期的に変動することができる。層流を維持できるという観点からは、一定であることが好ましく、流体内での拡散を促進するという観点では、周期的に変動することが好ましい。 The cross-sectional area of the flow path A can be constant from the inlet 11 to the confluence portion 30 or the outlet 12, or can vary periodically at least in part. From the viewpoint of maintaining laminar flow, it is preferable to be constant, and from the viewpoint of promoting diffusion in the fluid, it is preferable to vary periodically.
 流路Bの断面積は、導入口21から合流部20または導出口22の間で一定であるか、または少なくとも一部で周期的に変動することができる。層流を維持できるという観点からは、一定であることが好ましく、流体ないでの拡散を促進するという観点では、周期的に変動することが好ましい。 The cross-sectional area of the flow path B can be constant from the introduction port 21 to the confluence portion 20 or the outlet port 22, or can vary periodically at least in part. From the viewpoint of maintaining a laminar flow, it is preferable to be constant, and from the viewpoint of promoting diffusion without a fluid, it is preferable to vary periodically.
 流路A及びBの寸法は、流路構造体の使用目的などを考慮して適宜決定することができ、限定する意図はない。流路Aの幅及び高さは、例えば、それぞれ1μm~10mm及び1μm~10mmの範囲、流路Bの幅及び高さは、例えば、それぞれ1μm~10mm及び1μm~10mmの範囲であることができる。流路Aの幅及び高さは、好ましくはそれぞれ10μm~2mm(2000μm)及び10μm~1mm(1000μm)の範囲、流路Bの幅及び高さは、それぞれ10μm~2mm(2000μm)及び10μm~1mm(1000μm)の範囲であることができる。図1-3に示す流路構造体では、流路A及びBの幅がいずれも200μmであり、流路A及びBの高さがいずれも100μmである。但し、寸法が大きいほど、大流量での大量生産には適するが、目的とする粒径(平均粒子径)を有する粒子が得られる範囲で、寸法は適宜選択することができる。 The dimensions of the channels A and B can be determined as appropriate in consideration of the purpose of use of the channel structure, and are not intended to be limited. The width and height of channel A can range, for example, from 1 μm to 10 mm and 1 μm to 10 mm, respectively, and the width and height of channel B can range, for example, from 1 μm to 10 mm and 1 μm to 10 mm, respectively. . The width and height of channel A are preferably in the range of 10 μm to 2 mm (2000 μm) and 10 μm to 1 mm (1000 μm) respectively, the width and height of channel B are preferably in the range of 10 μm to 2 mm (2000 μm) and 10 μm to 1 mm respectively. (1000 μm). In the channel structure shown in FIGS. 1-3, the widths of the channels A and B are both 200 μm, and the heights of the channels A and B are both 100 μm. However, the larger the size, the more suitable for mass production at a large flow rate, but the size can be appropriately selected as long as particles having the desired particle size (average particle size) can be obtained.
 図2~4に、図1の流路構造体とは異なる、流路寸法を有する流路構造体の例を示す。図3及び4に示す流路構造体は、流路Aの直線部の断面積が周期的に変動する流路構造体の例である。 2 to 4 show examples of channel structures having channel dimensions different from the channel structure in FIG. The flow channel structure shown in FIGS. 3 and 4 is an example of a flow channel structure in which the cross-sectional area of the straight portion of the flow channel A varies periodically.
 本発明の流路構造体における流路A及び流路Bの形状及び構造に種々の変形があり得る。図5-1~5-8に例示する。 Various modifications may be made to the shape and structure of the flow channel A and the flow channel B in the flow channel structure of the present invention. Examples are shown in Figures 5-1 to 5-8.
 図5-1は、流路Bが直線状であり、流路Aが2次元に規則的に曲折しており、曲折部は平面形状が曲線状である。
 図5-2は、流路Bが直線状であり、流路Aが2次元に規則的に曲折しており、曲折部は平面形状が屈折形状であり、流路A及びBの交差角度が90°ではない例である。
 図5-3は、流路Bが直線状であり、流路Aが2次元に規則的に曲折しており、曲折部は図1と同様に平面形状が屈折形状であり、一部の流路Aが断絶しており、交差領域において流路Aは流路Bが合流している。
 図5-4は、流路Bが直線状であり、流路Bが2次元に規則的に曲折しており、曲折部は平面形状が曲線状であり、流路A及びBの交差角度が90°ではない例である。
In FIG. 5-1, the flow path B is straight, the flow path A is regularly bent in two dimensions, and the bent portion has a curved planar shape.
In FIG. 5-2, the flow path B is straight, the flow path A is regularly bent in two dimensions, the plane shape of the bent portion is a bent shape, and the crossing angle of the flow paths A and B is This is an example that is not 90°.
In FIG. 5-3, the flow path B is straight, the flow path A is regularly bent in two dimensions, and the bent portion has a curved planar shape as in FIG. The path A is discontinued, and the path A joins with the path B in the intersection region.
In FIG. 5-4, the flow path B is straight, the flow path B is regularly bent in two dimensions, the plane shape of the bent portion is curved, and the crossing angle of the flow paths A and B is This is an example that is not 90°.
 図5-5は、流路Bが直線状であり、流路Aが3次元に規則的に曲折しており、曲折部は図1と同様に平面形状が屈折形状である。
 図5-6は、流路Bが直線状であり、流路Aは2つの流路からなり、いずれも2次元に規則的に曲折しており、曲折部は図1と同様に平面形状が屈折形状である。2つの流路Aが流路Bの長手方向で順次交差領域を有する。2つの流路Aはそれぞれ導入口及び導出口を有する。
 図5-7は、流路Bが直線状であり、流路Aは3つの流路からなり、いずれも直線状である。3つの流路Aが流路Bの長手方向で順次、それぞれ1個所の交差領域を有する。3つの流路Aはそれぞれ導入口及び導出口を有する。
 図5-8は、流路Bが直線状であり、流路Aも直線状である。流路Aと流路Bは1個所の交差領域を有する。流路A及び流路Bはそれぞれ導入口及び導出口を有する。
In FIG. 5-5, the flow path B is straight, the flow path A is regularly curved in three dimensions, and the curved portion has a curved planar shape as in FIG.
5-6, channel B is straight, and channel A consists of two channels, both of which are regularly bent in two dimensions, and the bent portions have a planar shape similar to that in FIG. It is a refraction shape. The two channels A have a sequential intersecting area in the longitudinal direction of the channel B. As shown in FIG. The two channels A each have an inlet and an outlet.
5-7, channel B is straight and channel A consists of three channels, all of which are straight. Each of the three channels A has one intersecting area in succession in the longitudinal direction of the channel B. As shown in FIG. Each of the three channels A has an inlet and an outlet.
5-8, channel B is straight and channel A is also straight. Channel A and channel B have one intersection area. Channel A and channel B each have an inlet and an outlet.
 流路A及びBの交差角度には、特に制限はないが、流路Aの流路方向の中心線と流路Bの流路方向の中心線とが形成する角度θが、例えば、30°~150°の範囲であることができる。典型的には、90°であるが、好ましくは45°~120°の範囲である。典型的には、図1に示すように90°であるが、図5-2、図5-4に示すように、角度θが、90°以外の例えば、約60°と約120°で交互に現れる態様もあり得る。 Although there is no particular limitation on the crossing angle of flow paths A and B, the angle θ formed by the center line of flow path A and the center line of flow path B is, for example, 30°. It can range from ˜150°. Typically 90°, but preferably in the range 45° to 120°. Typically, it is 90° as shown in FIG. 1, but if the angle θ is other than 90°, such as alternating between about 60° and about 120°, as shown in FIGS. There is also a mode that appears in
 流路Aは2次元または3次元に規則的にまたは不規則に曲折しており、流路Bは2次元または3次元に規則的にまたは不規則に曲折しているかまたは直線状である。図1の例では、流路Aは2次元に規則的に曲折しており、流路Bは直線状であり、流路A及びBは、周期的に交差している。流路A及びBは、不規則に交差することができる。図5-5には、流路Aが直線状であり、流路Bが3次元に規則的に曲折している例を示す。 The flow path A is two-dimensionally or three-dimensionally or irregularly curved, and the flow path B is two-dimensionally or three-dimensionally regularly or irregularly curved or linear. In the example of FIG. 1, the flow path A is two-dimensionally curved, the flow path B is straight, and the flow paths A and B intersect periodically. Channels A and B can intersect irregularly. FIG. 5-5 shows an example in which the channel A is straight and the channel B is regularly curved in three dimensions.
 2次元または3次元に曲折する流路Aの曲折部の外縁及び内縁の平面の形状は、多角形状または略円形状であることができ、2次元または3次元に曲折する流路Bの曲折部の外縁及び内縁の平面の形状は、多角形状または略円形状であることができる。図5-1に略円形状である場合を示し、図5-2に多角形状である場合を示す。 The planar shape of the outer edge and inner edge of the curved portion of the flow path A that is bent two-dimensionally or three-dimensionally can be polygonal or substantially circular, and the curved portion of the flow path B that is bent two-dimensionally or three-dimensionally The planar shape of the outer and inner edges of can be polygonal or substantially circular. FIG. 5-1 shows a case of a substantially circular shape, and FIG. 5-2 shows a case of a polygonal shape.
 本発明の流路構造体は、例えば、表面が平板状の基板の少なくとも一方の主表面に、流路Aのための連続溝Aを有する基板Aと主表面が平板状の基板の少なくとも一方の主表面に、流路Bのための連続溝Bを有する基板Bとを連続溝Aと連続溝Bとが対向するように張り合わせた構造を有し、流路Aが2次元に規則的または不規則に曲折しており、流路Bが2次元に規則的または不規則に曲折しているかまたは直線状である、流路構造体であることができる。 The channel structure of the present invention comprises, for example, a substrate having flat surfaces and a continuous groove A for the flow channel A on at least one main surface of the substrate and at least one of the substrate having flat main surfaces. It has a structure in which a substrate B having a continuous groove B for the flow channel B is attached to the main surface so that the continuous groove A and the continuous groove B face each other, and the flow channel A is two-dimensionally regular or irregular. It can be a channel structure in which the channel B is regularly or irregularly curved or linear in two dimensions.
 図6は、Wが異なる4種類の流路構造体(1)~(4)の本体及び流路を示す平面図である。いずれの流路構造体も、流路Aは2次元に規則的曲折しており、流路Bは直線状である。図右側に流路A及び流路Bのそれぞれ導入口(2個所)と、流路A及び流路Bが合流した流路の1つの導出口が示されている。(1)、(2)、(3)及び(4)は、それぞれ2次元に規則的曲折している流路Aの幅Wが200μm、400μm、600μm及び800μmの例である。 FIG. 6 is a plan view showing the main bodies and channels of four types of channel structures (1) to (4) with different Ws. In any flow channel structure, the flow channel A is two-dimensionally curved, and the flow channel B is linear. On the right side of the drawing, inlet ports (two places) for each of the flow paths A and B, and one outlet port for the flow path where the flow paths A and B join are shown. (1), (2), (3) and (4) are examples in which the width W of the flow path A that is regularly curved two-dimensionally is 200 μm, 400 μm, 600 μm and 800 μm, respectively.
 本発明の流路構造体は、第1の流路構造体の導出口の下流に第2の流路構造体をさらに有するものであることができ、第1の流路構造体及び第2の流路構造体は、同一でも異なってもよい。第1の流路構造体の導出口は、第2の流路構造体の流路Aの導入口に接続するか、第2の流路構造体の流路Bの導入口に接続する。より具体的には、希釈部位1を有する流路構造体の導出口と希釈部位2を有する流路構造体の流路Aまたは流路Bの導入口とが連結した形態、希釈部位2を有する流路構造体の流路Aまたは流路Bの導出口と希釈部位1を有する流路構造体の流路Aまたは流路Bの導入口とが連結した形態、さらにはこれらの組合せの形態であることもできる。例えば、希釈部位2を有する流路構造体の流路Bの導出口と希釈部位1を有する流路構造体の流路Bの導入口とが連結した形態を図5-6に示す。図5-7は、希釈部位1と2を有する3つ流路構造体が連結した例であり、最上流の流路構造体は希釈部位1を有し、その流路Bの導出口が、中位の流路Bの導入口と連結し、中位の流路構造体は希釈部位1を有し、その流路Bの導出口が、希釈部位2を有する最下流の流路構造体の流路Bの導入口と連結する形態である。 The flow channel structure of the present invention can further have a second flow channel structure downstream of the outlet port of the first flow channel structure. The channel structures may be the same or different. The outlet port of the first channel structure is connected to the inlet port of the channel A of the second channel structure or connected to the inlet port of the channel B of the second channel structure. More specifically, the outlet of the channel structure having the dilution part 1 and the inlet of the channel A or the channel B of the channel structure having the dilution part 2 are connected, and the dilution part 2 is provided. A configuration in which the outlet of the channel structure A or channel B and the inlet port of the channel structure A or B of the channel structure having the dilution site 1 are connected, or a combination thereof It can be. For example, FIG. 5-6 shows a configuration in which the outlet of the channel B of the channel structure having the dilution portion 2 and the inlet of the channel B of the channel structure having the dilution portion 1 are connected. 5-7 shows an example in which three channel structures having dilution sites 1 and 2 are connected, the most upstream channel structure has dilution site 1, and the outlet of channel B is Connected to the inlet of the intermediate channel B, the intermediate channel structure has the dilution part 1, and the outlet of the channel B is the most downstream channel structure having the dilution part 2 It is the form connected with the inlet of the flow path B. FIG.
<自己組織化物質粒子の製造方法>
 本発明は、自己組織化物質含有溶液を希釈媒体で希釈して自己組織化物質粒子を含む液体を得る工程を含む、自己組織化物質粒子の製造方法であって、前記工程を本発明の流路構造体を用いて実施する、方法を包含する。
<Method for producing self-organizing material particles>
The present invention provides a method for producing self-assembling material particles, comprising a step of diluting a self-assembling material-containing solution with a diluent medium to obtain a liquid containing self-assembling material particles, wherein It includes a method implemented with a tract structure.
 自己組織化物質含有溶液を流路Aの導入口から導入し、希釈媒体を流路Bの導入口から導入する、または自己組織化物質含有溶液を流路Bの導入口から導入し、希釈媒体を流路Aの導入口から導入する。 The solution containing the self-assembling substance is introduced from the inlet of the channel A and the dilution medium is introduced from the inlet of the channel B, or the solution containing the self-assembling substance is introduced from the inlet of the channel B and the dilution medium is introduced from the inlet of the channel A.
 各導入口から流路に導入された自己組織化物質含有溶液流体及び希釈媒体流体は、流路構造体の共通孔に接触し、自己組織化物質含有溶液は希釈媒体で希釈されて自己組織化物質粒子を形成する。より具体的には、流路構造体の交差領域の共通孔において、自己組織化物質含有溶液流の少なくとも一部が希釈媒体流に分岐して希釈媒体流に合流し、かつ希釈媒体流の少なくとも一部が自己組織化物質含有溶液流に分岐して自己組織化物質含有溶液流に合流し、合流後の各流れの中では、次の共通孔までの間、または、導出口までの希釈部において、合流した自己組織化物質含有溶液流と希釈媒体流の界面において自己組織化物質含有溶液の希釈層が形成され、希釈層中で自己組織化物質粒子が形成される。流路を立体的に交差させ共通孔で流体の一部のみを分岐させることで、比較的大粒径の粒子形成に適した、流れ方向に連続する希釈層を形成することができる。本発明の流路構造体は上述の流体挙動ひいては粒子形成を実現可能な構造である。自己組織化物質含有溶液の希釈層が形成され、希釈層中で自己組織化物質粒子が形成されるメカニズムは、PLoS ONE 12(11):e0187962.(2017)(以下、PLoS文献と略記する)の図7に記載されているメカニズムと同様である。 The self-assembling substance-containing solution fluid and the dilution medium fluid introduced into the channel from each inlet come into contact with the common hole of the channel structure, and the self-assembling substance-containing solution is diluted with the dilution medium to self-assemble. form particles of matter. More specifically, at least a portion of the self-assembling substance-containing solution flow branches into the dilution medium flow and merges with the dilution medium flow at the common hole of the intersection region of the channel structure, and at least the dilution medium flow A portion of the flow branches into the self-assembling substance-containing solution flow and merges with the self-assembling substance-containing solution flow. , a diluted layer of the self-assembling material-containing solution is formed at the interface between the converged self-assembling material-containing solution flow and the diluent medium flow, and self-assembling material particles are formed in the diluted layer. By three-dimensionally intersecting the flow paths and branching only a part of the fluid at the common hole, a continuous dilution layer in the flow direction suitable for forming relatively large-diameter particles can be formed. The flow channel structure of the present invention is a structure capable of realizing the above fluid behavior and thus particle formation. The mechanism by which a diluted layer of a self-assembled substance-containing solution is formed and self-assembled substance particles are formed in the diluted layer is described in PLoS ONE 12(11): e0187962. (2017) (hereafter abbreviated as PLoS literature), the mechanism described in FIG.
 自己組織化物質含有溶液の希釈層形成の様子は、参考例2-1~5におけるシミュレーション結果として示す。エタノール(EtOH)流を自己組織化物質含有溶液流、水流を希釈媒体流と想定したシミュレーションである。例えば、参考例1は、図3に示された、幅(W)200μm、深さ(D)100μmの上側流路が水流用、幅(W)200μm、深さ(D)50μmの下側流路がEtOH流用であり、6箇所の交差領域を有し、合流して導入口に至る構造の流路構造体において、総流量500μL/min、水/EtOH流量比を5(5/1)とした場合の希釈層形成を画像化したものである。結果は、図13に示す。EtOH流は、第1の共通孔において水流と接触し、交差する水流に一部分岐して合流し、水流の流路に流れ込み、その一方で、水流も第1の共通孔においてEtOH流と接触し、交差するEtOH流に分岐して合流し、EtOH流の流路に流れ込む。上面図では、共通孔において交差する水流に引き込まれたEtOH流が水流の流路に流れ込む様子がわかる。断面図では、水流も共通孔において交差するEtOH流に引き込まれた水流がEtOH流の流路に流れ込む様子がわかる。但し、水/EtOH流量比が5であり、水の流量が多いことから、EtOH流の流路においても共通孔から多量の水流がEtOH流に合流することが分かる。流路内の流体のEtOH濃度は色表示されており、合流後のEtOH流と水流の接触面においてEtOHの希釈層が形成されていることが分かる。さらに、第2以降の共通孔においても、未希釈のEtOH流や希釈途中のEtOH流がある場合、同様の引き込みによるEtOH流と水流の合流が生じ、希釈層の形成が繰り返される。 The formation of the diluted layer of the solution containing the self-assembling substance is shown as simulation results in Reference Examples 2-1 to 2-5. This simulation assumes that the ethanol (EtOH) flow is the flow of the solution containing the self-assembled substance, and the water flow is the flow of the dilution medium. For example, in Reference Example 1, as shown in FIG. In a channel structure having a structure in which channels are used for EtOH, have six crossing areas, and merge to reach an inlet, the total flow rate is 500 µL/min, and the water/EtOH flow rate ratio is 5 (5/1). It is an image of the formation of a diluted layer in the case of Results are shown in FIG. The EtOH stream contacts the water stream at the first common hole, partially diverges and joins the intersecting water stream, and flows into the water stream flow path, while the water stream also contacts the EtOH stream at the first common hole. , diverges and joins the intersecting EtOH streams and flows into the EtOH stream flow path. In the top view, it can be seen that the EtOH stream entrained in the water streams that intersect at the common hole flows into the water stream flow path. In the cross-sectional view, it can be seen that the water flow drawn into the EtOH flow crossing at the common hole flows into the flow path of the EtOH flow. However, since the water/EtOH flow rate ratio is 5, and the flow rate of water is large, it can be seen that a large amount of water flow joins the EtOH flow through the common hole even in the flow path of the EtOH flow. The EtOH concentration of the fluid in the channel is indicated by color, and it can be seen that a diluted layer of EtOH is formed at the contact surface between the EtOH flow and the water flow after confluence. Furthermore, in the second and subsequent common holes, when there is an undiluted EtOH flow or an EtOH flow in the process of dilution, the EtOH flow and the water flow merge due to similar attraction, and the formation of the dilution layer is repeated.
 PLoS文献に記載された希釈層中で自己組織化物質粒子が形成されるメカニズムによれば、自己組織化物質粒子は、自己組織化物質を溶解する溶媒が希釈層内である濃度範囲(当該文献におけるPOPC脂質ナノ粒子のケースでは概ねEtOH濃度が60~80%の範囲)にあるときに形成し、この溶媒濃度範囲の希釈層中での滞在時間が長いほど粒子径は大きくなり、短いほど粒子径は小さくなる傾向がある。図13の結果から、共通孔以降の2つの流路において、EtOH流と水流の界面に希釈層が形成され、かつ各流れ方向に形成された希釈層が維持されながら移動する。希釈層が大きく攪乱されることなく維持され、EtOH濃度がある一定の範囲を維持できる時間が長いほど粒子径は大きくなることから、本発明の流路構造体及び製法が大粒径粒子を得るにあたり合理的であることがわかる。 According to the mechanism by which self-assembled material particles are formed in the dilution layer described in the PLoS literature, the self-assembled material particles are formed in the concentration range in which the solvent that dissolves the self-assembled material is in the dilution layer (the literature In the case of POPC lipid nanoparticles, they are formed when the EtOH concentration is generally in the range of 60 to 80%), and the longer the residence time in the diluted layer in this solvent concentration range, the larger the particle size, and the shorter the residence time, the larger the particle size. The diameter tends to be smaller. From the results of FIG. 13, in the two flow paths after the common hole, a diluted layer is formed at the interface between the EtOH flow and the water flow, and the diluted layer moves while being maintained in each flow direction. The longer the EtOH concentration can be maintained within a certain range, the larger the particle size. It can be seen that it is reasonable for
 参考例2-2は、参考例1と同様の流路構造体を用い、総流量を1000μL/minとしたシミュレーション結果である。結果は、図14に示す。EtOH流の希釈が迅速に進み、粒子形成可能な溶媒濃度を維持できる時間は参考例1に比べて短くなり、粒子径は小さくなる傾向があると推察される。 Reference Example 2-2 is a simulation result using a channel structure similar to that of Reference Example 1 with a total flow rate of 1000 μL/min. Results are shown in FIG. It is presumed that the dilution of the EtOH flow progresses rapidly, the time during which the solvent concentration capable of forming particles can be maintained becomes shorter than in Reference Example 1, and the particle size tends to become smaller.
 参考例2-3は、参考例1及び2と同様の流路構造体を用い、総流量を2000μL/minとしたシミュレーション結果である。結果は、図15に示す。EtOH流の希釈がさらに迅速に進み、粒子形成可能な溶媒濃度を維持できる時間は参考例1及び2に比べて短くなり、粒子径はさらに小さくなる傾向があると推察される。 Reference Example 2-3 is a simulation result using a channel structure similar to Reference Examples 1 and 2, with a total flow rate of 2000 μL/min. Results are shown in FIG. It is presumed that the EtOH stream is diluted more rapidly, the time during which the solvent concentration capable of forming particles can be maintained becomes shorter than in Reference Examples 1 and 2, and the particle size tends to become smaller.
 参考例2-4は、図4に示された、幅(W)400μm、深さ(D)100μmの上側流路が水流用、幅(W)200μm、深さ(D)50μmの下側流路がEtOH流用であり、7箇所の交差領域を有し、合流して導入口に至る構造の流路構造体において、総流量500μL/min、水/EtOH流量比を5(5/1)とした場合の希釈層形成を画像化したものである。結果は、図16に示す。参考例1に比べてEtOH流の多くが水流に分岐して水流中で希釈層を形成し、徐々に希釈が進む様子が分かる。即ち、水流用の流路幅が広がると、同じ流量でも、EtOH流の多くが水流に分岐して水流中で希釈層が形成され、EtOH濃度が高い状態が比較的長く維持され、粒子径が均一かつ大きな粒子が形成される傾向がある。 In Reference Example 2-4, the upper flow path with a width (W) of 400 μm and a depth (D) of 100 μm shown in FIG. In a channel structure having a structure in which channels are used for EtOH, have seven crossing areas, and merge to reach an inlet, the total flow rate is 500 µL/min and the water/EtOH flow rate ratio is 5 (5/1). It is an image of the formation of a diluted layer in the case of Results are shown in FIG. Compared to Reference Example 1, it can be seen that most of the EtOH flow is branched into the water flow to form a diluted layer in the water flow, and the dilution progresses gradually. That is, when the width of the water flow channel is widened, even at the same flow rate, most of the EtOH flow is branched into the water flow, forming a diluted layer in the water flow, maintaining a high EtOH concentration for a relatively long time, and increasing the particle diameter. Uniform and large particles tend to be formed.
 参考例2-5は、参考例2-4と同様の流路構造体を用い、総流量を2000μL/minとしたシミュレーション結果である。結果は、図17に示す。EtOH流の希釈が迅速に進み、粒子形成可能な溶媒濃度を維持できる時間は参考例2-4に比べて短くなり、粒子径は小さくなる傾向があると推察される。 Reference Example 2-5 is a simulation result using a channel structure similar to that of Reference Example 2-4 with a total flow rate of 2000 μL/min. Results are shown in FIG. Dilution of the EtOH flow progresses rapidly, and the time during which the solvent concentration capable of forming particles can be maintained is shorter than in Reference Example 2-4, and the particle size tends to be smaller.
 これらシミュレーションの結果から、本発明の流路構造体においては、2つの流路の幅及び深さ、自己組織化物質含有溶液流と希釈媒体流の流量比と総流量を制御することで、粒子径をコントロールし、かつ粒子径の均一性もコントロールできることが分かる。さらに、実施例において、実際の自己組織化物質含有溶液流と希釈媒体流を用いた場合に、上記条件をコントロールすることで、粒子径の均一性が高くかつ所望の粒子径を有する自己組織化物質粒子を製造できることを示す。 From the results of these simulations, in the channel structure of the present invention, by controlling the width and depth of the two channels, the flow rate ratio of the self-assembling substance-containing solution flow and the dilution medium flow, and the total flow rate, particles It can be seen that the diameter can be controlled and the uniformity of the particle size can also be controlled. Furthermore, in the examples, when the actual self-assembling substance-containing solution flow and the diluent medium flow are used, by controlling the above conditions, self-assembly having a highly uniform particle size and a desired particle size It shows that substance particles can be manufactured.
 本発明において、形成される自己組織化物質粒子は、自己組織化物質を粒子構成成分として含む粒子である。自己組織化物質を粒子構成成分として含む粒子は、自己組織化物質同士が会合し、かつ粒子を形成することで得られる粒子であり、粒子形成の際に系内に共存する被封入物質も粒子内に取り込むことができる。被封入物質が共存する条件下で形成される粒子の構成成分は、少なくとも自己組織化物質及び被封入物質である。 In the present invention, the formed self-assembled material particles are particles containing the self-assembled material as a particle constituent. Particles containing a self-assembled substance as a particle constituent are particles obtained by association of the self-assembled substances to form particles. can be taken inside. The constituent components of the particles formed under the condition where the substance to be encapsulated coexist are at least the self-assembling substance and the substance to be encapsulated.
 流路A及び流路Bへの自己組織化物質含有溶液及び希釈媒体は、例えば、総流量が1μl/分~1000ml/分となるように流路構造体に流入させることができる。但し、総流量は、この範囲に限定される意図ではなく、流路構造体の構造及び寸法、自己組織化物質含有溶液及び希釈媒体の種類、所望の自己組織化物質粒子の粒子径や被封入物質の封入効率等を考慮して適宜決定できる。本発明においては、自己組織化物質粒子を大量生産するという観点からは、自己組織化物質含有溶液及び希釈媒体の総流量は、例えば、100μl/分~1000ml/分の範囲、均質な自己組織化物質粒子を得るという観点からは、100μl/分~100ml/分の範囲とすることができる。 The solution containing the self-assembling substance and the diluent medium to channel A and channel B can be flowed into the channel structure so that the total flow rate is, for example, 1 μl/min to 1000 ml/min. However, the total flow rate is not intended to be limited to this range. It can be determined as appropriate in consideration of the encapsulation efficiency of the substance and the like. In the present invention, from the viewpoint of mass-producing self-assembling material particles, the total flow rate of the self-assembling material-containing solution and the dilution medium is, for example, in the range of 100 μl/min to 1000 ml/min. From the viewpoint of obtaining substance particles, it can be in the range of 100 μl/min to 100 ml/min.
 自己組織化物質含有溶液の流量V1と希釈媒体の流量V2の比率(V1:V2)は、例えば、1:1~1:20の範囲であることができる。但し、この範囲に限定される意図ではなく、目的とする粒子が得られる範囲で適宜選択することができる。 The ratio (V1:V2) between the flow rate V1 of the self-assembling substance-containing solution and the flow rate V2 of the dilution medium can be, for example, in the range of 1:1 to 1:20. However, it is not intended to be limited to this range, and can be appropriately selected within a range in which the desired particles can be obtained.
 自己組織化物質は、例えば、脂質または両親媒性物質であることができる。 A self-assembling substance can be, for example, a lipid or an amphiphilic substance.
 自己組織化物質含有溶液は、例えば、中性脂質含有溶液、アニオン性脂質含有溶液、カチオン性脂質含有溶液及びポリマー含有溶液からなる群から選ばれるいずれかの溶液であることができるが、これらに限定される意図ではない。本発明における自己組織化物質は、自己組織化の機能を有し、前述のように、自己組織化物質同士が会合し、かつ粒子を形成することができる物質であればよい。自己組織化物質の一例である脂質としては、特に限定されるわけではないが、例えば、大豆レシチン、水添大豆レシチン、卵黄レシチン、ホスファチジルコリン類(例えば、卵由来のeggPC)、ホスファチジルセリン類、ホスファチジルエタノールアミン類、ホスファチジルイノシトール類、ホスファスフィンゴミエリン類、ホスファチジン酸類、長鎖アルキルリン酸塩類、ガングリオシド類、糖脂質類、ホスファチジルグリセロール類、スフィンゴ脂質類、ステロール類、リゾリン脂質等の天然由来脂質、および非天然由来脂質のほか、核酸送達用リポソームの構成成分として適するとされるカチオン性の非天然由来脂質であるN,N-ジオレイル-N,N-ジメチル塩化アンモニウム(DODAC);N-(2,3-ジオレイルオキシ)プロピル)-N,N,N-トリメチル塩化アンモニウム(DOTMA);N,N-ジステアリル-N,N-ジメチルアンモニウムブロミド(DDAB);N-(2,3-ジオレオイルオキシ)プロピル)-N,N,N-トリメチルアンモニウムクロリド(DOTAP);3-(N-(N’,N’-ジメチルアミノエタン)-カルバモイル)コレステロール(DC-Chol)およびN-(1,2-ジミリスチルオキシプロパ-3-イル)-N,N-ジメチル-N-ヒドロキシエチルアンモニウムブロミド(DMRIE)、リポフェクチン(登録商標)、リポフェクタミン(登録商標)、トランスフェクタム(登録商標)、DODAP、DODMA、DMDMA、1,2-ジリノレイルオキシ-N,N-ジメチルアミノプロパン(DLinDMA)、1,2-ジリノレニルオキシ-N,N-ジメチルアミノプロパン(DLenDMA)、1,2-ジリノレイオキシ-3-(ジメチルアミノ)アセトキシプロパン(DLin-DAC)、1,2-ジリノレイオキシ-3-モルホリノプロパン(DLin-MA)、1,2-ジリノレオイル-3-ジメチルアミノプロパン(DLinDAP)、1,2-ジリノレイルチオ-3-ジメチルアミノプロパン(DLin-S-DMA)、1-リノレオイル-2-リノレイルオキシ-3-ジメチルアミノプロパン(DLin-2-DMAP)、2,2-ジリノレイル-4-(2-ジメチルアミノエチル)-[1,3]-ジオキソラン、DLin-KC2-DMA)、(6Z,9Z,28Z,31Z)-ヘプタトリアコンタ-6,9,28,31-テトラエン-19-イル-4-(ジメチルアミノ)ブタノアート(DLin-MC3-DMA)、1,2-ジリノレイルオキシ-3-トリメチルアミノプロパン塩化物塩(DLin-TMA-Cl)、1,2-ジリノレオイル-3-トリメチルアミノプロパン塩化物塩(DLin-TAP-Cl)、1,2-ジリノレイルオキシ-3-(N-メチルピペラジノ)プロパン(DLin-MPZ)、3-(N,N-ジリノレイルアミノ)-1,2-プロパンジオール(DLinAP)、3-(N,N-ジオレイルアミノ)-1,2-プロパンジオ(dio)(DOAP)、1,2-ジリノレイルオキソ-3-(2-N,N-ジメチルアミノ)エトキシプロパン(DLin-EG-DMA)および2,2-ジリノレイル-4-ジメチルアミノメチル-[1,3]-ジオキソラン(DLin-K-DMA)、1-パルミトイル-2-オレオイル-sn-グリセロ-3-ホスホコリン(1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC)、1,2-ジステアロイル-sn-グリセロ-3-ホスホコリン(1,2-Distearoyl-sn-glycero-3-phosphocholine,DSPC)などを用いることができる。上記2,2-ジリノレイル-4-(2-ジメチルアミノエチル)-[1,3]-ジオキソラン、DLin-KC2-DMA)、(6Z,9Z,28Z,31Z)-ヘプタトリアコンタ-6,9,28,31-テトラエン-19-イル-4-(ジメチルアミノ)ブタノアート(DLin-MC3-DMA)及びその類似体は、特開2013-245190号公報、特開2016-84297号公報、特開2019-151589号公報に記載されており、かつ、それらの全記載は、ここに特に開示として援用される。 The self-assembling substance-containing solution can be, for example, any solution selected from the group consisting of a neutral lipid-containing solution, an anionic lipid-containing solution, a cationic lipid-containing solution, and a polymer-containing solution. It is not intended to be limiting. The self-assembling substance in the present invention may be any substance as long as it has a self-assembling function and can associate with each other and form particles as described above. Examples of lipids that are self-organizing substances include, but are not limited to, soybean lecithin, hydrogenated soybean lecithin, egg yolk lecithin, phosphatidylcholines (eg, egg-derived eggPC), phosphatidylserines, and phosphatidyl. Ethanolamines, phosphatidylinositols, phosphasphingomyelins, phosphatidic acids, long-chain alkyl phosphates, gangliosides, glycolipids, phosphatidylglycerols, sphingolipids, sterols, naturally-derived lipids such as lysophospholipids, and N-(2 ,3-dioleyloxy)propyl)-N,N,N-trimethylammonium chloride (DOTMA); N,N-distearyl-N,N-dimethylammonium bromide (DDAB); oiloxy)propyl)-N,N,N-trimethylammonium chloride (DOTAP); 3-(N-(N',N'-dimethylaminoethane)-carbamoyl)cholesterol (DC-Chol) and N-(1, 2-Dimyristyloxyprop-3-yl)-N,N-dimethyl-N-hydroxyethylammonium bromide (DMRIE), Lipofectin®, Lipofectamine®, Transfectam®, DODAP, DODMA, DMDMA, 1,2-dilinoleyloxy-N,N-dimethylaminopropane (DLinDMA), 1,2-dilinolenyloxy-N,N-dimethylaminopropane (DLenDMA), 1,2-dilinoleoxy- 3-(dimethylamino)acetoxypropane (DLin-DAC), 1,2-dilinoleoxy-3-morpholinopropane (DLin-MA), 1,2-dilinoleoyl-3-dimethylaminopropane (DLinDAP), 1,2-dilinoleylthio -3-dimethylaminopropane (DLin-S-DMA), 1-linoleoyl-2-linoleyloxy-3-dimethylaminopropane (DLin-2-DMAP), 2,2-dilinoleyl-4-(2-dimethylamino ethyl)-[1,3]-dioxolane, DLin-KC2-DMA), (6Z,9Z,28Z,31Z)-heptatriacont-6,9,28,31-tetraen-19-yl-4-(dimethyl amino)butanoate (DLin-MC3-DMA), 1,2-dilinoleyloxy-3-trimethylaminopropane chloride salt (DLin-TMA-Cl), 1,2-dilinoleoyl-3-trimethylaminopropane chloride salt (DLin-TAP-Cl), 1,2-dilinoleyloxy-3-(N-methylpiperazino)propane (DLin-MPZ), 3-(N,N-dilinoleylamino)-1,2-propanediol (DLinAP), 3-(N,N-dioleylamino)-1,2-propanedio(dio) (DOAP), 1,2-dilinoleyloxo-3-(2-N,N-dimethylamino) Ethoxypropane (DLin-EG-DMA) and 2,2-dilinoleyl-4-dimethylaminomethyl-[1,3]-dioxolane (DLin-K-DMA), 1-palmitoyl-2-oleoyl-sn-glycero- 3-phosphocholine (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (1,2-distearoyl-sn-glycero-3- phosphocholine, DSPC) and the like can be used. 2,2-dilinoleyl-4-(2-dimethylaminoethyl)-[1,3]-dioxolane, DLin-KC2-DMA), (6Z,9Z,28Z,31Z)-heptatriacontane-6,9, 28,31-tetraen-19-yl-4-(dimethylamino)butanoate (DLin-MC3-DMA) and analogues thereof are disclosed in JP-A-2013-245190, JP-A-2016-84297, JP-A-2019- 151589, and the entire disclosure thereof is specifically incorporated herein by reference.
 自己組織化物質の他の一例である両親媒性物質としては、特に限定されるわけではないが、両親媒性高分子化合物、例えばポリスチレン-ポリエチレンオキシドブロック共重合体、ポリエチレンオキシド-ポリプロピレンオキシドブロック共重合体、ポリ乳酸ポリエチレングリコール共重合体、ポリカプロラクトン-ポリエチレングリコール共重合体等のような両親媒性ブロック共重合体などが例示できる。 Amphiphilic substances, which are another example of self-assembling substances, include, but are not particularly limited to, amphiphilic polymer compounds such as polystyrene-polyethylene oxide block copolymers, polyethylene oxide-polypropylene oxide block copolymers, Examples include polymers, amphiphilic block copolymers such as polylactic acid polyethylene glycol copolymers, polycaprolactone-polyethylene glycol copolymers, and the like.
 被封入物質は、特に限定されるものではないが、核酸、ペプチド、タンパク質、糖鎖などの生体高分子、金属イオン、低分子又は中分子有機化合物、有機金属錯体、金属粒子などの物質が挙げられ、また用途別の観点では抗癌剤、抗酸化剤、抗菌剤、抗炎症剤、ビタミン剤、人工血液(ヘモグロビン)、ワクチン、発毛剤、保湿剤、色素類、美白剤、顔料などといった薬剤、生理活性物質、化粧料等を例示できる。これらの被封入物質は、水溶性のものであれば、形成される粒子の水相中に包含させることができる。水溶性の荷電物質の場合は反対の荷電を有する自己組織化物質と凝集体を形成させると同時に当該凝集体をコアとした自己組織化物質粒子化して粒子内に包含させることもできる。水に難溶性のものである場合は、自己組織化物質が形成する自己組織化膜の疎水性部分に包含されるか、もしくは自己組織化物質の疎水性部分と結合し凝集した凝集体として粒子内に包含させることができる。なお被封入物質を前処理工程にてあらかじめ水溶性又は難溶性にすること、又は凝集体とすることができ、当該前処理工程をその処理に適切な流路内で行うこともできる。前処理工程を流路内で行う場合は当該前処理工程を行う流路の排出口を本発明の流路構造体の第1又は第2導入路と接続することができる。 The substance to be encapsulated is not particularly limited, but includes substances such as biopolymers such as nucleic acids, peptides, proteins, and sugar chains, metal ions, low-molecular-weight or middle-molecular-weight organic compounds, organometallic complexes, and metal particles. Also, from the viewpoint of use, drugs such as anticancer agents, antioxidants, antibacterial agents, anti-inflammatory agents, vitamins, artificial blood (hemoglobin), vaccines, hair growth agents, moisturizers, pigments, whitening agents, pigments, etc. Physiologically active substances, cosmetics and the like can be exemplified. These encapsulating substances can be included in the aqueous phase of the formed particles if they are water soluble. In the case of a water-soluble charged substance, it is also possible to form an aggregate with a self-assembled substance having an opposite charge, and at the same time form a self-assembled substance particle with the aggregate as a core and include it in the particle. When it is poorly soluble in water, the particles are included in the hydrophobic part of the self-assembled film formed by the self-assembled material, or as aggregates that are combined with the hydrophobic part of the self-assembled material and aggregated. can be contained within It should be noted that the substance to be encapsulated can be made water-soluble or sparingly soluble in advance in a pretreatment step, or can be made into an aggregate, and the pretreatment step can also be performed in an appropriate channel for the treatment. When the pretreatment process is carried out in the channel, the discharge port of the channel in which the pretreatment process is carried out can be connected to the first or second introduction channel of the channel structure of the present invention.
 自己組織化物質を溶解して粒子溶液を調製するのに用いられる水混和性有機溶媒としては、特に限定されるわけではないが、例えば、アルコール類、エーテル類、エステル類、ケトン類、アセタール類などの水に混合可能な有機溶媒が挙げられる。特にメタノール、エタノール、t-ブタノール、ブタンジオール類、1-プロパノール、2-プロパノール、及び2-ブトキシエタノール等のアルコール類、特に炭素数1~6のアルカノールを用いることが好ましい。また、テトラヒドロフランなどのエーテル類、アセトニトリル、アセトン等も挙げられる。 The water-miscible organic solvent used for dissolving the self-assembling material to prepare the particle solution is not particularly limited, but examples thereof include alcohols, ethers, esters, ketones, and acetals. and water-miscible organic solvents such as Alcohols such as methanol, ethanol, t-butanol, butanediols, 1-propanol, 2-propanol, and 2-butoxyethanol, particularly alkanols having 1 to 6 carbon atoms, are particularly preferred. Ethers such as tetrahydrofuran, acetonitrile, and acetone are also included.
 希釈媒体としては、水、または基本的に水を主成分とする、例えば、生理食塩水、リン酸緩衝溶液、酢酸緩衝溶液、クエン酸緩衝液、リンゴ酸緩衝液等水溶液が、形成しようとする粒子の用途等に応じて適宜使用される。希釈媒体は、水性溶液、緩衝液に加えて、これらの溶液に水溶性物質をさらに含有する溶液であることもできる。水溶性物質は、低分子、中分子、高分子、核酸、タンパク質、ペプチド、及びそれらを含む生理活性物質、医薬品、化粧品素材、ワクチン、アジュバント等であることができる。水溶性物質をさらに含有する希釈媒体は、例えば、低分子含有水溶液、中分子含有水溶液、高分子含有水溶液、核酸含有水溶液、タンパク質含有水溶液、ペプチド含有水溶液、生理活性物質含有水溶液、医薬品含有水溶液、化粧品素材含有水溶液、ワクチン含有水溶液、アジュバント含有水溶液およびそれらの混合液などであることができる。 As the diluent medium, water or an aqueous solution containing essentially water as a main component, for example, physiological saline, phosphate buffer, acetate buffer, citrate buffer, malate buffer, etc., is to be formed. It is used as appropriate depending on the intended use of the particles. Dilution media can also be aqueous solutions, buffers, as well as solutions that further contain water-soluble substances in these solutions. The water-soluble substance can be low molecular weight, middle molecular weight, high molecular weight, nucleic acid, protein, peptide, and physiologically active substances containing them, pharmaceuticals, cosmetic materials, vaccines, adjuvants, and the like. The diluent medium further containing a water-soluble substance is, for example, a low-molecular-weight aqueous solution, an intermediate-molecular-weight aqueous solution, a high-molecular-weight aqueous solution, a nucleic acid-containing aqueous solution, a protein-containing aqueous solution, a peptide-containing aqueous solution, a physiologically active substance-containing aqueous solution, a drug-containing aqueous solution, It may be an aqueous solution containing cosmetic material, an aqueous solution containing vaccine, an aqueous solution containing adjuvant, or a mixture thereof.
 本発明の方法で得られる被封入物質を封入した自己組織化物質粒子は、ナノサイズであることができ、Z平均粒子径が、例えば、10~1000nmの範囲であることができ、20~200nmの範囲であることができる。但し、この範囲に限定される意図ではない。Z平均粒子径とは累積平均(粒子の直径を平均した調和強度)とも呼ばれ、ISO 13321に規定されている。 The self-assembled material particles encapsulating the material to be encapsulated obtained by the method of the present invention can be nano-sized, and can have a Z-average particle size in the range of, for example, 10 to 1000 nm, such as 20 to 200 nm. can range from However, it is not intended to be limited to this range. The Z-average particle size is also called cumulative average (harmonic intensity obtained by averaging particle diameters), and is defined in ISO 13321.
 以下、本発明を実施例に基づいて更に詳細に説明する。但し、実施例は本発明の例示であって、本発明は実施例に限定される意図ではない。 Hereinafter, the present invention will be described in further detail based on examples. However, the examples are illustrative of the present invention, and the present invention is not intended to be limited to the examples.
実施例1
 以下の表1-1、1-2に示す6通りの流路構造体を用い、脂質粒子を調製した。表1-2におけるW5、W7、W2、W4は、図1-3に示された部分の寸法であり、合流部-導出口(mm)は、図6に示す流路構造体の流路AとBの合流部から導出口までの寸法(mm)を示す。
Example 1
Lipid particles were prepared using six channel structures shown in Tables 1-1 and 1-2 below. W5, W7, W2, and W4 in Table 1-2 are the dimensions of the portion shown in FIG. and B from the confluence to the outlet (mm).
・上側流路: 緩衝液流[25mM 酢酸緩衝液(pH4.0)]
・下側流路: 脂質EtOH液流
・脂質溶液:10mM DOTAP/DSPC/コレステロール/DMG-PEG 2K(40/11.5/47.5/1%)
・透析:D-PBS (-)
・粒径測定:DLS
・Upper channel: buffer flow [25 mM acetate buffer (pH 4.0)]
- Lower flow path: lipid EtOH liquid flow - Lipid solution: 10 mM DOTAP/DSPC/cholesterol/DMG-PEG 2K (40/11.5/47.5/1%)
・Dialysis: D-PBS (-)
・ Particle size measurement: DLS
 結果を図8~10に示す。図8~10の縦軸の粒径は、Z平均粒子径を意味し、以下の説明における粒子径も平均粒子径を意味する。上側流路幅の異なる4通りの流路構造体(No.1、3、5、6)を用いて得た図8に示す結果からは、FRR3では上側流路幅が200nmから800nmに大きくなるにつれて、1000μL/min以上の高流量であっても粒子径100nm以上の粒子が形成される。FRR5、FRR7でも同様の傾向である。特に流路No.6、FRR3では2000μL/minでも粒子径100nm以上の粒子が得られる。FRRが小さい方が、高流量で粒子径が大きい粒子が得られ易い傾向がある。上側流路幅が大きくなると粒子径100nm以上の粒子形成は容易になる傾向ある。 The results are shown in Figures 8-10. The particle size on the vertical axis in FIGS. 8 to 10 means the Z-average particle size, and the particle size in the following description also means the average particle size. From the results shown in FIG. 8 obtained using four types of channel structures (Nos. 1, 3, 5, and 6) with different upper channel widths, the upper channel width increases from 200 nm to 800 nm in FRR3. As the flow rate increases, particles with a diameter of 100 nm or more are formed even at a high flow rate of 1000 μL/min or more. FRR5 and FRR7 show the same tendency. In particular, channel No. 6. With FRR3, particles with a particle diameter of 100 nm or more can be obtained even at 2000 μL/min. Smaller FRR tends to make it easier to obtain particles with a large particle size at a high flow rate. When the width of the upper flow path is increased, it tends to become easier to form particles having a particle diameter of 100 nm or more.
 下側流路深さの異なる2通りの流路構造体(No.1、4)を用いて得た図9に示す結果からは、FRR3、下側流路深さが50μmの場合、1000μL/min以下であれば粒子径100nm以上の粒子が形成される。FRR5でも同様の傾向である。FRR7では、500μL/min以下で粒子径100nm以上の粒子が形成される。どのFRRでも、下側流路深さが100μmと深くなる流路構造体No.4では、低流量でも粒子径が100nm以上の大きい粒子は得られない。この結果は、脂質EtOH液流用の下側流路の深さは、粒子径が100nm以上の大きい粒子を得るためには浅い方がよいことを示唆する。尚、対比の図は示していないが、流路構造体No.1、No.4より上側流路幅が大きい流路構造体No.2とNo.3での結果の対比からは、下側流路が深い方(No.2)が同じ流量であっても流速が遅くなり、その結果、生成する粒子の粒径は大きくなる傾向がある。 From the results shown in FIG. 9 obtained using two types of channel structures (Nos. 1 and 4) with different bottom channel depths, when the FRR is 3 and the bottom channel depth is 50 μm, 1000 μL/ If it is less than min, particles having a particle diameter of 100 nm or more are formed. FRR5 has the same tendency. In FRR7, particles with a particle diameter of 100 nm or more are formed at 500 μL/min or less. In any FRR, the flow path structure No. 1 has a deep bottom flow path depth of 100 μm. In 4, large particles with a particle diameter of 100 nm or more cannot be obtained even at a low flow rate. This result suggests that the depth of the lower channel for the lipid EtOH liquid flow should be shallow to obtain large particles with a particle size of 100 nm or more. In addition, although the figure of comparison is not shown, flow-path structure No. 1, No. Channel structure No. 4 having a larger channel width than 4. 2 and No. From the comparison of the results in 3, even if the flow rate is the same in the deeper lower flow path (No. 2), the flow velocity tends to be slower, and as a result, the particle size of the generated particles tends to be larger.
 下側流路深さが100μmと深くなり、上側流路幅の異なる2通りの流路構造体(No.2、4)を用いて得た図10に示す結果からは、上側流路幅が200μmでは、どのFRRでも、実験の範囲では、低流量でも粒子径が100nm以上の大きい粒子は得られない。但し、さらに低流量とすることで粒子径が100nm以上の粒子を得ることは可能である。上側流路幅が400μmに倍増すると、FRR3及びFRR5では、1000μL/min以下の流量では粒子径100nm以上の粒子が形成される。FRR7では1000μL/minの流量だと粒子径80μmの粒子が形成される。 From the results shown in FIG. At 200 μm, at any FRR, in the range of experiments, even at low flow rates, large particles with a particle size greater than 100 nm cannot be obtained. However, it is possible to obtain particles with a particle diameter of 100 nm or more by further reducing the flow rate. When the width of the upper channel is doubled to 400 μm, particles with a diameter of 100 nm or more are formed at flow rates of 1000 μL/min or less in FRR3 and FRR5. In FRR7, particles with a particle diameter of 80 μm are formed at a flow rate of 1000 μL/min.
 高流量で粒子径が大きい粒子が得るには、上側流路の幅がある程度大きい方が有利である。 In order to obtain particles with a large particle diameter at a high flow rate, it is advantageous to have a somewhat large width of the upper flow path.
実施例2
 流路No.1における上側流路の面取りをした流路構造体で実施例1と同様の条件(FRR=3)で脂質粒子を調製した。流路の面取りとは、流路の側壁内面の角を曲面状にした構造であり、流体の流れをスムーズにさせることを意図する。結果を図11に示す。図11の縦軸の粒径は、Z平均粒子径を意味する。流路構造体の上側流路の面取りの有無で、得られる脂質粒子の粒径に大きな変化はなかったが、面取り構造を有する場合の方が、粒径は大きくなった。
Example 2
Flow path no. Lipid particles were prepared under the same conditions as in Example 1 (FRR=3) using the channel structure in which the upper channel was chamfered in 1. The chamfering of the channel is a structure in which the corners of the inner surface of the side wall of the channel are curved, and is intended to smooth the flow of the fluid. The results are shown in FIG. The particle size on the vertical axis of FIG. 11 means the Z-average particle size. The particle size of the obtained lipid particles did not change significantly depending on whether the upper channel of the channel structure was chamfered or not, but the particle size was larger in the case of having the chamfered structure.
実施例3
 図5-8に示す1回交差流路構造体で実施例1と同様の条件(但し、FRR=5)で脂質粒子を調製した。結果を図12に示す。
 但し、図12の(1)は、流路幅が200μmであり、交差する流路は直交である流路構造体の結果であり、図12の(2)は,流路幅が800μmであり、流路の交差角は90度である流路構造体の結果であり、図12の(3)は,流路幅が800μmであり、流路の交差角が35度である流路構造体の結果であり、図12の(4)は,流路幅が800μmであり、流路の交差角が60度である流路構造体の結果である。1回交差流路構造体によっても、500μL/min~2000μL/minの範囲の流量において、60~150μmの範囲の平均粒子径を有する脂質粒子が得られた。
Example 3
Lipid particles were prepared in the single-intersection channel structure shown in FIGS. 5-8 under the same conditions as in Example 1 (however, FRR=5). The results are shown in FIG.
However, (1) in FIG. 12 is the result of a channel structure in which the channel width is 200 μm and the crossing channels are orthogonal, and (2) in FIG. 12 is the channel width of 800 μm. , and (3) of FIG. 12 are the results of a channel structure in which the channel crossing angle is 90 degrees, and the channel structure in which the channel width is 800 μm and the channel crossing angle is 35 degrees. (4) in FIG. 12 is the result of the channel structure having a channel width of 800 μm and a channel crossing angle of 60 degrees. The single crossing channel structure also yielded lipid particles with average particle sizes ranging from 60 to 150 μm at flow rates ranging from 500 μL/min to 2000 μL/min.
実施例4
 以下の表2に示す3通りの流路構造体を用い、核酸を封入した脂質粒子を調製した。表中、Z平均はZ平均粒子径を、Numberは個数平均粒子径、PDIは多分散度をそれぞれ示し、ゼータサイザーナノ(マルバーンパナリティカル)により測定した粒子懸濁液の散乱強度から同装置付属のソフトウェアを使用してそれぞれ算出した。尚、Z平均粒子径は、測定した散乱強度(光強度)を基準として求めた平均粒子径であり、個数平均粒子径とは、粒子の個数で重み付けした平均粒子径である。
Example 4
Lipid particles encapsulating nucleic acids were prepared using three types of channel structures shown in Table 2 below. In the table, Z-average indicates Z-average particle size, Number indicates number-average particle size, and PDI indicates polydispersity. were calculated using the software of The Z-average particle size is the average particle size determined based on the measured scattering intensity (light intensity), and the number-average particle size is the average particle size weighted by the number of particles.
・核酸溶液:60(FRR7)または70(FRR3)μg/mL siRNA in 25mM 酢酸緩衝液(pH4.0)
・脂質溶液:10mM DOTAP/DSPC/コレステロール/DMG-PEG 2K(40/11.5/47.5/1%)
・透析:D-PBS (-)
・粒径測定:動的光散乱法(DLS)を用いた。
・核酸封入率の測定:Ribogreen(登録商標)assayを用いた。
・Nucleic acid solution: 60 (FRR7) or 70 (FRR3) μg/mL siRNA in 25 mM acetate buffer (pH 4.0)
- Lipid solution: 10 mM DOTAP/DSPC/cholesterol/DMG-PEG 2K (40/11.5/47.5/1%)
・Dialysis: D-PBS (-)
- Particle size measurement: A dynamic light scattering method (DLS) was used.
- Measurement of nucleic acid encapsulation rate: Ribogreen (registered trademark) assay was used.
 表2に示す結果から、本発明の実施例で用いた流路構造体では、Z平均粒子径が100~200nmの範囲の核酸を封入した脂質粒子を作製することができることが分かった。核酸の封入は96%以上と高い値であった。特に、流路No.4(流量300μL/min、2000μL/min)及び流路No.6(流量2000μL/min)では、PDIが0.1以下の粒子を作製できた。siRNAを搭載したDOTAP粒子系でも100nm以上の粒径でPDIが0.1以下の粒子作製が可能であることを示す結果である。 From the results shown in Table 2, it was found that the channel structure used in the examples of the present invention can produce lipid particles encapsulating nucleic acid with a Z-average particle size in the range of 100 to 200 nm. Nucleic acid encapsulation was as high as 96% or more. In particular, channel no. 4 (flow rate 300 μL/min, 2000 μL/min) and channel No. 6 (flow rate of 2000 μL/min), particles with a PDI of 0.1 or less could be produced. These results show that even with the DOTAP particle system loaded with siRNA, it is possible to produce particles with a particle size of 100 nm or more and a PDI of 0.1 or less.
実施例5
図6(4)の流路(W800)を用いて、mRNA-LNPを作製した。
脂質組成は、Spike-Vaxと同様のSM-102/DSPC/コレステロール/DMG-PEG2k=50/10/38.5/1.5 mol%とした。
脂質濃度:8mM in エタノール
水系溶液:48.9 μg/mL mRNA(luciferase発現)in 10mMクエン酸緩衝液(pH 3.0)
Example 5
Using the channel (W800) in FIG. 6(4), mRNA-LNP was produced.
The lipid composition was SM-102/DSPC/cholesterol/DMG-PEG2k=50/10/38.5/1.5 mol%, the same as Spike-Vax.
Lipid concentration: 8 mM in ethanol aqueous solution: 48.9 µg/mL mRNA (luciferase expression) in 10 mM citrate buffer (pH 3.0)
流路で混合後(流量:500、1000または2000 μL/min、FRR3)、PBSで一晩透析し、透析後、平均粒子径(Z-average nm)を測定した。結果を図18に示す。流速が大きくなるほど、平均粒径は小さくなる傾向が有ったが、いずれの場合も100nm以上であった。 After mixing in the flow channel (flow rate: 500, 1000 or 2000 μL/min, FRR3), it was dialyzed overnight with PBS, and after dialysis, the average particle size (Z-average nm) was measured. The results are shown in FIG. There was a tendency for the average particle size to decrease as the flow rate increased, but it was 100 nm or more in all cases.
透析した3種類のmRNA-LNPを200 ng/mL mRNA濃度になるように培地で希釈し、HeLa細胞にドーズした。24時間インキュベーション後、ONE-GloおよびBCA assays kitを用いて、Luciferaseの発光強度および総タンパク質濃度を測定した。これによって、相対発光強度(RLU/mg protein)を求めた。結果を図19に示す。3種類いずれの場合もZ平均粒子径は100nm以上であり(図18)、相対発光強度は大きく変動はしなかった(図19)。 The dialyzed three types of mRNA-LNP were diluted with medium to a concentration of 200 ng/mL mRNA and dosed to HeLa cells. After incubation for 24 hours, the luminescence intensity and total protein concentration of Luciferase were measured using ONE-Glo and BCA assay kit. From this, the relative luminescence intensity (RLU/mg protein) was obtained. The results are shown in FIG. In all three cases, the Z-average particle size was 100 nm or more (Fig. 18), and the relative emission intensity did not change significantly (Fig. 19).
実施例6
図6(4)の流路(W800)およびWO2018/190423(特許文献1)に記載のマイクロ流路デバイス(以下「iLiNP」または「iLiNPデバイス」と称する)を用いて、mRNA-LNPを作製した。脂質組成は、Spike-Vaxと同様のSM-102/DSPC/コレステロール/DMG-PEG2k=50/10/38.5/1.5 mol%とした。
脂質濃度:8 mM in エタノール
水系溶液:48.9 μg/mL  mRNA(luciferase発現)in 10 mM クエン酸緩衝液(pH 3.0)
Example 6
mRNA-LNP was prepared using the channel (W800) in FIG. . The lipid composition was SM-102/DSPC/cholesterol/DMG-PEG2k=50/10/38.5/1.5 mol%, the same as Spike-Vax.
Lipid concentration: 8 mM in ethanol aqueous solution: 48.9 µg/mL mRNA (luciferase expression) in 10 mM citrate buffer (pH 3.0)
流路で混合後(流量:1000 μL/min(図6(4)の流路)、500 μL/min(iLiNP)FRR 3)、PBSで一晩透析し、透析後、平均粒子径(Z-average nm)を測定した。透析したmRNA-LNPを200 ng/mL mRNA濃度になるように培地で希釈し、HeLa細胞にドーズした。24時間インキュベーション後、ONE-GloおよびBCA assays kitを用いて、Luciferaseの発光強度および総タンパク質濃度を測定した。これによって、相対発光強度(RLU/mg protein)を求めた。結果を図20に示す。図6(4)の流路(W800)を用いて作製した平均粒子径155nmのmRNA-LNPは、iLiNPデバイスを用いて作製した平均粒子径80nmのmRNA-LNPに比べて活性が約7倍であった。 After mixing in the channel (flow rate: 1000 µL/min (channel in Fig. 6 (4)), 500 µL/min (iLiNP) FRR 3), dialyze with PBS overnight, after dialysis, average particle size (Z- (average nm) was measured. The dialyzed mRNA-LNP was diluted with medium to a concentration of 200 ng/mL mRNA and dosed to HeLa cells. After incubation for 24 hours, the luminescence intensity and total protein concentration of Luciferase were measured using ONE-Glo and BCA assay kit. From this, the relative luminescence intensity (RLU/mg protein) was determined. The results are shown in FIG. The activity of mRNA-LNP with an average particle size of 155 nm produced using the channel (W800) in FIG. there were.
参考例2-1
 図3に示された、幅(W)200μm、深さ(D)100μmの上側流路が水流用、幅(W)200μm、深さ(D)50μmの下側流路がEtOH流用であり、6箇所の交差領域を有し、合流して導入口に至る構造の流路構造体において、総流量500μL/min、水/EtOH流量比を5とした場合の希釈層形成を画像化したものである。結果は、図12に示す。
Reference example 2-1
The upper channel with a width (W) of 200 μm and a depth (D) of 100 μm shown in FIG. This is an image of the formation of a diluted layer when the total flow rate is 500 μL/min and the water/EtOH flow rate ratio is 5 in a flow channel structure having six crossing regions and a structure that merges to reach an inlet. be. Results are shown in FIG.
参考例2-2
 参考例2-1と同様の流路構造体を用い、総流量を1000μL/minとしたシミュレーション結果である。結果は、図13に示す。
Reference example 2-2
This is the result of a simulation using a channel structure similar to that of Reference Example 2-1 and with a total flow rate of 1000 μL/min. Results are shown in FIG.
参考例2-3
 参考例2-1と同様の流路構造体を用い、総流量を2000μL/minとしたシミュレーション結果である。結果は、図14に示す。
Reference example 2-3
This is the result of a simulation using a channel structure similar to that of Reference Example 2-1 and with a total flow rate of 2000 μL/min. Results are shown in FIG.
参考例2-4
 図5に示された、幅(W)400μm、深さ(D)100μmの上側流路が水流用、幅(W)200μm、深さ(D)50μmの下側流路がEtOH流用であり、7箇所の交差領域を有し、合流して導入口に至る構造の流路構造体において、総流量500μL/min、水/EtOH流量比を5とした場合の希釈層形成を画像化したものである。結果は、図15に示す。
Reference example 2-4
The upper channel with a width (W) of 400 μm and a depth (D) of 100 μm shown in FIG. This is an image of the formation of a diluted layer when the total flow rate is 500 μL/min and the water/EtOH flow rate ratio is 5 in a flow channel structure having seven intersection regions and a structure that merges to reach an inlet. be. Results are shown in FIG.
参考例2-5
 参考例2-4と同様の流路構造体を用い、総流量を2000μL/minとしたシミュレーション結果である。結果は、図16に示す。
Reference example 2-5
This is the result of a simulation using a channel structure similar to that of Reference Example 2-4 and with a total flow rate of 2000 μL/min. Results are shown in FIG.
 本発明は、流路構造体及び流路構造体を用いる自己組織化物質ナノ粒子の製造に関する分野において有用である。
 
INDUSTRIAL APPLICABILITY The present invention is useful in fields related to production of channel structures and self-assembled material nanoparticles using channel structures.

Claims (22)

  1. 導入口(11)を有する流路A(10)及び導入口(21)を有する流路B(20)を有し、
    流路A及びB(10、20)は、導入口(11、21)の下流の1箇所以上で立体的に交差し、かつそれぞれ流路壁に流路A及びB(10、20)を連通する共通孔(32)を交差領域において有し、
    流路A及びB(10、20)は、最下流の交差領域に位置する合流部(30)で合流し、合流部(30)の下流に少なくとも1つの導出口(31)を有する(但し、最上流の交差領域から導出口(31)までの間の一部又は全部が流路を流れる流体を希釈するための部位である)か、または
    流路A及びB(10、20)は、合流することなく、独立に導出口(12)及び導出口(22)を有する(但し、交差領域から導出口(12)及び導出口(22)までの間それぞれの一部又は全部が流路を流れる流体を希釈するための部位である)、
    流路構造体。
    Having a channel A (10) having an inlet (11) and a channel B (20) having an inlet (21),
    Channels A and B (10, 20) three-dimensionally intersect at one or more locations downstream of inlets (11, 21), and communicate with channel walls of channels A and B (10, 20), respectively. having a common hole (32) at the intersection region for
    Flow paths A and B (10, 20) join at a confluence (30) located in the most downstream intersection region, and have at least one outlet (31) downstream of the confluence (30) (however, part or all of the area from the most upstream intersection area to the outlet port (31) is a site for diluting the fluid flowing through the flow path), or the flow paths A and B (10, 20) converge. It has an outlet (12) and an outlet (22) independently (however, from the intersection area to the outlet (12) and the outlet (22), part or all of each flows through the flow channel. site for diluting the fluid),
    channel structure.
  2. 自己組織化物質粒子の製造用であって、前記流体を希釈するための部位において、導入口(11)又は導入口(21)から導入された自己組織化物質含有溶液が、他方の導入口から導入された希釈媒体により希釈されて自己組織化物質粒子が形成される、請求項1に記載の流路構造体。 In the site for producing self-assembling material particles and for diluting the fluid, the self-assembling material-containing solution introduced from the inlet (11) or the inlet (21) is introduced from the other inlet 2. The channel structure according to claim 1, wherein self-assembled material particles are formed upon being diluted by the introduced diluent medium.
  3. 流路A(10)は2次元または3次元に規則的にまたは不規則に曲折しているかまたは直線状であり、流路B(20)は2次元または3次元に規則的にまたは不規則に曲折しているかまたは直線状である、請求項1または2に記載の流路構造体。 Channel A (10) is regularly or irregularly curved or straight in two or three dimensions and Channel B (20) is regularly or irregularly in two or three dimensions. 3. The channel structure according to claim 1 or 2, which is curved or straight.
  4. 2箇所以上の交差領域を有する、請求項1または2に記載の流路構造体。 3. The channel structure according to claim 1, which has two or more intersection regions.
  5. 流路A(10)の共通孔の開口面と流路B(20)の共通孔の開口面とが略同一面を構成する、請求項1または2に記載の流路構造体。 3. The channel structure according to claim 1, wherein the opening surface of the common hole of the channel A (10) and the opening surface of the common hole of the channel B (20) constitute substantially the same plane.
  6. 流路A及びB(10、20)は、周期的に交差する、請求項1または2に記載の流路構造体。 3. Channel structure according to claim 1 or 2, wherein channels A and B (10, 20) intersect periodically.
  7. 流路A(10)の断面積は、導入口(11)から合流部(30)または導出口(12)の間で一定であるか、または少なくとも一部で周期的に変動する、請求項1または2に記載の流路構造体。 2. The cross-sectional area of the flow path A (10) is constant from the inlet (11) to the junction (30) or the outlet (12) or varies periodically at least in part. 3. or the channel structure according to 2.
  8. 流路B(20)の直線部の断面積は、導入口(11)から合流部(30)または導出口(22)の間で一定であるか、または周期的に変動する、請求項1または2に記載の流路構造体。 The cross-sectional area of the straight portion of the flow path B (20) is constant or varies periodically from the inlet (11) to the junction (30) or the outlet (22), or 2. The channel structure according to 2.
  9. 流路A及びB(10、20)の交差角度は、流路Aの流路方向の中心線と流路Bの流路方向の中心線とが形成する角度θが30°~150°の範囲である、請求項1または2に記載の流路構造体。 The crossing angle of the flow paths A and B (10, 20) is such that the angle θ formed by the center line of the flow path A and the center line of the flow path B is in the range of 30° to 150°. The channel structure according to claim 1 or 2, wherein:
  10. 流路A及びB(10、20)の幅は、それぞれ独立に10~2000μmの範囲であり、流路A及びB(10、20)の高さは、それぞれ独立に10~1000μmの範囲である、請求項1または2に記載の流路構造体。 The widths of channels A and B (10, 20) each independently range from 10 to 2000 μm, and the heights of channels A and B (10, 20) each independently range from 10 to 1000 μm. 3. The channel structure according to claim 1 or 2.
  11. 2次元または3次元に曲折する流路A(10)の曲折部の外縁及び内縁の平面の形状は、多角形状または略円形状であり、
    2次元または3次元に曲折する流路B(20)の曲折部の外縁及び内縁の平面の形状は、多角形状または略円形状である、請求項1または2に記載の流路構造体。
    The planar shape of the outer edge and inner edge of the bent portion of the flow path A (10) that is two-dimensionally or three-dimensionally bent is polygonal or substantially circular,
    The flow path structure according to claim 1 or 2, wherein the planar shape of the outer edge and inner edge of the bent portion of the flow path B (20) that is two-dimensionally or three-dimensionally bent is polygonal or substantially circular.
  12. 主表面が平板状の基板の少なくとも一方の主表面に、流路Aのための連続溝Aを有する基板Aと
    主表面が平板状の基板の少なくとも一方の主表面に、流路Bのための連続溝Bを有する基板Bとを
    連続溝Aと連続溝Bとが対向するように張り合わせた構造を有し、
    流路Aが2次元に規則的または不規則に曲折しているか又は直線状であり、流路Bが2次元に規則的または不規則に曲折しているかまたは直線状である、
    請求項1または2に記載の流路構造体。
    On at least one main surface of the substrate having a flat main surface, a substrate A having a continuous groove A for the flow channel A and at least one main surface of the substrate having a flat main surface, for the flow channel B It has a structure in which a substrate B having a continuous groove B is laminated so that the continuous groove A and the continuous groove B face each other,
    The flow path A is two-dimensionally regularly or irregularly curved or straight, and the flow path B is two-dimensionally regularly or irregularly curved or straight.
    The channel structure according to claim 1 or 2.
  13. 第1の流路構造体の導出口の下流に第2の流路構造体をさらに有する、請求項1または2に記載の流路構造体。 3. The channel structure according to claim 1, further comprising a second channel structure downstream of the outlet of the first channel structure.
  14. 自己組織化物質含有溶液を希釈媒体で希釈して自己組織化物質粒子を含む液体を得る工程を含む、自己組織化物質粒子の製造方法であって、
    前記工程を請求項1に記載の流路構造体を用いて実施する、前記製造方法。
    A method for producing self-assembling material particles, comprising the step of diluting a self-assembling material-containing solution with a diluent medium to obtain a liquid containing self-assembling material particles,
    The said manufacturing method which implements the said process using the flow-path structure of Claim 1.
  15. 自己組織化物質含有溶液を流路Aの導入口から導入し、希釈媒体を流路Bの導入口から導入する、または自己組織化物質含有溶液を流路Bの導入口から導入し、希釈媒体を流路Aの導入口から導入する請求項14に記載の製造方法。 The solution containing the self-assembling substance is introduced from the inlet of the channel A and the dilution medium is introduced from the inlet of the channel B, or the solution containing the self-assembling substance is introduced from the inlet of the channel B and the dilution medium is introduced from the inlet of the flow path A. The manufacturing method according to claim 14.
  16. 流路A及び流路Bへの自己組織化物質含有溶液及び希釈媒体の総流量は、1μl/分~1000ml/分の範囲である、請求項14または15に記載の製造方法。 16. The production method according to claim 14 or 15, wherein the total flow rate of the solution containing the self-assembling substance and the dilution medium to flow path A and flow path B is in the range of 1 μl/min to 1000 ml/min.
  17. 自己組織化物質含有溶液の流量V1に対する希釈媒体の流量V2の比率(V2/V1)が、1:1~1:20の範囲である、請求項14または15に記載の製造方法。 16. The production method according to claim 14 or 15, wherein the ratio (V2/V1) of the flow rate V2 of the dilution medium to the flow rate V1 of the self-assembling substance-containing solution is in the range of 1:1 to 1:20.
  18. 自己組織化物質が、脂質または両親媒性物質である、請求項14または15に記載の製造方法。 16. The production method according to claim 14 or 15, wherein the self-assembling substance is a lipid or an amphipathic substance.
  19. 希釈媒体が、水性溶液、緩衝液、核酸含有水溶液、タンパク質含有水溶液、ペプチド含有水溶液、アジュバント含有水溶液およびそれらの混合液から選択される、請求項14または15に記載の製造方法。 16. The production method according to claim 14 or 15, wherein the diluent medium is selected from aqueous solutions, buffer solutions, nucleic acid-containing aqueous solutions, protein-containing aqueous solutions, peptide-containing aqueous solutions, adjuvant-containing aqueous solutions and mixtures thereof.
  20. 自己組織化物質粒子を含む液体に含まれる自己組織化物質粒子はナノサイズである、請求項14または15に記載の製造方法。 16. The production method according to claim 14 or 15, wherein the self-assembling material particles contained in the liquid containing the self-assembling material particles are nano-sized.
  21. ナノサイズの自己組織化物質粒子のZ平均粒子径は、10~1000nmの範囲である、請求項14または15に記載の製造方法。 The production method according to claim 14 or 15, wherein the nano-sized self-assembled material particles have a Z-average particle size in the range of 10 to 1000 nm.
  22. ナノサイズの自己組織化物質粒子のZ平均粒子径は、20~200nmの範囲である、請求項14または15に記載の製造方法。 The production method according to claim 14 or 15, wherein the nano-sized self-assembled material particles have a Z-average particle size in the range of 20 to 200 nm.
PCT/JP2023/004007 2022-02-08 2023-02-07 Flow path structure and method for manufacturing self-organizing material particles using same WO2023153404A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022017619 2022-02-08
JP2022-017619 2022-02-08

Publications (1)

Publication Number Publication Date
WO2023153404A1 true WO2023153404A1 (en) 2023-08-17

Family

ID=87564373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004007 WO2023153404A1 (en) 2022-02-08 2023-02-07 Flow path structure and method for manufacturing self-organizing material particles using same

Country Status (1)

Country Link
WO (1) WO2023153404A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005054023A (en) * 2003-08-01 2005-03-03 Nippon Paint Co Ltd Method for producing polymer particle
JP2014231038A (en) * 2013-05-29 2014-12-11 株式会社フジクラ Micro mixer
JP2016028031A (en) * 2009-11-04 2016-02-25 ザ ユニバーシティ オブ ブリティッシュ コロンビア Nucleic acid-containing lipid particles and related methods
JP2017081954A (en) * 2011-10-25 2017-05-18 ザ ユニバーシティ オブ ブリティッシュ コロンビア Limit size lipid nanoparticles and related methods
WO2020095927A1 (en) * 2018-11-09 2020-05-14 国立大学法人北海道大学 Method for producing particle-containing aqueous solution
WO2021064998A1 (en) * 2019-10-04 2021-04-08 国立大学法人北海道大学 Three-dimensional flow path structure body and method of producing nanoparticles using same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005054023A (en) * 2003-08-01 2005-03-03 Nippon Paint Co Ltd Method for producing polymer particle
JP2016028031A (en) * 2009-11-04 2016-02-25 ザ ユニバーシティ オブ ブリティッシュ コロンビア Nucleic acid-containing lipid particles and related methods
JP2017081954A (en) * 2011-10-25 2017-05-18 ザ ユニバーシティ オブ ブリティッシュ コロンビア Limit size lipid nanoparticles and related methods
JP2014231038A (en) * 2013-05-29 2014-12-11 株式会社フジクラ Micro mixer
WO2020095927A1 (en) * 2018-11-09 2020-05-14 国立大学法人北海道大学 Method for producing particle-containing aqueous solution
WO2021064998A1 (en) * 2019-10-04 2021-04-08 国立大学法人北海道大学 Three-dimensional flow path structure body and method of producing nanoparticles using same

Similar Documents

Publication Publication Date Title
US20230235359A1 (en) Nucleic acid-containing lipid particles and related methods
US11938454B2 (en) Continuous flow microfluidic system
US20190307689A1 (en) Lipid nanoparticles for transfection and related methods
US10835878B2 (en) Bifurcating mixers and methods of their use and manufacture
US20130022649A1 (en) Snalp formulations containing antioxidants
WO2023153404A1 (en) Flow path structure and method for manufacturing self-organizing material particles using same
JP7014469B2 (en) Three-dimensional flow path structure and manufacturing method of nanoparticles using it
JPWO2020095927A1 (en) Method for producing particle-containing aqueous solution
US11938227B2 (en) Lipid nanoparticles encapsulation of large RNA
WO2023162903A1 (en) Lipid particle containing liquid, method for producing same, and kit
US20240173686A1 (en) Lipid nanoparticle (lnp) encapsulation of mrna products

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752868

Country of ref document: EP

Kind code of ref document: A1