WO2020095927A1 - Method for producing particle-containing aqueous solution - Google Patents

Method for producing particle-containing aqueous solution Download PDF

Info

Publication number
WO2020095927A1
WO2020095927A1 PCT/JP2019/043420 JP2019043420W WO2020095927A1 WO 2020095927 A1 WO2020095927 A1 WO 2020095927A1 JP 2019043420 W JP2019043420 W JP 2019043420W WO 2020095927 A1 WO2020095927 A1 WO 2020095927A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous solution
dilution
particle
path
introduction
Prior art date
Application number
PCT/JP2019/043420
Other languages
French (fr)
Japanese (ja)
Inventor
正寿 真栄城
学 渡慶次
笑 木村
悠介 佐藤
原島 秀吉
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Priority to JP2020556107A priority Critical patent/JPWO2020095927A1/en
Publication of WO2020095927A1 publication Critical patent/WO2020095927A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/12Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/14Liposomes; Vesicles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/55Phosphorus compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass

Definitions

  • the present invention relates to a method for producing a particle-containing aqueous solution.
  • Nanoparticles containing self-assembling molecules as particle constituents such as lipid nanoparticles and polymer micelles are most practically used as nanocarriers for drug delivery systems (DDS), and have already been clinically applied. Recently, it has been revealed that the delivery efficiency of a drug to a cancer tissue varies depending on the particle size of the nanocarrier. Therefore, in order to precisely control the particle size of nanoparticles, a particle size control method using a microfluidic device has been developed [Non-patent documents 2-4]. Furthermore, the present inventors have developed a microfluidic device that is easy to manufacture or process and has high particle size controllability, and a method for producing nanoparticles using the same [Non-Patent Document 1 and Patent Document 1].
  • Patent Document 1 WO2018 / 190423
  • Patent Document 2 Japanese Patent Laid-Open No. 2009-505957
  • Patent Document 3 Japanese Patent Laid-Open No. 2013-51096 (WO2011 / 001766)
  • Non-Patent Document 1 "Development of the iLiNP Device: Fine Tuning the Lipid Nanoparticle Size within 10 nm for Drug Delivery", N. Kimura, M. Maeki, Y. Sato, T. Note, A. Ishida, H. Tani, H. Harashima, and M. Tokeshi, ACS Omega, 3, 5044, (2016).
  • Non-Patent Document 2 “Understanding the Formation Mechanism of Lipid Nanoparticles in Microfluidic Devices with Chaotic Micromixers”, M. Maeki, Y. Fujishima, Y. Sato, T. Yasui, N. Kaji, A. Ishida, H. Tani, Y. Baba, H.
  • Non-Patent Document 3 “Bottom-Up Design and Synthesis of Limit Size Lipid Nanoparticle Systems with Aqueous and Triglyceride Cores Using Millisecond Microfluidic Mixing", IV Zhigaltsev, N. Belliveau, I. Hafez, AKK Leung, C. Hansen, and PR Cullis. , Langmuir, 38, 3633, (2012).
  • Non-Patent Document 4 “Rapid Discovery of Protein siRNA-Containing Lipid Nanoparticles Enabled by Controlled Microfluidic Formation”, D. Chen, KT Love, Y.
  • Patent Documents 1 to 3 and Non-Patent Documents 1 to 4 are specifically incorporated herein by reference.
  • a lipid / alcohol solution which is a raw material for producing lipid nanoparticles in a microchannel, is rapidly diluted with a buffer solution, etc. This enables fine particle size control.
  • the residual alcohol is usually diluted by a post-treatment such as dialysis (overnight).
  • lipid nanoparticle suspension having a desired particle size may not be obtained, although prepared with precise particle size control. .. This is because in the above method, lipid / alcohol solution is diluted with a buffer etc. to form lipid nanoparticles, but the alcohol concentration in the diluted aqueous solution is still high, promoting fusion of particles formed by dilution. It was supposed to be to do so.
  • the problem to be solved by the present invention is to provide means / method for avoiding fusion of formed nanoparticles, and an object of the present invention is to maintain the particle diameter of prepared nanoparticles as much as possible. It is intended to provide a method for producing the obtained aqueous solution containing nanoparticles and a device used therefor.
  • the present invention is as follows. [1] An aqueous solution A containing particles Z containing self-assembled molecules as a particle constituent and containing a water-miscible organic solvent at a concentration of 20 vol% or more is diluted with an aqueous solution B 1 to have a number average particle diameter of 200 nm or less.
  • a method comprising obtaining an aqueous solution C containing particles Z, comprising: The dilution has a D1 introduction path and a D2 introduction path on the upstream side, a dilution flow path on the downstream side from the confluence of the D1 introduction path and the D2 introduction path, and one or more in the middle of the dilution flow path.
  • a method for producing an aqueous solution containing particles which comprises obtaining an aqueous solution C diluted with a water-miscible organic solvent concentration to a concentration at which particles can stably exist from an outlet of a passage.
  • An aqueous solution A containing particles Z containing self-assembled molecules as a particle constituent and containing a water-miscible organic solvent at a concentration of 20 vol% or more is diluted with an aqueous solution B 1 to have a number average particle diameter of 200 nm or less.
  • a method for producing an aqueous solution containing particles which comprises obtaining an aqueous solution C having a diluted concentration.
  • the particles Z are liposomes, lipid micelles, or polymer micelles.
  • the D2 introduction path is composed of a plurality of D2 introduction paths m, and the plurality of D2 introduction paths m are arranged so as to sandwich the dilution flow path at the same point p of the dilution flow path.
  • the aqueous solution A is prepared by using a particle-preparing flow channel structure for preparing a particle-containing aqueous solution by mixing a water-miscible organic solvent containing a self-assembling molecule and a particle-preparing aqueous solution, and immediately after preparation, The manufacturing method according to any one of [1] to [11], which is supplied to the D1 introduction path of the diluting flow path structure.
  • the particle-preparing flow path structure has an Sq introduction path consisting of at least two or more on the upstream side, has a particle preparation flow path on the downstream side from the joining portion of each introduction path, and has an aqueous solution from the outlet of the particle preparation flow path.
  • a diluting flow path downstream from the confluence of the D1 introducing path and the D2 introducing path, and one or more Dn introducing paths (for example, n 3 to 7) in the middle of the diluting path.
  • a diluting flow channel structure having.
  • a diluting flow channel structure having a flow channel structure.
  • a particle production flow channel structure having a particle preparation flow channel structure and a dilution flow channel structure
  • the particle-preparing flow channel structure has an Sq introducing passage consisting of at least two or more on the upstream side, and has a particle preparing passage on the downstream side from the joining portion of each introducing passage
  • the diluting flow path structure has a D1 introducing path and a D2 introducing path on the upstream side, a diluting flow path on the downstream side from the confluence of the D1 introducing path and the D2 introducing path, and in the middle of the diluting path.
  • the D2 introducing passage is composed of a plurality of D2 introducing passages, and the plurality of D2 introducing passages m are arranged so as to sandwich the dilution passage at the same point p of the dilution passage.
  • the dilution flow channel structure according to any one of [19] to [24], wherein the dilution flow channel has two or more branches on the way, and a Dn introduction channel is arranged for each branched dilution flow channel.
  • the present invention it is possible to provide a method for producing a particle-containing aqueous solution that can maintain the particle size of particles containing a self-assembling molecule as a particle constituent component, and a device used therefor.
  • FIG. 1 is a schematic view of one embodiment of a diluting flow channel structure (with a mixer) used in the present invention.
  • FIG. 2 is a schematic view of one embodiment of the dilution flow channel structure (with a mixer) used in the present invention.
  • FIG. 3 is a schematic diagram of (A) one embodiment of the particle preparation flow channel structure used in the present invention, and (B) one mode of the dilution flow channel structure (with a mixer).
  • FIG. 4 is a schematic view of one embodiment of the diluting flow channel structure (without mixer) used in the present invention.
  • FIG. 5 is a schematic view of a specific example of the mixer provided in the flow channel structure.
  • FIG. 6 is a schematic view of a specific example of the confluence portion of the flow channel structure.
  • FIG. 1 is a schematic view of one embodiment of a diluting flow channel structure (with a mixer) used in the present invention.
  • FIG. 2 is a schematic view of one embodiment of the dilution flow channel
  • FIG. 7 is a schematic view of one embodiment of a device in which the particle preparation channel structure and the dilution channel structure used in the present invention are directly connected.
  • 8A to 8D are schematic views of one embodiment of the dilution flow channel structure used in the present invention.
  • FIG. 9 shows the results of Example 1 and Comparative Examples 1 and 2.
  • FIG. 10 shows the results of Example 2 and Comparative Examples 3 and 4.
  • FIG. 11 shows the results of Example 3 and Comparative Examples 5 and 6.
  • FIG. 12 shows the results of Example 4.
  • FIG. 13 shows the results of Example 4.
  • FIG. 14 shows the results of Example 5.
  • FIG. 15 shows the results of Example 6.
  • the first aspect of the present invention is a method for producing a particle-containing aqueous solution.
  • This production method comprises diluting an aqueous solution A containing a particle Z containing a self-assembling molecule as a particle constituent component and a water-miscible organic solvent at a concentration of 20 vol% or more with an aqueous solution B 1 to obtain number-average particles.
  • a method comprising obtaining an aqueous solution C containing particles Z having a diameter of 200 nm or less,
  • the dilution has a D1 introduction path and a D2 introduction path on the upstream side, a dilution flow path on the downstream side from the confluence of the D1 introduction path and the D2 introduction path, and one or more in the middle of the dilution flow path.
  • the aqueous solution A containing the particles Z containing the self-assembling molecule as a particle constituent and containing the water-miscible organic solvent at a concentration of 20 vol% or more is a raw material in the production method of the present invention.
  • the aqueous solution A is a product prepared by any method using a self-assembling molecule, a water-miscible organic solvent and an arbitrary aqueous solution, and for example, the self-assembling molecule prepared by the method described in Patent Document 1.
  • a particle Z-containing aqueous solution containing as a particle constituent component can be used.
  • it can be prepared by using the flow path structure described in Patent Document 1 and introducing a self-assembled molecule-containing water-miscible organic solvent solution and a diluting solvent which is an arbitrary aqueous solution.
  • it can be prepared by adding (for example, dropping) the self-assembled molecule-containing water-miscible organic solvent while optionally stirring a diluting solvent that is an arbitrary aqueous solution without using the flow channel structure.
  • the self-assembling molecule-containing water-miscible organic solvent is introduced or dropped into a diluting solvent that is an aqueous solution, the self-assembling molecule forms particles, and the water-miscible organic solvent is a diluting solvent that is an arbitrary aqueous solution.
  • the concentration of the water-miscible organic solvent in the aqueous solution A is 20 vol% or more, preferably in the range of 20 to 60 vol%. The higher the concentration of the water-miscible organic solvent in the aqueous solution A, the lower the stability of the self-assembled molecular particles, and the larger the particle stabilizing effect by dilution in the method of the present invention, the more preferable.
  • the particle diameter of the particles Z contained in the aqueous solution A is preferably 180 nm or less, 160 nm or less, 140 nm or less, 120 nm or less, from the viewpoint that the number average particle diameter of the particles Z in the aqueous solution C is 200 nm or less. It is less than 100 nm.
  • compositions of the self-assembled molecule solution and the dilution medium which are the raw materials of the aqueous solution A used in the production method of the present invention, and the dilution ratios thereof are not particularly limited.
  • the method for forming the particle Z in which the self-assembling molecule is composed of either A) lipid, B) one of the amphiphiles, or both A) and B) is based on the principle that the self-assembling molecule is water-miscible. It is carried out by adding and diluting a solution dissolved in an organic solvent to an aqueous solution (diluting medium) under heating conditions, if necessary, and a conventionally known composition or the like can be used in such a method. ..
  • Examples of the particle Z containing a self-assembling molecule as a particle constituent component include monolayer or multilayer liposomes, lipid micelles, polymer micelles, and composites of monolayer or multilayer liposomes and polymer micelles (for example, polymer micelles having liposome particles as a core are exemplified. But not limited thereto), and a combination of lipid micelles and polymer micelles (for example, but not limited to, polymer micelles having a lipid micelle particle as a core).
  • the lipid which is an example of a self-assembling molecule, is not particularly limited, for example, soybean lecithin, hydrogenated soybean lecithin, egg yolk lecithin, phosphatidylcholines, phosphatidylserines, phosphatidylethanolamines, phosphatidylinositols, Phosphasphingomyelins, phosphatidic acids, long-chain alkyl phosphates, gangliosides, glycolipids, phosphatidylglycerols, sterols, and other naturally occurring lipids, as well as cations considered to be suitable as components of liposomes for nucleic acid delivery
  • Non-naturally occurring lipids N, N-dioleoyl-N, N-dimethyl ammonium chloride (DODAC); N- (2,3-dioleyloxy) propyl) -N, N, N-trimethyl ammonium chloride (DOTMA) ); N, N
  • amphipathic substance which is another example of the self-assembling molecule is not particularly limited, but an amphipathic polymer compound such as polystyrene-polyethylene oxide block copolymer or polyethylene oxide-polypropylene oxide block copolymer is available.
  • amphiphilic block copolymers such as polymers, polylactic acid polyethylene glycol copolymers, polycaprolactone-polyethylene glycol copolymers, and the like.
  • the water-miscible organic solvent used to prepare the nanoparticle solution by dissolving the self-assembling molecule as described above is not particularly limited, and examples thereof include alcohols, ethers, esters, Water-miscible organic solvents such as ketones and acetals, especially alcohols such as ethanol, t-butanol, 1-propanol, 2-propanol, and 2-butoxyethanol, especially alkanols having 1 to 6 carbon atoms are used.
  • the same water-miscible organic solvent may be used to prepare the amphipathic substance solution, but preferred examples include ethers such as tetrahydrofuran and chloroform.
  • water or basically water as a main component for example, physiological saline, phosphate buffer solution, acetate buffer solution, aqueous solution such as citrate buffer solution, etc. It is used as appropriate.
  • the particles Z contained in the aqueous solution A can further contain an encapsulated material. It is possible to mix a physiologically active substance or the like into the particles, as is known, depending on the intended use of the obtained particles.
  • the enclosed material is not particularly limited, and examples thereof include metal ions, low-molecular or medium-molecular organic compounds, organometallic complexes, nucleic acids, peptides, proteins, biopolymers such as sugar chains, and substances such as metal particles.
  • agents such as anticancer agents, antioxidants, antibacterial agents, anti-inflammatory agents, vitamin agents, artificial blood (hemoglobin), vaccines, hair growth agents, moisturizers, pigments, whitening agents, pigments, etc.
  • encapsulated substances can be included in the aqueous phase of the particles to be formed, as long as they are water-soluble. Also, if it is oil-soluble, it can be incorporated into the lipophilic phase such as in the lipid membrane of the particles. Further, if it has some interaction such as electrostatic interaction with the particle surface, it can be incorporated into the particle surface.
  • the encapsulated material is, for example, an insoluble particle (core particle) obtained by dispersing a drug (for example, a drug, a test agent), a physiologically active substance, a cosmetic, etc. in an aqueous phase in the particle formed by the present invention. It can be incorporated in the form.
  • the aqueous solution B 1 and the aqueous solution B n are diluting solvents used to reduce the concentration of the water-miscible organic solvent of the aqueous solution A, the first diluting solvent used is the aqueous solution B 1 , and the nth diluting solvent is Aqueous solution B n .
  • the aqueous solution B 1 and the aqueous solution B n are preferably any aqueous solution containing no water-miscible organic solvent.
  • the aqueous solution may be any buffer solution.
  • the buffer solution can be appropriately selected depending on the type of the particles, the encapsulated material encapsulated in the particles, or the core particles.
  • FIG. 1 shows an example in which only one D3 introduction path is provided as the Dn introduction path.
  • the aqueous solution A and the aqueous solution B 1 are supplied to the D1 introduction path and the D2 introduction path, respectively, and the aqueous solution A and the aqueous solution B 1 are merged at the merging portion 1 and are supplied to the upstream dilution flow path DF1.
  • the mixing of the aqueous solution A and the aqueous solution B 1 proceeds, and the aqueous solution A is diluted.
  • the aqueous solution B 2 is added to the aqueous solution in the dilution flow path from the Dn introduction path, which is the Dn introduction path, and the aqueous solution B 2 merges with the aqueous solution from the dilution flow path DF1 at the merging portion 2 to generate the diluted flow path DF2. Further mixing progresses, and dilution progresses. From the outlet of the dilution flow path DF2, an aqueous solution C in which the concentration of the water-miscible organic solvent is diluted to a concentration at which the particles can stably exist is obtained.
  • the D2 introduction path is composed of a plurality of D2 introduction paths m (m is, for example, 1 to 5, and in FIG. 4, m is 1 and 2, and D2 is introduced.
  • the plurality of D2 introduction paths m can be arranged so as to sandwich the dilution flow path at the same point p of the dilution flow path.
  • FIG. 8A shows an example in which the D3 introduction passage merges after the D1 introduction passage and the D2 introduction passage merge at the point p in the dilution flow channel structure shown in FIG.
  • the Dn introducing passage is composed of a plurality of Dn introducing passages m, and the plurality of Dn introducing passages m (m is, for example, 1 to 5) are at the same point p of the diluting passage. It may be arranged so as to sandwich the dilution flow channel. In the example shown in FIG. 3B, the D5 introduction path 1 and the D5 introduction path 2 are arranged so as to sandwich the dilution flow path at the same point p of the dilution flow path. With such a structure, it is possible to increase the number of interfaces between the diluting liquid flowing from the Dn (D5 in FIG.
  • FIG. 8B is the dilution flow channel structure of the aspect of FIG. 4, but is arranged so that the D3 introduction channel 1 and the D3 introduction channel 2 sandwich the dilution channel at the same point p of the dilution channel. Has been done.
  • the diluting flow channel may be branched into two or more in the middle, and in this case, the Dn introduction channel is arranged for each branched diluting flow channel. You can also stay.
  • the dilution flow passage is branched into two downstream of the D3 introduction passage, and the branched D4 introduction passage is arranged in each of the branched dilution passages. With such a structure, a large amount of diluting liquid can be flowed and the dilution ratio can be increased.
  • the dilution flow path is branched into two downstream, and the D3 introduction path is arranged in each of the branched dilution flow paths.
  • the diluting flow channel structure used in the present invention may have two or more D1 introducing passages, and in this case, a D2 introducing passage should be arranged for each branched D1 passage.
  • a D2 introducing passage should be arranged for each branched D1 passage.
  • the D1 introducing passage may be branched into two or more, and the D2 introducing passage may be arranged for each branched D1 passage.
  • the aqueous solution C is an aqueous solution obtained by diluting the aqueous solution A, and the dilution in the diluting flow channel structure is performed by adjusting the water-miscible organic solvent to a concentration at which the particles Z in the aqueous solution can stably exist. Done.
  • the concentration of the water-miscible organic solvent in which the particles in the aqueous solution can exist stably varies depending on the components constituting the particles, the particle size of the particles, the concentration of the particles in the aqueous solution C, the temperature, etc.
  • the solvent concentration is 3 vol% or less, preferably 2 vol% or less, more preferably 1.5 vol% or less, and further preferably 1 vol% or less.
  • the particles contained in the aqueous solution A are in a dispersed state with the individual particles isolated in the aqueous solution.
  • the aqueous solution A contains a water-miscible organic solvent that is easily mixed with the self-assembling molecule which is a constituent component of the particles, and the concentration thereof is as high as 20 vol% or more, if the particles are left as it is, the particles will be aged. Destabilization of the particles occurs, which results in the fusion of particles and the division of particles. As a result, when the particles fuse, the particle diameter increases and the number of particles per unit volume decreases.
  • the aqueous solution A containing particles has been diluted to further reduce the concentration of the water-miscible organic solvent, or subjected to dialysis to remove the water-miscible organic solvent.
  • the particle-containing water-miscible organic solvent solution corresponding to the aqueous solution A prepared in the distribution system is diluted after preparation as shown in FIG. 3A of Patent Document 2.
  • the same amount (flow rate) of the diluent containing the particle-containing water-miscible organic solvent solution corresponding to the prepared aqueous solution A in the flow system Were combined at 340 and then diluted by addition to batch 350 of dilute solution.
  • the water-miscible organic solvent concentration of the particle-containing water-miscible organic solvent solution after dilution is 10 to 40 vol%, which is too high to suppress the fusion of particles.
  • the concentration of the water-miscible organic solvent in the aqueous solution C after dilution in the dilution channel is set to a concentration equal to or lower than a concentration at which particles in the aqueous solution can stably exist, for example, 3 vol% or less, and
  • the dilution in the dilution flow path is not performed in one step, but is performed sequentially in two or more steps.
  • an excessive amount of a diluting solution is used to perform dilution in one step.
  • the introduction passages provided in the middle of the dilution passages are D3 to D6 introduction passages, and the total of D2 introduction passages has five stages.
  • the introduction passages provided in the middle of the dilution passage are the introduction passages D3 to D5.
  • FIG. 2 shows an example in the case of three stages. D2-D4 introduction paths are provided.
  • the water-miscible organic solvent concentration in the aqueous solution after merging with the first-stage D2 introducing passage is particularly limited, and the water-miscible organic solvent concentration in the aqueous solution after merging the aqueous solution from the second-stage and subsequent D3 introducing passages is particularly limited.
  • the final concentration may be appropriately determined in consideration of the number of stages of dilution so that the final concentration is equal to or lower than the concentration at which the particles in the aqueous solution can exist stably.
  • the water-miscible organic solvent concentration of the aqueous solution A is 25 vol%
  • the water-miscible organic solvent concentration of the aqueous solution C is 1 vol%
  • when diluting in three steps for example, 25 vol% to 10 vol% (dilution ratio 2.5 It can be from 4 times (vol.) To 4 vol% (2.5 times dilution) to 1 vol% (4 times dilution).
  • the retention time of the aqueous solution in the dilution flow channel is preferably in the range of, for example, 1000 milliseconds or less from the above viewpoint.
  • the residence time of the aqueous solution in the dilution channel varies depending on the volume of each introduction channel and the volume of the dilution channel, and further, the amount of the aqueous solution introduced from each introduction channel per unit, for example, 1000 milliseconds or less. , Preferably 800 milliseconds or less, more preferably 700 milliseconds or less.
  • the D1 introducing channel, the D2 introducing channel, the diluting channel and the Dn introducing channel have a size in the depth direction of the channel (paper thickness direction in FIG. 1).
  • it is set to about 10 to 1000 ⁇ m, more preferably about 50 to 200 ⁇ m
  • the channel width is set to about 50 to 400 ⁇ m, more preferably about 50 to 200 ⁇ m.
  • these are merely examples and are not intended to be limiting.
  • the flow rates of the respective solutions in the D1 introducing passage, the D2 introducing passage, the diluting passage and the Dn introducing passage are the particle content of the aqueous solution A and the water-miscible organic solvent concentration, the desired water-miscible organic solvent concentration of the aqueous solution C, and It can be appropriately determined in consideration of the residence time of the aqueous solution in the dilution flow channel and the like.
  • the concentration of the particles in the aqueous solution A is not particularly limited, but can be, for example, 20 mg / mL or less, and preferably 1 to 15 mg / mL.
  • the concentration of particles in the aqueous solution C is not particularly limited, but can be, for example, 5 mg / mL or less, and preferably 0.1 to 4 mg / mL.
  • the number average particle size of the particles in the aqueous solution C is 200 nm or less, preferably 180 nm or less, 160 nm or less, 140 nm or less, 120 nm or less, 100 nm or less.
  • the lower limit of the number average particle size of the particles in the aqueous solution C is not particularly limited, but can be, for example, 10 nm or 20 nm.
  • the structure of the confluent portion of the D1 introducing passage and the D2 introducing passage and the structure of the diluting passage after the confluence, and each of the diluting passages after the Dn introducing passage are an aqueous solution of the aqueous solution A.
  • the dilution with B 1 and B n has a structure that can be performed more uniformly and rapidly. Therefore, the dilution flow channel can be a micromixer having a flow channel portion that is two-dimensionally bent in at least a part thereof described in Patent Document 1.
  • each of the dilution channels DF1 and DF2 has 20 baffles, and the baffles form a channel portion that is two-dimensionally bent.
  • the number of baffles provided in each dilution flow channel can be appropriately determined, and FIG. 1 is merely an example.
  • FIG. 5 shows an example of a flow path portion in which three-dimensionally bent or uneven portions are arranged. The arrows in FIG. 5 indicate the respective introduction paths.
  • the diluting flow channel may have a straight tubular shape or a smooth curved tubular shape without having a flow channel portion in which two-dimensionally bent or three-dimensionally bent or irregularly arranged. Even if the shape of the dilution flow path is a straight tube shape or a smooth curved tube shape, in the confluence part 1 of the D1 introduction path and the D2 introduction path, due to the difference in the flow velocity of the aqueous solution A and the aqueous solution B1, etc. , A mixed state occurs. Mixing also occurs due to molecular diffusion and the like at the liquid-liquid interface generated after the aqueous solution A and the aqueous solution B1 merge. Similarly, due to differences in the flow rate of the aqueous solution and the aqueous solution B 2 from dilute channel DF1, mixed state occurs at the merging portion 2 of the dilution channel DF1 and D3 introduction path.
  • the structure of the confluence of the D1 introduction path and the D2 introduction path in the dilution flow channel structure used in the present invention, and the structure of the confluence with Dn in the dilution flow channel promotes rapid and uniform mixing of the respective aqueous solutions that merge. It is preferably a structure. An example of such a structure is shown in FIG. The structure before and after the merging portion shown in FIG. 6 can be appropriately applied to each merging portion.
  • the aqueous solution C discharged from the outlet of the dilution flow passage can be further subjected to dialysis to remove the water-miscible organic solvent.
  • the aqueous solution A may be prepared by using a particle-preparing flow channel structure for preparing a particle-containing water-miscible organic solvent aqueous solution by mixing the self-assembled molecule-containing water-miscible organic solvent and the particle-preparing aqueous solution. it can. Further, it is preferable that the particles are supplied to the D1 introduction passage of the diluting flow channel structure of the present invention immediately after the preparation using the particle preparing flow channel structure. For example, as shown in FIG. 2, a particle-containing water-miscible organic solvent aqueous solution A is prepared using a particle-preparing flow channel structure, and after the preparation, a D1 introducing path of the diluting flow channel structure of the present invention is continuously provided. It is preferable that the particles are supplied because the particles can be immediately diluted by the method of the present invention without giving time for fusing particles to each other and a particle-containing solution having a desired particle size can be obtained.
  • ⁇ Particle manufacturing flow path structure> Another aspect of the present invention is a particle manufacturing channel structure having a diluent channel structure, a particle preparation channel structure, and a diluent channel structure.
  • the flow path structure for producing particles is basically the same as that described in the production method of the present invention, and the above description can also be referred to.
  • the diluting flow channel structure of the present invention is a flow channel structure for diluting an aqueous solution containing particles Z containing a self-assembling molecule as a particle constituent component and a water-miscible organic solvent with another aqueous solution.
  • Has a D1 introduction path and a D2 introduction path on the upstream side has a dilution flow path on the downstream side from the confluence of the D1 introduction path and the D2 introduction path, and introduces one or more Dn in the middle of the dilution flow path.
  • a diluting channel structure having channels (for example, n 3 to 7).
  • the diluting flow path structure has a D1 introducing path and a D2 introducing path on the upstream side, a diluting flow path on the downstream side from the confluence of the D1 introducing path and the D2 introducing path, and
  • There is one or more Dn introduction passages (for example, n 3 to 7) in the middle of the passage, and the outlet of the preparation passage and the D1 introduction passage are directly connected.
  • An example of a particle preparation flow channel structure having two Sq introduction paths has an S1 introduction path and an S2 introduction path on the upstream side, and a particle formation flow path on the downstream side from the confluence of the S1 introduction path and the S2 introduction path.
  • Can have An example of this is shown in FIG.
  • the diluting flow passage structure has the D1 introducing passage and the D2 introducing passage on the upstream side as described above, the diluting passage on the downstream side from the confluence of the D1 introducing passage and the D2 introducing passage, and the diluting flow passage.
  • FIG. 7 shows one mode of the particle production flow channel structure in which the outlet of the particle formation flow channel of the particle preparation flow channel structure is directly connected to the D1 introduction channel.
  • the diluting flow channel structure constituting the diluting flow channel structure and the particle producing flow channel structure of the present invention has a plurality of D2 introducing passages m (m is, for example, 1 to 5, m is 1 and 2 in FIG. 4, and is composed of D2 introducing passage 1 and D2 introducing passage 2), and the plurality of D2 introducing passages m sandwich the dilution passage at the same point p of the dilution passage. Can be located in. With such a structure, it is possible to increase the number of interfaces between the aqueous solution flowing from the D1 introducing passage and the diluting liquid flowing from the diluting passage, and to increase the dilution rate. In the example shown in FIG.
  • the flow passage width of the D1 introduction passage is 200 ⁇ m, whereas the flow passage width of the D2 introduction passage 1 and the D2 introduction passage 2 is 500 ⁇ m, and the passage width of the dilution passage after joining is 1 mm. Is. With such a structure, a large amount of diluting liquid can be flowed and the dilution ratio can be increased.
  • the Dn introducing path is composed of a plurality of Dn introducing paths m, and the plurality of Dn introducing paths m (m For example, 1 to 5) can be arranged so as to sandwich the dilution flow path at the same point p of the dilution flow path.
  • the D5 introduction path 1 and the D5 introduction path 2 are arranged so as to sandwich the dilution flow path at the same point p of the dilution flow path.
  • the diluting flow path structure used in the present invention which constitutes the diluting flow path structure and the particle producing flow path structure
  • the diluting flow path is divided into two or more in the middle, and each branched diluting flow path. It is also possible to arrange a Dn introduction path with respect to.
  • the dilution flow path is branched into two downstream of the D3 introduction path, and the branched D4 introduction path is arranged in each of the branched dilution flow paths.
  • the D1 introduction channel may be branched into two or more, and in this case, The D2 introducing passage may be arranged with respect to the branched D1 passage.
  • Example 1 The lipid particle-containing aqueous solution A prepared under the following particle preparation conditions is used to directly connect the particle preparation channel structure and the dilution channel structure (20 baffles) shown in FIG.
  • Aqueous solution C was prepared by diluting in the order of 25 ⁇ 5 ⁇ 2.5 ⁇ 1% by three-stage multi-stage dilution. After the preparation, the particle size distribution of the particles in the aqueous solution C was measured using Zetasizer Nano ZS (Malvern). The results are shown in Fig. 9.
  • Particle preparation conditions 10 mg / mL POPC + saline iLiNP device, 50 ⁇ L / min FRR3
  • Comparative Example 1 The lipid particle-containing aqueous solution A prepared under the same particle preparation conditions as in Example 1 was directly connected to the particle preparation channel structure at one stage of the dilution channel structure (20 baffles) to produce a particle production channel structure. (See FIG. 7) was used to prepare a diluted solution of the lipid particle-containing aqueous solution. After the preparation, the particle size distribution of the particles in the aqueous solution was measured in the same manner as in Example 1. The results are shown in Fig. 9.
  • Comparative example 2 The lipid particle-containing aqueous solution A prepared by using the same particle preparation channel structure (no dilution channel structure) as in Example 1 under the same particle preparation conditions as in Example 1 was dialyzed after particle preparation. , And diluted by pipetting (1 step or 3 steps) to prepare a diluted solution of the lipid particle-containing aqueous solution. After the preparation, the particle size distribution of the particles in the aqueous solution was measured in the same manner as in Example 1. The results are shown in Fig. 9.
  • the particle ratio within the number average ⁇ 10% was as low as 20% with the one-step dilution of Comparative Example 1, whereas the three-step dilution of Example 1 was 30%.
  • the average particle size of the lipid particles obtained by the dialysis of Comparative Example 2 and the dilution by pipetting (1 step or 3 steps) was significantly larger than that of Example 1.
  • Example 2 The lipid particle-containing aqueous solution A prepared under the following particle preparation conditions is used to directly connect the particle preparation channel structure and the dilution channel structure (20 baffles) shown in FIG.
  • An aqueous solution C was prepared by diluting in the order of 25 ⁇ 10 ⁇ 4 ⁇ 1% by three-stage multi-stage dilution. After the preparation, the particle size distribution of the particles in the aqueous solution C was measured in the same manner as in Example 1. The results are shown in Fig. 10.
  • Particle preparation conditions Lipid: YSK05 / ethanol Water system: MES buffer
  • Comparative Example 3 The lipid particle-containing aqueous solution A prepared under the same particle preparation conditions as in Example 2 was directly connected to the particle preparation channel structure at one stage of the dilution channel structure (20 baffles) to produce a particle production channel structure. (See FIG. 7) was used to prepare a diluted solution of the lipid particle-containing aqueous solution. After the preparation, the particle size distribution of the particles in the aqueous solution was measured in the same manner as in Example 1. The results are shown in Fig. 10.
  • Comparative Example 4 The lipid particle-containing aqueous solution A prepared using the same particle preparation flow channel structure (no dilution flow channel structure) as in Example 2 under the same particle preparation conditions as in Example 2 was prepared by the following procedure. Dilution by petting (one step) was performed to prepare a diluted solution of the lipid particle-containing aqueous solution. After the preparation, the particle size distribution of the particles in the aqueous solution was measured in the same manner as in Example 1. The results are shown in Fig. 10.
  • Example 1 the particle ratio within the number average ⁇ 10% was higher than that of Comparative Example 1, but the average particle size of Comparative Example 1 was smaller.
  • Example 2 three-step dilution
  • the particle ratio within the number average ⁇ 10% was higher and the average particle diameter was smaller than in Comparative Example 2 (one-step dilution).
  • the optimal dilution rate (ethanol% / s) was obtained by setting the dilution step to 25 ⁇ 10 ⁇ 4 ⁇ 1%, which enabled more precise control of particle size. ..
  • Example 3 The lipid particle-containing aqueous solution A prepared under the following particle production conditions is used as a particle production flow channel structure in which the particle preparation flow channel structure and the dilution flow channel structure (without baffles) shown in FIG. 4 are directly connected. Then, an aqueous solution C was prepared by diluting in the order of 25 ⁇ 10 ⁇ 4 ⁇ 1% by three-step multi-step dilution by the following operation. After the preparation, the particles were subjected to the following post-treatment method, and then the particle size distribution of the particles in the aqueous solution C was measured in the same manner as in Example 1. The results are shown in Fig. 11.
  • the nucleic acid / buffer solution was introduced from the buffer solution or the nucleic acid / buffer solution supply port of the integrated device without a mixer in FIG. 4, and YSK05 / ethanol was introduced from the lipid solution supply port.
  • the MES buffer solution was introduced from the D2 introduction paths 1 and 2.
  • Particle preparation 50 ⁇ L / min (FRR3) D1
  • FRR3 D1 In the introduction path, particles are generated upstream from point p, and the ethanol concentration in the particle suspension is 25%. Ethanol in the particle suspension is diluted to 10% by the MES buffer solution that flows in from the D2 introduction paths 1 and 2 at the following flow rates.
  • Diluted solution 1 75 ⁇ L / min (introduced from D2 introduction channels 1 and 2) ⁇ recovery (10% EtOH) (2)
  • the particle suspension diluted previously was introduced from both the nucleic acid / lipid solution inlet of the integrated device without a mixer.
  • the MES buffer solution (diluted solution 2) was introduced from D2 introduction paths 1 and 2 under the following conditions.
  • the previously diluted particle suspension was introduced from both the nucleic acid / lipid solution inlet of the integrated device without a mixer.
  • the MES buffer solution (diluted solution 2) was introduced from D2 introduction paths 1 and 2 under the following conditions.
  • Comparative Example 5 A particle production channel structure in which a lipid particle-containing aqueous solution A prepared under the following particle preparation conditions is directly connected to a particle preparation channel structure with one-step dilution channel structure (without baffle) (see FIG. 4). was used to prepare a diluted solution of the lipid particle-containing aqueous solution. After the preparation, the same post-treatment method as in Example 3 was applied, and then the particle size distribution of the particles in the aqueous solution was measured in the same manner as in Example 1. The results are shown in Fig. 11. Particle preparation: 50 ⁇ L / min (FRR3), Diluted solution: 1200 ⁇ L / min
  • the lipid particle-containing aqueous solution A prepared using the same particle preparation channel structure as in Example 3 (without a diluent channel structure) was prepared by the following procedure. Dilution by petting (one step) was performed to prepare a diluted solution of the lipid particle-containing aqueous solution. After the preparation, the same post-treatment method as in Example 3 was applied, and then the particle size distribution of the particles in the aqueous solution was measured in the same manner as in Example 1. The results are shown in Fig. 11.
  • the lipid particles in the aqueous solution prepared by multi-step dilution of Example 3 showed the smallest change in particle size after MES substitution and PBS substitution.
  • Example 4 The lipid nanoparticle composed of pH-responsive cationic lipid (YSK05), cholesterol, PEG lipid, and siRNA was directly connected to the particle preparation channel structure and the dilution channel structure (20 baffles) shown in FIG.
  • Aqueous solution C was prepared by diluting in the order of 25 ⁇ 10 ⁇ 4 ⁇ 1% by three-step multi-step dilution using the flow channel structure for particle production.
  • the performance of the particles was evaluated using mice using the aqueous solution, and the results are shown in FIGS. 12 and 13. We succeeded in knocking down the target gene and confirmed that the delivery efficiency depends on the particle size.
  • Example 5 A particle production flow channel structure (iLiNP device) in which a lipid particle-containing aqueous solution A prepared under the following particle production conditions is directly connected to a particle preparation flow channel structure and a dilution flow channel structure (20 baffles) shown in FIG. was used to prepare an aqueous solution C by diluting in the order of 25 ⁇ 1% by two-step multi-step dilution. After the preparation, the particle size distribution of the particles in the aqueous solution C was measured using Zetasizer Nano ZS (Malvern). The results are shown in FIG. 14 (the device in the figure is the result of this example).
  • the lipid solution was a high-concentration lipid solution
  • conventional post-treatments dialysis and pipette
  • non-uniform particle size the difference between the number average and the Z average was large.
  • the continuous treatment of particle production and dilution improved the particle uniformity and also improved the dispersion (standard deviation).
  • Example 6 A particle production flow channel structure (iLiNP device) in which a lipid particle-containing aqueous solution A prepared under the following particle production conditions is directly connected to a particle preparation flow channel structure and a dilution flow channel structure (20 baffles) shown in FIG. was used to prepare an aqueous solution C by diluting in the order of 25 ⁇ 1% by two-step multi-step dilution. After the preparation, the particle size distribution of the particles in the aqueous solution C was measured using Zetasizer Nano ZS (Malvern). The results are shown in Fig. 15. (The device in the figure is the result of this example.).
  • the variation was improved. Furthermore, in this example (device), particles having both a number average particle diameter and a Z average particle diameter of 100 nm or less could be produced.
  • the present invention is useful in the field of technology for preparing particles containing a self-assembling molecule as a particle constituent while controlling the particle size.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Birds (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Optics & Photonics (AREA)
  • Medicinal Preparation (AREA)
  • Colloid Chemistry (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

The present invention relates to a method comprising diluting aqueous solution A, which contains particles Z comprising self-organizing molecules as a particle-constituting ingredient and which contains a water-miscible organic solvent in a concentration of 20 vol% or higher, with aqueous solution B1 to thereby obtain aqueous solution C, which contains the particles Z having a number-average particle diameter of 200 nm or smaller. For the dilution is used a channel structure for dilution which comprises a D1 introduction channel and a D2 introduction channel that have been disposed on the upstream side, a dilution channel disposed downstream from a confluence of the D1 introduction channel and the D2 introduction channel, and one or more Dn introduction channels provided somewhere to the dilution channel. The dilution comprises supplying aqueous solution A and aqueous solution B1 respectively to the D1 introduction channel and the D2 introduction channel, adding one or more aqueous solutions Bn through the Dn introduction channels to the aqueous solutions that are running through the dilution channel, and obtaining aqueous solution C, which contains the water-miscible organic solvent having been diluted to or below a concentration at which the particles can be stably present, through the outlet of the dilution channel. The present invention provides: a method for producing a nanoparticle-containing aqueous solution in which the particle diameters of particles comprising self-organizing molecules as a particle-constituting ingredient can be maintained as much as possible; and a device for use in the production method.

Description

粒子含有水溶液の製造方法Method for producing particle-containing aqueous solution
 本発明は、粒子含有水溶液の製造方法に関する。
関連出願の相互参照
 本出願は、2018年11月9日出願の日本特願2018-211841号の優先権を主張し、その全記載は、ここに特に開示として援用される。
The present invention relates to a method for producing a particle-containing aqueous solution.
Cross Reference of Related Applications This application claims the priority of Japanese Patent Application No. 2018-211841 filed on Nov. 9, 2018, the entire description of which is specifically incorporated herein by reference.
 脂質ナノ粒子やポリマーミセルなどの、自己組織化分子を粒子構成成分として含むナノ粒子は、ドラッグデリバリーシステム(DDS)のためのナノキャリアとして最も実用化が進んでおり、すでに臨床応用されている。最近になって、ナノキャリアの粒径によってがん組織への薬剤の送達効率が異なることが明らかになった。そこで、ナノ粒子の粒径を精密に制御するために、マイクロ流体デバイスを用いた粒径制御法が開発されている[非特許文献2-4]。さらに本発明者らは、作製ないし加工が容易であり、かつ粒子径制御性が高いマイクロ流体デバイス及びそれを用いたナノ粒子の製造方法を開発した[非特許文献1及び特許文献1]。 Nanoparticles containing self-assembling molecules as particle constituents such as lipid nanoparticles and polymer micelles are most practically used as nanocarriers for drug delivery systems (DDS), and have already been clinically applied. Recently, it has been revealed that the delivery efficiency of a drug to a cancer tissue varies depending on the particle size of the nanocarrier. Therefore, in order to precisely control the particle size of nanoparticles, a particle size control method using a microfluidic device has been developed [Non-patent documents 2-4]. Furthermore, the present inventors have developed a microfluidic device that is easy to manufacture or process and has high particle size controllability, and a method for producing nanoparticles using the same [Non-Patent Document 1 and Patent Document 1].
特許文献1:WO2018/190423
特許文献2:特開2009-505957号公報
特許文献3:特表2013-510096号公報(WO2011/001766)
Patent Document 1: WO2018 / 190423
Patent Document 2: Japanese Patent Laid-Open No. 2009-505957 Patent Document 3: Japanese Patent Laid-Open No. 2013-51096 (WO2011 / 001766)
非特許文献1:“Development of the iLiNP Device: Fine Tuning the Lipid Nanoparticle Size within 10 nm for Drug Delivery”, N. Kimura, M. Maeki, Y. Sato, T. Note, A. Ishida, H. Tani, H. Harashima, and M. Tokeshi, ACS Omega, 3, 5044, (2018).
非特許文献2:“Understanding the Formation Mechanism of Lipid Nanoparticles in Microfluidic Devices with Chaotic Micromixers”, M. Maeki, Y. Fujishima, Y. Sato, T. Yasui, N. Kaji, A. Ishida, H. Tani, Y. Baba, H. Harashima, and M. Tokeshi, PLOS ONE, 12, e0187962, (2017).
非特許文献3:“Bottom-Up Design and Synthesis of Limit Size Lipid Nanoparticle Systems with Aqueous and Triglyceride Cores Using Millisecond Microfluidic Mixing”, I. V. Zhigaltsev, N. Belliveau, I. Hafez, A. K. K. Leung, C. Hansen, and P. R. Cullis, Langmuir, 38, 3633, (2012).
非特許文献4:“Rapid Discovery of Protein siRNA-Containing Lipid Nanoparticles Enabled by Controlled Microfluidic Formation”, D. Chen, K. T. Love, Y. Chen, A. A. Eltoukhy, C. Kastrup, G. Sahay, A. Jeon, Y. Dong, K. A. Whitehead, and D. G. Anderson, Journal of the American Chemical Society, 134, 6948, (2012).
特許文献1~3および非特許文献1~4の全記載は、ここに特に開示として援用される。
Non-Patent Document 1: "Development of the iLiNP Device: Fine Tuning the Lipid Nanoparticle Size within 10 nm for Drug Delivery", N. Kimura, M. Maeki, Y. Sato, T. Note, A. Ishida, H. Tani, H. Harashima, and M. Tokeshi, ACS Omega, 3, 5044, (2018).
Non-Patent Document 2: “Understanding the Formation Mechanism of Lipid Nanoparticles in Microfluidic Devices with Chaotic Micromixers”, M. Maeki, Y. Fujishima, Y. Sato, T. Yasui, N. Kaji, A. Ishida, H. Tani, Y. Baba, H. Harashima, and M. Tokeshi, PLOS ONE, 12, e0187962, (2017).
Non-Patent Document 3: "Bottom-Up Design and Synthesis of Limit Size Lipid Nanoparticle Systems with Aqueous and Triglyceride Cores Using Millisecond Microfluidic Mixing", IV Zhigaltsev, N. Belliveau, I. Hafez, AKK Leung, C. Hansen, and PR Cullis. , Langmuir, 38, 3633, (2012).
Non-Patent Document 4: “Rapid Discovery of Protein siRNA-Containing Lipid Nanoparticles Enabled by Controlled Microfluidic Formation”, D. Chen, KT Love, Y. Chen, AA Eltoukhy, C. Kastrup, G. Sahay, A. Jeon, Y. Dong, KA Whitehead, and DG Anderson, Journal of the American Chemical Society, 134, 6948, (2012).
The entire descriptions of Patent Documents 1 to 3 and Non-Patent Documents 1 to 4 are specifically incorporated herein by reference.
 非特許文献1及び特許文献1に記載のナノ粒子の製造方法では、マイクロ流路中で脂質ナノ粒子を作る際の原料である脂質/アルコール溶液を緩衝液などによって迅速に希釈することで、精密な粒径制御を可能としている。但し、調製直後の脂質ナノ粒子溶液中には高濃度のエタノールが残存していることから、通常は透析(一晩)などの後処理によって残存アルコールを希釈している。 In the method for producing nanoparticles described in Non-Patent Document 1 and Patent Document 1, a lipid / alcohol solution, which is a raw material for producing lipid nanoparticles in a microchannel, is rapidly diluted with a buffer solution, etc. This enables fine particle size control. However, since high-concentration ethanol remains in the lipid nanoparticle solution immediately after preparation, the residual alcohol is usually diluted by a post-treatment such as dialysis (overnight).
 ところが、透析などでは、後処理中に粒子同士の融合が生じ、精密な粒径制御をして調製したにも関わらず、所望の粒子径の脂質ナノ粒子懸濁液が得られないことがある。これは、上記方法では脂質/アルコール溶液を緩衝液などで希釈して脂質ナノ粒子を形成しているが、希釈後の水溶液中のアルコール濃度は依然として高く、希釈により形成した粒子同士の融合を促進するためであると推察した。 However, in dialysis and the like, fusion of particles occurs during post-treatment, and lipid nanoparticle suspension having a desired particle size may not be obtained, although prepared with precise particle size control. .. This is because in the above method, lipid / alcohol solution is diluted with a buffer etc. to form lipid nanoparticles, but the alcohol concentration in the diluted aqueous solution is still high, promoting fusion of particles formed by dilution. It was supposed to be to do so.
 そこで本発明が解決しようとする課題は、形成したナノ粒子同士の融合を回避できる手段・方法を提供することであり、本発明の目的は、調製したナノ粒子を、その粒子径を極力維持し得るナノ粒子含有水溶液の製造方法及びそれに用いるデバイスを提供することにある。 Therefore, the problem to be solved by the present invention is to provide means / method for avoiding fusion of formed nanoparticles, and an object of the present invention is to maintain the particle diameter of prepared nanoparticles as much as possible. It is intended to provide a method for producing the obtained aqueous solution containing nanoparticles and a device used therefor.
 本発明は以下の通りである。
[1]
自己組織化分子を粒子構成成分として含む粒子Zを含有し、かつ水混和性有機溶媒を20vol%以上の濃度で含む水溶液Aを水溶液Bで希釈して、個数平均の粒子径が200nm以下の粒子Zを含有する水溶液Cを得ることを含む方法であって、
前記希釈は、上流側にD1導入路及びD2導入路を有し、D1導入路及びD2導入路の合流部から下流側に希釈流路を有し、かつ希釈流路の途中に1つ以上のDn導入路(例えば、n=3~7)を有する希釈用流路構造体を用い、
D1導入路に水溶液A及びD2導入路に水溶液Bをそれぞれ供給し、かつDn導入路から水溶液B(例えば、n=2~6)を希釈流路中の水溶液に追加して、希釈流路の出口から、粒子が安定に存在し得る濃度以下に水混和性有機溶媒濃度を希釈した水溶液Cを得ることを含む、粒子含有水溶液の製造方法。
[2]
自己組織化分子を粒子構成成分として含む粒子Zを含有し、かつ水混和性有機溶媒を20vol%以上の濃度で含む水溶液Aを水溶液Bで希釈して、個数平均の粒子径が200nm以下の粒子Zを含有する水溶液Cを得ることを含む方法であって、
前記希釈は、上流側にD1導入路及びDn(例えば、n=2~7)導入路を有し、Dn導入路はすべての導入路が地点pにおいてD1導入路を挟み込むように配置され、地点pから下流側には希釈流路を有する希釈用流路構造体を用い、
D1導入路に水溶液A及びDn導入路に水溶液B(例えば、n=1~6)をそれぞれ供給し、希釈流路の出口から、粒子が安定に存在し得る濃度以下に水混和性有機溶媒濃度を希釈した水溶液Cを得ることを含む、粒子含有水溶液の製造方法。
[3]
自己組織分子がA)脂質、B)両親媒性物質のいずれか一方、又はA)とB)の両方からなる、[1]または[2]記載の製造方法。
[4]
水混和性有機溶媒がアルカノールである、[1]~[3]のいずれか記載の製造方法。
[5]
粒子Zがリポソーム、脂質ミセル、またはポリマーミセルである、[1]~[4]のいずれかに記載の製造方法。
[6]
D2導入路は複数のD2導入路mからなり、当該複数のD2導入路mが希釈流路の同一地点pにおいて希釈流路を挟み込むように配置されている、[1]~[5]のいずれかに記載の製造方法。
[7]
Dn導入路は複数のDn導入路mからなり、当該複数のDn導入路mが希釈流路の同一地点pにおいて希釈流路を挟み込むように配置されている、[1]~[6]のいずれかに記載の製造方法。
[8]
D1導入路が2以上に分岐しており、かつ各分岐したD1流路に対してD2導入路が配置されている、[1]~[7]のいずれかに記載の製造方法。
[9]
希釈流路は途中で2以上に分岐しており、かつ各分岐した希釈流路に対してDn導入路が配置されている、[1]~[8]のいずれかに記載の製造方法。
[10]
希釈流路における水溶液の滞留時間は1000ミリ秒以下である、[1]~[9]のいずれかに記載の製造方法。
[11]
水溶液Cに含まれる水混和性有機溶媒濃度が3vol%以下である、[1]~[10]のいずれかに記載の製造方法。
[12]
水溶液Aは、自己組織化分子を含有する水混和性有機溶媒と粒子調製用水溶液を混合して粒子含有水溶液を調製するための粒子調製用流路構造体を用いて調製され、調製直後に、希釈用流路構造体のD1導入路に供給される、[1]~[11]のいずれかに記載の製造方法。
[13]
粒子調製用流路構造体は、上流側に少なくとも2以上からなるSq導入路を有し、各導入路の合流部から下流側に粒子調製流路を有し、粒子調製流路の出口から水溶液Aを排出し、排出した水溶液AはD1導入路に供給される[12]に記載の製造方法。
[14]
粒子調製流路及び希釈流路は、それぞれ又は一方の流路内にマイクロミキサーを有する、[13]に記載の製造方法。
[15]
水溶液C中の脂質粒子の個数平均の粒子径は100nm以下または60nm以下である、[1]~[14]のいずれかに記載の製造方法。
[16]
水溶液A中の脂質粒子の濃度は20mg/mL以下であり、水溶液C中の脂質粒子の濃度は5mg/mL以下である、[1]~[15]のいずれかに記載の製造方法。
[17]
希釈流路の出口から排出された水溶液Cは、さらに透析に付され水混和性有機溶媒を除去した水溶液を得る[1]~[16]のいずれかに記載の製造方法。
[18]
粒子Zに内封物が含まれる、[1]~[17]のいずれかに記載の製造方法。
[19]
自己組織化分子を粒子構成成分として含む粒子Zを含有しかつ水混和性有機溶媒を含む水溶液を別の水溶液で希釈するための流路構造体であって、上流側にD1導入路及びD2導入路を有し、D1導入路及びD2導入路の合流部から下流側に希釈流路を有し、かつ希釈流路の途中に1つ以上のDn導入路(例えば、n=3~7)を有する、希釈用流路構造体。
[20]
自己組織化分子を粒子構成成分として含む粒子Zを含有しかつ水混和性有機溶媒を含む水溶液を別の水溶液で希釈するための流路構造体であって、上流側にD1導入路及びDn(例えば、n=2~7)導入路を有し、Dn導入路はすべての導入路が地点pにおいてD1導入路を挟み込むように配置され、地点pから下流側には希釈流路を有する希釈用流路構造体を有する、希釈用流路構造体。
[21]
粒子調製用流路構造体及び希釈用流路構造体を有する粒子製造用流路構造体であって、
粒子調製用流路構造体は、上流側に少なくとも2以上からなるSq導入路を有し、各導入路の合流部から下流側に粒子調製流路を有し、
希釈用流路構造体は、上流側にD1導入路及びD2導入路を有し、D1導入路及びD2導入路の合流部から下流側に希釈流路を有し、かつ希釈流路の途中に1つ以上のDn導入路(例えば、n=3~7)を有し、
調製流路の出口とD1導入路が直結する、粒子製造用流路構造体。
[22]
D2導入路は複数のD2導入路からなり、当該複数のD2導入路mが希釈流路の同一地点pにおいて希釈流路を挟み込むように配置されている、[19]~[21]のいずれかに記載の希釈流路構造体または粒子製造用流路構造体。
[23]
Dn導入路は複数のDn導入路mからなり、当該複数のDn導入路mが希釈流路の同一地点pにおいて希釈流路を挟み込むように配置されている、[19]~[22]のいずれかに記載の希釈流路構造体または粒子製造用流路構造体。
[24]
D1導入路が2以上に分岐しており、かつ各分岐したD1流路に対してD2導入路が配置されている、[19]~[23]のいずれかに記載の希釈流路構造体または粒子製造用流路構造体。
[25]
希釈流路は途中で2以上に分岐しており、かつ各分岐した希釈流路に対してDn導入路が配置されている、[19]~[24]のいずれかに記載の希釈流路構造体または粒子製造用流路構造体。
The present invention is as follows.
[1]
An aqueous solution A containing particles Z containing self-assembled molecules as a particle constituent and containing a water-miscible organic solvent at a concentration of 20 vol% or more is diluted with an aqueous solution B 1 to have a number average particle diameter of 200 nm or less. A method comprising obtaining an aqueous solution C containing particles Z, comprising:
The dilution has a D1 introduction path and a D2 introduction path on the upstream side, a dilution flow path on the downstream side from the confluence of the D1 introduction path and the D2 introduction path, and one or more in the middle of the dilution flow path. Using a diluting channel structure having a Dn introducing channel (for example, n = 3 to 7),
The aqueous solution A is supplied to the D1 introduction path and the aqueous solution B 1 is supplied to the D2 introduction path, and the aqueous solution B n (for example, n = 2 to 6) is added to the aqueous solution in the dilution flow path from the Dn introduction path to obtain a diluted flow. A method for producing an aqueous solution containing particles, which comprises obtaining an aqueous solution C diluted with a water-miscible organic solvent concentration to a concentration at which particles can stably exist from an outlet of a passage.
[2]
An aqueous solution A containing particles Z containing self-assembled molecules as a particle constituent and containing a water-miscible organic solvent at a concentration of 20 vol% or more is diluted with an aqueous solution B 1 to have a number average particle diameter of 200 nm or less. A method comprising obtaining an aqueous solution C containing particles Z, comprising:
The dilution has a D1 introduction path and a Dn (for example, n = 2 to 7) introduction path on the upstream side, and the Dn introduction paths are arranged such that all the introduction paths sandwich the D1 introduction path at a point p. Using a diluting flow channel structure having a diluting flow channel on the downstream side from p,
An aqueous solution A is supplied to the D1 introduction path and an aqueous solution B n (for example, n = 1 to 6) is supplied to the Dn introduction path, and the water-miscible organic solvent is supplied from the outlet of the dilution flow path to a concentration at which the particles can stably exist. A method for producing an aqueous solution containing particles, which comprises obtaining an aqueous solution C having a diluted concentration.
[3]
The production method according to [1] or [2], wherein the self-assembling molecule comprises either A) a lipid, B) an amphipathic substance, or both A) and B).
[4]
The production method according to any one of [1] to [3], wherein the water-miscible organic solvent is an alkanol.
[5]
The production method according to any one of [1] to [4], wherein the particles Z are liposomes, lipid micelles, or polymer micelles.
[6]
The D2 introduction path is composed of a plurality of D2 introduction paths m, and the plurality of D2 introduction paths m are arranged so as to sandwich the dilution flow path at the same point p of the dilution flow path. [1] to [5] The production method described in Crab.
[7]
Any one of [1] to [6], wherein the Dn introducing passage is composed of a plurality of Dn introducing passages m, and the plurality of Dn introducing passages m are arranged so as to sandwich the dilution passage at the same point p of the dilution passage. The production method described in Crab.
[8]
The manufacturing method according to any one of [1] to [7], wherein the D1 introducing passage is branched into two or more, and the D2 introducing passage is arranged for each branched D1 passage.
[9]
The production method according to any one of [1] to [8], wherein the diluting flow path is branched into two or more on the way, and a Dn introducing path is arranged for each branched diluting flow path.
[10]
The production method according to any one of [1] to [9], wherein the residence time of the aqueous solution in the dilution flow channel is 1000 milliseconds or less.
[11]
The production method according to any one of [1] to [10], wherein the concentration of the water-miscible organic solvent contained in the aqueous solution C is 3 vol% or less.
[12]
The aqueous solution A is prepared by using a particle-preparing flow channel structure for preparing a particle-containing aqueous solution by mixing a water-miscible organic solvent containing a self-assembling molecule and a particle-preparing aqueous solution, and immediately after preparation, The manufacturing method according to any one of [1] to [11], which is supplied to the D1 introduction path of the diluting flow path structure.
[13]
The particle-preparing flow path structure has an Sq introduction path consisting of at least two or more on the upstream side, has a particle preparation flow path on the downstream side from the joining portion of each introduction path, and has an aqueous solution from the outlet of the particle preparation flow path. The production method according to [12], wherein A is discharged, and the discharged aqueous solution A is supplied to the D1 introducing passage.
[14]
The production method according to [13], wherein the particle preparation channel and the dilution channel each include a micromixer in one or one of the channels.
[15]
The production method according to any one of [1] to [14], wherein the number average particle size of the lipid particles in the aqueous solution C is 100 nm or less or 60 nm or less.
[16]
The production method according to any one of [1] to [15], wherein the concentration of the lipid particles in the aqueous solution A is 20 mg / mL or less and the concentration of the lipid particles in the aqueous solution C is 5 mg / mL or less.
[17]
The production method according to any one of [1] to [16], wherein the aqueous solution C discharged from the outlet of the dilution flow channel is further subjected to dialysis to obtain an aqueous solution from which the water-miscible organic solvent is removed.
[18]
The production method according to any one of [1] to [17], wherein the particles Z include an encapsulated material.
[19]
A flow channel structure for diluting an aqueous solution containing a particle Z containing a self-assembling molecule as a particle constituent and containing a water-miscible organic solvent, the upstream side being a D1 introduction path and a D2 introduction A diluting flow path downstream from the confluence of the D1 introducing path and the D2 introducing path, and one or more Dn introducing paths (for example, n = 3 to 7) in the middle of the diluting path. A diluting flow channel structure having.
[20]
A flow channel structure for diluting an aqueous solution containing particles Z containing self-assembled molecules as a particle constituent and containing a water-miscible organic solvent with a D1 introducing path and a Dn ( For example, n = 2 to 7) has an introduction path, all of the Dn introduction paths are arranged so as to sandwich the D1 introduction path at the point p, and a dilution flow path is provided downstream from the point p for dilution. A diluting flow channel structure having a flow channel structure.
[21]
A particle production flow channel structure having a particle preparation flow channel structure and a dilution flow channel structure,
The particle-preparing flow channel structure has an Sq introducing passage consisting of at least two or more on the upstream side, and has a particle preparing passage on the downstream side from the joining portion of each introducing passage,
The diluting flow path structure has a D1 introducing path and a D2 introducing path on the upstream side, a diluting flow path on the downstream side from the confluence of the D1 introducing path and the D2 introducing path, and in the middle of the diluting path. Having one or more Dn introduction paths (eg, n = 3 to 7),
A particle production flow channel structure in which the outlet of the preparation flow channel is directly connected to the D1 introduction channel.
[22]
The D2 introducing passage is composed of a plurality of D2 introducing passages, and the plurality of D2 introducing passages m are arranged so as to sandwich the dilution passage at the same point p of the dilution passage. [19] to [21] The dilution flow channel structure or the flow channel structure for producing particles according to item 1.
[23]
Any of [19] to [22], wherein the Dn introducing passage is composed of a plurality of Dn introducing passages m, and the plurality of Dn introducing passages m are arranged so as to sandwich the dilution passage at the same point p of the dilution passage. The dilution flow channel structure or the flow channel structure for producing particles as described in 1.
[24]
The diluting flow channel structure according to any one of [19] to [23], wherein the D1 introducing channel is branched into two or more, and the D2 introducing channel is arranged for each branched D1 channel. A flow channel structure for producing particles.
[25]
The dilution flow channel structure according to any one of [19] to [24], wherein the dilution flow channel has two or more branches on the way, and a Dn introduction channel is arranged for each branched dilution flow channel. A flow channel structure for producing a body or particles.
 本発明によれば、自己組織化分子を粒子構成成分として含む粒子を、その粒子径を極力維持し得る粒子含有水溶液の製造方法及びそれに用いるデバイスを提供することができる。 According to the present invention, it is possible to provide a method for producing a particle-containing aqueous solution that can maintain the particle size of particles containing a self-assembling molecule as a particle constituent component, and a device used therefor.
図1は、本願発明で用いる希釈用流路構造体(ミキサーあり)の一態様の模式図である。FIG. 1 is a schematic view of one embodiment of a diluting flow channel structure (with a mixer) used in the present invention. 図2は、本願発明で用いる希釈用流路構造体(ミキサーあり)の一態様の模式図である。FIG. 2 is a schematic view of one embodiment of the dilution flow channel structure (with a mixer) used in the present invention. 図3は、(A)本願発明で用いる粒子調製用流路構造体の一態様の模式図であり、(B)希釈用流路構造体(ミキサーあり)の一態様の模式図である。FIG. 3 is a schematic diagram of (A) one embodiment of the particle preparation flow channel structure used in the present invention, and (B) one mode of the dilution flow channel structure (with a mixer). 図4は、本願発明で用いる希釈用流路構造体(ミキサーなし)の一態様の模式図である。FIG. 4 is a schematic view of one embodiment of the diluting flow channel structure (without mixer) used in the present invention. 図5は、流路構造体に設けるミキサーの具体例の模式図である。FIG. 5 is a schematic view of a specific example of the mixer provided in the flow channel structure. 図6は、流路構造体の合流部の具体例の模式図である。FIG. 6 is a schematic view of a specific example of the confluence portion of the flow channel structure. 図7は、本願発明で用いる粒子調製用流路構造体及び希釈用流路構造体を直結したデバイスの一態様の模式図である。FIG. 7 is a schematic view of one embodiment of a device in which the particle preparation channel structure and the dilution channel structure used in the present invention are directly connected. 図8は、A~Dは何れも本願発明で用いる希釈用流路構造体の一態様の模式図である。8A to 8D are schematic views of one embodiment of the dilution flow channel structure used in the present invention. 図9は、実施例1、比較例1及び2の結果を示す。FIG. 9 shows the results of Example 1 and Comparative Examples 1 and 2. 図10は、実施例2、比較例3及び4の結果を示す。FIG. 10 shows the results of Example 2 and Comparative Examples 3 and 4. 図11は、実施例3、比較例5及び6の結果を示す。FIG. 11 shows the results of Example 3 and Comparative Examples 5 and 6. 図12は、実施例4の結果を示す。FIG. 12 shows the results of Example 4. 図13は、実施例4の結果を示す。FIG. 13 shows the results of Example 4. 図14は、実施例5の結果を示す。FIG. 14 shows the results of Example 5. 図15は、実施例6の結果を示す。FIG. 15 shows the results of Example 6.
<脂質粒子含有水溶液の製造方法>
 本発明の第一の態様は、粒子含有水溶液の製造方法である。
 この製造方法は、自己組織化分子を粒子構成成分として含む粒子Zを含有し、かつ水混和性有機溶媒を20vol%以上の濃度で含む水溶液Aを水溶液Bで希釈して、個数平均の粒子径が200nm以下の粒子Zを含有する水溶液Cを得ることを含む方法であって、
前記希釈は、上流側にD1導入路及びD2導入路を有し、D1導入路及びD2導入路の合流部から下流側に希釈流路を有し、かつ希釈流路の途中に1つ以上のDn導入路(例えば、n=3~7)を有する希釈用流路構造体を用い、
D1導入路に水溶液A及びD2導入路に水溶液Bをそれぞれ供給し、かつDn導入路から水溶液B(例えば、n=2~6)を希釈流路中の水溶液に追加して、希釈流路の出口から、粒子Zが安定に存在し得る濃度以下に水混和性有機溶媒濃度を希釈した水溶液Cを得ることを含む。
<Method for producing aqueous solution containing lipid particles>
The first aspect of the present invention is a method for producing a particle-containing aqueous solution.
This production method comprises diluting an aqueous solution A containing a particle Z containing a self-assembling molecule as a particle constituent component and a water-miscible organic solvent at a concentration of 20 vol% or more with an aqueous solution B 1 to obtain number-average particles. A method comprising obtaining an aqueous solution C containing particles Z having a diameter of 200 nm or less,
The dilution has a D1 introduction path and a D2 introduction path on the upstream side, a dilution flow path on the downstream side from the confluence of the D1 introduction path and the D2 introduction path, and one or more in the middle of the dilution flow path. Using a diluting channel structure having a Dn introducing channel (for example, n = 3 to 7),
The aqueous solution A is supplied to the D1 introduction path and the aqueous solution B 1 is supplied to the D2 introduction path, and the aqueous solution B n (for example, n = 2 to 6) is added to the aqueous solution in the dilution flow path from the Dn introduction path to obtain a diluted flow. From the outlet of the passage, obtaining an aqueous solution C diluted with a water-miscible organic solvent concentration below a concentration at which the particles Z can stably exist.
<水溶液A>
 自己組織化分子を粒子構成成分として含む粒子Zを含有し、かつ水混和性有機溶媒を20vol%以上の濃度で含む水溶液Aは、本発明の製造方法における原料である。水溶液Aは、自己組織化分子、水混和性有機溶媒及び任意の水溶液を用いて、任意の方法で調製される物であり、例えば、特許文献1に記載の方法で調製された自己組織化分子を粒子構成成分として含む粒子Z含有水溶液であることができる。例えば、特許文献1に記載の流路構造体を用い、自己組織化分子含有水混和性有機溶媒溶液と任意の水溶液である希釈溶媒を導入することで調製することができる。あるいは、流路構造体を用いずに、任意の水溶液である希釈溶媒を必要により攪拌しつつ自己組織化分子含有水混和性有機溶媒を添加(例えば、滴下)することで調製することもできる。自己組織化分子含有水混和性有機溶媒を任意の水溶液である希釈溶媒を導入又は滴下することで、自己組織化分子は粒子を形成し、水混和性有機溶媒は任意の水溶液である希釈溶媒と混和して、水混和性有機溶媒水溶液を形成し、自己組織化分子粒子は水混和性有機溶媒水溶液中に分散する。本発明においては、水溶液Aは水混和性有機溶媒濃度が20vol%以上であり、好ましくは例えば、20~60 vol%の範囲である。水溶液Aの水混和性有機溶媒濃度は、高ければ高いほど自己組織化分子粒子の安定性は低くなり、本発明の方法での希釈による粒子安定化効果は大きく好ましい。水溶液Aに含まれる粒子Zの粒子径は、水溶液C中の粒子Zの個数平均の粒子径を200nm以下とする観点から、好ましくは、180nm以下、160 nm以下、140 nm以下、120 nm以下、100 nm以下である。
<Aqueous solution A>
The aqueous solution A containing the particles Z containing the self-assembling molecule as a particle constituent and containing the water-miscible organic solvent at a concentration of 20 vol% or more is a raw material in the production method of the present invention. The aqueous solution A is a product prepared by any method using a self-assembling molecule, a water-miscible organic solvent and an arbitrary aqueous solution, and for example, the self-assembling molecule prepared by the method described in Patent Document 1. A particle Z-containing aqueous solution containing as a particle constituent component can be used. For example, it can be prepared by using the flow path structure described in Patent Document 1 and introducing a self-assembled molecule-containing water-miscible organic solvent solution and a diluting solvent which is an arbitrary aqueous solution. Alternatively, it can be prepared by adding (for example, dropping) the self-assembled molecule-containing water-miscible organic solvent while optionally stirring a diluting solvent that is an arbitrary aqueous solution without using the flow channel structure. The self-assembling molecule-containing water-miscible organic solvent is introduced or dropped into a diluting solvent that is an aqueous solution, the self-assembling molecule forms particles, and the water-miscible organic solvent is a diluting solvent that is an arbitrary aqueous solution. Upon mixing, a water-miscible organic solvent aqueous solution is formed, and the self-assembled molecular particles are dispersed in the water-miscible organic solvent aqueous solution. In the present invention, the concentration of the water-miscible organic solvent in the aqueous solution A is 20 vol% or more, preferably in the range of 20 to 60 vol%. The higher the concentration of the water-miscible organic solvent in the aqueous solution A, the lower the stability of the self-assembled molecular particles, and the larger the particle stabilizing effect by dilution in the method of the present invention, the more preferable. The particle diameter of the particles Z contained in the aqueous solution A is preferably 180 nm or less, 160 nm or less, 140 nm or less, 120 nm or less, from the viewpoint that the number average particle diameter of the particles Z in the aqueous solution C is 200 nm or less. It is less than 100 nm.
 本発明の製造方法において用いられる水溶液Aの原料である自己組織化分子溶液および希釈媒体の組成、およびこれらによる希釈比率については、特に限定されるものではない。自己組織化分子がA)脂質、B)両親媒性物質のいずれか一方、又はA)とB)の両方からなる粒子Zの形成方法は、原理的には、自己組織化分子を水混和性有機溶媒に溶解した溶液を、必要に応じて加温条件下で、水溶液(希釈媒体)に添加希釈することで行われ、このような手法において従来公知の組成等を用いることができるものである。自己組織化分子を粒子構成成分として含む粒子Zは、単層又は多層リポソーム、脂質ミセル、ポリマーミセル、単層又は多層リポソームとポリマーミセルの複合体(例えばリポソーム粒子をコアに持つポリマーミセルが例示されるがこれに限定されない)、および脂質ミセルとポリマーミセルの合一体(例えば脂質ミセル粒子をコアに持つポリマーミセルが例示されるがこれに限定されない)であることができる。 The compositions of the self-assembled molecule solution and the dilution medium, which are the raw materials of the aqueous solution A used in the production method of the present invention, and the dilution ratios thereof are not particularly limited. In principle, the method for forming the particle Z in which the self-assembling molecule is composed of either A) lipid, B) one of the amphiphiles, or both A) and B) is based on the principle that the self-assembling molecule is water-miscible. It is carried out by adding and diluting a solution dissolved in an organic solvent to an aqueous solution (diluting medium) under heating conditions, if necessary, and a conventionally known composition or the like can be used in such a method. .. Examples of the particle Z containing a self-assembling molecule as a particle constituent component include monolayer or multilayer liposomes, lipid micelles, polymer micelles, and composites of monolayer or multilayer liposomes and polymer micelles (for example, polymer micelles having liposome particles as a core are exemplified. But not limited thereto), and a combination of lipid micelles and polymer micelles (for example, but not limited to, polymer micelles having a lipid micelle particle as a core).
 自己組織化分子の一例である脂質としては、特に限定されるわけではないが、例えば、大豆レシチン、水添大豆レシチン、卵黄レシチン、ホスファチジルコリン類、ホスファチジルセリン類、ホスファチジルエタノールアミン類、ホスファチジルイノシトール類、ホスファスフィンゴミエリン類、ホスファチジン酸類、長鎖アルキルリン酸塩類、ガングリオシド類、糖脂質類、ホスファチジルグリセロール類、ステロール類等の天然由来脂質のほか、核酸送達用リポソームの構成成分として適するとされるカチオン性の非天然由来脂質であるN,N-ジオレイル-N,N-ジメチル塩化アンモニウム(DODAC);N-(2,3-ジオレイルオキシ)プロピル)-N,N,N-トリメチル塩化アンモニウム(DOTMA);N,N-ジステアリル-N,N-ジメチルアンモニウムブロミド(DDAB);N-(2,3-ジオレオイルオキシ)プロピル)-N,N,N-トリメチルアンモニウムクロリド(DOTAP);3-(N-(N’,N’-ジメチルアミノエタン)-カルバモイル)コレステロール(DC-Chol)およびN-(1,2-ジミリスチルオキシプロパ-3-イル)-N,N-ジメチル-N-ヒドロキシエチルアンモニウムブロミド(DMRIE)、リポフェクチン(登録商標)、リポフェクタミン(登録商標)、トランスフェクタム(登録商標)、DODAP、DODMA、DMDMA、1,2-ジリノレイルオキシ-N,N-ジメチルアミノプロパン(DLinDMA)、1,2-ジリノレニルオキシ-N,N-ジメチルアミノプロパン(DLenDMA)、1,2-ジリノレイオキシ-3-(ジメチルアミノ)アセトキシプロパン(DLin-DAC)、1,2-ジリノレイオキシ-3-モルホリノプロパン(DLin-MA)、1,2-ジリノレオイル-3-ジメチルアミノプロパン(DLinDAP)、1,2-ジリノレイルチオ-3-ジメチルアミノプロパン(DLin-S-DMA)、1-リノレオイル-2-リノレイルオキシ-3-ジメチルアミノプロパン(DLin-2-DMAP)、1,2-ジリノレイルオキシ-3-トリメチルアミノプロパン塩化物塩(DLin-TMA-Cl)、1,2-ジリノレオイル-3-トリメチルアミノプロパン塩化物塩(DLin-TAP-Cl)、1,2-ジリノレイルオキシ-3-(N-メチルピペラジノ)プロパン(DLin-MPZ)、3-(N,N-ジリノレイルアミノ)-1,2-プロパンジオール(DLinAP)、3-(N,N-ジオレイルアミノ)-1,2-プロパンジオ(dio)(DOAP)、1,2-ジリノレイルオキソ-3-(2-N,N-ジメチルアミノ)エトキシプロパン(DLin-EG-DMA)および2,2-ジリノレイル-4-ジメチルアミノメチル-[1,3]-ジオキソラン(DLin-K-DMA)、などを用いることができる。 The lipid, which is an example of a self-assembling molecule, is not particularly limited, for example, soybean lecithin, hydrogenated soybean lecithin, egg yolk lecithin, phosphatidylcholines, phosphatidylserines, phosphatidylethanolamines, phosphatidylinositols, Phosphasphingomyelins, phosphatidic acids, long-chain alkyl phosphates, gangliosides, glycolipids, phosphatidylglycerols, sterols, and other naturally occurring lipids, as well as cations considered to be suitable as components of liposomes for nucleic acid delivery Non-naturally occurring lipids N, N-dioleoyl-N, N-dimethyl ammonium chloride (DODAC); N- (2,3-dioleyloxy) propyl) -N, N, N-trimethyl ammonium chloride (DOTMA) ); N, N-this Allyl-N, N-dimethylammonium bromide (DDAB); N- (2,3-dioleoyloxy) propyl) -N, N, N-trimethylammonium chloride (DOTAP); 3- (N- (N ', N′-dimethylaminoethane) -carbamoyl) cholesterol (DC-Chol) and N- (1,2-dimyristyloxyprop-3-yl) -N, N-dimethyl-N-hydroxyethylammonium bromide (DMRIE), Lipofectin®, Lipofectamine®, Transfectam®, DODAP, DODMA, DMDMA, 1,2-dilinoleyloxy-N, N-dimethylaminopropane (DLinDMA), 1,2- Dilinolenyloxy-N, N-dimethylaminopropane (DLenDM ), 1,2-Dilinoleooxy-3- (dimethylamino) acetoxypropane (DLin-DAC), 1,2-Dilinoreoxy-3-morpholinopropane (DLin-MA), 1,2-Dilinoleoyl-3-dimethylaminopropane ( DLinDAP), 1,2-dilinoleylthio-3-dimethylaminopropane (DLin-S-DMA), 1-linoleoyl-2-linoleyloxy-3-dimethylaminopropane (DLin-2-DMAP), 1,2-dili Noreyloxy-3-trimethylaminopropane chloride salt (DLin-TMA-Cl), 1,2-dilinoleoyl-3-trimethylaminopropane chloride salt (DLin-TAP-Cl), 1,2-dilinoleyloxy -3- (N-methylpiperazino) propane (DLin-MPZ) , 3- (N, N-dilinoleylamino) -1,2-propanediol (DLinAP), 3- (N, N-dioleylamino) -1,2-propanedio (dio) (DOAP), 1 , 2-Dilinoleyloxo-3- (2-N, N-dimethylamino) ethoxypropane (DLin-EG-DMA) and 2,2-dilinoleyl-4-dimethylaminomethyl- [1,3] -dioxolane ( DLin-K-DMA) and the like can be used.
 自己組織化分子の他の一例である両親媒性物質としては、特に限定されるわけではないが、両親媒性高分子化合物、例えばポリスチレン-ポリエチレンオキシドブロック共重合体、ポリエチレンオキシド-ポリプロピレンオキシドブロック共重合体、ポリ乳酸ポリエチレングリコール共重合体、ポリカプロラクトン-ポリエチレングリコール共重合体等のような両親媒性ブロック共重合体などが例示できる。 The amphipathic substance which is another example of the self-assembling molecule is not particularly limited, but an amphipathic polymer compound such as polystyrene-polyethylene oxide block copolymer or polyethylene oxide-polypropylene oxide block copolymer is available. Examples thereof include amphiphilic block copolymers such as polymers, polylactic acid polyethylene glycol copolymers, polycaprolactone-polyethylene glycol copolymers, and the like.
 上記したような自己組織化分子を溶解してナノ粒子溶液を調製するのに用いられる水混和性有機溶媒としては、特に限定されるわけではないが、例えば、アルコール類、エーテル類、エステル類、ケトン類、アセタール類などの水に混合可能な有機溶媒、特にエタノール、t-ブタノール、1-プロパノール、2-プロパノール、及び2-ブトキシエタノール等のアルコール類、特に炭素数1~6のアルカノールを用いることが好ましい。また、両親媒性物質溶液を調製するのに用いられる水混和性有機溶媒としても同様のものが用いられ得るが、好ましい例としてはテトラヒドロフランなどのエーテル類、クロロホルム等が挙げられる。 The water-miscible organic solvent used to prepare the nanoparticle solution by dissolving the self-assembling molecule as described above is not particularly limited, and examples thereof include alcohols, ethers, esters, Water-miscible organic solvents such as ketones and acetals, especially alcohols such as ethanol, t-butanol, 1-propanol, 2-propanol, and 2-butoxyethanol, especially alkanols having 1 to 6 carbon atoms are used. Preferably. The same water-miscible organic solvent may be used to prepare the amphipathic substance solution, but preferred examples include ethers such as tetrahydrofuran and chloroform.
 希釈媒体としては、水、または基本的に水を主成分とする、例えば、生理食塩水、リン酸緩衝溶液、酢酸緩衝溶液、クエン酸緩衝液等水溶液が、形成しようとする粒子の用途等に応じて適宜使用される。 As the dilution medium, water or basically water as a main component, for example, physiological saline, phosphate buffer solution, acetate buffer solution, aqueous solution such as citrate buffer solution, etc. It is used as appropriate.
 水溶液Aに含まれる粒子Zは、内封物をさらに含有することができる。得られる粒子の用途等に応じては、公知のように、粒子中に、生理活性物質等を配合することが可能である。内封物は特に限定されるものではないが、例えば、金属イオン、低分子又は中分子有機化合物、有機金属錯体、核酸、ペプチド、タンパク質、糖鎖などの生体高分子、金属粒子などの物質が挙げられ、また用途別の観点では抗癌剤、抗酸化剤、抗菌剤、抗炎症剤、ビタミン剤、人工血液(ヘモグロビン)、ワクチン、発毛剤、保湿剤、色素類、美白剤、顔料などといった薬剤、生理活性物質、化粧料等を例示できる。これらの内封物は、水溶性のものであれば、形成される粒子の水相中に包含させることができる。また、油溶性のものであれば粒子の脂質膜中など親油相中に取り込ませることができる。また、粒子表面との間で静電相互作用など何らかの相互作用を持つものであれば粒子表面に取り込ませることができる。さらに、内封物は、例えば、本発明により形成される粒子内に、薬剤(例えば、医薬品、検査薬)、生理活性物質、化粧料等を水相中に分散した不溶性粒子(コア粒子)の形態で、取り込ませることができる。 The particles Z contained in the aqueous solution A can further contain an encapsulated material. It is possible to mix a physiologically active substance or the like into the particles, as is known, depending on the intended use of the obtained particles. The enclosed material is not particularly limited, and examples thereof include metal ions, low-molecular or medium-molecular organic compounds, organometallic complexes, nucleic acids, peptides, proteins, biopolymers such as sugar chains, and substances such as metal particles. In addition, from the viewpoint of use, agents such as anticancer agents, antioxidants, antibacterial agents, anti-inflammatory agents, vitamin agents, artificial blood (hemoglobin), vaccines, hair growth agents, moisturizers, pigments, whitening agents, pigments, etc. , Physiologically active substances, cosmetics and the like. These encapsulated substances can be included in the aqueous phase of the particles to be formed, as long as they are water-soluble. Also, if it is oil-soluble, it can be incorporated into the lipophilic phase such as in the lipid membrane of the particles. Further, if it has some interaction such as electrostatic interaction with the particle surface, it can be incorporated into the particle surface. Furthermore, the encapsulated material is, for example, an insoluble particle (core particle) obtained by dispersing a drug (for example, a drug, a test agent), a physiologically active substance, a cosmetic, etc. in an aqueous phase in the particle formed by the present invention. It can be incorporated in the form.
<水溶液B、B
 水溶液B及び水溶液Bは、水溶液Aの水混和性有機溶媒濃度を低下させるために用いる希釈溶媒であり、最初に用いられる希釈溶媒が水溶液Bであり、n番目に用いられる希釈溶媒が水溶液Bである。水溶液B及び水溶液Bは、好ましくは水混和性有機溶媒を含まない任意の水溶液である。水溶液としては、任意の緩衝液であることができる。緩衝液は、粒子あるいは粒子に内包される内封物またはコア粒子の種類などによって適宜選択できる。
<Aqueous solutions B 1 and B n >
The aqueous solution B 1 and the aqueous solution B n are diluting solvents used to reduce the concentration of the water-miscible organic solvent of the aqueous solution A, the first diluting solvent used is the aqueous solution B 1 , and the nth diluting solvent is Aqueous solution B n . The aqueous solution B 1 and the aqueous solution B n are preferably any aqueous solution containing no water-miscible organic solvent. The aqueous solution may be any buffer solution. The buffer solution can be appropriately selected depending on the type of the particles, the encapsulated material encapsulated in the particles, or the core particles.
<希釈用流路構造体>
 本発明の製造方法における水溶液Aの希釈は、上流側にD1導入路及びD2導入路を有し、D1導入路及びD2導入路の合流部から下流側に希釈流路を有し、かつ希釈流路の途中に1つ以上のDn導入路(例えば、n=3~7)を有する希釈用流路構造体を用いて実施される。
<Dilution flow path structure>
Dilution of the aqueous solution A in the production method of the present invention has a D1 introduction path and a D2 introduction path on the upstream side, a dilution flow path on the downstream side from the confluence of the D1 introduction path and the D2 introduction path, and a dilution flow It is carried out using a diluting channel structure having one or more Dn introducing channels (for example, n = 3 to 7) in the middle of the channel.
 希釈用流路構造体の例を図1に示す。図1は、Dn導入路はD3導入路1つだけが設けられている例である。左側(上流)側から、D1導入路に水溶液A及びD2導入路に水溶液Bをそれぞれ供給し、水溶液A及び水溶液Bは合流部1で合流して、上流側の希釈流路DF1にて水溶液A及び水溶液Bの混合が進み、水溶液Aは希釈される。次にDn導入路であるD3導入路から水溶液Bが希釈流路中の水溶液に追加され、合流部2で希釈流路DF1からの水溶液に水溶液Bが合流して、希釈流路DF2でさらに混合が進み、希釈が進む。希釈流路DF2の出口から、粒子が安定に存在し得る濃度以下に水混和性有機溶媒濃度を希釈した水溶液Cを得る。 An example of the diluting flow channel structure is shown in FIG. FIG. 1 shows an example in which only one D3 introduction path is provided as the Dn introduction path. From the left side (upstream) side, the aqueous solution A and the aqueous solution B 1 are supplied to the D1 introduction path and the D2 introduction path, respectively, and the aqueous solution A and the aqueous solution B 1 are merged at the merging portion 1 and are supplied to the upstream dilution flow path DF1. The mixing of the aqueous solution A and the aqueous solution B 1 proceeds, and the aqueous solution A is diluted. Next, the aqueous solution B 2 is added to the aqueous solution in the dilution flow path from the Dn introduction path, which is the Dn introduction path, and the aqueous solution B 2 merges with the aqueous solution from the dilution flow path DF1 at the merging portion 2 to generate the diluted flow path DF2. Further mixing progresses, and dilution progresses. From the outlet of the dilution flow path DF2, an aqueous solution C in which the concentration of the water-miscible organic solvent is diluted to a concentration at which the particles can stably exist is obtained.
 本願発明で用いる希釈用流路構造体は、上流側にD1導入路及びDn(例えば、n=2~7)導入路を有し、Dn導入路はすべての導入路が地点pにおいてD1導入路を挟み込むように配置され、地点pから下流側には希釈流路を有する希釈用流路構造体であることができる。この希釈用流路構造体は、例えば、図4に示すように、D2導入路は複数のD2導入路m(mは例えば、1~5、図4ではmは1と2であり、D2導入路1とD2導入路2)からなり、当該複数のD2導入路mが希釈流路の同一地点pにおいて希釈流路を挟み込むように配置されていることができる。このような構造とすることにより、D1導入路から流れてくる水溶液と希釈流路から流れてくる希釈液の界面を増やすことができ、希釈速度を早くすることができる。さらに、図4に示す例では、D1導入路の流路幅が200μmであるのに対してD2導入路1とD2導入路2の流路幅は500μm、合流後の希釈流路の流路幅は1mmである。このような構造とすることにより、大量の希釈液を流すことができ、希釈倍率を上げることができる。図4に示す希釈用流路構造体において、D1導入路及びD2導入路の地点pでの合流後に、D3導入路が合流した例を図8Aに示す。 The diluting flow path structure used in the present invention has a D1 introduction path and a Dn (for example, n = 2 to 7) introduction path on the upstream side, and all of the Dn introduction paths are D1 introduction paths at point p. It can be a diluting channel structure having a diluting channel on the downstream side from the point p. In this diluting flow channel structure, for example, as shown in FIG. 4, the D2 introduction path is composed of a plurality of D2 introduction paths m (m is, for example, 1 to 5, and in FIG. 4, m is 1 and 2, and D2 is introduced. The plurality of D2 introduction paths m can be arranged so as to sandwich the dilution flow path at the same point p of the dilution flow path. With such a structure, it is possible to increase the number of interfaces between the aqueous solution flowing from the D1 introducing passage and the diluting liquid flowing from the diluting passage, and to increase the dilution rate. Further, in the example shown in FIG. 4, the flow passage width of the D1 introduction passage is 200 μm, whereas the flow passage width of the D2 introduction passage 1 and the D2 introduction passage 2 is 500 μm, and the passage width of the diluted passage after the merging. Is 1 mm. With such a structure, a large amount of diluting liquid can be flowed and the dilution ratio can be increased. FIG. 8A shows an example in which the D3 introduction passage merges after the D1 introduction passage and the D2 introduction passage merge at the point p in the dilution flow channel structure shown in FIG.
 本願発明で用いる希釈用流路構造体は、Dn導入路が複数のDn導入路mからなり、当該複数のDn導入路m(mは例えば、1~5)が希釈流路の同一地点pにおいて希釈流路を挟み込むように配置されていることができる。図3のBに示す例では、D5導入路1とD5導入路2が希釈流路の同一地点pにおいて希釈流路を挟み込むように配置されている。このような構造とすることにより、Dn(図3ではD5)導入路から流れてくる希釈液と希釈流路から流れてくる水溶液の界面を増やすことができ、希釈速度を早くすることができる。また、図8Bに示す例は、図4の態様の希釈用流路構造体であるが、D3導入路1とD3導入路2が希釈流路の同一地点pにおいて希釈流路を挟み込むように配置されている。 In the diluting flow channel structure used in the present invention, the Dn introducing passage is composed of a plurality of Dn introducing passages m, and the plurality of Dn introducing passages m (m is, for example, 1 to 5) are at the same point p of the diluting passage. It may be arranged so as to sandwich the dilution flow channel. In the example shown in FIG. 3B, the D5 introduction path 1 and the D5 introduction path 2 are arranged so as to sandwich the dilution flow path at the same point p of the dilution flow path. With such a structure, it is possible to increase the number of interfaces between the diluting liquid flowing from the Dn (D5 in FIG. 3) introducing passage and the aqueous solution flowing from the diluting passage, and to increase the dilution speed. Further, the example shown in FIG. 8B is the dilution flow channel structure of the aspect of FIG. 4, but is arranged so that the D3 introduction channel 1 and the D3 introduction channel 2 sandwich the dilution channel at the same point p of the dilution channel. Has been done.
 本願発明で用いる希釈用流路構造体は、希釈流路は途中で2以上に分岐している場合があり、この場合においては、各分岐した希釈流路に対してDn導入路が配置されていることもできる。図2に示す例では、希釈流路はD3導入路の下流で2つに分岐し、かつ分枝した希釈流路のそれぞれに分岐したD4導入路が配置されている。このような構造とすることにより、大量の希釈液を流すことができ、希釈倍率を上げることができる。図8Dに示す例では、希釈流路は下流で2つに分岐し、かつ分枝した希釈流路のそれぞれの希釈流路にD3導入路が配置されている。 In the diluting flow channel structure used in the present invention, the diluting flow channel may be branched into two or more in the middle, and in this case, the Dn introduction channel is arranged for each branched diluting flow channel. You can also stay. In the example shown in FIG. 2, the dilution flow passage is branched into two downstream of the D3 introduction passage, and the branched D4 introduction passage is arranged in each of the branched dilution passages. With such a structure, a large amount of diluting liquid can be flowed and the dilution ratio can be increased. In the example shown in FIG. 8D, the dilution flow path is branched into two downstream, and the D3 introduction path is arranged in each of the branched dilution flow paths.
 本願発明で用いる希釈用流路構造体は、D1導入路が2以上に分岐している場合があり、この場合においては、各分岐したD1流路に対してD2導入路が配置されていることもできる。さらに図8Cに示す例のように、D1導入路が2以上に分岐しており、かつ各分岐したD1流路に対してD2導入路が配置されていることもできる。 The diluting flow channel structure used in the present invention may have two or more D1 introducing passages, and in this case, a D2 introducing passage should be arranged for each branched D1 passage. You can also Further, as in the example shown in FIG. 8C, the D1 introducing passage may be branched into two or more, and the D2 introducing passage may be arranged for each branched D1 passage.
<水溶液C>
 水溶液Cは、水溶液Aを希釈することにより得られる水溶液であり、希釈用流路構造体における希釈は、水混和性有機溶媒を水溶液中の粒子Zが安定に存在し得る濃度以下にすることで行われる。水溶液中の粒子が安定に存在し得る水混和性有機溶媒濃度は、粒子を構成する成分、粒子の粒子径、水溶液Cにおける粒子の濃度、温度などにより変化するが、水溶液Cの水混和性有機溶媒濃度が3vol%以下、好ましくは2vol%以下、より好ましくは1.5vol%以下、さらに好ましくは1vol%以下の範囲になるように実施される。
<Aqueous solution C>
The aqueous solution C is an aqueous solution obtained by diluting the aqueous solution A, and the dilution in the diluting flow channel structure is performed by adjusting the water-miscible organic solvent to a concentration at which the particles Z in the aqueous solution can stably exist. Done. The concentration of the water-miscible organic solvent in which the particles in the aqueous solution can exist stably varies depending on the components constituting the particles, the particle size of the particles, the concentration of the particles in the aqueous solution C, the temperature, etc. The solvent concentration is 3 vol% or less, preferably 2 vol% or less, more preferably 1.5 vol% or less, and further preferably 1 vol% or less.
 水溶液Aに含有される粒子は、その粒子が形成された直後は、水溶液中に個々の粒子が孤立した状態で分散状態を呈している。しかし、水溶液Aは粒子の構成成分である自己組織化分子と混ざりやすい水混和性有機溶媒を含有し、かつその濃度が20vol%以上と高いために、そのまま放置しておくと、経時的に粒子の不安定化が起こりひいては粒子同士の融合や粒子の分裂が発生して、結果、粒子同士が融合する場合は粒子径が増大し、単位体積当たりの粒子数は減少する。これまで、粒子を含有する水溶液Aは、さらに水混和性有機溶媒濃度を低下するために希釈され、あるいは水混和性有機溶媒を除去するための透析に付されたりしていた。例えば、特許文献2に記載の方法では、流通系で調製された水溶液Aに相当する粒子含有水混和性有機溶媒溶液は、特許文献2の図3Aに記載されているように、調製後に希釈溶液のバッチ360に添加して希釈され、あるいは図3Bに記載されているように、調製後の水溶液Aに相当する粒子含有水混和性有機溶媒溶液に流通系でさらに同量(流速)の希釈液を340で合流させた後に、希釈溶液のバッチ350に添加して希釈されていた。しかし、特許文献2に記載の方法では、希釈後の粒子含有水混和性有機溶媒溶液の水混和性有機溶媒濃度は10~40vol%であり、粒子同士の融合を抑制するには高すぎる。また、希釈後の溶液中の水混和性有機溶媒濃度が均一にこの濃度になるにはある程度の時間が必要であり、局所的に水混和性有機溶媒濃度が高い箇所がある場合、そこでの粒子同士の融合抑制は限定的である。 Immediately after the particles are formed, the particles contained in the aqueous solution A are in a dispersed state with the individual particles isolated in the aqueous solution. However, since the aqueous solution A contains a water-miscible organic solvent that is easily mixed with the self-assembling molecule which is a constituent component of the particles, and the concentration thereof is as high as 20 vol% or more, if the particles are left as it is, the particles will be aged. Destabilization of the particles occurs, which results in the fusion of particles and the division of particles. As a result, when the particles fuse, the particle diameter increases and the number of particles per unit volume decreases. Heretofore, the aqueous solution A containing particles has been diluted to further reduce the concentration of the water-miscible organic solvent, or subjected to dialysis to remove the water-miscible organic solvent. For example, in the method described in Patent Document 2, the particle-containing water-miscible organic solvent solution corresponding to the aqueous solution A prepared in the distribution system is diluted after preparation as shown in FIG. 3A of Patent Document 2. To the batch 360 of the above, or as described in FIG. 3B, the same amount (flow rate) of the diluent containing the particle-containing water-miscible organic solvent solution corresponding to the prepared aqueous solution A in the flow system. Were combined at 340 and then diluted by addition to batch 350 of dilute solution. However, in the method described in Patent Document 2, the water-miscible organic solvent concentration of the particle-containing water-miscible organic solvent solution after dilution is 10 to 40 vol%, which is too high to suppress the fusion of particles. In addition, it takes some time for the water-miscible organic solvent concentration in the diluted solution to reach this concentration evenly, and if there is a locally high water-miscible organic solvent concentration, the Fusion inhibition is limited.
 それに対して本発明の製造方法では、希釈流路での希釈後の水溶液Cの水混和性有機溶媒濃度は水溶液中の粒子が安定に存在し得る濃度以下の、例えば、3vol%以下とし、さらに、希釈流路での希釈は、1段階の希釈ではなく、2段階以上の多段で、順次行う。当業者の常識に照らせば、一刻も早く水混和性有機溶媒濃度を下げて粒子を安定化させるために、例えば特許文献2にあるように、過剰量の希釈液を用いて1段階で希釈を行うことが当然と考えられていたが、実際には本発明にあるように、2段階以上の多段で、各段において順次少しずつ濃度を下げるように希釈を行うことで、1段階で同率の希釈を行った場合に比べて、希釈中の粒子の融合による粒子径の増大を有効に防止できる。 On the other hand, in the production method of the present invention, the concentration of the water-miscible organic solvent in the aqueous solution C after dilution in the dilution channel is set to a concentration equal to or lower than a concentration at which particles in the aqueous solution can stably exist, for example, 3 vol% or less, and The dilution in the dilution flow path is not performed in one step, but is performed sequentially in two or more steps. According to the common sense of those skilled in the art, in order to lower the concentration of the water-miscible organic solvent and stabilize the particles as soon as possible, for example, as described in Patent Document 2, an excessive amount of a diluting solution is used to perform dilution in one step. It was thought that it should be done naturally, but in practice, as in the present invention, in two or more stages, dilution is performed such that the concentration is gradually decreased in each stage, and the same rate is obtained in one stage. It is possible to effectively prevent an increase in particle diameter due to fusion of particles during dilution, as compared with the case of performing dilution.
 多段希釈は、希釈流路の入口~出口の間に設けられた1つ以上のDn導入路(例えば、n=3~7)それぞれからの水溶液B(B~B)を合流させることにより実施できる。水溶液Bは水溶液Bと同一組成の水溶液であっても異なる組成の水溶液であってもよい。多段の数は、多くなりすぎても、希釈中の粒子の融合による粒子径の増大防止に大差はなくなるので、n=3~6の範囲、好ましくはn=3~5の範囲、より好ましくはn=3~4の範囲であることができる。例えば、n=6の場合には、希釈流路の途中に設けられる導入路は、D3~D6導入路となリ、D2導入路との合計で5段である。4段の場合には、希釈流路の途中に設けられる導入路は、D3~D5導入路となる。図2に3段の場合の例を示す。D2~D4導入路が設けられている。 Multi-stage dilution is performed by combining aqueous solutions B n (B 2 to B 6 ) from one or more Dn introduction channels (for example, n = 3 to 7) provided between the inlet and the outlet of the dilution channel. Can be implemented by The aqueous solution B n may be an aqueous solution having the same composition as the aqueous solution B 1 or an aqueous solution having a different composition. Even if the number of stages is too large, there is no great difference in preventing the particle size from increasing due to the fusion of particles during dilution. Therefore, n = 3 to 6, preferably n = 3 to 5, more preferably It can be in the range of n = 3-4. For example, in the case of n = 6, the introduction passages provided in the middle of the dilution passages are D3 to D6 introduction passages, and the total of D2 introduction passages has five stages. In the case of four stages, the introduction passages provided in the middle of the dilution passage are the introduction passages D3 to D5. FIG. 2 shows an example in the case of three stages. D2-D4 introduction paths are provided.
 1段目のD2導入路と合流後の水溶液中の水混和性有機溶媒濃度、2段目以降のD3導入路以降からの水溶液の合流後の水溶液中の水混和性有機溶媒濃度は、特に制限はなく、最終の濃度が水溶液中の粒子が安定に存在し得る濃度以下になるように、希釈の段数も考慮して適宜決定できる。例えば、水溶液Aの水混和性有機溶媒濃度が25vol% であり、水溶液Cの水混和性有機溶媒濃度が1vol%であり、3段階で希釈する場合、例えば、25vol%から10vol%(希釈率2.5倍)から4vol%(希釈率2.5倍)から1vol%(希釈率4倍)であることができる。 The water-miscible organic solvent concentration in the aqueous solution after merging with the first-stage D2 introducing passage is particularly limited, and the water-miscible organic solvent concentration in the aqueous solution after merging the aqueous solution from the second-stage and subsequent D3 introducing passages is particularly limited. However, the final concentration may be appropriately determined in consideration of the number of stages of dilution so that the final concentration is equal to or lower than the concentration at which the particles in the aqueous solution can exist stably. For example, the water-miscible organic solvent concentration of the aqueous solution A is 25 vol%, the water-miscible organic solvent concentration of the aqueous solution C is 1 vol%, and when diluting in three steps, for example, 25 vol% to 10 vol% (dilution ratio 2.5 It can be from 4 times (vol.) To 4 vol% (2.5 times dilution) to 1 vol% (4 times dilution).
 希釈流路中での水溶液の滞留時間は短いほど、即ち、流速は早いほど、迅速に希釈が行われ、水溶液中の粒子が安定に存在し得る濃度以下を有する水溶液Cをより迅速に得られ、得られる水溶液中の粒子の粒子径は小さくなる傾向がある。本発明においては、希釈流路における水溶液の滞留時間は、例えば、1000ミリ秒以下の範囲であることが、上記観点から好ましい。希釈流路における水溶液の滞留時間は、各導入路の容積及希釈流路の容積、さらには、各導入路から導入される水溶液の単位当たりの液量により変化するが、例えば、1000ミリ秒以下、好ましくは800ミリ秒以下、より好ましくは700ミリ秒以下とすることができる。 The shorter the residence time of the aqueous solution in the dilution flow channel, that is, the faster the flow rate, the faster the dilution is performed, and the more rapidly the aqueous solution C having a concentration below the concentration at which particles in the aqueous solution can stably exist can be obtained. The particle size of the particles in the obtained aqueous solution tends to be small. In the present invention, the retention time of the aqueous solution in the dilution flow channel is preferably in the range of, for example, 1000 milliseconds or less from the above viewpoint. The residence time of the aqueous solution in the dilution channel varies depending on the volume of each introduction channel and the volume of the dilution channel, and further, the amount of the aqueous solution introduced from each introduction channel per unit, for example, 1000 milliseconds or less. , Preferably 800 milliseconds or less, more preferably 700 milliseconds or less.
 本発明に用いる希釈用流路構造体においては、D1導入路、D2導入路、希釈用流路及びDn導入路は、流路の深さ方向(図1における紙厚方向)のサイズとしては、特に限定されるものではないが、例えば10~1000μm程度、より好ましくは50~200μm程度とし、かつ流路幅は、50~400μm程度、より好ましくは50~200μm程度に設定される。但し、これらはあくまでも例示であり、限定する意図ではない。 In the diluting channel structure used in the present invention, the D1 introducing channel, the D2 introducing channel, the diluting channel and the Dn introducing channel have a size in the depth direction of the channel (paper thickness direction in FIG. 1). Although not particularly limited, for example, it is set to about 10 to 1000 μm, more preferably about 50 to 200 μm, and the channel width is set to about 50 to 400 μm, more preferably about 50 to 200 μm. However, these are merely examples and are not intended to be limiting.
 D1導入路、D2導入路、希釈用流路及びDn導入路における各溶液の流速は、水溶液Aの粒子含有量及び水混和性有機溶媒濃度、目的とする水溶液Cの水混和性有機溶媒濃度及び希釈流路における水溶液の滞留時間等を考慮して適宜決定できる。 The flow rates of the respective solutions in the D1 introducing passage, the D2 introducing passage, the diluting passage and the Dn introducing passage are the particle content of the aqueous solution A and the water-miscible organic solvent concentration, the desired water-miscible organic solvent concentration of the aqueous solution C, and It can be appropriately determined in consideration of the residence time of the aqueous solution in the dilution flow channel and the like.
 水溶液A中の粒子の濃度は特に制限はないが、例えば、20mg/mL以下の範囲であることができ、好ましくは1~15mg/mLの範囲であることができる。 The concentration of the particles in the aqueous solution A is not particularly limited, but can be, for example, 20 mg / mL or less, and preferably 1 to 15 mg / mL.
 水溶液C中の粒子の濃度も特に制限はないが、例えば、5mg/mL以下の範囲であることができ、好ましくは0.1~4mg/mLの範囲であることができる。 The concentration of particles in the aqueous solution C is not particularly limited, but can be, for example, 5 mg / mL or less, and preferably 0.1 to 4 mg / mL.
 水溶液C中の粒子の個数平均の粒子径は200nm以下であるが、好ましくは180nm以下、160nm以下、140nm以下、120nm以下、100nm以下であることができる。水溶液C中の粒子の個数平均の粒子径の下限は特にないが、例えば、10nmであり、あるいは20nmであることができる。 The number average particle size of the particles in the aqueous solution C is 200 nm or less, preferably 180 nm or less, 160 nm or less, 140 nm or less, 120 nm or less, 100 nm or less. The lower limit of the number average particle size of the particles in the aqueous solution C is not particularly limited, but can be, for example, 10 nm or 20 nm.
 本発明に用いる希釈用流路構造体においては、D1導入路及びD2導入路の合流部及び合流後の希釈流路の構造、さらに、Dn導入路以降の各希釈流路は、水溶液Aの水溶液B及びBによる希釈が、より均一かつ迅速に実施できる構造であることが好ましい。そのため希釈流路は、特許文献1に記載の少なくともその一部において二次元的に屈曲した流路部位を有するマイクロミキサーであることができる。二次元的に屈曲した流路部位を有することで、流入する水溶液A及び水溶液B1とは、希釈流路中において流れに伴って混合される。その例を図1に示す。図1においては、希釈流路DF1及びDF2においてそれぞれ20個のバッフルを有し、バッフルによって二次元的に屈曲した流路部位が形成される。但し、各希釈流路に設けられるバッフルの数は適宜決定でき、図1はあくまでも例示である。さらに、三次元的に屈曲又は凹凸を配した流路部位の例を図5に示す。図5中の矢印は、各導入路である。 In the diluting flow channel structure used in the present invention, the structure of the confluent portion of the D1 introducing passage and the D2 introducing passage and the structure of the diluting passage after the confluence, and each of the diluting passages after the Dn introducing passage are an aqueous solution of the aqueous solution A. It is preferable that the dilution with B 1 and B n has a structure that can be performed more uniformly and rapidly. Therefore, the dilution flow channel can be a micromixer having a flow channel portion that is two-dimensionally bent in at least a part thereof described in Patent Document 1. By having the two-dimensionally bent channel portion, the inflowing aqueous solution A and aqueous solution B1 are mixed with the flow in the dilution channel. An example is shown in FIG. In FIG. 1, each of the dilution channels DF1 and DF2 has 20 baffles, and the baffles form a channel portion that is two-dimensionally bent. However, the number of baffles provided in each dilution flow channel can be appropriately determined, and FIG. 1 is merely an example. Further, FIG. 5 shows an example of a flow path portion in which three-dimensionally bent or uneven portions are arranged. The arrows in FIG. 5 indicate the respective introduction paths.
 希釈流路は二次元的に屈曲又は三次元的に屈曲若しくは凹凸を配した流路部位を有することなく、直管状または滑らかな曲管状であることもできる。希釈流路の形状が、直管状または滑らかな曲管状であっても、D1導入路及びD2導入路の合流部1においては、水溶液A及び水溶液B1の流速の違いなどにより、合流部1においては、混合状態が生じる。また水溶液Aと水溶液B1が合流後に生じる液-液界面においても分子拡散等により混合が生じる。同様に、希釈流路DF1とD3導入路の合流部2においても希釈流路DF1からの水溶液と水溶液Bの流速の違いなどにより、混合状態が生じる。 The diluting flow channel may have a straight tubular shape or a smooth curved tubular shape without having a flow channel portion in which two-dimensionally bent or three-dimensionally bent or irregularly arranged. Even if the shape of the dilution flow path is a straight tube shape or a smooth curved tube shape, in the confluence part 1 of the D1 introduction path and the D2 introduction path, due to the difference in the flow velocity of the aqueous solution A and the aqueous solution B1, etc. , A mixed state occurs. Mixing also occurs due to molecular diffusion and the like at the liquid-liquid interface generated after the aqueous solution A and the aqueous solution B1 merge. Similarly, due to differences in the flow rate of the aqueous solution and the aqueous solution B 2 from dilute channel DF1, mixed state occurs at the merging portion 2 of the dilution channel DF1 and D3 introduction path.
 本発明に用いる希釈用流路構造体におけるD1導入路及びD2導入路の合流部、及び希釈流路内におけるDnとの合流部の構造は、合流する各水溶液の迅速かつ均一な混合を促進する構造であることが好ましい。そのような構造の例を図6に示す。図6に示す合流部前後の構造は、各合流部に適宜適用できる。 The structure of the confluence of the D1 introduction path and the D2 introduction path in the dilution flow channel structure used in the present invention, and the structure of the confluence with Dn in the dilution flow channel promotes rapid and uniform mixing of the respective aqueous solutions that merge. It is preferably a structure. An example of such a structure is shown in FIG. The structure before and after the merging portion shown in FIG. 6 can be appropriately applied to each merging portion.
 希釈流路の出口から排出された水溶液Cは、さらに透析に付され水混和性有機溶媒を除去することができる。 The aqueous solution C discharged from the outlet of the dilution flow passage can be further subjected to dialysis to remove the water-miscible organic solvent.
 水溶液Aは、自己組織化分子含有水混和性有機溶媒と粒子調製用水溶液を混合して粒子含有水混和性有機溶媒水溶液を調製するための粒子調製用流路構造体を用いて調製することができる。さらに、粒子調製用流路構造体を用いた調製直後に、本発明の希釈用流路構造体のD1導入路に供給されることが好ましい。例えば、図2に示すような、粒子調製用流路構造体を用いて粒子含有水混和性有機溶媒水溶液Aを調製し、調製後引き続き、本発明の希釈用流路構造体のD1導入路に供給されることが、粒子同士の融合等の時間を与えることなく、即座に本発明の方法で希釈でき、所望の粒子径を有する粒子含有溶液を得ることができることから好ましい。 The aqueous solution A may be prepared by using a particle-preparing flow channel structure for preparing a particle-containing water-miscible organic solvent aqueous solution by mixing the self-assembled molecule-containing water-miscible organic solvent and the particle-preparing aqueous solution. it can. Further, it is preferable that the particles are supplied to the D1 introduction passage of the diluting flow channel structure of the present invention immediately after the preparation using the particle preparing flow channel structure. For example, as shown in FIG. 2, a particle-containing water-miscible organic solvent aqueous solution A is prepared using a particle-preparing flow channel structure, and after the preparation, a D1 introducing path of the diluting flow channel structure of the present invention is continuously provided. It is preferable that the particles are supplied because the particles can be immediately diluted by the method of the present invention without giving time for fusing particles to each other and a particle-containing solution having a desired particle size can be obtained.
<粒子製造用流路構造体>
 本発明の別の態様は、希釈用流路構造体並びに粒子調製用流路構造体及び希釈用流路構造体を有する粒子製造用流路構造体である。粒子製造用流路構造体は、本発明の製造方法で説明したものと基本的に同様であり、上記説明も参照できる。
<Particle manufacturing flow path structure>
Another aspect of the present invention is a particle manufacturing channel structure having a diluent channel structure, a particle preparation channel structure, and a diluent channel structure. The flow path structure for producing particles is basically the same as that described in the production method of the present invention, and the above description can also be referred to.
 本願発明の希釈用流路構造体は、自己組織化分子を粒子構成成分として含む粒子Zを含有しかつ水混和性有機溶媒を含む水溶液を別の水溶液で希釈するための流路構造体であって、上流側にD1導入路及びD2導入路を有し、D1導入路及びD2導入路の合流部から下流側に希釈流路を有し、かつ希釈流路の途中に1つ以上のDn導入路(例えば、n=3~7)を有する、希釈用流路構造体である。 The diluting flow channel structure of the present invention is a flow channel structure for diluting an aqueous solution containing particles Z containing a self-assembling molecule as a particle constituent component and a water-miscible organic solvent with another aqueous solution. Has a D1 introduction path and a D2 introduction path on the upstream side, has a dilution flow path on the downstream side from the confluence of the D1 introduction path and the D2 introduction path, and introduces one or more Dn in the middle of the dilution flow path. A diluting channel structure having channels (for example, n = 3 to 7).
 本願発明の粒子製造用流路構造体は、上流側に少なくとも2以上からなるSq導入路(例えば、q=1~5)を有し、各導入路の合流部から下流側に粒子調製流路を有し、希釈用流路構造体は、上流側にD1導入路及びD2導入路を有し、D1導入路及びD2導入路の合流部から下流側に希釈流路を有し、かつ希釈流路の途中に1つ以上のDn導入路(例えば、n=3~7)を有し、調製流路の出口とD1導入路が直結する。 The flow path structure for producing particles of the present invention has at least two Sq introduction paths (for example, q = 1 to 5) on the upstream side, and the particle preparation flow path on the downstream side from the confluence of each introduction path. And the diluting flow path structure has a D1 introducing path and a D2 introducing path on the upstream side, a diluting flow path on the downstream side from the confluence of the D1 introducing path and the D2 introducing path, and There is one or more Dn introduction passages (for example, n = 3 to 7) in the middle of the passage, and the outlet of the preparation passage and the D1 introduction passage are directly connected.
 2のSq導入路を有する粒子調製用流路構造体の一例は、上流側にS1導入路及びS2導入路を有し、S1導入路及びS2導入路の合流部から下流側に粒子形成流路を有する物であることができる。この例は、図3のAに示す。希釈用流路構造体は、前述のような上流側にD1導入路及びD2導入路を有し、D1導入路及びD2導入路の合流部から下流側に希釈流路を有し、かつ希釈流路の途中に1つ以上のDn導入路(例えば、n=3~7)を有する。D2導入路~D6導入路を有する希釈用流路構造体の例を図3のBに示す。そして、粒子調製用流路構造体の粒子形成流路の出口とD1導入路が直結する。粒子形成流路の出口とD1導入路が直結することで、粒子調製用流路構造体で調製された水溶液Aは合成後、速やかに希釈用流路構造体に導入され、水混和性有機溶媒濃度が段階的に希釈されて、極めて速やかに、粒子が安定に存在し得る濃度以下に水混和性有機溶媒濃度を希釈した水溶液Cを得ることができる。粒子調製用流路構造体の粒子形成流路の出口とD1導入路が直結した粒子製造用流路構造体の一態様は、図7に示す。 An example of a particle preparation flow channel structure having two Sq introduction paths has an S1 introduction path and an S2 introduction path on the upstream side, and a particle formation flow path on the downstream side from the confluence of the S1 introduction path and the S2 introduction path. Can have An example of this is shown in FIG. The diluting flow passage structure has the D1 introducing passage and the D2 introducing passage on the upstream side as described above, the diluting passage on the downstream side from the confluence of the D1 introducing passage and the D2 introducing passage, and the diluting flow passage. One or more Dn introduction paths (for example, n = 3 to 7) are provided in the middle of the path. An example of the diluting flow channel structure having the D2 introducing path to the D6 introducing path is shown in B of FIG. Then, the outlet of the particle forming flow path of the particle preparing flow path structure is directly connected to the D1 introduction path. By directly connecting the outlet of the particle formation flow path and the D1 introduction path, the aqueous solution A prepared in the particle preparation flow path structure is rapidly introduced into the dilution flow path structure after synthesis, and the water-miscible organic solvent It is possible to obtain an aqueous solution C in which the concentration is diluted stepwise, and the concentration of the water-miscible organic solvent is diluted to a concentration equal to or less than the concentration at which the particles can be stably present very quickly. FIG. 7 shows one mode of the particle production flow channel structure in which the outlet of the particle formation flow channel of the particle preparation flow channel structure is directly connected to the D1 introduction channel.
 本発明の希釈用流路構造体及び粒子製造用流路構造体を構成する希釈用流路構造体は、図4に示すように、D2導入路は複数のD2導入路m(mは例えば、1~5、図4ではmは1と2であり、D2導入路1とD2導入路2)からなり、当該複数のD2導入路mが希釈流路の同一地点pにおいて希釈流路を挟み込むように配置されていることができる。このような構造とすることにより、D1導入路から流れてくる水溶液と希釈流路から流れてくる希釈液の界面を増やすことができ、希釈速度を早くすることができる。図4に示す例では、D1導入路の流路幅が200μmであるのに対してD2導入路1とD2導入路2の流路幅は500μm、合流後の希釈流路の流路幅は1mmである。このような構造とすることにより、大量の希釈液を流すことができ、希釈倍率を上げることができる。 As shown in FIG. 4, the diluting flow channel structure constituting the diluting flow channel structure and the particle producing flow channel structure of the present invention has a plurality of D2 introducing passages m (m is, for example, 1 to 5, m is 1 and 2 in FIG. 4, and is composed of D2 introducing passage 1 and D2 introducing passage 2), and the plurality of D2 introducing passages m sandwich the dilution passage at the same point p of the dilution passage. Can be located in. With such a structure, it is possible to increase the number of interfaces between the aqueous solution flowing from the D1 introducing passage and the diluting liquid flowing from the diluting passage, and to increase the dilution rate. In the example shown in FIG. 4, the flow passage width of the D1 introduction passage is 200 μm, whereas the flow passage width of the D2 introduction passage 1 and the D2 introduction passage 2 is 500 μm, and the passage width of the dilution passage after joining is 1 mm. Is. With such a structure, a large amount of diluting liquid can be flowed and the dilution ratio can be increased.
 本発明の希釈用流路構造体及び粒子製造用流路構造体を構成する希釈用流路構造体は、Dn導入路は複数のDn導入路mからなり、当該複数のDn導入路m(mは例えば、1~5)が希釈流路の同一地点pにおいて希釈流路を挟み込むように配置されていることができる。図3のBに示す例では、D5導入路1とD5導入路2が希釈流路の同一地点pにおいて希釈流路を挟み込むように配置されている。このような構造とすることにより、Dn導入路から流れてくる希釈液と希釈流路から流れてくる希釈液の界面を増やすことができ、希釈速度を早くすることができる。 In the diluting flow channel structure constituting the diluting flow channel structure and the particle producing flow channel structure of the present invention, the Dn introducing path is composed of a plurality of Dn introducing paths m, and the plurality of Dn introducing paths m (m For example, 1 to 5) can be arranged so as to sandwich the dilution flow path at the same point p of the dilution flow path. In the example shown in FIG. 3B, the D5 introduction path 1 and the D5 introduction path 2 are arranged so as to sandwich the dilution flow path at the same point p of the dilution flow path. With such a structure, the interface between the diluting liquid flowing from the Dn introducing passage and the diluting liquid flowing from the diluting passage can be increased, and the dilution speed can be increased.
 本願発明で用いる希釈用流路構造体及び粒子製造用流路構造体を構成する希釈用流路構造体は、希釈流路は途中で2以上に分岐しており、かつ各分岐した希釈流路に対してDn導入路が配置されていることもできる。図2に示す例では、希釈流路はD3導入路の下流で2つに分岐し、かつ分岐した希釈流路のそれぞれに分岐したD4導入路が配置されている。 In the diluting flow path structure used in the present invention, which constitutes the diluting flow path structure and the particle producing flow path structure, the diluting flow path is divided into two or more in the middle, and each branched diluting flow path. It is also possible to arrange a Dn introduction path with respect to. In the example shown in FIG. 2, the dilution flow path is branched into two downstream of the D3 introduction path, and the branched D4 introduction path is arranged in each of the branched dilution flow paths.
 本願発明で用いる希釈用流路構造体及び粒子製造用流路構造体を構成する希釈用流路構造体は、D1導入路が2以上に分岐している場合があり、この場合においては、各分岐したD1流路に対してD2導入路が配置されていることもできる。 In the diluting flow channel structure used in the present invention and the diluting flow channel structure constituting the particle manufacturing flow channel structure, the D1 introduction channel may be branched into two or more, and in this case, The D2 introducing passage may be arranged with respect to the branched D1 passage.
 以下、本発明を実施例に基づいて更に詳細に説明する。但し、実施例は本発明の例示であって、本発明は実施例に限定される意図ではない。 Hereinafter, the present invention will be described in more detail based on examples. However, the examples are exemplifications of the present invention, and the present invention is not intended to be limited to the examples.
実施例1
 下記の粒子作製条件により調製した脂質粒子含有水溶液Aを図2に示す粒子調製用流路構造体及び希釈用流路構造体(20バッフル)を直結した粒子製造用流路構造体を用いて、3段階の多段希釈により25→5→2.5→1%の順で希釈して水溶液Cを調製した。調製後に水溶液C中の粒子の粒度分布をゼータサイザーナノZS(マルバーン社)を用いて測定した。結果を図9に示す。
粒子作製条件:10 mg/mL POPC + 生理食塩水
       iLiNPデバイス, 50μL/min FRR3
Example 1
The lipid particle-containing aqueous solution A prepared under the following particle preparation conditions is used to directly connect the particle preparation channel structure and the dilution channel structure (20 baffles) shown in FIG. Aqueous solution C was prepared by diluting in the order of 25 → 5 → 2.5 → 1% by three-stage multi-stage dilution. After the preparation, the particle size distribution of the particles in the aqueous solution C was measured using Zetasizer Nano ZS (Malvern). The results are shown in Fig. 9.
Particle preparation conditions: 10 mg / mL POPC + saline iLiNP device, 50 μL / min FRR3
比較例1
 実施例1と同様の粒子作製条件で調製した脂質粒子含有水溶液Aを、粒子調製用流路構造体に1段の希釈用流路構造体(20バッフル)を直結した粒子製造用流路構造体(図7参照)を用いて、脂質粒子含有水溶液の希釈溶液を調製した。調製後に水溶液中の粒子の粒度分布を実施例1と同様に測定した。結果を図9に示す。
Comparative Example 1
The lipid particle-containing aqueous solution A prepared under the same particle preparation conditions as in Example 1 was directly connected to the particle preparation channel structure at one stage of the dilution channel structure (20 baffles) to produce a particle production channel structure. (See FIG. 7) was used to prepare a diluted solution of the lipid particle-containing aqueous solution. After the preparation, the particle size distribution of the particles in the aqueous solution was measured in the same manner as in Example 1. The results are shown in Fig. 9.
比較例2
 実施例1と同様の粒子作製条件で、実施例1と同様の粒子調製用流路構造体(希釈用流路構造体なし)を用いて調製した脂質粒子含有水溶液Aを、粒子調製後に、透析、ピペッティングによる希釈(1段または3段)を行い、脂質粒子含有水溶液の希釈溶液をそれぞれ調製した。調製後に水溶液中の粒子の粒度分布を実施例1と同様に測定した。結果を図9に示す。
Comparative example 2
The lipid particle-containing aqueous solution A prepared by using the same particle preparation channel structure (no dilution channel structure) as in Example 1 under the same particle preparation conditions as in Example 1 was dialyzed after particle preparation. , And diluted by pipetting (1 step or 3 steps) to prepare a diluted solution of the lipid particle-containing aqueous solution. After the preparation, the particle size distribution of the particles in the aqueous solution was measured in the same manner as in Example 1. The results are shown in Fig. 9.
 個数平均±10%内の粒子割合は、実施例1の3段階希釈が30%であったのに対して、比較例1の1段階希釈では20%と低かった。また、比較例2の透析、ピペッティングによる希釈(1段または3段)で得られた脂質粒子は、平均粒子径自体が実施例1に比べて格段に大きかった。 The particle ratio within the number average ± 10% was as low as 20% with the one-step dilution of Comparative Example 1, whereas the three-step dilution of Example 1 was 30%. The average particle size of the lipid particles obtained by the dialysis of Comparative Example 2 and the dilution by pipetting (1 step or 3 steps) was significantly larger than that of Example 1.
実施例2
 下記の粒子作製条件により調製した脂質粒子含有水溶液Aを図2に示す粒子調製用流路構造体及び希釈用流路構造体(20バッフル)を直結した粒子製造用流路構造体を用いて、3段階の多段希釈により25→10→4→1%の順で希釈して水溶液Cを調製した。調製後に水溶液C中の粒子の粒度分布を実施例1と同様に測定した。結果を図10に示す。
粒子作製条件:脂質:YSK05/エタノール
       水系:MES buffer
Example 2
The lipid particle-containing aqueous solution A prepared under the following particle preparation conditions is used to directly connect the particle preparation channel structure and the dilution channel structure (20 baffles) shown in FIG. An aqueous solution C was prepared by diluting in the order of 25 → 10 → 4 → 1% by three-stage multi-stage dilution. After the preparation, the particle size distribution of the particles in the aqueous solution C was measured in the same manner as in Example 1. The results are shown in Fig. 10.
Particle preparation conditions: Lipid: YSK05 / ethanol Water system: MES buffer
比較例3
 実施例2と同様の粒子作製条件で調製した脂質粒子含有水溶液Aを、粒子調製用流路構造体に1段の希釈用流路構造体(20バッフル)を直結した粒子製造用流路構造体(図7参照)を用いて、脂質粒子含有水溶液の希釈溶液を調製した。調製後に水溶液中の粒子の粒度分布を実施例1と同様に測定した。結果を図10に示す。
Comparative Example 3
The lipid particle-containing aqueous solution A prepared under the same particle preparation conditions as in Example 2 was directly connected to the particle preparation channel structure at one stage of the dilution channel structure (20 baffles) to produce a particle production channel structure. (See FIG. 7) was used to prepare a diluted solution of the lipid particle-containing aqueous solution. After the preparation, the particle size distribution of the particles in the aqueous solution was measured in the same manner as in Example 1. The results are shown in Fig. 10.
比較例4
 実施例2と同様の粒子作製条件で、実施例2と同様の粒子調製用流路構造体(希釈用流路構造体なし)を用いて調製した脂質粒子含有水溶液Aを、粒子調製後に、ピペッティングによる希釈(1段)を行い、脂質粒子含有水溶液の希釈溶液をそれぞれ調製した。調製後に水溶液中の粒子の粒度分布を実施例1と同様に測定した。結果を図10に示す。
Comparative Example 4
The lipid particle-containing aqueous solution A prepared using the same particle preparation flow channel structure (no dilution flow channel structure) as in Example 2 under the same particle preparation conditions as in Example 2 was prepared by the following procedure. Dilution by petting (one step) was performed to prepare a diluted solution of the lipid particle-containing aqueous solution. After the preparation, the particle size distribution of the particles in the aqueous solution was measured in the same manner as in Example 1. The results are shown in Fig. 10.
 実施例1においては、個数平均±10%内の粒子割合が比較例1に比べて高かったが、平均粒子径は、比較例1の方が小さかった。それに対して、実施例2(3段階希釈)においては、比較例2(1段階希釈)に比べて、個数平均±10%内の粒子割合は高く、かつ平均粒子径は小さかった。この結果は、希釈の段階を25→10→4→1%としたことで、最適な希釈速度(エタノール%/s)が得られ、それにより、粒径のより精密な制御が可能になった。 In Example 1, the particle ratio within the number average ± 10% was higher than that of Comparative Example 1, but the average particle size of Comparative Example 1 was smaller. On the other hand, in Example 2 (three-step dilution), the particle ratio within the number average ± 10% was higher and the average particle diameter was smaller than in Comparative Example 2 (one-step dilution). This result shows that the optimal dilution rate (ethanol% / s) was obtained by setting the dilution step to 25 → 10 → 4 → 1%, which enabled more precise control of particle size. ..
実施例3
 下記の粒子作製条件により調製した脂質粒子含有水溶液Aを図4に示す粒子調製用流路構造体及び希釈用流路構造体(但し、バッフルなし)を直結した粒子製造用流路構造体を用いて、以下の操作により3段階の多段希釈により25→10→4→1%の順で希釈して水溶液Cを調製した。調製後に下記後処理方法に付した後に水溶液C中の粒子の粒度分布を 実施例1と同様に測定した。結果を図11に示す。
Example 3
The lipid particle-containing aqueous solution A prepared under the following particle production conditions is used as a particle production flow channel structure in which the particle preparation flow channel structure and the dilution flow channel structure (without baffles) shown in FIG. 4 are directly connected. Then, an aqueous solution C was prepared by diluting in the order of 25 → 10 → 4 → 1% by three-step multi-step dilution by the following operation. After the preparation, the particles were subjected to the following post-treatment method, and then the particle size distribution of the particles in the aqueous solution C was measured in the same manner as in Example 1. The results are shown in Fig. 11.
(1)図4のミキサーなし集積化デバイスの緩衝液、または核酸/緩衝液送液口から、核酸/緩衝液を導入し、脂質送液口からYSK05/エタノールを導入した。また、D2導入路1、2からMES緩衝液を導入した。
粒子作製:50μL/min (FRR3) D1導入路で地点pより上流部においては、粒子が生成し、粒子懸濁液中のエタノール濃度は25%となっている。D2導入路1、2から以下の流量で流入するMES緩衝液によって粒子懸濁液中のエタノールは10%まで希釈される。希釈溶液1:75μL/min(D2導入路1、2から導入)→回収(10% EtOH)
(2)ミキサーなし集積化デバイスの核酸・脂質溶液入口の両方から先ほど希釈した粒子懸濁液を導入した。D2導入路1、2からMES緩衝液(希釈溶液2)を下記の条件で導入した。
粒子懸濁液:125μL/min , 希釈溶液2:187.5μL/min→回収(4% EtOH)
(3)ミキサーなし集積化デバイスの核酸・脂質溶液入口の両方から先ほど希釈した粒子懸濁液を導入した。D2導入路1、2からMES緩衝液(希釈溶液2)を下記の条件で導入した。
粒子懸濁液:312.5μL/min , 希釈溶液2:937.5μL/min→回収(1% EtOH)
(1) The nucleic acid / buffer solution was introduced from the buffer solution or the nucleic acid / buffer solution supply port of the integrated device without a mixer in FIG. 4, and YSK05 / ethanol was introduced from the lipid solution supply port. In addition, the MES buffer solution was introduced from the D2 introduction paths 1 and 2.
Particle preparation: 50 μL / min (FRR3) D1 In the introduction path, particles are generated upstream from point p, and the ethanol concentration in the particle suspension is 25%. Ethanol in the particle suspension is diluted to 10% by the MES buffer solution that flows in from the D2 introduction paths 1 and 2 at the following flow rates. Diluted solution 1: 75 μL / min (introduced from D2 introduction channels 1 and 2) → recovery (10% EtOH)
(2) The particle suspension diluted previously was introduced from both the nucleic acid / lipid solution inlet of the integrated device without a mixer. The MES buffer solution (diluted solution 2) was introduced from D2 introduction paths 1 and 2 under the following conditions.
Particle suspension: 125 μL / min, diluted solution 2: 187.5 μL / min → recovery (4% EtOH)
(3) The previously diluted particle suspension was introduced from both the nucleic acid / lipid solution inlet of the integrated device without a mixer. The MES buffer solution (diluted solution 2) was introduced from D2 introduction paths 1 and 2 under the following conditions.
Particle suspension: 312.5 μL / min, diluted solution 2: 937.5 μL / min → recovery (1% EtOH)
後処理方法(MES緩衝液で希釈直後)
2. PBS(pH 7.4)で透析(overnight, 4℃)   ・・・PBSへの置換
Post-treatment method (immediately after dilution with MES buffer)
2. Dialysis with PBS (pH 7.4) (overnight, 4 ℃) ・ ・ ・ Replacement with PBS
比較例5
 下記粒子作製条件で調製した脂質粒子含有水溶液Aを、粒子調製用流路構造体に1段の希釈用流路構造体(バッフルなし)を直結した粒子製造用流路構造体(図4参照)を用いて、脂質粒子含有水溶液の希釈溶液を調製した。調製後に実施例3と同様の後処理方法に付した後に水溶液中の粒子の粒度分布を実施例1と同様に測定した。結果を図11に示す。
粒子作製:50μL/min (FRR3), 希釈溶液:1200μL/min
Comparative Example 5
A particle production channel structure in which a lipid particle-containing aqueous solution A prepared under the following particle preparation conditions is directly connected to a particle preparation channel structure with one-step dilution channel structure (without baffle) (see FIG. 4). Was used to prepare a diluted solution of the lipid particle-containing aqueous solution. After the preparation, the same post-treatment method as in Example 3 was applied, and then the particle size distribution of the particles in the aqueous solution was measured in the same manner as in Example 1. The results are shown in Fig. 11.
Particle preparation: 50 μL / min (FRR3), Diluted solution: 1200 μL / min
比較例6
 実施例3と同様の粒子作製条件で、実施例3と同様の粒子調製用流路構造体(希釈用流路構造体なし)を用いて調製した脂質粒子含有水溶液Aを、粒子調製後に、ピペッティングによる希釈(1段)を行い、脂質粒子含有水溶液の希釈溶液をそれぞれ調製した。調製後に実施例3と同様の後処理方法に付した後に水溶液中の粒子の粒度分布を実施例1と同様に測定した。結果を図11に示す。
Comparative Example 6
Under the same particle preparation conditions as in Example 3, the lipid particle-containing aqueous solution A prepared using the same particle preparation channel structure as in Example 3 (without a diluent channel structure) was prepared by the following procedure. Dilution by petting (one step) was performed to prepare a diluted solution of the lipid particle-containing aqueous solution. After the preparation, the same post-treatment method as in Example 3 was applied, and then the particle size distribution of the particles in the aqueous solution was measured in the same manner as in Example 1. The results are shown in Fig. 11.
 図11に示す結果から、実施例3の多段階希釈で調製した水溶液中の脂質粒子は、MES置換後及びPBS置換後の粒径の変化が最も少なかった。 From the results shown in FIG. 11, the lipid particles in the aqueous solution prepared by multi-step dilution of Example 3 showed the smallest change in particle size after MES substitution and PBS substitution.
実施例4
 pH応答性カチオン性脂質(YSK05)、コレステロール、PEG脂質、siRNAで構成されている脂質ナノ粒子を図2に示す粒子調製用流路構造体及び希釈用流路構造体(20バッフル)を直結した粒子製造用流路構造体を用いて、3段階の多段希釈により25→10→4→1%の順で希釈して水溶液Cを調製した。水溶液を用いてマウスを用いた粒子の性能評価を行った、その結果を図12及び13に示す。標的遺伝子をノックダウンすることに成功し、粒径によって送達効率が異なることを確認した。
Example 4
The lipid nanoparticle composed of pH-responsive cationic lipid (YSK05), cholesterol, PEG lipid, and siRNA was directly connected to the particle preparation channel structure and the dilution channel structure (20 baffles) shown in FIG. Aqueous solution C was prepared by diluting in the order of 25 → 10 → 4 → 1% by three-step multi-step dilution using the flow channel structure for particle production. The performance of the particles was evaluated using mice using the aqueous solution, and the results are shown in FIGS. 12 and 13. We succeeded in knocking down the target gene and confirmed that the delivery efficiency depends on the particle size.
実施例5
 下記の粒子作製条件により調製した脂質粒子含有水溶液Aを図1に示す粒子調製用流路構造体及び希釈用流路構造体(20バッフル)を直結した粒子製造用流路構造体(iLiNPデバイス)を用いて、2段階の多段希釈により25→1%の順で希釈して水溶液Cを調製した。調製後に水溶液C中の粒子の粒度分布をゼータサイザーナノZS(マルバーン社)を用いて測定した。結果を図14に示す(図中のデバイスが本実施例の結果である。)。比較のため希釈用流路構造体を用いる代りに透析を行った場合およびピペットで希釈した場合の結果も併記する。
粒子作製条件:
脂質溶液65 mM POPC/エタノール
水系溶液 生理食塩水(154mM NaCl水溶液)
一次希釈 総流量 100μL/min (FRR3)
二次希釈 総流量 2500μL/min (FRR24) 
Example 5
A particle production flow channel structure (iLiNP device) in which a lipid particle-containing aqueous solution A prepared under the following particle production conditions is directly connected to a particle preparation flow channel structure and a dilution flow channel structure (20 baffles) shown in FIG. Was used to prepare an aqueous solution C by diluting in the order of 25 → 1% by two-step multi-step dilution. After the preparation, the particle size distribution of the particles in the aqueous solution C was measured using Zetasizer Nano ZS (Malvern). The results are shown in FIG. 14 (the device in the figure is the result of this example). For comparison, the results of dialysis instead of using the diluting flow channel structure and diluting with a pipette are also shown.
Particle preparation conditions:
Lipid solution 65 mM POPC / ethanol aqueous solution physiological saline (154 mM NaCl aqueous solution)
Primary dilution Total flow rate 100 μL / min (FRR3)
Secondary dilution Total flow rate 2500 μL / min (FRR24)
脂質溶液が高濃度脂質溶液であるために従来の後処理(透析およびピペット)では粒径が不均一になった(個数平均とZ平均の差が大きい)。それに対して本実施例(デバイス)における、粒子製造および希釈の連続処理によって、粒子の均一性が改善され、かつばらつき(標準偏差)も改善された。 Since the lipid solution was a high-concentration lipid solution, conventional post-treatments (dialysis and pipette) resulted in non-uniform particle size (the difference between the number average and the Z average was large). On the other hand, in the present example (device), the continuous treatment of particle production and dilution improved the particle uniformity and also improved the dispersion (standard deviation).
実施例6
 下記の粒子作製条件により調製した脂質粒子含有水溶液Aを図1に示す粒子調製用流路構造体及び希釈用流路構造体(20バッフル)を直結した粒子製造用流路構造体(iLiNPデバイス)を用いて、2段階の多段希釈により25→1%の順で希釈して水溶液Cを調製した。調製後に水溶液C中の粒子の粒度分布をゼータサイザーナノZS(マルバーン社)を用いて測定した。結果を図15に示す。(図中のデバイスが本実施例の結果である。)。比較のため希釈用流路構造体を用いる代りに透析を行った場合およびピペットで希釈した場合の結果も併記する。
粒子作製条件:
脂質溶液15 mM DPPC/コレステロール/DSPE-PEG2K/エタノール(67/33/5 mol%)
水系溶液 PBS
一次希釈 総流量 100μL/min (FRR3)
二次希釈 総流量 2500μL/min (FRR24) 
Example 6
A particle production flow channel structure (iLiNP device) in which a lipid particle-containing aqueous solution A prepared under the following particle production conditions is directly connected to a particle preparation flow channel structure and a dilution flow channel structure (20 baffles) shown in FIG. Was used to prepare an aqueous solution C by diluting in the order of 25 → 1% by two-step multi-step dilution. After the preparation, the particle size distribution of the particles in the aqueous solution C was measured using Zetasizer Nano ZS (Malvern). The results are shown in Fig. 15. (The device in the figure is the result of this example.). For comparison, the results of dialysis instead of using the diluting flow channel structure and diluting with a pipette are also shown.
Particle preparation conditions:
Lipid solution 15 mM DPPC / cholesterol / DSPE-PEG2K / ethanol (67/33/5 mol%)
Aqueous solution PBS
Primary dilution Total flow rate 100 μL / min (FRR3)
Secondary dilution Total flow rate 2500 μL / min (FRR24)
本実施例(デバイス)では、ばらつき(標準偏差)が改善された。さらに、本実施例(デバイス)では、 個数平均・Z平均粒径ともに100 nm以下の粒子を作製可能であった。 In this example (device), the variation (standard deviation) was improved. Furthermore, in this example (device), particles having both a number average particle diameter and a Z average particle diameter of 100 nm or less could be produced.
 本発明は、自己組織化分子を粒子構成成分として含む粒子を、粒子径を制御しながら調製する技術に関する分野において有用である。 The present invention is useful in the field of technology for preparing particles containing a self-assembling molecule as a particle constituent while controlling the particle size.

Claims (25)

  1. 自己組織化分子を粒子構成成分として含む粒子Zを含有し、かつ水混和性有機溶媒を20vol%以上の濃度で含む水溶液Aを水溶液Bで希釈して、個数平均の粒子径が200nm以下の粒子Zを含有する水溶液Cを得ることを含む方法であって、
    前記希釈は、上流側にD1導入路及びD2導入路を有し、D1導入路及びD2導入路の合流部から下流側に希釈流路を有し、かつ希釈流路の途中に1つ以上のDn導入路(例えば、n=3~7)を有する希釈用流路構造体を用い、
    D1導入路に水溶液A及びD2導入路に水溶液Bをそれぞれ供給し、かつDn導入路から水溶液B(例えば、n=2~6)を希釈流路中の水溶液に追加して、希釈流路の出口から、粒子が安定に存在し得る濃度以下に水混和性有機溶媒濃度を希釈した水溶液Cを得ることを含む、粒子含有水溶液の製造方法。
    An aqueous solution A containing particles Z containing self-assembled molecules as a particle constituent and containing a water-miscible organic solvent at a concentration of 20 vol% or more is diluted with an aqueous solution B 1 to have a number average particle diameter of 200 nm or less. A method comprising obtaining an aqueous solution C containing particles Z, comprising:
    The dilution has a D1 introduction path and a D2 introduction path on the upstream side, a dilution flow path on the downstream side from the confluence of the D1 introduction path and the D2 introduction path, and one or more in the middle of the dilution flow path. Using a diluting channel structure having a Dn introducing channel (for example, n = 3 to 7),
    The aqueous solution A is supplied to the D1 introduction path and the aqueous solution B 1 is supplied to the D2 introduction path, and the aqueous solution B n (for example, n = 2 to 6) is added to the aqueous solution in the dilution flow path from the Dn introduction path to obtain a diluted flow. A method for producing an aqueous solution containing particles, which comprises obtaining an aqueous solution C diluted with a water-miscible organic solvent concentration to a concentration at which particles can stably exist from an outlet of a passage.
  2. 自己組織化分子を粒子構成成分として含む粒子Zを含有し、かつ水混和性有機溶媒を20vol%以上の濃度で含む水溶液Aを水溶液Bで希釈して、個数平均の粒子径が200nm以下の粒子Zを含有する水溶液Cを得ることを含む方法であって、
    前記希釈は、上流側にD1導入路及びDn(例えば、n=2~7)導入路を有し、Dn導入路はすべての導入路が地点pにおいてD1導入路を挟み込むように配置され、地点pから下流側には希釈流路を有する希釈用流路構造体を用い、
    D1導入路に水溶液A及びDn導入路に水溶液B(例えば、n=1~6)をそれぞれ供給し、希釈流路の出口から、粒子が安定に存在し得る濃度以下に水混和性有機溶媒濃度を希釈した水溶液Cを得ることを含む、粒子含有水溶液の製造方法。
    An aqueous solution A containing particles Z containing self-assembled molecules as a particle constituent and containing a water-miscible organic solvent at a concentration of 20 vol% or more is diluted with an aqueous solution B 1 to have a number average particle diameter of 200 nm or less. A method comprising obtaining an aqueous solution C containing particles Z, comprising:
    The dilution has a D1 introduction path and a Dn (for example, n = 2 to 7) introduction path on the upstream side, and the Dn introduction paths are arranged such that all the introduction paths sandwich the D1 introduction path at a point p. Using a diluting flow channel structure having a diluting flow channel on the downstream side from p,
    An aqueous solution A is supplied to the D1 introduction path and an aqueous solution B n (for example, n = 1 to 6) is supplied to the Dn introduction path, and the water-miscible organic solvent is supplied from the outlet of the dilution flow path to a concentration at which the particles can stably exist. A method for producing an aqueous solution containing particles, which comprises obtaining an aqueous solution C having a diluted concentration.
  3. 自己組織分子がA)脂質、B)両親媒性物質のいずれか一方、又はA)とB)の両方からなる、請求項1または2記載の製造方法。 The method according to claim 1 or 2, wherein the self-assembling molecule is composed of either A) a lipid, B) an amphipathic substance, or both A) and B).
  4. 水混和性有機溶媒がアルカノールである、請求項1~3のいずれか記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the water-miscible organic solvent is an alkanol.
  5. 粒子Zがリポソーム、脂質ミセル、またはポリマーミセルである、請求項1~4のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the particles Z are liposomes, lipid micelles, or polymer micelles.
  6. D2導入路は複数のD2導入路mからなり、当該複数のD2導入路mが希釈流路の同一地点pにおいて希釈流路を挟み込むように配置されている、請求項1~5のいずれかに記載の製造方法。 The D2 introducing passage is composed of a plurality of D2 introducing passages m, and the plurality of D2 introducing passages m are arranged so as to sandwich the dilution passage at the same point p of the dilution passage. The manufacturing method described.
  7. Dn導入路は複数のDn導入路mからなり、当該複数のDn導入路mが希釈流路の同一地点pにおいて希釈流路を挟み込むように配置されている、請求項1~6のいずれかに記載xの製造方法。 7. The Dn introducing passage is composed of a plurality of Dn introducing passages m, and the plurality of Dn introducing passages m are arranged so as to sandwich the dilution passage at the same point p of the dilution passage. The manufacturing method of statement x.
  8. D1導入路が2以上に分岐しており、かつ各分岐したD1流路に対してD2導入路が配置されている、請求項1~7のいずれかに記載の製造方法。 8. The manufacturing method according to claim 1, wherein the D1 introducing passage is branched into two or more, and the D2 introducing passage is arranged for each branched D1 flow passage.
  9. 希釈流路は途中で2以上に分岐しており、かつ各分岐した希釈流路に対してDn導入路が配置されている、請求項1~8のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 8, wherein the dilution flow channel is branched into two or more on the way, and a Dn introduction channel is arranged for each branched dilution flow channel.
  10. 希釈流路における水溶液の滞留時間は1000ミリ秒以下である、請求項1~9のいずれかに記載の製造方法。 The production method according to claim 1, wherein the residence time of the aqueous solution in the dilution flow channel is 1000 milliseconds or less.
  11. 水溶液Cに含まれる水混和性有機溶媒濃度が3vol%以下である、請求項1~10のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 10, wherein the concentration of the water-miscible organic solvent contained in the aqueous solution C is 3 vol% or less.
  12. 水溶液Aは、自己組織化分子を含有する水混和性有機溶媒と粒子調製用水溶液を混合して粒子含有水溶液を調製するための粒子調製用流路構造体を用いて調製され、調製直後に、希釈用流路構造体のD1導入路に供給される、請求項1~11のいずれかに記載の製造方法。 The aqueous solution A is prepared by using a particle-preparing flow channel structure for preparing a particle-containing aqueous solution by mixing a water-miscible organic solvent containing a self-assembling molecule and a particle-preparing aqueous solution, and immediately after preparation, The manufacturing method according to any one of claims 1 to 11, which is supplied to a D1 introduction path of the diluting flow path structure.
  13. 粒子調製用流路構造体は、上流側に少なくとも2以上からなるSq導入路を有し、各導入路の合流部から下流側に粒子調製流路を有し、粒子調製流路の出口から水溶液Aを排出し、排出した水溶液AはD1導入路に供給される請求項12に記載の製造方法。 The particle-preparing flow path structure has an Sq introduction path consisting of at least two or more on the upstream side, has a particle preparation flow path on the downstream side from the joining portion of each introduction path, and has an aqueous solution from the outlet of the particle preparation flow path. The manufacturing method according to claim 12, wherein A is discharged, and the discharged aqueous solution A is supplied to the D1 introducing passage.
  14. 粒子調製流路及び希釈流路は、それぞれ又は一方の流路内にマイクロミキサーを有する、請求項13に記載の製造方法。 The manufacturing method according to claim 13, wherein the particle preparation channel and the dilution channel each include a micromixer in one or one of the channels.
  15. 水溶液C中の脂質粒子の個数平均の粒子径は100nm以下または60nm以下である、請求項1~14のいずれかに記載の製造方法。 15. The production method according to claim 1, wherein the number average particle diameter of the lipid particles in the aqueous solution C is 100 nm or less or 60 nm or less.
  16. 水溶液A中の脂質粒子の濃度は20mg/mL以下であり、水溶液C中の脂質粒子の濃度は5mg/mL以下である、請求項1~15のいずれかに記載の製造方法。 The method according to any one of claims 1 to 15, wherein the concentration of the lipid particles in the aqueous solution A is 20 mg / mL or less and the concentration of the lipid particles in the aqueous solution C is 5 mg / mL or less.
  17. 希釈流路の出口から排出された水溶液Cは、さらに透析に付され水混和性有機溶媒を除去した水溶液を得る請求項1~16のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 16, wherein the aqueous solution C discharged from the outlet of the dilution channel is further subjected to dialysis to obtain an aqueous solution from which the water-miscible organic solvent is removed.
  18. 粒子Zに内封物が含まれる、請求項1~17のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 17, wherein the particles Z include an encapsulated material.
  19. 自己組織化分子を粒子構成成分として含む粒子Zを含有しかつ水混和性有機溶媒を含む水溶液を別の水溶液で希釈するための流路構造体であって、上流側にD1導入路及びD2導入路を有し、D1導入路及びD2導入路の合流部から下流側に希釈流路を有し、かつ希釈流路の途中に1つ以上のDn導入路(例えば、n=3~7)を有する、希釈用流路構造体。 A flow channel structure for diluting an aqueous solution containing a particle Z containing a self-assembling molecule as a particle constituent and containing a water-miscible organic solvent, the upstream side being a D1 introduction path and a D2 introduction A diluting flow path downstream from the confluence of the D1 introducing path and the D2 introducing path, and one or more Dn introducing paths (for example, n = 3 to 7) in the middle of the diluting path. A diluting flow channel structure having.
  20. 自己組織化分子を粒子構成成分として含む粒子Zを含有しかつ水混和性有機溶媒を含む水溶液を別の水溶液で希釈するための流路構造体であって、上流側にD1導入路及びDn(例えば、n=2~7)導入路を有し、Dn導入路はすべての導入路が地点pにおいてD1導入路を挟み込むように配置され、地点pから下流側には希釈流路を有する希釈用流路構造体を有する、希釈用流路構造体。 A flow channel structure for diluting an aqueous solution containing particles Z containing self-assembled molecules as a particle constituent and containing a water-miscible organic solvent with a D1 introducing path and a Dn ( For example, n = 2 to 7) has an introduction path, all of the Dn introduction paths are arranged so as to sandwich the D1 introduction path at the point p, and a dilution flow path is provided downstream from the point p for dilution. A diluting flow channel structure having a flow channel structure.
  21. 粒子調製用流路構造体及び希釈用流路構造体を有する粒子製造用流路構造体であって、
    粒子調製用流路構造体は、上流側に少なくとも2以上からなるSq導入路を有し、各導入路の合流部から下流側に粒子調製流路を有し、
    希釈用流路構造体は、上流側にD1導入路及びD2導入路を有し、D1導入路及びD2導入路の合流部から下流側に希釈流路を有し、かつ希釈流路の途中に1つ以上のDn導入路(例えば、n=3~7)を有し、
    調製流路の出口とD1導入路が直結する、粒子製造用流路構造体。
    A particle production flow channel structure having a particle preparation flow channel structure and a dilution flow channel structure,
    The particle-preparing flow channel structure has an Sq introducing passage consisting of at least two or more on the upstream side, and has a particle preparing passage on the downstream side from the joining portion of each introducing passage,
    The diluting flow path structure has a D1 introducing path and a D2 introducing path on the upstream side, a diluting flow path on the downstream side from the confluence of the D1 introducing path and the D2 introducing path, and in the middle of the diluting path. Having one or more Dn introduction paths (eg, n = 3 to 7),
    A flow channel structure for producing particles, wherein the outlet of the preparation flow channel is directly connected to the D1 introduction channel.
  22. D2導入路は複数のD2導入路からなり、当該複数のD2導入路mが希釈流路の同一地点pにおいて希釈流路を挟み込むように配置されている、請求項19~21のいずれかに記載の希釈流路構造体または粒子製造用流路構造体。 The D2 introducing passage is composed of a plurality of D2 introducing passages, and the plurality of D2 introducing passages m are arranged so as to sandwich the dilution passage at the same point p of the dilution passage. The diluting flow channel structure or the flow channel structure for producing particles.
  23. Dn導入路は複数のDn導入路mからなり、当該複数のDn導入路mが希釈流路の同一地点pにおいて希釈流路を挟み込むように配置されている、請求項19~22のいずれかに記載の希釈流路構造体または粒子製造用流路構造体。 The Dn introducing passage is composed of a plurality of Dn introducing passages m, and the plurality of Dn introducing passages m are arranged so as to sandwich the dilution passage at the same point p of the dilution passage. The diluted flow channel structure or the flow channel structure for producing particles as described above.
  24. D1導入路が2以上に分岐しており、かつ各分岐したD1流路に対してD2導入路が配置されている、請求項19~23のいずれかに記載の希釈流路構造体または粒子製造用流路構造体。 The dilution flow channel structure or particle production according to any one of claims 19 to 23, wherein the D1 introduction passage is branched into two or more, and the D2 introduction passage is arranged for each branched D1 passage. Flow channel structure.
  25. 希釈流路は途中で2以上に分岐しており、かつ各分岐した希釈流路に対してDn導入路が配置されている、請求項19~24のいずれかに記載の希釈流路構造体または粒子製造用流路構造体。 The dilution flow channel structure according to any one of claims 19 to 24, wherein the dilution flow channel has two or more branches on the way, and a Dn introduction channel is arranged for each branched dilution flow channel. A flow channel structure for producing particles.
PCT/JP2019/043420 2018-11-09 2019-11-06 Method for producing particle-containing aqueous solution WO2020095927A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020556107A JPWO2020095927A1 (en) 2018-11-09 2019-11-06 Method for producing particle-containing aqueous solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018211841 2018-11-09
JP2018-211841 2018-11-09

Publications (1)

Publication Number Publication Date
WO2020095927A1 true WO2020095927A1 (en) 2020-05-14

Family

ID=70610719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043420 WO2020095927A1 (en) 2018-11-09 2019-11-06 Method for producing particle-containing aqueous solution

Country Status (2)

Country Link
JP (1) JPWO2020095927A1 (en)
WO (1) WO2020095927A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153404A1 (en) * 2022-02-08 2023-08-17 国立大学法人北海道大学 Flow path structure and method for manufacturing self-organizing material particles using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007533798A (en) * 2004-04-23 2007-11-22 クマチェヴァ、ユージニア Method for producing polymer particles having specific particle size, shape, form and composition
JP2013510096A (en) * 2009-11-04 2013-03-21 ザ ユニバーシティ オブ ブリティッシュ コロンビア Nucleic acid-containing lipid particles and related methods
US20150115488A1 (en) * 2013-10-28 2015-04-30 University Of Maryland, College Park Microfluidic Liposome Synthesis, Purification and Active Drug Loading
WO2015160919A1 (en) * 2014-04-16 2015-10-22 President And Fellows Of Harvard College Systems and methods for producing droplet emulsions with relatively thin shells
JP2018515324A (en) * 2015-02-24 2018-06-14 ザ・ユニバーシティ・オブ・ブリティッシュ・コロンビア Continuous flow microfluidic system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007533798A (en) * 2004-04-23 2007-11-22 クマチェヴァ、ユージニア Method for producing polymer particles having specific particle size, shape, form and composition
JP2013510096A (en) * 2009-11-04 2013-03-21 ザ ユニバーシティ オブ ブリティッシュ コロンビア Nucleic acid-containing lipid particles and related methods
US20150115488A1 (en) * 2013-10-28 2015-04-30 University Of Maryland, College Park Microfluidic Liposome Synthesis, Purification and Active Drug Loading
WO2015160919A1 (en) * 2014-04-16 2015-10-22 President And Fellows Of Harvard College Systems and methods for producing droplet emulsions with relatively thin shells
JP2018515324A (en) * 2015-02-24 2018-06-14 ザ・ユニバーシティ・オブ・ブリティッシュ・コロンビア Continuous flow microfluidic system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153404A1 (en) * 2022-02-08 2023-08-17 国立大学法人北海道大学 Flow path structure and method for manufacturing self-organizing material particles using same

Also Published As

Publication number Publication date
JPWO2020095927A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
US20230235359A1 (en) Nucleic acid-containing lipid particles and related methods
US20190307689A1 (en) Lipid nanoparticles for transfection and related methods
US11938454B2 (en) Continuous flow microfluidic system
US20200269201A1 (en) Bifurcating mixers and methods of their use and manufacture
JP6640079B2 (en) Device and method for preparing small volume particles
JP2017523965A (en) Method of encapsulating nucleic acid in lipid nanoparticle host
WO2020095927A1 (en) Method for producing particle-containing aqueous solution
JP7014469B2 (en) Three-dimensional flow path structure and manufacturing method of nanoparticles using it
JP7379776B2 (en) Compositions for transfecting resistant cell types
WO2023153404A1 (en) Flow path structure and method for manufacturing self-organizing material particles using same
WO2023162903A1 (en) Lipid particle containing liquid, method for producing same, and kit
KR20230130538A (en) Method for manufacturing lipid nanoparticles for mRNA delivery to increase mRNA delivery efficiency
CA2883052A1 (en) Continuous flow microfluidic system
BELLIVEAU et al. Patent 2816925 Summary

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19881615

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556107

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19881615

Country of ref document: EP

Kind code of ref document: A1