WO2023136112A1 - Computation device and computation program - Google Patents

Computation device and computation program Download PDF

Info

Publication number
WO2023136112A1
WO2023136112A1 PCT/JP2022/047897 JP2022047897W WO2023136112A1 WO 2023136112 A1 WO2023136112 A1 WO 2023136112A1 JP 2022047897 W JP2022047897 W JP 2022047897W WO 2023136112 A1 WO2023136112 A1 WO 2023136112A1
Authority
WO
WIPO (PCT)
Prior art keywords
person
computing device
antennas
antenna
mode
Prior art date
Application number
PCT/JP2022/047897
Other languages
French (fr)
Japanese (ja)
Inventor
雄彦 飯塚
敬 芳賀
伸幸 能澤
純 牧野
和也 木村
亮太 藤原
将人 門田
望 木次谷
祐馬 田邊
健太 鈴木
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023136112A1 publication Critical patent/WO2023136112A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/04Systems determining presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves

Definitions

  • the present invention relates to an arithmetic device and arithmetic program for detecting the position of an object, the position of a person, or the movement of a person.
  • the transmission device described in Patent Document 1 is known as an invention related to conventional arithmetic devices.
  • the transmission device described in Patent Literature 1 uses electromagnetic waves to sense the surroundings.
  • the transmitter uses electromagnetic waves to detect people or vehicles.
  • an object of the present invention is to provide a computing device and a computing program capable of sensing the surroundings with higher accuracy regardless of whether it is raining or snowing.
  • a computing device includes: A computing device used in a detection device for detecting the position of an object, the position of a person, or the movement of a person within a first region,
  • the detection device comprises a communication device located within the first region,
  • the communication device includes first to T-th transmitting antennas and first to R-th receiving antennas,
  • the first to R-th receiving antennas receive signals of first to N-th subcarriers transmitted by electromagnetic waves from the first to T-th transmitting antennas, T, R and N are integers of 1 or more
  • the computing device is an obtaining step of obtaining weather information about the weather in the first region; selecting an operation mode based on the weather information obtained in the obtaining step; setting the transmission strength of the electromagnetic waves transmitted by the first to T-th transmission antennas based on the selected operation mode; or receiving by the first to R-th reception antennas.
  • the reception sensitivity of the electromagnetic wave to Based on the signals of the first to N-th subcarriers received by the first to R-th reception antennas, the first to T-th transmission antennas and the first to the T-th reception antennas a calculating step of calculating channel state information indicating a state of a transmission path of the electromagnetic wave between the R-th receiving antenna; and a detecting step of detecting the position of the object, the position of the person, or the movement of the person in the first area based on the channel state information calculated in the calculating step.
  • a computing program comprises An arithmetic program executed in an arithmetic device used in a detection device for detecting the position of an object, the position of a person, or the movement of a person in a first region
  • the detection device comprises a communication device located within the first region
  • the communication device includes first to T-th transmitting antennas and first to R-th receiving antennas,
  • the first to R-th receiving antennas receive signals of first to N-th subcarriers transmitted by electromagnetic waves from the first to T-th transmitting antennas, T, R and N are integers of 1 or more
  • the computing program is an obtaining step of obtaining weather information about the weather in the first region; selecting an operation mode based on the weather information obtained in the obtaining step; setting the transmission strength of the electromagnetic waves transmitted by the first to T-th transmission antennas based on the selected operation mode; or receiving by the first to R-th reception antennas.
  • the reception sensitivity of the electromagnetic wave to Based on the signals of the first to N-th subcarriers received by the first to R-th reception antennas, the first to T-th transmission antennas and the first to R-th reception antennas a calculating step of calculating channel state information indicating a state of a transmission path of the electromagnetic wave between the R-th receiving antenna; and a detecting step of detecting the position of the object, the position of the person, or the movement of the person in the first area based on the channel state information calculated in the calculating step.
  • the surroundings can be sensed with higher accuracy regardless of whether it is raining or snowing.
  • FIG. 1 is a side view of a passenger car 1 according to the first embodiment.
  • FIG. 2 is a block diagram of the detection device 20 according to the first embodiment.
  • FIG. 3 is a top view of the cabin 10 of the passenger car 1 according to the first embodiment.
  • FIG. 4 is a diagram showing an example of transmission paths of electromagnetic waves between the first transmitting antenna 4t1 to the Tth transmitting antenna 4tT and the first receiving antenna 4r1 to the Rth receiving antenna 4rR according to the first embodiment.
  • FIG. 5 is a flowchart showing processing executed by the arithmetic device 5 according to the first embodiment.
  • FIG. 6 is a diagram showing an example of the amplitude and phase of channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn when the person 3 in the first area operates according to the first embodiment.
  • FIG. 7 is a diagram showing an example of the amplitude and phase of channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn during breathing of the person 3 in the first area according to the first embodiment.
  • FIG. 8 is a flowchart showing processing executed by the arithmetic device 5 according to the second embodiment.
  • FIG. 9 is a flowchart showing processing executed by the arithmetic device 5 according to the third embodiment.
  • FIG. 10 is a flowchart showing processing executed by the arithmetic device 5 according to the fourth embodiment.
  • FIG. 11 is a flowchart showing processing executed by the arithmetic device 5 according to the fifth embodiment.
  • FIG. 12 shows an example of the amplitude and phase of the channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn during breathing of the person 3 in the first region under fine weather according to the fifth embodiment. It is a figure which shows.
  • FIG. 13 shows an example of the amplitude and phase of channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn during breathing of the person 3 in the first area in rainy weather according to the fifth embodiment. It is a figure which shows.
  • FIG. 1 is a side view of a passenger car 1 according to the first embodiment.
  • FIG. 2 is a block diagram of the detection device 20 according to the first embodiment.
  • FIG. 3 is a top view of the cabin 10 of the passenger car 1 according to the first embodiment.
  • FIG. 4 is a diagram showing an example of transmission paths of electromagnetic waves between the first transmitting antenna 4t1 to the Tth transmitting antenna 4tT and the first receiving antenna 4r1 to the Rth receiving antenna 4rR according to the first embodiment.
  • FIG. 5 is a flowchart showing processing executed by the arithmetic device 5 according to the first embodiment.
  • FIG. 6 is a diagram showing an example of the amplitude and phase of channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn when the person 3 in the first area operates according to the first embodiment. is.
  • the horizontal axis indicates time and the vertical axis indicates amplitude or phase.
  • FIG. 7 is a diagram showing an example of the amplitude and phase of channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn during breathing of the person 3 in the first area according to the first embodiment. is.
  • the horizontal axis indicates time and the vertical axis indicates amplitude or phase.
  • FIGS. 6 and 7 is an experimental result when the person 3 is seated on the rear seat of the passenger car 1 and is breathing in fine weather.
  • the detection device 20 is a detection device that detects the position of the object 2, the position of the person 3, or the movement of the person 3 within the first area.
  • the detection device 20 is a detection device that detects the position of the object 2, the position of the person 3, or the movement of the person 3 in the cabin 10 of the passenger car 1, as shown in FIGS. Used.
  • the cabin 10 of the passenger car 1 is an example of the first area.
  • the passenger car 1 is an example of a vehicle. That is, in this embodiment, the first area is the cabin 10 of the vehicle.
  • the passenger car 1 has a window, as shown in FIG.
  • the object 2 is, for example, a smart phone.
  • the detection device 20 includes a communication device 4, as shown in FIG. Further, the calculation device 5 is used in the detection device 20 as shown in FIG.
  • the communication device 4 includes a transmitting device 41, first transmitting antenna 4t1 to T-th transmitting antenna 4tT, receiving device 42, and first receiving antenna 4r1 to R-th receiving antenna 4rR.
  • T and R are each an integer of 1 or more.
  • the communication device 4 is arranged inside the cabin 10 as shown in FIG. That is, the communication device 4 is arranged within the first area. Moreover, in this embodiment, the arithmetic device 5 is arranged in the cabin 10 as shown in FIG. That is, the arithmetic device 5 is arranged within the first region.
  • the propagation of electromagnetic waves has the property of changing when the path of the electromagnetic wave changes.
  • the path of an electromagnetic wave changes as the environment through which the electromagnetic wave travels changes. Changes in the environment include, for example, the position of the object 2 existing in the environment through which the electromagnetic wave passes, the movement of the object 2, the position of the person 3, the movement of the person 3, the movement of the object 2 accompanying the movement of the person 3, or the change in rainfall. Presence or absence of snowfall.
  • radio waves from Wi-Fi are used as an example of electromagnetic waves.
  • the transmitting device 41 and the receiving device 42 are Wi-Fi (registered trademark) access points.
  • the first transmitting antenna 4t1 to the T-th transmitting antenna 4tT are Wi-Fi (registered trademark) transmitting antennas.
  • the first receiving antenna 4r1 to the R-th receiving antenna 4rR are Wi-Fi (registered trademark) receiving antennas.
  • Wi-Fi (registered trademark) channel state information (CSI) is used as electromagnetic wave propagation information.
  • Wi-Fi (registered trademark) channel state information CSI is an example of channel state information. Details are described below.
  • the transmission device 41 generates each of the first transmission signal to the Tth transmission signal.
  • the transmission device 41 causes the first transmission antenna 4t1 to the Tth transmission antenna 4tT to transmit the first transmission signal to the Tth transmission signal, respectively.
  • Each of the first transmission signal to the Tth transmission signal includes signals of the first subcarrier to the Nth subcarrier.
  • N is an integer of 1 or more.
  • Each of the signals of the first subcarrier to the Nth subcarrier is a signal digitally modulated by the transmitting device 41 by OFDM (Orthogonal Frequency Division Multiplexing). Since the 1st to Nth subcarriers are orthogonal to each other, they do not interfere with each other.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Each of the first transmission antenna 4t1 to the Tth transmission antenna 4tT transmits the first transmission signal to the Tth transmission signal by electromagnetic waves.
  • each of the first to T-th transmission signals transmitted from each of the first to T-th transmission antennas 4t1 to 4tT is an object 2 and a person 3 existing in an environment through which electromagnetic waves pass. and received by at least one of the first receiving antenna 4r1 to the R-th receiving antenna 4rR.
  • Each of the first to Rth reception signals received by the first to Rth reception antennas 4r1 to 4rR includes signals of the first to Nth subcarriers. That is, the first receiving antenna 4r1 to the Rth receiving antenna 4rR receive the signals of the first to Nth subcarriers transmitted by electromagnetic waves from the first transmitting antenna 4t1 to the Tth transmitting antenna 4tT.
  • the receiving device 42 acquires the first to R-th reception signals respectively received by the first to R-th reception antennas 4r1 to 4rR.
  • the first to T-th transmission signals are represented by complex numbers x1 to xT, respectively. That is, signals transmitted from the first transmitting antenna 4t1 to the T-th transmitting antenna 4tT are represented by x1 to xT, which are complex numbers, respectively. Also, the first to R-th received signals are represented by complex numbers y1 to yR, respectively. That is, the signals received by the first receiving antenna 4r1 to the R-th receiving antenna 4rR are represented by y1 to yR, which are complex numbers, respectively.
  • x1 to xT and y1 to yR satisfy Equations 1 to 5 below.
  • i is an integer of 1 or more and N or less.
  • m is an integer of 1 or more and R or less.
  • n is an integer of 1 or more and T or less.
  • Hi is channel state information between the first transmitting antenna 4t1 to the T-th transmitting antenna 4tT and the first receiving antenna 4r1 to the R-th receiving antenna 4rR of the i-th subcarrier.
  • hmn is channel state information between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn.
  • is the amplitude of hmn.
  • ⁇ hmn is the phase of hmn.
  • ni is the noise vector of the i-th subcarrier.
  • the computing device 5 is communicably connected to each of the transmitting device 41 and the receiving device 42 .
  • the arithmetic unit 5 is a processing circuit such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit).
  • a storage device (not shown) stores the arithmetic program of the flow chart shown in FIG. The arithmetic device 5 reads and executes this arithmetic program.
  • This process is started when the computing device 5 acquires weather information about the weather in the first area (FIG. 5: START). Specifically, first, the computing device 5 acquires weather information about the weather in the first region ( FIG. 5 : acquisition step S11). Specifically, the computing device 5 acquires weather information about the weather in the first area from, for example, a weather sensor that detects weather information about the weather in the first area. Note that the computing device 5 may acquire weather information about the weather in the first region by the user inputting the weather information about the weather in the first region to the computing device 5 . Further, the computing device 5 may be connected to, for example, an in-vehicle LAN (Local Area Network) and acquire weather information regarding the weather in the first area from an in-vehicle electronic device connected to the in-vehicle LAN.
  • in-vehicle LAN Local Area Network
  • the computing device 5 When the computing device 5 acquires weather information indicating that it is neither raining nor snowing (Fig. 5: step S12), it selects the first mode (Fig. 5: step S13). On the other hand, when the computing device 5 acquires weather information indicating that it is raining or snowing (FIG. 5: step S12), it selects the second mode (FIG. 5: step S23). That is, the arithmetic device 5 selects an operation mode based on the weather information acquired in the acquisition step S11. Moreover, in this embodiment, the operation mode includes a first mode and a second mode.
  • the computing device 5 causes the first transmitting antenna 4t1 to the Tth transmitting antenna 4tT to transmit electromagnetic waves having the first intensity in the first mode ( FIG. 5 : step S14). More specifically, the computing device 5 causes the transmitting device 41 to generate the first to Tth transmission signals having the first intensity. Further, the transmitting device 41 causes the first transmitting antenna 4t1 to the T-th transmitting antenna 4tT to transmit the first to Tth transmitting signals having the first intensity, respectively.
  • the computing device 5 causes the first transmitting antenna 4t1 to the Tth transmitting antenna 4tT to transmit electromagnetic waves having a second intensity stronger than the first intensity in the second mode (FIG. 5: step S24). More specifically, the computing device 5 causes the transmitting device 41 to generate the first to Tth transmission signals having a second intensity stronger than the first intensity. Further, the transmitting device 41 causes the first transmitting antenna 4t1 to the T-th transmitting antenna 4tT to transmit the first to Tth transmission signals having a second strength higher than the first strength, respectively.
  • the arithmetic device 5 Based on the signals of the first to N-th subcarriers received by the first to R-th receiving antennas 4r1 to 4rR, the arithmetic device 5 generates the first to T-th transmitting antennas 4t1 to 4tT and the Channel state information H1 to HN indicating the state of the electromagnetic wave transmission path between the first receiving antenna 4r1 to the R-th receiving antenna are calculated ( FIG. 5 : calculation step S15, calculation step S25).
  • the arithmetic device 5 sends each of the first to T-th transmission signals generated by the transmission device 41 and each of the first to R-th reception signals acquired by the reception device 42 to the transmission device 41 and Obtained from each of the receiving devices 42 .
  • the computing device 5 uses Equation 1 to calculate channel state information Hi between the first transmitting antenna 4t1 to the T-th transmitting antenna 4tT and the first receiving antenna 4r1 to the R-th receiving antenna 4rR of the i-th subcarrier. .
  • the calculation device 5 performs this calculation for the first to N-th subcarriers. Therefore, the computing device 5 calculates channel state information H1 to HN between the first transmitting antenna 4t1 to Tth transmitting antenna 4tT and the first receiving antenna 4r1 to Rth receiving antenna 4rR, respectively.
  • the arithmetic device 5 calculates the channel state information H1 through the channel state information H1 through Based on HN, the position of the object 2, the position of the person 3, or the movement of the person 3 within the first area is detected (FIG. 5: detection step S16, detection step S26).
  • the movement of person 3 includes both the movement due to breathing of person 3 and the movement of person 3.
  • the movement of the person 3 may be either the movement due to breathing of the person 3 or the movement of the person 3 only. That is, the movement of the person 3 includes movement due to breathing of the person 3 .
  • the channel state information H1 to HN between the first transmitting antenna 4t1 to the Tth transmitting antenna 4tT and the first receiving antenna 4r1 to the Rth receiving antenna 4rR is the position of the object 2 in the first region, the position of the object 2 , the position of the person 3, and the movement of the person 3 change.
  • the channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn when the person 3 operates in the first region is, as shown in FIG. Change.
  • the channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn when the person 3 breathes in the first area is, as shown in FIG. ,Change.
  • the channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn when the person 3 in the first area is in operation is the m-th transmitting antenna 4tm when the person 3 in the first area is breathing. and the n-th receiving antenna 4rn. More specifically, the amplitude of the channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn during operation of the person 3 in the first region shown in FIG. is greater than the amplitude of the channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn when the person 3 inside is breathing.
  • the computing device 5 calculates the channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn to detect the change in the position of the person 3 in the first area or the position of the person in the first area. 3 movements can be detected.
  • the surroundings can be sensed with higher accuracy regardless of whether it is raining or snowing. More specifically, the computing device 5 acquires weather information regarding the weather in the first region. Based on the signals of the first to N-th subcarriers received by the first to R-th receiving antenna 4r1 to R-th receiving antenna 4rR, the arithmetic unit 5 connects the first to T-th transmitting antenna 4t1 to the T-th transmitting antenna 4tT and the first receiving antenna.
  • Channel state information H1 to HN indicating the state of electromagnetic wave transmission paths between 4r1 to R-th receiving antennas are calculated.
  • the path of the electromagnetic wave changes when the environment through which the electromagnetic wave passes changes.
  • the path of electromagnetic waves changes depending on the presence or absence of rainfall or snowfall. More specifically, when it rains or snows, water adheres to the windows of the passenger car 1, for example. Therefore, the state of reflection of electromagnetic waves on the windows of the passenger car 1 changes depending on whether it is raining or snowing. Therefore, the arithmetic unit 5 selects an operation mode based on the obtained weather information regarding the weather in the first region.
  • the arithmetic device 5 Based on the calculated channel state information H1 to HN between the first transmitting antenna 4t1 to T-th transmitting antenna 4tT and the first receiving antenna 4r1 to R-th receiving antenna 4rR in the selected operation mode, the arithmetic device 5 Detecting the position of the object 2, the position of the person 3 or the movement of the person 3 within the first area. As a result, the computing device 5 can detect the position of the object 2, the position of the person 3, or the movement of the person 3 in the first area by operating modes suitable for the weather. As described above, according to the computing device 5, the surroundings can be sensed with higher accuracy regardless of whether it is raining or snowing.
  • the computing device 5 it is possible to sense the surroundings with higher accuracy regardless of whether it is raining or snowing. More specifically, when the arithmetic device 5 acquires weather information indicating that it is not raining or snowing, the first mode causes the first transmitting antenna 4t1 to the T-th transmitting antenna 4tT to transmit electromagnetic waves having a first intensity. to select. On the other hand, when obtaining weather information indicating that it is raining or snowing, the computing device 5 causes the first transmitting antenna 4t1 to the T-th transmitting antenna 4tT to transmit electromagnetic waves having a second intensity higher than the first intensity. Select the second mode.
  • the signals of the first to N-th subcarriers are sufficient for the arithmetic unit 5 to detect the position of the object 2, the position of the person 3, or the movement of the person 3 in the first area. can be received by the first receiving antenna 4r1 to the R-th receiving antenna 4rR.
  • the computing device 5 can sense the surroundings with higher accuracy regardless of whether it is raining or snowing.
  • FIG. 8 is a flowchart showing processing executed by the arithmetic device 5 according to the second embodiment.
  • the detection device 20a having the arithmetic device 5 according to the second embodiment only the parts different from the detection device 20 having the arithmetic device 5 according to the first embodiment will be explained, and the rest will be omitted.
  • This embodiment differs from the detection device 20 in that the operation mode includes a third mode and a fourth mode.
  • step S12 when the computing device 5 acquires weather information indicating that it is not raining or snowing (FIG. 8: step S12), it selects the third mode (FIG. 8: step S13a). On the other hand, when the arithmetic device 5 acquires weather information indicating that it is raining or snowing (FIG. 8: step S12), it selects the fourth mode (FIG. 8: step S23a).
  • the computing device 5 causes the first receiving antenna 4r1 to the R-th receiving antenna 4rR to transmit electromagnetic waves with the first sensitivity in the third mode (FIG. 8: step S14a). More specifically, the computing device 5, for example, sets the gain of the receiving device 42 to the first gain. More precisely, the receiver 42 acquires the first to R-th reception signals respectively received by the first to R-th reception antennas 4r1 to 4rR. The receiving device 42 multiplies each of the acquired first to R-th received signals by a first amplification factor. The computing device 5 acquires from the receiving device 42 the first signal to the R-th signal, which are the result of the receiving device 42 multiplying the first to R-th received signals by the first amplification factor. The arithmetic unit 5 treats the first signal to the Rth signal as the first reception signal to the Rth reception signal.
  • the computing device 5 causes the first receiving antenna 4r1 to the R-th receiving antenna 4rR to receive electromagnetic waves with the second sensitivity stronger than the first sensitivity (FIG. 8: step S24a). More specifically, the computing device 5, for example, sets the gain of the receiving device 42 to a second gain higher than the first gain. More precisely, the receiver 42 acquires the first to R-th reception signals respectively received by the first to R-th reception antennas 4r1 to 4rR. The receiving device 42 multiplies each of the acquired first to R-th received signals by the second amplification factor.
  • the computing device 5 acquires from the receiving device 42 the first signal to the R-th signal, which are the result of the receiving device 42 multiplying the first to R-th received signals by the second amplification factor.
  • the arithmetic unit 5 treats the first signal to the Rth signal as the first reception signal to the Rth reception signal.
  • the arithmetic device 5 as described above also has the same effects as the arithmetic device 5 according to the first embodiment. More specifically, when obtaining weather information indicating that it is not raining or snowing, the computing device 5 selects the third mode in which the first receiving antenna 4r1 to the R-th receiving antenna 4rR receive electromagnetic waves with the first sensitivity. select. On the other hand, when obtaining weather information indicating that it is raining or snowing, the computing device 5 causes the first receiving antenna 4r1 to the R-th receiving antenna 4rR to receive electromagnetic waves with a second sensitivity higher than the first sensitivity. Select 4 modes.
  • the signals of the first to N-th subcarriers are sufficient for the arithmetic unit 5 to detect the position of the object 2, the position of the person 3, or the movement of the person 3 in the first area. can be received by the first receiving antenna 4r1 to the R-th receiving antenna 4rR.
  • the computing device 5 according to the second embodiment can sense the surroundings with higher accuracy regardless of whether it is raining or snowing.
  • FIG. 9 is a flowchart showing processing executed by the arithmetic device 5 according to the third embodiment.
  • the detection device 20b including the arithmetic device 5 according to the third embodiment only different parts from the detection device 20 including the arithmetic device 5 according to the first embodiment will be described, and the rest will be omitted.
  • the computing device 5 uses a machine learning model to determine the position of the object 2 and the position of the person 3 in the first region in the detection step S16b shown in FIG. 9 and the detection step S26b shown in FIG. Alternatively, it differs from the detection device 20 in that it detects the movement of the person 3 .
  • the machine learning model includes channel state information H1 to HN between the first transmitting antenna 4t1 to T-th transmitting antenna 4tT and the first receiving antenna 4r1 to R-th receiving antenna 4rR, the position of the object 2 in the first region, Teacher data indicating the relationship between the movement of the object 2, the position of the person 3, and the movement of the person 3 is used. Therefore, the machine learning model uses the channel state information H1 to HN between the first transmitting antenna 4t1 to T-th transmitting antenna 4tT and the first receiving antenna 4r1 to R-th receiving antenna 4rR and the information of the object 2 in the first region.
  • the first transmitting antenna 4t1 to T-th transmitting antenna 4tT and the first receiving antenna 4r1 to R-th receiving antenna 4rR are selected according to teacher data indicating the relationship between the position, the movement of the object 2, the position of the person 3, and the movement of the person 3.
  • the relationship between the channel state information H1 to HN between , the position of the object 2, the movement of the object 2, the position of the person 3, and the movement of the person 3 in the first region is learned in advance.
  • the computing device 5 provides channel state information indicating the state of the electromagnetic wave transmission path between the first transmitting antenna 4t1 to the T-th transmitting antenna 4tT and the first receiving antenna 4r1 to the R-th receiving antenna calculated by the computing device 5.
  • a machine learning model is used to detect the position of the object 2, the movement of the object 2, the position of the person 3, and the movement of the person 3 within the first region corresponding to H1 to HN.
  • the computing device 5 according to the third embodiment it is possible to sense the surroundings with higher accuracy. More specifically, in the detection step S16b shown in FIG. 9 and the detection step S26b shown in FIG. Alternatively, the motion of the person 3 is detected. Thereby, the detection accuracy of the position of the object 2, the position of the person 3, or the movement of the person 3 in the first area can be improved. As a result, the computing device 5 according to the third embodiment can sense the surroundings with higher accuracy.
  • FIG. 10 is a flowchart showing processing executed by the arithmetic device 5 according to the fourth embodiment.
  • the detection device 20c equipped with the arithmetic device 5 according to the fourth embodiment only different parts from the detection device 20 equipped with the arithmetic device 5 according to the first embodiment will be described, and the rest will be omitted.
  • This embodiment differs from the detection device 20 in that the operation modes include a fifth mode and a sixth mode.
  • the machine learning model uses channel state information H1 to HN between the first transmitting antenna 4t1 to T-th transmitting antenna 4tT and the first receiving antenna 4r1 to R-th receiving antenna 4rR when it is not raining or snowing as training data.
  • the first machine learning model to be used and the channel state information H1 to HN between the first transmitting antenna 4t1 to T-th transmitting antenna 4tT and the first receiving antenna 4r1 to R-th receiving antenna 4rR when it is raining or snowing are trained. It contains a second machine learning model to use as data.
  • the first machine learning model provides channel state information between the first transmitting antenna 4t1 to the Tth transmitting antenna 4tT and the first receiving antenna 4r1 to the Rth receiving antenna 4rR when it is not raining or snowing.
  • Teacher data indicating the relationship between H1 to HN, the position of the object 2 within the first region, the movement of the object 2, the position of the person 3, and the movement of the person 3 is used.
  • the second machine learning model provides channel state information H1 to HN between the first transmitting antenna 4t1 to T-th transmitting antenna 4tT and the first receiving antenna 4r1 to R-th receiving antenna 4rR when it is raining or snowing. , the position of the object 2, the movement of the object 2, the position of the person 3, and the movement of the person 3 in the first area.
  • step S12 when the computing device 5 acquires weather information indicating that it is not raining or snowing (FIG. 10: step S12), it selects the fifth mode (FIG. 10: step S13c). On the other hand, when obtaining weather information indicating that it is raining or snowing ( FIG. 10 : step S12), arithmetic device 5 selects the sixth mode ( FIG. 10 : step S23c).
  • the computing device 5 detects the position of the object 2, the position of the person 3, or the movement of the person 3 in the first region using the first machine learning model in the fifth mode (FIG. 10: step S16c).
  • the computing device 5 detects the position of the object 2, the position of the person 3, or the movement of the person 3 in the first area using the second machine learning model in the sixth mode (FIG. 10: detection step S26c).
  • the arithmetic device 5 as described above also has the same effects as the arithmetic device 5 according to the first embodiment.
  • the machine learning model calculates the channel state information H1 to A first machine learning model using HN as training data and channel state information between the first transmitting antenna 4t1 to T-th transmitting antenna 4tT and the first receiving antenna 4r1 to R-th receiving antenna 4rR when it is raining or snowing. It includes a second machine learning model that uses H1 through HN as training data. As a result, it is possible to suppress deterioration in detection accuracy of the position of the object 2, the position of the person 3, or the movement of the person 3 in the first area due to the presence or absence of rain or snow. As a result, the computing device 5 according to the fourth embodiment can sense the surroundings with higher accuracy regardless of whether it is raining or snowing.
  • the arithmetic device 5 when acquiring weather information indicating that it is not raining or snowing, uses the first machine learning model to determine the position of the object 2 in the first region, the number of people Select a fifth mode that detects the position of 3 or the movement of person 3 .
  • the arithmetic device 5 acquires weather information indicating that it is raining or snowing, it uses the second machine learning model to determine the position of the object 2, the position of the person 3, or the position of the person 3 in the first region. Select the sixth mode of motion detection.
  • the computing device 5 according to the fourth embodiment can sense the surroundings with higher accuracy regardless of whether it is raining or snowing.
  • FIG. 11 is a flowchart showing processing executed by the arithmetic device 5 according to the fifth embodiment.
  • FIG. 12 shows an example of the amplitude and phase of the channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn when the person 3 operates in the first area under fine weather according to the fifth embodiment. It is a figure which shows.
  • the horizontal axis indicates time and the vertical axis indicates amplitude or phase.
  • FIG. 12 shows an example of the amplitude and phase of the channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn when the person 3 operates in the first area under fine weather according to the fifth embodiment. It is a figure which shows.
  • the horizontal axis indicates time and the vertical axis indicates amplitude or phase.
  • FIG. 12 shows an example of the amplitude and phase of the channel state information hmn between the m-th transmitting antenna 4tm and
  • FIG. 13 shows an example of the amplitude and phase of the channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn when the person 3 operates in the first area in rainy weather according to the fifth embodiment. It is a figure which shows. In FIG. 13, the horizontal axis indicates time and the vertical axis indicates amplitude or phase. 12 and 13 are experimental results when the person 3 is seated on the rear seat of the passenger car 1 and is breathing. As for the detection device 20d including the arithmetic device 5 according to the fifth embodiment, only the parts different from the detection device 20 including the arithmetic device 5 according to the first embodiment will be described, and the rest will be omitted.
  • the computing device 5 acquires the channel state information H1 between the first to T-th transmitting antennas 4t1 to 4tT and the first to R-th receiving antennas 4r1 to 4rR in the acquisition step S12d shown in FIG. It differs from the detection device 20 in that it acquires weather information about the weather in the first area based on HN.
  • the path of electromagnetic waves changes when the environment through which the electromagnetic waves pass changes. Therefore, the path of electromagnetic waves changes depending on the presence or absence of rainfall or snowfall. More specifically, water adheres to the windows of passenger car 1 when it rains or snows. Therefore, the state of reflection of electromagnetic waves on the windows of the passenger car 1 changes depending on whether it is raining or snowing. Therefore, the channel state information H1 to HN between the first transmitting antenna 4t1 to T-th transmitting antenna 4tT and the first receiving antenna 4r1 to R-th receiving antenna 4rR can be determined whether it is raining or snowing at the position of the first area. has the property of changing when is changed.
  • the computing device 5 calculates channel state information H1 to HN between the first transmitting antenna 4t1 to T-th transmitting antenna 4tT and the first receiving antenna 4r1 to R-th receiving antenna 4rR (FIG. 11: calculation step S11d). ).
  • the computing device 5 calculates the first area based on the channel state information H1 to HN between the first transmitting antenna 4t1 to T-th transmitting antenna 4tT and the first receiving antenna 4r1 to R-th receiving antenna 4rR. acquires weather information about the weather in (FIG. 11: acquisition step S12d).
  • the amplitude of the channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn during breathing of the person 3 in the first area in fine weather shown in FIG. 12 is shown in FIG. It is different from the amplitude of the channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn when the person 3 breathes in the first area in rainy weather.
  • the amplitude of the channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn during breathing of the person 3 in the first region under fine weather shown in FIG. 12 is shown in FIG. It is smaller than the amplitude of the channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn when the person 3 breathes in the first area in rainy weather. Therefore, the arithmetic device 5 calculates the channel state information H1 to HN between the first transmitting antenna 4t1 to the T-th transmitting antenna 4tT and the first receiving antenna 4r1 to the R-th receiving antenna 4rR. Weather information about the weather can be acquired. More specifically, the computing device 5 calculates the 1st The presence or absence of rain or snow in a region can be determined.
  • steps S14d through S17d and steps S24d through S27d shown in FIG. 11 are respectively the same as steps S13 through S16 and steps S23 through S26 shown in FIG. omitted.
  • the channel state information H1 to HN between the first transmitting antenna 4t1 to T-th transmitting antenna 4tT and the first receiving antenna 4r1 to R-th receiving antenna 4rR is determined by the presence or absence of rainfall or It has the property of changing when the presence or absence of snowfall changes.
  • the computing device 5 calculates the weather in the first area based on the channel state information H1 to HN between the first transmitting antenna 4t1 to T-th transmitting antenna 4tT and the first receiving antenna 4r1 to R-th receiving antenna 4rR. You can get weather information about As a result, even if the weather sensor that detects weather information on the weather in the first area does not acquire weather information on the weather in the first area, the computing device 5 can acquire weather information on the weather in the first area. can. As a result, according to the arithmetic device 5 according to the fifth embodiment, even when the weather information regarding the weather in the first region is not acquired from the weather sensor that detects the weather information regarding the weather in the first region, rain or snowfall can be detected. With or without it, the surroundings can be sensed with higher accuracy.
  • the arithmetic device includes the arithmetic device 5 according to the first embodiment, the arithmetic device 5 according to the second embodiment, the arithmetic device 5 according to the third embodiment, and the arithmetic device according to the fourth embodiment. 5. It is not limited to the arithmetic device 5 according to the fifth embodiment, and can be modified within the scope of the gist thereof.
  • the arithmetic device 5 according to the first embodiment the arithmetic device 5 according to the second embodiment, the arithmetic device 5 according to the third embodiment, the arithmetic device 5 according to the fourth embodiment, and the fifth embodiment
  • each of the machine learning model, the first machine learning model, and the second machine learning model may be a machine learning model that does not use teacher data.
  • the passenger car 1 does not have to have windows.
  • the vehicle is not limited to passenger car 1.
  • a vehicle may be, for example, a golf cart, an airplane, a rocket, a train, a helicopter, or a watercraft.
  • the first area is not limited to the cabin 10 of the vehicle.
  • Cabin 10 may be, for example, a trunk or cargo compartment.
  • the first area may be, for example, an internal space of a building. Even in this case, the same effect as that of the detection device 20 can be obtained.
  • the first area does not have to be a closed space.
  • the first area may be connected to an area outside the first area.
  • the arithmetic device 5 estimates the noise ni from the mechanical characteristics and electromagnetic characteristics of each of the first transmitting antenna 4t1 to T-th transmitting antenna 4tT and each of the first receiving antenna 4r1 to R-th receiving antenna 4rR, Noise ni may be removed.
  • Person 3 is not limited to adults. Person 3 may be, for example, a child or a baby.
  • the position of the object 2 or the position of the person 3 is not limited to above the seat.
  • the position of the object 2 or the position of the person 3 may for example be under the seat.
  • electromagnetic waves are not limited to Wi-Fi (registered trademark).
  • the electromagnetic wave may be, for example, Bluetooth (registered trademark) or the like.
  • the arithmetic device 5 causes the first receiving antenna 4r1 to the R-th receiving antenna 4rR to transmit electromagnetic waves with the first sensitivity, and in the second mode, with the second sensitivity stronger than the first sensitivity, Electromagnetic waves may be received by the first receiving antenna 4r1 to the R-th receiving antenna 4rR.
  • the arithmetic device 5 causes the first transmitting antenna 4t1 to the T-th transmitting antenna 4tT to transmit electromagnetic waves having the first intensity in the third mode, and the second intensity stronger than the first intensity in the fourth mode. may be transmitted from the first transmitting antenna 4t1 to the T-th transmitting antenna 4tT.
  • the first intensity and the second intensity may be the same intensity.
  • the arithmetic device 5 is not limited to being arranged within the first region.
  • the computing device 5 may be arranged outside the first area, or may be arranged inside and outside the first area.
  • the weather information regarding the weather in the first region is not limited to whether it rains or snows, and may be, for example, the presence of hail or the presence of volcanic ash.
  • the first receiving antenna 4r1 to the R-th receiving antenna 4rR receive electromagnetic waves with a second sensitivity stronger than the first sensitivity. It is not limited to setting the second amplification factor higher than the gain, and other methods may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Electromagnetism (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Dentistry (AREA)
  • Geophysics (AREA)
  • Physiology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

A computation device according to the present invention executes the following: an acquisition step for acquiring weather information relating to weather in a first region; a step for selecting an operating mode on the basis of the weather information acquired in the acquisition step; a step for setting transmission intensity of electromagnetic waves, transmitted by a first transmission antenna through a T-th transmission antenna, on the basis of the selected operating mode, or a step for setting reception sensitivity of magnetic waves received by a first reception antenna through an R-th reception antenna; a calculation step for calculating channel status information, which indicates the status of transmission paths of electromagnetic waves between the first transmission antenna through the T-th transmission antenna and the first reception antenna through the R-th transmission antenna, on the basis of signals of a first subcarrier through an N-th subcarrier as received by the first reception antenna through the R-th transmission antenna; and a detection step for detecting positions of objects, positions of persons, or movement of persons inside the first region on the basis of the channel status information calculated in the calculation step.

Description

演算装置および演算プログラムArithmetic unit and arithmetic program
 本発明は、物体の位置、人の位置または人の動きを検出する演算装置および演算プログラムに関する。 The present invention relates to an arithmetic device and arithmetic program for detecting the position of an object, the position of a person, or the movement of a person.
 従来の演算装置に関する発明としては、例えば、特許文献1に記載の送信装置が知られている。特許文献1に記載の送信装置は、電磁波を用いて周囲のセンシングを行う。具体的には、送信装置は、電磁波を用いて、人または車を検出する。 For example, the transmission device described in Patent Document 1 is known as an invention related to conventional arithmetic devices. The transmission device described in Patent Literature 1 uses electromagnetic waves to sense the surroundings. Specifically, the transmitter uses electromagnetic waves to detect people or vehicles.
国際公開第2020/122220号WO2020/122220
 ところで、特許文献1に記載の送信装置において、降雨または降雪の有無にかかわらず、周囲をより高精度にセンシングしたいという要望がある。 By the way, in the transmitting device described in Patent Document 1, there is a demand for more accurate sensing of the surroundings regardless of whether it is raining or snowing.
 そこで、本発明の目的は、降雨または降雪の有無にかかわらず、周囲をより高精度にセンシングすることができる演算装置および演算プログラムを提供することである。 Therefore, an object of the present invention is to provide a computing device and a computing program capable of sensing the surroundings with higher accuracy regardless of whether it is raining or snowing.
 本発明の一形態に係る演算装置は、
 第1領域内の物体の位置、人の位置または人の動きを検出する検出装置に用いられる演算装置であって、
 前記検出装置は、前記第1領域内に配置されている通信装置を備えており、
 前記通信装置は、第1送信アンテナ乃至第T送信アンテナおよび第1受信アンテナ乃至第R受信アンテナを含み、
 前記第1受信アンテナ乃至前記第R受信アンテナは、前記第1送信アンテナ乃至前記第T送信アンテナから電磁波により送信された第1サブキャリア乃至第Nサブキャリアの信号を受信し、
 T、RおよびNは、1以上の整数であり、
 前記演算装置は、
 前記第1領域における天候に関する天候情報を取得する取得ステップと、
 前記取得ステップにおいて取得した前記天候情報に基づいて、動作モードを選択するステップと、
 前記選択された動作モードに基づいて、前記第1送信アンテナ乃至前記第T送信アンテナが送信する前記電磁波の送信強度を設定するステップと、又は、前記第1受信アンテナ乃至前記第R受信アンテナが受信する前記電磁波の受信感度を設定するステップと、
 前記第1受信アンテナ乃至前記第R受信アンテナが受信した前記第1サブキャリア乃至前記第Nサブキャリアの信号に基づいて、前記第1送信アンテナ乃至前記第T送信アンテナと前記第1受信アンテナ乃至前記第R受信アンテナとの間の前記電磁波の伝送経路の状態を示すチャネル状態情報を算出する算出ステップと、
 前記算出ステップにおいて算出した前記チャネル状態情報に基づいて、前記第1領域内の前記物体の位置、前記人の位置または前記人の動きを検出する検出ステップと、を実行する。
A computing device according to one aspect of the present invention includes:
A computing device used in a detection device for detecting the position of an object, the position of a person, or the movement of a person within a first region,
The detection device comprises a communication device located within the first region,
The communication device includes first to T-th transmitting antennas and first to R-th receiving antennas,
The first to R-th receiving antennas receive signals of first to N-th subcarriers transmitted by electromagnetic waves from the first to T-th transmitting antennas,
T, R and N are integers of 1 or more,
The computing device is
an obtaining step of obtaining weather information about the weather in the first region;
selecting an operation mode based on the weather information obtained in the obtaining step;
setting the transmission strength of the electromagnetic waves transmitted by the first to T-th transmission antennas based on the selected operation mode; or receiving by the first to R-th reception antennas. setting the reception sensitivity of the electromagnetic wave to
Based on the signals of the first to N-th subcarriers received by the first to R-th reception antennas, the first to T-th transmission antennas and the first to the T-th reception antennas a calculating step of calculating channel state information indicating a state of a transmission path of the electromagnetic wave between the R-th receiving antenna;
and a detecting step of detecting the position of the object, the position of the person, or the movement of the person in the first area based on the channel state information calculated in the calculating step.
 本発明の一形態に係る演算プログラムは、
 第1領域内の物体の位置、人の位置または人の動きを検出する検出装置に用いられる演算装置において実行される演算プログラムであって、
 前記検出装置は、前記第1領域内に配置されている通信装置を備えており、
 前記通信装置は、第1送信アンテナ乃至第T送信アンテナおよび第1受信アンテナ乃至第R受信アンテナを含み、
 前記第1受信アンテナ乃至前記第R受信アンテナは、前記第1送信アンテナ乃至前記第T送信アンテナから電磁波により送信された第1サブキャリア乃至第Nサブキャリアの信号を受信し、
 T、RおよびNは、1以上の整数であり、
 前記演算プログラムは、
 前記第1領域における天候に関する天候情報を取得する取得ステップと、
 前記取得ステップにおいて取得した前記天候情報に基づいて、動作モードを選択するステップと、
 前記選択された動作モードに基づいて、前記第1送信アンテナ乃至前記第T送信アンテナが送信する前記電磁波の送信強度を設定するステップと、又は、前記第1受信アンテナ乃至前記第R受信アンテナが受信する前記電磁波の受信感度を設定するステップと、
 前記第1受信アンテナ乃至前記第R受信アンテナが受信した前記第1サブキャリア乃至前記第Nサブキャリアの信号に基づいて、前記第1送信アンテナ乃至前記第T送信アンテナと前記第1受信アンテナ乃至前記第R受信アンテナとの間の前記電磁波の伝送経路の状態を示すチャネル状態情報を算出する算出ステップと、
 前記算出ステップにおいて算出した前記チャネル状態情報に基づいて、前記第1領域内の前記物体の位置、前記人の位置または前記人の動きを検出する検出ステップと、を実行する。
A computing program according to one aspect of the present invention comprises
An arithmetic program executed in an arithmetic device used in a detection device for detecting the position of an object, the position of a person, or the movement of a person in a first region,
The detection device comprises a communication device located within the first region,
The communication device includes first to T-th transmitting antennas and first to R-th receiving antennas,
The first to R-th receiving antennas receive signals of first to N-th subcarriers transmitted by electromagnetic waves from the first to T-th transmitting antennas,
T, R and N are integers of 1 or more,
The computing program is
an obtaining step of obtaining weather information about the weather in the first region;
selecting an operation mode based on the weather information obtained in the obtaining step;
setting the transmission strength of the electromagnetic waves transmitted by the first to T-th transmission antennas based on the selected operation mode; or receiving by the first to R-th reception antennas. setting the reception sensitivity of the electromagnetic wave to
Based on the signals of the first to N-th subcarriers received by the first to R-th reception antennas, the first to T-th transmission antennas and the first to R-th reception antennas a calculating step of calculating channel state information indicating a state of a transmission path of the electromagnetic wave between the R-th receiving antenna;
and a detecting step of detecting the position of the object, the position of the person, or the movement of the person in the first area based on the channel state information calculated in the calculating step.
 本発明によれば、降雨または降雪の有無にかかわらず、周囲をより高精度にセンシングすることができる。 According to the present invention, the surroundings can be sensed with higher accuracy regardless of whether it is raining or snowing.
図1は、第1の実施形態に係る乗用車1の側面図である。FIG. 1 is a side view of a passenger car 1 according to the first embodiment. 図2は、第1の実施形態に係る検出装置20のブロック図である。FIG. 2 is a block diagram of the detection device 20 according to the first embodiment. 図3は、第1の実施形態に係る乗用車1のキャビン10の上面図である。FIG. 3 is a top view of the cabin 10 of the passenger car 1 according to the first embodiment. 図4は、第1の実施形態に係る第1送信アンテナ4t1乃至第T送信アンテナ4tTと第1受信アンテナ4r1乃至第R受信アンテナ4rRとの間の電磁波の伝送経路の一例を示す図である。FIG. 4 is a diagram showing an example of transmission paths of electromagnetic waves between the first transmitting antenna 4t1 to the Tth transmitting antenna 4tT and the first receiving antenna 4r1 to the Rth receiving antenna 4rR according to the first embodiment. 図5は、第1の実施形態に係る演算装置5が実行する処理を示すフローチャートである。FIG. 5 is a flowchart showing processing executed by the arithmetic device 5 according to the first embodiment. 図6は、第1の実施形態に係る第1領域内の人3の動作時の第m送信アンテナ4tmと第n受信アンテナ4rnとの間のチャネル状態情報hmnの振幅および位相の一例を示す図である。FIG. 6 is a diagram showing an example of the amplitude and phase of channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn when the person 3 in the first area operates according to the first embodiment. is. 図7は、第1の実施形態に係る第1領域内の人3の呼吸時の第m送信アンテナ4tmと第n受信アンテナ4rnとの間のチャネル状態情報hmnの振幅および位相の一例を示す図である。FIG. 7 is a diagram showing an example of the amplitude and phase of channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn during breathing of the person 3 in the first area according to the first embodiment. is. 図8は、第2の実施形態に係る演算装置5が実行する処理を示すフローチャートである。FIG. 8 is a flowchart showing processing executed by the arithmetic device 5 according to the second embodiment. 図9は、第3の実施形態に係る演算装置5が実行する処理を示すフローチャートである。FIG. 9 is a flowchart showing processing executed by the arithmetic device 5 according to the third embodiment. 図10は、第4の実施形態に係る演算装置5が実行する処理を示すフローチャートである。FIG. 10 is a flowchart showing processing executed by the arithmetic device 5 according to the fourth embodiment. 図11は、第5の実施形態に係る演算装置5が実行する処理を示すフローチャートである。FIG. 11 is a flowchart showing processing executed by the arithmetic device 5 according to the fifth embodiment. 図12は、第5の実施形態に係る晴天時の第1領域内の人3の呼吸時の第m送信アンテナ4tmと第n受信アンテナ4rnとの間のチャネル状態情報hmnの振幅および位相の一例を示す図である。FIG. 12 shows an example of the amplitude and phase of the channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn during breathing of the person 3 in the first region under fine weather according to the fifth embodiment. It is a figure which shows. 図13は、第5の実施形態に係る雨天時の第1領域内の人3の呼吸時の第m送信アンテナ4tmと第n受信アンテナ4rnとの間のチャネル状態情報hmnの振幅および位相の一例を示す図である。FIG. 13 shows an example of the amplitude and phase of channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn during breathing of the person 3 in the first area in rainy weather according to the fifth embodiment. It is a figure which shows.
 [第1の実施形態]
 以下に、本発明の第1の実施形態に係る演算装置5を備える検出装置20について、図を参照しながら説明する。図1は、第1の実施形態に係る乗用車1の側面図である。図2は、第1の実施形態に係る検出装置20のブロック図である。図3は、第1の実施形態に係る乗用車1のキャビン10の上面図である。図4は、第1の実施形態に係る第1送信アンテナ4t1乃至第T送信アンテナ4tTと第1受信アンテナ4r1乃至第R受信アンテナ4rRとの間の電磁波の伝送経路の一例を示す図である。図5は、第1の実施形態に係る演算装置5が実行する処理を示すフローチャートである。図6は、第1の実施形態に係る第1領域内の人3の動作時の第m送信アンテナ4tmと第n受信アンテナ4rnとの間のチャネル状態情報hmnの振幅および位相の一例を示す図である。図6において、横軸は、時間を示し、かつ、縦軸は、振幅または位相を示す。図7は、第1の実施形態に係る第1領域内の人3の呼吸時の第m送信アンテナ4tmと第n受信アンテナ4rnとの間のチャネル状態情報hmnの振幅および位相の一例を示す図である。図7において、横軸は、時間を示し、かつ、縦軸は、振幅または位相を示す。図6および図7のそれぞれは、晴天時に、乗用車1のリアシートに人3が着席して呼吸をしている時の実験結果である。
[First embodiment]
A detection device 20 including an arithmetic device 5 according to a first embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a side view of a passenger car 1 according to the first embodiment. FIG. 2 is a block diagram of the detection device 20 according to the first embodiment. FIG. 3 is a top view of the cabin 10 of the passenger car 1 according to the first embodiment. FIG. 4 is a diagram showing an example of transmission paths of electromagnetic waves between the first transmitting antenna 4t1 to the Tth transmitting antenna 4tT and the first receiving antenna 4r1 to the Rth receiving antenna 4rR according to the first embodiment. FIG. 5 is a flowchart showing processing executed by the arithmetic device 5 according to the first embodiment. FIG. 6 is a diagram showing an example of the amplitude and phase of channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn when the person 3 in the first area operates according to the first embodiment. is. In FIG. 6, the horizontal axis indicates time and the vertical axis indicates amplitude or phase. FIG. 7 is a diagram showing an example of the amplitude and phase of channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn during breathing of the person 3 in the first area according to the first embodiment. is. In FIG. 7, the horizontal axis indicates time and the vertical axis indicates amplitude or phase. Each of FIGS. 6 and 7 is an experimental result when the person 3 is seated on the rear seat of the passenger car 1 and is breathing in fine weather.
 検出装置20は、第1領域内の物体2の位置、人3の位置または人3の動きを検出する検出装置である。本実施形態では、検出装置20は、一例として、図1および図3に示すように、乗用車1のキャビン10内の物体2の位置、人3の位置または人3の動きを検出する検出装置として用いられる。なお、乗用車1のキャビン10は、第1領域の一例である。また、乗用車1は、ビークルの一例である。すなわち、本実施形態では、第1領域は、ビークルのキャビン10である。なお、本実施形態では、乗用車1は、図1に示すように、窓を有している。また、物体2は、例えば、スマートフォンである。 The detection device 20 is a detection device that detects the position of the object 2, the position of the person 3, or the movement of the person 3 within the first area. In this embodiment, as an example, the detection device 20 is a detection device that detects the position of the object 2, the position of the person 3, or the movement of the person 3 in the cabin 10 of the passenger car 1, as shown in FIGS. Used. Note that the cabin 10 of the passenger car 1 is an example of the first area. Also, the passenger car 1 is an example of a vehicle. That is, in this embodiment, the first area is the cabin 10 of the vehicle. In addition, in this embodiment, the passenger car 1 has a window, as shown in FIG. Also, the object 2 is, for example, a smart phone.
 検出装置20は、一例として、図2に示すように、通信装置4を備えている。また、演算装置5は、図2に示すように、検出装置20に用いられる。 As an example, the detection device 20 includes a communication device 4, as shown in FIG. Further, the calculation device 5 is used in the detection device 20 as shown in FIG.
 通信装置4は、図2に示すように、送信装置41、第1送信アンテナ4t1乃至第T送信アンテナ4tT、受信装置42および第1受信アンテナ4r1乃至第R受信アンテナ4rRを含んでいる。ここで、TおよびRは、それぞれ1以上の整数である。 As shown in FIG. 2, the communication device 4 includes a transmitting device 41, first transmitting antenna 4t1 to T-th transmitting antenna 4tT, receiving device 42, and first receiving antenna 4r1 to R-th receiving antenna 4rR. Here, T and R are each an integer of 1 or more.
 通信装置4は、図3に示すように、キャビン10内に配置されている。すなわち、通信装置4は、第1領域内に配置されている。また、本実施形態では、演算装置5は、図3に示すように、キャビン10内に配置されている。すなわち、演算装置5は、第1領域内に配置されている。 The communication device 4 is arranged inside the cabin 10 as shown in FIG. That is, the communication device 4 is arranged within the first area. Moreover, in this embodiment, the arithmetic device 5 is arranged in the cabin 10 as shown in FIG. That is, the arithmetic device 5 is arranged within the first region.
 電磁波の伝搬は、電磁波の経路が変化すると、変化する性質を有している。電磁波の経路は、電磁波が通過する環境が変化すると、変化する。環境の変化は、例えば、電磁波が通過する環境に存在する物体2の位置、物体2の動き、人3の位置、人3の動き、人3の動きに伴う物体2の動き、または、降雨の有無または降雪の有無である。 The propagation of electromagnetic waves has the property of changing when the path of the electromagnetic wave changes. The path of an electromagnetic wave changes as the environment through which the electromagnetic wave travels changes. Changes in the environment include, for example, the position of the object 2 existing in the environment through which the electromagnetic wave passes, the movement of the object 2, the position of the person 3, the movement of the person 3, the movement of the object 2 accompanying the movement of the person 3, or the change in rainfall. Presence or absence of snowfall.
 本実施形態では、電磁波の一例として、Wi-Fi(登録商標)による電波を使用する。本実施形態では、送信装置41および受信装置42は、Wi-Fi(登録商標)のアクセスポイントである。第1送信アンテナ4t1乃至第T送信アンテナ4tTは、Wi-Fi(登録商標)送信アンテナである。また、第1受信アンテナ4r1乃至第R受信アンテナ4rRは、Wi-Fi(登録商標)受信アンテナである。 In this embodiment, radio waves from Wi-Fi (registered trademark) are used as an example of electromagnetic waves. In this embodiment, the transmitting device 41 and the receiving device 42 are Wi-Fi (registered trademark) access points. The first transmitting antenna 4t1 to the T-th transmitting antenna 4tT are Wi-Fi (registered trademark) transmitting antennas. Also, the first receiving antenna 4r1 to the R-th receiving antenna 4rR are Wi-Fi (registered trademark) receiving antennas.
 本実施形態では、電磁波伝搬情報として、Wi-Fi(登録商標)のチャネル状態情報(Channel State Information:CSI)を用いる。Wi-Fi(登録商標)のチャネル状態情報CSIは、チャネル状態情報の一例である。以下に、詳細を説明する。 In this embodiment, Wi-Fi (registered trademark) channel state information (CSI) is used as electromagnetic wave propagation information. Wi-Fi (registered trademark) channel state information CSI is an example of channel state information. Details are described below.
 送信装置41は、第1送信信号乃至第T送信信号のそれぞれを生成する。送信装置41は、第1送信信号乃至第T送信信号のそれぞれを第1送信アンテナ4t1乃至第T送信アンテナ4tTのそれぞれに送信させる。第1送信信号乃至第T送信信号のそれぞれは、第1サブキャリア乃至第Nサブキャリアの信号を含んでいる。ここで、Nは、1以上の整数である。 The transmission device 41 generates each of the first transmission signal to the Tth transmission signal. The transmission device 41 causes the first transmission antenna 4t1 to the Tth transmission antenna 4tT to transmit the first transmission signal to the Tth transmission signal, respectively. Each of the first transmission signal to the Tth transmission signal includes signals of the first subcarrier to the Nth subcarrier. Here, N is an integer of 1 or more.
 第1サブキャリア乃至第Nサブキャリアの信号のそれぞれは、送信装置41がOFDM(Orthogonal Frequency Division Multiplexing)によりデジタル変調された信号である。第1サブキャリア乃至第Nサブキャリアのそれぞれは、互いに直交しているため、互いに干渉しない。 Each of the signals of the first subcarrier to the Nth subcarrier is a signal digitally modulated by the transmitting device 41 by OFDM (Orthogonal Frequency Division Multiplexing). Since the 1st to Nth subcarriers are orthogonal to each other, they do not interfere with each other.
 第1送信アンテナ4t1乃至第T送信アンテナ4tTのそれぞれは、電磁波により第1送信信号乃至第T送信信号のそれぞれを送信する。第1送信アンテナ4t1乃至第T送信アンテナ4tTのそれぞれから送信された第1送信信号乃至第T送信信号のそれぞれは、図4に示すように、電磁波が通過する環境に存在する物体2、人3に反射して、第1受信アンテナ4r1乃至第R受信アンテナ4rRの少なくともいずれかに受信される。 Each of the first transmission antenna 4t1 to the Tth transmission antenna 4tT transmits the first transmission signal to the Tth transmission signal by electromagnetic waves. As shown in FIG. 4, each of the first to T-th transmission signals transmitted from each of the first to T-th transmission antennas 4t1 to 4tT is an object 2 and a person 3 existing in an environment through which electromagnetic waves pass. and received by at least one of the first receiving antenna 4r1 to the R-th receiving antenna 4rR.
 第1受信アンテナ4r1乃至第R受信アンテナ4rRのそれぞれが受信した第1受信信号乃至第R受信信号のそれぞれは、第1サブキャリア乃至第Nサブキャリアの信号を含んでいる。すなわち、第1受信アンテナ4r1乃至第R受信アンテナ4rRは、第1送信アンテナ4t1乃至第T送信アンテナ4tTから電磁波により送信された第1サブキャリア乃至第Nサブキャリアの信号を受信する。 Each of the first to Rth reception signals received by the first to Rth reception antennas 4r1 to 4rR includes signals of the first to Nth subcarriers. That is, the first receiving antenna 4r1 to the Rth receiving antenna 4rR receive the signals of the first to Nth subcarriers transmitted by electromagnetic waves from the first transmitting antenna 4t1 to the Tth transmitting antenna 4tT.
 受信装置42は、第1受信アンテナ4r1乃至第R受信アンテナ4rRのそれぞれが受信した第1受信信号乃至第R受信信号のそれぞれを取得する。 The receiving device 42 acquires the first to R-th reception signals respectively received by the first to R-th reception antennas 4r1 to 4rR.
 第1送信信号乃至第T送信信号のそれぞれは、複素数であるx1乃至xTで表される。すなわち、第1送信アンテナ4t1乃至第T送信アンテナ4tTが送信する信号のそれぞれは、複素数であるx1乃至xTで表される。また、第1受信信号乃至第R受信信号のそれぞれは、複素数であるy1乃至yRで表される。すなわち、第1受信アンテナ4r1乃至第R受信アンテナ4rRが受信する信号のそれぞれは、複素数であるy1乃至yRで表される。このとき、x1乃至xTおよびy1乃至yRは、以下の数式1乃至数式5を満たす。 The first to T-th transmission signals are represented by complex numbers x1 to xT, respectively. That is, signals transmitted from the first transmitting antenna 4t1 to the T-th transmitting antenna 4tT are represented by x1 to xT, which are complex numbers, respectively. Also, the first to R-th received signals are represented by complex numbers y1 to yR, respectively. That is, the signals received by the first receiving antenna 4r1 to the R-th receiving antenna 4rR are represented by y1 to yR, which are complex numbers, respectively. At this time, x1 to xT and y1 to yR satisfy Equations 1 to 5 below.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 ここで、iは、1以上N以下の整数である。また、mは、1以上R以下の整数である。また、nは、1以上T以下の整数である。また、Hiは、第iサブキャリアの第1送信アンテナ4t1乃至第T送信アンテナ4tTと第1受信アンテナ4r1乃至第R受信アンテナ4rRとの間のチャネル状態情報である。また、hmnは、第m送信アンテナ4tmと第n受信アンテナ4rnとの間のチャネル状態情報である。||hmn||は、hmnの振幅である。また、∠hmnは、hmnの位相である。また、niは、第iサブキャリアのノイズベクトルである。 Here, i is an integer of 1 or more and N or less. Moreover, m is an integer of 1 or more and R or less. Also, n is an integer of 1 or more and T or less. Also, Hi is channel state information between the first transmitting antenna 4t1 to the T-th transmitting antenna 4tT and the first receiving antenna 4r1 to the R-th receiving antenna 4rR of the i-th subcarrier. Also, hmn is channel state information between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn. ||hmn|| is the amplitude of hmn. Also, ∠hmn is the phase of hmn. Also, ni is the noise vector of the i-th subcarrier.
 演算装置5は、送信装置41および受信装置42のそれぞれと通信可能に接続されている。演算装置5は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等の処理回路である。記憶装置(図示せず)は、図5に示すフローチャートの演算プログラムを記憶している。演算装置5は、この演算プログラムを読み出して実行する。 The computing device 5 is communicably connected to each of the transmitting device 41 and the receiving device 42 . The arithmetic unit 5 is a processing circuit such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit). A storage device (not shown) stores the arithmetic program of the flow chart shown in FIG. The arithmetic device 5 reads and executes this arithmetic program.
 以下、演算装置5における処理の詳細を説明する。本処理は、演算装置5が第1領域における天候に関する天候情報を取得することにより開始される(図5:START)。具体的には、まず、演算装置5は、第1領域における天候に関する天候情報を取得する(図5:取得ステップS11)。具体的には、演算装置5は、例えば、第1領域における天候に関する天候情報を検出する気象センサから第1領域における天候に関する天候情報を取得する。なお、演算装置5は、ユーザが第1領域における天候に関する天候情報を演算装置5に入力することにより、第1領域における天候に関する天候情報を取得してもよい。また、演算装置5は、例えば、車内LAN(Local Area Network)に接続され、車内LANに接続されている車載電子機器から第1領域における天候に関する天候情報を取得してもよい。 The details of the processing in the computing device 5 will be described below. This process is started when the computing device 5 acquires weather information about the weather in the first area (FIG. 5: START). Specifically, first, the computing device 5 acquires weather information about the weather in the first region ( FIG. 5 : acquisition step S11). Specifically, the computing device 5 acquires weather information about the weather in the first area from, for example, a weather sensor that detects weather information about the weather in the first area. Note that the computing device 5 may acquire weather information about the weather in the first region by the user inputting the weather information about the weather in the first region to the computing device 5 . Further, the computing device 5 may be connected to, for example, an in-vehicle LAN (Local Area Network) and acquire weather information regarding the weather in the first area from an in-vehicle electronic device connected to the in-vehicle LAN.
 演算装置5は、雨および雪が降っていないことを示す天候情報を取得した場合(図5:ステップS12)、第1モードを選択する(図5:ステップS13)。一方、演算装置5は、雨または雪が降っていることを示す天候情報を取得した場合(図5:ステップS12)、第2モードを選択する(図5:ステップS23)。すなわち、演算装置5は、取得ステップS11において取得した天候情報に基づいて、動作モードを選択する。また、本実施形態では、動作モードは、第1モードと、第2モードと、を含んでいる。 When the computing device 5 acquires weather information indicating that it is neither raining nor snowing (Fig. 5: step S12), it selects the first mode (Fig. 5: step S13). On the other hand, when the computing device 5 acquires weather information indicating that it is raining or snowing (FIG. 5: step S12), it selects the second mode (FIG. 5: step S23). That is, the arithmetic device 5 selects an operation mode based on the weather information acquired in the acquisition step S11. Moreover, in this embodiment, the operation mode includes a first mode and a second mode.
 本実施形態では、演算装置5は、第1モードにおいて、第1強度を有する電磁波を第1送信アンテナ4t1乃至第T送信アンテナ4tTに送信させる(図5:ステップS14)。より詳細には、演算装置5は、送信装置41に第1強度を有する第1送信信号乃至第T送信信号を生成させる。また、送信装置41は、第1強度を有する第1送信信号乃至第T送信信号のそれぞれを第1送信アンテナ4t1乃至第T送信アンテナ4tTのそれぞれに送信させる。 In this embodiment, the computing device 5 causes the first transmitting antenna 4t1 to the Tth transmitting antenna 4tT to transmit electromagnetic waves having the first intensity in the first mode ( FIG. 5 : step S14). More specifically, the computing device 5 causes the transmitting device 41 to generate the first to Tth transmission signals having the first intensity. Further, the transmitting device 41 causes the first transmitting antenna 4t1 to the T-th transmitting antenna 4tT to transmit the first to Tth transmitting signals having the first intensity, respectively.
 本実施形態では、演算装置5は、第2モードにおいて、第1強度よりも強い第2強度を有する電磁波を第1送信アンテナ4t1乃至第T送信アンテナ4tTに送信させる(図5:ステップS24)。より詳細には、演算装置5は、送信装置41に第1強度よりも強い第2強度を有する第1送信信号乃至第T送信信号を生成させる。また、送信装置41は、第1強度よりも強い第2強度を有する第1送信信号乃至第T送信信号のそれぞれを第1送信アンテナ4t1乃至第T送信アンテナ4tTのそれぞれに送信させる。 In the present embodiment, the computing device 5 causes the first transmitting antenna 4t1 to the Tth transmitting antenna 4tT to transmit electromagnetic waves having a second intensity stronger than the first intensity in the second mode (FIG. 5: step S24). More specifically, the computing device 5 causes the transmitting device 41 to generate the first to Tth transmission signals having a second intensity stronger than the first intensity. Further, the transmitting device 41 causes the first transmitting antenna 4t1 to the T-th transmitting antenna 4tT to transmit the first to Tth transmission signals having a second strength higher than the first strength, respectively.
 次に、演算装置5は、第1受信アンテナ4r1乃至第R受信アンテナ4rRが受信した第1サブキャリア乃至第Nサブキャリアの信号に基づいて、第1送信アンテナ4t1乃至第T送信アンテナ4tTと第1受信アンテナ4r1乃至第R受信アンテナとの間の電磁波の伝送経路の状態を示すチャネル状態情報H1乃至HNを算出する(図5:算出ステップS15、算出ステップS25)。 Next, based on the signals of the first to N-th subcarriers received by the first to R-th receiving antennas 4r1 to 4rR, the arithmetic device 5 generates the first to T-th transmitting antennas 4t1 to 4tT and the Channel state information H1 to HN indicating the state of the electromagnetic wave transmission path between the first receiving antenna 4r1 to the R-th receiving antenna are calculated ( FIG. 5 : calculation step S15, calculation step S25).
 より詳細には、演算装置5は、送信装置41が生成した第1送信信号乃至第T送信信号のそれぞれおよび受信装置42が取得した第1受信信号乃至第R受信信号のそれぞれを送信装置41および受信装置42のそれぞれから取得する。 More specifically, the arithmetic device 5 sends each of the first to T-th transmission signals generated by the transmission device 41 and each of the first to R-th reception signals acquired by the reception device 42 to the transmission device 41 and Obtained from each of the receiving devices 42 .
 演算装置5は、数式1を用いて、第iサブキャリアの第1送信アンテナ4t1乃至第T送信アンテナ4tTと第1受信アンテナ4r1乃至第R受信アンテナ4rRとの間のチャネル状態情報Hiを算出する。演算装置5は、この算出を、第1サブキャリア乃至第Nサブキャリアに対して行う。したがって、演算装置5は、第1送信アンテナ4t1乃至第T送信アンテナ4tTと第1受信アンテナ4r1乃至第R受信アンテナ4rRとの間のチャネル状態情報H1乃至HNのそれぞれを算出する。 The computing device 5 uses Equation 1 to calculate channel state information Hi between the first transmitting antenna 4t1 to the T-th transmitting antenna 4tT and the first receiving antenna 4r1 to the R-th receiving antenna 4rR of the i-th subcarrier. . The calculation device 5 performs this calculation for the first to N-th subcarriers. Therefore, the computing device 5 calculates channel state information H1 to HN between the first transmitting antenna 4t1 to Tth transmitting antenna 4tT and the first receiving antenna 4r1 to Rth receiving antenna 4rR, respectively.
 次に、演算装置5は、算出ステップS15または算出ステップS25において算出した第1送信アンテナ4t1乃至第T送信アンテナ4tTと第1受信アンテナ4r1乃至第R受信アンテナ4rRとの間のチャネル状態情報H1乃至HNに基づいて、第1領域内の物体2の位置、人3の位置または人3の動きを検出する(図5:検出ステップS16、検出ステップS26)。 Next, the arithmetic device 5 calculates the channel state information H1 through the channel state information H1 through Based on HN, the position of the object 2, the position of the person 3, or the movement of the person 3 within the first area is detected (FIG. 5: detection step S16, detection step S26).
 より詳細には、人3の動きとは、人3の呼吸による動きおよび人3の動作の両方を含んでいる。人3の動きとは、人3の呼吸による動きまたは人3の動作のいずれかのみであってもよい。すなわち、人3の動きは、人3の呼吸による動きを含んでいる。 More specifically, the movement of person 3 includes both the movement due to breathing of person 3 and the movement of person 3. The movement of the person 3 may be either the movement due to breathing of the person 3 or the movement of the person 3 only. That is, the movement of the person 3 includes movement due to breathing of the person 3 .
 以上の取得ステップS11から検出ステップS16までの処理または取得ステップS11から検出ステップS26までの処理を実行することにより、演算装置5における処理は、完了する(図5:END)。 By executing the processing from the acquisition step S11 to the detection step S16 or the processing from the acquisition step S11 to the detection step S26, the processing in the arithmetic device 5 is completed (FIG. 5: END).
 電磁波の経路は、電磁波が通過する環境が変化すると、変化する。これにより、第1送信アンテナ4t1乃至第T送信アンテナ4tTと第1受信アンテナ4r1乃至第R受信アンテナ4rRとの間のチャネル状態情報H1乃至HNは、第1領域内の物体2の位置、物体2の動き、人3の位置、人3の動きが変化すると、変化する性質を有している。具体的には、第1領域内の人3の動作時の第m送信アンテナ4tmと第n受信アンテナ4rnとの間のチャネル状態情報hmnは、図6に示すように、人3の動作により、変化する。また、第1領域内の人3の呼吸時の第m送信アンテナ4tmと第n受信アンテナ4rnとの間のチャネル状態情報hmnは、図7に示すように、人3の呼吸による動きの有無により、変化する。 The path of electromagnetic waves changes when the environment through which the electromagnetic waves pass changes. As a result, the channel state information H1 to HN between the first transmitting antenna 4t1 to the Tth transmitting antenna 4tT and the first receiving antenna 4r1 to the Rth receiving antenna 4rR is the position of the object 2 in the first region, the position of the object 2 , the position of the person 3, and the movement of the person 3 change. Specifically, the channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn when the person 3 operates in the first region is, as shown in FIG. Change. In addition, the channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn when the person 3 breathes in the first area is, as shown in FIG. ,Change.
 また、第1領域内の人3の動作時の第m送信アンテナ4tmと第n受信アンテナ4rnとの間のチャネル状態情報hmnは、第1領域内の人3の呼吸時の第m送信アンテナ4tmと第n受信アンテナ4rnとの間のチャネル状態情報hmnと異なる。より詳細には、図6に示す第1領域内の人3の動作時の第m送信アンテナ4tmと第n受信アンテナ4rnとの間のチャネル状態情報hmnの振幅は、図7に示す第1領域内の人3の呼吸時の第m送信アンテナ4tmと第n受信アンテナ4rnとの間のチャネル状態情報hmnの振幅よりも大きい。したがって、演算装置5は、第m送信アンテナ4tmと第n受信アンテナ4rnとの間のチャネル状態情報hmnを算出することにより、第1領域内の人3の位置の変化または第1領域内の人3の動きを検出することができる。 Also, the channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn when the person 3 in the first area is in operation is the m-th transmitting antenna 4tm when the person 3 in the first area is breathing. and the n-th receiving antenna 4rn. More specifically, the amplitude of the channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn during operation of the person 3 in the first region shown in FIG. is greater than the amplitude of the channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn when the person 3 inside is breathing. Therefore, the computing device 5 calculates the channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn to detect the change in the position of the person 3 in the first area or the position of the person in the first area. 3 movements can be detected.
 [効果]
 演算装置5によれば、降雨または降雪の有無にかかわらず、周囲をより高精度にセンシングすることができる。より詳細には、演算装置5は、第1領域における天候に関する天候情報を取得する。演算装置5は、第1受信アンテナ4r1乃至第R受信アンテナ4rRが受信した第1サブキャリア乃至第Nサブキャリアの信号に基づいて、第1送信アンテナ4t1乃至第T送信アンテナ4tTと第1受信アンテナ4r1乃至第R受信アンテナとの間の電磁波の伝送経路の状態を示すチャネル状態情報H1乃至HNを算出する。ここで、電磁波の経路は、電磁波が通過する環境が変化すると、変化する。したがって、降雨または降雪の有無により、電磁波の経路が変化する。より詳細には、雨または雪が降ると、例えば、水が乗用車1の窓に付着する。そのため、降雨の有無または降雪の有無により、乗用車1の窓における電磁波の反射の状態が変化する。そこで、演算装置5は、取得した第1領域における天候に関する天候情報に基づいて、動作モードを選択する。演算装置5は、選択した動作モードにおいて、算出した第1送信アンテナ4t1乃至第T送信アンテナ4tTと第1受信アンテナ4r1乃至第R受信アンテナ4rRとの間のチャネル状態情報H1乃至HNに基づいて、第1領域内の物体2の位置、人3の位置または人3の動きを検出する。その結果、演算装置5は、天候に適した動作モードにより、第1領域内の物体2の位置、人3の位置または人3の動きを検出できる。以上より、演算装置5によれば、降雨または降雪の有無にかかわらず、周囲をより高精度にセンシングすることができる。
[effect]
According to the computing device 5, the surroundings can be sensed with higher accuracy regardless of whether it is raining or snowing. More specifically, the computing device 5 acquires weather information regarding the weather in the first region. Based on the signals of the first to N-th subcarriers received by the first to R-th receiving antenna 4r1 to R-th receiving antenna 4rR, the arithmetic unit 5 connects the first to T-th transmitting antenna 4t1 to the T-th transmitting antenna 4tT and the first receiving antenna. Channel state information H1 to HN indicating the state of electromagnetic wave transmission paths between 4r1 to R-th receiving antennas are calculated. Here, the path of the electromagnetic wave changes when the environment through which the electromagnetic wave passes changes. Therefore, the path of electromagnetic waves changes depending on the presence or absence of rainfall or snowfall. More specifically, when it rains or snows, water adheres to the windows of the passenger car 1, for example. Therefore, the state of reflection of electromagnetic waves on the windows of the passenger car 1 changes depending on whether it is raining or snowing. Therefore, the arithmetic unit 5 selects an operation mode based on the obtained weather information regarding the weather in the first region. Based on the calculated channel state information H1 to HN between the first transmitting antenna 4t1 to T-th transmitting antenna 4tT and the first receiving antenna 4r1 to R-th receiving antenna 4rR in the selected operation mode, the arithmetic device 5 Detecting the position of the object 2, the position of the person 3 or the movement of the person 3 within the first area. As a result, the computing device 5 can detect the position of the object 2, the position of the person 3, or the movement of the person 3 in the first area by operating modes suitable for the weather. As described above, according to the computing device 5, the surroundings can be sensed with higher accuracy regardless of whether it is raining or snowing.
 演算装置5によれば、降雨または降雪の有無にかかわらず、周囲をより高精度にセンシングすることができる。より詳細には、演算装置5は、雨および雪が降っていないことを示す天候情報を取得した場合、第1強度を有する電磁波を第1送信アンテナ4t1乃至第T送信アンテナ4tTに送信させる第1モードを選択する。一方、演算装置5は、雨または雪が降っていることを示す天候情報を取得した場合、第1強度よりも強い第2強度を有する電磁波を第1送信アンテナ4t1乃至第T送信アンテナ4tTに送信させる第2モードを選択する。これにより、降雨時または降雪時においても、演算装置5が第1領域内の物体2の位置、人3の位置または人3の動きを検出できるほどの第1サブキャリア乃至第Nサブキャリアの信号を第1受信アンテナ4r1乃至第R受信アンテナ4rRが受信できるようになる。その結果、演算装置5によれば、降雨または降雪の有無にかかわらず、周囲をより高精度にセンシングすることができる。 According to the computing device 5, it is possible to sense the surroundings with higher accuracy regardless of whether it is raining or snowing. More specifically, when the arithmetic device 5 acquires weather information indicating that it is not raining or snowing, the first mode causes the first transmitting antenna 4t1 to the T-th transmitting antenna 4tT to transmit electromagnetic waves having a first intensity. to select. On the other hand, when obtaining weather information indicating that it is raining or snowing, the computing device 5 causes the first transmitting antenna 4t1 to the T-th transmitting antenna 4tT to transmit electromagnetic waves having a second intensity higher than the first intensity. Select the second mode. As a result, even when it rains or snows, the signals of the first to N-th subcarriers are sufficient for the arithmetic unit 5 to detect the position of the object 2, the position of the person 3, or the movement of the person 3 in the first area. can be received by the first receiving antenna 4r1 to the R-th receiving antenna 4rR. As a result, the computing device 5 can sense the surroundings with higher accuracy regardless of whether it is raining or snowing.
 [第2の実施形態]
 以下に第2の実施形態に係る演算装置5を備える検出装置20aについて図を参照しながら説明する。図8は、第2の実施形態に係る演算装置5が実行する処理を示すフローチャートである。なお、第2の実施形態に係る演算装置5を備える検出装置20aについては、第1の実施形態に係る演算装置5を備える検出装置20と異なる部分のみ説明し、後は省略する。
[Second embodiment]
A detection device 20a including an arithmetic device 5 according to the second embodiment will be described below with reference to the drawings. FIG. 8 is a flowchart showing processing executed by the arithmetic device 5 according to the second embodiment. As for the detection device 20a having the arithmetic device 5 according to the second embodiment, only the parts different from the detection device 20 having the arithmetic device 5 according to the first embodiment will be explained, and the rest will be omitted.
 本実施形態では、動作モードは、第3モードと、第4モードと、を含んでいる点において、検出装置20と相違する。 This embodiment differs from the detection device 20 in that the operation mode includes a third mode and a fourth mode.
 本実施形態では、演算装置5は、雨および雪が降っていないことを示す天候情報を取得した場合(図8:ステップS12)、第3モードを選択する(図8:ステップS13a)。一方、演算装置5は、雨または雪が降っていることを示す天候情報を取得した場合(図8:ステップS12)、第4モードを選択する(図8:ステップS23a)。 In this embodiment, when the computing device 5 acquires weather information indicating that it is not raining or snowing (FIG. 8: step S12), it selects the third mode (FIG. 8: step S13a). On the other hand, when the arithmetic device 5 acquires weather information indicating that it is raining or snowing (FIG. 8: step S12), it selects the fourth mode (FIG. 8: step S23a).
 本実施形態では、演算装置5は、第3モードにおいて、第1感度により第1受信アンテナ4r1乃至第R受信アンテナ4rRに電磁波を送信させる(図8:ステップS14a)。より詳細には、演算装置5は、例えば、受信装置42の増幅率を第1増幅率に設定させる。より正確には、受信装置42は、第1受信アンテナ4r1乃至第R受信アンテナ4rRのそれぞれが受信した第1受信信号乃至第R受信信号のそれぞれを取得する。受信装置42は、取得した第1受信信号乃至第R受信信号のそれぞれに第1増幅率を乗じる。演算装置5は、受信装置42が第1受信信号乃至第R受信信号のそれぞれに第1増幅率を乗じた結果である第1信号乃至第R信号を受信装置42から取得する。演算装置5は、第1信号乃至第R信号を第1受信信号乃至第R受信信号として扱う。 In the present embodiment, the computing device 5 causes the first receiving antenna 4r1 to the R-th receiving antenna 4rR to transmit electromagnetic waves with the first sensitivity in the third mode (FIG. 8: step S14a). More specifically, the computing device 5, for example, sets the gain of the receiving device 42 to the first gain. More precisely, the receiver 42 acquires the first to R-th reception signals respectively received by the first to R-th reception antennas 4r1 to 4rR. The receiving device 42 multiplies each of the acquired first to R-th received signals by a first amplification factor. The computing device 5 acquires from the receiving device 42 the first signal to the R-th signal, which are the result of the receiving device 42 multiplying the first to R-th received signals by the first amplification factor. The arithmetic unit 5 treats the first signal to the Rth signal as the first reception signal to the Rth reception signal.
 本実施形態では、演算装置5は、第4モードにおいて、第1感度よりも強い第2感度により第1受信アンテナ4r1乃至第R受信アンテナ4rRに電磁波を受信させる(図8:ステップS24a)。より詳細には、演算装置5は、例えば、受信装置42の増幅率を第1増幅率よりも高い第2増幅率に設定させる。より正確には、受信装置42は、第1受信アンテナ4r1乃至第R受信アンテナ4rRのそれぞれが受信した第1受信信号乃至第R受信信号のそれぞれを取得する。受信装置42は、取得した第1受信信号乃至第R受信信号のそれぞれに第2増幅率を乗じる。演算装置5は、受信装置42が第1受信信号乃至第R受信信号のそれぞれに第2増幅率を乗じた結果である第1信号乃至第R信号を受信装置42から取得する。演算装置5は、第1信号乃至第R信号を第1受信信号乃至第R受信信号として扱う。 In this embodiment, in the fourth mode, the computing device 5 causes the first receiving antenna 4r1 to the R-th receiving antenna 4rR to receive electromagnetic waves with the second sensitivity stronger than the first sensitivity (FIG. 8: step S24a). More specifically, the computing device 5, for example, sets the gain of the receiving device 42 to a second gain higher than the first gain. More precisely, the receiver 42 acquires the first to R-th reception signals respectively received by the first to R-th reception antennas 4r1 to 4rR. The receiving device 42 multiplies each of the acquired first to R-th received signals by the second amplification factor. The computing device 5 acquires from the receiving device 42 the first signal to the R-th signal, which are the result of the receiving device 42 multiplying the first to R-th received signals by the second amplification factor. The arithmetic unit 5 treats the first signal to the Rth signal as the first reception signal to the Rth reception signal.
 以上のような演算装置5においても、第1の実施形態に係る演算装置5と同じ効果を奏する。より詳細には、演算装置5は、雨および雪が降っていないことを示す天候情報を取得した場合、第1感度により第1受信アンテナ4r1乃至第R受信アンテナ4rRに電磁波を受信させる第3モードを選択する。一方、演算装置5は、雨または雪が降っていることを示す天候情報を取得した場合、第1感度よりも高い第2感度により第1受信アンテナ4r1乃至第R受信アンテナ4rRに電磁波を受信させる第4モードを選択する。これにより、降雨時または降雪時においても、演算装置5が第1領域内の物体2の位置、人3の位置または人3の動きを検出できるほどの第1サブキャリア乃至第Nサブキャリアの信号を第1受信アンテナ4r1乃至第R受信アンテナ4rRが受信できるようになる。その結果、第2の実施形態に係る演算装置5によれば、降雨または降雪の有無にかかわらず、周囲をより高精度にセンシングすることができる。 The arithmetic device 5 as described above also has the same effects as the arithmetic device 5 according to the first embodiment. More specifically, when obtaining weather information indicating that it is not raining or snowing, the computing device 5 selects the third mode in which the first receiving antenna 4r1 to the R-th receiving antenna 4rR receive electromagnetic waves with the first sensitivity. select. On the other hand, when obtaining weather information indicating that it is raining or snowing, the computing device 5 causes the first receiving antenna 4r1 to the R-th receiving antenna 4rR to receive electromagnetic waves with a second sensitivity higher than the first sensitivity. Select 4 modes. As a result, even when it rains or snows, the signals of the first to N-th subcarriers are sufficient for the arithmetic unit 5 to detect the position of the object 2, the position of the person 3, or the movement of the person 3 in the first area. can be received by the first receiving antenna 4r1 to the R-th receiving antenna 4rR. As a result, the computing device 5 according to the second embodiment can sense the surroundings with higher accuracy regardless of whether it is raining or snowing.
 [第3の実施形態]
 以下に第3の実施形態に係る演算装置5を備える検出装置20bについて図を参照しながら説明する。図9は、第3の実施形態に係る演算装置5が実行する処理を示すフローチャートである。なお、第3の実施形態に係る演算装置5を備える検出装置20bについては、第1の実施形態に係る演算装置5を備える検出装置20と異なる部分のみ説明し、後は省略する。
[Third Embodiment]
A detection device 20b including an arithmetic device 5 according to the third embodiment will be described below with reference to the drawings. FIG. 9 is a flowchart showing processing executed by the arithmetic device 5 according to the third embodiment. As for the detection device 20b including the arithmetic device 5 according to the third embodiment, only different parts from the detection device 20 including the arithmetic device 5 according to the first embodiment will be described, and the rest will be omitted.
 本実施形態では、演算装置5は、図9に示す検出ステップS16b、および、図9に示す検出ステップS26bにおいて、機械学習モデルを用いて、第1領域内の物体2の位置、人3の位置または人3の動きを検出する点において、検出装置20と相違する。 In this embodiment, the computing device 5 uses a machine learning model to determine the position of the object 2 and the position of the person 3 in the first region in the detection step S16b shown in FIG. 9 and the detection step S26b shown in FIG. Alternatively, it differs from the detection device 20 in that it detects the movement of the person 3 .
 機械学習モデルは、第1送信アンテナ4t1乃至第T送信アンテナ4tTと第1受信アンテナ4r1乃至第R受信アンテナ4rRとの間のチャネル状態情報H1乃至HNと、第1領域内の物体2の位置、物体2の動き、人3の位置、人3の動きと、の関係を示す教師データを用いる。したがって、機械学習モデルは、第1送信アンテナ4t1乃至第T送信アンテナ4tTと第1受信アンテナ4r1乃至第R受信アンテナ4rRとの間のチャネル状態情報H1乃至HNと、第1領域内の物体2の位置、物体2の動き、人3の位置、人3の動きと、の関係を示す教師データにより、第1送信アンテナ4t1乃至第T送信アンテナ4tTと第1受信アンテナ4r1乃至第R受信アンテナ4rRとの間のチャネル状態情報H1乃至HNと、第1領域内の物体2の位置、物体2の動き、人3の位置、人3の動きと、の関係を事前に学習している。 The machine learning model includes channel state information H1 to HN between the first transmitting antenna 4t1 to T-th transmitting antenna 4tT and the first receiving antenna 4r1 to R-th receiving antenna 4rR, the position of the object 2 in the first region, Teacher data indicating the relationship between the movement of the object 2, the position of the person 3, and the movement of the person 3 is used. Therefore, the machine learning model uses the channel state information H1 to HN between the first transmitting antenna 4t1 to T-th transmitting antenna 4tT and the first receiving antenna 4r1 to R-th receiving antenna 4rR and the information of the object 2 in the first region. The first transmitting antenna 4t1 to T-th transmitting antenna 4tT and the first receiving antenna 4r1 to R-th receiving antenna 4rR are selected according to teacher data indicating the relationship between the position, the movement of the object 2, the position of the person 3, and the movement of the person 3. The relationship between the channel state information H1 to HN between , the position of the object 2, the movement of the object 2, the position of the person 3, and the movement of the person 3 in the first region is learned in advance.
 そして、演算装置5は、演算装置5が算出した第1送信アンテナ4t1乃至第T送信アンテナ4tTと第1受信アンテナ4r1乃至第R受信アンテナとの間の電磁波の伝送経路の状態を示すチャネル状態情報H1乃至HNに対応する第1領域内の物体2の位置、物体2の動き、人3の位置、人3の動きを、機械学習モデルを用いて、検出する。 Then, the computing device 5 provides channel state information indicating the state of the electromagnetic wave transmission path between the first transmitting antenna 4t1 to the T-th transmitting antenna 4tT and the first receiving antenna 4r1 to the R-th receiving antenna calculated by the computing device 5. A machine learning model is used to detect the position of the object 2, the movement of the object 2, the position of the person 3, and the movement of the person 3 within the first region corresponding to H1 to HN.
 第3の実施形態に係る演算装置5によれば、周囲をより高精度にセンシングすることができる。より詳細には、演算装置5は、図9に示す検出ステップS16b、および、図9に示す検出ステップS26bにおいて、機械学習モデルを用いて、第1領域内の物体2の位置、人3の位置または人3の動きを検出する。これにより、第1領域内の物体2の位置、人3の位置または人3の動きの検出精度を向上させることができる。その結果、第3の実施形態に係る演算装置5によれば、周囲をより高精度にセンシングすることができる。 According to the computing device 5 according to the third embodiment, it is possible to sense the surroundings with higher accuracy. More specifically, in the detection step S16b shown in FIG. 9 and the detection step S26b shown in FIG. Alternatively, the motion of the person 3 is detected. Thereby, the detection accuracy of the position of the object 2, the position of the person 3, or the movement of the person 3 in the first area can be improved. As a result, the computing device 5 according to the third embodiment can sense the surroundings with higher accuracy.
 [第4の実施形態]
 以下に第4の実施形態に係る演算装置5を備える検出装置20cについて図を参照しながら説明する。図10は、第4の実施形態に係る演算装置5が実行する処理を示すフローチャートである。なお、第4の実施形態に係る演算装置5を備える検出装置20cについては、第1の実施形態に係る演算装置5を備える検出装置20と異なる部分のみ説明し、後は省略する。
[Fourth embodiment]
A detection device 20c including an arithmetic device 5 according to the fourth embodiment will be described below with reference to the drawings. FIG. 10 is a flowchart showing processing executed by the arithmetic device 5 according to the fourth embodiment. As for the detection device 20c equipped with the arithmetic device 5 according to the fourth embodiment, only different parts from the detection device 20 equipped with the arithmetic device 5 according to the first embodiment will be described, and the rest will be omitted.
 本実施形態では、動作モードは、第5モードと、第6モードと、を含んでいる点において、検出装置20と相違する。 This embodiment differs from the detection device 20 in that the operation modes include a fifth mode and a sixth mode.
 機械学習モデルは、雨および雪が降っていない場合の第1送信アンテナ4t1乃至第T送信アンテナ4tTと第1受信アンテナ4r1乃至第R受信アンテナ4rRとの間のチャネル状態情報H1乃至HNを教師データとして用いる第1機械学習モデルおよび雨または雪が降っている場合の第1送信アンテナ4t1乃至第T送信アンテナ4tTと第1受信アンテナ4r1乃至第R受信アンテナ4rRとの間のチャネル状態情報H1乃至HNを教師データとして用いる第2機械学習モデルを含んでいる。 The machine learning model uses channel state information H1 to HN between the first transmitting antenna 4t1 to T-th transmitting antenna 4tT and the first receiving antenna 4r1 to R-th receiving antenna 4rR when it is not raining or snowing as training data. The first machine learning model to be used and the channel state information H1 to HN between the first transmitting antenna 4t1 to T-th transmitting antenna 4tT and the first receiving antenna 4r1 to R-th receiving antenna 4rR when it is raining or snowing are trained. It contains a second machine learning model to use as data.
 より詳細には、第1機械学習モデルは、雨および雪が降っていない場合の第1送信アンテナ4t1乃至第T送信アンテナ4tTと第1受信アンテナ4r1乃至第R受信アンテナ4rRとの間のチャネル状態情報H1乃至HNと、第1領域内の物体2の位置、物体2の動き、人3の位置、人3の動きと、の関係を示す教師データを用いる。 More specifically, the first machine learning model provides channel state information between the first transmitting antenna 4t1 to the Tth transmitting antenna 4tT and the first receiving antenna 4r1 to the Rth receiving antenna 4rR when it is not raining or snowing. Teacher data indicating the relationship between H1 to HN, the position of the object 2 within the first region, the movement of the object 2, the position of the person 3, and the movement of the person 3 is used.
 また、第2機械学習モデルは、雨または雪が降っている場合の第1送信アンテナ4t1乃至第T送信アンテナ4tTと第1受信アンテナ4r1乃至第R受信アンテナ4rRとの間のチャネル状態情報H1乃至HNと、第1領域内の物体2の位置、物体2の動き、人3の位置、人3の動きと、の関係を示す教師データを用いる。 In addition, the second machine learning model provides channel state information H1 to HN between the first transmitting antenna 4t1 to T-th transmitting antenna 4tT and the first receiving antenna 4r1 to R-th receiving antenna 4rR when it is raining or snowing. , the position of the object 2, the movement of the object 2, the position of the person 3, and the movement of the person 3 in the first area.
 本実施形態では、演算装置5は、雨および雪が降っていないことを示す天候情報を取得した場合(図10:ステップS12)、第5モードを選択する(図10:ステップS13c)。一方、演算装置5は、雨または雪が降っていることを示す天候情報を取得した場合(図10:ステップS12)、第6モードを選択する(図10:ステップS23c)。 In this embodiment, when the computing device 5 acquires weather information indicating that it is not raining or snowing (FIG. 10: step S12), it selects the fifth mode (FIG. 10: step S13c). On the other hand, when obtaining weather information indicating that it is raining or snowing ( FIG. 10 : step S12), arithmetic device 5 selects the sixth mode ( FIG. 10 : step S23c).
 本実施形態では、演算装置5は、第5モードにおいて、第1機械学習モデルを用いて、第1領域内の物体2の位置、人3の位置または人3の動きを検出する(図10:ステップS16c)。 In this embodiment, the computing device 5 detects the position of the object 2, the position of the person 3, or the movement of the person 3 in the first region using the first machine learning model in the fifth mode (FIG. 10: step S16c).
 本実施形態では、演算装置5は、第6モードにおいて、第2機械学習モデルを用いて、第1領域内の物体2の位置、人3の位置または人3の動きを検出する(図10:検出ステップS26c)。 In this embodiment, the computing device 5 detects the position of the object 2, the position of the person 3, or the movement of the person 3 in the first area using the second machine learning model in the sixth mode (FIG. 10: detection step S26c).
 以上のような演算装置5においても、第1の実施形態に係る演算装置5と同じ効果を奏する。より詳細には、機械学習モデルは、雨および雪が降っていない場合の第1送信アンテナ4t1乃至第T送信アンテナ4tTと第1受信アンテナ4r1乃至第R受信アンテナ4rRとの間のチャネル状態情報H1乃至HNを教師データとして用いる第1機械学習モデルおよび雨または雪が降っている場合の第1送信アンテナ4t1乃至第T送信アンテナ4tTと第1受信アンテナ4r1乃至第R受信アンテナ4rRとの間のチャネル状態情報H1乃至HNを教師データとして用いる第2機械学習モデルを含んでいる。これにより、降雨または降雪の有無による第1領域内の物体2の位置、人3の位置または人3の動きの検出精度の低下を抑制することができる。その結果、第4の実施形態に係る演算装置5によれば、降雨または降雪の有無にかかわらず、周囲をより高精度にセンシングすることができる。 The arithmetic device 5 as described above also has the same effects as the arithmetic device 5 according to the first embodiment. In more detail, the machine learning model calculates the channel state information H1 to A first machine learning model using HN as training data and channel state information between the first transmitting antenna 4t1 to T-th transmitting antenna 4tT and the first receiving antenna 4r1 to R-th receiving antenna 4rR when it is raining or snowing. It includes a second machine learning model that uses H1 through HN as training data. As a result, it is possible to suppress deterioration in detection accuracy of the position of the object 2, the position of the person 3, or the movement of the person 3 in the first area due to the presence or absence of rain or snow. As a result, the computing device 5 according to the fourth embodiment can sense the surroundings with higher accuracy regardless of whether it is raining or snowing.
 また、第4の実施形態に係る演算装置5は、雨および雪が降っていないことを示す天候情報を取得した場合、第1機械学習モデルを用いて、第1領域内の物体2の位置、人3の位置または人3の動きを検出する第5モードを選択する。一方、演算装置5は、雨または雪が降っていることを示す天候情報を取得した場合、第2機械学習モデルを用いて、第1領域内の物体2の位置、人3の位置または人3の動きを検出する第6モードを選択する。これにより、降雨または降雪の有無による第1領域内の物体2の位置、人3の位置または人3の動きの検出精度の低下を抑制することができる。その結果、第4の実施形態に係る演算装置5によれば、降雨または降雪の有無にかかわらず、周囲をより高精度にセンシングすることができる。 Further, when acquiring weather information indicating that it is not raining or snowing, the arithmetic device 5 according to the fourth embodiment uses the first machine learning model to determine the position of the object 2 in the first region, the number of people Select a fifth mode that detects the position of 3 or the movement of person 3 . On the other hand, when the arithmetic device 5 acquires weather information indicating that it is raining or snowing, it uses the second machine learning model to determine the position of the object 2, the position of the person 3, or the position of the person 3 in the first region. Select the sixth mode of motion detection. As a result, it is possible to suppress deterioration in detection accuracy of the position of the object 2, the position of the person 3, or the movement of the person 3 in the first area due to the presence or absence of rain or snow. As a result, the computing device 5 according to the fourth embodiment can sense the surroundings with higher accuracy regardless of whether it is raining or snowing.
 [第5の実施形態]
 以下に第5の実施形態に係る演算装置5を備える検出装置20dについて図を参照しながら説明する。図11は、第5の実施形態に係る演算装置5が実行する処理を示すフローチャートである。図12は、第5の実施形態に係る晴天時の第1領域内の人3の動作時の第m送信アンテナ4tmと第n受信アンテナ4rnとの間のチャネル状態情報hmnの振幅および位相の一例を示す図である。図12において、横軸は、時間を示し、かつ、縦軸は、振幅または位相を示す。図13は、第5の実施形態に係る雨天時の第1領域内の人3の動作時の第m送信アンテナ4tmと第n受信アンテナ4rnとの間のチャネル状態情報hmnの振幅および位相の一例を示す図である。図13において、横軸は、時間を示し、かつ、縦軸は、振幅または位相を示す。図12および図13のそれぞれは、乗用車1のリアシートに人3が着席して呼吸をしている時の実験結果である。なお、第5の実施形態に係る演算装置5を備える検出装置20dについては、第1の実施形態に係る演算装置5を備える検出装置20と異なる部分のみ説明し、後は省略する。
[Fifth embodiment]
A detection device 20d including an arithmetic device 5 according to the fifth embodiment will be described below with reference to the drawings. FIG. 11 is a flowchart showing processing executed by the arithmetic device 5 according to the fifth embodiment. FIG. 12 shows an example of the amplitude and phase of the channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn when the person 3 operates in the first area under fine weather according to the fifth embodiment. It is a figure which shows. In FIG. 12, the horizontal axis indicates time and the vertical axis indicates amplitude or phase. FIG. 13 shows an example of the amplitude and phase of the channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn when the person 3 operates in the first area in rainy weather according to the fifth embodiment. It is a figure which shows. In FIG. 13, the horizontal axis indicates time and the vertical axis indicates amplitude or phase. 12 and 13 are experimental results when the person 3 is seated on the rear seat of the passenger car 1 and is breathing. As for the detection device 20d including the arithmetic device 5 according to the fifth embodiment, only the parts different from the detection device 20 including the arithmetic device 5 according to the first embodiment will be described, and the rest will be omitted.
 本実施形態では、演算装置5は、図11に示す取得ステップS12dにおいて、第1送信アンテナ4t1乃至第T送信アンテナ4tTと第1受信アンテナ4r1乃至第R受信アンテナ4rRとの間のチャネル状態情報H1乃至HNに基づいて、第1領域における天候に関する天候情報を取得する点において、検出装置20と相違する。 In this embodiment, the computing device 5 acquires the channel state information H1 between the first to T-th transmitting antennas 4t1 to 4tT and the first to R-th receiving antennas 4r1 to 4rR in the acquisition step S12d shown in FIG. It differs from the detection device 20 in that it acquires weather information about the weather in the first area based on HN.
 電磁波の経路は、電磁波が通過する環境が変化すると、変化する。したがって、降雨または降雪の有無により、電磁波の経路が変化する。より詳細には、雨または雪が降ると、水が乗用車1の窓に付着する。そのため、降雨の有無または降雪の有無により、乗用車1の窓における電磁波の反射の状態が変化する。したがって、第1送信アンテナ4t1乃至第T送信アンテナ4tTと第1受信アンテナ4r1乃至第R受信アンテナ4rRとの間のチャネル状態情報H1乃至HNは、第1領域の位置における降雨の有無または降雪の有無が変化すると、変化する性質を有している。 The path of electromagnetic waves changes when the environment through which the electromagnetic waves pass changes. Therefore, the path of electromagnetic waves changes depending on the presence or absence of rainfall or snowfall. More specifically, water adheres to the windows of passenger car 1 when it rains or snows. Therefore, the state of reflection of electromagnetic waves on the windows of the passenger car 1 changes depending on whether it is raining or snowing. Therefore, the channel state information H1 to HN between the first transmitting antenna 4t1 to T-th transmitting antenna 4tT and the first receiving antenna 4r1 to R-th receiving antenna 4rR can be determined whether it is raining or snowing at the position of the first area. has the property of changing when is changed.
 まず、演算装置5は、第1送信アンテナ4t1乃至第T送信アンテナ4tTと第1受信アンテナ4r1乃至第R受信アンテナ4rRとの間のチャネル状態情報H1乃至HNを算出する(図11:算出ステップS11d)。 First, the computing device 5 calculates channel state information H1 to HN between the first transmitting antenna 4t1 to T-th transmitting antenna 4tT and the first receiving antenna 4r1 to R-th receiving antenna 4rR (FIG. 11: calculation step S11d). ).
 次に、演算装置5は、算出した第1送信アンテナ4t1乃至第T送信アンテナ4tTと第1受信アンテナ4r1乃至第R受信アンテナ4rRとの間のチャネル状態情報H1乃至HNに基づいて、第1領域における天候に関する天候情報を取得する(図11:取得ステップS12d)。 Next, the computing device 5 calculates the first area based on the channel state information H1 to HN between the first transmitting antenna 4t1 to T-th transmitting antenna 4tT and the first receiving antenna 4r1 to R-th receiving antenna 4rR. acquires weather information about the weather in (FIG. 11: acquisition step S12d).
 より詳細には、図12に示す晴天時の第1領域内の人3の呼吸時の第m送信アンテナ4tmと第n受信アンテナ4rnとの間のチャネル状態情報hmnの振幅は、図13に示す雨天時の第1領域内の人3の呼吸時の第m送信アンテナ4tmと第n受信アンテナ4rnとの間のチャネル状態情報hmnの振幅と異なる。 More specifically, the amplitude of the channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn during breathing of the person 3 in the first area in fine weather shown in FIG. 12 is shown in FIG. It is different from the amplitude of the channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn when the person 3 breathes in the first area in rainy weather.
 本実施形態では、図12に示す晴天時の第1領域内の人3の呼吸時の第m送信アンテナ4tmと第n受信アンテナ4rnとの間のチャネル状態情報hmnの振幅は、図13に示す雨天時の第1領域内の人3の呼吸時の第m送信アンテナ4tmと第n受信アンテナ4rnとの間のチャネル状態情報hmnの振幅よりも小さい。そのため、演算装置5は、算出した第1送信アンテナ4t1乃至第T送信アンテナ4tTと第1受信アンテナ4r1乃至第R受信アンテナ4rRとの間のチャネル状態情報H1乃至HNに基づいて、第1領域における天候に関する天候情報を取得することができる。より詳細には、演算装置5は、算出した第1送信アンテナ4t1乃至第T送信アンテナ4tTと第1受信アンテナ4r1乃至第R受信アンテナ4rRとの間のチャネル状態情報H1乃至HNに基づいて、第1領域における降雨または降雪の有無を判定することができる。 In the present embodiment, the amplitude of the channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn during breathing of the person 3 in the first region under fine weather shown in FIG. 12 is shown in FIG. It is smaller than the amplitude of the channel state information hmn between the m-th transmitting antenna 4tm and the n-th receiving antenna 4rn when the person 3 breathes in the first area in rainy weather. Therefore, the arithmetic device 5 calculates the channel state information H1 to HN between the first transmitting antenna 4t1 to the T-th transmitting antenna 4tT and the first receiving antenna 4r1 to the R-th receiving antenna 4rR. Weather information about the weather can be acquired. More specifically, the computing device 5 calculates the 1st The presence or absence of rain or snow in a region can be determined.
 なお、図11に示すステップS14d乃至検出ステップS17dおよびステップS24d乃至検出ステップS27dのそれぞれについては、図5に示すステップS13乃至検出ステップS16およびステップS23乃至検出ステップS26のそれぞれと同じであるため、説明を省略する。 Note that steps S14d through S17d and steps S24d through S27d shown in FIG. 11 are respectively the same as steps S13 through S16 and steps S23 through S26 shown in FIG. omitted.
 第5の実施形態に係る演算装置5によれば、第1領域における天候に関する天候情報を検出する気象センサから第1領域における天候に関する天候情報を取得しない場合においても、降雨または降雪の有無にかかわらず、周囲をより高精度にセンシングすることができる。より詳細には、第1送信アンテナ4t1乃至第T送信アンテナ4tTと第1受信アンテナ4r1乃至第R受信アンテナ4rRとの間のチャネル状態情報H1乃至HNは、第1領域の位置における降雨の有無または降雪の有無が変化すると、変化する性質を有している。これにより、演算装置5は、第1送信アンテナ4t1乃至第T送信アンテナ4tTと第1受信アンテナ4r1乃至第R受信アンテナ4rRとの間のチャネル状態情報H1乃至HNに基づいて、第1領域における天候に関する天候情報を取得することができる。その結果、第1領域における天候に関する天候情報を検出する気象センサから第1領域における天候に関する天候情報を取得しない場合においても、演算装置5は、第1領域における天候に関する天候情報を取得することができる。その結果、第5の実施形態に係る演算装置5によれば、第1領域における天候に関する天候情報を検出する気象センサから第1領域における天候に関する天候情報を取得しない場合においても、降雨または降雪の有無にかかわらず、周囲をより高精度にセンシングすることができる。 According to the arithmetic device 5 according to the fifth embodiment, even if the weather information regarding the weather in the first area is not obtained from the weather sensor that detects the weather information regarding the weather in the first area, regardless of whether it is raining or snowing. Therefore, it is possible to sense the surroundings with higher accuracy. More specifically, the channel state information H1 to HN between the first transmitting antenna 4t1 to T-th transmitting antenna 4tT and the first receiving antenna 4r1 to R-th receiving antenna 4rR is determined by the presence or absence of rainfall or It has the property of changing when the presence or absence of snowfall changes. As a result, the computing device 5 calculates the weather in the first area based on the channel state information H1 to HN between the first transmitting antenna 4t1 to T-th transmitting antenna 4tT and the first receiving antenna 4r1 to R-th receiving antenna 4rR. You can get weather information about As a result, even if the weather sensor that detects weather information on the weather in the first area does not acquire weather information on the weather in the first area, the computing device 5 can acquire weather information on the weather in the first area. can. As a result, according to the arithmetic device 5 according to the fifth embodiment, even when the weather information regarding the weather in the first region is not acquired from the weather sensor that detects the weather information regarding the weather in the first region, rain or snowfall can be detected. With or without it, the surroundings can be sensed with higher accuracy.
 [その他の実施形態]
 本発明に係る演算装置は、第1の実施形態に係る演算装置5、第2の実施形態に係る演算装置5、第3の実施形態に係る演算装置5、第4の実施形態に係る演算装置5、第5の実施形態に係る演算装置5に限らず、その要旨の範囲において変更可能である。また、第1の実施形態に係る演算装置5、第2の実施形態に係る演算装置5、第3の実施形態に係る演算装置5、第4の実施形態に係る演算装置5、第5の実施形態に係る演算装置5の構成を任意に組み合わせてもよい。
[Other embodiments]
The arithmetic device according to the present invention includes the arithmetic device 5 according to the first embodiment, the arithmetic device 5 according to the second embodiment, the arithmetic device 5 according to the third embodiment, and the arithmetic device according to the fourth embodiment. 5. It is not limited to the arithmetic device 5 according to the fifth embodiment, and can be modified within the scope of the gist thereof. Further, the arithmetic device 5 according to the first embodiment, the arithmetic device 5 according to the second embodiment, the arithmetic device 5 according to the third embodiment, the arithmetic device 5 according to the fourth embodiment, and the fifth embodiment You may combine the structure of the arithmetic unit 5 which concerns on a form arbitrarily.
 なお、機械学習モデル、第1機械学習モデルおよび第2機械学習モデルのそれぞれは、教師データが用いられない機械学習モデルであってもよい。 It should be noted that each of the machine learning model, the first machine learning model, and the second machine learning model may be a machine learning model that does not use teacher data.
 なお、乗用車1は、窓を有していなくてもよい。 It should be noted that the passenger car 1 does not have to have windows.
 なお、ビークルは、乗用車1以外に限られない。ビークルは、例えば、ゴルフカート、飛行機、ロケット、列車、ヘリコプターまたは船舶であってもよい。 The vehicle is not limited to passenger car 1. A vehicle may be, for example, a golf cart, an airplane, a rocket, a train, a helicopter, or a watercraft.
 なお、第1領域は、ビークルのキャビン10に限られない。キャビン10は、例えば、トランクまたは貨物室であってもよい。また、第1領域は、例えば、建物の内部空間であってもよい。この場合においても、検出装置20と同じ効果を奏する。 It should be noted that the first area is not limited to the cabin 10 of the vehicle. Cabin 10 may be, for example, a trunk or cargo compartment. Also, the first area may be, for example, an internal space of a building. Even in this case, the same effect as that of the detection device 20 can be obtained.
 なお、第1領域は、閉空間でなくてもよい。この場合、第1領域は、第1領域外の領域と繋がっていてもよい。 It should be noted that the first area does not have to be a closed space. In this case, the first area may be connected to an area outside the first area.
 なお、演算装置5は、第1送信アンテナ4t1乃至第T送信アンテナ4tTのそれぞれおよび第1受信アンテナ4r1乃至第R受信アンテナ4rRのそれぞれが有する機械的特性および電磁気的特性からノイズniを推定し、ノイズniを除去してもよい。 Note that the arithmetic device 5 estimates the noise ni from the mechanical characteristics and electromagnetic characteristics of each of the first transmitting antenna 4t1 to T-th transmitting antenna 4tT and each of the first receiving antenna 4r1 to R-th receiving antenna 4rR, Noise ni may be removed.
 なお、人3は、大人に限られない。人3は、例えば、子供であってもよいし、赤ちゃんであってもよい。 "Person 3 is not limited to adults." Person 3 may be, for example, a child or a baby.
 なお、物体2の位置または人3の位置は、座席の上に限られない。物体2の位置または人3の位置は、例えば、座席の下であってもよい。 It should be noted that the position of the object 2 or the position of the person 3 is not limited to above the seat. The position of the object 2 or the position of the person 3 may for example be under the seat.
 なお、電磁波は、Wi-Fi(登録商標)に限られない。電磁波は、例えば、Bluetooth(登録商標)等であってもよい。 It should be noted that electromagnetic waves are not limited to Wi-Fi (registered trademark). The electromagnetic wave may be, for example, Bluetooth (registered trademark) or the like.
 なお、演算装置5は、第1モードにおいて、第1感度により第1受信アンテナ4r1乃至第R受信アンテナ4rRに電磁波を送信させ、かつ、第2モードにおいて、第1感度よりも強い第2感度により第1受信アンテナ4r1乃至第R受信アンテナ4rRに電磁波を受信させてもよい。 Note that, in the first mode, the arithmetic device 5 causes the first receiving antenna 4r1 to the R-th receiving antenna 4rR to transmit electromagnetic waves with the first sensitivity, and in the second mode, with the second sensitivity stronger than the first sensitivity, Electromagnetic waves may be received by the first receiving antenna 4r1 to the R-th receiving antenna 4rR.
 なお、演算装置5は、第3モードにおいて、第1強度を有する電磁波を第1送信アンテナ4t1乃至第T送信アンテナ4tTに送信させ、かつ、第4モードにおいて、第1強度よりも強い第2強度を有する電磁波を第1送信アンテナ4t1乃至第T送信アンテナ4tTに送信させてもよい。 Note that the arithmetic device 5 causes the first transmitting antenna 4t1 to the T-th transmitting antenna 4tT to transmit electromagnetic waves having the first intensity in the third mode, and the second intensity stronger than the first intensity in the fourth mode. may be transmitted from the first transmitting antenna 4t1 to the T-th transmitting antenna 4tT.
 なお、第3の実施形態に係る演算装置5、第4の実施形態に係る演算装置5において、第1強度と第2強度とは、同じ強度であってもよい。 In addition, in the arithmetic device 5 according to the third embodiment and the arithmetic device 5 according to the fourth embodiment, the first intensity and the second intensity may be the same intensity.
 なお、演算装置5は、第1領域内に配置されることに限られない。演算装置5は、第1領域外に配置されていてもよいし、第1領域内と第1領域外とに配置されていてもよい。 It should be noted that the arithmetic device 5 is not limited to being arranged within the first region. The computing device 5 may be arranged outside the first area, or may be arranged inside and outside the first area.
 なお、第1領域における天候に関する天候情報は、降雨の有無または降雪の有無に限らず、例えば、雹の有無または火山灰の有無であってもよい。 Note that the weather information regarding the weather in the first region is not limited to whether it rains or snows, and may be, for example, the presence of hail or the presence of volcanic ash.
 なお、第4モードにおいて、第1感度よりも強い第2感度により第1受信アンテナ4r1乃至第R受信アンテナ4rRに電磁波を受信させる方法は、演算装置5が受信装置42の増幅率を第1増幅率よりも高い第2増幅率に設定させることに限られず、他の方法であってもよい。 In the fourth mode, the first receiving antenna 4r1 to the R-th receiving antenna 4rR receive electromagnetic waves with a second sensitivity stronger than the first sensitivity. It is not limited to setting the second amplification factor higher than the gain, and other methods may be used.
1:乗用車
2:物体
3:人
4:通信装置
4r1:第1受信アンテナ
4rR:第R受信アンテナ
4rn:第n受信アンテナ
4t1:第1送信アンテナ
4tT:第T送信アンテナ
4tm:第m送信アンテナ
5:演算装置
10:キャビン
20,20a,20b,20c,20d:検出装置
41:送信装置
42:受信装置
H1,Hi,hmn:チャネル状態情報
S11,S12d:取得ステップ
S11d,S15,S25:算出ステップ
S16,S16b,S17d,S26,S26b,S26c,S27d:検出ステップ
S12,S13,S13a,S13c,S14,S14a,S14d,S16c,S23,S23a,S23c,S24,S24a,S24d:ステップ
ni:ノイズ
1: passenger car 2: object 3: person 4: communication device 4r1: first receiving antenna 4rR: R-th receiving antenna 4rn: n-th receiving antenna 4t1: first transmitting antenna 4tT: T-th transmitting antenna 4tm: m-th transmitting antenna 5 : Arithmetic device 10: Cabins 20, 20a, 20b, 20c, 20d: Detecting device 41: Transmitting device 42: Receiving device H1, Hi, hmn: Channel state information S11, S12d: Acquisition steps S11d, S15, S25: Calculation step S16 , S16b, S17d, S26, S26b, S26c, S27d: detection steps S12, S13, S13a, S13c, S14, S14a, S14d, S16c, S23, S23a, S23c, S24, S24a, S24d: step ni: noise

Claims (15)

  1.  第1領域内の物体の位置、人の位置または人の動きを検出する検出装置に用いられる演算装置であって、
     前記検出装置は、前記第1領域内に配置されている通信装置を備えており、
     前記通信装置は、第1送信アンテナ乃至第T送信アンテナおよび第1受信アンテナ乃至第R受信アンテナを含み、
     前記第1受信アンテナ乃至前記第R受信アンテナは、前記第1送信アンテナ乃至前記第T送信アンテナから電磁波により送信された第1サブキャリア乃至第Nサブキャリアの信号を受信し、
     T、RおよびNは、1以上の整数であり、
     前記演算装置は、
     前記第1領域における天候に関する天候情報を取得する取得ステップと、
     前記取得ステップにおいて取得した前記天候情報に基づいて、動作モードを選択するステップと、
     前記選択された動作モードに基づいて、前記第1送信アンテナ乃至前記第T送信アンテナが送信する前記電磁波の送信強度を設定するステップと、又は、前記第1受信アンテナ乃至前記第R受信アンテナが受信する前記電磁波の受信感度を設定するステップと、
     前記第1受信アンテナ乃至前記第R受信アンテナが受信した前記第1サブキャリア乃至前記第Nサブキャリアの信号に基づいて、前記第1送信アンテナ乃至前記第T送信アンテナと前記第1受信アンテナ乃至前記第R受信アンテナとの間の前記電磁波の伝送経路の状態を示すチャネル状態情報を算出する算出ステップと、
     前記算出ステップにおいて算出した前記チャネル状態情報に基づいて、前記第1領域内の前記物体の位置、前記人の位置または前記人の動きを検出する検出ステップと、を実行する、
     演算装置。
    A computing device used in a detection device for detecting the position of an object, the position of a person, or the movement of a person within a first region,
    The detection device comprises a communication device located within the first region,
    The communication device includes first to T-th transmitting antennas and first to R-th receiving antennas,
    The first to R-th receiving antennas receive signals of first to N-th subcarriers transmitted by electromagnetic waves from the first to T-th transmitting antennas,
    T, R and N are integers of 1 or more,
    The computing device is
    an obtaining step of obtaining weather information about the weather in the first region;
    selecting an operation mode based on the weather information obtained in the obtaining step;
    setting the transmission strength of the electromagnetic waves transmitted by the first to T-th transmission antennas based on the selected operation mode; or receiving by the first to R-th reception antennas. setting the reception sensitivity of the electromagnetic wave to
    Based on the signals of the first to N-th subcarriers received by the first to R-th reception antennas, the first to T-th transmission antennas and the first to R-th reception antennas a calculating step of calculating channel state information indicating a state of a transmission path of the electromagnetic wave between the R-th receiving antenna;
    a detection step of detecting the position of the object, the position of the person, or the movement of the person in the first area based on the channel state information calculated in the calculation step;
    Arithmetic unit.
  2.  前記動作モードは、第1強度を有する電磁波を前記第1送信アンテナ乃至前記第T送信アンテナに送信させる第1モードと、前記第1強度よりも強い第2強度を有する電磁波を前記第1送信アンテナ乃至前記第T送信アンテナに送信させる第2モードと、を含んでおり、
     前記演算装置は、雨および雪が降っていないことを示す前記天候情報を取得した場合、前記第1モードを選択し、
     前記演算装置は、雨または雪が降っていることを示す前記天候情報を取得した場合、前記第2モードを選択する、
     請求項1に記載の演算装置。
    The operation modes include a first mode for transmitting an electromagnetic wave having a first intensity to the first to T-th transmitting antennas, and a first mode for transmitting an electromagnetic wave having a second intensity stronger than the first intensity to the first transmitting antenna. to a second mode for causing the T transmit antenna to transmit,
    The computing device selects the first mode when obtaining the weather information indicating that it is neither raining nor snowing,
    The computing device selects the second mode when obtaining the weather information indicating that it is raining or snowing.
    A computing device according to claim 1 .
  3.  前記動作モードは、第1感度により前記第1受信アンテナ乃至前記第R受信アンテナに電磁波を受信させる第3モードと、前記第1感度よりも高い第2感度により前記第1受信アンテナ乃至前記第R受信アンテナに電磁波を受信させる第4モードと、を含んでおり、
     前記演算装置は、雨および雪が降っていないことを示す前記天候情報を取得した場合、前記第3モードを選択し、
     前記演算装置は、雨または雪が降っていることを示す前記天候情報を取得した場合、前記第4モードを選択する、
     請求項1または請求項2に記載の演算装置。
    The operation modes include a third mode in which the first to R-th receiving antennas receive electromagnetic waves with a first sensitivity, and a third mode in which electromagnetic waves are received by the first to R-th receiving antennas with a second sensitivity higher than the first sensitivity. a fourth mode for causing the receiving antenna to receive electromagnetic waves;
    The computing device selects the third mode when obtaining the weather information indicating that it is neither raining nor snowing,
    The computing device selects the fourth mode when obtaining the weather information indicating that it is raining or snowing.
    3. The computing device according to claim 1 or 2.
  4.  前記第1送信アンテナ乃至前記第T送信アンテナが送信する信号のそれぞれは、複素数であるx1乃至xTで表され、
     前記第1受信アンテナ乃至前記第R受信アンテナが受信する信号のそれぞれは、複素数であるy1乃至yRで表され、
     x1乃至xTおよびy1乃至yRは、以下の数式1乃至数式5を満たしており、
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
    Figure JPOXMLDOC01-appb-M000005
     iは、1以上N以下の整数であり、
     mは、1以上R以下の整数であり、
     nは、1以上T以下の整数であり、
     Hiは、第iサブキャリアの前記第1送信アンテナ乃至前記第T送信アンテナと前記第1受信アンテナ乃至前記第R受信アンテナとの間の前記チャネル状態情報であり、
     hmnは、第m送信アンテナと第n受信アンテナとの間の前記チャネル状態情報であり、
     ||hmn||は、hmnの振幅であり、
     ∠hmnは、hmnの位相であり、
     niは、第iサブキャリアのノイズベクトルである、
     請求項1乃至請求項3のいずれかに記載の演算装置。
    Each of the signals transmitted by the first transmitting antenna to the T-th transmitting antenna is represented by a complex number x1 to xT,
    Each of the signals received by the first receiving antenna to the R-th receiving antenna is represented by a complex number y1 to yR,
    x1 to xT and y1 to yR satisfy the following formulas 1 to 5,
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
    Figure JPOXMLDOC01-appb-M000005
    i is an integer of 1 or more and N or less,
    m is an integer of 1 or more and R or less,
    n is an integer of 1 or more and T or less,
    Hi is the channel state information between the first to T transmit antennas and the first to R receive antennas of the i-th subcarrier;
    hmn is the channel state information between the mth transmit antenna and the nth receive antenna;
    ||hmn|| is the amplitude of hmn,
    ∠hmn is the phase of hmn,
    ni is the noise vector of the ith subcarrier,
    4. The computing device according to any one of claims 1 to 3.
  5.  前記演算装置は、前記検出ステップにおいて、機械学習モデルを用いて、前記第1領域内の前記物体の位置、前記人の位置または前記人の動きを検出する、
     請求項1乃至請求項4のいずれかに記載の演算装置。
    In the detecting step, the computing device uses a machine learning model to detect the position of the object, the position of the person, or the movement of the person within the first area.
    5. The computing device according to any one of claims 1 to 4.
  6.  前記機械学習モデルは、雨および雪が降っていない場合の前記チャネル状態情報を教師データとして用いる第1機械学習モデルおよび雨または雪が降っている場合の前記チャネル状態情報を教師データとして用いる第2機械学習モデルを含む、
     請求項5に記載の演算装置。
    The machine learning model includes a first machine learning model using the channel state information when it is not raining or snowing as teacher data, and a second machine learning model using the channel state information when it is raining or snowing as teacher data. including models,
    A computing device according to claim 5 .
  7.  前記動作モードは、前記第1機械学習モデルを用いて、前記第1領域内の前記物体の位置、前記人の位置または前記人の動きを検出する第5モードと、前記第2機械学習モデルを用いて、前記第1領域内の前記物体の位置、前記人の位置または前記人の動きを検出する第6モードと、を含んでおり、
     前記演算装置は、雨および雪が降っていないことを示す前記天候情報を取得した場合、前記第5モードを選択し、
     前記演算装置は、雨または雪が降っていることを示す前記天候情報を取得した場合、前記第6モードを選択する、
     請求項6に記載の演算装置。
    The operation mode includes a fifth mode for detecting the position of the object, the position of the person, or the movement of the person in the first area using the first machine learning model, and the second machine learning model. a sixth mode for detecting the position of the object, the position of the person, or the movement of the person within the first area using
    The computing device selects the fifth mode when obtaining the weather information indicating that it is neither raining nor snowing,
    The computing device selects the sixth mode when obtaining the weather information indicating that it is raining or snowing.
    A computing device according to claim 6 .
  8.  前記演算装置は、前記チャネル状態情報に基づいて、前記天候情報を取得する、
     請求項1乃至請求項7のいずれかに記載の演算装置。
    the computing device acquires the weather information based on the channel state information;
    8. The computing device according to any one of claims 1 to 7.
  9.  前記チャネル状態情報は、前記第1領域内の前記物体の位置、前記人の位置または前記人の動きが変化すると、変化する性質を有している、
     請求項1乃至請求項8のいずれかに記載の演算装置。
    The channel state information has the property of changing when the position of the object, the position of the person or the movement of the person within the first area changes.
    9. The computing device according to any one of claims 1 to 8.
  10.  前記チャネル状態情報は、前記第1領域の位置における降雨または降雪の有無が変化すると、変化する性質を有している、
     請求項1乃至請求項9のいずれかに記載の演算装置。
    The channel state information has a property of changing when the presence or absence of rainfall or snowfall at the position of the first region changes.
    10. The computing device according to any one of claims 1 to 9.
  11.  前記第1領域は、ビークルのキャビンである、
     請求項1乃至請求項10のいずれかに記載の演算装置。
    wherein the first area is a vehicle cabin;
    The computing device according to any one of claims 1 to 10.
  12.  前記第1領域は、建物の内部空間である、
     請求項1乃至請求項10のいずれかに記載の演算装置。
    The first area is an interior space of a building,
    The computing device according to any one of claims 1 to 10.
  13.  前記演算装置は、前記第1領域内に配置されている、
     請求項1乃至請求項12のいずれかに記載の演算装置。
    The computing device is arranged in the first region,
    13. The computing device according to any one of claims 1 to 12.
  14.  前記人の動きは、前記人の呼吸による動きを含んでいる、
     請求項1乃至請求項13のいずれかに記載の演算装置。
    movement of the person includes movement due to breathing of the person;
    14. The computing device according to any one of claims 1 to 13.
  15.  第1領域内の物体の位置、人の位置または人の動きを検出する検出装置に用いられる演算装置において実行される演算プログラムであって、
     前記検出装置は、前記第1領域内に配置されている通信装置を備えており、
     前記通信装置は、第1送信アンテナ乃至第T送信アンテナおよび第1受信アンテナ乃至第R受信アンテナを含み、
     前記第1受信アンテナ乃至前記第R受信アンテナは、前記第1送信アンテナ乃至前記第T送信アンテナから電磁波により送信された第1サブキャリア乃至第Nサブキャリアの信号を受信し、
     T、RおよびNは、1以上の整数であり、
     前記演算プログラムは、
     前記第1領域における天候に関する天候情報を取得する取得ステップと、
     前記取得ステップにおいて取得した前記天候情報に基づいて、動作モードを選択するステップと、
     前記選択された動作モードに基づいて、前記第1送信アンテナ乃至前記第T送信アンテナが送信する前記電磁波の送信強度を設定するステップと、又は、前記第1受信アンテナ乃至前記第R受信アンテナが受信する前記電磁波の受信感度を設定するステップと、
     前記第1受信アンテナ乃至前記第R受信アンテナが受信した前記第1サブキャリア乃至前記第Nサブキャリアの信号に基づいて、前記第1送信アンテナ乃至前記第T送信アンテナと前記第1受信アンテナ乃至前記第R受信アンテナとの間の前記電磁波の伝送経路の状態を示すチャネル状態情報を算出する算出ステップと、
     前記算出ステップにおいて算出した前記チャネル状態情報に基づいて、前記第1領域内の前記物体の位置、前記人の位置または前記人の動きを検出する検出ステップと、を実行する、
     演算プログラム。
    An arithmetic program executed in an arithmetic device used in a detection device for detecting the position of an object, the position of a person, or the movement of a person in a first region,
    The detection device comprises a communication device located within the first region,
    The communication device includes first to T-th transmitting antennas and first to R-th receiving antennas,
    The first to R-th receiving antennas receive signals of first to N-th subcarriers transmitted by electromagnetic waves from the first to T-th transmitting antennas,
    T, R and N are integers of 1 or more,
    The computing program is
    an obtaining step of obtaining weather information about the weather in the first region;
    selecting an operation mode based on the weather information obtained in the obtaining step;
    setting the transmission strength of the electromagnetic waves transmitted by the first to T-th transmission antennas based on the selected operation mode; or receiving by the first to R-th reception antennas. setting the reception sensitivity of the electromagnetic wave to
    Based on the signals of the first to N-th subcarriers received by the first to R-th reception antennas, the first to T-th transmission antennas and the first to R-th reception antennas a calculating step of calculating channel state information indicating a state of a transmission path of the electromagnetic wave between the R-th receiving antenna;
    a detection step of detecting the position of the object, the position of the person, or the movement of the person in the first area based on the channel state information calculated in the calculation step;
    Arithmetic program.
PCT/JP2022/047897 2022-01-12 2022-12-26 Computation device and computation program WO2023136112A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-002822 2022-01-12
JP2022002822 2022-01-12

Publications (1)

Publication Number Publication Date
WO2023136112A1 true WO2023136112A1 (en) 2023-07-20

Family

ID=87279045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047897 WO2023136112A1 (en) 2022-01-12 2022-12-26 Computation device and computation program

Country Status (1)

Country Link
WO (1) WO2023136112A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012018124A (en) * 2010-07-09 2012-01-26 Fujitsu Ltd Radar device, roadside unit, and on-vehicle device
JP2019179020A (en) * 2017-12-01 2019-10-17 オリジン ワイヤレス, インコーポレイテッドOrigin Wireless, Inc. Method, device and system for object tracking and navigation
CN110958568A (en) * 2019-11-25 2020-04-03 武汉理工大学 WiFi-based ship cab personnel on-duty behavior identification method and system
KR20200052212A (en) * 2018-11-06 2020-05-14 한국전자통신연구원 On board train device and method for shifting frequency thereof
KR20210087353A (en) * 2020-01-02 2021-07-12 재단법인대구경북과학기술원 System and Method for encryption/decription and channel-coding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012018124A (en) * 2010-07-09 2012-01-26 Fujitsu Ltd Radar device, roadside unit, and on-vehicle device
JP2019179020A (en) * 2017-12-01 2019-10-17 オリジン ワイヤレス, インコーポレイテッドOrigin Wireless, Inc. Method, device and system for object tracking and navigation
KR20200052212A (en) * 2018-11-06 2020-05-14 한국전자통신연구원 On board train device and method for shifting frequency thereof
CN110958568A (en) * 2019-11-25 2020-04-03 武汉理工大学 WiFi-based ship cab personnel on-duty behavior identification method and system
KR20210087353A (en) * 2020-01-02 2021-07-12 재단법인대구경북과학기술원 System and Method for encryption/decription and channel-coding

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OHARA, KAZUYA ET AL.: "State Estimation of Indoor Objects Using Wi-Fi Channel State Information", IPSJ SIG TECHNICAL REPORT, vol. 2017-HCI-175, no. 18, 30 November 2016 (2016-11-30), pages 1 - 8, XP009547921 *

Similar Documents

Publication Publication Date Title
CN112272779B (en) Method for robust vehicle occupancy detection through vital sign monitoring
JP3432697B2 (en) Adaptive reception diversity apparatus and adaptive transmission diversity apparatus
US20110140949A1 (en) Mimo radar apparatus and wireless communication method using the same
JP6829833B2 (en) Radio wave propagation distance estimation device
JP2012530409A (en) Environmental evaluation in wireless communication systems
WO2023136112A1 (en) Computation device and computation program
JP2020034444A (en) Portable machine position estimation system
CN108535706A (en) Radar I-Q Nonmatched measurements and calibration
CN116472468A (en) Radio frequency sensing in an in-vehicle environment
JP2003084060A (en) Sonar
JP2020010988A5 (en)
JP5584070B2 (en) Position teaching system
JP7035876B2 (en) Biological detector
JP2021148578A (en) Object detector
WO2023136114A1 (en) Determination device and determination program
KR20060134855A (en) Doppler frequency detector, doppler frequency estimating method, and recording medium recorded with a program for allowing a computer to execute the method
WO2023136113A1 (en) Determination device and determination program
WO2018051539A1 (en) Smart keyless entry system
JP2822977B2 (en) Orientation measuring method and apparatus
CN114285449A (en) Human body presence sensing method and system based on vehicle-mounted WiFi
CN109477889B (en) Method and device for measuring distance
JPH1089999A (en) Method and system for guiding vessel at the time of entering or leaving dock
JP3197579B2 (en) GPS navigation device
CN110391820A (en) A kind of Novel Communication method of reseptance for evading co-channel interference based on DFT
JP7473843B2 (en) State estimation system, state estimation method, state estimation device, and state estimation program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920629

Country of ref document: EP

Kind code of ref document: A1