WO2022210297A1 - Magnetic marker detection method and system - Google Patents

Magnetic marker detection method and system Download PDF

Info

Publication number
WO2022210297A1
WO2022210297A1 PCT/JP2022/014132 JP2022014132W WO2022210297A1 WO 2022210297 A1 WO2022210297 A1 WO 2022210297A1 JP 2022014132 W JP2022014132 W JP 2022014132W WO 2022210297 A1 WO2022210297 A1 WO 2022210297A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
signal
degree
axes
marker
Prior art date
Application number
PCT/JP2022/014132
Other languages
French (fr)
Japanese (ja)
Inventor
道治 山本
知彦 長尾
均 青山
Original Assignee
愛知製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛知製鋼株式会社 filed Critical 愛知製鋼株式会社
Priority to CN202280024127.XA priority Critical patent/CN117083214A/en
Priority to EP22780511.6A priority patent/EP4318436A1/en
Priority to KR1020237036268A priority patent/KR20230165268A/en
Publication of WO2022210297A1 publication Critical patent/WO2022210297A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • G05D1/244
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0023Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/025Compensating stray fields
    • G05D1/646
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G05D2105/22
    • G05D2107/13
    • G05D2109/10
    • G05D2111/30

Definitions

  • Patent Document 1 Conventionally, there has been known a magnetic marker detection system for vehicles that uses magnetic markers arranged on roads for vehicle control (see Patent Document 1, for example).
  • a magnetic marker detection system for example, if the magnetic markers placed along the lane can be detected by the vehicle's magnetic sensor, etc., various types of driving assistance such as automatic steering control, lane departure warning, and autonomous driving can be realized. can.
  • the above conventional magnetic marker detection system has the following problems. That is, there is a problem that the reliability of detection of the magnetic marker may be impaired due to various disturbance magnetism acting on the magnetic sensor or the like. For example, vehicles running side by side or vehicles passing each other can also be sources of disturbance magnetism.
  • the present invention has been made in view of the conventional problems described above, and aims to provide a magnetic marker detection method and system with high detection certainty.
  • One aspect of the present invention is a method for detecting magnetic markers disposed on a road surface forming a surface of a track while a vehicle equipped with a magnetic sensor is moving on the track, comprising:
  • the magnetic sensor is capable of measuring magnitudes of magnetic components acting along a plurality of axes including at least two axes for each of the plurality of axes,
  • a candidate section which is a temporal or spatial section to which the magnetic marker is likely to belong, based on a change in the traveling direction of the vehicle in the magnitude of the magnetic component along at least one of the plurality of axes.
  • One aspect of the present invention is a system for a vehicle equipped with a magnetic sensor to detect a magnetic marker disposed on a road surface forming the surface of a road
  • the magnetic sensor is capable of measuring magnitudes of magnetic components acting along a plurality of axes including at least two axes for each of the plurality of axes, A candidate section, which is a temporal or spatial section to which the magnetic marker is likely to belong, based on a change in the traveling direction of the vehicle in the magnitude of the magnetic component along at least one of the plurality of axes.
  • a first circuit that identifies A first signal representing a change in the candidate interval of the magnitude of the magnetic component acting along one of the two axes and the candidate interval of the magnitude of the magnetic component acting along the other axis.
  • a second circuit for determining whether or not the magnetic marker is detected in the candidate section according to the degree of synchronization.
  • the present invention is premised on a vehicle equipped with a magnetic sensor capable of measuring the magnitude of magnetic components acting along a plurality of axes, including at least two axes, for each axis.
  • the present invention provides a combination of a first process or circuit for identifying a candidate section to which a magnetic marker is likely to belong, and a second process or circuit for determining whether or not the magnetic marker has been detected in the candidate section. It has one of the technical features.
  • a first process or circuit identifies the candidate section based on a change in the traveling direction of the magnitude of the magnetic component along at least one of the plurality of axes.
  • a second process or circuit generates a first signal representing a change in the candidate interval in the magnitude of a magnetic component acting along one of the two axes and a magnetic field acting along the other axis. It is determined whether or not the magnetic marker has been detected according to the degree of synchronization between the second signal representing the change in the magnitude of the component in the candidate interval.
  • candidate sections to which magnetic markers are likely to belong are identified. Then, it is determined whether or not the magnetic marker has been detected for each candidate segment to which the magnetic marker is likely to belong, using the degree of synchronization between the first signal and the second signal. According to the present invention, by providing the two steps of specifying the candidate section and determining whether or not the magnetic marker is detected in the candidate section, the detection of the magnetic marker can be reliably performed. It is possible to improve the quality.
  • FIG. 4 is a front view showing how the vehicle detects magnetic markers in the first embodiment
  • FIG. 2 is a top view showing a vehicle traveling in a lane on which magnetic markers are arranged according to the first embodiment
  • 1 is a configuration diagram of a marker detection system in Example 1.
  • FIG. 4 is a flowchart showing the flow of marker detection processing in the first embodiment
  • FIG. 4 is an explanatory diagram showing a change in the traveling direction of a magnetic measurement value (Gv) in the vertical direction in Example 1
  • FIG. 4 is an explanatory diagram showing a change in the traveling direction of the magnetic measurement value (Gt) in the traveling direction in Example 1
  • FIG. 4 is an explanatory diagram of candidate sections in the first embodiment
  • FIG. 4 is an explanatory diagram showing a change in the traveling direction of the time difference value of Gv in Example 1;
  • FIG. 4 is an explanatory diagram showing a change curve (distribution curve) of Gv in the vehicle width direction in the first embodiment;
  • FIG. 4 is an explanatory diagram showing a change curve (distribution curve) in the vehicle width direction of the magnetic gradient in the vehicle width direction in the first embodiment;
  • FIG. 5 is an explanatory diagram showing a change in the travel direction of the magnetic measurement value (Gh) in the vehicle width direction in the first embodiment;
  • Example 1 This example relates to a detection method and system 1 for detecting a magnetic marker 10 laid on a road. This content will be described with reference to FIGS. 1 to 11.
  • FIG. 1 An illustration of an example of an example of the present invention.
  • This example is an example in which a marker detection system (an example of a system) 1 for detecting magnetic markers 10 is applied to a driving support system 5S that enables lane keeping driving.
  • the driving support system 5S includes a vehicle ECU 50 that controls a steering actuator (not shown) for steering wheels, a throttle actuator for adjusting engine output, and the like.
  • the vehicle ECU 50 controls the vehicle 5 so that the amount of lateral deviation with respect to the magnetic marker 10 approaches zero, thereby achieving lane keeping running.
  • the marker detection system 1 is configured by combining a sensor unit 11 including a magnetic sensor Cn (n is an integer from 1 to 15) and a detection unit 12 that executes marker detection processing for detecting the magnetic marker 10.
  • a sensor unit 11 including a magnetic sensor Cn n is an integer from 1 to 15
  • a detection unit 12 that executes marker detection processing for detecting the magnetic marker 10.
  • the magnetic markers 10 are road markers that are arranged, for example, every 2 m along the center of the lane 100 that forms the course of the vehicle 5 .
  • This magnetic marker 10 has a columnar shape with a diameter of 20 mm and a height of 28 mm, and can be accommodated in a hole provided in the road surface 100S.
  • the magnetic marker 10 is a ferrite plastic magnet, which is a permanent magnet in which magnetic particles of iron oxide, which is a magnetic material, are dispersed in a polymer material, which is a base material.
  • a resin mold layer may be provided on all or part of the surface of the magnetic marker 10, which is the ferrite plastic magnet itself.
  • the maximum energy product (BHmax) of the ferrite plastic magnet forming the magnetic marker 10 is 6.4 kJ/cubic meter.
  • the magnetic flux density of the end surface of the magnetic marker 10 is 45 mT (millitesla).
  • various types of vehicles such as passenger cars and trucks are conceivable as vehicles using magnetic markers.
  • the mounting height of the magnetic sensor depends on the ground clearance for each vehicle type, and is generally assumed to be in the range of 100 to 250 mm.
  • the magnetic marker 10 can apply magnetism with a magnetic flux density of 8 ⁇ T (8 ⁇ 10 ⁇ 6 T) to a position with a height of 250 mm, which is the upper limit of the range assumed for the mounting height of the magnetic sensor Cn.
  • the sensor unit 11 is a bar-shaped unit in which 15 magnetic sensors C1 to C15 are arranged in a straight line, as shown in FIGS.
  • the intervals between the fifteen magnetic sensors C1 to C15 are equal intervals of 10 cm.
  • the sensor unit 1 is attached, for example, inside a front bumper of the vehicle 5 with its longitudinal direction extending along the vehicle width direction. In the case of the vehicle 5 of this example, the mounting height of the sensor unit 11 with respect to the road surface 100S is 200 mm.
  • the sensor unit 11 includes a combination of 15 magnetic sensors Cn and a signal processing circuit 110 containing a CPU (not shown) and the like (FIG. 3).
  • the magnetic sensor Cn is a sensor that detects magnetism using the well-known MI effect (Magneto Impedance Effect), in which the impedance of a magnetosensitive material such as an amorphous wire changes sensitively according to an external magnetic field.
  • the magnetic sensor Cn detects a magnetic component acting along a magnetosensitive body such as an amorphous wire, and outputs a sensor signal representing the magnitude of the magnetic component (magnetism measurement value).
  • the magnetic sensor Cn is a highly sensitive sensor with a magnetic flux density measurement range of ⁇ 0.6 millitesla and a magnetic flux resolution of 0.02 microtesla within the measurement range.
  • the magnetic marker 10 can apply magnetism with a magnetic flux density of 8 ⁇ T (8 ⁇ 10 ⁇ 6 T) or more in the range of 100 to 250 mm assumed as the mounting height of the magnetic sensor Cn.
  • a magnetic marker 10 that exerts magnetism with a magnetic flux density of 8 ⁇ T or more can be reliably detected using a magnetic sensor Cn with a magnetic flux resolution of 0.02 ⁇ T.
  • the magnetic sensor Cn of this example has a pair of magnetosensitive bodies that are perpendicular to each other so as to detect magnetic components acting in directions of two axes that are perpendicular to each other.
  • Each magnetic sensor Cn is incorporated in the sensor unit 11 so that the directions of the pair of magnetosensitive bodies are the same.
  • the sensor unit 11 detects a magnetic component acting along an axis in the direction of travel (one axis) and a magnetic component acting along an axis in the vertical direction (the other axis, an axis perpendicular to the direction of travel).
  • Each magnetic sensor Cn is attached to the vehicle 5 so that it can be detected.
  • the signal processing circuit 110 (FIG. 3) is a circuit that performs signal processing such as noise removal and amplification on the sensor signal of each magnetic sensor Cn.
  • the signal processing circuit 110 takes in the sensor signal of each magnetic sensor Cn every time the vehicle 5 travels a predetermined amount (for example, 5 cm), generates a corresponding magnetic measurement value, and inputs it to the detection unit 12 .
  • the signal processing circuit 110 outputs the magnetic measurement value (Gv) representing the magnitude of the magnetic component acting along the vertical axis and the magnitude of the magnetic component acting along the traveling direction axis.
  • a magnetic measurement (Gt) which represents In the following description, it is appropriately described as a magnetic measurement value of the magnetic sensor.
  • the detection unit 12 is a circuit that controls the sensor unit 11 and executes marker detection processing, which is arithmetic processing for detecting the magnetic marker 10 .
  • the detection unit 12 has a circuit board on which a CPU (central processing unit) that executes various calculations, memory elements such as ROM (read only memory) and RAM (random access memory), and the like are mounted.
  • a work area for storing time-series magnetic measurement values of each magnetic sensor Cn is formed in the storage area of the RAM.
  • the detection unit 12 uses this work area to store time-series magnetic measurement values over a past predetermined distance (for example, 10 m) corresponding to the movement history of the vehicle 5 .
  • a signal line of a vehicle speed sensor provided in the vehicle 5 is connected to the detection unit 12 .
  • a vehicle speed sensor is a sensor that outputs a pulse signal each time a wheel rotates by a predetermined amount.
  • the predetermined amount includes, for example, predetermined angles such as 1 degree, 10 degrees, and 30 degrees, and predetermined distances such as 1 cm, 5 cm, and 10 cm.
  • the detection unit 12 of this example controls the sensor unit 11 so as to output magnetic measurement values (Gv, Gt) each time the vehicle 5 travels 5 cm.
  • the detection unit 12 reads the magnetic measurement values (Gt, Gv) from each magnetic sensor Cn stored in the work area of the RAM, and executes marker detection processing and the like.
  • the result of the marker detection processing by the detection unit 12 includes the fact that the magnetic marker 10 has been detected and the amount of lateral deviation with respect to the detected magnetic marker 10 .
  • the detection unit 12 executes a marker detection process every time the vehicle 5 advances (every time it moves) by 5 cm, and inputs the detection result of the marker detection process to the vehicle ECU 50 .
  • the detection result by the detection unit 12 is used for various controls on the vehicle 5 side, such as automatic steering control for lane keeping, lane departure warning, and automatic driving.
  • the marker detection process is executed once each time the vehicle 5 moves 5 cm, but the marker detection process may be repeatedly executed at a frequency of 3 kHz, for example.
  • the detection unit 12 has functions as the following circuits (means).
  • First circuit A candidate section to which the magnetic marker 10 is likely to belong is identified based on the change in the direction of travel of the vehicle 5 in the magnetic measurement value (Gt) in the direction of travel (first processing).
  • the candidate section may be a temporal section sandwiched between two time points, or a spatial section between two points.
  • Second circuit Determines whether or not the magnetic marker 10 is detected in the candidate section (second processing).
  • the second circuit provides a first signal representing a change in the vertical magnetic measurement (Gv) in the candidate section, a second signal representing a change in the traveling direction magnetic measurement (Gt) in the candidate section, and The above judgment is executed according to the degree of synchronization between the
  • This marker detection process is a process executed by the marker detection system 1 each time the vehicle 5 advances by 5 cm.
  • the contents of the marker detection process will be described below, mainly focusing on the operation of the detection unit 12 .
  • the detection unit 12 takes in the magnetic measurement value of each magnetic sensor Cn of the sensor unit 11 every time the vehicle 5 advances 5 cm.
  • the detection unit 12 detects that the vehicle 5 has advanced 5 cm by processing the pulse signal input from the vehicle speed sensor.
  • the detection unit 12 uses, as the magnetic measurement value of each magnetic sensor Cn, a magnetic measurement value representing the magnitude of the magnetic component in the traveling direction (magnetic measurement value in the traveling direction, Gt) and the magnitude of the magnetic component in the vertical direction.
  • a magnetic measurement value (magnetic measurement value in the vertical direction, Gv) is taken in (S101).
  • the detection unit 12 writes the magnetic measurement values (Gt, Gv) of each magnetic sensor Cn fetched from the sensor unit 11 to the work area (RAM storage area) at any time.
  • Gv magnetic measurement value in the vertical direction
  • Gv gradually increases as the magnetic marker 10 is approached, and reaches a peak when the magnetic sensor is positioned directly above the magnetic marker 10 . Then, it gradually becomes smaller as the distance from the magnetic marker 10 increases.
  • the change curve of Gv in the traveling direction becomes like a normal distribution curve.
  • the same drawing is an example in which the N pole of the magnetic marker 10 faces upward.
  • the filled triangles in the figure indicate the position of the magnetic marker 10 in the traveling direction, more strictly the position of the center of the magnetic marker 10 .
  • Gt magnetism measurement value in the traveling direction
  • Gt gradually increases as it approaches the magnetic marker 10 and reaches a positive peak at a position before the magnetic marker 10 .
  • Gt gradually decreases and becomes zero when the magnetic sensor is positioned right above the magnetic marker 10 . This is because the orientation of the magnetic component in the direction of travel is reversed on either side of the magnetic marker 10 .
  • Gt absolute value
  • Gt absolute value
  • a change curve in the traveling direction of Gt is a curve in which two positive and negative peaks are adjacent to each other with the magnetic marker 10 interposed therebetween, as shown in FIG.
  • the change curve of Gt produces a zero crossing Zc that crosses zero with a steep slope just above the magnetic marker 10 .
  • the detection unit 12 first refers to the work area of the RAM and reads the time series data of Gt of each magnetic sensor Cn (Fig. 6). As described with reference to FIG. 6, when the sensor unit 11 reaches right above the magnetic marker 10 while the vehicle 5 is running, the positive and negative of the change curve of Gt by the magnetic sensor positioned above the magnetic marker 10 are A reversing zero cross Zc occurs. The detection unit 12 attempts to detect a zero cross Zc on the change curve of Gt by each magnetic sensor Cn (S102). The filled triangles in the figure indicate the position of the magnetic marker 10 in the traveling direction, more strictly the position of the center of the magnetic marker 10 .
  • the detection unit 12 When the detection unit 12 can detect the zero cross Zc (S102: YES), the detection unit 12 sets a predetermined section based on the position in the traveling direction corresponding to the zero cross Zc as a candidate section to which the magnetic marker 10 is highly likely to belong. (S103). In this example, as shown in FIG. 7, a section extending 1 m before and after the position of the zero cross Zc is set as the candidate section.
  • the detection unit 12 refers to the work area of the RAM and reads out Gv (magnetic measurement value in the vertical direction) in the candidate section. Then, for the time-series data of Gv in the candidate section, the difference between temporally adjacent data is obtained. This time difference corresponds to the time differentiation of Gv in FIG. 5 (an example of differentiation processing). According to this time difference, the change curve of Gv in FIG. 5 is converted into the change curve illustrated in FIG. The filled triangles in the figure indicate the position of the magnetic marker 10 in the traveling direction, more strictly the position of the center of the magnetic marker 10 .
  • the change curve of the time difference value of Gv in FIG. 8 exhibits the same tendency as the change curve of Gt (the magnetic measurement value in the traveling direction) illustrated in FIG.
  • the time difference value of Gv in FIG. 8 gradually increases as the center position of the magnetic marker 10 is approached, similarly to the change curve in FIG.
  • the time difference between the magnetic measurement values in the vertical direction gradually decreases, and becomes zero when the magnetic sensor is positioned right above the magnetic marker 10 .
  • Gv absolute value
  • the time difference value (absolute value) of Gv gradually decreases and approaches zero as the distance from the magnetic marker 10 increases.
  • the change curve of the time difference value of Gv (FIG. 8) is a curve in which two positive and negative peaks are adjacent to each other with the center of the magnetic marker 10 interposed therebetween, as in FIG. Also, the change curve of the time difference value of Gv has a zero crossing Zc that crosses zero with a steep slope just above the magnetic marker 10 .
  • the detection unit 12 detects the change curve of Gt (first signal, FIG. 7) in the candidate section set in step S103 above and the change curve of the time difference value of Gv (second signal, FIG. 7) in the same candidate section. 8)
  • a correlation coefficient is an example of a numerical value representing the degree of synchronization between the first signal and the second signal.
  • the detection unit 12 performs threshold processing on the correlation coefficient (normalized correlation coefficient) obtained in step S104, and determines the degree of synchronization between the change curve of Gt and the change curve of the time difference value of Gv. Specifically, when the normalized correlation coefficient is 0.8 or more (S105: YES), the detection unit 12 determines that the two change curves are highly synchronized. Then, if the degree of synchronization between the two change curves is high, the detection unit 12 determines that the magnetic marker 10 has been detected in the candidate section, and confirms the detection result to that effect (106).
  • the detection unit 12 measures the amount of lateral displacement of the vehicle 5 with respect to the detected magnetic marker 10 (S107). Then, the detection unit 12 outputs the detection result including the fact that the magnetic marker 10 has been detected and the amount of lateral displacement with respect to the magnetic marker 10 as the result of the marker detection process (S108).
  • the vehicle ECU 50 utilizes the detection result output by the detection unit 12 to implement driving support control such as lane keeping running.
  • FIG. 9 For example, the change curve (distribution curve) of Gv (magnetic measurement value in the vertical direction) of each magnetic sensor Cn of the sensor unit 11 becomes a curve as shown in FIG. 9, for example.
  • the peak of this change curve that is, the peak in the vehicle width direction, appears corresponding to the center position of the magnetic marker 10.
  • FIG. 9 and 10 indicate the position of the magnetic marker 10 in the vehicle width direction, more strictly the position of the center of the magnetic marker 10 .
  • the change curve (distribution curve) of the magnetic gradient in the vehicle width direction is a curve in which positive and negative peaks are adjacent to each other via the zero cross Zc, as illustrated in FIG.
  • the direction of the magnetism is reversed depending on which side of the magnetic sensor is located with respect to the center position of the magnetic marker 10, and the magnetism is a positive magnetic gradient that increases the magnetism, or a negative magnetic gradient that the magnetism decreases. This is because the Therefore, the zero cross Zc in the figure appears corresponding to the center position of the magnetic marker 10.
  • the center position of the magnetic marker 10 in the vehicle width direction can be identified based on FIG. 10 exemplifying the change curve of the magnetic gradient in the vehicle width direction. For example, if the zero cross Zc at which the polarity of the magnetic gradient in the vehicle width direction is reversed is located between any two magnetic sensors Cn, the intermediate position is the center position of the magnetic marker 10 in the vehicle width direction. Become. For example, if the magnetic gradient in the vehicle width direction is zero at the position of a certain magnetic sensor, and the positive and negative of the magnetic gradient in the vehicle width direction are reversed at the positions of the magnetic sensors on both outer sides, the central magnetic sensor is the center position of the magnetic marker 10 in the vehicle width direction.
  • the detection unit 12 measures the positional deviation of the center position of the sensor unit 11 (for example, the position of the magnetic sensor C8) from the magnetic marker 10 in the vehicle width direction as the amount of lateral deviation of the vehicle 5.
  • the position of the zero cross Zc is a position corresponding to C9.5, which is midway between C9 and C10. Since the distance between the magnetic sensors C9 and C10 is 10 cm as described above, the amount of lateral deviation of the vehicle 5 with respect to the magnetic marker 10 is (9.5-8 ) ⁇ 10 cm.
  • the first processing that focuses on the change in the traveling direction of Gt (the magnetic measurement value in the traveling direction) and the degree of synchronization between Gt and Gv (the magnetic measurement value in the vertical direction)
  • the magnetic marker 10 is detected with high certainty by a combination of the second processing of interest.
  • the candidate section to which the magnetic marker 10 is likely to belong can be set with high certainty with little omission according to the zero crossing Zc at which the positive/negative reversal of Gt occurs.
  • the second process in the candidate section set by the first process, based on the degree of synchronization between the change in the traveling direction of Gt and the change in the traveling direction of Gv, It can be determined whether or not the magnetic marker 10 has been detected by By determining whether or not the magnetic marker 10 has been detected in the candidate section by the second process, even if there is an erroneous detection by the first process, the erroneous detection can be eliminated with a high degree of certainty.
  • the degree of correlation (normalized correlation number) is obtained as the degree of synchronization between the two change curves.
  • the degree of synchronization for example, it is also possible to specify the time lag between the time point of the zero crossing Zc of the change curve in FIG. 7 and the time point of the peak time of the change curve in FIG.
  • the degree of synchronization it is also possible to specify the deviation between the frequency or period of the change curve in FIG. 7 and the frequency or period of the change curve in FIG.
  • the change curve in FIG. 7 and the change curve in FIG. (phase difference), etc. may also be specified.
  • the degree of synchronization such as time shift, frequency shift, period difference, period shift (phase difference), etc.
  • the magnetic marker 10 is placed in the candidate section by threshold processing for the amount of shift or the value of the difference. It is possible to determine whether or not the magnetic marker 10 has been finally detected by determining whether or not it belongs to.
  • This example exemplifies a magnetic sensor capable of measuring a magnetic component in the traveling direction and a magnetic component in the vertical direction.
  • the magnetic sensor may be capable of measuring magnetic components in any two directions out of the magnetic component in the traveling direction, the magnetic component in the vehicle width direction, and the magnetic component in the vertical direction.
  • the magnetic sensor in the vehicle width direction output from the magnetic marker 10 slightly displaced in the vehicle width direction. It is advisable to pay attention to the change curve in the traveling direction of the magnetic measurement value (Gh). As illustrated in FIG. 11, this change curve has a peak when positioned right beside the magnetic marker 10, and becomes a curve that gradually decreases before and after the peak.
  • the change curve illustrated in FIG. 11 has the same tendency as the change curve of the traveling direction of Gv in FIG. Therefore, in the case of the change curve of the traveling direction of Gt and the change curve of the traveling direction of Gh, it is possible to examine the degree of synchronization by a method substantially similar to the method described in this example.
  • the filled triangles in the figure indicate the position of the magnetic marker 10 in the traveling direction, more strictly the position of the center of the magnetic marker 10 .
  • the magnetic sensor that can measure the magnetic component along the traveling direction axis, the magnetic component along the vehicle width direction axis, and the magnetic component along the vertical axis.
  • the accuracy of the second process can be further improved.
  • the correlation coefficient between the change curve of the traveling direction of Gv (FIG. 5, an example of the first signal) and the change curve of the traveling direction of Gh (FIG. 11, an example of the second signal) is the degree of synchronization.
  • the degree of synchronization with at least one of the directional change curves (FIG. 11, an example of the second signal).
  • threshold processing may be performed for each of these two degrees of synchronization, and it may be determined that the magnetic marker 10 has been detected when both threshold processing results in affirmative determination.
  • the signal obtained by performing differentiation processing on the change curve of the traveling direction of Gv (FIG. 5, an example of the first signal) or the change curve of the traveling direction of Gh (FIG. 11, an example of the second signal) , Gt in the traveling direction (an example of the third signal in FIG. 6) may be obtained as the degree of synchronization.
  • the direction of magnetism detected by the magnetic sensor strictly match the traveling direction, vehicle width direction, or vertical direction.
  • the directions of magnetism detected by the magnetic sensors are orthogonal to each other. A plurality of detection directions (detection axes) by the magnetic sensor need only intersect each other.
  • a positional section in the traveling direction is exemplified as a candidate section to which the magnetic marker 10 is likely to belong.
  • temporal segments may be set as candidate segments.
  • the predetermined period may be changed according to, for example, the vehicle speed. For example, it may be a short period on expressways and a long period on general roads where the vehicle speed is low.

Abstract

Provided is a marker detection system (1) that enables a vehicle (5) comprising a magnetic sensor to detect a magnetic marker (10) disposed on a road surface (100S) which forms the surface of a travel road (100). The magnetic sensor is capable of measuring, for each of the following axes, the size of a magnetic component acting along a vertical-direction axis and a traveling-direction axis. A detection unit (12) specifies, on the basis of changes which are in the traveling direction of the vehicle (5) and which are in a magnetic measurement value along one of the axes, a candidate section in which the magnetic marker (10) is likely to be present, and determines whether the magnetic marker (10) has been detected according to a degree of synchronization of a first signal, which represents a change in the candidate section of the magnetic measurement value for one axis, and a second signal, which represents a change in the candidate section of the magnetic measurement value for the other axis.

Description

磁気マーカの検出方法及びシステムMagnetic marker detection method and system
 本発明は、車両の走路に配設された磁気マーカの検出方法及びシステムに関する。 The present invention relates to a method and system for detecting magnetic markers arranged on the track of a vehicle.
 従来より、道路に配設された磁気マーカを車両制御に利用するための車両用の磁気マーカ検出システムが知られている(例えば、特許文献1参照。)。このような磁気マーカ検出システムを用いて、例えば車線に沿って配設された磁気マーカを車両の磁気センサ等で検出できれば、自動操舵制御や車線逸脱警報や自動運転等、各種の運転支援を実現できる。 Conventionally, there has been known a magnetic marker detection system for vehicles that uses magnetic markers arranged on roads for vehicle control (see Patent Document 1, for example). Using such a magnetic marker detection system, for example, if the magnetic markers placed along the lane can be detected by the vehicle's magnetic sensor, etc., various types of driving assistance such as automatic steering control, lane departure warning, and autonomous driving can be realized. can.
特開2005-202478号公報Japanese Patent Application Laid-Open No. 2005-202478
 しかしながら、上記従来の磁気マーカ検出システムでは、次のような問題がある。すなわち、磁気センサ等に作用する様々な外乱磁気に起因し、磁気マーカの検出確実性が損なわれるおそれがあるという問題がある。例えば併走する車両やすれ違う車両なども外乱磁気の発生源となり得る。 However, the above conventional magnetic marker detection system has the following problems. That is, there is a problem that the reliability of detection of the magnetic marker may be impaired due to various disturbance magnetism acting on the magnetic sensor or the like. For example, vehicles running side by side or vehicles passing each other can also be sources of disturbance magnetism.
 本発明は、上記従来の問題点に鑑みてなされたものであり、検出確実性が高い磁気マーカの検出方法及びシステムを提供しようとするものである。 The present invention has been made in view of the conventional problems described above, and aims to provide a magnetic marker detection method and system with high detection certainty.
 本発明の一態様は、磁気センサを備える車両が走路を移動している最中に、走路の表面をなす路面に配設された磁気マーカを検出するための方法であって、
 前記磁気センサは、少なくとも2軸を含む複数の軸に沿って作用する磁気成分の大きさを、当該複数の軸毎に計測可能であり、
 前記複数の軸のうち、少なくともいずれかの軸に沿う磁気成分の大きさの車両の進行方向における変化に基づいて、前記磁気マーカが属する可能性が高い時間的あるいは空間的な区間である候補区間を特定する第1の処理と、
 前記2軸のうちの一方の軸に沿って作用する磁気成分の大きさの前記候補区間における変化を表す第1の信号と、他方の軸に沿って作用する磁気成分の大きさの前記候補区間における変化を表す第2の信号と、の同期の度合いに応じて前記候補区間において前記磁気マーカを検出したか否かを判断する第2の処理と、を含む磁気マーカの検出方法にある。
One aspect of the present invention is a method for detecting magnetic markers disposed on a road surface forming a surface of a track while a vehicle equipped with a magnetic sensor is moving on the track, comprising:
The magnetic sensor is capable of measuring magnitudes of magnetic components acting along a plurality of axes including at least two axes for each of the plurality of axes,
A candidate section, which is a temporal or spatial section to which the magnetic marker is likely to belong, based on a change in the traveling direction of the vehicle in the magnitude of the magnetic component along at least one of the plurality of axes. a first process of identifying
A first signal representing a change in the candidate interval of the magnitude of the magnetic component acting along one of the two axes and the candidate interval of the magnitude of the magnetic component acting along the other axis. and a second process of determining whether or not the magnetic marker is detected in the candidate section according to the degree of synchronization.
 本発明の一態様は、磁気センサを備える車両が、走路の表面をなす路面に配設された磁気マーカを検出するためのシステムであって、
 前記磁気センサは、少なくとも2軸を含む複数の軸に沿って作用する磁気成分の大きさを、当該複数の軸毎に計測可能であり、
 前記複数の軸のうち、少なくともいずれかの軸に沿う磁気成分の大きさの車両の進行方向における変化に基づいて、前記磁気マーカが属する可能性が高い時間的あるいは空間的な区間である候補区間を特定する第1の回路と、
 前記2軸のうちの一方の軸に沿って作用する磁気成分の大きさの前記候補区間における変化を表す第1の信号と、他方の軸に沿って作用する磁気成分の大きさの前記候補区間における変化を表す第2の信号と、の同期の度合いに応じて前記候補区間において磁気マーカを検出したか否かを判断する第2の回路と、を含むシステムにある。
One aspect of the present invention is a system for a vehicle equipped with a magnetic sensor to detect a magnetic marker disposed on a road surface forming the surface of a road,
The magnetic sensor is capable of measuring magnitudes of magnetic components acting along a plurality of axes including at least two axes for each of the plurality of axes,
A candidate section, which is a temporal or spatial section to which the magnetic marker is likely to belong, based on a change in the traveling direction of the vehicle in the magnitude of the magnetic component along at least one of the plurality of axes. a first circuit that identifies
A first signal representing a change in the candidate interval of the magnitude of the magnetic component acting along one of the two axes and the candidate interval of the magnitude of the magnetic component acting along the other axis. and a second circuit for determining whether or not the magnetic marker is detected in the candidate section according to the degree of synchronization.
 本発明は、少なくとも2軸を含む複数の軸に沿って作用する磁気成分の大きさを、軸毎に計測可能な磁気センサを備える車両を前提としている。本発明は、磁気マーカが属する可能性が高い候補区間を特定する第1の処理あるいは回路と、候補区間において磁気マーカを検出したか否かを判断する第2の処理あるいは回路と、の組合せに技術的特徴のひとつを有している。 The present invention is premised on a vehicle equipped with a magnetic sensor capable of measuring the magnitude of magnetic components acting along a plurality of axes, including at least two axes, for each axis. The present invention provides a combination of a first process or circuit for identifying a candidate section to which a magnetic marker is likely to belong, and a second process or circuit for determining whether or not the magnetic marker has been detected in the candidate section. It has one of the technical features.
 第1の処理あるいは回路は、複数の軸のうち少なくともいずれかの軸に沿う磁気成分の大きさの進行方向における変化に基づいて前記候補区間を特定する。第2の処理あるいは回路は、前記2軸のうちの一方の軸に沿って作用する磁気成分の大きさの前記候補区間における変化を表す第1の信号と、他方の軸に沿って作用する磁気成分の大きさの前記候補区間における変化を表す第2の信号と、の同期の度合いに応じて磁気マーカが検出されたか否かを判断する。 A first process or circuit identifies the candidate section based on a change in the traveling direction of the magnitude of the magnetic component along at least one of the plurality of axes. A second process or circuit generates a first signal representing a change in the candidate interval in the magnitude of a magnetic component acting along one of the two axes and a magnetic field acting along the other axis. It is determined whether or not the magnetic marker has been detected according to the degree of synchronization between the second signal representing the change in the magnitude of the component in the candidate interval.
 本発明では、まず、磁気マーカが属する可能性が高い候補区間が特定される。そして、磁気マーカが属する可能性が高い候補区間につき、第1の信号と第2の信号との同期の度合いを利用し、磁気マーカを検出したか否かが判断される。本発明によれば、このように候補区間を特定する段階と、この候補区間にて磁気マーカを検出したか否かが判断される段階と、の2段階を設けることで、磁気マーカの検出確実性の向上を図ることができる。 In the present invention, first, candidate sections to which magnetic markers are likely to belong are identified. Then, it is determined whether or not the magnetic marker has been detected for each candidate segment to which the magnetic marker is likely to belong, using the degree of synchronization between the first signal and the second signal. According to the present invention, by providing the two steps of specifying the candidate section and determining whether or not the magnetic marker is detected in the candidate section, the detection of the magnetic marker can be reliably performed. It is possible to improve the quality.
実施例1における、車両が磁気マーカを検出する様子を示す正面図。FIG. 4 is a front view showing how the vehicle detects magnetic markers in the first embodiment; 実施例1における、磁気マーカが配設された車線を走行する車両を示す上面図。FIG. 2 is a top view showing a vehicle traveling in a lane on which magnetic markers are arranged according to the first embodiment; 実施例1における、マーカ検出システムの構成図。1 is a configuration diagram of a marker detection system in Example 1. FIG. 実施例1における、マーカ検出処理の流れを示すフロー図。4 is a flowchart showing the flow of marker detection processing in the first embodiment; FIG. 実施例1における、鉛直方向の磁気計測値(Gv)の進行方向における変化を示す説明図。FIG. 4 is an explanatory diagram showing a change in the traveling direction of a magnetic measurement value (Gv) in the vertical direction in Example 1; 実施例1における、進行方向の磁気計測値(Gt)の進行方向における変化を示す説明図。FIG. 4 is an explanatory diagram showing a change in the traveling direction of the magnetic measurement value (Gt) in the traveling direction in Example 1; 実施例1における、候補区間の説明図。FIG. 4 is an explanatory diagram of candidate sections in the first embodiment; 実施例1における、Gvの時間差分値の進行方向における変化を示す説明図。FIG. 4 is an explanatory diagram showing a change in the traveling direction of the time difference value of Gv in Example 1; 実施例1における、Gvの車幅方向の変化カーブ(分布曲線)を示す説明図。FIG. 4 is an explanatory diagram showing a change curve (distribution curve) of Gv in the vehicle width direction in the first embodiment; 実施例1における、車幅方向の磁気勾配の車幅方向における変化カーブ(分布曲線)を示す説明図。FIG. 4 is an explanatory diagram showing a change curve (distribution curve) in the vehicle width direction of the magnetic gradient in the vehicle width direction in the first embodiment; 実施例1における、車幅方向の磁気計測値(Gh)の進行方向における変化を示す説明図。FIG. 5 is an explanatory diagram showing a change in the travel direction of the magnetic measurement value (Gh) in the vehicle width direction in the first embodiment;
 本発明の実施の形態につき、以下の実施例を用いて具体的に説明する。
(実施例1)
 本例は、道路に敷設された磁気マーカ10を検出するための検出方法及びシステム1に関する例である。この内容について、図1~図11を用いて説明する。
Embodiments of the present invention will be specifically described using the following examples.
(Example 1)
This example relates to a detection method and system 1 for detecting a magnetic marker 10 laid on a road. This content will be described with reference to FIGS. 1 to 11. FIG.
 本例は、磁気マーカ10を検出するためのマーカ検出システム(システムの一例)1を、車線維持走行を可能にする運転支援システム5Sに適用した例である。運転支援システム5Sは、操舵輪を操舵するための図示しないステアリングアクチュエータや、エンジン出力を調節するスロットルアクチュエータ、などを制御する車両ECU50を含んで構成されている。車両ECU50は、例えば、磁気マーカ10に対する横ずれ量をゼロに近づけるように車両5を制御し、車線維持走行を実現する。 This example is an example in which a marker detection system (an example of a system) 1 for detecting magnetic markers 10 is applied to a driving support system 5S that enables lane keeping driving. The driving support system 5S includes a vehicle ECU 50 that controls a steering actuator (not shown) for steering wheels, a throttle actuator for adjusting engine output, and the like. The vehicle ECU 50, for example, controls the vehicle 5 so that the amount of lateral deviation with respect to the magnetic marker 10 approaches zero, thereby achieving lane keeping running.
 マーカ検出システム1は、磁気センサCn(nは1~15の整数)を含むセンサユニット11と、磁気マーカ10を検出するためのマーカ検出処理を実行する検出ユニット12と、の組み合わせにより構成されている。以下、磁気マーカ10を概説した後、磁気マーカ検出システム1を構成するセンサユニット11、及び検出ユニット12を説明する。 The marker detection system 1 is configured by combining a sensor unit 11 including a magnetic sensor Cn (n is an integer from 1 to 15) and a detection unit 12 that executes marker detection processing for detecting the magnetic marker 10. there is Hereinafter, after the magnetic marker 10 is outlined, the sensor unit 11 and the detection unit 12 that constitute the magnetic marker detection system 1 will be described.
 磁気マーカ10は、車両5の走路をなす車線100の中央に沿って例えば2m毎に配設される道路用マーカである。この磁気マーカ10は、直径20mm、高さ28mmの柱状をなし、路面100Sに設けた孔への収容が可能である。磁気マーカ10は、磁性材料である酸化鉄の磁粉を基材である高分子材料中に分散させた永久磁石であるフェライトプラスチックマグネットである。なお、フェライトプラスチックマグネットそのものである磁気マーカ10の表面の全部または一部に、例えば樹脂モールド層を設けることも良い。 The magnetic markers 10 are road markers that are arranged, for example, every 2 m along the center of the lane 100 that forms the course of the vehicle 5 . This magnetic marker 10 has a columnar shape with a diameter of 20 mm and a height of 28 mm, and can be accommodated in a hole provided in the road surface 100S. The magnetic marker 10 is a ferrite plastic magnet, which is a permanent magnet in which magnetic particles of iron oxide, which is a magnetic material, are dispersed in a polymer material, which is a base material. For example, a resin mold layer may be provided on all or part of the surface of the magnetic marker 10, which is the ferrite plastic magnet itself.
 磁気マーカ10をなすフェライトプラスチックマグネットの最大エネルギー積(BHmax)は、6.4kJ/立方メートルである。そして、磁気マーカ10の端面の磁束密度は45mT(ミリテスラ)である。ここで、磁気マーカを利用する車両としては、乗用車やトラックなどの様々な車種が考えられる。磁気センサの取付高さは車種毎の地上高に依存しており、一般的には100~250mmの範囲が想定される。磁気マーカ10は、磁気センサCnの取付け高さとして想定される範囲の上限に当たる高さ250mmの位置に、8μT(8×10-6T)の磁束密度の磁気を作用できる。 The maximum energy product (BHmax) of the ferrite plastic magnet forming the magnetic marker 10 is 6.4 kJ/cubic meter. The magnetic flux density of the end surface of the magnetic marker 10 is 45 mT (millitesla). Here, various types of vehicles such as passenger cars and trucks are conceivable as vehicles using magnetic markers. The mounting height of the magnetic sensor depends on the ground clearance for each vehicle type, and is generally assumed to be in the range of 100 to 250 mm. The magnetic marker 10 can apply magnetism with a magnetic flux density of 8 μT (8×10 −6 T) to a position with a height of 250 mm, which is the upper limit of the range assumed for the mounting height of the magnetic sensor Cn.
 次に、マーカ検出システム1を構成するセンサユニット11及び検出ユニット12について説明する。 Next, the sensor unit 11 and detection unit 12 that make up the marker detection system 1 will be described.
 センサユニット11は、図1~図3のごとく、15個の磁気センサC1~C15が一直線上に配列された棒状のユニットである。15個の磁気センサC1~C15の間隔は、10cmの等間隔となっている。センサユニット1は、長手方向が車幅方向に沿う状態で、例えば車両5のフロントバンパーの内側に取り付けられる。本例の車両5の場合、路面100Sを基準としたセンサユニット11の取付け高さが200mmとなっている。センサユニット11は、15個の磁気センサCnと、図示しないCPU等を内蔵した信号処理回路110と、の組合せを含んで構成されている(図3)。 The sensor unit 11 is a bar-shaped unit in which 15 magnetic sensors C1 to C15 are arranged in a straight line, as shown in FIGS. The intervals between the fifteen magnetic sensors C1 to C15 are equal intervals of 10 cm. The sensor unit 1 is attached, for example, inside a front bumper of the vehicle 5 with its longitudinal direction extending along the vehicle width direction. In the case of the vehicle 5 of this example, the mounting height of the sensor unit 11 with respect to the road surface 100S is 200 mm. The sensor unit 11 includes a combination of 15 magnetic sensors Cn and a signal processing circuit 110 containing a CPU (not shown) and the like (FIG. 3).
 磁気センサCnは、アモルファスワイヤなどの感磁体のインピーダンスが外部磁界に応じて敏感に変化するという公知のMI効果(Magneto Impedance Effect)を利用して磁気を検出するセンサである。磁気センサCnは、アモルファスワイヤなどの感磁体に沿って作用する磁気成分を検出し、その磁気成分の大きさ(磁気計測値)を表すセンサ信号を出力する。 The magnetic sensor Cn is a sensor that detects magnetism using the well-known MI effect (Magneto Impedance Effect), in which the impedance of a magnetosensitive material such as an amorphous wire changes sensitively according to an external magnetic field. The magnetic sensor Cn detects a magnetic component acting along a magnetosensitive body such as an amorphous wire, and outputs a sensor signal representing the magnitude of the magnetic component (magnetism measurement value).
 磁気センサCnは、磁束密度の測定レンジが±0.6ミリテスラであって、測定レンジ内の磁束分解能が0.02マイクロテスラという高感度のセンサである。上記のごとく、磁気マーカ10は、磁気センサCnの取付け高さとして想定する範囲100~250mmにおいて8μT(8×10-6T)以上の磁束密度の磁気を作用できる。磁束密度8μT以上の磁気を作用する磁気マーカ10であれば、磁束分解能が0.02μTの磁気センサCnを用いて確実性高く検出可能である。 The magnetic sensor Cn is a highly sensitive sensor with a magnetic flux density measurement range of ±0.6 millitesla and a magnetic flux resolution of 0.02 microtesla within the measurement range. As described above, the magnetic marker 10 can apply magnetism with a magnetic flux density of 8 μT (8×10 −6 T) or more in the range of 100 to 250 mm assumed as the mounting height of the magnetic sensor Cn. A magnetic marker 10 that exerts magnetism with a magnetic flux density of 8 μT or more can be reliably detected using a magnetic sensor Cn with a magnetic flux resolution of 0.02 μT.
 なお、本例の磁気センサCnは、互いに直交する2軸の方向に作用する磁気成分を検知できるよう、互いに直交する一対の感磁体を有している。各磁気センサCnは、一対の感磁体の方向が同じになるようにセンサユニット11に組み込まれている。センサユニット11は、進行方向の軸(一方の軸)に沿って作用する磁気成分、及び鉛直方向の軸(他方の軸、進行方向に対して直交する軸)に沿って作用する磁気成分、を各磁気センサCnが検出できるよう、車両5に取り付けられている。 It should be noted that the magnetic sensor Cn of this example has a pair of magnetosensitive bodies that are perpendicular to each other so as to detect magnetic components acting in directions of two axes that are perpendicular to each other. Each magnetic sensor Cn is incorporated in the sensor unit 11 so that the directions of the pair of magnetosensitive bodies are the same. The sensor unit 11 detects a magnetic component acting along an axis in the direction of travel (one axis) and a magnetic component acting along an axis in the vertical direction (the other axis, an axis perpendicular to the direction of travel). Each magnetic sensor Cn is attached to the vehicle 5 so that it can be detected.
 信号処理回路110(図3)は、各磁気センサCnのセンサ信号に対して、ノイズ除去や増幅などの信号処理を施す回路である。信号処理回路110は、車両5が所定量(例えば5cm)進む毎に各磁気センサCnのセンサ信号を取り込み、対応する磁気計測値を生成して検出ユニット12に入力する。なお、信号処理回路110は、上記のごとく、鉛直方向の軸に沿って作用する磁気成分の大きさを表す磁気計測値(Gv)、及び進行方向の軸に沿って作用する磁気成分の大きさを表す磁気計測値(Gt)、を生成する。以下の説明では、適宜、磁気センサの磁気計測値と記載する。 The signal processing circuit 110 (FIG. 3) is a circuit that performs signal processing such as noise removal and amplification on the sensor signal of each magnetic sensor Cn. The signal processing circuit 110 takes in the sensor signal of each magnetic sensor Cn every time the vehicle 5 travels a predetermined amount (for example, 5 cm), generates a corresponding magnetic measurement value, and inputs it to the detection unit 12 . As described above, the signal processing circuit 110 outputs the magnetic measurement value (Gv) representing the magnitude of the magnetic component acting along the vertical axis and the magnitude of the magnetic component acting along the traveling direction axis. A magnetic measurement (Gt), which represents In the following description, it is appropriately described as a magnetic measurement value of the magnetic sensor.
 検出ユニット12は、センサユニット11を制御し、磁気マーカ10を検出するための演算処理であるマーカ検出処理を実行する回路である。検出ユニット12は、各種の演算を実行するCPU(central processing unit)、ROM(read only memory)やRAM(random access memory)などのメモリ素子など、が実装された回路基板を有している。 The detection unit 12 is a circuit that controls the sensor unit 11 and executes marker detection processing, which is arithmetic processing for detecting the magnetic marker 10 . The detection unit 12 has a circuit board on which a CPU (central processing unit) that executes various calculations, memory elements such as ROM (read only memory) and RAM (random access memory), and the like are mounted.
 RAMの記憶領域には、各磁気センサCnの時系列の磁気計測値を記憶するためのワークエリアが形成されている。検出ユニット12は、このワークエリアを利用して、車両5の移動履歴に当たる過去の所定距離(例えば10m)に亘る時系列の磁気計測値を記憶している。 A work area for storing time-series magnetic measurement values of each magnetic sensor Cn is formed in the storage area of the RAM. The detection unit 12 uses this work area to store time-series magnetic measurement values over a past predetermined distance (for example, 10 m) corresponding to the movement history of the vehicle 5 .
 検出ユニット12には、車両5が備える車速センサの信号線が接続されている。車速センサは、車輪が所定量回転する毎にパルス信号を出力するセンサである。所定量としては、例えば、1度、10度、30度などの所定の角度や、1cm、5cm、10cmなどの所定の距離等がある。本例の検出ユニット12は、車両5が5cm進む毎に磁気計測値(Gv、Gt)を出力するよう、センサユニット11を制御する。 A signal line of a vehicle speed sensor provided in the vehicle 5 is connected to the detection unit 12 . A vehicle speed sensor is a sensor that outputs a pulse signal each time a wheel rotates by a predetermined amount. The predetermined amount includes, for example, predetermined angles such as 1 degree, 10 degrees, and 30 degrees, and predetermined distances such as 1 cm, 5 cm, and 10 cm. The detection unit 12 of this example controls the sensor unit 11 so as to output magnetic measurement values (Gv, Gt) each time the vehicle 5 travels 5 cm.
 検出ユニット12は、上記のRAMのワークエリアにて記憶された各磁気センサCnによる磁気計測値(Gt、Gv)を読み出して、マーカ検出処理等を実行する。検出ユニット12によるマーカ検出処理の結果には、磁気マーカ10を検出した旨のほか、検出された磁気マーカ10に対する横ずれ量が含まれている。検出ユニット12は、車両5が5cm進む毎(移動する毎)にマーカ検出処理を実行し、マーカ検出処理の検出結果を車両ECU50に入力する。上記のごとく、検出ユニット12による検出結果は、車線維持のための自動操舵制御や車線逸脱警報や自動運転など、車両5側の各種の制御に利用される。なお、本例では、車両5が5cm進む毎にマーカ検出処理を1回ずつ実行する構成を例示するが、例えば3kHzの周波数でマーカ検出処理を繰り返し実行することも良い。 The detection unit 12 reads the magnetic measurement values (Gt, Gv) from each magnetic sensor Cn stored in the work area of the RAM, and executes marker detection processing and the like. The result of the marker detection processing by the detection unit 12 includes the fact that the magnetic marker 10 has been detected and the amount of lateral deviation with respect to the detected magnetic marker 10 . The detection unit 12 executes a marker detection process every time the vehicle 5 advances (every time it moves) by 5 cm, and inputs the detection result of the marker detection process to the vehicle ECU 50 . As described above, the detection result by the detection unit 12 is used for various controls on the vehicle 5 side, such as automatic steering control for lane keeping, lane departure warning, and automatic driving. In this example, the marker detection process is executed once each time the vehicle 5 moves 5 cm, but the marker detection process may be repeatedly executed at a frequency of 3 kHz, for example.
 検出ユニット12は、以下の各回路(手段)としての機能を備えている。
(a)第1の回路:進行方向の磁気計測値(Gt)の車両5の進行方向における変化に基づいて、磁気マーカ10が属する可能性が高い候補区間を特定する(第1の処理)。なお、候補区間は、2つの時点に挟まれた時間的な区間であっても良く、2つの地点間の空間的な区間であっても良い。
(b)第2の回路:候補区間において磁気マーカ10が検出されたか否かを判断する(第2の処理)。第2の回路は、候補区間における鉛直方向の磁気計測値(Gv)の変化を表す第1の信号と、候補区間における進行方向の磁気計測値(Gt)の変化を表す第2の信号と、の同期の度合いに応じて上記の判断を実行する。
The detection unit 12 has functions as the following circuits (means).
(a) First circuit: A candidate section to which the magnetic marker 10 is likely to belong is identified based on the change in the direction of travel of the vehicle 5 in the magnetic measurement value (Gt) in the direction of travel (first processing). The candidate section may be a temporal section sandwiched between two time points, or a spatial section between two points.
(b) Second circuit: Determines whether or not the magnetic marker 10 is detected in the candidate section (second processing). The second circuit provides a first signal representing a change in the vertical magnetic measurement (Gv) in the candidate section, a second signal representing a change in the traveling direction magnetic measurement (Gt) in the candidate section, and The above judgment is executed according to the degree of synchronization between the
 上記のように構成されたマーカ検出システム1の動作について、図4のマーカ検出処理のフロー図を参照して説明する。このマーカ検出処理は、車両5が5cm進む毎にマーカ検出システム1が実行する処理である。以下、検出ユニット12の動作を主体としてマーカ検出処理の内容を説明する。 The operation of the marker detection system 1 configured as described above will be described with reference to the flowchart of marker detection processing in FIG. This marker detection process is a process executed by the marker detection system 1 each time the vehicle 5 advances by 5 cm. The contents of the marker detection process will be described below, mainly focusing on the operation of the detection unit 12 .
 検出ユニット12は、車両5が5cm進む毎に、センサユニット11の各磁気センサCnの磁気計測値を取り込む。なお、検出ユニット12は、車速センサから入力されたパルス信号を処理することで、車両5が5cm進んだことを検知する。検出ユニット12は、各磁気センサCnの磁気計測値として、進行方向の磁気成分の大きさを表す磁気計測値(進行方向の磁気計測値、Gt)と、鉛直方向の磁気成分の大きさを表す磁気計測値(鉛直方向の磁気計測値、Gv)と、を取り込む(S101)。検出ユニット12は、センサユニット11から取り込んだ各磁気センサCnの磁気計測値(Gt、Gv)をワークエリア(RAMの記憶領域)に随時、書き込む。このとき、最新の磁気計測値(Gt、Gv)が新たに記憶される一方、最古の磁気計測値(Gt、Gv)が消去される。これにより、各磁気センサCnについて、過去の10m分の時系列の磁気計測値(Gt、Gv)がワークエリアにて記憶され保持される。 The detection unit 12 takes in the magnetic measurement value of each magnetic sensor Cn of the sensor unit 11 every time the vehicle 5 advances 5 cm. The detection unit 12 detects that the vehicle 5 has advanced 5 cm by processing the pulse signal input from the vehicle speed sensor. The detection unit 12 uses, as the magnetic measurement value of each magnetic sensor Cn, a magnetic measurement value representing the magnitude of the magnetic component in the traveling direction (magnetic measurement value in the traveling direction, Gt) and the magnitude of the magnetic component in the vertical direction. A magnetic measurement value (magnetic measurement value in the vertical direction, Gv) is taken in (S101). The detection unit 12 writes the magnetic measurement values (Gt, Gv) of each magnetic sensor Cn fetched from the sensor unit 11 to the work area (RAM storage area) at any time. At this time, the latest magnetic measurement values (Gt, Gv) are newly stored, while the oldest magnetic measurement values (Gt, Gv) are erased. As a result, time-series magnetic measurement values (Gt, Gv) for the past 10 m are stored and held in the work area for each magnetic sensor Cn.
 車両5が磁気マーカ10を通過する際の進行方向において、Gv(鉛直方向の磁気計測値)は図5に例示するように変化する。Gvは、磁気マーカ10に接近するに連れて次第に大きくなり、磁気センサが磁気マーカ10の真上に位置するときにピークとなる。そして、磁気マーカ10から離れるに連れて次第に小さくなる。Gvの進行方向の変化カーブは、正規分布曲線のようになる。なお、同図は、磁気マーカ10のN極が上方に向かっている場合の例示である。同図中の塗り潰しの三角形は、進行方向における磁気マーカ10の位置、より厳密には磁気マーカ10の中心の位置を示している。 In the traveling direction when the vehicle 5 passes the magnetic marker 10, Gv (magnetic measurement value in the vertical direction) changes as illustrated in FIG. Gv gradually increases as the magnetic marker 10 is approached, and reaches a peak when the magnetic sensor is positioned directly above the magnetic marker 10 . Then, it gradually becomes smaller as the distance from the magnetic marker 10 increases. The change curve of Gv in the traveling direction becomes like a normal distribution curve. In addition, the same drawing is an example in which the N pole of the magnetic marker 10 faces upward. The filled triangles in the figure indicate the position of the magnetic marker 10 in the traveling direction, more strictly the position of the center of the magnetic marker 10 .
 また、車両5が磁気マーカ10を通過する際の進行方向において、Gt(進行方向の磁気計測値)は図6に例示するように変化する。Gtは、磁気マーカ10に接近するに連れて次第に大きくなり、磁気マーカ10の手前の位置で正側のピークとなる。さらに磁気マーカ10に近づくと、Gtが次第に小さくなり、磁気マーカ10の真上に磁気センサが位置するときにゼロとなる。これは、進行方向の磁気成分の向きが磁気マーカ10のどちら側かで反転するためである。そして、磁気マーカ10から離れるにつれてGt(絶対値)が負側に次第に大きくなり、ピークを迎える。さらに、磁気マーカ10から離れると、Gt(絶対値)は次第に小さくなりゼロに近づく。Gtの進行方向の変化カーブは、図6のように、正負の2つの山が磁気マーカ10を挟んで隣り合うような曲線となる。Gtの変化カーブは、磁気マーカ10の真上で、急な傾きでゼロを交差するゼロクロスZcを生じている。 In addition, in the traveling direction when the vehicle 5 passes the magnetic marker 10, Gt (magnetism measurement value in the traveling direction) changes as illustrated in FIG. Gt gradually increases as it approaches the magnetic marker 10 and reaches a positive peak at a position before the magnetic marker 10 . As the magnetic marker 10 is further approached, Gt gradually decreases and becomes zero when the magnetic sensor is positioned right above the magnetic marker 10 . This is because the orientation of the magnetic component in the direction of travel is reversed on either side of the magnetic marker 10 . As the distance from the magnetic marker 10 increases, Gt (absolute value) gradually increases on the negative side and reaches a peak. Further, when the distance from the magnetic marker 10 increases, Gt (absolute value) gradually decreases and approaches zero. A change curve in the traveling direction of Gt is a curve in which two positive and negative peaks are adjacent to each other with the magnetic marker 10 interposed therebetween, as shown in FIG. The change curve of Gt produces a zero crossing Zc that crosses zero with a steep slope just above the magnetic marker 10 .
 検出ユニット12は、まず、上記のRAMのワークエリアを参照し、各磁気センサCnのGtの時系列のデータ(図6)を読み出す。図6を参照して説明した通り、車両5の走行中にセンサユニット11が磁気マーカ10の真上に到達すると、磁気マーカ10の上に位置する磁気センサによるGtの変化カーブについて、その正負が反転するゼロクロスZcが生じる。検出ユニット12は、各磁気センサCnによるGtの変化カーブについて、ゼロクロスZcの検出を試みる(S102)。同図中の塗り潰しの三角形は、進行方向における磁気マーカ10の位置、より厳密には磁気マーカ10の中心の位置を示している。 The detection unit 12 first refers to the work area of the RAM and reads the time series data of Gt of each magnetic sensor Cn (Fig. 6). As described with reference to FIG. 6, when the sensor unit 11 reaches right above the magnetic marker 10 while the vehicle 5 is running, the positive and negative of the change curve of Gt by the magnetic sensor positioned above the magnetic marker 10 are A reversing zero cross Zc occurs. The detection unit 12 attempts to detect a zero cross Zc on the change curve of Gt by each magnetic sensor Cn (S102). The filled triangles in the figure indicate the position of the magnetic marker 10 in the traveling direction, more strictly the position of the center of the magnetic marker 10 .
 検出ユニット12は、ゼロクロスZcを検出できたとき(S102:YES)、ゼロクロスZcに対応する進行方向の位置を基準とした所定の区間を、磁気マーカ10が属する可能性が高い候補区間として設定する(S103)。本例では、図7のごとく、ゼロクロスZcの位置を中央として、その前後1mに亘る区間を、候補区間として設定している。 When the detection unit 12 can detect the zero cross Zc (S102: YES), the detection unit 12 sets a predetermined section based on the position in the traveling direction corresponding to the zero cross Zc as a candidate section to which the magnetic marker 10 is highly likely to belong. (S103). In this example, as shown in FIG. 7, a section extending 1 m before and after the position of the zero cross Zc is set as the candidate section.
 続いて検出ユニット12は、上記のRAMのワークエリアを参照し、候補区間におけるGv(鉛直方向の磁気計測値)を読み出す。そして、候補区間におけるGvの時系列データについて、時間的に隣り合うデータの差分を求める。この時間差分は、図5のGvの時間微分(微分処理の一例)に相当している。この時間差分によれば、図5のGvの変化カーブが、図8に例示する変化カーブに変換される。同図中の塗り潰しの三角形は、進行方向における磁気マーカ10の位置、より厳密には磁気マーカ10の中心の位置を示している。 Subsequently, the detection unit 12 refers to the work area of the RAM and reads out Gv (magnetic measurement value in the vertical direction) in the candidate section. Then, for the time-series data of Gv in the candidate section, the difference between temporally adjacent data is obtained. This time difference corresponds to the time differentiation of Gv in FIG. 5 (an example of differentiation processing). According to this time difference, the change curve of Gv in FIG. 5 is converted into the change curve illustrated in FIG. The filled triangles in the figure indicate the position of the magnetic marker 10 in the traveling direction, more strictly the position of the center of the magnetic marker 10 .
 図8のGvの時間差分値の変化カーブは、図6に例示するGt(進行方向の磁気計測値)の変化カーブと同じ傾向を呈する。図8のGvの時間差分値は、図6の変化カーブと同様、磁気マーカ10の中心位置に接近するに連れて次第に大きくなり、磁気マーカ10の中心位置の手前で正側のピークとなる。さらに磁気マーカ10の中心位置に近づくと、鉛直方向の磁気計測値の時間差分は次第に小さくなり、磁気マーカ10の真上に磁気センサが位置するときにゼロとなる。そして、磁気マーカ10の中心位置から離れるにつれてGv(絶対値)が負側に次第に大きくなり、ピークを迎える。さらに、磁気マーカ10から離れると、Gvの時間差分値(絶対値)は次第に小さくなりゼロに近づく。Gvの時間差分値の変化カーブ(図8)は、図6と同様、正負の2つの山が磁気マーカ10の中心を挟んで隣り合うような曲線となる。また、Gvの時間差分値の変化カーブは、磁気マーカ10の真上で、急な傾きでゼロを交差するゼロクロスZcを生じている。 The change curve of the time difference value of Gv in FIG. 8 exhibits the same tendency as the change curve of Gt (the magnetic measurement value in the traveling direction) illustrated in FIG. The time difference value of Gv in FIG. 8 gradually increases as the center position of the magnetic marker 10 is approached, similarly to the change curve in FIG. As the center position of the magnetic marker 10 is further approached, the time difference between the magnetic measurement values in the vertical direction gradually decreases, and becomes zero when the magnetic sensor is positioned right above the magnetic marker 10 . As the distance from the center position of the magnetic marker 10 increases, Gv (absolute value) gradually increases toward the negative side and reaches a peak. Further, the time difference value (absolute value) of Gv gradually decreases and approaches zero as the distance from the magnetic marker 10 increases. The change curve of the time difference value of Gv (FIG. 8) is a curve in which two positive and negative peaks are adjacent to each other with the center of the magnetic marker 10 interposed therebetween, as in FIG. Also, the change curve of the time difference value of Gv has a zero crossing Zc that crosses zero with a steep slope just above the magnetic marker 10 .
 検出ユニット12は、上記のステップS103で設定された候補区間におけるGtの変化カーブ(第1の信号、図7)と、同候補区間におけるGvの時間差分値の変化カーブ(第2の信号、図8)と、の相関の度合い(同期の度合いの一例)を表す相関係数を演算により求める(S104)。なお、相関係数を演算するに当たっては、対象の2つの変化カーブの振幅を1とする正規化処理を、予め施しておくと良い。2つの変化カーブに正規化処理を施せば、完全一致のときに相関係数が1となる、正規化相関係数を求めることができる。相関係数は、上記の第1の信号と第2の信号との同期の度合いを数値化した数値の一例である。 The detection unit 12 detects the change curve of Gt (first signal, FIG. 7) in the candidate section set in step S103 above and the change curve of the time difference value of Gv (second signal, FIG. 7) in the same candidate section. 8) A correlation coefficient representing the degree of correlation (an example of the degree of synchronization) between and is calculated (S104). In calculating the correlation coefficient, it is preferable to carry out a normalization process in which the amplitude of the two target change curves is set to 1 in advance. By normalizing the two change curves, it is possible to obtain a normalized correlation coefficient that has a correlation coefficient of 1 when there is a perfect match. A correlation coefficient is an example of a numerical value representing the degree of synchronization between the first signal and the second signal.
 検出ユニット12は、ステップS104で求めた相関係数(正規化相関係数)に閾値処理を施し、Gtの変化カーブと、Gvの時間差分値の変化カーブと、の同期の度合いを判断する。具体的には、検出ユニット12は、上記の正規化相関係数が、0.8以上であるとき(S105:YES)、上記の2つの変化カーブの同期の度合いが高いと判断する。そして、検出ユニット12は、2つの変化カーブの同期の度合いが高ければ、候補区間において磁気マーカ10を検出できたと判断し、その旨の検出結果を確定させる(106)。 The detection unit 12 performs threshold processing on the correlation coefficient (normalized correlation coefficient) obtained in step S104, and determines the degree of synchronization between the change curve of Gt and the change curve of the time difference value of Gv. Specifically, when the normalized correlation coefficient is 0.8 or more (S105: YES), the detection unit 12 determines that the two change curves are highly synchronized. Then, if the degree of synchronization between the two change curves is high, the detection unit 12 determines that the magnetic marker 10 has been detected in the candidate section, and confirms the detection result to that effect (106).
 検出ユニット12は、磁気マーカ10の検出が確定すると、その検出された磁気マーカ10に対する車両5の横ずれ量を計測する(S107)。そして、検出ユニット12は、磁気マーカ10が検出された旨、及びその磁気マーカ10に対する横ずれ量を含む検出結果を、マーカ検出処理の結果として出力する(S108)。なお、車両ECU50は、検出ユニット12が出力する検出結果を利用して、車線維持走行等の運転支援制御を実現する。 When the detection of the magnetic marker 10 is confirmed, the detection unit 12 measures the amount of lateral displacement of the vehicle 5 with respect to the detected magnetic marker 10 (S107). Then, the detection unit 12 outputs the detection result including the fact that the magnetic marker 10 has been detected and the amount of lateral displacement with respect to the magnetic marker 10 as the result of the marker detection process (S108). The vehicle ECU 50 utilizes the detection result output by the detection unit 12 to implement driving support control such as lane keeping running.
 ここで、検出ユニット12が車両5の横ずれ量を計測する方法について図9及び図10を参照して説明する。例えば、センサユニット11の各磁気センサCnのGv(鉛直方向の磁気計測値)の変化カーブ(分布曲線)は、例えば、図9に示すようにひと山のカーブとなる。この変化カーブのピーク、すなわち車幅方向におけるピークは、磁気マーカ10の中心位置に対応して現れる。図9及び図10中の塗り潰しの三角形は、車幅方向における磁気マーカ10の位置、より厳密には磁気マーカ10の中心の位置を示している。 Here, a method for measuring the amount of lateral deviation of the vehicle 5 by the detection unit 12 will be described with reference to FIGS. 9 and 10. FIG. For example, the change curve (distribution curve) of Gv (magnetic measurement value in the vertical direction) of each magnetic sensor Cn of the sensor unit 11 becomes a curve as shown in FIG. 9, for example. The peak of this change curve, that is, the peak in the vehicle width direction, appears corresponding to the center position of the magnetic marker 10. FIG. The filled triangles in FIGS. 9 and 10 indicate the position of the magnetic marker 10 in the vehicle width direction, more strictly the position of the center of the magnetic marker 10 .
 本例では、センサユニット11の各磁気センサCnのGvについて、隣り合う2つの磁気センサによる磁気計測値の差分、すなわち車幅方向の磁気勾配を求めている。車幅方向の磁気勾配の変化カーブ(分布曲線)は、図10に例示するように、ゼロクロスZcを介して正負の山が隣り合うような曲線となる。車幅方向において、磁気マーカ10の中心位置に対してどちら側の磁気センサであるかに応じて磁気の向きが反転し、磁気が増える正の磁気勾配か、磁気が減る負の磁気勾配か、が入れ替わるからである。したがって、同図中のゼロクロスZcは、磁気マーカ10の中心位置に対応して現れる。 In this example, for Gv of each magnetic sensor Cn of the sensor unit 11, the difference between the magnetic measurement values of two adjacent magnetic sensors, that is, the magnetic gradient in the vehicle width direction is obtained. The change curve (distribution curve) of the magnetic gradient in the vehicle width direction is a curve in which positive and negative peaks are adjacent to each other via the zero cross Zc, as illustrated in FIG. In the vehicle width direction, the direction of the magnetism is reversed depending on which side of the magnetic sensor is located with respect to the center position of the magnetic marker 10, and the magnetism is a positive magnetic gradient that increases the magnetism, or a negative magnetic gradient that the magnetism decreases. This is because the Therefore, the zero cross Zc in the figure appears corresponding to the center position of the magnetic marker 10. FIG.
 車幅方向の磁気勾配の変化カーブを例示する図10に基づけば、車幅方向における磁気マーカ10の中心位置を特定可能である。例えば、車幅方向の磁気勾配の正負が反転するゼロクロスZcが、いずれか2つの磁気センサCnの中間に位置していれば、その中間の位置が、車幅方向における磁気マーカ10の中心位置となる。例えば、ある磁気センサの位置における車幅方向の磁気勾配がゼロであって、かつ、その両外側の磁気センサの位置における車幅方向の磁気勾配の正負が反転している場合、中央の磁気センサの直下の位置が、車幅方向における磁気マーカ10の中心位置となる。 The center position of the magnetic marker 10 in the vehicle width direction can be identified based on FIG. 10 exemplifying the change curve of the magnetic gradient in the vehicle width direction. For example, if the zero cross Zc at which the polarity of the magnetic gradient in the vehicle width direction is reversed is located between any two magnetic sensors Cn, the intermediate position is the center position of the magnetic marker 10 in the vehicle width direction. Become. For example, if the magnetic gradient in the vehicle width direction is zero at the position of a certain magnetic sensor, and the positive and negative of the magnetic gradient in the vehicle width direction are reversed at the positions of the magnetic sensors on both outer sides, the central magnetic sensor is the center position of the magnetic marker 10 in the vehicle width direction.
 検出ユニット12は、センサユニット11の中央位置(例えば磁気センサC8の位置)の磁気マーカ10に対する車幅方向の位置的な偏差を、車両5の横ずれ量として計測する。例えば、図10の場合であれば、ゼロクロスZcの位置がC9とC10との中間辺りのC9.5に相当する位置となっている。上記のように磁気センサC9とC10の間隔は10cmであるから、磁気マーカ10に対する車両5の横ずれ量は、車幅方向においてセンサユニット11の中央に位置するC8を基準として(9.5-8)×10cmとなる。 The detection unit 12 measures the positional deviation of the center position of the sensor unit 11 (for example, the position of the magnetic sensor C8) from the magnetic marker 10 in the vehicle width direction as the amount of lateral deviation of the vehicle 5. For example, in the case of FIG. 10, the position of the zero cross Zc is a position corresponding to C9.5, which is midway between C9 and C10. Since the distance between the magnetic sensors C9 and C10 is 10 cm as described above, the amount of lateral deviation of the vehicle 5 with respect to the magnetic marker 10 is (9.5-8 )×10 cm.
 以上のように本例のシステム1では、Gt(進行方向の磁気計測値)の進行方向の変化に着目する第1の処理と、GtとGv(鉛直方向の磁気計測値)の同期の度合いに着目する第2の処理と、の組合せによって磁気マーカ10を確実性高く検出している。第1の処理によれば、Gtの正負反転が生じるゼロクロスZcに応じて、磁気マーカ10が属する可能性が高い候補区間を、漏れ少なく確実性高く設定できる。 As described above, in the system 1 of the present example, the first processing that focuses on the change in the traveling direction of Gt (the magnetic measurement value in the traveling direction) and the degree of synchronization between Gt and Gv (the magnetic measurement value in the vertical direction) The magnetic marker 10 is detected with high certainty by a combination of the second processing of interest. According to the first process, the candidate section to which the magnetic marker 10 is likely to belong can be set with high certainty with little omission according to the zero crossing Zc at which the positive/negative reversal of Gt occurs.
 さらに、第2の処理によれば、前記第1の処理によって設定された候補区間において、Gtの進行方向の変化と、Gvの進行方向の変化と、の同期の度合いに基づいて、候補区間にて磁気マーカ10を検出できたか否かを判断できる。第2の処理によって候補区間にて磁気マーカ10が検出できたか否かを判断すれば、上記の第1の処理によって誤検出があっても、確実性高くこの誤検出を排除できる。 Furthermore, according to the second process, in the candidate section set by the first process, based on the degree of synchronization between the change in the traveling direction of Gt and the change in the traveling direction of Gv, It can be determined whether or not the magnetic marker 10 has been detected by By determining whether or not the magnetic marker 10 has been detected in the candidate section by the second process, even if there is an erroneous detection by the first process, the erroneous detection can be eliminated with a high degree of certainty.
 なお、本例における第2の処理では、Gtの進行方向の変化カーブ(図7)と、Gvの時間差分値の進行方向の変化カーブ(図8)と、の相関の度合い(正規化相関係数)を、2つの変化カーブの同期の度合いとして求めている。これに代えて、Gtの進行方向の変化カーブ(図7)と、Gvの進行方向の変化カーブ(図5)と、の同期の度合いを求めて磁気マーカ10を検出することも良い。同期の度合いとして、例えば、図7の変化カーブのゼロクロスZcの時点と、図5の変化カーブのピークの時点と、の時間的なずれを特定することも良い。同期の度合いとして、図7の変化カーブの周波数あるいは周期と、図5の変化カーブの周波数あるいは周期と、のずれを特定することも良い。なお、同期の度合いとして変化カーブの周波数あるいは周期のずれを求める場合、図7の変化カーブと図8の変化カーブとで、時点のずれや、周波数のずれや、周期の差や、周期のずれ(位相差)、などを特定することも良い。時点のずれや、周波数のずれや、周期の差や、周期のずれ(位相差)、などを同期の度合いとして求める場合、例えば、ずれ量や差の値に関する閾値処理によって候補区間に磁気マーカ10が属するか否かの判断により、最終的に磁気マーカ10を検出できたか否かの判断が可能である。 In the second process of this example, the degree of correlation (normalized correlation number) is obtained as the degree of synchronization between the two change curves. Instead of this, it is also possible to detect the magnetic marker 10 by obtaining the degree of synchronization between the curve of change in the direction of travel of Gt (FIG. 7) and the curve of change in the direction of travel of Gv (FIG. 5). As the degree of synchronization, for example, it is also possible to specify the time lag between the time point of the zero crossing Zc of the change curve in FIG. 7 and the time point of the peak time of the change curve in FIG. As the degree of synchronization, it is also possible to specify the deviation between the frequency or period of the change curve in FIG. 7 and the frequency or period of the change curve in FIG. When obtaining the frequency or period shift of the change curve as the degree of synchronization, the change curve in FIG. 7 and the change curve in FIG. (phase difference), etc. may also be specified. When obtaining the degree of synchronization such as time shift, frequency shift, period difference, period shift (phase difference), etc., for example, the magnetic marker 10 is placed in the candidate section by threshold processing for the amount of shift or the value of the difference. It is possible to determine whether or not the magnetic marker 10 has been finally detected by determining whether or not it belongs to.
 本例では、進行方向の磁気成分と、鉛直方向の磁気成分と、を計測可能な磁気センサを例示している。進行方向の磁気成分、車幅方向の磁気成分、及び鉛直方向の磁気成分のうち、いずれか2つの方向の磁気成分を計測可能な磁気センサであっても良い。例えば、車幅方向の磁気成分と、進行方向の磁気成分と、を計測可能な磁気センサを採用した場合、磁気マーカ10から車幅方向に若干ずれて位置する磁気センサが出力する車幅方向の磁気計測値(Gh)の進行方向における変化カーブに着目すると良い。この変化カーブは、図11に例示するように、磁気マーカ10の真横に位置するときにピークとなり、その前後において次第に小さくなるひと山の曲線となる。図11に例示の変化カーブは、図5のGvの進行方向の変化カーブと同様の傾向のものである。したがって、Gtの進行方向の変化カーブと、Ghの進行方向の変化カーブと、の場合であれば、本例で説明した方法とほぼ同様の方法により、同期の度合いを調べることが可能である。同図中の塗り潰しの三角形は、進行方向における磁気マーカ10の位置、より厳密には磁気マーカ10の中心の位置を示している。 This example exemplifies a magnetic sensor capable of measuring a magnetic component in the traveling direction and a magnetic component in the vertical direction. The magnetic sensor may be capable of measuring magnetic components in any two directions out of the magnetic component in the traveling direction, the magnetic component in the vehicle width direction, and the magnetic component in the vertical direction. For example, when a magnetic sensor capable of measuring the magnetic component in the vehicle width direction and the magnetic component in the traveling direction is employed, the magnetic sensor in the vehicle width direction output from the magnetic marker 10 slightly displaced in the vehicle width direction. It is advisable to pay attention to the change curve in the traveling direction of the magnetic measurement value (Gh). As illustrated in FIG. 11, this change curve has a peak when positioned right beside the magnetic marker 10, and becomes a curve that gradually decreases before and after the peak. The change curve illustrated in FIG. 11 has the same tendency as the change curve of the traveling direction of Gv in FIG. Therefore, in the case of the change curve of the traveling direction of Gt and the change curve of the traveling direction of Gh, it is possible to examine the degree of synchronization by a method substantially similar to the method described in this example. The filled triangles in the figure indicate the position of the magnetic marker 10 in the traveling direction, more strictly the position of the center of the magnetic marker 10 .
 また、進行方向に直交する軸である鉛直方向の軸及び車幅方向の軸に沿う磁気成分を計測することも良い。例えば、Gvの進行方向の変化カーブ(図5)と、Ghの進行方向の変化カーブ(図11)と、の場合、いずれも、磁気マーカ10を通過する時点でピークとなるひと山のカーブとなる。これらの変化カーブの組合せであれば、そのまま、相関計数を調べることが可能である。なお、第1の処理において、候補区間を設定する際には、Gvの時間差分(図8)、あるいはGhの時間差分を求め、ゼロクロスを検出することも良い。 In addition, it is also possible to measure the magnetic components along the vertical axis, which is the axis perpendicular to the traveling direction, and the vehicle width direction axis. For example, in the case of the change curve of the traveling direction of Gv ( FIG. 5 ) and the change curve of the traveling direction of Gh ( FIG. 11 ), both curves become peaks at the time of passing the magnetic marker 10 . . If it is a combination of these change curves, it is possible to examine the correlation coefficient as it is. In setting the candidate section in the first process, it is also possible to obtain the time difference of Gv (FIG. 8) or the time difference of Gh and detect the zero crossing.
 さらに、進行方向の軸に沿う磁気成分、車幅方向の軸に沿う磁気成分、及び鉛直方向の軸に沿う磁気成分を計測可能な磁気センサを採用することも良い。この場合には、3方向の磁気成分の計測値について同期の度合いを調べることで、上記の第2の処理による精度を一層向上できる。例えば、Gvの進行方向の変化カーブ(図5、第1の信号の一例)と、Ghの進行方向の変化カーブ(図11、第2の信号の一例)と、の相関係数を同期の度合いとして取得するのに加えて、Gtの進行方向の変化カーブ(図6、第3の信号の一例)と、Gvの進行方向の変化カーブ(図5、第1の信号の一例)およびGhの進行方向の変化カーブ(図11、第2の信号の一例)のうちの少なくともいずれかと、の同期の度合いを取得することも良い。そして、これらの2つの同期の度合いについて、それぞれ、閾値処理を実行し、双方の閾値処理で肯定的な判断ができたときに、磁気マーカ10を検出できたと判断しても良い。このとき、Gvの進行方向の変化カーブ(図5、第1の信号の一例)あるいはGhの進行方向の変化カーブ(図11、第2の信号の一例)について微分処理を施して得られる信号について、Gtの進行方向の変化カーブ(図6、第3の信号の一例)との相関係数を、同期の度合いとして求めることも良い。 Furthermore, it is also possible to adopt a magnetic sensor that can measure the magnetic component along the traveling direction axis, the magnetic component along the vehicle width direction axis, and the magnetic component along the vertical axis. In this case, by examining the degree of synchronization of the measured values of the magnetic components in the three directions, the accuracy of the second process can be further improved. For example, the correlation coefficient between the change curve of the traveling direction of Gv (FIG. 5, an example of the first signal) and the change curve of the traveling direction of Gh (FIG. 11, an example of the second signal) is the degree of synchronization. In addition to obtaining as It is also possible to obtain the degree of synchronization with at least one of the directional change curves (FIG. 11, an example of the second signal). Then, threshold processing may be performed for each of these two degrees of synchronization, and it may be determined that the magnetic marker 10 has been detected when both threshold processing results in affirmative determination. At this time, the signal obtained by performing differentiation processing on the change curve of the traveling direction of Gv (FIG. 5, an example of the first signal) or the change curve of the traveling direction of Gh (FIG. 11, an example of the second signal) , Gt in the traveling direction (an example of the third signal in FIG. 6) may be obtained as the degree of synchronization.
 なお、磁気センサによる磁気の検出方向が、厳密に、進行方向、車幅方向、鉛直方向のいずれかに一致していることは必須の要件ではない。また、磁気センサによる磁気の検出方向が互いに直交することも必須の要件ではない。磁気センサによる複数の検出方向(検出軸)が、互いに交差していれば良い。 It should be noted that it is not an essential requirement that the direction of magnetism detected by the magnetic sensor strictly match the traveling direction, vehicle width direction, or vertical direction. Moreover, it is not an essential requirement that the directions of magnetism detected by the magnetic sensors are orthogonal to each other. A plurality of detection directions (detection axes) by the magnetic sensor need only intersect each other.
 なお、本例では、磁気マーカ10が属する可能性が高い候補区間として、進行方向における位置的な区間を例示している。これに代えて、時間的な区間を候補区間として設定することも良い。例えば、図6中のゼロクロスZcの時点を含む所定期間を、候補区間として設定することも良い。所定期間は、例えば、車速によって変更することも良く、例えば、高速道路では短い時間とし、車速が低い一般道路では長い時間としても良い。 In addition, in this example, a positional section in the traveling direction is exemplified as a candidate section to which the magnetic marker 10 is likely to belong. Instead of this, it is also possible to set temporal segments as candidate segments. For example, a predetermined period including the point of time of zero crossing Zc in FIG. 6 may be set as the candidate section. The predetermined period may be changed according to, for example, the vehicle speed. For example, it may be a short period on expressways and a long period on general roads where the vehicle speed is low.
 以上、実施例のごとく本発明の具体例を詳細に説明したが、これらの具体例は、特許請求の範囲に包含される技術の一例を開示しているにすぎない。言うまでもなく、具体例の構成や数値等によって、特許請求の範囲が限定的に解釈されるべきではない。特許請求の範囲は、公知技術や当業者の知識等を利用して上記具体例を多様に変形、変更あるいは適宜組み合わせた技術を包含している。 Although the specific examples of the present invention have been described in detail above as examples, these specific examples merely disclose an example of the technology included in the scope of claims. Needless to say, the scope of claims should not be construed to be limited by the configurations and numerical values of specific examples. The scope of claims encompasses techniques in which the above specific examples are variously modified, changed, or appropriately combined using known techniques and knowledge of those skilled in the art.
 1 マーカ検出システム(システム)
 10 磁気マーカ
 100 車線(走路)
 100S 路面
 11 センサユニット
 Cn 磁気センサ
 110 信号処理回路
 12 検出ユニット(第1の回路、第2の回路)
 5 車両
 50 車両ECU
1 Marker detection system (system)
10 magnetic markers 100 lanes (tracks)
100S road surface 11 sensor unit Cn magnetic sensor 110 signal processing circuit 12 detection unit (first circuit, second circuit)
5 vehicle 50 vehicle ECU

Claims (9)

  1.  磁気センサを備える車両が走路を移動している最中に、走路の表面をなす路面に配設された磁気マーカを検出するための方法であって、
     前記磁気センサは、少なくとも2軸を含む複数の軸に沿って作用する磁気成分の大きさを、当該複数の軸毎に計測可能であり、
     前記複数の軸のうち、少なくともいずれかの軸に沿う磁気成分の大きさの車両の進行方向における変化に基づいて、前記磁気マーカが属する可能性が高い時間的あるいは空間的な区間である候補区間を特定する第1の処理と、
     前記2軸のうちの一方の軸に沿って作用する磁気成分の大きさの前記候補区間における変化を表す第1の信号と、他方の軸に沿って作用する磁気成分の大きさの前記候補区間における変化を表す第2の信号と、の同期の度合いに応じて前記候補区間において前記磁気マーカを検出したか否かを判断する第2の処理と、を含む磁気マーカの検出方法。
    A method for detecting magnetic markers disposed on a road surface forming a surface of a track while a vehicle equipped with a magnetic sensor is traveling on the track, comprising:
    The magnetic sensor is capable of measuring magnitudes of magnetic components acting along a plurality of axes including at least two axes for each of the plurality of axes,
    A candidate section, which is a temporal or spatial section to which the magnetic marker is likely to belong, based on a change in the traveling direction of the vehicle in the magnitude of the magnetic component along at least one of the plurality of axes. a first process of identifying
    A first signal representing a change in the candidate interval of the magnitude of the magnetic component acting along one of the two axes and the candidate interval of the magnitude of the magnetic component acting along the other axis. and a second process of determining whether or not the magnetic marker is detected in the candidate section according to the degree of synchronization.
  2.  請求項1において、前記第2の処理において、前記同期の度合いを数値化して閾値処理を実行し、当該同期の度合いを表す数値が所定の閾値以上のとき、前記候補区間において前記磁気マーカを検出したと判断する磁気マーカの検出方法。 2. The method according to claim 1, wherein in the second processing, the degree of synchronization is quantified and threshold processing is performed, and when the numerical value representing the degree of synchronization is equal to or greater than a predetermined threshold, the magnetic marker is detected in the candidate section. A magnetic marker detection method for determining that the
  3.  請求項1または2において、前記一方の軸と前記他方の軸とは、互いに直交している磁気マーカの検出方法。 The magnetic marker detection method according to claim 1 or 2, wherein the one axis and the other axis are orthogonal to each other.
  4.  請求項1~3のいずれか1項において、前記一方の軸は、前記進行方向の軸である一方、前記他方の軸は、該進行方向に対して直交する軸であり、
     前記第2の処理は、前記第1の信号と、前記第2の信号に微分処理を施して得られる信号と、の相関の度合いを表す相関係数を、前記同期の度合いを表す数値として求める処理である磁気マーカの検出方法。
    4. The apparatus according to any one of claims 1 to 3, wherein the one axis is an axis in the direction of travel, and the other axis is an axis perpendicular to the direction of travel,
    The second processing obtains a correlation coefficient representing a degree of correlation between the first signal and a signal obtained by performing differentiation processing on the second signal as a numerical value representing the degree of synchronization. A magnetic marker detection method that is processing.
  5.  請求項1~3のいずれか1項において、前記2軸は、いずれも、前記進行方向に対して直交する軸であり、
     前記第2の処理は、前記第1の信号と前記第2の信号との相関の度合いを表す相関係数を、前記同期の度合いを表す数値として求める処理である磁気マーカの検出方法。
    4. The apparatus according to any one of claims 1 to 3, wherein both of the two axes are perpendicular to the traveling direction,
    The second processing is a method of detecting a magnetic marker, wherein a correlation coefficient representing the degree of correlation between the first signal and the second signal is obtained as a numerical value representing the degree of synchronization.
  6.  請求項1~3のいずれか1項において、前記2軸は、いずれも、進行方向に対して直交する軸であり、
     前記磁気マーカは、前記2軸に加えて、前記進行方向の軸に沿う磁気成分の大きさを計測可能であり、
     前記第2の処理では、前記2軸のうちの一方の軸に沿って作用する磁気成分の大きさの前記候補区間における変化を表す第1の信号と、他方の軸に沿って作用する磁気成分の大きさの前記候補区間における変化を表す第2の信号と、の同期の度合いに加えて、
     前記進行方向の軸に沿って作用する磁気成分の大きさの前記候補区間における変化を表す第3の信号と、前記第1の信号及び前記第2の信号のうちの少なくともいずれかの信号と、の同期の度合いを取得する磁気マーカの検出方法。
    4. The apparatus according to any one of claims 1 to 3, wherein both of the two axes are perpendicular to the traveling direction,
    The magnetic marker is capable of measuring the magnitude of the magnetic component along the traveling direction axis in addition to the two axes,
    In the second processing, a first signal representing a change in the candidate section in magnitude of a magnetic component acting along one of the two axes and a magnetic component acting along the other axis a second signal representing the change in said candidate interval of the magnitude of
    a third signal representing a change in the candidate interval in the magnitude of a magnetic component acting along the traveling axis; and at least one of the first signal and the second signal; A magnetic marker detection method that obtains the degree of synchronization of
  7.  請求項6において、前記第2の処理は、前記第1の信号と前記第2の信号との相関の度合いを表す相関係数を、前記同期の度合いを表す数値として求めると共に、
     前記第1の信号及び前記第2の信号のうちの少なくともいずれかの信号に微分処理を施して得られる信号と、前記第3の信号と、の相関の度合いを表す相関係数を、前記同期の度合いを表す数値として求める処理である磁気マーカの検出方法。
    In claim 6, the second processing obtains a correlation coefficient representing the degree of correlation between the first signal and the second signal as a numerical value representing the degree of synchronization,
    a correlation coefficient representing a degree of correlation between a signal obtained by performing differentiation processing on at least one of the first signal and the second signal and the third signal; A magnetic marker detection method, which is a process of obtaining a numerical value representing the degree of
  8.  磁気センサを備える車両が、走路の表面をなす路面に配設された磁気マーカを検出するためのシステムであって、
     前記磁気センサは、少なくとも2軸を含む複数の軸に沿って作用する磁気成分の大きさを、当該複数の軸毎に計測可能であり、
     前記複数の軸のうち、少なくともいずれかの軸に沿う磁気成分の大きさの車両の進行方向における変化に基づいて、前記磁気マーカが属する可能性が高い時間的あるいは空間的な区間である候補区間を特定する第1の回路と、
     前記2軸のうちの一方の軸に沿って作用する磁気成分の大きさの前記候補区間における変化を表す第1の信号と、他方の軸に沿って作用する磁気成分の大きさの前記候補区間における変化を表す第2の信号と、の同期の度合いに応じて前記候補区間において磁気マーカを検出したか否かを判断する第2の回路と、を含むシステム。
    A system for a vehicle equipped with a magnetic sensor to detect a magnetic marker disposed on a road surface forming a road surface,
    The magnetic sensor is capable of measuring magnitudes of magnetic components acting along a plurality of axes including at least two axes for each of the plurality of axes,
    A candidate section, which is a temporal or spatial section to which the magnetic marker is likely to belong, based on a change in the traveling direction of the vehicle in the magnitude of the magnetic component along at least one of the plurality of axes. a first circuit that identifies
    A first signal representing a change in the candidate interval of the magnitude of the magnetic component acting along one of the two axes and the candidate interval of the magnitude of the magnetic component acting along the other axis. and a second circuit for determining whether a magnetic marker has been detected in the candidate section according to the degree of synchronization of the second signal.
  9.  請求項8において、前記第2の回路は、前記同期の度合いを数値化して閾値処理を実行し、当該同期の度合いを表す数値が所定の閾値以上のとき、前記候補区間において前記磁気マーカを検出したと判断するシステム。 8. In claim 8, the second circuit quantifies the degree of synchronization and performs threshold processing, and detects the magnetic marker in the candidate section when the numerical value representing the degree of synchronization is equal to or greater than a predetermined threshold. system that determines that
PCT/JP2022/014132 2021-04-01 2022-03-24 Magnetic marker detection method and system WO2022210297A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280024127.XA CN117083214A (en) 2021-04-01 2022-03-24 Method and system for detecting magnetic marker
EP22780511.6A EP4318436A1 (en) 2021-04-01 2022-03-24 Magnetic marker detection method and system
KR1020237036268A KR20230165268A (en) 2021-04-01 2022-03-24 Detection method and system for magnetic markers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021062783A JP2022158105A (en) 2021-04-01 2021-04-01 Magnetic marker detection method and system
JP2021-062783 2021-04-01

Publications (1)

Publication Number Publication Date
WO2022210297A1 true WO2022210297A1 (en) 2022-10-06

Family

ID=83458884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014132 WO2022210297A1 (en) 2021-04-01 2022-03-24 Magnetic marker detection method and system

Country Status (5)

Country Link
EP (1) EP4318436A1 (en)
JP (1) JP2022158105A (en)
KR (1) KR20230165268A (en)
CN (1) CN117083214A (en)
WO (1) WO2022210297A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143193A (en) * 1999-11-16 2001-05-25 Oki Electric Ind Co Ltd Vehicle position detector using magnetic lane marker and vehicle position detecting method for the detector
JP2005202478A (en) 2004-01-13 2005-07-28 Denso Corp Automatic traveling system for vehicle
JP2019002772A (en) * 2017-06-14 2019-01-10 愛知製鋼株式会社 Marker detection method, and system for vehicle
WO2020171232A1 (en) * 2019-02-23 2020-08-27 愛知製鋼株式会社 Magnetic marker diagnostic system and diagnostic method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143193A (en) * 1999-11-16 2001-05-25 Oki Electric Ind Co Ltd Vehicle position detector using magnetic lane marker and vehicle position detecting method for the detector
JP2005202478A (en) 2004-01-13 2005-07-28 Denso Corp Automatic traveling system for vehicle
JP2019002772A (en) * 2017-06-14 2019-01-10 愛知製鋼株式会社 Marker detection method, and system for vehicle
WO2020171232A1 (en) * 2019-02-23 2020-08-27 愛知製鋼株式会社 Magnetic marker diagnostic system and diagnostic method

Also Published As

Publication number Publication date
CN117083214A (en) 2023-11-17
EP4318436A1 (en) 2024-02-07
JP2022158105A (en) 2022-10-17
KR20230165268A (en) 2023-12-05

Similar Documents

Publication Publication Date Title
JP6766527B2 (en) Vehicle system and course estimation method
WO2017209112A1 (en) Position capture method and system
CN111108344B (en) Position capturing system and position capturing method
JP6946695B2 (en) Marker system
CN105518759A (en) Method and control and detection device for checking the plausibility of a motor vehicle driving in the wrong direction
WO1999017079A1 (en) Magnetic apparatus for detecting position of vehicle
JP6828314B2 (en) Learning system and learning method for vehicles
US11454516B2 (en) Gyro sensor calibration method
CN109642783B (en) Attitude detection system for vehicle
WO2022210297A1 (en) Magnetic marker detection method and system
WO2020138467A1 (en) Travel path diagnostic system
WO2022270507A1 (en) Magnetic marker detection method and detection system
WO2022270509A1 (en) Magnetic marker detection method and detection system
WO2022270365A1 (en) Vehicular system
WO2023243617A1 (en) Magnetic marker, vehicular system, and marker detection method
WO2024063079A1 (en) Vehicular system
JP3769250B2 (en) Vehicle detection device
JP2023082578A (en) Automatic turning system
JPS62145401A (en) Method of reading guiding indicator for unattended track
JPH0194287A (en) Magnetic body detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780511

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280024127.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18284299

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237036268

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022780511

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022780511

Country of ref document: EP

Effective date: 20231102

NENP Non-entry into the national phase

Ref country code: DE