WO2023145011A1 - Laser sensor device and robot system - Google Patents

Laser sensor device and robot system Download PDF

Info

Publication number
WO2023145011A1
WO2023145011A1 PCT/JP2022/003377 JP2022003377W WO2023145011A1 WO 2023145011 A1 WO2023145011 A1 WO 2023145011A1 JP 2022003377 W JP2022003377 W JP 2022003377W WO 2023145011 A1 WO2023145011 A1 WO 2023145011A1
Authority
WO
WIPO (PCT)
Prior art keywords
detected
relative
current frame
sensor device
radar sensor
Prior art date
Application number
PCT/JP2022/003377
Other languages
French (fr)
Japanese (ja)
Inventor
黎治 西垣
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2022/003377 priority Critical patent/WO2023145011A1/en
Publication of WO2023145011A1 publication Critical patent/WO2023145011A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems

Definitions

  • This specification discloses a radar sensor device and a robot system.
  • a FMCW (Frequency Modulated Continuous Wave) type radar sensor device is known as a sensor that detects the relative distance to an object and the relative velocity to the object.
  • a FMCW radar sensor device a plurality of candidate values for relative speed are calculated from vehicle speed, distance, and measured values, and an observation range map for the vehicle speed created in advance is referenced. Then, an observation range corresponding to the own vehicle speed is set, and a candidate value falling within the set observation range from the candidate values of the relative speed is selected as the relative speed.
  • the relative velocity between the sensor and the object is determined by IF signals (transmission chirp and signal mixed with the received chirp) is detected based on the phase difference.
  • IF signals transmission chirp and signal mixed with the received chirp
  • the phase difference of the IF signals exceeds 180°
  • the relative velocity is folded back, resulting in ambiguity in the relative velocity.
  • a sensor for detecting the speed of the vehicle is required, which complicates the system. Such problems can also occur when detecting the relative angle between the sensor and the object.
  • the main purpose of the present disclosure is to appropriately determine the return of the relative velocity or relative angle with a simple configuration in an FMCW radar sensor device.
  • a first radar sensor device of the present disclosure includes: An FMCW type radar sensor device that detects a relative distance to an object and a relative speed to the object for each frame, determining whether the detected objects are the same object based on the relative distance detected in the current frame and the relative distance detected in the previous frame; determining whether or not the detected objects are the same object based on the velocity and the relative velocity detected in the previous frame, and judging that the object is the same object based on the relative distance and the relative velocity Determining that the relative velocity detected in the current frame has turned around when the object is not the same object; This is the gist of it.
  • the first radar sensor device of the present disclosure based on the relative distance to the object detected in the current frame and the previous frame, it is determined that both are the same object in terms of distance.
  • it is determined that the two objects are not the same object in terms of speed based on the relative speed with respect to the object detected in each frame it is determined that the relative speed has turned around. As a result, it is possible to appropriately determine whether or not the relative velocity is turned back by a simple process.
  • a second radar sensor device of the present disclosure includes: An FMCW radar sensor device that detects a relative distance to an object and a relative angle to the object for each frame, determining whether the detected objects are the same object based on the relative distance detected in the current frame and the relative distance detected in the previous frame; determining whether the detected objects are the same object based on the angle and the relative angle detected in the previous frame, and determining whether the objects are the same object based on the relative distance and based on the relative angle Determining that the relative angle detected in the current frame is folded when the object is not the same object; This is the gist of it.
  • the second radar sensor device of the present disclosure based on the relative distance to the object detected in the current frame and the previous frame, it is determined that both are the same object in terms of distance.
  • it is determined that the two objects are not the same object in angle based on the relative angle to the object detected in each frame it is determined that the relative angle is folded. As a result, it is possible to appropriately determine whether or not the relative angle is folded by a simple process.
  • a first robot system of the present disclosure includes: a robot control device for controlling a robot main body; An FMCW type radar sensor device that detects a relative distance to an object and a relative speed to the object for each frame, based on the relative distance detected in the current frame and the relative distance detected in the previous frame determining whether or not the objects detected respectively are the same object, and determining whether the detected objects are the same object based on the relative velocity detected in the current frame and the relative velocity detected in the previous frame It is determined whether or not the object is the same object, and when the object is the same object based on the relative distance and the object is not the same object based on the relative velocity, it is determined that the relative velocity detected in the current frame has turned around. and a radar sensor device that outputs a signal corresponding to the determination result to the robot control device; The gist is to provide
  • the first robot system of the present disclosure includes the first radar sensor device of the present disclosure, the same effects as those of the first radar sensor device can be achieved.
  • a second robotic system of the present disclosure includes: a robot control device for controlling a robot main body; An FMCW type radar sensor device that detects a relative distance to an object and a relative speed to the object for each frame, based on the relative distance detected in the current frame and the relative distance detected in the previous frame and determining whether or not the objects detected in each step are the same object, and determining which objects are detected based on the relative angle detected in the current frame and the relative angle detected in the previous frame. It is determined whether or not the object is the same, and if the object is the same based on the relative distance and is not the same object based on the relative angle, it is determined that the relative angle detected in the current frame is folded. and a radar sensor device that outputs a signal corresponding to the determination result to the robot control device; The gist is to provide
  • the second robot system of the present disclosure includes the second radar sensor device of the present disclosure, the same effects as those of the second radar sensor device can be achieved.
  • FIG. 1 is a schematic configuration diagram of a robot system including a radar sensor device of this embodiment
  • FIG. 8 is a flowchart illustrating an example of turnaround determination processing
  • FIG. 4 is an explanatory diagram showing true values and detected values inside and outside a detection range
  • 10 is a flowchart showing an example of turn-around determination processing according to another embodiment
  • FIG. 1 is a schematic configuration diagram of a robot system 1 including a radar sensor device 10 of this embodiment.
  • the robot system 1 includes a robot body 2, a robot controller 3 that controls the motion of the robot body 2, and a radar sensor device 10 that can detect objects (interfering objects) around the robot body 2.
  • the robot body 2 may be a stationary robot or a self-propelled robot. Examples of the robot main body 2 include an arm robot having a multi-joint arm that carries out a predetermined operation with a tool attached to its hand, an automatic transport robot that transports articles by running on a predetermined running route, and the like. can be done.
  • the radar sensor device 10 of this embodiment is an FMCW (Frequency Modulated Continuous Wave) type radar sensor capable of simultaneously detecting the distance to an object and the relative distance to the object.
  • the radar sensor device 10 can be installed, for example, at the tip of the arm.
  • the radar sensor device 10 includes a transmitting antenna unit 11 that transmits a transmitting chirp, a receiving antenna unit 12 that receives a reflected wave from an object as a receiving chirp, a synthesizer 13 that generates a transmitting chirp, A mixer 14 that mixes the transmission chirp and the reception chirp, a processing unit 20 that processes the output signal of the mixer 14 to detect the distance to the object and the relative speed to the object, and a control unit 30 that controls the entire apparatus. And prepare.
  • the synthesizer 13 generates, as a transmission chirp, a signal whose frequency is changed (for example, the frequency is linearly increased) over time.
  • the synthesizer 13 generates a set (one frame) of N (N is a natural number equal to or greater than 2) transmission chirps separated by a constant interval Tc.
  • a mixer 14 mixes the transmit chirp and the receive chirp to generate an intermediate frequency signal (IF signal).
  • the IF signal consists of tones with constant frequencies. Also, when there are a plurality of objects at different distances, the IF signal includes tones having different frequencies for each reflected wave reflected from each object.
  • the instantaneous frequency of the IF signal is equal to the difference between the instantaneous frequency of the transmit chirp and the instantaneous frequency of the receive chirp, and the phase of the IF signal is equal to the difference between the phase of the transmit chirp and the receive chirp.
  • the processing unit 20 includes an A/D converter (ADC) 21 that A/D converts the IF signal, and Fourier transform processing (FFT processing) of the A/D converted IF signal to obtain the relative distance to the object and the distance to the object. and a DSP 22 that detects the relative velocity of the .
  • ADC A/D converter
  • FFT processing Fourier transform processing
  • the DSP 22 has a distance FFT section and a velocity FFT section.
  • the distance FFT unit performs FFT processing (distance FFT processing) on the IF signal for each chirp to obtain a frequency spectrum having different peaks for each tone. Each peak in frequency signifies the presence of an object at a certain distance. Since the tone frequency and the relative distance to the object have a proportional relationship, the relative distance to the object can be calculated based on the peak frequency.
  • the velocity FFT unit further performs FFT processing (velocity FFT processing) on the data after the distance FFT processing on a frame-by-frame basis to obtain angular frequency peaks.
  • a set of transmission chirps (one frame) is transmitted at a constant interval Tc, and the IF signals for each chirp obtained from an object that has moved during that time are out of phase with each other.
  • the angular frequency corresponds to the phase difference of the IF signal between consecutive chirps, and since the angular frequency and the relative velocity of the object have a proportional relationship, the relative velocity of the object can be calculated based on the peak angular frequency. .
  • the detection of the relative velocity is performed based on the phase difference, if the phase difference is out of the range of -180° to +180°, the detected velocity will turn around and become ambiguous.
  • the control unit 30 is configured as a microprocessor centering on a CPU, and in addition to the CPU, includes a ROM for storing processing programs, a RAM for temporarily storing data, an input/output port, and the like.
  • the control unit 30 receives distance information and speed information for each frame from the processing unit 20 (DSP 22). Also, the control unit 30 is communicably connected to the robot control device 3 and outputs data and signals to the robot control device 3 .
  • FIG. 2 is a flowchart showing an example of turn-around determination processing executed by the control unit 30 (CPU).
  • the control unit 30 When the turnaround determination process is executed, the control unit 30 (CPU) first acquires the detected distance and detected speed for each object in the current frame from the processing unit 20 (S100). Subsequently, the control unit 30 compares the detected distances of the previous frame (one frame before the current frame) and the detected distances of the current frame (S110). It is determined whether or not they match (S120).
  • the first predetermined range is an error range in which the object detected in the previous frame and the object detected in the current frame can be regarded as objects at the same distance, that is, the same object in terms of distance.
  • the first predetermined range is predetermined based on the specifications (distance resolution, etc.) of the radar sensor device 10 within a range that satisfies safety standards. If the control unit 30 determines that the detected distances of the two do not match within the first predetermined range, the control unit 30 determines that the two are different objects in terms of distance, and terminates the turnaround determination process.
  • the control unit 30 determines that the detection distances of both match within the first predetermined range, the control unit 30 determines that the two are the same object in terms of distance.
  • the detected velocities are compared (S130), and it is determined whether or not the two detected velocities match within the second predetermined range (S140).
  • the second predetermined range is an error range in which the object detected in the previous frame and the object detected in the current frame can be regarded as objects having the same relative velocity, that is, the same object in terms of velocity.
  • the second predetermined range is predetermined based on the specifications (velocity resolution, etc.) of the radar sensor device 10 within a range that satisfies safety standards.
  • control unit 30 determines that the detected velocities of both match within the second predetermined range, both are the same object in terms of distance and velocity, and the detected velocity detected in the current frame does not turn around. It is judged that there is not, and the turn-around determination processing is terminated without correcting the detected speed.
  • the object detected in the previous frame and the object detected in the current frame can be regarded as the same object in terms of distance.
  • speed it is determined that they are different objects, and it is determined that the detected speed has turned around (S150).
  • the direction in which an object (target) approaches the radar sensor device 10 is positive, and the relative velocity of the target (object) is detected by the radar sensor device whose relative velocity detection range is -2.0 to +2.0 m/s.
  • the target (object) is approaching at a speed of 2.0 m/s, the speed of the target is within the detection range.
  • the control unit 30 controls the case where the objects detected in the previous frame and the current frame can be regarded as the same object in terms of distance but cannot be regarded as the same object in terms of speed (detected speed changes beyond what is normally considered), it is determined that a turnaround has occurred in the velocity.
  • folding occurs when the phase difference of the IF signal between consecutive chirps is out of the range of -180° to +180°, and the relative velocity detection range is -180° to +180°.
  • the velocity range corresponds to the phase difference range.
  • control unit 30 uses the regularity of the turnaround to correct the detected speed of the current frame (S160). Correction of the detected speed can be performed as follows.
  • the result of velocity FFT processing is expressed as N data corresponding to the number of data after distance FFT processing (the number of transmission chirps in one frame). frequency).
  • the indices from value 1 to value (N/2+1) indicate the speed from value 0 to the maximum positive value in the detection range from value (N/2+2) to value N. are treated as representing velocities from the maximum negative value to the minimum negative value in the detection range, respectively.
  • the detected speed V is obtained by the following equations (1) and (2), where Vres is the speed resolution.
  • Vres is the speed resolution.
  • the result of the velocity FFT processing has a peak at the position (angular frequency) of value (N/2+1), that is, when the object further accelerates from the state having the maximum detectable positive positive velocity, the following A peak appears at the index value (N/2+2).
  • this index is defined as the maximum negative value, the detected velocity V will not be a correct value. This is observed as folding. Folding correction is performed when a peak appears at an index defined as a positive velocity in the previous frame, and a peak appears in an index defined as a negative velocity for an object whose distance is the same as that in the previous frame in the current frame.
  • the control unit 30 After performing the aliasing correction, the control unit 30 compares the detection speed of the object detected in the previous frame with the corrected speed of the object detected in the current frame (S170). It is determined whether or not there is a match within the range (S180). If the control unit 30 determines that the velocities of the two match within the second predetermined range, it determines that the two can be regarded as the same object in terms of velocities. The speed is set (confirmed) (S190), and the turn-around determination process ends. On the other hand, when the control unit 30 determines that the speeds of the two do not match within the second predetermined range, the object detected in the previous frame and the object detected in the current frame are different objects moving at different relative speeds. It recognizes that there is (S200), and terminates the turnaround determination process without correcting the detection speed of the current frame.
  • the control unit 30 when the control unit 30 determines that the detection speed of the object detected in the current frame has turned around, the detection speed of the current frame is corrected using the regularity of the turnaround. .
  • the control unit 30 may set the detection speed of the current frame to the detection speed immediately before the turnaround (the detection speed of the previous frame).
  • the control unit 30 sets the detected speed of the current frame to the maximum positive value in the detection range. If the detected velocity of the object up to the previous frame is a negative value (in the direction away from the radar sensor device 10), the detected velocity of the current frame may be set to the maximum negative value in the detection range.
  • the radar sensor device 10 detects the relative distance to the object and the relative speed to the object.
  • the angle of the object) is detected, and when the folding of the relative angle is determined, the relative angle may be corrected based on the regularity of the folding.
  • the radar sensor device 10 includes, for example, a plurality of (X) transmitting antennas arranged in an array at predetermined intervals as the transmitting antenna unit 11, and the receiving antenna unit 12 as the transmitting antenna interval It can be configured as a MIMO (Multi-Input Multi-Output) radar sensor having a plurality of (Y) receiving antennas arranged in an array in the same direction as the transmitting antennas at different intervals.
  • MIMO Multi-Input Multi-Output
  • the processing unit 20 performs FFT processing (angle FFT processing) on the data after velocity FFT processing over a plurality of reception antennas (X ⁇ Y virtual reception antennas), thereby obtaining
  • FFT processing angle FFT processing
  • the relative angle to the object can be calculated by detecting the time difference until receiving the reflected wave from the object as the phase difference (angular frequency).
  • the control unit 30 (CPU) first acquires the detected distance and detected angle for each object in the current frame from the processing unit 20 (S300). Subsequently, similarly to S110 and S120 described above, the control unit 30 compares the detection distances detected in the previous frame and the current frame, and determines whether the detection distances of both match within the first predetermined range. is determined (S310, S320). The first predetermined range has been described above. If the control unit 30 determines that the detected distances of the two do not match within the first predetermined range, the control unit 30 determines that the two are different objects in terms of distance, and terminates the turnaround determination process.
  • the control unit 30 determines that the detection distances of both match within the first predetermined range, the control unit 30 determines that the two are the same object in terms of distance.
  • the detected angles are compared (S330), and it is determined whether the two detected angles match within a third predetermined range (S340).
  • the third predetermined range is an error range in which the object detected in the previous frame and the object detected in the current frame can be regarded as objects having the same relative angle, ie, the same angular object.
  • the third predetermined range is predetermined based on the specifications (angular resolution, etc.) of the radar sensor device 10 within a range that satisfies safety standards.
  • control unit 30 determines that the detected angles of both match within the third predetermined range, both are the same object in terms of distance and angle, and the detected angle detected in the current frame does not fold. It is determined that there is no such angle, and the turnaround determination process is terminated without correcting the detected angle.
  • the control unit 30 determines that the two detection angles do not match within the third predetermined range, the object detected in the previous frame and the object detected in the current frame can be regarded as the same object in terms of distance. However, it is determined that it is a different object in terms of angle, and it is determined that folding has occurred in the detected angle (S350). That is, the control unit 30 determines that the object detected in the previous frame and the current frame can be regarded as the same object in terms of distance, but cannot be regarded as the same object in terms of angle (detection angle is usually considered If the change exceeds the degree), it is determined that the angle has been folded back.
  • the angle turn-around determination is performed by adding the above-described S130 and S140 between S320 and S330, and the detected distances in the previous frame and the current frame match within the first predetermined range, and , when the detected velocities match within the second predetermined range and the detected angles do not match within the third predetermined range, it is determined that the detected angle has turned around. good too.
  • control unit 30 determines that the angle has been folded back, it corrects the detected angle of the current frame using the folding regularity (S360). Correction of the detected angle can be performed as follows. It is assumed that the result of the angle FFT processing is expressed as M pieces of data, and that the object has an angle corresponding to the index (peak angular frequency) indicating the peak among the M pieces of data. Then, among the indices of values 1 to M, the indices from value 1 to value (M/2+1) indicate the angle from value 0 to the maximum positive value in the detection range from value (N/2+2) to value N. treat each index as representing an angle from the maximum negative value to the minimum negative value in the detection range.
  • the detection angle ⁇ is obtained by the following equations (3) and (4), where ⁇ res is the angular resolution.
  • ⁇ res is the angular resolution.
  • the result of angle FFT processing has a peak at the position (angular frequency) of value (M/2+1), that is, when the object moves further in the positive direction from the state with the maximum detectable positive angle , a peak appears at the value (M/2+2), which is the next index.
  • this index is defined as the maximum negative value
  • the detected angle ⁇ will not be a correct value. This is observed as folding. Folding correction is performed when a peak appears at an index defined as a positive angle in the previous frame, and a peak appears in an index defined as a negative angle for the same object in terms of distance as the previous frame in the current frame.
  • the detection angle ⁇ is calculated using equation (4), which defines a negative angle.
  • the phase difference ⁇ caused by the relative angle ⁇ (detection angle) between the sensor and the object is given by the following equation (5).
  • the angular resolution ⁇ res in equations (3) and (4) may be determined not as a constant but as gradually increasing as k increases. That is, different angular resolutions ⁇ res may be set for each angular bin, and equations (3) and (4) may be applied.
  • the control unit 30 After performing the aliasing correction, the control unit 30 compares the detected angle of the object detected in the previous frame with the corrected angle of the object detected in the current frame (S370), and determines that both angles are within the third predetermined range. (S380). If the control unit 30 determines that the two angles match within the third predetermined range, the control unit 30 determines that the two can be regarded as the same object in terms of angles, and uses the corrected angle corrected in S360 to detect the object detected in the current frame. The angle is set (confirmed) (S390), and the turnaround determination process ends.
  • the control unit 30 determines that the two angles do not match within the third predetermined range, the object detected in the previous frame and the object detected in the current frame are different objects positioned at different relative angles. It is recognized that there is (S400), and the turnaround determination process ends without correcting the detected angle of the current frame.
  • the first radar sensor device of the present disclosure based on the relative distance to the object detected in the current frame and the previous frame, it is determined that both are the same object in terms of distance. , when it is determined based on the relative velocities of the object detected in the current frame and the previous frame that the two are not the same object in terms of velocity, it is determined that the relative velocity has turned around. As a result, it is possible to appropriately determine whether or not the relative velocity is turned back by a simple process.
  • the regularity of the turnaround may be used to correct the relative velocity detected in the current frame. By doing so, it is possible to widen the detectable velocity range by simple processing without increasing the sensing cycle of the radar sensor device or the amount of sensing data.
  • the relative velocity if it is determined that the relative velocity has turned around in the current frame, it is detected based on the corrected velocity obtained by correcting the relative velocity detected in the current frame and the relative velocity detected in the previous frame. If it is determined that the object is the same object, the corrected velocity is set to the relative velocity detected in the current frame, and if it is determined that the object is not the same object, different relative velocities may be determined as different objects. By doing so, it is possible to more appropriately correct the relative velocity detected in the current frame. In addition, it is possible to suppress erroneous recognition of a plurality of different objects as the same object.
  • the second radar sensor device of the present disclosure based on the relative distance to the object detected in the current frame and the previous frame, it is determined that both are the same object in terms of distance.
  • it is determined that the two objects are not angularly identical to each other based on the relative angle to the object detected in the previous frame it is determined that the relative angle has been turned around. As a result, it is possible to appropriately determine whether or not the relative angle is folded by a simple process.
  • the regularity of the turnaround may be used to correct the relative angle detected in the current frame. This makes it possible to widen the detectable angular range by simple processing without increasing the sensing cycle of the radar sensor device or the amount of sensing data.
  • the angle is detected based on the corrected angle obtained by correcting the relative angle detected in the current frame and the relative angle detected in the previous frame. If it is determined that the object is the same object, the corrected angle is set to the relative angle detected in the current frame, and if it is determined that the object is not the same object, the relative angle is different. may be determined as different objects. By doing so, it is possible to more appropriately correct the relative angle detected in the current frame. In addition, it is possible to suppress erroneous recognition of a plurality of different objects as the same object.
  • the present disclosure is not limited to being in the form of a radar sensor device, but may be in the form of a robot system including a robot control device and a radar sensor device.
  • the present disclosure can be used in the manufacturing industry of radar sensor devices and robots.
  • Robot system 1 Robot system, 2 Robot body, 3 Robot control device, 10 Radar sensor device, 11 Transmitting antenna unit, 12 Receiving antenna unit, 13 Synthesizer, 14 Mixer, 20 Processing unit, 30 Control unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

This laser sensor device is an FMCW laser sensor that detects the relative distance to an object and a relative speed with respect to the object for each frame. The laser sensor device: assesses, on the basis of the relative distance detected in a current frame and the relative distance detected in a previous frame, whether or not objects detected in each of the frames are the same object; assesses, on the basis of the relative speed detected in the current frame and the relative speed detected in the previous frame, whether or not the objects detected in each of the frames are the same object; and, if the objects are detected to be the same based on the relative distances but to not be the same based on the relative speeds, assesses that wrapping has occurred in the relative speed detected in the current frame.

Description

レーダセンサ装置およびロボットシステムRadar sensor device and robot system
 本明細書は、レーダセンサ装置およびロボットシステムについて開示する。 This specification discloses a radar sensor device and a robot system.
 従来、物体までの相対距離と物体との相対速度とを検出するセンサとして、FMCW(Frequency Modulated Continuous Wave)方式のレーダセンサ装置が知られている。例えば、特許文献1には、FMCW方式のレーダセンサ装置において、自車速度、距離および測定値から相対速度の候補値を複数算出し、予め作成されている自車速度に対する観測範囲のマップを参照して自車速度に応じた観測範囲を設定し、相対速度の候補値のうち設定した観測範囲に入る候補値を、相対速度として選択するものが開示されている。 Conventionally, a FMCW (Frequency Modulated Continuous Wave) type radar sensor device is known as a sensor that detects the relative distance to an object and the relative velocity to the object. For example, in Patent Document 1, in an FMCW radar sensor device, a plurality of candidate values for relative speed are calculated from vehicle speed, distance, and measured values, and an observation range map for the vehicle speed created in advance is referenced. Then, an observation range corresponding to the own vehicle speed is set, and a candidate value falling within the set observation range from the candidate values of the relative speed is selected as the relative speed.
特開2017-207368号公報JP 2017-207368 A
 FMCW方式のレーダセンサ装置において、センサと物体との間の相対速度は、一定間隔で送信される複数の送信チャープを用いて移動中の物体の2点からそれぞれ取得されるIF信号(送信チャープと受信チャープとが混合された信号)の位相差に基づいて検出される。ただし、IF信号の位相差が180°を超えると、相対速度の折り返しが発生するため、相対速度に曖昧さが生じる。上述した特許文献1記載のレーダセンサ装置では、自車速度に応じた観測範囲を設定するため、自車速度を検出するセンサが必要であり、システムが複雑化する。こうした問題は、センサと物体との相対角度を検出する場合においても同様に生じうる。 In the FMCW radar sensor device, the relative velocity between the sensor and the object is determined by IF signals (transmission chirp and signal mixed with the received chirp) is detected based on the phase difference. However, when the phase difference of the IF signals exceeds 180°, the relative velocity is folded back, resulting in ambiguity in the relative velocity. In the radar sensor device described in Patent Literature 1 described above, since the observation range is set according to the speed of the vehicle, a sensor for detecting the speed of the vehicle is required, which complicates the system. Such problems can also occur when detecting the relative angle between the sensor and the object.
 本開示は、FMCW方式のレーダセンサ装置において、簡易な構成により相対速度または相対角度の折り返しを適切に判定することを主目的とする。 The main purpose of the present disclosure is to appropriately determine the return of the relative velocity or relative angle with a simple configuration in an FMCW radar sensor device.
 本開示は、上述の主目的を達成するために以下の手段を採った。 This disclosure has taken the following means to achieve the above-mentioned main objectives.
 本開示の第1のレーダセンサ装置は、
 物体までの相対距離と物体との相対速度とをフレーム毎に検出するFMCW方式のレーダセンサ装置であって、
 今フレームにおいて検出された前記相対距離と前フレームにおいて検出された前記相対距離とに基づいてそれぞれ検出された物体が同一物体であるか否かを判定すると共に、前記今フレームにおいて検出された前記相対速度と前記前フレームにおいて検出された前記相対速度とに基づいてそれぞれ検出された物体が同一物体であるか否かを判定し、前記相対距離に基づくと同一物体であり且つ前記相対速度に基づくと同一物体でないときに、前記今フレームにおいて検出された相対速度に折り返しが発生したと判定する、
 ことを要旨とする。
A first radar sensor device of the present disclosure includes:
An FMCW type radar sensor device that detects a relative distance to an object and a relative speed to the object for each frame,
determining whether the detected objects are the same object based on the relative distance detected in the current frame and the relative distance detected in the previous frame; determining whether or not the detected objects are the same object based on the velocity and the relative velocity detected in the previous frame, and judging that the object is the same object based on the relative distance and the relative velocity Determining that the relative velocity detected in the current frame has turned around when the object is not the same object;
This is the gist of it.
 この本開示の第1のレーダセンサ装置では、今フレームおよび前フレームでそれぞれ検出された物体までの相対距離に基づいて両者が距離的に同一物体であると判定される一方で、今フレームおよび前フレームでそれぞれ検出された物体との相対速度に基づいて両者が速度的に同一物体でないと判定される場合に、相対速度に折り返しが生じたと判定する。これにより、簡易な処理により相対速度の折り返しを適切に判定することができる。 In the first radar sensor device of the present disclosure, based on the relative distance to the object detected in the current frame and the previous frame, it is determined that both are the same object in terms of distance. When it is determined that the two objects are not the same object in terms of speed based on the relative speed with respect to the object detected in each frame, it is determined that the relative speed has turned around. As a result, it is possible to appropriately determine whether or not the relative velocity is turned back by a simple process.
 本開示の第2のレーダセンサ装置は、
 物体までの相対距離と物体との相対角度とをフレーム毎に検出するFMCW方式のレーダセンサ装置であって、
 今フレームにおいて検出された前記相対距離と前フレームにおいて検出された前記相対距離とに基づいてそれぞれ検出された物体が同一物体であるか否かを判定すると共に、前記今フレームにおいて検出された前記相対角度と前記前フレームにおいて検出された前記相対角度とに基づいてそれぞれ検出された物体が同一物体であるか否かを判定し、前記相対距離に基づくと同一物体であり且つ前記相対角度に基づくと同一物体でないときに、前記今フレームにおいて検出された相対角度に折り返しが発生したと判定する、
 ことを要旨とする。
A second radar sensor device of the present disclosure includes:
An FMCW radar sensor device that detects a relative distance to an object and a relative angle to the object for each frame,
determining whether the detected objects are the same object based on the relative distance detected in the current frame and the relative distance detected in the previous frame; determining whether the detected objects are the same object based on the angle and the relative angle detected in the previous frame, and determining whether the objects are the same object based on the relative distance and based on the relative angle Determining that the relative angle detected in the current frame is folded when the object is not the same object;
This is the gist of it.
 この本開示の第2のレーダセンサ装置では、今フレームおよび前フレームでそれぞれ検出された物体までの相対距離に基づいて両者が距離的に同一物体であると判定される一方で、今フレームおよび前フレームでそれぞれ検出された物体との相対角度に基づいて両者が角度的に同一物体でないと判定される場合に、相対角度に折り返しが生じたと判定する。これにより、簡易な処理により相対角度の折り返しを適切に判定することができる。 In the second radar sensor device of the present disclosure, based on the relative distance to the object detected in the current frame and the previous frame, it is determined that both are the same object in terms of distance. When it is determined that the two objects are not the same object in angle based on the relative angle to the object detected in each frame, it is determined that the relative angle is folded. As a result, it is possible to appropriately determine whether or not the relative angle is folded by a simple process.
 本開示の第1のロボットシステムは、
 ロボット本体を制御するロボット制御装置と、
 物体までの相対距離と物体との相対速度とをフレーム毎に検出するFMCW方式のレーダセンサ装置であって、今フレームにおいて検出された前記相対距離と前フレームにおいて検出された前記相対距離とに基づいてそれぞれ検出された物体が同一物体であるか否かを判定すると共に、前記今フレームにおいて検出された前記相対速度と前記前フレームにおいて検出された前記相対速度とに基づいてそれぞれ検出された物体が同一物体であるか否かを判定し、前記相対距離に基づくと同一物体であり且つ前記相対速度に基づくと同一物体でないときに、前記今フレームにおいて検出された相対速度に折り返しが発生したと判定し、判定結果に応じた信号を前記ロボット制御装置に出力するレーダセンサ装置と、
 を備えることを要旨とする。
A first robot system of the present disclosure includes:
a robot control device for controlling a robot main body;
An FMCW type radar sensor device that detects a relative distance to an object and a relative speed to the object for each frame, based on the relative distance detected in the current frame and the relative distance detected in the previous frame determining whether or not the objects detected respectively are the same object, and determining whether the detected objects are the same object based on the relative velocity detected in the current frame and the relative velocity detected in the previous frame It is determined whether or not the object is the same object, and when the object is the same object based on the relative distance and the object is not the same object based on the relative velocity, it is determined that the relative velocity detected in the current frame has turned around. and a radar sensor device that outputs a signal corresponding to the determination result to the robot control device;
The gist is to provide
 この本開示の第1のロボットシステムでは、本開示の第1のレーダセンサ装置を備えるため、第1のレーダセンサ装置が奏する効果と同様の効果を奏することができる。 Since the first robot system of the present disclosure includes the first radar sensor device of the present disclosure, the same effects as those of the first radar sensor device can be achieved.
 本開示の第2のロボットシステムは、
 ロボット本体を制御するロボット制御装置と、
 物体までの相対距離と物体との相対速度とをフレーム毎に検出するFMCW方式のレーダセンサ装置であって、今フレームにおいて検出された前記相対距離と前フレームにおいて検出された前記相対距離とに基づいてそれぞれ検出された物体が同一物体であるか否かを判定すると共に、前記今フレームにおいて検出された前記相対角度と前記前フレームにおいて検出された前記相対角度とに基づいてそれぞれ検出された物体が同一物体であるか否かを判定し、前記相対距離に基づくと同一物体であり且つ前記相対角度に基づくと同一物体でないときに、前記今フレームにおいて検出された相対角度に折り返しが発生したと判定し、判定結果に応じた信号を前記ロボット制御装置に出力するレーダセンサ装置と、
 を備えることを要旨とする。
A second robotic system of the present disclosure includes:
a robot control device for controlling a robot main body;
An FMCW type radar sensor device that detects a relative distance to an object and a relative speed to the object for each frame, based on the relative distance detected in the current frame and the relative distance detected in the previous frame and determining whether or not the objects detected in each step are the same object, and determining which objects are detected based on the relative angle detected in the current frame and the relative angle detected in the previous frame. It is determined whether or not the object is the same, and if the object is the same based on the relative distance and is not the same object based on the relative angle, it is determined that the relative angle detected in the current frame is folded. and a radar sensor device that outputs a signal corresponding to the determination result to the robot control device;
The gist is to provide
 この本開示の第2のロボットシステムでは、本開示の第2のレーダセンサ装置を備えるため、第2のレーダセンサ装置が奏する効果と同様の効果を奏することができる。 Since the second robot system of the present disclosure includes the second radar sensor device of the present disclosure, the same effects as those of the second radar sensor device can be achieved.
本実施形態のレーダセンサ装置を含むロボットシステムの概略構成図である。1 is a schematic configuration diagram of a robot system including a radar sensor device of this embodiment; FIG. 折り返し判定処理の一例を示すフローチャートである。8 is a flowchart illustrating an example of turnaround determination processing; 検知範囲内外における真値と検出値を示す説明図である。FIG. 4 is an explanatory diagram showing true values and detected values inside and outside a detection range; 他の実施形態に係る折り返し判定処理の一例を示すフローチャートである。10 is a flowchart showing an example of turn-around determination processing according to another embodiment;
 次に、本開示を実施するための形態について図面を参照しながら説明する。 Next, a mode for carrying out the present disclosure will be described with reference to the drawings.
 図1は、本実施形態のレーダセンサ装置10を含むロボットシステム1の概略構成図である。ロボットシステム1は、図1に示すように、ロボット本体2と、ロボット本体2の動作を制御するロボット制御装置3と、ロボット本体2周辺の物体(干渉物)を検知可能なレーダセンサ装置10と、を備える。ロボット本体2は、据え置き型のロボットであってもよいし、自走式のロボットであってもよい。ロボット本体2は、例えば、手先にツールが装着されて所定の作業を行なう多関節アームを備えるアームロボットや、予め定められた走行ルート上を走行して物品を搬送する自動搬送ロボット等を挙げることができる。 FIG. 1 is a schematic configuration diagram of a robot system 1 including a radar sensor device 10 of this embodiment. As shown in FIG. 1, the robot system 1 includes a robot body 2, a robot controller 3 that controls the motion of the robot body 2, and a radar sensor device 10 that can detect objects (interfering objects) around the robot body 2. , provided. The robot body 2 may be a stationary robot or a self-propelled robot. Examples of the robot main body 2 include an arm robot having a multi-joint arm that carries out a predetermined operation with a tool attached to its hand, an automatic transport robot that transports articles by running on a predetermined running route, and the like. can be done.
 本実施形態のレーダセンサ装置10は、物体までの距離と物体との相対距離とを同時に検出可能なFMCW(Frequency Modulated Continuous Wave)方式のレーダセンサである。ロボット本体2がアームロボットである場合、レーダセンサ装置10は、例えば、アームの手先に設置することができる。 The radar sensor device 10 of this embodiment is an FMCW (Frequency Modulated Continuous Wave) type radar sensor capable of simultaneously detecting the distance to an object and the relative distance to the object. When the robot main body 2 is an arm robot, the radar sensor device 10 can be installed, for example, at the tip of the arm.
 レーダセンサ装置10は、図1に示すように、送信チャープを送信する送信アンテナ部11と、物体からの反射波を受信チャープとして受信する受信アンテナ部12と、送信チャープを生成するシンセサイザ13と、送信チャープと受信チャープとを混合するミキサ14と、ミキサ14の出力信号を処理して物体までの距離と物体との相対速度とを検出する処理部20と、装置全体の制御を司る制御部30と、を備える。 As shown in FIG. 1, the radar sensor device 10 includes a transmitting antenna unit 11 that transmits a transmitting chirp, a receiving antenna unit 12 that receives a reflected wave from an object as a receiving chirp, a synthesizer 13 that generates a transmitting chirp, A mixer 14 that mixes the transmission chirp and the reception chirp, a processing unit 20 that processes the output signal of the mixer 14 to detect the distance to the object and the relative speed to the object, and a control unit 30 that controls the entire apparatus. And prepare.
 シンセサイザ13は、時間の経過と共に周波数を変化(例えば周波数を直線的に上昇)させた信号を送信チャープとして生成する。本実施形態では、シンセサイザ13は、一定の間隔Tc離れたN個(Nは2以上の自然数)の送信チャープを1組(1フレーム)として生成する。 The synthesizer 13 generates, as a transmission chirp, a signal whose frequency is changed (for example, the frequency is linearly increased) over time. In this embodiment, the synthesizer 13 generates a set (one frame) of N (N is a natural number equal to or greater than 2) transmission chirps separated by a constant interval Tc.
 ミキサ14は、送信チャープと受信チャープとを混合して中間周波数信号(IF信号)を生成する。IF信号は、一定の周波数を持つトーンで構成される。また、距離が異なる複数の物体が存在する場合には、IF信号には、それぞれの物体から反射される反射波毎に異なる周波数を持つトーンが含まれる。IF信号の瞬時周波数は、送信チャープの瞬時周波数と受信チャープの瞬時周波数との差に等しくなり、IF信号の位相は、送信チャープの位相と受信チャープの位相との差に等しくなる。 A mixer 14 mixes the transmit chirp and the receive chirp to generate an intermediate frequency signal (IF signal). The IF signal consists of tones with constant frequencies. Also, when there are a plurality of objects at different distances, the IF signal includes tones having different frequencies for each reflected wave reflected from each object. The instantaneous frequency of the IF signal is equal to the difference between the instantaneous frequency of the transmit chirp and the instantaneous frequency of the receive chirp, and the phase of the IF signal is equal to the difference between the phase of the transmit chirp and the receive chirp.
 処理部20は、IF信号をA/D変換するA/Dコンバータ(ADC)21と、A/D変換されたIF信号をフーリエ変換処理(FFT処理)することにより物体までの相対距離および物体との相対速度を検出するDSP22と、を備える。 The processing unit 20 includes an A/D converter (ADC) 21 that A/D converts the IF signal, and Fourier transform processing (FFT processing) of the A/D converted IF signal to obtain the relative distance to the object and the distance to the object. and a DSP 22 that detects the relative velocity of the .
 DSP22は、距離FFT部と、速度FFT部と、を有する。距離FFT部は、IF信号をチャープ単位でFFT処理(距離FFT処理)してトーン毎に異なるピークを持つ周波数スペクトルを得る。周波数の各ピークは、特定の距離に物体が存在することを意味する。トーン周波数と物体までの相対距離とは比例関係を有するため、ピーク周波数に基づいて物体までの相対距離を算出することができる。速度FFT部は、距離FFT処理後のデータに対してフレーム単位で更にFFT処理(速度FFT処理)して角周波数のピークを得る。1組(1フレーム)の送信チャープは一定の間隔Tcで送信され、その間に移動した物体から得られるチャープ毎のIF信号は、互いに位相が異なる。角周波数は連続するチャープ間のIF信号の位相差に相当し、角周波数と物体との相対速度とは比例関係を有するため、ピーク角周波数に基づいて物体との相対速度を算出することができる。ただし、相対速度の検出は、位相差に基づいて行なわれるため、位相差が-180°~+180°の範囲を外れると、検出速度に折り返しが発生し、検出速度に曖昧さが生じる。本実施形態のレーダセンサ装置10では、検出速度に折り返しが発生したか否かを判定し、折り返しが発生したと判定すると、検出速度の補正を行なうことで検出速度の曖昧さをなくしている。 The DSP 22 has a distance FFT section and a velocity FFT section. The distance FFT unit performs FFT processing (distance FFT processing) on the IF signal for each chirp to obtain a frequency spectrum having different peaks for each tone. Each peak in frequency signifies the presence of an object at a certain distance. Since the tone frequency and the relative distance to the object have a proportional relationship, the relative distance to the object can be calculated based on the peak frequency. The velocity FFT unit further performs FFT processing (velocity FFT processing) on the data after the distance FFT processing on a frame-by-frame basis to obtain angular frequency peaks. A set of transmission chirps (one frame) is transmitted at a constant interval Tc, and the IF signals for each chirp obtained from an object that has moved during that time are out of phase with each other. The angular frequency corresponds to the phase difference of the IF signal between consecutive chirps, and since the angular frequency and the relative velocity of the object have a proportional relationship, the relative velocity of the object can be calculated based on the peak angular frequency. . However, since the detection of the relative velocity is performed based on the phase difference, if the phase difference is out of the range of -180° to +180°, the detected velocity will turn around and become ambiguous. In the radar sensor device 10 of the present embodiment, it is determined whether or not the detected speed has turned around, and if it is determined that the detected speed has turned around, the detected speed is corrected to eliminate the ambiguity of the detected speed.
 制御部30は、CPUを中心としたマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM、入出力ポート等を備える。制御部30には、処理部20(DSP22)からフレーム毎に距離情報および速度情報を入力している。また、制御部30は、ロボット制御装置3と通信可能に接続され、ロボット制御装置3に対してデータや信号を出力している。 The control unit 30 is configured as a microprocessor centering on a CPU, and in addition to the CPU, includes a ROM for storing processing programs, a RAM for temporarily storing data, an input/output port, and the like. The control unit 30 receives distance information and speed information for each frame from the processing unit 20 (DSP 22). Also, the control unit 30 is communicably connected to the robot control device 3 and outputs data and signals to the robot control device 3 .
 次に、こうして構成されたレーダセンサ装置10の動作について説明する。特に、処理部20によって得られた検出速度に折り返しが生じているか否かを判定する動作や、判定結果に応じて検出速度を補正する動作について説明する。図2は、制御部30(CPU)により実行される折り返し判定処理の一例を示すフローチャートである。 Next, the operation of the radar sensor device 10 configured in this manner will be described. In particular, the operation of determining whether or not the detected speed obtained by the processing unit 20 is folded back and the operation of correcting the detected speed according to the determination result will be described. FIG. 2 is a flowchart showing an example of turn-around determination processing executed by the control unit 30 (CPU).
 折り返し判定処理が実行されると、制御部30(CPU)は、まず、処理部20から今フレームの物体毎の検出距離および検出速度を取得する(S100)。続いて、制御部30は、前フレーム(今フレームよりも1つ前のフレーム)と今フレームとでそれぞれ検出された検出距離を比較し(S110)、両者の検出距離が第1所定範囲内で一致するか否かを判定する(S120)。ここで、第1所定範囲は、前フレームで検出された物体と今フレームで検出された物体とが同一距離の物体、すなわち距離的に同一物体と見なせる誤差範囲である。第1所定範囲は、レーダセンサ装置10の仕様(距離分解能等)に基づいて安全規格を満たす範囲で予め定められる。制御部30は、両者の検出距離が第1所定範囲内で一致しないと判定すると、両者は距離的に別物体であると判断して、折り返し判定処理を終了する。 When the turnaround determination process is executed, the control unit 30 (CPU) first acquires the detected distance and detected speed for each object in the current frame from the processing unit 20 (S100). Subsequently, the control unit 30 compares the detected distances of the previous frame (one frame before the current frame) and the detected distances of the current frame (S110). It is determined whether or not they match (S120). Here, the first predetermined range is an error range in which the object detected in the previous frame and the object detected in the current frame can be regarded as objects at the same distance, that is, the same object in terms of distance. The first predetermined range is predetermined based on the specifications (distance resolution, etc.) of the radar sensor device 10 within a range that satisfies safety standards. If the control unit 30 determines that the detected distances of the two do not match within the first predetermined range, the control unit 30 determines that the two are different objects in terms of distance, and terminates the turnaround determination process.
 一方、制御部30は、両者の検出距離が第1所定範囲内で一致すると判定すると、両者は距離的に同一物体であると判断し、次に、前フレームと今フレームとでそれぞれ検出された検出速度を比較し(S130)、両者の検出速度が第2所定範囲内で一致するか否かを判定する(S140)。ここで、第2所定範囲は、前フレームで検出された物体と今フレームで検出された物体とが同一相対速度の物体、すなわち速度的に同一物体と見なせる誤差範囲である。第2所定範囲は、レーダセンサ装置10の仕様(速度分解能等)に基づいて安全規格を満たす範囲で予め定められる。制御部30は、両者の検出速度が第2所定範囲内で一致すると判定すると、両者は距離的にも速度的にも同一物体であり、今フレームで検出された検出速度に折り返しは発生していないと判断し、検出速度を補正することなく、折り返し判定処理を終了する。 On the other hand, when the control unit 30 determines that the detection distances of both match within the first predetermined range, the control unit 30 determines that the two are the same object in terms of distance. The detected velocities are compared (S130), and it is determined whether or not the two detected velocities match within the second predetermined range (S140). Here, the second predetermined range is an error range in which the object detected in the previous frame and the object detected in the current frame can be regarded as objects having the same relative velocity, that is, the same object in terms of velocity. The second predetermined range is predetermined based on the specifications (velocity resolution, etc.) of the radar sensor device 10 within a range that satisfies safety standards. When the control unit 30 determines that the detected velocities of both match within the second predetermined range, both are the same object in terms of distance and velocity, and the detected velocity detected in the current frame does not turn around. It is judged that there is not, and the turn-around determination processing is terminated without correcting the detected speed.
 一方、制御部30は、両者の検出速度が第2所定範囲内で一致しないと判定すると、前フレームで検出された物体と今フレームで検出された物体とは、距離的には同一物体と見なせるが、速度的には別物体であると判断し、検出速度に折り返しが発生したと判定する(S150)。いま、物体(ターゲット)がレーダセンサ装置10に接近する方向を正とし、相対速度の検出範囲が-2.0~+2.0m/sのレーダセンサ装置において、ターゲット(物体)の相対速度を検出する場合を考える。図3に示すように、ターゲット(物体)が2.0m/sの速度で接近している場合には、ターゲットの速度は検出範囲内であるため、検出値として、真値(2.0m/s)と略一致する値が得られる。一方、ターゲット(物体)が2.4m/sの速度で接近している場合には、ターゲットの速度は検出範囲外であるため、2.0m/sで速度の折り返しが発生し、検出値としては、負の値である約-1.6m/s(レーダセンサ装置から離間する方向の速度)が得られることになる。こうしたことを考慮し、制御部30は、前フレームと今フレームとでそれぞれ検出された物体が距離的に同一物体と見なすことができるが、速度的に同一物体と見なすことができない場合(検出速度が通常考えられる程度を超えて変化した場合)に、速度に折り返しが発生したと判定するのである。なお、折り返しは、上述したように、連続するチャープ間におけるIF信号の位相差が-180°~+180°の範囲を外れるときに発生し、相対速度の検出範囲は、-180°~+180°の位相差の範囲に対応する速度範囲となる。 On the other hand, when the control unit 30 determines that the detected velocities of both do not match within the second predetermined range, the object detected in the previous frame and the object detected in the current frame can be regarded as the same object in terms of distance. However, in terms of speed, it is determined that they are different objects, and it is determined that the detected speed has turned around (S150). Assume that the direction in which an object (target) approaches the radar sensor device 10 is positive, and the relative velocity of the target (object) is detected by the radar sensor device whose relative velocity detection range is -2.0 to +2.0 m/s. Consider the case of As shown in FIG. 3, when the target (object) is approaching at a speed of 2.0 m/s, the speed of the target is within the detection range. s) is obtained. On the other hand, when the target (object) is approaching at a speed of 2.4 m/s, the speed of the target is outside the detection range. gives a negative value of about -1.6 m/s (velocity in the direction away from the radar sensor device). Considering this, the control unit 30 controls the case where the objects detected in the previous frame and the current frame can be regarded as the same object in terms of distance but cannot be regarded as the same object in terms of speed (detected speed changes beyond what is normally considered), it is determined that a turnaround has occurred in the velocity. As described above, folding occurs when the phase difference of the IF signal between consecutive chirps is out of the range of -180° to +180°, and the relative velocity detection range is -180° to +180°. The velocity range corresponds to the phase difference range.
 制御部30は、速度に折り返しが発生したと判定すると、折り返しの規則性を用いて今フレームの検出速度を補正する(S160)。検出速度の補正は、以下のようにして行なうことができる。速度FFT処理の結果は距離FFT処理後のデータの個数(1フレームにおける送信チャープの数)に応じたN個のデータとして表現され、物体は、N個のデータのうちピークを示すインデックス(ピーク角周波数)に対応した速度を持っていると解釈されるものとする。そして、値1~Nのインデックスのうち、値1から値(N/2+1)までのインデックスは、値0から検出範囲における正の最大値までの速度を、値(N/2+2)から値Nまでのインデックスは、検出範囲における負の最大値から負の最小値までの速度を、それぞれ表現するものとして扱う。この場合、検出速度Vは、速度分解能をVresとすると、次式(1),(2)により得られる。速度FFT処理の結果が値(N/2+1)の位置(角周波数)にピークを持った状態、すなわち、物体が検出可能な正の最大値の速度を持った状態から更に加速したときには、次のインデックスである値(N/2+2)にピークが現われる。しかし、このインデックスは負の最大値と定義されているため、検出速度Vは、正しい値とはならない。これが折り返しとして観測される。折り返し補正は、前フレームにおいて正の速度に定義されたインデックスにピークが現われ、今フレームにおいて前フレームと距離的に同一の物体に対して負の速度に定義されたインデックスにピークが現われた場合には、正の速度の定義である式(1)を用いて検出速度Vを算出することにより行なわれる。また、折り返し補正は、前フレームにおいて負の速度に定義されたインデックスにピークが現われ、今フレームにおいて前フレームと距離的に同一の物体に対して正の速度に定義されたインデックスにピークが現われた場合には、負の速度の定義である式(2)を用いて検出速度Vを算出することにより行なわれる。例えば、前フレームにおいてN=32で17番目のインデックスにピークが現われ、今フレームにおいて18番目のインデックスにピークが現われた場合、本来は、負の速度の定義である式(2)を用いて、(18-32)=-14×Vresとするところを、正の速度の定義のまま、式(1)を用いて、18×Vresとすることで行なう。 When the control unit 30 determines that the speed has turned around, it uses the regularity of the turnaround to correct the detected speed of the current frame (S160). Correction of the detected speed can be performed as follows. The result of velocity FFT processing is expressed as N data corresponding to the number of data after distance FFT processing (the number of transmission chirps in one frame). frequency). Then, among the indices of values 1 to N, the indices from value 1 to value (N/2+1) indicate the speed from value 0 to the maximum positive value in the detection range from value (N/2+2) to value N. are treated as representing velocities from the maximum negative value to the minimum negative value in the detection range, respectively. In this case, the detected speed V is obtained by the following equations (1) and (2), where Vres is the speed resolution. When the result of the velocity FFT processing has a peak at the position (angular frequency) of value (N/2+1), that is, when the object further accelerates from the state having the maximum detectable positive positive velocity, the following A peak appears at the index value (N/2+2). However, since this index is defined as the maximum negative value, the detected velocity V will not be a correct value. This is observed as folding. Folding correction is performed when a peak appears at an index defined as a positive velocity in the previous frame, and a peak appears in an index defined as a negative velocity for an object whose distance is the same as that in the previous frame in the current frame. is performed by calculating the detected velocity V using equation (1), which is the definition of positive velocity. In addition, the aliasing correction has a peak in the index defined for negative velocity in the previous frame, and a peak in the index defined for positive velocity for the same object in terms of distance as the previous frame in the current frame. In this case, the detection velocity V is calculated using the equation (2), which defines the negative velocity. For example, if N=32 in the previous frame and a peak appears at the 17th index and in the current frame a peak appears at the 18th index, using equation (2), which is originally a definition of negative velocity, (18−32)=−14×Vres is replaced by 18×Vres using equation (1) while maintaining the positive velocity definition.
 V=k×Vres 但し、1≦k≦N/2+1          …(1)
 V=(k-N)×Vres 但し、N/2+2≦k≦N      …(2)
V=k×Vres However, 1≦k≦N/2+1 (1)
V=(kN)×Vres However, N/2+2≤k≤N (2)
 制御部30は、こうして折り返し補正を行なうと、前フレームで検出された物体の検出速度と今フレームで検出された物体の補正速度とを比較し(S170)、両者の速度が上記の第2所定範囲内で一致するか否かを判定する(S180)。制御部30は、両者の速度が第2所定範囲内で一致すると判定すると、両者は速度的に同一物体と見なせると判断し、S160で補正した補正速度を、今フレームで検出された物体の検出速度として設定(確定)して(S190)、折り返し判定処理を終了する。一方、制御部30は、両者の速度が第2所定範囲内で一致しないと判定すると、前フレームで検出された物体と今フレームで検出された物体とはそれぞれ異なる相対速度で移動する別物体であると認識し(S200)、今フレームの検出速度を補正することなく、折り返し判定処理を終了する。 After performing the aliasing correction, the control unit 30 compares the detection speed of the object detected in the previous frame with the corrected speed of the object detected in the current frame (S170). It is determined whether or not there is a match within the range (S180). If the control unit 30 determines that the velocities of the two match within the second predetermined range, it determines that the two can be regarded as the same object in terms of velocities. The speed is set (confirmed) (S190), and the turn-around determination process ends. On the other hand, when the control unit 30 determines that the speeds of the two do not match within the second predetermined range, the object detected in the previous frame and the object detected in the current frame are different objects moving at different relative speeds. It recognizes that there is (S200), and terminates the turnaround determination process without correcting the detection speed of the current frame.
 なお、本開示は上述した実施形態に何ら限定されることはなく、本開示の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It goes without saying that the present disclosure is by no means limited to the above-described embodiments, and can be implemented in various forms as long as they fall within the technical scope of the present disclosure.
 例えば、上述した実施形態では、制御部30は、今フレームで検出された物体の検出速度に折り返しが発生したと判定すると、折り返しの規則性を用いて今フレームの検出速度を補正するものとした。しかし、制御部30は、折り返しが発生したと判定すると、今フレームの検出速度を、折り返しが発生する直前の検出速度(前フレームの検出速度)に設定してもよい。あるいは、制御部30は、前フレームまでの物体の検出速度が正の値(レーダセンサ装置10に接近する方向)であれば、今フレームの検出速度を、検出範囲における正の最大値に設定し、前フレームまでの物体の検出速度が負の値(レーダセンサ装置10から離間する方向)であれば、今フレームの検出速度を、検出範囲における負の最大値に設定してもよい。 For example, in the above-described embodiment, when the control unit 30 determines that the detection speed of the object detected in the current frame has turned around, the detection speed of the current frame is corrected using the regularity of the turnaround. . However, when the control unit 30 determines that a turnaround has occurred, the control unit 30 may set the detection speed of the current frame to the detection speed immediately before the turnaround (the detection speed of the previous frame). Alternatively, if the detected speed of the object up to the previous frame is a positive value (the direction in which the object approaches the radar sensor device 10), the control unit 30 sets the detected speed of the current frame to the maximum positive value in the detection range. If the detected velocity of the object up to the previous frame is a negative value (in the direction away from the radar sensor device 10), the detected velocity of the current frame may be set to the maximum negative value in the detection range.
 また、上述した実施形態では、レーダセンサ装置10は、物体までの相対距離と物体との相対速度とを検出するものとしたが、更に、物体の相対角度(レーダセンサ装置10からの基準方向に対する物体の角度)を検出し、相対角度の折り返しが判定されると、折り返しの規則性に基づいて相対角度を補正するようにしてもよい。この場合、レーダセンサ装置10は、例えば、送信アンテナ部11として、所定の間隔でアレイ状に配列された複数個(X個)の送信アンテナを備えると共に、受信アンテナ部12として、送信アンテナの間隔とは異なる間隔で送信アンテナと同方向にアレイ状に配列された複数個(Y個)の受信アンテナを備えるMIMO(Multi-Input Multi-Output)レーダセンサとして構成することができる。X個の送信アンテナから信号を送信し、Y個の受信アンテナで同時に受信することにより、1個の送信アンテナに対してX×Y個の仮想受信アンテナで受信するレーダセンサ装置と見なすことができ、高い角度分解能を得ることができる。処理部20は、速度FFT処理後のデータに対して複数個の受信アンテナ(X×Y個の仮想受信アンテナ)に亘ってFFT処理(角度FFT処理)することにより、当該複数個の受信アンテナでそれぞれ物体からの反射波を受信するまでの時間差を位相差(角周波数)として検出することにより、物体との相対角度を算出することができる。ただし、相対角度の検出は、位相差に基づいて行なわれるため、相対速度の検出と同様に、位相差が-180°~+180°の範囲を外れると、角度に折り返しが発生し、検出角度に曖昧さが生じる。相対角度の折り返しの判定と折り返し補正は、図4のフローチャートを実行することにより行なわれる。以下、図4の折り返し判定処理について説明する。 In the above-described embodiment, the radar sensor device 10 detects the relative distance to the object and the relative speed to the object. The angle of the object) is detected, and when the folding of the relative angle is determined, the relative angle may be corrected based on the regularity of the folding. In this case, the radar sensor device 10 includes, for example, a plurality of (X) transmitting antennas arranged in an array at predetermined intervals as the transmitting antenna unit 11, and the receiving antenna unit 12 as the transmitting antenna interval It can be configured as a MIMO (Multi-Input Multi-Output) radar sensor having a plurality of (Y) receiving antennas arranged in an array in the same direction as the transmitting antennas at different intervals. By transmitting signals from X transmitting antennas and receiving them simultaneously with Y receiving antennas, it can be regarded as a radar sensor device that receives signals with X×Y virtual receiving antennas for one transmitting antenna. , a high angular resolution can be obtained. The processing unit 20 performs FFT processing (angle FFT processing) on the data after velocity FFT processing over a plurality of reception antennas (X×Y virtual reception antennas), thereby obtaining The relative angle to the object can be calculated by detecting the time difference until receiving the reflected wave from the object as the phase difference (angular frequency). However, since the relative angle is detected based on the phase difference, if the phase difference is out of the range of -180° to +180°, the angle will be folded back, and the detected angle will be changed. Ambiguity arises. Determination of folding of the relative angle and correction of folding are performed by executing the flow chart of FIG. The turn-around determination processing in FIG. 4 will be described below.
 折り返し判定処理が実行されると、制御部30(CPU)は、まず、処理部20から今フレームの物体毎の検出距離および検出角度を取得する(S300)。続いて、制御部30は、上述したS110,S120と同様に、前フレームと今フレームとでそれぞれ検出された検出距離を比較し、両者の検出距離が第1所定範囲内で一致するか否かを判定する(S310,S320)。第1所定範囲については上述した。制御部30は、両者の検出距離が第1所定範囲内で一致しないと判定すると、両者は距離的に別物体であると判断して、折り返し判定処理を終了する。 When the turnaround determination process is executed, the control unit 30 (CPU) first acquires the detected distance and detected angle for each object in the current frame from the processing unit 20 (S300). Subsequently, similarly to S110 and S120 described above, the control unit 30 compares the detection distances detected in the previous frame and the current frame, and determines whether the detection distances of both match within the first predetermined range. is determined (S310, S320). The first predetermined range has been described above. If the control unit 30 determines that the detected distances of the two do not match within the first predetermined range, the control unit 30 determines that the two are different objects in terms of distance, and terminates the turnaround determination process.
 一方、制御部30は、両者の検出距離が第1所定範囲内で一致すると判定すると、両者は距離的に同一物体であると判断し、次に、前フレームと今フレームとでそれぞれ検出された検出角度を比較し(S330)、両者の検出角度が第3所定範囲内で一致するか否かを判定する(S340)。ここで、第3所定範囲は、前フレームで検出された物体と今フレームで検出された物体とが同一相対角度の物体、すなわち角度的に同一物体と見なせる誤差範囲である。第3所定範囲は、レーダセンサ装置10の仕様(角度分解能等)に基づいて安全規格を満たす範囲で予め定められる。制御部30は、両者の検出角度が第3所定範囲内で一致すると判定すると、両者は距離的にも角度的にも同一物体であり、今フレームで検出された検出角度に折り返しは発生していないと判断し、検出角度を補正することなく、折り返し判定処理を終了する。 On the other hand, when the control unit 30 determines that the detection distances of both match within the first predetermined range, the control unit 30 determines that the two are the same object in terms of distance. The detected angles are compared (S330), and it is determined whether the two detected angles match within a third predetermined range (S340). Here, the third predetermined range is an error range in which the object detected in the previous frame and the object detected in the current frame can be regarded as objects having the same relative angle, ie, the same angular object. The third predetermined range is predetermined based on the specifications (angular resolution, etc.) of the radar sensor device 10 within a range that satisfies safety standards. When the control unit 30 determines that the detected angles of both match within the third predetermined range, both are the same object in terms of distance and angle, and the detected angle detected in the current frame does not fold. It is determined that there is no such angle, and the turnaround determination process is terminated without correcting the detected angle.
 一方、制御部30は、両者の検出角度が第3所定範囲内で一致しないと判定すると、前フレームで検出された物体と今フレームで検出された物体とは、距離的には同一物体と見なせるが、角度的には別物体であると判断し、検出角度に折り返しが発生したと判定する(S350)。すなわち、制御部30は、前フレームと今フレームとでそれぞれ検出された物体が距離的に同一物体と見なすことができるが、角度的に同一物体と見なすことができない場合(検出角度が通常考えられる程度を超えて変化した場合)に、角度に折り返しが発生したと判定するのである。なお、角度の折り返し判定は、S320とS330との間に、上述したS130とS140を追加し、前フレームと今フレームとにおいて、それぞれ検出された検出距離が第1所定範囲内で一致し、且つ、それぞれ検出された検出速度が第2所定範囲内で一致し、且つ、それぞれ検出された検出角度が第3所定範囲内で一致しないときに、検出角度に折り返しが発生したと判定するようにしてもよい。 On the other hand, when the control unit 30 determines that the two detection angles do not match within the third predetermined range, the object detected in the previous frame and the object detected in the current frame can be regarded as the same object in terms of distance. However, it is determined that it is a different object in terms of angle, and it is determined that folding has occurred in the detected angle (S350). That is, the control unit 30 determines that the object detected in the previous frame and the current frame can be regarded as the same object in terms of distance, but cannot be regarded as the same object in terms of angle (detection angle is usually considered If the change exceeds the degree), it is determined that the angle has been folded back. Note that the angle turn-around determination is performed by adding the above-described S130 and S140 between S320 and S330, and the detected distances in the previous frame and the current frame match within the first predetermined range, and , when the detected velocities match within the second predetermined range and the detected angles do not match within the third predetermined range, it is determined that the detected angle has turned around. good too.
 制御部30は、角度に折り返しが発生したと判定すると、折り返しの規則性を用いて今フレームの検出角度を補正する(S360)。検出角度の補正は、以下のようにして行なうことができる。角度FFT処理の結果がM個のデータとして表現され、物体は、M個のデータのうちピークを示すインデックス(ピーク角周波数)に対応した角度を持っていると解釈されるものとする。そして、値1~Mのインデックスのうち、値1から値(M/2+1)までのインデックスは、値0から検出範囲における正の最大値までの角度を、値(N/2+2)から値Nまでのインデックスは、検出範囲における負の最大値から負の最小値までの角度を、それぞれ表現するものとして扱う。この場合、検出角度θは、角度分解能をθresとすると、次式(3),(4)により得られる。角度FFT処理の結果が値(M/2+1)の位置(角周波数)にピークを持った状態、すなわち、物体が検出可能な正の最大値の角度を持った状態から更に正方向に移動したときには、次のインデックスである値(M/2+2)にピークが現われる。しかし、このインデックスは負の最大値と定義されているため、検出角度θは、正しい値とはならない。これが折り返しとして観測される。折り返し補正は、前フレームにおいて正の角度に定義されたインデックスにピークが現われ、今フレームにおいて前フレームと距離的に同一の物体に対して負の角度に定義されたインデックスにピークが現われた場合には、正の角度の定義である式(3)を用いて検出角度θを算出することにより行なわれる。また、折り返し補正は、前フレームにおいて負の角度に定義されたインデックスにピークが現われ、今フレームにおいて前フレームと距離的に同一の物体に対して正の角度に定義されたインデックスにピークが現われた場合には、負の角度の定義である式(4)を用いて検出角度θを算出することにより行なわれる。ここで、レーダセンサ装置10において、センサと物体との相対角度θ(検出角度)によって生じる位相差Φは、次式(5)で示される。相対角度θが十分に小さいときには、位相差Φと相対角度θとの間に線形近似が成り立つが、相対角度θが大きくなると、位相差Φと相対角度θとの関係は、非線形となる。そして、検出限界を超えると、非線形領域で折り返しとなる。このことを考慮し、式(3)および(4)の角度分解能θresは、定数ではなく、kが大きくなる毎に徐々に大きくなるように定められてもよい。すなわち、角度ビン毎に異なる角度分解能θresを設定して、式(3),(4)を適用するようにしてもよい。 When the control unit 30 determines that the angle has been folded back, it corrects the detected angle of the current frame using the folding regularity (S360). Correction of the detected angle can be performed as follows. It is assumed that the result of the angle FFT processing is expressed as M pieces of data, and that the object has an angle corresponding to the index (peak angular frequency) indicating the peak among the M pieces of data. Then, among the indices of values 1 to M, the indices from value 1 to value (M/2+1) indicate the angle from value 0 to the maximum positive value in the detection range from value (N/2+2) to value N. treat each index as representing an angle from the maximum negative value to the minimum negative value in the detection range. In this case, the detection angle θ is obtained by the following equations (3) and (4), where θres is the angular resolution. When the result of angle FFT processing has a peak at the position (angular frequency) of value (M/2+1), that is, when the object moves further in the positive direction from the state with the maximum detectable positive angle , a peak appears at the value (M/2+2), which is the next index. However, since this index is defined as the maximum negative value, the detected angle θ will not be a correct value. This is observed as folding. Folding correction is performed when a peak appears at an index defined as a positive angle in the previous frame, and a peak appears in an index defined as a negative angle for the same object in terms of distance as the previous frame in the current frame. is performed by calculating the detection angle θ using equation (3), which is the definition of a positive angle. In addition, the aliasing correction has a peak in the index defined at a negative angle in the previous frame, and a peak in the index defined at a positive angle for the same object in terms of distance as the previous frame in the current frame. In this case, the detection angle θ is calculated using equation (4), which defines a negative angle. Here, in the radar sensor device 10, the phase difference Φ caused by the relative angle θ (detection angle) between the sensor and the object is given by the following equation (5). When the relative angle θ is sufficiently small, linear approximation is established between the phase difference Φ and the relative angle θ, but as the relative angle θ increases, the relationship between the phase difference Φ and the relative angle θ becomes nonlinear. Then, when the detection limit is exceeded, folding occurs in the nonlinear region. Taking this into account, the angular resolution θres in equations (3) and (4) may be determined not as a constant but as gradually increasing as k increases. That is, different angular resolutions θres may be set for each angular bin, and equations (3) and (4) may be applied.
 θ=k×θres  但し、1≦k≦M/2+1          …(3)
 θ=(k-M)×θres  但し、M/2+2≦k≦M      …(4)
 Φ=πsinθ                …(5)
θ=k×θres However, 1≦k≦M/2+1 (3)
θ=(kM)×θres However, M/2+2≤k≤M (4)
Φ=π sin θ (5)
 制御部30は、折り返し補正を行なうと、前フレームで検出された物体の検出角度と今フレームで検出された物体の補正角度とを比較し(S370)、両者の角度が上記の第3所定範囲内で一致するか否かを判定する(S380)。制御部30は、両者の角度が第3所定範囲内で一致すると判定すると、両者は角度的に同一物体と見なせると判断し、S360で補正した補正角度を、今フレームで検出された物体の検出角度として設定(確定)して(S390)、折り返し判定処理を終了する。一方、制御部30は、両者の角度が第3所定範囲内で一致しないと判定すると、前フレームで検出された物体と今フレームで検出された物体とはそれぞれ異なる相対角度に位置する別物体であると認識し(S400)、今フレームの検出角度を補正することなく、折り返し判定処理を終了する。 After performing the aliasing correction, the control unit 30 compares the detected angle of the object detected in the previous frame with the corrected angle of the object detected in the current frame (S370), and determines that both angles are within the third predetermined range. (S380). If the control unit 30 determines that the two angles match within the third predetermined range, the control unit 30 determines that the two can be regarded as the same object in terms of angles, and uses the corrected angle corrected in S360 to detect the object detected in the current frame. The angle is set (confirmed) (S390), and the turnaround determination process ends. On the other hand, when the control unit 30 determines that the two angles do not match within the third predetermined range, the object detected in the previous frame and the object detected in the current frame are different objects positioned at different relative angles. It is recognized that there is (S400), and the turnaround determination process ends without correcting the detected angle of the current frame.
 以上説明したように、本開示の第1のレーダセンサ装置では、今フレームおよび前フレームでそれぞれ検出された物体までの相対距離に基づいて両者が距離的に同一物体であると判定される一方で、今フレームおよび前フレームでそれぞれ検出された物体との相対速度に基づいて両者が速度的に同一物体でないと判定される場合に、相対速度に折り返しが生じたと判定する。これにより、簡易な処理により相対速度の折り返しを適切に判定することができる。 As described above, in the first radar sensor device of the present disclosure, based on the relative distance to the object detected in the current frame and the previous frame, it is determined that both are the same object in terms of distance. , when it is determined based on the relative velocities of the object detected in the current frame and the previous frame that the two are not the same object in terms of velocity, it is determined that the relative velocity has turned around. As a result, it is possible to appropriately determine whether or not the relative velocity is turned back by a simple process.
 こうした本開示の第1のレーダセンサ装置において、前記今フレームにおいて相対速度の折り返しが発生したと判定すると、折り返しの規則性を用いて前記今フレームで検出された相対速度を補正してもよい。こうすれば、レーダセンサ装置のセンシング周期やセンシングデータ量を増加させることなく、簡易な処理により、検出可能な速度範囲を広げることができる。この場合、前記今フレームにおいて相対速度の折り返しが発生したと判定すると、前記今フレームで検出された相対速度を補正した補正速度と前記前フレームで検出された相対速度とに基づいてそれぞれで検出された物体が同一物体であるか否かを判定し、同一物体であると判定すると、前記補正速度を前記今フレームで検出された相対速度に設定し、同一物体でないと判定すると、それぞれ異なる相対速度の別物体と判定してもよい。こうすれば、今フレームで検出された相対速度の補正をより適切に行なうことができる。また、それぞれ異なる複数の物体を同一物体と誤認識するのを抑制することができる。 In the first radar sensor device of the present disclosure, when it is determined that the relative velocity has turned around in the current frame, the regularity of the turnaround may be used to correct the relative velocity detected in the current frame. By doing so, it is possible to widen the detectable velocity range by simple processing without increasing the sensing cycle of the radar sensor device or the amount of sensing data. In this case, if it is determined that the relative velocity has turned around in the current frame, it is detected based on the corrected velocity obtained by correcting the relative velocity detected in the current frame and the relative velocity detected in the previous frame. If it is determined that the object is the same object, the corrected velocity is set to the relative velocity detected in the current frame, and if it is determined that the object is not the same object, different relative velocities may be determined as different objects. By doing so, it is possible to more appropriately correct the relative velocity detected in the current frame. In addition, it is possible to suppress erroneous recognition of a plurality of different objects as the same object.
 また、本開示の第2のレーダセンサ装置では、今フレームおよび前フレームでそれぞれ検出された物体までの相対距離に基づいて両者が距離的に同一物体であると判定される一方で、今フレームおよび前フレームでそれぞれ検出された物体との相対角度に基づいて両者が角度的に同一物体でないと判定される場合に、相対角度に折り返しが生じたと判定する。これにより、簡易な処理により相対角度の折り返しを適切に判定することができる。 Further, in the second radar sensor device of the present disclosure, based on the relative distance to the object detected in the current frame and the previous frame, it is determined that both are the same object in terms of distance. When it is determined that the two objects are not angularly identical to each other based on the relative angle to the object detected in the previous frame, it is determined that the relative angle has been turned around. As a result, it is possible to appropriately determine whether or not the relative angle is folded by a simple process.
 こうした本開示の第2のレーダセンサ装置において、前記今フレームにおいて相対角度の折り返しが発生したと判定すると、折り返しの規則性を用いて前記今フレームで検出された相対角度を補正してもよい。こうすれば、レーダセンサ装置のセンシング周期やセンシングデータ量を増加させることなく、簡易な処理により、検出可能な角度範囲を広げることができる。この場合、前記今フレームにおいて相対角度の折り返しが発生したと判定すると、前記今フレームで検出された相対角度を補正した補正角度と前記前フレームで検出された相対角度とに基づいてそれぞれで検出された物体が同一物体であるか否かを判定し、同一物体であると判定すると、前記補正角度を前記今フレームで検出された相対角度に設定し、同一物体でないと判定すると、それぞれ異なる相対角度の別物体と判定してもよい。こうすれば、今フレームで検出された相対角度の補正をより適切に行なうことができる。また、それぞれ異なる複数の物体を同一物体と誤認識するのを抑制することができる。 In the second radar sensor device of the present disclosure, when it is determined that the relative angle has been turned around in the current frame, the regularity of the turnaround may be used to correct the relative angle detected in the current frame. This makes it possible to widen the detectable angular range by simple processing without increasing the sensing cycle of the radar sensor device or the amount of sensing data. In this case, when it is determined that the relative angle has been folded back in the current frame, the angle is detected based on the corrected angle obtained by correcting the relative angle detected in the current frame and the relative angle detected in the previous frame. If it is determined that the object is the same object, the corrected angle is set to the relative angle detected in the current frame, and if it is determined that the object is not the same object, the relative angle is different. may be determined as different objects. By doing so, it is possible to more appropriately correct the relative angle detected in the current frame. In addition, it is possible to suppress erroneous recognition of a plurality of different objects as the same object.
 本開示では、レーダセンサ装置の形態とするものに限られず、ロボット制御装置とレーダセンサ装置とを備えるロボットシステムの形態とすることもできる。 The present disclosure is not limited to being in the form of a radar sensor device, but may be in the form of a robot system including a robot control device and a radar sensor device.
 本開示は、レーダセンサ装置やロボットの製造産業などに利用可能である。 The present disclosure can be used in the manufacturing industry of radar sensor devices and robots.
1 ロボットシステム、2 ロボット本体、3 ロボット制御装置、10 レーダセンサ装置、11 送信アンテナ部、12 受信アンテナ部、13 シンセサイザ、14 ミキサ、20 処理部、30 制御部。 1 Robot system, 2 Robot body, 3 Robot control device, 10 Radar sensor device, 11 Transmitting antenna unit, 12 Receiving antenna unit, 13 Synthesizer, 14 Mixer, 20 Processing unit, 30 Control unit.

Claims (8)

  1.  物体までの相対距離と物体との相対速度とをフレーム毎に検出するFMCW方式のレーダセンサ装置であって、
     今フレームにおいて検出された前記相対距離と前フレームにおいて検出された前記相対距離とに基づいてそれぞれ検出された物体が同一物体であるか否かを判定すると共に、前記今フレームにおいて検出された前記相対速度と前記前フレームにおいて検出された前記相対速度とに基づいてそれぞれ検出された物体が同一物体であるか否かを判定し、前記相対距離に基づくと同一物体であり且つ前記相対速度に基づくと同一物体でないときに、前記今フレームにおいて検出された相対速度に折り返しが発生したと判定する、
     レーダセンサ装置。
    An FMCW type radar sensor device that detects a relative distance to an object and a relative speed to the object for each frame,
    determining whether the detected objects are the same object based on the relative distance detected in the current frame and the relative distance detected in the previous frame; determining whether or not the detected objects are the same object based on the velocity and the relative velocity detected in the previous frame, and judging that the object is the same object based on the relative distance and the relative velocity Determining that the relative velocity detected in the current frame has turned around when the object is not the same object;
    Radar sensor device.
  2.  請求項1に記載のレーダセンサ装置であって、
     前記今フレームにおいて相対速度の折り返しが発生したと判定すると、折り返しの規則性を用いて前記今フレームで検出された相対速度を補正する、
     レーダセンサ装置。
    The radar sensor device according to claim 1,
    correcting the relative velocity detected in the current frame using the regularity of the turn-around when determining that the relative velocity has turned around in the current frame;
    Radar sensor device.
  3.  請求項2に記載のレーダセンサ装置であって、
     前記今フレームにおいて相対速度の折り返しが発生したと判定すると、前記今フレームで検出された相対速度を補正した補正速度と前記前フレームで検出された相対速度とに基づいてそれぞれで検出された物体が同一物体であるか否かを判定し、同一物体であると判定すると、前記補正速度を前記今フレームで検出された相対速度に設定し、同一物体でないと判定すると、それぞれ異なる相対速度の別物体と判定する、
     レーダセンサ装置。
    The radar sensor device according to claim 2,
    When it is determined that the relative velocity has turned around in the current frame, the object detected in each of the detected relative velocities in the previous frame and the corrected velocity obtained by correcting the relative velocity detected in the current frame is determined. It is determined whether or not the object is the same object, and if it is determined to be the same object, the corrected velocity is set to the relative velocity detected in the current frame, and if it is determined that the object is not the same object, different objects with different relative velocities determine that
    Radar sensor device.
  4.  物体までの相対距離と物体との相対角度とをフレーム毎に検出するFMCW方式のレーダセンサ装置であって、
     今フレームにおいて検出された前記相対距離と前フレームにおいて検出された前記相対距離とに基づいてそれぞれ検出された物体が同一物体であるか否かを判定すると共に、前記今フレームにおいて検出された前記相対角度と前記前フレームにおいて検出された前記相対角度とに基づいてそれぞれ検出された物体が同一物体であるか否かを判定し、前記相対距離に基づくと同一物体であり且つ前記相対角度に基づくと同一物体でないときに、前記今フレームにおいて検出された相対角度に折り返しが発生したと判定する、
     レーダセンサ装置。
    An FMCW radar sensor device that detects a relative distance to an object and a relative angle to the object for each frame,
    determining whether the detected objects are the same object based on the relative distance detected in the current frame and the relative distance detected in the previous frame; determining whether the detected objects are the same object based on the angle and the relative angle detected in the previous frame, and determining whether the objects are the same object based on the relative distance and based on the relative angle Determining that the relative angle detected in the current frame is folded when the object is not the same object;
    Radar sensor device.
  5.  請求項4に記載のレーダセンサ装置であって、
     前記今フレームにおいて相対角度の折り返しが発生したと判定すると、折り返しの規則性を用いて前記今フレームで検出された相対角度を補正する、
     レーダセンサ装置。
    The radar sensor device according to claim 4,
    correcting the relative angle detected in the current frame using the regularity of folding when determining that the relative angle has been folded back in the current frame;
    Radar sensor device.
  6.  請求項5に記載のレーダセンサ装置であって、
     前記今フレームにおいて相対角度の折り返しが発生したと判定すると、前記今フレームで検出された相対角度を補正した補正角度と前記前フレームで検出された相対角度とに基づいてそれぞれで検出された物体が同一物体であるか否かを判定し、同一物体であると判定すると、前記補正角度を前記今フレームで検出された相対角度に設定し、同一物体でないと判定すると、それぞれ異なる相対角度の別物体と判定する、
     レーダセンサ装置。
    The radar sensor device according to claim 5,
    When it is determined that the relative angle has been turned around in the current frame, the object detected in each of the corrected angle obtained by correcting the relative angle detected in the current frame and the relative angle detected in the previous frame is determined. If it is determined that the object is the same object, the correction angle is set to the relative angle detected in the current frame, and if it is determined that the object is not the same object, different objects having different relative angles determine that
    Radar sensor device.
  7.  ロボット本体を制御するロボット制御装置と、
     物体までの相対距離と物体との相対速度とをフレーム毎に検出するFMCW方式のレーダセンサ装置であって、今フレームにおいて検出された前記相対距離と前フレームにおいて検出された前記相対距離とに基づいてそれぞれ検出された物体が同一物体であるか否かを判定すると共に、前記今フレームにおいて検出された前記相対速度と前記前フレームにおいて検出された前記相対速度とに基づいてそれぞれ検出された物体が同一物体であるか否かを判定し、前記相対距離に基づくと同一物体であり且つ前記相対速度に基づくと同一物体でないときに、前記今フレームにおいて検出された相対速度に折り返しが発生したと判定し、判定結果に応じた信号を前記ロボット制御装置に出力するレーダセンサ装置と、
     を備えるロボットシステム。
    a robot control device for controlling a robot main body;
    An FMCW type radar sensor device that detects a relative distance to an object and a relative speed to the object for each frame, based on the relative distance detected in the current frame and the relative distance detected in the previous frame determining whether or not the objects detected respectively are the same object, and determining whether the detected objects are the same object based on the relative velocity detected in the current frame and the relative velocity detected in the previous frame It is determined whether or not the object is the same object, and when the object is the same object based on the relative distance and the object is not the same object based on the relative velocity, it is determined that the relative velocity detected in the current frame has turned around. and a radar sensor device that outputs a signal corresponding to the determination result to the robot control device;
    A robot system with
  8.  ロボット本体を制御するロボット制御装置と、
     物体までの相対距離と物体との相対速度とをフレーム毎に検出するFMCW方式のレーダセンサ装置であって、今フレームにおいて検出された前記相対距離と前フレームにおいて検出された前記相対距離とに基づいてそれぞれ検出された物体が同一物体であるか否かを判定すると共に、前記今フレームにおいて検出された前記相対角度と前記前フレームにおいて検出された前記相対角度とに基づいてそれぞれ検出された物体が同一物体であるか否かを判定し、前記相対距離に基づくと同一物体であり且つ前記相対角度に基づくと同一物体でないときに、前記今フレームにおいて検出された相対角度に折り返しが発生したと判定し、判定結果に応じた信号を前記ロボット制御装置に出力するレーダセンサ装置と、
     を備えるロボットシステム。
    a robot control device for controlling a robot main body;
    An FMCW type radar sensor device that detects a relative distance to an object and a relative speed to the object for each frame, based on the relative distance detected in the current frame and the relative distance detected in the previous frame and determining whether or not the objects detected in each step are the same object, and determining which objects are detected based on the relative angle detected in the current frame and the relative angle detected in the previous frame. It is determined whether or not the object is the same, and if the object is the same based on the relative distance and is not the same object based on the relative angle, it is determined that the relative angle detected in the current frame is folded. and a radar sensor device that outputs a signal corresponding to the determination result to the robot control device;
    A robot system with
PCT/JP2022/003377 2022-01-28 2022-01-28 Laser sensor device and robot system WO2023145011A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/003377 WO2023145011A1 (en) 2022-01-28 2022-01-28 Laser sensor device and robot system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/003377 WO2023145011A1 (en) 2022-01-28 2022-01-28 Laser sensor device and robot system

Publications (1)

Publication Number Publication Date
WO2023145011A1 true WO2023145011A1 (en) 2023-08-03

Family

ID=87470947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003377 WO2023145011A1 (en) 2022-01-28 2022-01-28 Laser sensor device and robot system

Country Status (1)

Country Link
WO (1) WO2023145011A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160124086A1 (en) * 2014-10-30 2016-05-05 Nxp, B.V. Radar ambiguity resolving detector
JP2017090066A (en) * 2015-11-02 2017-05-25 富士通テン株式会社 Radar device, signal processing device of radar device, and signal processing method
JP2017090143A (en) * 2015-11-06 2017-05-25 富士通テン株式会社 Radar device, signal processing device for radar device, and signal processing method
JP2019039686A (en) * 2017-08-22 2019-03-14 株式会社デンソーテン Radar device and target detection method
WO2020196003A1 (en) * 2019-03-28 2020-10-01 ソニーセミコンダクタソリューションズ株式会社 Signal processing device, signal processing method, program, and information processing device
JP2022007120A (en) * 2020-06-25 2022-01-13 上田日本無線株式会社 Entering/leaving management device, entering/leaving management system, entering/leaving management method, and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160124086A1 (en) * 2014-10-30 2016-05-05 Nxp, B.V. Radar ambiguity resolving detector
JP2017090066A (en) * 2015-11-02 2017-05-25 富士通テン株式会社 Radar device, signal processing device of radar device, and signal processing method
JP2017090143A (en) * 2015-11-06 2017-05-25 富士通テン株式会社 Radar device, signal processing device for radar device, and signal processing method
JP2019039686A (en) * 2017-08-22 2019-03-14 株式会社デンソーテン Radar device and target detection method
WO2020196003A1 (en) * 2019-03-28 2020-10-01 ソニーセミコンダクタソリューションズ株式会社 Signal processing device, signal processing method, program, and information processing device
JP2022007120A (en) * 2020-06-25 2022-01-13 上田日本無線株式会社 Entering/leaving management device, entering/leaving management system, entering/leaving management method, and program

Similar Documents

Publication Publication Date Title
US11841454B2 (en) Radar system suppressing interference between a plurality of radar units
US10823846B2 (en) Object detection method and object detection device
US8427361B2 (en) Radar apparatus for use in vehicle
US10234541B2 (en) FMCW radar device
WO2016052744A1 (en) Radar device
US20150212198A1 (en) Radar apparatus
JP5184196B2 (en) Radar apparatus, radar apparatus signal processing method, and vehicle control system
JP2011133404A (en) Observation signal processing apparatus
JP2015137915A (en) Radar device, vehicle control system, and signal processing method
JPH0551865B2 (en)
CN108226918A (en) The solution of doppler ambiguity under high s/n ratio
US20210325531A1 (en) Radar device, observation target detecting method, and in-vehicle device
JP5602275B1 (en) On-vehicle radar device and target target detection method applied to on-vehicle radar device
CN112119330A (en) Object detection device and object detection method
JP2010038706A (en) Signal processing apparatus and radar system
KR20150118653A (en) Apparatus and method for velocity measurement of moving object
EP2834665A1 (en) Phase monopulse radar system and target detecting method
US10996315B2 (en) Radar apparatus for vehicle and method for estimating angle using same
WO2023145011A1 (en) Laser sensor device and robot system
JP6393581B2 (en) Radar apparatus and signal processing method
JP5564244B2 (en) Observation signal processor
JP2019066248A (en) Radar device and target detection method
KR102059689B1 (en) Angle Estimation Method and Apparatus for Automotive Radars
JP2006058135A (en) Moving body detector and detecting method
JP2003149331A (en) Tracking radar device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923875

Country of ref document: EP

Kind code of ref document: A1