WO2023135921A1 - Conveyance device and construction machine - Google Patents

Conveyance device and construction machine Download PDF

Info

Publication number
WO2023135921A1
WO2023135921A1 PCT/JP2022/042351 JP2022042351W WO2023135921A1 WO 2023135921 A1 WO2023135921 A1 WO 2023135921A1 JP 2022042351 W JP2022042351 W JP 2022042351W WO 2023135921 A1 WO2023135921 A1 WO 2023135921A1
Authority
WO
WIPO (PCT)
Prior art keywords
supply port
hydrogen
control device
traveling
turning
Prior art date
Application number
PCT/JP2022/042351
Other languages
French (fr)
Japanese (ja)
Inventor
関口政一
森本秀敏
小幡博志
Original Assignee
日本国土開発株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本国土開発株式会社 filed Critical 日本国土開発株式会社
Publication of WO2023135921A1 publication Critical patent/WO2023135921A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/06Details or accessories
    • B67D7/84Casings, cabinets or frameworks; Trolleys or like movable supports
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives

Definitions

  • the present invention relates to a carrier device and a construction machine, and to a carrier device and a construction machine that facilitate fuel supply to the construction machine.
  • patent document 1 discloses that the position of construction machines working in mountainous areas, the remaining amount of fuel, etc. are detected, and fuel such as light oil is supplied by tank trucks.
  • Patent Document 1 does not disclose the positioning of the construction machine and the tank truck, and there were cases where the construction machine and the tank truck could not be properly positioned when fuel was supplied to the construction machine. .
  • a second object of the present invention is to provide a construction machine capable of positioning a fuel tank at an appropriate position by turning a turning device.
  • a conveying device includes a base portion movable by a first moving device, a fuel supply portion provided on the base portion for supplying fuel, and a supply port of the device to which the fuel is supplied. a changing device for changing the size of the first moving device when moving with the first moving device.
  • a construction machine includes a fuel tank storing fuel for running a traveling device, a main device traveling by the traveling device, a turning device capable of turning the main device, and a a work device that is connected and moves to perform work; a detection device that is provided in the main body device and detects the surrounding situation of the main body device; and a control device for positioning the fuel tank in the turning direction.
  • the changing device changes the size of the first moving device when moving toward the supply port of the device to which fuel is supplied, so that the fuel can be properly positioned with respect to the supply port of the device. It is possible to realize a transport device that can According to the second aspect of the invention, the control device positions the fuel tank in the turning direction by turning the turning device based on the detection result of the detecting device, so that the fuel tank can be positioned at an appropriate position.
  • FIG. 1 is a schematic diagram of a hydraulic excavator representing the present embodiment
  • FIG. 4(a) is a view of the hydraulic excavator 100 viewed from the back
  • FIGS. 4(b) and 4(c) are views showing the transport device 1.
  • FIG. It is the figure seen from the back.
  • FIG. 5(a) shows a state in which the carrier device cannot enter inside a pair of crawler belts of the hydraulic excavator, and FIG. It shows how the conveying device is entering inside the pair of crawler belts.
  • FIG. 10 is a diagram showing how the base portion of the carrier device cannot get over the crawler belt of the hydraulic excavator;
  • FIG. 5 is a diagram showing a state in which the base portion of the carrier device is getting over the crawler belt of the hydraulic excavator; 4 is a flowchart executed by a heavy equipment control device; 4 is a flow chart executed by a control device;
  • the carrier device 1 that supplies hydrogen to a hydraulic excavator 100 that excavates at a civil engineering site.
  • the vertical direction is defined as the Z direction
  • the biaxial directions orthogonal to each other in the horizontal plane are defined as the X direction and the Y direction.
  • FIG. 1 is a schematic diagram of a conveying device 1 representing the present embodiment
  • FIG. 1(a) is a top view
  • FIG. 1(b) is a side view
  • FIG. 1(c) is a rear view
  • FIG. 2 is a block diagram of main parts of the conveying device 1 and the hydraulic excavator 100 of this embodiment.
  • the conveying apparatus 1 of this embodiment is of an automatic operation type or a remote operation type without a driver's seat.
  • the transport device 1 includes a traveling device 10, a base unit 20, a hydrogen filling device 30, an imaging device 55, a first GNSS 65 (Global Navigation Satellite System), a first communication device 66, a first memory 67, a control a device 70;
  • GNSS 65 Global Navigation Satellite System
  • the traveling device 10 moves the conveying device 1, and has driving wheels 11, driven wheels 12, crawler belts 13, and supports .
  • the travel device 10 also includes a travel motor 15 , a central frame 16 , a pair of side frames 17 , a pair of link mechanisms 18 , and a coupler 19 .
  • the travel device 10 can be detached from the base portion 20 by a coupler 19 (details will be described later).
  • one driving wheel 11 and two driven wheels 12 form a triangular shape.
  • a plurality of driven wheels smaller than the two driven wheels 12 are provided between the two driven wheels 12 .
  • the crawler belt 13 is wound around one drive wheel 11 and two driven wheels 12 .
  • the support 14 rotatably supports the drive wheel 11 and the driven wheel 12 . Since there are four triangular crawler belt-type traveling bodies in the present embodiment, the conveying device 1 can travel stably even on rough terrain.
  • the traveling device 10 an endless track in which crawler belts are wound around the front wheels and the rear wheels may be used.
  • the traveling motor 15 (see FIG. 2) is provided on the rear side of the driving wheels 11 and employs an in-wheel motor that transmits the driving force to the driving wheels 11 .
  • the rotating shaft of the in-wheel motor is connected to the rotating shaft of the driving wheel 11 , and the rotating driving force of the in-wheel motor rotates the driving wheel 11 , thereby transmitting the driving force to the crawler belt 13 .
  • a motor different from the in-wheel motor may be employed as the traveling motor 15 .
  • the center frame 16 is a frame positioned between two drive wheels 11 spaced apart in the Y direction, and is connected to a pair of side frames 17 via a pair of link mechanisms 18 .
  • the central frame 16 is provided with a coupler 19 for connecting with the base portion 20 on its upper surface.
  • a pair of side frames 17 are frames connected to the respective drive wheels 11 via bearings (not shown).
  • the pair of link mechanisms 18 has a Z-shape or an inverted Z-shape, and includes a pair of connection members 18a connected at one end to the pair of side frames 17 and at the other end to the central frame 16, and at one end to the center frame 16. It has an actuator 18b connected to the connection member 18a on the side of the central frame 16 and having the other end connected to the connection member 18a on the side frame 17 side. It should be noted that two pairs of connection members 18a are provided spaced apart in the Z direction.
  • the actuator 18b is provided at an angle, and expands and contracts to drive the pair of side frames 17 in the Z direction and the Y direction.
  • Actuator 18b moves drive wheel 11, driven wheel 12, and crawler belt 13 in the Z and Y directions via a pair of side frames 17. As shown in FIG. Thereby, the travel device 10 can change the size in the Z direction and the Y direction.
  • a hydraulic jack or an electric jack can be used as the actuator 18b, but the actuator 18b is not limited to this.
  • the coupler 19 has a V-shaped notch, and four are provided on the upper surface of the base portion 20, but it may be one, and the number can be set arbitrarily.
  • the coupler 19 connects the travel device 10 and the base portion 20 by engaging a pin (not shown) extending in the -Z direction provided on the lower surface of the base portion 20 and a V-shaped notch. ing. Further, the coupler 19 releases the connection between the travel device 10 and the base portion 20 by releasing the engagement with the pin.
  • the connection structure between the coupler 19 and the pin is disclosed, for example, in Japanese Patent Application Laid-Open No. 2000-6856. Also, the attachment and detachment of the coupler 19 and the pin may be performed by an electromagnet.
  • the base part 20 is a rectangular member
  • the hydrogen filling device 30 is placed on the upper surface
  • the foldable legs 21 are provided on the lower surface.
  • the leg portion 21 is a member that allows the base portion 20 to stand on its own before and after attachment/detachment to/from the travel device 10 .
  • two legs 21 are provided on the base 20, but the number can be set arbitrarily.
  • the shape of the base portion 20 is not limited to a rectangular shape, and may be an arbitrary shape such as an elliptical shape.
  • the base portion 20 can change its position in the Z direction by driving the actuator 18b.
  • the hydrogen filling device 30 is provided on the ⁇ X side, which is the traveling direction of the conveying device 1 .
  • one end side ( ⁇ X side) of the base portion 20 is closer to the central frame 16 side ( ⁇ X side) than the other end side (+X side) of the base portion 20 so that the hydrogen filling device 30 can approach the hydraulic excavator 100 . side).
  • the hydrogen filling device 30 supplies hydrogen to the hydraulic excavator 100, which is a construction machine.
  • the hydrogen filling device 30 has a pressure accumulator 31 , a temperature controller 32 and a hydrogen dispenser 40 .
  • the pressure accumulator 31 and the temperature control unit 32 are connected by a hydrogen supply pipe 33
  • the temperature control unit 32 and the hydrogen dispenser 40 are connected by a hydrogen supply pipe 34.
  • the hydrogen supply pipe 33 is provided with a first valve 35 and the hydrogen supply pipe 34 is provided with a second valve 36 .
  • a vibration absorbing member such as anti-vibration rubber is provided between the base portion 20 and the hydrogen filling device 30. is preferably provided.
  • the pressure accumulator 31 is a container that stores hydrogen pressurized by a compressor (not shown) (for example, 45 MPa to 90 MPa).
  • the temperature control unit 32 cools the compressed hydrogen (gas) to about -40°C to -33°C using a refrigerant, for example, before it is supplied to the hydrogen dispenser 40 (details will be described later).
  • the hydrogen supply pipe 33 and the hydrogen supply pipe 34 are pipes for supplying pressurized hydrogen from the pressure accumulator 31 toward the hydrogen dispenser 40 .
  • the hydrogen supply pipe 33 is a pipe that connects the pressure accumulator 31 and the temperature control section 32 .
  • the hydrogen supply pipe 34 is a pipe that connects the temperature control section 32 and the hydrogen dispenser 40 .
  • the first valve 35 and the second valve 36 are valves that are opened and closed by the control device 70, and are valves that supply hydrogen to the hydrogen dispenser 40 or shut it off. Alternatively, the first valve 35 and the second valve 36 may be opened and closed by manual operation.
  • the hydrogen dispenser 40 supplies hydrogen to the hydraulic excavator 100.
  • the hydrogen dispenser 40 includes a flow meter 41, a temperature sensor 42, a pressure sensor 43, a three-way switching valve 44, a first nozzle 45, a second nozzle 46, a third nozzle 47, and a first driver 48. , a second drive unit 49, a third drive unit 50, and the like.
  • the flow meter 41 measures the flow rate of hydrogen flowing through the hydrogen supply pipe between the second valve 36 and the hydrogen dispenser 40 and outputs the measurement results to the control device 70 .
  • the temperature sensor 42 detects the temperature of hydrogen flowing through the hydrogen supply pipeline and outputs the detection result to the control device 70 .
  • the pressure sensor 43 measures the pressure in the hydrogen supply line near the first nozzle 45 , the second nozzle 46 and the third nozzle 47 and outputs the measurement result to the control device 70 .
  • the three-way switching valve 44 is a switching valve for supplying hydrogen in the hydrogen supply pipe to any one of the first nozzle 45, the second nozzle 46, and the third nozzle 47.
  • the first nozzle 45 , the second nozzle 46 and the third nozzle 47 are filling nozzles that supply hydrogen to the excavator 100 .
  • the first nozzle 45 is a filling nozzle used when supplying hydrogen from the back (rear) of the hydraulic excavator 100 .
  • the second nozzle 46 is a filling nozzle used when supplying hydrogen from the right side of the hydraulic excavator 100 .
  • the third nozzle 47 is a filling nozzle used when supplying hydrogen from the left side of the hydraulic excavator 100 .
  • the first drive unit 48 drives the first nozzle 45 along the -X direction in FIG. 114 is an actuator for insertion.
  • the second drive unit 49 drives the second nozzle 46 along the -Y direction in FIG. Actuator for insertion into mouth 114 .
  • the third drive unit 50 drives the third nozzle 47 along the +Y direction in FIG. 114 is an actuator for insertion.
  • Each of the first driving section 48, the second driving section 49, and the third driving section 50 can be configured by a linear motor, a hydraulic motor, a pneumatic motor, or the like.
  • a robot inserts the first nozzle 45, the second nozzle 46, and the third nozzle 47 into the hydrogen supply port 114, which will be described later, the first driving unit 48 and the second It is also possible to omit the driving section 49 and the third driving section 50 .
  • the number of nozzles may be two, or four or more.
  • the pressure accumulator 31 and the temperature control section 32 may be omitted from the hydrogen filling device 30 .
  • the imaging device 55 is a digital camera that has a lens, an imaging device, an image processing engine, etc., and captures moving images and still images.
  • the imaging device 55 is provided on the front surface of the hydrogen dispenser 40, and images an image of the traveling direction of the conveying device 1, or an image of a mark provided at or near the hydrogen supply port 114, which will be described later. It is something to do.
  • LiDAR Light Detection and Ranging
  • the imaging device 55 or in combination with the imaging device 55, LiDAR (Light Detection and Ranging) that irradiates electromagnetic waves detects the traveling direction of the transport device 1, or is provided at or near the hydrogen supply port 114.
  • the mark may be detected by detecting the scattered light of the laser irradiated to the mark.
  • the first GNSS 65 measures the position of the transport device 1 using artificial satellites.
  • the first communication device 66 is a wireless communication unit that has a transmitter, a receiver, various circuits, an antenna (not shown), and the like, and accesses a second communication device 148 (to be described later) and a wide area network such as the Internet.
  • the first communication device 66 transmits data regarding the position of the transport device 1 detected by the first GNSS 65 and the dimensions of the transport device 1 to the second communication device 148 of the hydraulic excavator 100 .
  • the first memory 67 is a non-volatile memory (for example, flash memory), and stores various data and programs for driving each element of the transport device 1 and various data and programs for automatically operating the transport device 1 . ing.
  • the first memory 67 also stores data on the dimensions (length, width, height) of the conveying device 1 .
  • the dimensions of the transport device 1 stored in the first memory 67 include the maximum and minimum dimensions of the travel device 10 in the Z and Y directions driven by the actuator 18b.
  • the control device 70 has a CPU, controls the transport device 1 as a whole, and cooperates with the hydraulic excavator 100 described later. In this embodiment, the control device 70 cooperates with the heavy equipment control device 150 of the hydraulic excavator 100 to control a series of operations for supplying hydrogen to the hydraulic excavator 100 .
  • FIG. 3 is a schematic diagram of a hydraulic excavator representing this embodiment, and the configuration of the hydraulic excavator 100 will be described below using FIGS. 2 and 3.
  • FIG. 3 the hydraulic excavator 100 of this embodiment is an automatic operation type or remote operation type construction machine without a driver's seat. Note that the hydraulic excavator 100 may be automatically operated when traveling at a civil engineering site, and may be placed on a trailer and transported on public roads.
  • the hydraulic excavator 100 of this embodiment has a drive system 110 , a travel device 120 , a swing device 130 , a main device 140 , a detection device 145 and a working device 160 .
  • the hydraulic excavator 100 may have a UAV (Unmanned Aerial Vehicle, hereinafter referred to as a drone) that can take off and land on a takeoff/landing section provided on the upper surface of the main unit 140 .
  • UAV Unmanned Aerial Vehicle
  • the drive system 110 is a drive device that drives each element of the hydraulic excavator 100, and has a fuel cell 111, a fuel tank 112, a storage battery 113, and a hydrogen supply port 114 housed in the main unit 140. ing.
  • the fuel cell 111 is a power generator that produces electricity by electrochemically reacting hydrogen and oxygen.
  • the fuel tank 112 stores hydrogen in a gaseous state in this embodiment, and is provided with a remaining amount gauge (not shown) inside.
  • the fuel tank 112 stores hydrogen compressed to several tens of MPa, and supplies the hydrogen to the fuel cell 111 via a hydrogen supply line (not shown).
  • the storage battery 113 is a secondary battery that stores the electric power generated by the fuel cell 111 .
  • the storage battery 113 can also be used as an auxiliary power supply for driving the fuel cell 111 with the stored electric power, and electric power is also supplied to various motors, the traveling device 120, the swing device 130, various cylinders, etc. that constitute the hydraulic excavator 100. It supplies
  • the traveling device 120 is of a crawler track type, and includes a pair of crawler belts 123 wound around an idler wheel 121 and a driving wheel 122.
  • the driving wheels are driven by a traveling motor 124 to drive the pair of crawler belts.
  • a hydraulic excavator 100 is running.
  • the traveling motor 124 is driven by electric power supplied from the storage battery 113, and an in-wheel motor is employed in this embodiment.
  • a hydraulic motor may be used as the travel motor 124 .
  • the traveling device 120 may be a triangular crawler-type traveling body like the traveling device 10 .
  • the swing device 130 is arranged between the travel device 120 and the main device 140 .
  • the turning device 130 includes a bearing (not shown) and a turning motor 131, and turns the main body device 140 and the working device 160 around the Z-axis.
  • the main unit 140 of this embodiment has a cylindrical shape with a flat upper surface, and a drone can take off and land on this upper surface.
  • the main unit 140 has a columnar shape, but is not limited to this, and can have any shape.
  • the main unit 140 includes therein a fuel cell 111, a fuel tank 112, a storage battery 113, a hydrogen supply port 114 for supplying hydrogen from the hydrogen dispenser 40 to the fuel tank 112, and the like.
  • the hydrogen supply port 114 is provided with an opening/closing part (not shown), and a connection coupler and a detachable receptacle provided for each of the first nozzle 45, the second nozzle 46, and the third nozzle 47.
  • This receptacle is provided with a socket for locking and unlocking the connecting coupler.
  • a mark having a size that can be imaged by the imaging device 55 is provided at or near the hydrogen supply port 114 .
  • a QR code registered trademark
  • the hydrogen supply port 114 By providing the hydrogen supply port 114 at the end inside the main unit 140, the hydrogen supply port 114 and the hydrogen dispenser 40 can be brought closer. In addition, it is preferable that the hydrogen supply port 114 is provided separately from the working device 160 . In addition, since the hydrogen supply port 114 can be positioned at any position around the Z-axis by turning the turning device 130, access from any of the first nozzle 45, the second nozzle 46, and the third nozzle 47 is easy. It has become.
  • Swing portion 141 is pivotally supported such that a portion connected to one end side of main device 140 and a portion connected to boom 153 are rotatable about the Z-axis indicating the vertical direction.
  • the swing cylinder 142 is a cylinder whose one end is connected to the main unit 140 and whose other end is connected to the swing portion 141 .
  • the expansion and contraction of the swing cylinder 142 rotates the working device 160 around the Z axis in FIG.
  • the detection device 145 detects the surroundings of the main device 140, and uses LiDAR in this embodiment.
  • LiDAR scans an electromagnetic wave, such as ultraviolet, visible, or near-infrared pulsed laser, and based on emitted light and scattered light, determines the distance to an object, the shape of the object, the material of the object, and the color of the object. It is a sensor that detects information such as
  • the detection device 145 is provided on the upper surface of the main device 140, and the turning device 130 can turn 360 degrees. Therefore, the detection device 145 can detect the situation of 360 degrees around the main device 140 without providing the LiDAR with a mechanical rotation device. The stop position can be accurately detected.
  • the second GNSS 147 measures the position of the hydraulic excavator 100 using artificial satellites.
  • the second GNSS 147 may be provided on the upper surface of the main unit 140 .
  • the second communication device 148 is a wireless communication unit that has a transmitter, a receiver, various circuits, an antenna (not shown), and the like, and accesses the first communication device 66 and a wide area network such as the Internet.
  • the second communication device 148 provides information about the dimensions of the hydraulic excavator 100 , the position of the hydraulic excavator 100 detected by the second GNSS 147 , information about the direction of the hydrogen supply port 114 , and information about the direction of the hydrogen supply port 114 .
  • Connection information indicating that any one of the nozzles 45, 2nd nozzle 46, and 3rd nozzle 47 is connected or disconnected, detection results of a remaining amount meter (not shown), etc. to the first communication device 66 of the
  • the second memory 149 is a non-volatile memory (for example, flash memory), and includes various data and programs for driving the excavator 100, various data and programs for automatically operating the excavator 100, and data and programs for automatically operating the excavator 100. It stores information such as the dimensions of the
  • the heavy equipment control device 150 includes a CPU and is a control device that controls the entire hydraulic excavator 100.
  • the heavy equipment control device 150 controls the excavation operation of the work device 160 and the hydrogen supply operation to the fuel tank 112. there is
  • the work device 160 has a boom 153 , a boom cylinder 154 , an arm 155 , an arm cylinder 156 , a bucket 157 and a bucket cylinder 158 .
  • the boom 153 is a rotatable L-shaped component connected to the main unit 140 via the swing portion 141 and is rotated by the boom cylinder 154 .
  • Arm 155 is connected to the tip of boom 153 and is rotated by arm cylinder 156 .
  • a bucket 157 is connected to the tip of the arm 155 and rotated by a bucket cylinder 158 .
  • a breaker or the like can be attached to the tip of the arm 155 instead of the bucket 157 .
  • the boom cylinder 154 is a cylinder that is telescopically operated by electric power supplied from the storage battery 113 to drive the boom 153 .
  • the arm cylinder 156 is a cylinder that is expanded and contracted by electric power supplied from the storage battery 113 to drive the arm 155 .
  • the bucket cylinder 158 is a cylinder that is expanded and contracted by electric power supplied from the storage battery 113 to drive the bucket 157 .
  • the swing cylinder 142, the boom cylinder 154, the arm cylinder 156, and the bucket cylinder 158 are driven by electric power from the storage battery 113, but these cylinders may be driven by hydraulic pressure. good.
  • FIGS. 4B and 4C are diagrams for comparing the sizes of the transport device 1 and the hydraulic excavator 100.
  • FIG. 4A is a rear view of the hydraulic excavator 100
  • FIGS. 4B and 4C. 4A and 4B are views of the conveying apparatus 1 viewed from the back
  • FIG. 4B is a view showing a state in which the actuator 18b is contracted
  • FIG. 4C is a view showing a state in which the actuator 18b is extended.
  • the travel device 120 protrudes in the X direction more than the main device 140 that houses the hydrogen supply port 114. Further, in the hydraulic excavator 100, as shown in FIG. 4A, the travel device 120 protrudes in the Y direction more than the main device 140. As shown in FIG. Various sizes of the hydraulic excavator 100 are produced according to the capacity of the bucket 157 . For this reason, in the present embodiment, by changing the size of the traveling device 10 or selecting the size of the traveling device 10 from a plurality of sizes according to hydraulic excavators 100 of various sizes, the transport device 1 can be The hydraulic excavator 100 is made accessible.
  • FIG. 5 is a diagram showing how the transport device 1 approaches from the rear (+X side) of the hydraulic excavator 100.
  • FIG. 5 When the actuator 18b is contracted (see FIG. 4B), the outer space W2 of the crawler belts 13 in the Y direction is larger than the inner space W1 of the pair of crawler belts 123 in the Y direction. Therefore, as shown in FIG. 5A, the transport device 1 cannot allow the pair of crawler belts 13 located on the traveling direction side ( ⁇ X side) of the transport device 1 to enter the inside of the pair of crawler belts 123. . Therefore, the hydrogen supply port 114 and the first nozzle 45 cannot be closer than the dimension of the pair of crawler belts 13 in the X direction.
  • the conveying device 1 can cause the pair of crawler belts 13 positioned on the traveling direction side ( ⁇ X side) of the conveying device 1 to enter inside the pair of crawler belts 123. Therefore, the hydrogen supply port 114 and the first nozzle 45 can be closer than the dimension of the pair of crawler belts 13 in the X direction.
  • the actuator 18b when the actuator 18b is extended, the height h3 of the crawler belt 13 in the Z direction is higher than the height h1 of the pair of crawler belts 123 in the Z direction. Therefore, the crawler belt 123 and the base portion 20 do not interfere with each other even when the transport device 1 is brought close to the right side surface (+Y direction side) of the hydraulic excavator 100 . Therefore, the base portion 20 can approach the main unit 140, and thus the second nozzle 46 can approach the hydrogen supply port 114 (see FIG. 7).
  • FIG. 8 is a flowchart executed by the heavy equipment control device 150 of the present embodiment, which is executed when, for example, the remaining amount of the fuel tank 112 of the hydraulic excavator 100 located at the excavation site becomes equal to or less than a predetermined amount. be.
  • the control of the heavy equipment control device 150 will be described below with reference to FIG. In addition, this flowchart does not exclude that a part of it is performed by an operator.
  • the heavy equipment control device 150 uses the detection device 145 to detect the position where the transport device 1 can supply hydrogen (step S1).
  • the heavy equipment control device 150 detects the 360-degree situation around the hydraulic excavator 100 by turning the turning device 130 for a range that cannot be reached by the irradiation angle of the LiDAR laser. Then, the heavy machinery control device 150 determines the position and direction of hydrogen supply by the carrier device 1 from the situation of 360 degrees around the hydraulic excavator 100 .
  • the heavy equipment control device 150 controls the posture of the work device 160 so that the laser emitted from the LiDAR is not blocked by the work device 160 .
  • the heavy equipment control device 150 acquires the dimension of the transport device 1 using the second communication device 148 in order to determine the stop position of the transport device 1 when supplying hydrogen, and uses the acquired dimension of the transport device 1.
  • the stop position of the conveying device 1 may be determined based on. Further, the heavy equipment control device 150 may determine the stop position of the transport device 1 while the travel motor 124 is stopped, and determines the stop position of the transport device 1 while moving the hydraulic excavator 100 with the travel motor 124 . may Here, the heavy machinery control device 150 determines to stop the transport device 1 on the right side (+Y direction side) of the hydraulic excavator 100 and supply hydrogen through the second nozzle 146 .
  • the heavy machinery control device 150 uses the second communication device 148 to transmit the hydrogen supply position to the transport device 1 (step S2). Specifically, the heavy machinery control device 150 transmits the position of the hydraulic excavator 100 positioned by the second GNSS 147 and information on the nozzles in use to the transport device 1 .
  • the control device 70 of the transfer device 1 starts the flowchart of FIG. 9, which will be described later.
  • the heavy equipment control device 150 positions the hydrogen supply port 114 using the turning device 130 (step S3).
  • hydrogen is supplied from the right side surface (+Y direction side) of the hydraulic excavator 100. Therefore, the heavy equipment control device 150 rotates the main unit 140 with the rotating device 130 so that the hydrogen supply port 114 is positioned on the right side surface (+Y direction side) of the hydraulic excavator 100 .
  • the order of steps S2 and S3 may be changed.
  • the heavy machinery control device 150 determines whether the transport device 1 is positioned on the right side (+Y direction side) of the hydraulic excavator 100 (step S4). Although the details will be described later, the transport device 1 approaches the excavator 100, images the mark provided at or near the hydrogen supply port 114 with the imaging device 55, and positions the excavator 100 with respect to the fuel tank 112. . The heavy equipment control device 150 repeats step S4 until it receives a signal indicating completion of positioning from the transport device 1 . Here, the heavy equipment control device 150 assumes that the positioning of the transport device 1 is completed, and proceeds to step S5.
  • the heavy machinery control device 150 opens the opening/closing portion (not shown) of the hydrogen supply port 114 from the closed state in order to inject hydrogen from the hydrogen dispenser 40 into the fuel tank 112 (step S5).
  • the heavy equipment control device 150 determines whether or not the hydrogen dispenser 40 has finished injecting hydrogen into the fuel tank 112 . Although the details will be described later, the heavy machinery control device 150 repeats step S6 until it receives a signal indicating the completion of hydrogen injection from the transport device 1 . Here, the heavy equipment control device 150 assumes that hydrogen injection has been completed, and proceeds to step S7.
  • the heavy equipment control device 150 closes the opening/closing portion (not shown) of the hydrogen supply port 114 from the open state, and ends the flowchart of FIG. 8 (step S7).
  • An attitude detection device is provided in the main unit 140, and when the hydrogen supply position is detected in step S1, the inclination of the ground or the inclination of the hydrogen supply port 114 is detected by this attitude detection device. 150 can make a place with little inclination the hydrogen supply position.
  • An inclinometer, a spirit level, or the like can be used as the attitude detection device.
  • FIG. 9 is a flowchart executed by the control device 70 of the present embodiment. In the present embodiment, it is assumed that the transport device 1 is on standby at a standby location different from the excavation location.
  • the control device 70 determines whether or not the hydrogen supply position has been received from the hydraulic excavator 100 (step S101). Here, it is assumed that the control device 70 has received the hydrogen supply position from the hydraulic excavator 100 and proceeds to step S102.
  • the control device 70 determines the movement route to the hydrogen supply position based on the received hydrogen supply position and the current position detected by the first GNSS 65, and moves to the received hydrogen supply position (step S102). In the present embodiment, the control device 70 closes at least one of the nozzles of the first valve 35 and the second valve 36 until the hydrogen supply position is reached so that hydrogen is not supplied to the hydrogen dispenser 40. there is As a result, the control device 70 can prevent hydrogen from leaking from the hydrogen dispenser 40 while the carrier device 1 is moving.
  • the control device 70 determines whether the hydrogen supply port 114 of the hydraulic excavator 100 has been detected (step S103). When the control device 70 approaches the received hydrogen supply position (for example, 2 m to 10 m), the imaging device 55 detects the mark provided at or near the hydrogen supply port 114 . The control device 70 controls the traveling device 10 so as to approach the mark detected by the imaging device 55 . The control device 70 controls the traveling device 10 so that the second nozzle 46 faces the right side surface of the hydraulic excavator 100 in this embodiment.
  • the heavy equipment control device 150 may detect the transport device 1 by the detection device 145, guide the transport device 1 to the hydrogen supply position, and stop the movement of the transport device 1 toward the hydrogen supply port 114. You may make it control so that it may carry out.
  • the control device 70 determines whether it is necessary to change the size of the transport device 1 so that the second nozzle 46 approaches the hydrogen supply port 114 (step S104).
  • the control device 70 needs to obtain the dimensions of the pair of crawler belts 123 of the hydraulic excavator 100 from the hydraulic excavator 100, or take an image of the pair of crawler belts 123 by the imaging device 55 to change the size of the transport device 1. to determine whether Alternatively, the control device 70 may determine whether the size of the transport device 1 needs to be changed based on the size detection result of the transport device 1 by the detection device 145 . Here, it is assumed that the size of the transport device 1 needs to be changed, and the process proceeds to step S105.
  • the control device 70 drives the actuator 18b from the contracted state to the extended state, and adjusts the size of the conveying device 1 so that the height of the base portion 20 is higher than the height h1 of the pair of crawler belts 123 in the Z direction. is changed (step S105). As a result, the control device 70 can bring the second nozzle 46 closer to the hydrogen supply port 114 because the base portion 20 does not interfere with the pair of crawler belts 123 .
  • the control device 70 determines whether the positioning of the second nozzle 46 with respect to the hydrogen supply port 114 has been completed (step S106).
  • the control device 70 takes an image of a mark provided at or near the hydrogen supply port 114 using the imaging device 55 and positions the second nozzle 46 with respect to the hydrogen supply port 114 .
  • the positioning of the second nozzle 46 with respect to the hydrogen supply port 114 may be performed by the travel motor 15 in the X and Y directions, and may be performed by the actuator 18b in the Z direction. Further, the rotation direction positioning of the second nozzle 46 with respect to the hydrogen supply port 114 may be performed by the rotation motor 131 .
  • an adjustment mechanism may be provided for adjusting the position of the second nozzle 46 with three degrees of freedom, preferably six degrees of freedom.
  • an adjusting mechanism may be provided for adjusting the position of each of the first nozzle 45 and the third nozzle 47 with three degrees of freedom, preferably six degrees of freedom. It is desirable that the control device 70 notifies the hydraulic excavator 100 via the first communication device 66 that positioning of the second nozzle 46 with respect to the hydrogen supply port 114 has been completed.
  • step S107 the control device 70 determines whether the hydrogen supply port 114 is open. The control device 70 repeats the determination in step S107 until the heavy equipment control device 150 causes the hydrogen supply port 114 to open.
  • the control device 70 drives the second nozzle 46 along the -Y direction by the second driving section 49 so that the connection coupler of the second nozzle 46 is connected to the receptacle of the hydrogen supply port 114 (step S108).
  • the hydrogen supply port 114 with, for example, a tapered guide member so that the connecting coupler can be easily engaged with the receptacle.
  • the control device 70 When the connection coupler of the second nozzle 46 is connected to the receptacle of the hydrogen supply port 114, the control device 70 opens the first valve 35 and the second valve 36 to release the hydrogen stored in the pressure accumulator vessel 31 into hydrogen. While supplying the dispenser 40 , the three-way switching valve 44 is controlled so that the hydrogen is supplied to the second nozzle 46 . Thereby, the control device 70 supplies hydrogen to the fuel tank 112 through the hydrogen supply port 114 (step S109).
  • a leakage detection sensor that detects hydrogen leakage may be provided in the vicinity of the hydrogen supply port 114, for example, in the receptacle.
  • Leak detection sensors include gas thermoelectric type sensors and solid electrochemical type sensors, and any of these sensors can be applied.
  • the control device 70 stops the hydrogen supply in step S109 and notifies the remote office, the worker's smart phone, or the like via the first communication device 66 . Further, the control device 70 closes the first valve 35 and the second valve 36 .
  • the control device 70 determines whether hydrogen supply to the fuel tank 112 has ended (step S110).
  • the amount of hydrogen to be supplied to the fuel tank 112 is determined by the hydraulic excavator 100 transmitting the amount of hydrogen to the transport device 1 based on the detection result of the remaining amount gauge (not shown) before the hydrogen is supplied to the fuel tank 112. You should do it.
  • the control device 70 may determine whether the amount of supplied hydrogen has reached a predetermined amount based on the output of the flow meter 41 . Alternatively, the control device 70 may supply hydrogen to the fuel tank 112 until a remaining amount gauge (not shown) detects that a predetermined amount of hydrogen has been supplied to the fuel tank 112 .
  • control device 70 proceeds to step S111 assuming that hydrogen supply to the fuel tank 112 has ended.
  • the control device 70 sends a signal indicating that the supply of hydrogen has ended to the heavy equipment control device 150 and closes the first valve 35 and the second valve 36 .
  • the heavy equipment control device 150 releases the socket of the receptacle.
  • control device 70 When the control device 70 receives a signal indicating that the connection between the receptacle and the connection coupler has been released from the heavy machinery control device 150, the control device 70 drives the second nozzle 46 along the +Y direction by the second driving section 49, and the second nozzle 46 is withdrawn from the hydrogen supply port 114 (step S111).
  • the control device 70 determines whether it is necessary to supply hydrogen to other construction machines (step S112). If the control device 70 needs to supply hydrogen to other construction machines, it returns to step S101, and if it does not need to supply hydrogen to other construction machines, it moves to the standby location in step S113 and ends this flowchart. do.
  • the pair of link mechanisms 18 can change the size of the travel device 10, so that the transport device 1 can be positioned close to the hydrogen supply port 114. can be done. Further, since the hydrogen dispenser 40 has the first nozzle 45, the second nozzle 46, and the third nozzle 47 that can correspond to a plurality of directions, the position of the nozzle of the transport device 1 determines the rate when determining the hydrogen supply position. never be a condition.
  • the hydraulic excavator 100 is complicated because the hydrogen supply position is detected and the hydrogen supply port 114 is positioned using the turning device 130 that has been provided in the hydraulic excavator 100 .
  • Hydrogen can be injected into the fuel tank 112 without Note that when there are a plurality of candidates for the hydrogen supply position, the heavy machinery control device 150 selects a location where the rotation amount of the rotation device 130 when positioning the hydrogen supply port 114 is small or a location where the ground is less inclined. It should be determined as a position.
  • the conveying device 1 may be an integral type in which the traveling device 10 and the base portion 20 are not detachable.
  • the transport device 1 may be of a type with a driver's seat.
  • the hydraulic excavator 100 may be of a type having a driver's seat, or may be an internal combustion engine driven by light oil, ammonia, or hydrogen. In this case, the transport device 1 may supply light oil, ammonia, or hydrogen (liquid) to the fuel tank 112 .
  • the working device 160 of the hydraulic excavator 100 is not limited to one, and a plurality of working devices 160 may be provided in the main body device 140 .

Abstract

In order to provide a conveyance device capable of being appropriately positioned with respect to a supply port of a device to which a fuel is supplied, this conveyance device comprises: a base part which can move by means of a first movement device; a fuel supply part which is provided to the base part and supplies a fuel; and a changing device which changes the size of the first movement device when moving toward the supply port of the device to which the fuel is supplied. 

Description

搬送装置および建設機械Conveyor and construction machinery
 本発明は、搬送装置および建設機械に関し、建設機械への燃料供給を容易にする搬送装置および建設機械に関する。 The present invention relates to a carrier device and a construction machine, and to a carrier device and a construction machine that facilitate fuel supply to the construction machine.
 従来より、山間部などで作業を行っている建設機械の位置や、燃料の残量などを検出して、タンクローリにより軽油などの燃料を供給することが特許文献1に開示されている。 Conventionally, patent document 1 discloses that the position of construction machines working in mountainous areas, the remaining amount of fuel, etc. are detected, and fuel such as light oil is supplied by tank trucks.
特開2003-112799号公報JP-A-2003-112799
 しかしながら、特許文献1は、建設機械とタンクローリとの位置決めに対しては開示しておらず、建設機械に対して燃料を供給する際に、建設機械とタンクローリとが適切に位置決めできない場合もあった。 However, Patent Document 1 does not disclose the positioning of the construction machine and the tank truck, and there were cases where the construction machine and the tank truck could not be properly positioned when fuel was supplied to the construction machine. .
 そこで、本第1発明は、燃料が供給される装置の供給口に対して、適切に位置決めすることができる搬送装置を提供することを目的とする。
 また、第2発明は、旋回装置の旋回により燃料タンクを適切な位置に位置決めすることができる建設機械を提供することを目的とする。
SUMMARY OF THE INVENTION Accordingly, it is an object of the first invention to provide a carrier device that can be positioned appropriately with respect to a supply port of a device to which fuel is supplied.
A second object of the present invention is to provide a construction machine capable of positioning a fuel tank at an appropriate position by turning a turning device.
 本第1発明に係る搬送装置は、第1移動装置により移動可能なベース部と、前記ベース部に設けられ、燃料を供給する燃料供給部と、前記燃料が供給される装置の供給口に向けて移動する際に、前記第1移動装置の大きさを変更する変更装置と、を備えている。
 本第2発明に係る建設機械は、走行装置を走行させる燃料が貯蔵された燃料タンクを備え、前記走行装置により走行する本体装置と、前記本体装置を旋回可能な旋回装置と、前記本体装置に接続され、可動して作業を行う作業装置と、前記本体装置に設けられ、前記本体装置の周囲の状況を検出する検出装置と、前記検出装置の検出結果に基づいて、前記旋回装置の旋回により前記燃料タンクの旋回方向の位置決めをする制御装置と、を備えている。
A conveying device according to a first aspect of the present invention includes a base portion movable by a first moving device, a fuel supply portion provided on the base portion for supplying fuel, and a supply port of the device to which the fuel is supplied. a changing device for changing the size of the first moving device when moving with the first moving device.
A construction machine according to a second aspect of the present invention includes a fuel tank storing fuel for running a traveling device, a main device traveling by the traveling device, a turning device capable of turning the main device, and a a work device that is connected and moves to perform work; a detection device that is provided in the main body device and detects the surrounding situation of the main body device; and a control device for positioning the fuel tank in the turning direction.
 本第1発明によれば、燃料が供給される装置の供給口に向けて移動する際に、変更装置が第1移動装置の大きさを変更するので、装置の供給口に対して適切に位置決めすることができる搬送装置を実現することができる。
 本第2発明によれば、制御装置が検出装置の検出結果に基づいて、旋回装置の旋回により燃料タンクの旋回方向の位置決めを行うので、燃料タンクを適切な位置に位置決めすることができる。
According to the first aspect of the present invention, the changing device changes the size of the first moving device when moving toward the supply port of the device to which fuel is supplied, so that the fuel can be properly positioned with respect to the supply port of the device. It is possible to realize a transport device that can
According to the second aspect of the invention, the control device positions the fuel tank in the turning direction by turning the turning device based on the detection result of the detecting device, so that the fuel tank can be positioned at an appropriate position.
本実施形態を表す搬送装置の概要図であり、図1(a)は上面図であり、図1(b)は側面図であり、図1(c)は背面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram of the conveying apparatus showing this embodiment, Fig.1 (a) is a top view, FIG.1(b) is a side view, FIG.1(c) is a rear view. 本実施形態の搬送装置と油圧ショベルとの主要部のブロック図である。FIG. 2 is a block diagram of main parts of the conveying device and the hydraulic excavator of the present embodiment; 本実施形態を表す油圧ショベルの概要図である。1 is a schematic diagram of a hydraulic excavator representing the present embodiment; FIG. 搬送装置と油圧ショベルとの大きさを比較する図面であり、図4(a)は油圧ショベル100を背面から見た図であり、図4(b)および図4(c)は搬送装置1を背面から見た図である。4(a) is a view of the hydraulic excavator 100 viewed from the back, and FIGS. 4(b) and 4(c) are views showing the transport device 1. FIG. It is the figure seen from the back. 油圧ショベルの後方から搬送装置が近づく様子を示す図であり、図5(a)は油圧ショベルの一対の履帯の内側に搬送装置が進入できない様子を示しており、図5(b)は油圧ショベルの一対の履帯の内側に搬送装置が進入している様子を示している。5(a) shows a state in which the carrier device cannot enter inside a pair of crawler belts of the hydraulic excavator, and FIG. It shows how the conveying device is entering inside the pair of crawler belts. 搬送装置のベース部が油圧ショベルの履帯を乗り越えられない様子を示す図である。FIG. 10 is a diagram showing how the base portion of the carrier device cannot get over the crawler belt of the hydraulic excavator; 搬送装置のベース部が油圧ショベルの履帯を乗り越えている様子を示す図である。FIG. 5 is a diagram showing a state in which the base portion of the carrier device is getting over the crawler belt of the hydraulic excavator; 重機制御装置により実行されるフローチャートである。4 is a flowchart executed by a heavy equipment control device; 制御装置により実行されるフローチャートである。4 is a flow chart executed by a control device;
 以下に、本発明の実施形態の建設機械を添付の図面に基づいて詳細に説明する。なお、以下で説明する実施形態により、本発明が限定されるものではない。本実施形態では、土木現場において掘削を行なう油圧ショベル100に対して水素を供給する搬送装置1を例に説明を続ける。なお、以下の説明では、便宜上、鉛直方向をZ方向、水平面内において直交する二軸方向をX方向及びY方向とする。 A construction machine according to an embodiment of the present invention will be described in detail below based on the attached drawings. In addition, the present invention is not limited by the embodiments described below. In the present embodiment, the explanation will be continued by taking as an example the carrier device 1 that supplies hydrogen to a hydraulic excavator 100 that excavates at a civil engineering site. In the following description, for the sake of convenience, the vertical direction is defined as the Z direction, and the biaxial directions orthogonal to each other in the horizontal plane are defined as the X direction and the Y direction.
 (実施形態)
 図1は本実施形態を表す搬送装置1の概要図であり、図1(a)は上面図であり、図1(b)は側面図であり、図1(c)は背面図であり、図2は本実施形態の搬送装置1と油圧ショベル100との主要部のブロック図である。先ずは図1および図2を用いて搬送装置1の構成につき説明を行う。
 なお、本実施形態の搬送装置1は、運転席が無い自動運転タイプもしくは遠隔運転タイプである。搬送装置1は、走行装置10と、ベース部20と、水素充填装置30と、撮像装置55と、第1GNSS65(Global Navigation Satellite System)と、第1通信装置66と、第1メモリ67と、制御装置70と、を有している。
(embodiment)
FIG. 1 is a schematic diagram of a conveying device 1 representing the present embodiment, FIG. 1(a) is a top view, FIG. 1(b) is a side view, FIG. 1(c) is a rear view, FIG. 2 is a block diagram of main parts of the conveying device 1 and the hydraulic excavator 100 of this embodiment. First, the configuration of the conveying device 1 will be described with reference to FIGS. 1 and 2. FIG.
In addition, the conveying apparatus 1 of this embodiment is of an automatic operation type or a remote operation type without a driver's seat. The transport device 1 includes a traveling device 10, a base unit 20, a hydrogen filling device 30, an imaging device 55, a first GNSS 65 (Global Navigation Satellite System), a first communication device 66, a first memory 67, a control a device 70;
 走行装置10は、搬送装置1を移動させるものであり、駆動輪11と、従動輪12と、履帯13と、支持体14とを有している。また、走行装置10は、走行モータ15と、中央フレーム16と、一対のサイドフレーム17と、一対のリンク機構18と、カプラ19と、を有している。本実施形態において、走行装置10は、カプラ19(詳細後述)によりベース部20から着脱可能となっている。 The traveling device 10 moves the conveying device 1, and has driving wheels 11, driven wheels 12, crawler belts 13, and supports . The travel device 10 also includes a travel motor 15 , a central frame 16 , a pair of side frames 17 , a pair of link mechanisms 18 , and a coupler 19 . In this embodiment, the travel device 10 can be detached from the base portion 20 by a coupler 19 (details will be described later).
 本実施形態では、1つの駆動輪11と2つの従動輪12とにより、三角形状が形成されている。なお、2つの従動輪12の間には、2つの従動輪12よりも小さな従動輪が複数設けられている。
 履帯13は、1つの駆動輪11と2つの従動輪12とに掛け回されている。支持体14は、駆動輪11と従動輪12とを回転可能に支持している。本実施形態の三角形状の履帯式走行体は4つであるので、不整地においても搬送装置1を安定して走行することができる。なお、走行装置10として、前輪と後輪とに履帯を巻いた無限軌道を用いてもよい。
In this embodiment, one driving wheel 11 and two driven wheels 12 form a triangular shape. A plurality of driven wheels smaller than the two driven wheels 12 are provided between the two driven wheels 12 .
The crawler belt 13 is wound around one drive wheel 11 and two driven wheels 12 . The support 14 rotatably supports the drive wheel 11 and the driven wheel 12 . Since there are four triangular crawler belt-type traveling bodies in the present embodiment, the conveying device 1 can travel stably even on rough terrain. As the traveling device 10, an endless track in which crawler belts are wound around the front wheels and the rear wheels may be used.
 本実施形態において、走行モータ15(図2参照)は、駆動輪11の裏面側に設けられ、駆動輪11に駆動力を伝達するインホィールモータを採用している。インホィールモータの回転軸は駆動輪11の回転軸と接続されており、インホィールモータの回転駆動力により駆動輪11が回転し、ひいては履帯13に駆動力が伝達される。なお、走行モータ15としてはインホィールモータとは異なるモータを採用しても構わない。 In the present embodiment, the traveling motor 15 (see FIG. 2) is provided on the rear side of the driving wheels 11 and employs an in-wheel motor that transmits the driving force to the driving wheels 11 . The rotating shaft of the in-wheel motor is connected to the rotating shaft of the driving wheel 11 , and the rotating driving force of the in-wheel motor rotates the driving wheel 11 , thereby transmitting the driving force to the crawler belt 13 . A motor different from the in-wheel motor may be employed as the traveling motor 15 .
 中央フレーム16は、Y方向に離間した2つの駆動輪11の間に位置したフレームであり、一対のリンク機構18を介して一対のサイドフレーム17と接続されている。中央フレーム16は、その上面にベース部20と連結するためのカプラ19が設けられている。 The center frame 16 is a frame positioned between two drive wheels 11 spaced apart in the Y direction, and is connected to a pair of side frames 17 via a pair of link mechanisms 18 . The central frame 16 is provided with a coupler 19 for connecting with the base portion 20 on its upper surface.
 一対のサイドフレーム17は、不図示の軸受けを介してそれぞれの駆動輪11に接続されたフレームである。 A pair of side frames 17 are frames connected to the respective drive wheels 11 via bearings (not shown).
 一対のリンク機構18は、Z字状または逆Z字状をしており、一端が一対のサイドフレーム17に接続され、他端が中央フレーム16に接続された一対の接続部材18aと、一端が中央フレーム16側の接続部材18aに接続され、他端がサイドフレーム17側の接続部材18aに接続されたアクチュエータ18bを有している。なお、一対の接続部材18aは、Z方向に離間して2つ設けられている。 The pair of link mechanisms 18 has a Z-shape or an inverted Z-shape, and includes a pair of connection members 18a connected at one end to the pair of side frames 17 and at the other end to the central frame 16, and at one end to the center frame 16. It has an actuator 18b connected to the connection member 18a on the side of the central frame 16 and having the other end connected to the connection member 18a on the side frame 17 side. It should be noted that two pairs of connection members 18a are provided spaced apart in the Z direction.
 アクチュエータ18bは、傾斜して設けられており、伸縮により一対のサイドフレーム17をZ方向およびY方向に駆動するものである。アクチュエータ18bは、一対のサイドフレーム17を介して、駆動輪11と従動輪12と履帯13とをZ方向およびY方向に移動する。これにより、走行装置10は、Z方向およびY方向の大きさ(サイズ)を変更することができる。なお、アクチュエータ18bとしては、油圧ジャッキや電動ジャッキを用いることができるが、これに限定されるものではない。 The actuator 18b is provided at an angle, and expands and contracts to drive the pair of side frames 17 in the Z direction and the Y direction. Actuator 18b moves drive wheel 11, driven wheel 12, and crawler belt 13 in the Z and Y directions via a pair of side frames 17. As shown in FIG. Thereby, the travel device 10 can change the size in the Z direction and the Y direction. A hydraulic jack or an electric jack can be used as the actuator 18b, but the actuator 18b is not limited to this.
 本実施形態において、カプラ19は、V字状の切り欠きを有し、ベース部20の上面に4つ設けられているが、1つでもよく、その数は任意に設定することができる。カプラ19は、ベース部20の下面に設けられた-Z方向に伸びた不図示のピンと、V字状の切り欠きと、を係合することにより、走行装置10とベース部20とを連結させている。また、カプラ19は、ピンとの係合を解除することにより、走行装置10とベース部20とを連結を解除している。なお、カプラ19とピンとの連結構造は、例えば特開2000―6856号に開示されている。また、カプラ19とピンとの着脱は、電磁石により行うようにしてもよい。 In this embodiment, the coupler 19 has a V-shaped notch, and four are provided on the upper surface of the base portion 20, but it may be one, and the number can be set arbitrarily. The coupler 19 connects the travel device 10 and the base portion 20 by engaging a pin (not shown) extending in the -Z direction provided on the lower surface of the base portion 20 and a V-shaped notch. ing. Further, the coupler 19 releases the connection between the travel device 10 and the base portion 20 by releasing the engagement with the pin. Incidentally, the connection structure between the coupler 19 and the pin is disclosed, for example, in Japanese Patent Application Laid-Open No. 2000-6856. Also, the attachment and detachment of the coupler 19 and the pin may be performed by an electromagnet.
 ベース部20は、本実施形態において、矩形状の部材であり、上面に水素充填装置30が載置されており、下面に折りたたみ可能な脚部21が設けられている。脚部21は、ベース部20を走行装置10との着脱前後で自立させる部材である。本実施形態において、脚部21は、ベース部20に2つ設けられているがその数は任意に設定することができる。また、ベース部20の形状も矩形状に限定されず、楕円形状など任意の形状とすることができる。また、ベース部20は、アクチュエータ18bの駆動によりZ方向の位置を変更することができる。なお、図1から明らかなように、水素充填装置30は、搬送装置1の進行方向である-X側に設けられている。また、水素充填装置30が油圧ショベル100に接近できるように、ベース部20の一端側(-X側)がベース部20の他端側(+X側)に比べて、中央フレーム16側(-X側)にシフトした形状となっている。 In this embodiment, the base part 20 is a rectangular member, the hydrogen filling device 30 is placed on the upper surface, and the foldable legs 21 are provided on the lower surface. The leg portion 21 is a member that allows the base portion 20 to stand on its own before and after attachment/detachment to/from the travel device 10 . In this embodiment, two legs 21 are provided on the base 20, but the number can be set arbitrarily. Also, the shape of the base portion 20 is not limited to a rectangular shape, and may be an arbitrary shape such as an elliptical shape. Also, the base portion 20 can change its position in the Z direction by driving the actuator 18b. As is clear from FIG. 1, the hydrogen filling device 30 is provided on the −X side, which is the traveling direction of the conveying device 1 . In addition, one end side (−X side) of the base portion 20 is closer to the central frame 16 side (−X side) than the other end side (+X side) of the base portion 20 so that the hydrogen filling device 30 can approach the hydraulic excavator 100 . side).
 水素充填装置30は、本実施形態において、建設機械である油圧ショベル100に対して水素を供給するものである。水素充填装置30は、蓄圧容器31と、温度調節部32と、水素ディスペンサ40とを有している。なお、図1に示してあるように、蓄圧容器31と温度調節部32とは水素供給配管33により接続されており、温度調節部32と水素ディスペンサ40とは水素供給配管34により接続されている。また、図2に示してあるように、水素供給配管33には第1バルブ35が設けられており、水素供給配管34には第2バルブ36が設けられている。なお、搬送装置1が土木現場を移動する際の振動が水素充填装置30に伝わるのを抑制するために、ベース部20と水素充填装置30との間に、例えば防振ゴムなどの振動吸収部材を設けることが好ましい。 In this embodiment, the hydrogen filling device 30 supplies hydrogen to the hydraulic excavator 100, which is a construction machine. The hydrogen filling device 30 has a pressure accumulator 31 , a temperature controller 32 and a hydrogen dispenser 40 . As shown in FIG. 1, the pressure accumulator 31 and the temperature control unit 32 are connected by a hydrogen supply pipe 33, and the temperature control unit 32 and the hydrogen dispenser 40 are connected by a hydrogen supply pipe 34. . Further, as shown in FIG. 2, the hydrogen supply pipe 33 is provided with a first valve 35 and the hydrogen supply pipe 34 is provided with a second valve 36 . In addition, in order to suppress the transmission of vibration to the hydrogen filling device 30 when the transport device 1 moves in the civil engineering site, a vibration absorbing member such as anti-vibration rubber is provided between the base portion 20 and the hydrogen filling device 30. is preferably provided.
 蓄圧容器31は、不図示の圧縮機により昇圧された水素(例えば45MPa~90MPa)を貯蔵する容器である。
 温度調節部32は、圧縮された水素(気体)が水素ディスペンサ40(詳細後述)に供給される前に例えば冷媒を用いて-40℃~-33℃程度に冷却するものである。
The pressure accumulator 31 is a container that stores hydrogen pressurized by a compressor (not shown) (for example, 45 MPa to 90 MPa).
The temperature control unit 32 cools the compressed hydrogen (gas) to about -40°C to -33°C using a refrigerant, for example, before it is supplied to the hydrogen dispenser 40 (details will be described later).
 水素供給配管33と、水素供給配管34とは、加圧状態の水素を蓄圧容器31から水素ディスペンサ40に向けて供給するための配管である。水素供給配管33は、蓄圧容器31と温度調節部32とを接続する配管である。水素供給配管34は、温度調節部32と水素ディスペンサ40とを接続する配管である。 The hydrogen supply pipe 33 and the hydrogen supply pipe 34 are pipes for supplying pressurized hydrogen from the pressure accumulator 31 toward the hydrogen dispenser 40 . The hydrogen supply pipe 33 is a pipe that connects the pressure accumulator 31 and the temperature control section 32 . The hydrogen supply pipe 34 is a pipe that connects the temperature control section 32 and the hydrogen dispenser 40 .
 第1バルブ35と第2バルブ36とは、制御装置70により開閉される弁であり、水素ディスペンサ40への水素の供給を行ったり、遮断したりする弁である。なお、手動操作により第1バルブ35と第2バルブ36との開閉を行うようにしてもよい。 The first valve 35 and the second valve 36 are valves that are opened and closed by the control device 70, and are valves that supply hydrogen to the hydrogen dispenser 40 or shut it off. Alternatively, the first valve 35 and the second valve 36 may be opened and closed by manual operation.
 水素ディスペンサ40は、油圧ショベル100に対して水素を供給するものである。水素ディスペンサ40は、流量計41と、温度センサ42と、圧力センサ43と、3方向切替えバルブ44と、第1ノズル45と、第2ノズル46と、第3ノズル47と、第1駆動部48と、第2駆動部49と、第3駆動部50などを有している。 The hydrogen dispenser 40 supplies hydrogen to the hydraulic excavator 100. The hydrogen dispenser 40 includes a flow meter 41, a temperature sensor 42, a pressure sensor 43, a three-way switching valve 44, a first nozzle 45, a second nozzle 46, a third nozzle 47, and a first driver 48. , a second drive unit 49, a third drive unit 50, and the like.
 流量計41は、第2バルブ36と水素ディスペンサ40内との間で水素供給管路内を流れる水素の流量を計測し、この計測結果を制御装置70へと出力する。温度センサ42は、水素供給管路内を流れる水素の温度を検出し、この検出結果を制御装置70へと出力する。圧力センサ43は、第1ノズル45と第2ノズル46と第3ノズル47との近傍で水素供給管路内の圧力を測定し、この測定結果を制御装置70へと出力する。 The flow meter 41 measures the flow rate of hydrogen flowing through the hydrogen supply pipe between the second valve 36 and the hydrogen dispenser 40 and outputs the measurement results to the control device 70 . The temperature sensor 42 detects the temperature of hydrogen flowing through the hydrogen supply pipeline and outputs the detection result to the control device 70 . The pressure sensor 43 measures the pressure in the hydrogen supply line near the first nozzle 45 , the second nozzle 46 and the third nozzle 47 and outputs the measurement result to the control device 70 .
 3方向切替えバルブ44は、水素供給管路内の水素を第1ノズル45と、第2ノズル46と、第3ノズル47とのいずれか1つに供給するための切替えバルブである。第1ノズル45と、第2ノズル46と、第3ノズル47とは、油圧ショベル100に対して水素を供給する充填ノズルである。 The three-way switching valve 44 is a switching valve for supplying hydrogen in the hydrogen supply pipe to any one of the first nozzle 45, the second nozzle 46, and the third nozzle 47. The first nozzle 45 , the second nozzle 46 and the third nozzle 47 are filling nozzles that supply hydrogen to the excavator 100 .
 第1ノズル45は、油圧ショベル100の背面(後方)から水素を供給する際に用いられる充填ノズルである。第2ノズル46は、油圧ショベル100の右側面から水素を供給する際に用いられる充填ノズルである。第3ノズル47は、油圧ショベル100の左側面から水素を供給する際に用いられる充填ノズルである。 The first nozzle 45 is a filling nozzle used when supplying hydrogen from the back (rear) of the hydraulic excavator 100 . The second nozzle 46 is a filling nozzle used when supplying hydrogen from the right side of the hydraulic excavator 100 . The third nozzle 47 is a filling nozzle used when supplying hydrogen from the left side of the hydraulic excavator 100 .
 第1駆動部48は、搬送装置1が油圧ショベル100の後方に位置決めされた際に、第1ノズル45を図1の-X方向に沿って駆動して第1ノズル45を後述の水素供給口114に挿入するためのアクチュエータである。
 第2駆動部49は、搬送装置1が油圧ショベル100の右側面に位置決めされた際に、第2ノズル46を図1の-Y方向に沿って駆動して第2ノズル46を後述の水素供給口114に挿入するためのアクチュエータである。
 第3駆動部50は、搬送装置1が油圧ショベル100の左側面に位置決めされた際に、第3ノズル47を図1の+Y方向に沿って駆動して第3ノズル47を後述の水素供給口114に挿入するためのアクチュエータである。
When the carrier device 1 is positioned behind the hydraulic excavator 100, the first drive unit 48 drives the first nozzle 45 along the -X direction in FIG. 114 is an actuator for insertion.
The second drive unit 49 drives the second nozzle 46 along the -Y direction in FIG. Actuator for insertion into mouth 114 .
When the transport device 1 is positioned on the left side surface of the hydraulic excavator 100, the third drive unit 50 drives the third nozzle 47 along the +Y direction in FIG. 114 is an actuator for insertion.
 第1駆動部48と、第2駆動部49と、第3駆動部50とのそれぞれは、リニアモータや、油圧モータや、空圧モータなどにより構成することができる。なお、第1ノズル45と、第2ノズル46と、第3ノズル47とを作業者もしくは不図示のロボットが後述の水素供給口114に挿入する場合には、第1駆動部48と、第2駆動部49と、第3駆動部50とを省略することも可能である。また、ノズルの数は2つでもよく、4つ以上でもよい。 Each of the first driving section 48, the second driving section 49, and the third driving section 50 can be configured by a linear motor, a hydraulic motor, a pneumatic motor, or the like. When an operator or a robot (not shown) inserts the first nozzle 45, the second nozzle 46, and the third nozzle 47 into the hydrogen supply port 114, which will be described later, the first driving unit 48 and the second It is also possible to omit the driving section 49 and the third driving section 50 . Also, the number of nozzles may be two, or four or more.
 なお、水素充填装置30から蓄圧容器31と温度調節部32とを省略してもよい。この場合、水素ディスペンサ40に水素を冷却するための冷却装置を設けることが好ましい。 Note that the pressure accumulator 31 and the temperature control section 32 may be omitted from the hydrogen filling device 30 . In this case, it is preferable to provide the hydrogen dispenser 40 with a cooling device for cooling the hydrogen.
 撮像装置55は、レンズや撮像素子や画像処理エンジンなどを有し、動画や静止画を撮像するデジタルカメラである。本実施形態において、撮像装置55は、水素ディスペンサ40の前面に設けられており、搬送装置1の進行方向の画像を撮像したり、後述の水素供給口114もしくはその近傍に設けられたマークを撮像したりするものである。なお、撮像装置55に代えて、もしくは、撮像装置55と併用して電磁波を照射するLiDAR(Light Detection and Ranging)により搬送装置1の進行方向を検出したり、水素供給口114もしくはその近傍に設けられたマークに照射されたレーザの散乱光を検出したりしてこのマークを検出するようにしてもよい。 The imaging device 55 is a digital camera that has a lens, an imaging device, an image processing engine, etc., and captures moving images and still images. In this embodiment, the imaging device 55 is provided on the front surface of the hydrogen dispenser 40, and images an image of the traveling direction of the conveying device 1, or an image of a mark provided at or near the hydrogen supply port 114, which will be described later. It is something to do. Instead of the imaging device 55, or in combination with the imaging device 55, LiDAR (Light Detection and Ranging) that irradiates electromagnetic waves detects the traveling direction of the transport device 1, or is provided at or near the hydrogen supply port 114. Alternatively, the mark may be detected by detecting the scattered light of the laser irradiated to the mark.
 第1GNSS65は、人工衛星を利用して搬送装置1の位置を測位するものである。第1通信装置66は、送信機と、受信機と、各種回路と、不図示のアンテナなどを有し、後述の第2通信装置148やインターネット等の広域ネットワークにアクセスする無線通信ユニットである。本実施形態において、第1通信装置66は、第1GNSS65が検出した搬送装置1の位置や搬送装置1の寸法に関するデータを油圧ショベル100の第2通信装置148に送信する。 The first GNSS 65 measures the position of the transport device 1 using artificial satellites. The first communication device 66 is a wireless communication unit that has a transmitter, a receiver, various circuits, an antenna (not shown), and the like, and accesses a second communication device 148 (to be described later) and a wide area network such as the Internet. In the present embodiment, the first communication device 66 transmits data regarding the position of the transport device 1 detected by the first GNSS 65 and the dimensions of the transport device 1 to the second communication device 148 of the hydraulic excavator 100 .
 第1メモリ67は、不揮発性のメモリ(例えばフラッシュメモリ)であり、搬送装置1の各要素を駆動するための各種データやプログラム、搬送装置1を自動運転するための各種データやプログラムを記憶している。また、第1メモリ67は、搬送装置1の寸法(長さ、幅、高さ)のデータを記憶している。なお、第1メモリ67に記憶される搬送装置1の寸法は、アクチュエータ18bの駆動により、走行装置10のZ方向およびY方向の大きさの最大寸法および最小寸法などを含んでいる。 The first memory 67 is a non-volatile memory (for example, flash memory), and stores various data and programs for driving each element of the transport device 1 and various data and programs for automatically operating the transport device 1 . ing. The first memory 67 also stores data on the dimensions (length, width, height) of the conveying device 1 . The dimensions of the transport device 1 stored in the first memory 67 include the maximum and minimum dimensions of the travel device 10 in the Z and Y directions driven by the actuator 18b.
 制御装置70は、CPUを備えており、搬送装置1全体を制御するとともに、後述の油圧ショベル100と協働するものである。本実施形態において、制御装置70は、油圧ショベル100の重機制御装置150と協働して、油圧ショベル100に水素を供給するための一連の動作の制御を行っている。 The control device 70 has a CPU, controls the transport device 1 as a whole, and cooperates with the hydraulic excavator 100 described later. In this embodiment, the control device 70 cooperates with the heavy equipment control device 150 of the hydraulic excavator 100 to control a series of operations for supplying hydrogen to the hydraulic excavator 100 .
 (油圧ショベル)
 図3は本実施形態を表す油圧ショベルの概要図であり、以下、図2および図3を用いて油圧ショベル100の構成を説明していく。なお、図3から明らかなように、本実施形態の油圧ショベル100は、運転席が無い自動運転タイプもしくは遠隔運転タイプの建設機械である。なお、油圧ショベル100は、土木現場での走行を自動運転とし、公道ではトレーラに載置して運搬するようにしてもよい。
(hydraulic excavator)
FIG. 3 is a schematic diagram of a hydraulic excavator representing this embodiment, and the configuration of the hydraulic excavator 100 will be described below using FIGS. 2 and 3. FIG. As is clear from FIG. 3, the hydraulic excavator 100 of this embodiment is an automatic operation type or remote operation type construction machine without a driver's seat. Note that the hydraulic excavator 100 may be automatically operated when traveling at a civil engineering site, and may be placed on a trailer and transported on public roads.
 本実施形態の油圧ショベル100は、駆動システム110と、走行装置120と、旋回装置130と、本体装置140と、検出装置145と、作業装置160と、を有している。また、油圧ショベル100は、本体装置140の上面に設けられた離着陸部に離着可能なUAV(Unmanned Aerial Vehicle、以下ドローンという)を有するようにしてもよい。 The hydraulic excavator 100 of this embodiment has a drive system 110 , a travel device 120 , a swing device 130 , a main device 140 , a detection device 145 and a working device 160 . Also, the hydraulic excavator 100 may have a UAV (Unmanned Aerial Vehicle, hereinafter referred to as a drone) that can take off and land on a takeoff/landing section provided on the upper surface of the main unit 140 .
 駆動システム110は、油圧ショベル100の各要素を駆動する駆動装置であり、本体装置140に収容されている燃料電池111と、燃料タンク112と、蓄電池113と、水素供給口114と、を有している。燃料電池111は、水素と酸素を電気化学反応させて電気を作る発電装置である。 The drive system 110 is a drive device that drives each element of the hydraulic excavator 100, and has a fuel cell 111, a fuel tank 112, a storage battery 113, and a hydrogen supply port 114 housed in the main unit 140. ing. The fuel cell 111 is a power generator that produces electricity by electrochemically reacting hydrogen and oxygen.
 燃料タンク112は、本実施形態では気体状態の水素を貯蔵するものであり、内部には不図示の残量計が設けられている。燃料タンク112は、数十MPaに圧縮された水素を蓄えるものであり、不図示の水素供給管路を介して燃料電池111に水素を供給するものである。 The fuel tank 112 stores hydrogen in a gaseous state in this embodiment, and is provided with a remaining amount gauge (not shown) inside. The fuel tank 112 stores hydrogen compressed to several tens of MPa, and supplies the hydrogen to the fuel cell 111 via a hydrogen supply line (not shown).
 蓄電池113は、2次電池であり、燃料電池111が発電した電力を蓄電するものである。蓄電池113は、蓄えた電力により燃料電池111を駆動するための補助電源として用いることもでき、油圧ショベル100を構成する各種モータや、走行装置120や、旋回装置130や、各種シリンダなどにも電力を供給するものである。 The storage battery 113 is a secondary battery that stores the electric power generated by the fuel cell 111 . The storage battery 113 can also be used as an auxiliary power supply for driving the fuel cell 111 with the stored electric power, and electric power is also supplied to various motors, the traveling device 120, the swing device 130, various cylinders, etc. that constitute the hydraulic excavator 100. It supplies
 走行装置120は、無限軌道タイプであり、遊動輪121と駆動輪122とを巻装した一対の履帯123を備えており、駆動輪を走行モータ124により駆動して一対の履帯が駆動することにより油圧ショベル100を走行させている。走行モータ124は、蓄電池113から供給された電力により駆動するものであり、本実施形態ではインホィールモータが採用されている。なお、走行モータ124は、油圧モータを用いてもよい。また、走行装置120として、走行装置10のような三角形状の履帯式走行体としてもよい。 The traveling device 120 is of a crawler track type, and includes a pair of crawler belts 123 wound around an idler wheel 121 and a driving wheel 122. The driving wheels are driven by a traveling motor 124 to drive the pair of crawler belts. A hydraulic excavator 100 is running. The traveling motor 124 is driven by electric power supplied from the storage battery 113, and an in-wheel motor is employed in this embodiment. A hydraulic motor may be used as the travel motor 124 . Further, the traveling device 120 may be a triangular crawler-type traveling body like the traveling device 10 .
 旋回装置130は、走行装置120と本体装置140との間に配設されている。旋回装置130は、不図示のベアリングと、旋回モータ131とを備え、本体装置140と作業装置160とをZ軸回りに旋回するものである。 The swing device 130 is arranged between the travel device 120 and the main device 140 . The turning device 130 includes a bearing (not shown) and a turning motor 131, and turns the main body device 140 and the working device 160 around the Z-axis.
 本実施形態の本体装置140は、上面がフラットな円柱形状をしており、この上面にはドローンを離着陸させることが可能である。なお、本実施形態では本体装置140は円柱形状とするが、これに限定されるものではなく、任意の形状とすることができる。 The main unit 140 of this embodiment has a cylindrical shape with a flat upper surface, and a drone can take off and land on this upper surface. In this embodiment, the main unit 140 has a columnar shape, but is not limited to this, and can have any shape.
 本体装置140は、その内部に燃料電池111と、燃料タンク112と、蓄電池113と、燃料タンク112に水素ディスペンサ40からの水素を供給するための水素供給口114などを備えている。 The main unit 140 includes therein a fuel cell 111, a fuel tank 112, a storage battery 113, a hydrogen supply port 114 for supplying hydrogen from the hydrogen dispenser 40 to the fuel tank 112, and the like.
 水素供給口114は、不図示の開閉部と、第1ノズル45と、第2ノズル46と、第3ノズル47のそれぞれに設けられた接続カプラと着脱可能なレセプタクルと、が設けられている。このレセプタクルは、接続カプラをロックおよび解除するソケットが設けられている。また、水素供給口114もしくはその近傍には、撮像装置55が撮像可能な大きさを有したマークが設けられている。このマークとしては例えばQRコード(登録商標)を用いてもよい。 The hydrogen supply port 114 is provided with an opening/closing part (not shown), and a connection coupler and a detachable receptacle provided for each of the first nozzle 45, the second nozzle 46, and the third nozzle 47. This receptacle is provided with a socket for locking and unlocking the connecting coupler. A mark having a size that can be imaged by the imaging device 55 is provided at or near the hydrogen supply port 114 . For example, a QR code (registered trademark) may be used as this mark.
 水素供給口114は、本体装置140内の端部に設けることにより、水素供給口114と水素ディスペンサ40とを近づけることができる。なお、水素供給口114は、作業装置160とは離隔して設けることが好ましい。また、水素供給口114は、旋回装置130の旋回によりZ軸回りの任意の位置に位置決めできるので、第1ノズル45と、第2ノズル46と、第3ノズル47とのいずれからもアクセスが容易になっている。 By providing the hydrogen supply port 114 at the end inside the main unit 140, the hydrogen supply port 114 and the hydrogen dispenser 40 can be brought closer. In addition, it is preferable that the hydrogen supply port 114 is provided separately from the working device 160 . In addition, since the hydrogen supply port 114 can be positioned at any position around the Z-axis by turning the turning device 130, access from any of the first nozzle 45, the second nozzle 46, and the third nozzle 47 is easy. It has become.
 また、本体装置140は、図2のブロック図に示すように、検出装置145と、全地球型測位システムである第2GNSS147(Global Navigation Satellite System)と、第2通信装置148と、第2メモリ149と、油圧ショベル100全体を制御する重機制御装置150と、が設けられている。 Also, as shown in the block diagram of FIG. and a heavy machinery control device 150 that controls the entire hydraulic excavator 100 .
 スイング部141は、本体装置140の一端側に接続された部分と、ブーム153に接続された部分とが鉛直方向を示すZ軸回りに回転可能なように軸支されている。スイングシリンダ142は一端が本体装置140に接続され、他端がスイング部141に接続されたシリンダであり、蓄電池113から供給される電力によりシリンダの伸縮動作がなされるものである。
 スイングシリンダ142の伸縮により、作業装置160は、図3のZ軸回りに回動する。
Swing portion 141 is pivotally supported such that a portion connected to one end side of main device 140 and a portion connected to boom 153 are rotatable about the Z-axis indicating the vertical direction. The swing cylinder 142 is a cylinder whose one end is connected to the main unit 140 and whose other end is connected to the swing portion 141 .
The expansion and contraction of the swing cylinder 142 rotates the working device 160 around the Z axis in FIG.
 検出装置145は、本体装置140の周囲の状況を検出するものであり、本実施形態ではLiDARを用いている。LiDARは、電磁波である紫外線、可視光線または近赤外線のパルスレーザを走査して、出射光と散乱光とに基づいて、物体までの距離や、物体の形状や、物体の材質や、物体の色などの情報を検出するセンサである。本実施形態では、検出装置145が本体装置140の上面に設けられており、旋回装置130により360度の旋回が可能である。このため、検出装置145は、LiDARに機械的な回転装置を設けることなく、本体装置140の周囲360度の状況を検出することができ、燃料タンク112に水素を供給する際の搬送装置1が停止する位置を的確に検出することができる。搬送装置1が停止する位置を的確に検出することは、土木現場が狭かったり、斜面があったりする場合などに有効である。また、LiDAR単体で回転させた場合では、検出装置145と作業装置160との位置関係がずれてしまう。しかしながら、旋回装置130によりLiDARを回転させる場合では、検出装置145と作業装置160との位置関係が保たれ、作業装置160の姿勢の変更により検出装置145の検出に影響を及ぼすことがない。 The detection device 145 detects the surroundings of the main device 140, and uses LiDAR in this embodiment. LiDAR scans an electromagnetic wave, such as ultraviolet, visible, or near-infrared pulsed laser, and based on emitted light and scattered light, determines the distance to an object, the shape of the object, the material of the object, and the color of the object. It is a sensor that detects information such as In this embodiment, the detection device 145 is provided on the upper surface of the main device 140, and the turning device 130 can turn 360 degrees. Therefore, the detection device 145 can detect the situation of 360 degrees around the main device 140 without providing the LiDAR with a mechanical rotation device. The stop position can be accurately detected. Accurately detecting the position at which the conveying device 1 stops is effective when the construction site is narrow or has a slope. Further, when the LiDAR alone is rotated, the positional relationship between the detection device 145 and the work device 160 is shifted. However, when the LiDAR is rotated by the turning device 130 , the positional relationship between the detection device 145 and the work device 160 is maintained, and detection by the detection device 145 is not affected by changes in the attitude of the work device 160 .
 第2GNSS147は、人工衛星を利用して油圧ショベル100の位置を測位するものである。なお、第2GNSS147は、本体装置140の上面に設けるようにしてもよい。
 第2通信装置148は、送信機と、受信機と、各種回路と、不図示のアンテナなどを有し、第1通信装置66やインターネット等の広域ネットワークにアクセスする無線通信ユニットである。本実施形態において、第2通信装置148は、油圧ショベル100の寸法に関する情報や、第2GNSS147が検出した油圧ショベル100の位置や、水素供給口114の向き関する情報や、水素供給口114に第1ノズル45と第2ノズル46と第3ノズル47とのいずれかのノズルが接続されたり、この接続が解除されたことを示す接続情報や、不図示の残量計の検出結果などを搬送装置1の第1通信装置66へ送信する。
The second GNSS 147 measures the position of the hydraulic excavator 100 using artificial satellites. Note that the second GNSS 147 may be provided on the upper surface of the main unit 140 .
The second communication device 148 is a wireless communication unit that has a transmitter, a receiver, various circuits, an antenna (not shown), and the like, and accesses the first communication device 66 and a wide area network such as the Internet. In this embodiment, the second communication device 148 provides information about the dimensions of the hydraulic excavator 100 , the position of the hydraulic excavator 100 detected by the second GNSS 147 , information about the direction of the hydrogen supply port 114 , and information about the direction of the hydrogen supply port 114 . Connection information indicating that any one of the nozzles 45, 2nd nozzle 46, and 3rd nozzle 47 is connected or disconnected, detection results of a remaining amount meter (not shown), etc. to the first communication device 66 of the
 第2メモリ149は、不揮発性のメモリ(例えばフラッシュメモリ)であり、油圧ショベル100を駆動するための各種データやプログラムや、油圧ショベル100を自動運転するための各種データやプログラムや、油圧ショベル100の寸法に関する情報などを記憶している。 The second memory 149 is a non-volatile memory (for example, flash memory), and includes various data and programs for driving the excavator 100, various data and programs for automatically operating the excavator 100, and data and programs for automatically operating the excavator 100. It stores information such as the dimensions of the
 重機制御装置150は、CPUを備えており、油圧ショベル100全体を制御する制御装置であり、一例を挙げると作業装置160の掘削動作の制御および燃料タンク112への水素供給動作の制御を行っている。 The heavy equipment control device 150 includes a CPU and is a control device that controls the entire hydraulic excavator 100. For example, the heavy equipment control device 150 controls the excavation operation of the work device 160 and the hydrogen supply operation to the fuel tank 112. there is
 作業装置160は、ブーム153と、ブームシリンダ154と、アーム155と、アームシリンダ156と、バケット157と、バケットシリンダ158と、を有している。 The work device 160 has a boom 153 , a boom cylinder 154 , an arm 155 , an arm cylinder 156 , a bucket 157 and a bucket cylinder 158 .
 ブーム153は、スイング部141を介して本体装置140に接続された回転L字状の部品であり、ブームシリンダ154により回動するものである。
 アーム155は、ブーム153の先端に接続されており、アームシリンダ156により回動するものである。
 バケット157は、アーム155の先端に接続されており、バケットシリンダ158により回動するものである。なお、バケット157に代えて、アーム155の先端にブレーカなどを取り付けることも可能である。
The boom 153 is a rotatable L-shaped component connected to the main unit 140 via the swing portion 141 and is rotated by the boom cylinder 154 .
Arm 155 is connected to the tip of boom 153 and is rotated by arm cylinder 156 .
A bucket 157 is connected to the tip of the arm 155 and rotated by a bucket cylinder 158 . A breaker or the like can be attached to the tip of the arm 155 instead of the bucket 157 .
 ブームシリンダ154は、蓄電池113から供給される電力により伸縮動作がなされて、ブーム153を駆動するシリンダである。
 また、アームシリンダ156は、蓄電池113から供給される電力により伸縮動作がなされて、アーム155を駆動するシリンダである。
 また、バケットシリンダ158は、蓄電池113から供給される電力により伸縮動作がなされて、バケット157を駆動するシリンダである。
 なお、本実施形態では、蓄電池113からの電力によりスイングシリンダ142と、ブームシリンダ154と、アームシリンダ156と、バケットシリンダ158とを駆動させたが、油圧を用いてこれらのシリンダを駆動してもよい。
The boom cylinder 154 is a cylinder that is telescopically operated by electric power supplied from the storage battery 113 to drive the boom 153 .
Further, the arm cylinder 156 is a cylinder that is expanded and contracted by electric power supplied from the storage battery 113 to drive the arm 155 .
Also, the bucket cylinder 158 is a cylinder that is expanded and contracted by electric power supplied from the storage battery 113 to drive the bucket 157 .
In this embodiment, the swing cylinder 142, the boom cylinder 154, the arm cylinder 156, and the bucket cylinder 158 are driven by electric power from the storage battery 113, but these cylinders may be driven by hydraulic pressure. good.
 図4は搬送装置1と油圧ショベル100との大きさを比較する図面であり、図4(a)は油圧ショベル100を背面から見た図であり、図4(b)および図4(c)は搬送装置1を背面から見た図であり、図4(b)はアクチュエータ18bが縮んだ状態を示す図であり、図4(c)はアクチュエータ18bが伸びた状態を示す図である。 4A and 4B are diagrams for comparing the sizes of the transport device 1 and the hydraulic excavator 100. FIG. 4A is a rear view of the hydraulic excavator 100, and FIGS. 4B and 4C. 4A and 4B are views of the conveying apparatus 1 viewed from the back, FIG. 4B is a view showing a state in which the actuator 18b is contracted, and FIG. 4C is a view showing a state in which the actuator 18b is extended.
 油圧ショベル100は、図3に示してあるように、水素供給口114を収容する本体装置140よりも走行装置120の方がX方向に突出している。また、油圧ショベル100は、図4(a)に示してあるように、本体装置140よりも走行装置120の方がY方向に突出している。なお、油圧ショベル100は、バケット157の容量に応じて、種々のサイズのものが製品化されている。このため、本実施形態では、種々のサイズの油圧ショベル100に応じて、走行装置10のサイズを変更したり、複数のサイズから走行装置10のサイズを選択したりすることにより、搬送装置1が油圧ショベル100に接近できるようにしている。 In the hydraulic excavator 100, as shown in FIG. 3, the travel device 120 protrudes in the X direction more than the main device 140 that houses the hydrogen supply port 114. Further, in the hydraulic excavator 100, as shown in FIG. 4A, the travel device 120 protrudes in the Y direction more than the main device 140. As shown in FIG. Various sizes of the hydraulic excavator 100 are produced according to the capacity of the bucket 157 . For this reason, in the present embodiment, by changing the size of the traveling device 10 or selecting the size of the traveling device 10 from a plurality of sizes according to hydraulic excavators 100 of various sizes, the transport device 1 can be The hydraulic excavator 100 is made accessible.
 図5は油圧ショベル100の後方(+X側)から搬送装置1が近づく様子を示す図である。アクチュエータ18bが縮んだ状態(図4(b)参照)では、履帯13の外側のY方向の間隔W2は、一対の履帯123の内側のY方向の間隔W1よりも大きい。このため、搬送装置1は、図5(a)に示すように、一対の履帯123の内側に搬送装置1の進行方向側(-X側)に位置する一対の履帯13を進入させることができない。このため、水素供給口114と第1ノズル45とは一対の履帯13のX方向の寸法よりも近づくことができない。 FIG. 5 is a diagram showing how the transport device 1 approaches from the rear (+X side) of the hydraulic excavator 100. FIG. When the actuator 18b is contracted (see FIG. 4B), the outer space W2 of the crawler belts 13 in the Y direction is larger than the inner space W1 of the pair of crawler belts 123 in the Y direction. Therefore, as shown in FIG. 5A, the transport device 1 cannot allow the pair of crawler belts 13 located on the traveling direction side (−X side) of the transport device 1 to enter the inside of the pair of crawler belts 123. . Therefore, the hydrogen supply port 114 and the first nozzle 45 cannot be closer than the dimension of the pair of crawler belts 13 in the X direction.
 これに対して、アクチュエータ18bが伸びた状態(図4(c)参照)では、履帯13の外側のY方向の間隔W3は、一対の履帯123の内側のY方向の間隔W1よりも小さい。このため、搬送装置1は、図5(b)に示すように、一対の履帯123の内側に搬送装置1の進行方向側(-X側)に位置する一対の履帯13を進入させることができるので、水素供給口114と第1ノズル45とは一対の履帯13のX方向の寸法よりも近づくことができる。 On the other hand, when the actuator 18b is extended (see FIG. 4(c)), the outer space W3 of the crawler belts 13 in the Y direction is smaller than the inner space W1 of the pair of crawler belts 123 in the Y direction. Therefore, as shown in FIG. 5B, the conveying device 1 can cause the pair of crawler belts 13 positioned on the traveling direction side (−X side) of the conveying device 1 to enter inside the pair of crawler belts 123. Therefore, the hydrogen supply port 114 and the first nozzle 45 can be closer than the dimension of the pair of crawler belts 13 in the X direction.
 アクチュエータ18bが縮んだ状態では、履帯13のZ方向の高さh2は、一対の履帯123のZ方向の高さh1よりも低い。
 このため、搬送装置1は、搬送装置1を油圧ショベル100の右側面(+Y方向側)に近づけると、履帯123とベース部20とが干渉してしまう。このため、ベース部20は、履帯123を乗り越えることができずに、水素供給口114に近づくことができない(図6参照)。
When actuator 18b is contracted, height h2 of crawler belt 13 in the Z direction is lower than height h1 of the pair of crawler belts 123 in the Z direction.
Therefore, when the transport device 1 is brought close to the right side surface (+Y direction side) of the hydraulic excavator 100 , the crawler belt 123 and the base portion 20 interfere with each other. Therefore, base portion 20 cannot get over crawler belt 123 and cannot approach hydrogen supply port 114 (see FIG. 6).
 これに対して、アクチュエータ18bが伸びた状態では、履帯13のZ方向の高さh3は、一対の履帯123のZ方向の高さh1よりも高い。このため、搬送装置1は、搬送装置1を油圧ショベル100の右側面(+Y方向側)に近づけても、履帯123とベース部20とが干渉することがない。従って、ベース部20は本体装置140に接近することができ、ひいては、第2ノズル46を水素供給口114に接近させることができる(図7参照)。 On the other hand, when the actuator 18b is extended, the height h3 of the crawler belt 13 in the Z direction is higher than the height h1 of the pair of crawler belts 123 in the Z direction. Therefore, the crawler belt 123 and the base portion 20 do not interfere with each other even when the transport device 1 is brought close to the right side surface (+Y direction side) of the hydraulic excavator 100 . Therefore, the base portion 20 can approach the main unit 140, and thus the second nozzle 46 can approach the hydrogen supply port 114 (see FIG. 7).
 以上のように構成された本実施形態の搬送装置1と油圧ショベル100との水素供給に関する協調動作について以下説明を続ける。 A description of the cooperative operation regarding hydrogen supply between the transport device 1 of the present embodiment and the hydraulic excavator 100 configured as described above will be continued below.
(フローチャート)
 図8は、本実施形態の重機制御装置150により実行されるフローチャートであり、例えば掘削場所に位置する油圧ショベル100の燃料タンク112の残量が所定量以下になった際に実行されるものである。以下、図8を用いて重機制御装置150の制御につき説明を続ける。なお、本フローチャートは、その一部を作業者が行うことを排除するものではない。
(flowchart)
FIG. 8 is a flowchart executed by the heavy equipment control device 150 of the present embodiment, which is executed when, for example, the remaining amount of the fuel tank 112 of the hydraulic excavator 100 located at the excavation site becomes equal to or less than a predetermined amount. be. The control of the heavy equipment control device 150 will be described below with reference to FIG. In addition, this flowchart does not exclude that a part of it is performed by an operator.
 重機制御装置150は、検出装置145により搬送装置1による水素供給が可能な位置を検出する(ステップS1)。重機制御装置150は、LiDARのレーザの照射角度で届かない範囲については、旋回装置130を旋回させることにより、油圧ショベル100の周囲360度の状況を検出する。そして、重機制御装置150は、油圧ショベル100の周囲360度の状況から搬送装置1による水素供給の位置および方向を決定する。なお、重機制御装置150は、LiDARから照射されるレーザが作業装置160により遮られないように、作業装置160の姿勢を制御している。 The heavy equipment control device 150 uses the detection device 145 to detect the position where the transport device 1 can supply hydrogen (step S1). The heavy equipment control device 150 detects the 360-degree situation around the hydraulic excavator 100 by turning the turning device 130 for a range that cannot be reached by the irradiation angle of the LiDAR laser. Then, the heavy machinery control device 150 determines the position and direction of hydrogen supply by the carrier device 1 from the situation of 360 degrees around the hydraulic excavator 100 . Note that the heavy equipment control device 150 controls the posture of the work device 160 so that the laser emitted from the LiDAR is not blocked by the work device 160 .
 重機制御装置150は、水素供給を行う際の搬送装置1の停止位置を決定するために、第2通信装置148を用いて搬送装置1の寸法を取得して、この取得した搬送装置1の寸法に基づいて搬送装置1の停止位置を決定するようにしてもよい。また、重機制御装置150は、走行モータ124を停止した状態で搬送装置1の停止位置を決定してもよく、走行モータ124により油圧ショベル100を移動させながら、搬送装置1の停止位置を決定してもよい。ここで、重機制御装置150は、油圧ショベル100の右側面(+Y方向側)に搬送装置1を停止して、第2ノズル146により水素供給を行うと決定する。 The heavy equipment control device 150 acquires the dimension of the transport device 1 using the second communication device 148 in order to determine the stop position of the transport device 1 when supplying hydrogen, and uses the acquired dimension of the transport device 1. The stop position of the conveying device 1 may be determined based on. Further, the heavy equipment control device 150 may determine the stop position of the transport device 1 while the travel motor 124 is stopped, and determines the stop position of the transport device 1 while moving the hydraulic excavator 100 with the travel motor 124 . may Here, the heavy machinery control device 150 determines to stop the transport device 1 on the right side (+Y direction side) of the hydraulic excavator 100 and supply hydrogen through the second nozzle 146 .
 重機制御装置150は、第2通信装置148を用いて、搬送装置1に水素供給位置を送信する(ステップS2)。具体的には、重機制御装置150は、第2GNSS147が測位した油圧ショベル100の位置と、使用ノズルの情報とを搬送装置1に送信する。なお、搬送装置1の制御装置70は、水素供給位置を受信すると後述する図9のフローチャートを開始する。 The heavy machinery control device 150 uses the second communication device 148 to transmit the hydrogen supply position to the transport device 1 (step S2). Specifically, the heavy machinery control device 150 transmits the position of the hydraulic excavator 100 positioned by the second GNSS 147 and information on the nozzles in use to the transport device 1 . When receiving the hydrogen supply position, the control device 70 of the transfer device 1 starts the flowchart of FIG. 9, which will be described later.
 重機制御装置150は、旋回装置130を用いて水素供給口114の位置決めを行う(ステップS3)。本実施形態では上述のように、油圧ショベル100の右側面(+Y方向側)にて水素供給を行うので、重機制御装置150は、旋回装置130により本体装置140を旋回させて、水素供給口114を油圧ショベル100の右側面(+Y方向側)に位置決めする。
 なお、ステップS2とステップS3とは、その順番を入れ替えても構わない。
The heavy equipment control device 150 positions the hydrogen supply port 114 using the turning device 130 (step S3). In this embodiment, as described above, hydrogen is supplied from the right side surface (+Y direction side) of the hydraulic excavator 100. Therefore, the heavy equipment control device 150 rotates the main unit 140 with the rotating device 130 so that the hydrogen supply port 114 is positioned on the right side surface (+Y direction side) of the hydraulic excavator 100 .
The order of steps S2 and S3 may be changed.
 重機制御装置150は、搬送装置1が油圧ショベル100の右側面(+Y方向側)に位置決めされたかどうかを判断する(ステップS4)。詳細は後述するものの、搬送装置1は、油圧ショベル100に接近し、撮像装置55により水素供給口114もしくはその近傍に設けられたマークを撮像して、油圧ショベル100の燃料タンク112に対する位置決めを行う。重機制御装置150は、搬送装置1から位置決め完了を示す信号を受信するまで、ステップS4を繰り返す。ここでは、重機制御装置150は、搬送装置1の位置決めが完了したものとしてステップS5に進むものとする。 The heavy machinery control device 150 determines whether the transport device 1 is positioned on the right side (+Y direction side) of the hydraulic excavator 100 (step S4). Although the details will be described later, the transport device 1 approaches the excavator 100, images the mark provided at or near the hydrogen supply port 114 with the imaging device 55, and positions the excavator 100 with respect to the fuel tank 112. . The heavy equipment control device 150 repeats step S4 until it receives a signal indicating completion of positioning from the transport device 1 . Here, the heavy equipment control device 150 assumes that the positioning of the transport device 1 is completed, and proceeds to step S5.
 重機制御装置150は、水素ディスペンサ40から水素を燃料タンク112に注入するために、水素供給口114の不図示の開閉部を閉状態から開状態へとする(ステップS5)。 The heavy machinery control device 150 opens the opening/closing portion (not shown) of the hydrogen supply port 114 from the closed state in order to inject hydrogen from the hydrogen dispenser 40 into the fuel tank 112 (step S5).
 重機制御装置150は、水素ディスペンサ40による燃料タンク112への水素の注入が終了したかどうかを判断する。詳細は後述するものの、重機制御装置150は、搬送装置1から水素注入の終了を示す信号を受信するまで、ステップS6を繰り返す。ここでは、重機制御装置150は、水素注入が終了完了したものとしてステップS7に進むものとする。 The heavy equipment control device 150 determines whether or not the hydrogen dispenser 40 has finished injecting hydrogen into the fuel tank 112 . Although the details will be described later, the heavy machinery control device 150 repeats step S6 until it receives a signal indicating the completion of hydrogen injection from the transport device 1 . Here, the heavy equipment control device 150 assumes that hydrogen injection has been completed, and proceeds to step S7.
 重機制御装置150は、水素供給口114の不図示の開閉部を開状態から閉状態として図8のフローチャートを終了する(ステップS7)。 The heavy equipment control device 150 closes the opening/closing portion (not shown) of the hydrogen supply port 114 from the open state, and ends the flowchart of FIG. 8 (step S7).
 なお、本体装置140に姿勢検出装置を設けておき、ステップS1で水素供給位置を検出する際に、この姿勢検出装置により地面の傾斜や水素供給口114の傾斜を検出することにより、重機制御装置150は傾斜の少ない場所を水素供給位置とすることができる。なお、姿勢検出装置としては、傾斜計や水準器などを用いることができる。 An attitude detection device is provided in the main unit 140, and when the hydrogen supply position is detected in step S1, the inclination of the ground or the inclination of the hydrogen supply port 114 is detected by this attitude detection device. 150 can make a place with little inclination the hydrogen supply position. An inclinometer, a spirit level, or the like can be used as the attitude detection device.
 図9は、本実施形態の制御装置70により実行されるフローチャートであり、本実施形態では、搬送装置1が掘削場所とは異なる待機場所で待機しているものとする。 FIG. 9 is a flowchart executed by the control device 70 of the present embodiment. In the present embodiment, it is assumed that the transport device 1 is on standby at a standby location different from the excavation location.
 制御装置70は、油圧ショベル100から水素供給位置を受信したかどうかを判断する(ステップS101)。ここでは、制御装置70は、油圧ショベル100から水素供給位置を受信したとしてステップS102に進むものとする。 The control device 70 determines whether or not the hydrogen supply position has been received from the hydraulic excavator 100 (step S101). Here, it is assumed that the control device 70 has received the hydrogen supply position from the hydraulic excavator 100 and proceeds to step S102.
 制御装置70は、受信した水素供給位置と、第1GNSS65が検出した現在位置とから水素供給位置までの移動経路を決定して、受信した水素供給位置へ移動する(ステップS102)。制御装置70は、本実施形態において、受信した水素供給位置に到着するまで、第1バルブ35と第2バルブ36との少なくとも一方のノズルを閉状態として、水素ディスペンサ40に水素が供給されない状態としている。これにより、制御装置70は、搬送装置1の移動中に水素ディスペンサ40から水素が漏れてしまうことを防止することができる。 The control device 70 determines the movement route to the hydrogen supply position based on the received hydrogen supply position and the current position detected by the first GNSS 65, and moves to the received hydrogen supply position (step S102). In the present embodiment, the control device 70 closes at least one of the nozzles of the first valve 35 and the second valve 36 until the hydrogen supply position is reached so that hydrogen is not supplied to the hydrogen dispenser 40. there is As a result, the control device 70 can prevent hydrogen from leaking from the hydrogen dispenser 40 while the carrier device 1 is moving.
 制御装置70は、油圧ショベル100の水素供給口114を検出することができたかどうかを判断する(ステップS103)。制御装置70は、受信した水素供給位置に近づくと(例えば2m~10m)、撮像装置55により水素供給口114もしくはその近傍に設けられたマークを検出する。制御装置70は、撮像装置55が検出したマークに近づくように、走行装置10を制御する。制御装置70は、本実施形態では油圧ショベル100の右側面に第2ノズル46が対向するように、走行装置10を制御する。なお、重機制御装置150は、検出装置145により搬送装置1を検出して、搬送装置1を水素供給位置まで誘導するようにしてもよく、水素供給口114に向けた搬送装置1の移動を停止するような制御を行うようにしてもよい。 The control device 70 determines whether the hydrogen supply port 114 of the hydraulic excavator 100 has been detected (step S103). When the control device 70 approaches the received hydrogen supply position (for example, 2 m to 10 m), the imaging device 55 detects the mark provided at or near the hydrogen supply port 114 . The control device 70 controls the traveling device 10 so as to approach the mark detected by the imaging device 55 . The control device 70 controls the traveling device 10 so that the second nozzle 46 faces the right side surface of the hydraulic excavator 100 in this embodiment. The heavy equipment control device 150 may detect the transport device 1 by the detection device 145, guide the transport device 1 to the hydrogen supply position, and stop the movement of the transport device 1 toward the hydrogen supply port 114. You may make it control so that it may carry out.
 制御装置70は、水素供給口114に第2ノズル46が接近するために、搬送装置1のサイズを変更する必要があるかどうかを判断する(ステップS104)。制御装置70は、油圧ショベル100から油圧ショベル100の一対の履帯123の寸法を入手したり、撮像装置55による一対の履帯123を撮像したりして、搬送装置1のサイズを変更する必要があるかどうかを判断する。なお、これに代えて、制御装置70は、検出装置145による搬送装置1のサイズ検出結果に基づいて、搬送装置1のサイズを変更する必要があるかどうかを判断してもよい。ここでは、搬送装置1のサイズを変更する必要があるとしてステップS105に進むものとする。 The control device 70 determines whether it is necessary to change the size of the transport device 1 so that the second nozzle 46 approaches the hydrogen supply port 114 (step S104). The control device 70 needs to obtain the dimensions of the pair of crawler belts 123 of the hydraulic excavator 100 from the hydraulic excavator 100, or take an image of the pair of crawler belts 123 by the imaging device 55 to change the size of the transport device 1. to determine whether Alternatively, the control device 70 may determine whether the size of the transport device 1 needs to be changed based on the size detection result of the transport device 1 by the detection device 145 . Here, it is assumed that the size of the transport device 1 needs to be changed, and the process proceeds to step S105.
 制御装置70は、アクチュエータ18bを縮んだ状態から伸びた状態に駆動して、ベース部20の高さが一対の履帯123のZ方向の高さh1よりも高くなるように、搬送装置1のサイズを変更する(ステップS105)。これにより、制御装置70は、ベース部20が一対の履帯123に干渉することがないので、第2ノズル46を水素供給口114に接近させることができる。 The control device 70 drives the actuator 18b from the contracted state to the extended state, and adjusts the size of the conveying device 1 so that the height of the base portion 20 is higher than the height h1 of the pair of crawler belts 123 in the Z direction. is changed (step S105). As a result, the control device 70 can bring the second nozzle 46 closer to the hydrogen supply port 114 because the base portion 20 does not interfere with the pair of crawler belts 123 .
 制御装置70は、水素供給口114に対する第2ノズル46の位置決めが完了したかどうかを判断する(ステップS106)。制御装置70は、撮像装置55により、水素供給口114もしくはその近傍に設けられたマークを撮像して、水素供給口114に対する第2ノズル46の位置決めを行う。水素供給口114に対する第2ノズル46の位置決めは、X方向及びY方向については走行モータ15により行えばよく、Z方向ついてはアクチュエータ18bにより行えばよい。また、水素供給口114に対する第2ノズル46の旋回方向の位置決めは、旋回モータ131により行えばよい。これに代えて、第2ノズル46を3自由度より好ましくは6自由度で位置調整する調整機構を設けるようにしてもよい。同様に、第1ノズル45および第3ノズル47のそれぞれの位置を3自由度より好ましくは6自由度で位置調整する調整機構を設けるようにしてもよい。なお、制御装置70は、水素供給口114に対する第2ノズル46の位置決めが完了したことを、第1通信装置66により油圧ショベル100に通知することが望ましい。 The control device 70 determines whether the positioning of the second nozzle 46 with respect to the hydrogen supply port 114 has been completed (step S106). The control device 70 takes an image of a mark provided at or near the hydrogen supply port 114 using the imaging device 55 and positions the second nozzle 46 with respect to the hydrogen supply port 114 . The positioning of the second nozzle 46 with respect to the hydrogen supply port 114 may be performed by the travel motor 15 in the X and Y directions, and may be performed by the actuator 18b in the Z direction. Further, the rotation direction positioning of the second nozzle 46 with respect to the hydrogen supply port 114 may be performed by the rotation motor 131 . Alternatively, an adjustment mechanism may be provided for adjusting the position of the second nozzle 46 with three degrees of freedom, preferably six degrees of freedom. Similarly, an adjusting mechanism may be provided for adjusting the position of each of the first nozzle 45 and the third nozzle 47 with three degrees of freedom, preferably six degrees of freedom. It is desirable that the control device 70 notifies the hydraulic excavator 100 via the first communication device 66 that positioning of the second nozzle 46 with respect to the hydrogen supply port 114 has been completed.
 制御装置70は、ステップS106における水素供給口114に対する第2ノズル46の位置決めが完了すると、水素供給口114が開いているかどうかを判断する(ステップS107)。制御装置70は、重機制御装置150により水素供給口114が開状態となるまで、ステップS107の判断を繰り返す。 When the positioning of the second nozzle 46 with respect to the hydrogen supply port 114 in step S106 is completed, the control device 70 determines whether the hydrogen supply port 114 is open (step S107). The control device 70 repeats the determination in step S107 until the heavy equipment control device 150 causes the hydrogen supply port 114 to open.
 制御装置70は、水素供給口114のレセプタクルに第2ノズル46の接続カプラが接続するように、第2駆動部49により第2ノズル46は-Y方向に沿って駆動する(ステップS108)。接続カプラがレセプタクルに係合しやすいように、水素供給口114に例えばテーパ形状の案内部材を設けることが好ましい。例えば、レセプタクルに接続カプラとの接続を機械的に検出する検出器を設けて、レセプタクルと接続カプラとの接続を検出した際に、重機制御装置150に検出結果を出力することが望ましい。また、この検出器は、レセプタクルと接続カプラとの接続が解除された際にも重機制御装置150に検出結果を出力することが望ましい。 The control device 70 drives the second nozzle 46 along the -Y direction by the second driving section 49 so that the connection coupler of the second nozzle 46 is connected to the receptacle of the hydrogen supply port 114 (step S108). It is preferable to provide the hydrogen supply port 114 with, for example, a tapered guide member so that the connecting coupler can be easily engaged with the receptacle. For example, it is desirable to provide the receptacle with a detector that mechanically detects the connection with the connection coupler, and output the detection result to the heavy equipment control device 150 when the connection between the receptacle and the connection coupler is detected. Moreover, it is desirable that this detector output a detection result to the heavy equipment control device 150 even when the connection between the receptacle and the connection coupler is disconnected.
 制御装置70は、水素供給口114のレセプタクルに第2ノズル46の接続カプラが接続されると、第1バルブ35と第2バルブ36とを開状態として、蓄圧容器31に貯蔵された水素を水素ディスペンサ40に供給するとともに、3方向切替えバルブ44を制御して第2ノズル46に水素が供給されるようにする。これにより、制御装置70は、水素供給口114を介して燃料タンク112に水素を供給する(ステップS109)。 When the connection coupler of the second nozzle 46 is connected to the receptacle of the hydrogen supply port 114, the control device 70 opens the first valve 35 and the second valve 36 to release the hydrogen stored in the pressure accumulator vessel 31 into hydrogen. While supplying the dispenser 40 , the three-way switching valve 44 is controlled so that the hydrogen is supplied to the second nozzle 46 . Thereby, the control device 70 supplies hydrogen to the fuel tank 112 through the hydrogen supply port 114 (step S109).
 なお、水素供給口114の近傍、例えばレセプタクルに水素の漏れを検出する漏れ検出センサを設けるようにしてもよい。漏れ検出センサは、気体熱電動式や、固体電気化学式などのセンサがあり、いずれのセンサも適用することが可能である。制御装置70は、水素漏れが検出された場合にはステップS109の水素供給を中止し、第1通信装置66により遠隔の事務所や、作業者のスマートフォンなどに通知する。また、制御装置70は、第1バルブ35と第2バルブ36とを閉状態とする。 A leakage detection sensor that detects hydrogen leakage may be provided in the vicinity of the hydrogen supply port 114, for example, in the receptacle. Leak detection sensors include gas thermoelectric type sensors and solid electrochemical type sensors, and any of these sensors can be applied. When hydrogen leakage is detected, the control device 70 stops the hydrogen supply in step S109 and notifies the remote office, the worker's smart phone, or the like via the first communication device 66 . Further, the control device 70 closes the first valve 35 and the second valve 36 .
 制御装置70は、燃料タンク112への水素供給が終了したかどうかを判断する(ステップS110)。燃料タンク112への水素の供給量は、燃料タンク112への水素が供給される前に不図示の残量計の検出結果に基づき、水素を供給する量を油圧ショベル100から搬送装置1に送信するようにすればよい。制御装置70は、流量計41の出力に基づいて水素を供給する量が所定の量になったかどうかを判断するようにすればよい。これに代えて、不図示の残量計が燃料タンク112に水素が所定量供給されたことを検出するまで、制御装置70は燃料タンク112への水素供給を行うようにしてもよい。 The control device 70 determines whether hydrogen supply to the fuel tank 112 has ended (step S110). The amount of hydrogen to be supplied to the fuel tank 112 is determined by the hydraulic excavator 100 transmitting the amount of hydrogen to the transport device 1 based on the detection result of the remaining amount gauge (not shown) before the hydrogen is supplied to the fuel tank 112. You should do it. The control device 70 may determine whether the amount of supplied hydrogen has reached a predetermined amount based on the output of the flow meter 41 . Alternatively, the control device 70 may supply hydrogen to the fuel tank 112 until a remaining amount gauge (not shown) detects that a predetermined amount of hydrogen has been supplied to the fuel tank 112 .
 ここでは、制御装置70は、燃料タンク112への水素供給が終了したとしてステップS111に進むものとする。なお、制御装置70は、水素供給が終了したことを示す信号を重機制御装置150に送信するとともに、第1バルブ35と第2バルブ36とを閉状態とする。重機制御装置150は、水素供給が終了したことを示す信号を受信すると、レセプタクルのソケットを解除状態とする。 Here, it is assumed that the control device 70 proceeds to step S111 assuming that hydrogen supply to the fuel tank 112 has ended. The control device 70 sends a signal indicating that the supply of hydrogen has ended to the heavy equipment control device 150 and closes the first valve 35 and the second valve 36 . When the heavy equipment control device 150 receives the signal indicating that the supply of hydrogen has ended, the heavy equipment control device 150 releases the socket of the receptacle.
 制御装置70は、重機制御装置150からレセプタクルと接続カプラとの接続が解除された信号を受信すると、第2駆動部49により第2ノズル46を+Y方向に沿って駆動させて、第2ノズル46を水素供給口114から撤収させる(ステップS111)。 When the control device 70 receives a signal indicating that the connection between the receptacle and the connection coupler has been released from the heavy machinery control device 150, the control device 70 drives the second nozzle 46 along the +Y direction by the second driving section 49, and the second nozzle 46 is withdrawn from the hydrogen supply port 114 (step S111).
 制御装置70は、他の建設機械への水素供給が必要かどうかを判断する(ステップS112)。制御装置70は、他の建設機械への水素供給が必要な場合はステップS101に戻り、他の建設機械への水素供給が必要ない場合はステップS113にて待機場所に移動して本フローチャートを終了する。 The control device 70 determines whether it is necessary to supply hydrogen to other construction machines (step S112). If the control device 70 needs to supply hydrogen to other construction machines, it returns to step S101, and if it does not need to supply hydrogen to other construction machines, it moves to the standby location in step S113 and ends this flowchart. do.
 上述したように、本実施形態によれば、一対のリンク機構18が走行装置10の大きさ(サイズ)を変更することができるので、搬送装置1を水素供給口114に接近して位置決めすることができる。また、水素ディスペンサ40が複数の方向に対応できる第1ノズル45と第2ノズル46と第3ノズル47とを有しているので、水素供給位置を決める際に搬送装置1のノズルの位置が律速条件となることがない。 As described above, according to this embodiment, the pair of link mechanisms 18 can change the size of the travel device 10, so that the transport device 1 can be positioned close to the hydrogen supply port 114. can be done. Further, since the hydrogen dispenser 40 has the first nozzle 45, the second nozzle 46, and the third nozzle 47 that can correspond to a plurality of directions, the position of the nozzle of the transport device 1 determines the rate when determining the hydrogen supply position. never be a condition.
 また、本実施形態によれば、油圧ショベル100に従前から備わっている旋回装置130を用いて水素供給位置を検出したり、水素供給口114の位置決めをしたりするので、油圧ショベル100が複雑化することなく、燃料タンク112に水素を注入することができる。なお、水素供給位置として複数の候補がある場合に、重機制御装置150は、水素供給口114を位置決めする際の旋回装置130の旋回量が少ない場所や、地面の傾斜がより少ない場所を水素供給位置として決定すればよい。 Further, according to this embodiment, the hydraulic excavator 100 is complicated because the hydrogen supply position is detected and the hydrogen supply port 114 is positioned using the turning device 130 that has been provided in the hydraulic excavator 100 . Hydrogen can be injected into the fuel tank 112 without Note that when there are a plurality of candidates for the hydrogen supply position, the heavy machinery control device 150 selects a location where the rotation amount of the rotation device 130 when positioning the hydrogen supply port 114 is small or a location where the ground is less inclined. It should be determined as a position.
 以上で説明した実施形態は、本発明を説明するための例示に過ぎず、本発明の要旨を逸脱しない範囲内において、種々変更を加えることは可能である。例えば、搬送装置1は、走行装置10とベース部20とが着脱しない一体型でもよい。 The embodiments described above are merely examples for explaining the present invention, and various modifications can be made without departing from the gist of the present invention. For example, the conveying device 1 may be an integral type in which the traveling device 10 and the base portion 20 are not detachable.
 また、搬送装置1は運転席のあるタイプでもよい。油圧ショベル100は、運転席のあるタイプでもよく、軽油やアンモニアや水素により駆動する内燃機関式のエンジンでも構わない。この場合、搬送装置1は、燃料タンク112に対して、軽油やアンモニアや水素(液体)を供給するようにすればよい。 Also, the transport device 1 may be of a type with a driver's seat. The hydraulic excavator 100 may be of a type having a driver's seat, or may be an internal combustion engine driven by light oil, ammonia, or hydrogen. In this case, the transport device 1 may supply light oil, ammonia, or hydrogen (liquid) to the fuel tank 112 .
 油圧ショベル100の作業装置160は1つに限定されるものではなく、複数の作業装置160を本体装置140に設けるようにしてもよい。 The working device 160 of the hydraulic excavator 100 is not limited to one, and a plurality of working devices 160 may be provided in the main body device 140 .
 1 搬送装置  10 走行装置  18 一対のリンク機構
18b アクチュエータ  20 ベース部  30 水素充填装置
40 水素ディスペンサ  44 3方向切替えバルブ  45 第1ノズル
46 第2ノズル  47 第3ノズル  55 撮像装置
110 駆動システム  112 燃料タンク  114 水素供給口
130 旋回装置  140 本体装置  145 検出装置
 
Reference Signs List 1 transportation device 10 travel device 18 pair of link mechanisms 18b actuator 20 base portion 30 hydrogen filling device 40 hydrogen dispenser 44 3-way switching valve 45 first nozzle 46 second nozzle 47 third nozzle 55 imaging device 110 drive system 112 fuel tank 114 Hydrogen supply port 130 swivel device 140 main unit 145 detection device

Claims (16)

  1.  第1移動装置により移動可能なベース部と、
     前記ベース部に設けられ、燃料を供給する燃料供給部と、
     前記燃料が供給される装置の供給口に向けて移動する際に、前記第1移動装置の大きさを変更する変更装置と、を備えた搬送装置。
    a base portion movable by a first moving device;
    a fuel supply section provided on the base section for supplying fuel;
    and a changing device that changes the size of the first moving device when moving toward the supply port of the device to which the fuel is supplied.
  2.  前記変更装置は、前記第1移動装置の鉛直方向の大きさを変更する請求項1記載の搬送装置。 The conveying device according to claim 1, wherein the changing device changes the vertical size of the first moving device.
  3.  前記変更装置は、前記第1移動装置の移動方向と交差する幅方向の大きさを変更する請求項1または請求項2記載の搬送装置。 The conveying device according to claim 1 or 2, wherein the changing device changes the size in the width direction intersecting the moving direction of the first moving device.
  4.  前記装置と通信する通信装置と、
     前記通信装置を介した前記装置からの指示に基づいて、前記第1移動装置により前記供給口に向けて移動する制御装置と、を備えた請求項1から請求項3のいずれか一項記載の搬送装置。
    a communication device that communicates with the device;
    4. The control device according to any one of claims 1 to 3, further comprising a control device that moves toward the supply port by the first moving device based on an instruction from the device via the communication device. Conveyor.
  5.  前記制御装置は、前記通信装置を介した前記装置からの指示に基づいて、前記第1移動装置による前記供給口に向けた移動を停止する請求項4記載の搬送装置。 The conveying device according to claim 4, wherein the control device stops the movement of the first moving device toward the supply port based on an instruction from the device via the communication device.
  6.  前記第1移動装置と前記ベース部とを着脱可能にする着脱装置を備えた請求項1から請求項5のいずれか一項記載の搬送装置。 The conveying apparatus according to any one of claims 1 to 5, further comprising an attachment/detachment device that allows attachment and detachment of the first moving device and the base portion.
  7.  前記第1移動装置は複数のサイズがあり、
     前記装置の大きさに応じて前記第1移動装置のサイズが選択され、
     前記着脱装置は、選択された前記第1移動装置を前記ベース部に取付ける請求項6記載の搬送装置。
    the first moving device has a plurality of sizes;
    selecting the size of the first moving device according to the size of the device;
    7. The conveying apparatus according to claim 6, wherein the attaching/detaching device attaches the selected first moving device to the base portion.
  8.  前記燃料供給部は、第1面側に形成された第1供給部と、前記第1面側とは異なる第2面側に形成された第2供給部と、を備えている請求項1から請求項7のいずれか一項記載の搬送装置。 2. From claim 1, wherein the fuel supply unit comprises a first supply unit formed on the first surface side and a second supply unit formed on the second surface side different from the first surface side. 8. A conveying device according to any one of claims 7 to 8.
  9.  前記第1供給部と前記第2供給部との一方を選択する選択装置を備えている請求項8記載の搬送装置。 The conveying apparatus according to claim 8, further comprising a selection device for selecting one of the first supply section and the second supply section.
  10.  走行装置を走行させる燃料が注入される供給口を備え、前記走行装置により走行する本体装置と、
     前記本体装置を旋回可能な旋回装置と、
     前記本体装置に接続され、可動して作業を行う作業装置と、
     前記本体装置に設けられ、前記本体装置の周囲の状況を検出する検出装置と、
     前記検出装置の検出結果に基づいて、前記旋回装置の旋回により前記供給口の旋回方向の位置決めをする制御装置と、を備えている建設機械。
    a main unit having a supply port into which fuel for running the traveling device is injected, and traveling by the traveling device;
    a turning device capable of turning the main body device;
    a working device that is connected to the main body device and moves to perform work;
    a detection device provided in the main device for detecting a situation around the main device;
    a control device that positions the supply port in a turning direction by turning the turning device based on the detection result of the detecting device.
  11.  前記検出装置は電磁波を照射する照射部を有し、
     前記制御装置は、前記電磁波が前記作業装置により遮られないように、前記作業装置の姿勢を制御している請求項10記載の建設機械。
    The detection device has an irradiation unit that irradiates electromagnetic waves,
    11. The construction machine according to claim 10, wherein the control device controls the attitude of the working device so that the electromagnetic waves are not blocked by the working device.
  12.  前記検出装置は、前記旋回装置の旋回により前記旋回方向の位置を変えながら、前記本体装置の周囲の状況を検出する請求項10または請求項11記載の建設機械。 The construction machine according to claim 10 or 11, wherein the detection device detects the surrounding situation of the main unit while changing the position in the turning direction by turning the turning device.
  13.  前記制御装置は、前記検出装置の検出結果に基づいて、前記供給口に燃料を供給する供給装置が前記供給口と対向できる位置に前記供給口の前記旋回方向の位置決めをする請求項10から請求項12のいずれか一項に記載の建設機械。 According to the detection result of the detection device, the control device positions the supply port in the turning direction at a position where the supply device that supplies fuel to the supply port can face the supply port. Item 13. The construction machine according to any one of Item 12.
  14.  前記検出装置は、前記供給口が前記供給装置と対向できる位置に位置決めされた際に、前記供給装置を検出可能なように前記本体装置に設けられている請求項13記載の建設機械。 14. The construction machine according to claim 13, wherein said detection device is provided in said main unit so as to be able to detect said supply device when said supply port is positioned at a position where it can face said supply device.
  15.  前記走行装置は、前記走行装置の走行方向と交差する方向に離間した一対の走行部を有し、
     前記制御装置は、前記一対の走行部の間に前記供給口を位置決めする請求項10から請求項14のいずれか一項に記載の建設機械。
    The traveling device has a pair of traveling portions spaced apart in a direction intersecting the traveling direction of the traveling device,
    The construction machine according to any one of claims 10 to 14, wherein the control device positions the supply port between the pair of traveling parts.
  16.  前記供給口は、前記作業装置とは離隔して設けられている請求項10から請求項15のいずれか一項に記載の建設機械。
     
    The construction machine according to any one of claims 10 to 15, wherein the supply port is provided separately from the working device.
PCT/JP2022/042351 2022-01-11 2022-11-15 Conveyance device and construction machine WO2023135921A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263298285P 2022-01-11 2022-01-11
US63/298,285 2022-01-11

Publications (1)

Publication Number Publication Date
WO2023135921A1 true WO2023135921A1 (en) 2023-07-20

Family

ID=87278862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042351 WO2023135921A1 (en) 2022-01-11 2022-11-15 Conveyance device and construction machine

Country Status (1)

Country Link
WO (1) WO2023135921A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08319635A (en) * 1995-05-25 1996-12-03 Komatsu Ltd Undercarriage device of hydraulic shovel
JP2003112799A (en) * 2001-10-02 2003-04-18 Komatsu Ltd Fuel distribution system of machine, fuel distributing method and program thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08319635A (en) * 1995-05-25 1996-12-03 Komatsu Ltd Undercarriage device of hydraulic shovel
JP2003112799A (en) * 2001-10-02 2003-04-18 Komatsu Ltd Fuel distribution system of machine, fuel distributing method and program thereof

Similar Documents

Publication Publication Date Title
US11492783B2 (en) Shovel and autonomous aerial vehicle flying around shovel
US8978851B2 (en) Self-propelled cable relay truck
US11891776B2 (en) Automatic operation work machine
CN112342908B (en) Primary-secondary type infrastructure disease detection and repair system and method
JP7425904B2 (en) construction machinery system
WO2023135921A1 (en) Conveyance device and construction machine
JP2024024635A (en) How to assist construction machinery
JP6786380B2 (en) Positioning system
WO2022185666A1 (en) Construction machine
WO2023162405A1 (en) Moving device and unmanned flying device
WO2022239303A1 (en) Construction machine, excavated matter measurement method, and unmanned air vehicle
WO2022137688A1 (en) Construction machine
WO2023067837A1 (en) Transport apparatus
WO2023171059A1 (en) Construction machine
JP7043471B2 (en) Work machine
US8942863B2 (en) Worksite position control system having integrity checking
WO2023286309A1 (en) Construction machine
US20210190252A1 (en) Two-wheeled pipe crawler
JPH10103954A (en) Surveying system for tunnel construction
WO2023044592A1 (en) System for controlling and coordinating a group of devices
GB2619090A (en) An alignment system for use in coupling a work machine system comprising interchangeable trailer units

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920441

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023573866

Country of ref document: JP