WO2023243617A1 - Magnetic marker, vehicular system, and marker detection method - Google Patents

Magnetic marker, vehicular system, and marker detection method Download PDF

Info

Publication number
WO2023243617A1
WO2023243617A1 PCT/JP2023/021800 JP2023021800W WO2023243617A1 WO 2023243617 A1 WO2023243617 A1 WO 2023243617A1 JP 2023021800 W JP2023021800 W JP 2023021800W WO 2023243617 A1 WO2023243617 A1 WO 2023243617A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic marker
marker
multipolar
magnets
Prior art date
Application number
PCT/JP2023/021800
Other languages
French (fr)
Japanese (ja)
Inventor
孝幸 安藤
知彦 長尾
道治 山本
一雄 浦川
哲矢 岩瀬
潤 中村
Original Assignee
愛知製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛知製鋼株式会社 filed Critical 愛知製鋼株式会社
Publication of WO2023243617A1 publication Critical patent/WO2023243617A1/en

Links

Images

Definitions

  • the present invention relates to a magnetic marker detected while a vehicle is moving, a vehicle system including the magnetic marker, and a marker detection method for detecting the magnetic marker.
  • steel footboards for workers installed on the floors of facilities such as factories and distribution warehouses, as well as reinforced concrete bridges and tunnels that make up the roads on which vehicles travel contain iron, which is a magnetic material.
  • the magnetic field may become a magnetic source, and it may be difficult for the vehicle to distinguish between the magnetism acting on the magnetic marker and the magnetism acting from a magnetic generating source other than the magnetic marker.
  • the present invention has been made in view of the above conventional problems, and provides a magnetic marker that can be detected with high reliability, a vehicle system that can detect a magnetic marker with high reliability, and a marker that can detect a magnetic marker with high reliability.
  • This paper attempts to provide a detection method.
  • One aspect of the present invention is a vehicle system in which magnetic markers are arranged at intervals on a vehicle running track,
  • the magnetic markers include at least a multipolar magnetic marker, which is a magnetic marker composed of a plurality of magnets arranged so that the magnetic polarities detected on the vehicle side are alternately different,
  • the vehicle has a detection processing circuit that executes processing for detecting the magnetic marker,
  • the detection processing circuit is capable of executing a multipolar magnetic marker detection process in which it is determined that one of the multipolar magnetic markers has been detected when a magnetic change that periodically changes repeatedly can be detected. It's in the system.
  • One aspect of the present invention is a marker detection method for detecting magnetic markers by a vehicle running on a track where magnetic markers are arranged at intervals, the method comprising:
  • the magnetic markers include at least a multipolar magnetic marker, which is a magnetic marker composed of a plurality of magnets arranged so that the magnetic polarities detected on the vehicle side are alternately different, including a detection process for detecting the magnetic marker,
  • the detection process includes at least a multipolar magnetic marker detection process of determining that one magnetic marker that is the multipolar magnetic marker has been detected when a periodically repeating magnetic change can be detected. It's in the detection method.
  • One aspect of the present invention is a magnetic marker arranged at intervals along a running track so as to be detectable while a vehicle is moving, the magnetic marker comprising:
  • the magnetic marker is a multipolar magnetic marker that is a single magnetic marker composed of a plurality of magnets arranged so that the magnetic polarity is alternately different,
  • the magnetic marker is configured to be detectable by detecting periodically and repeatedly changing magnetic changes on the vehicle side.
  • One of the technical features of the present invention is a multipolar magnetic marker, which is a magnetic marker composed of a plurality of magnets arranged so that their magnetic polarities are alternately different.
  • the multipolar magnetic marker applies periodically and repeatedly changing magnetic changes to the vehicle side. Such regular magnetic changes are relatively easy to distinguish from magnetic changes acting from a magnetic source that is a disturbance. On the vehicle side, by detecting such regular magnetic changes, multipolar magnetic markers can be detected with high reliability.
  • FIG. 2 is a system diagram showing the system configuration of the towing vehicle.
  • FIG. 3 is a flow diagram showing the flow of processing for detecting a magnetic marker.
  • FIG. 4 is an explanatory diagram of magnetic changes exerted on a vehicle by a unipolar magnetic marker.
  • FIG. 3 is an explanatory diagram of magnetic changes caused by a multipolar magnetic marker on a vehicle.
  • FIG. 2 is an explanatory diagram of a magnetic change (second order difference) caused by a unipolar magnetic marker on a vehicle.
  • FIG. 3 is a diagram illustrating a magnetic distribution curve in the vehicle width direction. An explanatory diagram of a magnetic distribution curve (first floor difference) in the vehicle width direction.
  • FIG. 3 is an explanatory diagram of magnetic change (second order difference) that a multipolar magnetic marker acts on a vehicle.
  • FIG. 3 is an explanatory diagram of direction detection processing using a multipolar magnetic marker.
  • FIG. 3 is a diagram illustrating a tape-shaped multipolar magnetic marker.
  • FIG. 3 is a diagram illustrating a sheet-like multipolar magnetic marker.
  • Example 1 This example relates to a vehicle system 1 for a vehicle 2 to automatically travel along a predetermined route. This content will be explained using FIGS. 1 to 16.
  • the vehicle system 1 (FIG. 1) of this example is a system for facilities such as factories and warehouses.
  • magnetic markers 10 are arranged at intervals (for example, 2 m) along a preset route 1R (an example of a running route).
  • the vehicle 2 automatically travels while detecting the magnetic marker 10.
  • the vehicle system 1 of this example is also applicable to factories, warehouses, etc. where laying grooves (not shown) for laying electric wires are provided on the floor surface.
  • the opening of the laying groove is covered with an iron footboard 19 that can serve as a source of magnetism.
  • the route 1R is set to cross this footboard 19.
  • the first magnetic marker 10 is a unipolar magnetic marker 10A (FIG. 2) made of a single piece-shaped magnet piece 100.
  • the second magnetic marker 10 is a multipolar magnetic marker 10B (FIG. 3), which is a magnetic marker in which six magnet pieces 100 are linearly arranged so that the magnetic polarities are alternately different.
  • one of the magnetic markers 10 either the multipolar magnetic marker 10B or the unipolar magnetic marker 10A, is arranged at 2 m intervals along the route 1R.
  • the multipolar magnetic marker 10B has a range along the direction of the route 1R. The distance of 2 m between the multipolar magnetic marker 10B and the adjacent magnetic marker 10 is set with reference to one representative magnet piece 100 among the six magnet pieces 100 constituting the multipolar magnetic marker 10B.
  • the six magnet pieces 100 constituting the multipolar magnetic marker 10B are arranged on a straight line along the direction of the route 1R.
  • the route 1R is a straight route
  • the arrangement direction of the six magnet pieces 100 matches the direction of the route 1R.
  • the route 1R is a curved road
  • the direction in which the six magnet pieces 100 are arranged coincides with the tangential direction of the curve formed by the route 1R.
  • the route 1R is a straight line
  • the direction of the straight line is the direction of the route 1R.
  • the tangential direction is the direction of the route 1R.
  • the magnet piece 100 which is an example of a magnet, is common to both the unipolar magnetic marker 10A and the multipolar magnetic marker 10B.
  • the magnet piece 100 is a ferrite rubber magnet in which magnetic powder of iron oxide, which is a magnetic material, is dispersed in a polymer material, which is a base material.
  • the shape of the magnet piece 100 is a sheet with a diameter of 50 mm and a thickness of 2 mm.
  • the magnet piece 100 is a permanent magnet with one surface serving as a north pole and the other surface serving as a south pole.
  • the magnetic polarity detected on the vehicle 2 side changes depending on which surface of the magnet piece 100 is installed facing upward.
  • the magnetic polarity detected on the vehicle 2 side will be defined as the magnetic polarity of the magnet piece 100.
  • the N-pole magnet piece 100 is referred to as a magnet piece 100N
  • the S-pole magnet piece 100 is referred to as a magnet piece 100S.
  • the magnet piece 100 forming the unipolar magnetic marker 10A is a magnet piece 100N whose magnetic polarity detectable on the vehicle 2 side is north pole.
  • the leading magnet piece 100 which is located on the upstream side of the route 1R and through which the vehicle 2 passes first, is an S-pole magnet piece 100S, and the rear end magnet piece 100 is an N-pole magnet piece. It is 100N.
  • the unipolar magnetic marker 10A and the multipolar magnetic marker 10B are used depending on the magnetic environment of the installation location.
  • the multipolar magnetic marker 10B is applied to installation locations where there is a magnetic source that causes disturbance, such as on or near a footboard 19 made of iron (see Figure 1), which is a magnetic material, and where the disturbance magnetic field is large. Ru.
  • the unipolar magnetic marker 10A is applied to an installation location where there is no magnetic disturbance source nearby and the disturbance magnetic field is small. Note that it is also possible to actually measure the magnitude (intensity) of the disturbance magnetism at each installation location and use the multipolar magnetic marker 10B and the unipolar magnetic marker 10A depending on the measured result. For example, it is preferable to arrange the multipolar magnetic marker 10B at the installation location where disturbance magnetism exceeding a threshold value acts, and to arrange the unipolar magnetic marker 10A at the installation location where the disturbance magnetism is below the threshold value.
  • the vehicle 2 that constitutes the vehicle system 1 of this example will be explained.
  • the vehicle 2 includes a towing vehicle 21 having drive wheels, and a four-wheeled cart 23 towed by the towing vehicle 21.
  • the towing vehicle 21 has a length of 2 m and a width of 1 m
  • the truck 23 has a length of 2 m and a width of 1 m.
  • the truck 23 is equipped with a connection bar 230 for connecting to the towing vehicle 21 or the preceding truck 23.
  • the trolley 23 includes a pair of left and right front driven wheels 231 and a left and right pair of rear fixed wheels 232.
  • the towing vehicle 21 is a three-wheeled vehicle that includes one front wheel 211 that is a steered wheel and a pair of left and right rear wheels 212 that are drive wheels.
  • a magnetic sensor array 3 is disposed in front of the front wheels 211 .
  • the rod-shaped magnetic sensor array 3 is attached along the vehicle width direction of the towing vehicle 21.
  • the magnetic sensor array 3 (FIG. 5) is a rod-shaped unit in which a plurality of magnetic sensors Cn are arranged in a straight line, and is attached along the vehicle width direction of the towing vehicle 21 (see FIG. 4). In the configuration of this example, the magnetic sensor array 3 is attached to the front side of the front wheel 211. Note that the mounting height of the magnetic sensor array 3 with respect to the floor surface on which the vehicle 2 moves is 100 mm. The mounting position of the magnetic sensor array 3 may be at the rear of the vehicle body instead of the position in this example.
  • the magnetic sensor array 3 (FIG. 5) includes 15 magnetic sensors Cn (n is an integer from 1 to 15) arranged in a straight line, and a detection processing circuit 32 containing a CPU (not shown), etc. .
  • 15 magnetic sensors Cn are arranged at intervals of 5 cm along its longitudinal direction.
  • 15 magnetic sensors Cn are arranged in a straight line along the vehicle width direction (lateral direction).
  • the 15 magnetic sensors Cn arranged in the vehicle width direction when the magnetic marker 10 is detected, the position of the magnetic marker 10 in the vehicle width direction can be detected. Based on the position of the magnetic marker 10 relative to the 15 magnetic sensors Cn, the amount of lateral deviation (lateral deviation) of the towing vehicle 21 with respect to the magnetic marker 10 can be specified.
  • the magnetic sensor C8 located at the center is located at the center of the towing vehicle 21.
  • the position of the magnetic sensor C8 is set to the reference position. This reference position is treated as a position representative of the towing vehicle 21 when specifying the amount of lateral deviation of the towing vehicle 21 with respect to the magnetic marker 10.
  • the magnetic sensor Cn for example, a highly accurate MI (Magnetic Impedance) sensor may be adopted.
  • the MI sensor is a magnetic sensor that utilizes the well-known MI effect (Magnet Impedance Effect) in which the impedance of a magnetically sensitive material such as an amorphous wire changes sensitively in response to an external magnetic field.
  • Each magnetic sensor Cn is incorporated into the magnetic sensor array 3 so as to be able to measure the intensity of magnetism acting in the vertical direction.
  • the detection processing circuit 32 (FIG. 5) of the magnetic sensor array 3 is an arithmetic circuit that executes marker detection processing and the like for detecting the magnetic marker 10.
  • the detection processing circuit 32 is configured using a CPU (central processing unit) that executes various calculations, memory elements such as ROM (read only memory) and RAM (random access memory), etc. has been done.
  • the detection processing circuit 32 outputs a signal indicating that the magnetic marker 10 has been detected, the amount of lateral deviation of the towing vehicle 21 with respect to the magnetic marker 10, the traveling direction of the towing vehicle 21, etc. as a result of the detection processing.
  • the towing vehicle 21 is electrically configured as shown in FIG. 6, centering on a control unit 40 that controls travel.
  • the control unit 40 includes the magnetic sensor array 3 described above, an IMU (Inertial Measurement Unit) 42 that enables inertial navigation, a motor unit 44 that rotationally drives the rear wheel 212, and outputs pulses in accordance with the rotation of the rear wheel 212.
  • a wheel speed unit 442, a steering unit 46 that steers the front wheels 211 that are steered wheels, a map database 48, and the like are connected.
  • the IMU 42 is a unit that estimates the relative position and vehicle orientation of the towing vehicle 21 by inertial navigation.
  • the IMU 42 includes a two-axis magnetic sensor that is an electronic compass that measures orientation, an acceleration sensor, a gyro sensor that measures angular velocity around the yaw axis, and the like.
  • the yaw axis is an axis in the vertical direction.
  • the map database 48 is a database that stores map data representing the shape and waiting position of the route 1R (see FIG. 1).
  • the map data is linked to the magnetic marker 10 placed on the route 1R. For example, by referring to map data using the number of detected magnetic markers 10 after leaving the standby position, the position of the most recently detected magnetic marker 10 can be specified.
  • Control unit 40 identifies the position of vehicle 2 on route 1R based on the position of magnetic marker 10.
  • the control unit 40 is a unit that includes an electronic circuit (not shown) that includes a CPU that executes various calculations, a memory element such as a ROM/RAM, and the like.
  • the control unit 40 inputs control values to the steering unit 46 and the motor unit 44.
  • the control value for the steering unit 46 is a commanded steering angle that is a control target for the steering angle of the front wheels 211.
  • the control value for the motor unit 44 is a commanded rotational angular velocity that is a control target for the rotational angular velocity of the rear wheel 212.
  • the control unit 40 controls the steering angle of the front wheels 211 via the steering unit 46 and the rotational angular velocity of the rear wheels 212 via the motor unit 44 . Through such control, the control unit 40 causes the vehicle 2 to travel so that the deviation (lateral deviation amount) of the vehicle 2 with respect to the magnetic marker 10 approaches zero.
  • Magnetic measurement by the magnetic sensor array is the processing of steps S101 to S102 in FIG.
  • the process of determining the type of magnetic marker to be detected is the process of steps S103 to S104 and S114 in the figure.
  • the unipolar magnetic marker detection process is the process of steps S105 to S108 in the figure.
  • the multipolar magnetic marker detection process is the process of steps S115 to S118 in the figure.
  • the direction measurement process using the multipolar magnetic marker is the process of steps S119 to S120 in the figure.
  • each magnetic sensor Cn constituting the magnetic sensor array 3 has magnetic sensitivity in the vertical direction.
  • Each magnetic sensor Cn measures the magnetic strength acting in the vertical direction, for example, at a frequency of 3 kHz.
  • the detection processing circuit 32 of the magnetic sensor array 3 samples the vertical magnetic intensity (magnetic measurement value) measured by each magnetic sensor Cn at a frequency of 3 kHz for each magnetic sensor Cn.
  • the detection processing circuit 32 obtains time-series magnetic measurement values for each of the magnetic sensors C1 to C15 (FIG. 7, S101).
  • the positive/negative value of the magnetic measurement value by the magnetic sensor Cn is positive in the case of the N-pole magnet piece 100N, and negative in the case of the S-pole magnet piece 100S.
  • a typical time-series distribution curve of magnetic measurement values corresponding to the unipolar magnetic marker 10A is as illustrated in FIG. 8(a).
  • a typical time-series distribution curve of magnetic measurement values corresponding to the multipolar magnetic marker 10B is as illustrated in FIG. 9(a).
  • FIGS. 8(a) and 9(a) show the time-series distribution of magnetic measurement values of one of the 15 magnetic sensors C1 to C15 that passes directly above or in the vicinity of the magnetic marker 10. It is a figure which illustrates a curve. The vertical axis of these figures indicates the magnitude of the magnetic measurement value, and the horizontal axis indicates the position of the vehicle 2 in the traveling direction. Note that if the vehicle 2 is moving at a constant speed, the waveform of the distribution curve will not change even if the horizontal axis is replaced with time.
  • Points with encircled numbers 1 to 6 in FIG. 9 are the positions of each magnet piece 100 (six magnet pieces 100 in this example) constituting the multipolar magnetic marker 10B.
  • the point marked by the encircled number 1 in FIG. 9 is the position of the first magnet piece 100S of the multipolar magnetic marker 10B.
  • the point with the circled number 2 is the position of the second magnet piece 100N.
  • the point with the circled number 6 is the position of the sixth and final magnet piece 100N.
  • the detection processing circuit 32 calculates the difference in the traveling direction of the time-series magnetic measurement values (see FIGS. 8(a) and 9(a)) by each magnetic sensor Cn.
  • This difference in the traveling direction corresponds to a differential with respect to the position in the traveling direction.
  • the traveling direction corresponds to the time direction in the time-series magnetic measurement values.
  • the difference in the traveling direction is effective for removing magnetism that acts nearly uniformly.
  • Magnetism that acts uniformly and closely may include magnetism that acts from a magnetic source (for example, a mechanical device or iron footboard 19, etc.) that is larger than the magnet piece 100 forming the magnetic marker 10, or disturbance magnetism such as terrestrial magnetism. .
  • the time-series data of Fig. 8(b) or 9(b) can be obtained. It will be done. If the difference in the traveling direction (second order difference) is further calculated for these time series data, the time series data shown in FIG. 8(c) or FIG. 9(c) can be obtained. As illustrated in FIGS.
  • the detection processing circuit 32 calculates 15 calculated values, which are second-order difference values in the traveling direction, for the time-series magnetic measurement values (for example, FIGS. 8(a) and 9(a)) obtained by each magnetic sensor Cn. seek. Each calculated value is a data value at one point in time among the time series data in FIGS. 8(c) and 9(c).
  • the detection processing circuit 32 executes threshold processing regarding the absolute values of the 15 calculated values related to the magnetic sensors C1 to C15 (FIG. 7, S102).
  • the threshold value is, for example, the value at the boundary of the hatched area in FIGS. 8(c) and 9(c).
  • the presence or absence of the magnetic marker 10 to be detected is determined depending on whether any of the 15 calculated values (absolute values) obtained as described above exceeds the threshold value. If any of the 15 calculated values (absolute values) exceeds the threshold, the detection processing circuit 32 determines that a magnetic source that is a candidate for the magnetic marker 10 is present. When the detection processing circuit 32 determines that a magnetic source is present, it executes (b) a process of determining the type of magnetic marker 10 to be detected.
  • the detection processing circuit 32 selects the one magnetic sensor corresponding to the calculated value. Identify. If there are two or more calculated values exceeding the threshold among the 15 calculated values (absolute values), one magnetic sensor corresponding to the calculated value with the largest absolute value is identified. In this way, the detection processing circuit 32 detects one of the 15 magnetic sensors C1 to C15 that passes directly above or in the vicinity of the magnetic marker to be detected (which may be a magnetic source of disturbance). Identify the sensor.
  • the detection processing circuit 32 determines the type of the magnetic marker 10 to be detected based on the sign of the calculated value whose absolute value exceeds the threshold in the threshold processing of step S102 described above (S103). When this calculated value is negative, the detection processing circuit 32 determines that the magnetic marker 10 to be detected is the unipolar magnetic marker 10A (S103: unipolar). Then, unipolar magnetic marker detection processing is selected as the processing for detecting the magnetic marker 10 (S104). When this calculated value is positive, the detection processing circuit 32 determines that the magnetic marker 10 to be detected is a multipolar magnetic marker 10B (S103: multipolar). Then, multipolar magnetic marker detection processing is selected as the processing for detecting the magnetic marker 10 (S114).
  • (c) Unipolar magnetic marker detection process When the detection processing circuit 32 determines that the magnetic marker 10 to be detected is the unipolar magnetic marker 10A (FIG. 7, S103: Unipolar), the detection processing circuit 32 selects the unipolar magnetic marker detection process. (S104). The detection processing circuit 32 performs unipolar processing on time-series data (second-order difference value in the traveling direction) from one magnetic sensor identified as passing directly above or in the immediate vicinity of the magnetic marker 10 to be detected in step S102. Execute magnetic marker detection processing. If the magnetic marker 10 to be detected is not a magnetic source of disturbance but is correctly the unipolar magnetic marker 10A, the time-series data from the first magnetic sensor exhibits a distribution curve illustrated in FIG. 10. Note that the distribution curve in FIG. 10 is an excerpt from FIG. 8(c).
  • the detection processing circuit 32 uses the point A (FIG. 10) where the calculated value (absolute value) exceeding the threshold value was obtained in step S102 (FIG. 7) as a reference point, and selects a target section P to which the unipolar magnetic marker detection processing is applied. (Figure 10).
  • the starting point of the target section P is a point 20 cm before point A.
  • the end point of the target section P is a point that has passed point A by 20 cm.
  • the detection processing circuit 32 takes in the time-series data from the above-mentioned one magnetic sensor in the target section P (FIG. 7, S105), and executes unipolar magnetic marker detection processing (S106).
  • the detection processing circuit 32 determines whether the distribution waveform of the time-series data in the target section P (FIG. 10) is a waveform with a peak at the negative extreme value (FIG. 7, S107). The detection processing circuit 32 makes this determination based on the degree of symmetry of the distribution waveform and the presence or absence of other extreme values. In this judgment, detection conditions are considered, such as, for example, the waveform has high symmetry around the negative extreme value, and there are no other extreme values that exceed the positive threshold or negative threshold. It is good to set it. When such detection conditions are met, the detection processing circuit 32 determines that the distribution waveform of the time series data of the target section P is a waveform caused by the unipolar magnetic marker 10A (S107: YES).
  • the detection processing circuit 32 specifies the point B (see FIG. 10) of the apex (negative side apex) of the single peak waveform. This point B is a point where the magnetic sensor array 3 is located directly above the monopolar magnetic marker 10A. Then, the detection processing circuit 32 acquires the magnetic measurement value of each magnetic sensor Cn at the point B, and detects the amount of lateral deviation, which is the lateral deviation of the vehicle 2 with respect to the magnetic marker 10 (FIG. 7, S108).
  • the magnetic measurement values of each magnetic sensor Cn at point B have a distribution of magnetic measurement values in the vehicle width direction, as illustrated in FIG. 11, for example.
  • the detection processing circuit 32 identifies the position of the apex of the distribution in the figure.
  • the apex of the distribution of magnetic measurement values in the vehicle width direction appears directly above the magnetic marker 10.
  • a zero cross whose polarity is reversed appears directly above the magnet piece 100N forming the unipolar magnetic marker 10A.
  • the position where the polarity is reversed is a position corresponding to C9.5, which is about halfway between C9 and C10, and C9.5 is the position of the magnet piece 100N in the vehicle width direction.
  • the distance between the magnetic sensors C9 and C10 is 5 cm.
  • the reference position of the vehicle 2 (towing vehicle 21) when specifying the amount of lateral deviation with respect to the magnetic marker 10 is the position of the magnetic sensor C8.
  • the example in the figure is an example where the vehicle 2 (towing vehicle 21) has moved to the left with respect to the magnetic marker 10A. Note that the sign of the deviation in the lateral direction is positive when the vehicle 2 moves to the right with respect to the magnetic marker 10, and negative when it moves to the left. Therefore, the amount of lateral deviation in the case of FIG. 12 is -7.5 cm.
  • the magnetic sensor array 3 inputs the results of the unipolar magnetic marker detection process to the control unit 40.
  • the result of the unipolar magnetic marker detection process includes information such as the fact that the unipolar magnetic marker 10A was detected, the detection time point (detection point, point B in FIG. 10), the amount of lateral deviation (lateral deviation), etc. It will be done.
  • the detection processing circuit 32 selects multipolar magnetic marker detection processing.
  • S114 The detection processing circuit 32 performs multi-polar magnetic processing on the time-series data (second-order difference value in the traveling direction) from the one magnetic sensor identified in step S102 as passing directly above or in the vicinity of the magnetic marker 10 to be detected. Execute marker detection processing. If the magnetic marker 10 to be detected is not a magnetic source of disturbance but is a correct multipolar magnetic marker 10B, the time-series data from the first magnetic sensor exhibits a distribution curve illustrated in FIG. 13. Note that the distribution curve in the figure is an excerpt from FIG. 9(c).
  • the detection processing circuit 32 uses the point A (FIG. 13) where the calculated value (absolute value) exceeding the threshold value was obtained in step S102 (FIG. 7) as a reference point, and selects a target section P to which the multipolar magnetic marker detection process is applied. (Figure 13).
  • the starting point of the target section P is a point 20 cm before point A.
  • the end point of the target section P is a point that has passed point A by 80 cm.
  • the detection processing circuit 32 takes in the time series data of the target section P (target section P in FIG. 13) obtained by the above-mentioned one magnetic sensor (FIG. 7, S115), and executes the multipolar magnetic marker detection process (S116). .
  • the detection processing circuit 32 first identifies the positions of the positive apex and the negative apex of the distribution waveform of the time series data of the target section P (FIG. 13). The detection processing circuit 32 determines that the multipolar magnetic marker 10B has been detected when it is able to detect a magnetic change that changes periodically.
  • the conditions for detecting the multipolar magnetic marker 10B by the detection processing circuit 32 of this example are constituted by the following requirements.
  • ⁇ Positive vertices are arranged at equal intervals.
  • ⁇ Negative vertices are arranged at equal intervals.
  • the negative vertex is located at the midpoint between adjacent positive vertices.
  • a positive vertex is located at the midpoint between adjacent negative vertices.
  • the detection processing circuit 32 determines that the multipolar magnetic marker 10B has been detected when all of the above requirements are met and the detection conditions are met (S117: YES). When the multipolar magnetic marker 10B can be detected in this way, the detection processing circuit 32 further detects the amount of lateral deviation (lateral deviation) with respect to the multipolar magnetic marker 10B (S118). Then, the detection processing circuit 32 inputs the result of the multipolar magnetic marker detection processing to the control unit 40.
  • the result of the multipolar magnetic marker detection process includes information such as the fact that the multipolar magnetic marker 10B was detected, the detection time point (detection point), and the amount of lateral deviation of the multipolar magnetic marker 10B with respect to the magnet piece 100.
  • the detection time point of the multipolar magnetic marker 10B is preferably the time point when it passes through a predetermined representative magnet piece 100 (the time point at which it is detected). Further, it is preferable that the lateral deviation of the vehicle 2 with respect to the representative magnet piece 100 is the lateral deviation amount with respect to the multipolar magnetic marker 10B.
  • the method for detecting the deviation in the lateral direction with respect to the magnet piece 100 is the same as in the case of the unipolar magnetic marker detection process described above.
  • the N-pole magnet piece 100N located inside except for both ends serves as the origin of the magnetic force line toward the S-pole magnet pieces 100S on both sides.
  • the S-pole magnet piece 100S located on the inside becomes a convergence point of the lines of magnetic force starting from the N-pole magnet pieces 100N on both sides.
  • the inner magnet piece 100 in the multipolar magnetic marker 10B forms a large loop of magnetic lines of force by magnetically coupling with the magnet pieces 100 on both sides, and the magnetic strength acting on the outside tends to increase.
  • the magnet pieces 100 at both ends that are not adjacent to another magnet piece 100 on one side are magnetically isolated on that side.
  • the representative magnet pieces 100 mentioned above include, for example, the second and third magnet pieces 100 among the six magnet pieces 100 constituting the multipolar magnetic marker 10B, and the inner side excluding the magnet pieces 100 at both ends. It is preferable to select the magnet piece 100 located at .
  • the detection processing circuit 32 measures the direction of the vehicle 2 using the multipolar magnetic marker 10B (S119 in FIG. 7). ⁇ S120).
  • the detection processing circuit 32 of this example uses the second magnet piece 100 from the upstream side and the fifth magnet piece 100 among the six magnet pieces 100 constituting the multipolar magnetic marker 10B to Execute the azimuth measurement in step 2.
  • the detection processing circuit 32 detects when the magnetic sensor array 3 is located directly above the second magnet piece 100 of the six magnet pieces 100 that constitute the multipolar magnetic marker 10B. (point C in FIG. 13) and the point in time when the magnetic sensor array 3 is located directly above the fifth magnet piece 100 (point D in the figure).
  • the detection processing circuit 32 attempts to detect the amount of lateral deviation of the vehicle with respect to the magnet piece 100 at each of the points C and D (step S119 in FIG. 7). Specifically, the detection processing circuit 32 acquires the magnetic measurement values of each magnetic sensor Cn at the point C and the point D. Then, the detection processing circuit 32 detects the amount of lateral deviation of the vehicle 2 with respect to the magnet piece 100 based on the distribution waveform in the vehicle width direction made up of the magnetic measurement values of each magnetic sensor Cn. Note that the method for detecting the amount of lateral deviation, which is the deviation in the lateral direction with respect to the magnet piece 100, is the same as the detection method described in the above unipolar magnetic marker detection process.
  • the deviation ⁇ of the orientation of the vehicle 2 with respect to the direction of the route 1R is: It can be calculated using the following formula. For example, when the vehicle 2 passes the multipolar magnetic marker 10B as shown in FIG. 14, the vehicle 2 is closer to the left side with respect to the second magnet piece 100. Therefore, the above-mentioned lateral shift amount d1 becomes a negative value. Furthermore, the vehicle 2 is closer to the right side with respect to the fifth magnet piece 100. Therefore, the above-mentioned lateral shift amount d2 becomes a positive value.
  • the unipolar magnetic marker 10A and the multipolar magnetic marker 10B can be used depending on whether or not the installation location is affected by disturbance magnetism. For example, if there is a magnetic source that causes disturbance, such as when the path 1R crosses the iron footboard 19 or when there are magnetic tapes used by other systems or their remains in the vicinity, the magnetic marker 10 There is a risk that detection reliability may not be sufficient. This is because it becomes difficult for the vehicle 2 to distinguish between the magnetism from the magnetic source causing the disturbance and the magnetism acting from the magnetic marker 10.
  • a multipolar magnetic marker 10B in which six magnet pieces 100 are arranged in a row is arranged at a installation location where the influence of disturbance magnetism is large.
  • the multipolar magnetic marker 10B made up of six magnet pieces 100 arranged along the direction of the route 1R, regularly repeated magnetic changes occur.
  • the six magnet pieces 100 are configured to alternately have different magnetic polarities. Therefore, the magnetic change when the vehicle 2 passes the multipolar magnetic marker 10B is even more characteristic.
  • the iron footboard 19, magnetic tape, etc. can be sources of magnetic disturbance, the magnetic changes that occur when the vehicle 2 passes directly above or near these magnetic sources do not repeat regularly. By focusing on whether or not the magnetic change is a regularly repeated magnetic change, it is possible to distinguish the multipolar magnetic marker 10B from a magnetic source causing disturbance and to detect the multipolar magnetic marker 10B with high reliability.
  • the traveling direction of the vehicle 2 with respect to the direction connecting these two magnet pieces 100 is determined. Deviation is required. If the multipolar magnetic marker 10B has six magnet pieces 100 arranged on a straight line along the route 1R, it is possible to specify the deviation in the traveling direction of the vehicle 2 with respect to the direction of the route 1R. Note that the arrangement direction of the magnet pieces 100 in the multipolar magnetic marker 10B may not be along the direction of the route 1R, but may be, for example, a direction along a predetermined absolute direction.
  • the distance between the two magnet pieces 100 for which the amount of lateral deviation is determined is wide, since the traveling direction can be determined with less error. If the magnet pieces 100 at both ends of the multipolar magnetic marker 10B are combined, the distance between the two magnet pieces 100 can be maximized. However, among the six magnet pieces 100 forming the multipolar magnetic marker 10B, the magnet pieces 100 at both ends that are not sandwiched between the other magnet pieces 100 with different magnetic polarities are not sandwiched between the adjacent magnet pieces 100 as described above. Magnetic coupling may be insufficient. If the magnetic coupling is insufficient, the magnetic change in the traveling direction of the vehicle 2 tends to deviate from the ideal one, and the magnetic strength tends to decrease.
  • the second magnet piece 100 and the fifth magnet piece 100 of the six magnet pieces 100 forming the multipolar magnetic marker 10B are used. do.
  • the combination of the second and fifth magnet pieces 100 can achieve both magnetic stability and spacing, and is suitable for identifying displacement of the vehicle 2 in the traveling direction.
  • a combination of two inner magnet pieces 100 is suitable for specifying the traveling direction of the vehicle 2.
  • the magnetism exerted on the vehicle 2 by the magnet pieces 100 at both ends of the multipolar magnetic marker 10B is somewhat unstable, and its magnetic strength tends to decrease. Therefore, it is also good to strengthen the magnetic force of only the magnet pieces 100 at both ends. In this case, it is possible to compensate for the tendency that the magnetic strength acting on the vehicle side from the magnet pieces located at both ends becomes low, and the magnitude of the magnetic strength that each magnet piece 100 of the multipolar magnetic marker 10B acts on the vehicle side can be compensated for. uniformity can be improved. For example, it is also possible to lay two sheet-like magnet pieces 100 on both ends of the multipolar magnetic marker 10B.
  • magnetic changes originating from the multipolar magnetic marker 10B are detected based on, for example, the number of positive vertices, the number of negative vertices, the interval between vertices, etc. in the distribution waveform of the time series data in FIG.
  • the configuration is illustrated. This configuration detects a magnetic change that changes periodically, and the number of times the magnetic change is periodically repeated corresponds to the number of magnet pieces 100 that constitute the multipolar magnetic marker 10B.
  • various methods for detecting such magnetic changes can be considered, such as a method that uses similarity with a periodically repeated waveform, and a method that uses the frequency of the waveform.
  • a method of using the degree of similarity for example, there is a method of determining whether a correlation coefficient representing the degree of similarity with a periodically repeated waveform exceeds a threshold value.
  • a method using frequency for example, there is a method of determining whether the frequency of a distribution waveform obtained by Fourier transform or the like belongs to a predetermined frequency range.
  • threshold processing regarding the effective value of the magnetic intensity in periodically changing magnetic changes.
  • the effective value of the magnetic strength corresponds to, for example, the effective voltage of an alternating current whose voltage changes periodically.
  • a multipolar magnetic marker 10B in which six magnet pieces 100 are arranged is illustrated.
  • the number of magnet pieces 100 arranged one-dimensionally along a straight line is preferably 4 or more and 11 or less. If the number is less than three, there is a risk that it will be difficult to distinguish from disturbance magnetism. If the number exceeds 11, the distance the vehicle 2 needs to move to detect the multipolar magnetic marker 10B becomes too long, and it takes time to detect the multipolar magnetic marker 10B.
  • a multipolar magnetic marker 10B made up of six magnet pieces 100 arranged one-dimensionally along the direction of the path 1R is illustrated.
  • the predetermined direction in which the plurality of magnet pieces 100 are arranged may be any direction.
  • the multipolar magnetic marker 10B may be one in which a plurality of magnet pieces 100 are arranged along the vehicle width direction.
  • the multipolar magnetic marker 10B may be one in which a plurality of magnet pieces 100 are two-dimensionally arranged.
  • a magnetic marker in which a plurality of individual magnet pieces 100 are arranged is exemplified as the multipolar magnetic marker 10B.
  • a tape-shaped marker tape (FIG. 15) or a sheet-shaped marker sheet (FIG. 16) may be used.
  • a marker tape is, for example, a tape-shaped member in which a plurality of magnet pieces (magnets) are one-dimensionally connected.
  • the marker sheet is, for example, a sheet-like member in which a plurality of magnet pieces (magnets) are two-dimensionally connected.
  • the marker tape (or marker sheet) in which a plurality of magnet pieces are connected may be, for example, one in which a magnetic layer made of a magnetic material is laminated on a tape-shaped (or sheet-shaped) base material made of a resin material. . It is preferable to magnetize the magnetic layer of the marker tape region by region to form regions forming magnetic pieces. In the magnetized regions of this marker tape (or marker sheet), regions forming adjacent magnet pieces may be adjacent to each other, or may be arranged with a gap between them.
  • the marker tape or marker sheet it is also good to make the magnetic force of the magnetic pieces (magnets) forming the ends stronger than that of other magnetic pieces located on the inside.
  • the end magnet pieces (magnets) in the marker tape are the magnet pieces at both ends.
  • the end magnet piece (magnet) in the marker sheet is a magnet piece that forms the outer periphery of the sheet.
  • the vehicle system 1 is illustrated in which the unipolar magnetic marker 10A and the multipolar magnetic marker 10B coexist, but all the magnetic markers may be the multipolar magnetic marker 10B. In this case, all magnetic markers 10 can be detected with high reliability regardless of the presence or absence of disturbance magnetism.
  • the vehicle system 1 for facilities such as factories is illustrated, but it may also be a vehicle system for vehicles traveling on a road that is an example of a running route.
  • the magnetic marker 10 that is affixed to the floor of a facility is illustrated, but it may be a monopolar magnetic marker 10A or a multipolar magnetic marker 10B that is made of a columnar magnet that is buried.

Abstract

This magnetic marker (10), which is disposed at distance along a travel path (1R) so as to be detectable during a movement of a vehicle, is a multiple-pole magnetic marker (10B) which is one magnetic marker composed of a plurality of magnet pieces (100) which are arranged so as to have magnetic polarities alternately different from each other. The multiple-pole magnetic marker (10B) can be detected with high reliability by detecting, on the vehicle side, a magnetism change which periodically and repetitively changes, the number of times of the periodic repetition corresponding to the number of the plurality of magnet pieces (100).

Description

磁気マーカ、車両用システム及びマーカ検出方法Magnetic marker, vehicle system and marker detection method
 本発明は、車両が移動中に検出する磁気マーカ、磁気マーカを含む車両用システム、磁気マーカを検出するためのマーカ検出方法に関する。 The present invention relates to a magnetic marker detected while a vehicle is moving, a vehicle system including the magnetic marker, and a marker detection method for detecting the magnetic marker.
 従来、工場や物流倉庫などの施設において、自動搬送車などの車両が広く活用されている。自動搬送車などの車両を自動走行させるためのシステムとして、例えば、車両の移動経路に沿って配列された磁気マーカを利用するシステムが知られている(例えば特許文献1参照。)。このシステムでは、磁気マーカに対する車両の横ずれ量である横方向の偏差が検出され、この偏差を抑えるように車両が操舵される。 Conventionally, vehicles such as automatic guided vehicles have been widely used in facilities such as factories and distribution warehouses. BACKGROUND ART As a system for automatically driving a vehicle such as an automatic guided vehicle, a system that uses magnetic markers arranged along a travel route of the vehicle is known (for example, see Patent Document 1). In this system, a lateral deviation, which is the amount of lateral deviation of the vehicle with respect to a magnetic marker, is detected, and the vehicle is steered to suppress this deviation.
 また、自動運転を含めて車両の運転を支援するためのシステムが提案されている。このようなシステムとしては、車両が走行する車線に沿って磁気マーカが敷設されたシステムが知られている(例えば特許文献2参照。)。このシステムでは、例えば、磁気マーカに対する車両の横ずれ量を検出することで、車線からの逸脱警報等が実現される。 Additionally, systems to support vehicle driving, including automatic driving, have been proposed. As such a system, a system in which magnetic markers are installed along the lane in which a vehicle travels is known (for example, see Patent Document 2). In this system, for example, by detecting the amount of lateral deviation of the vehicle with respect to the magnetic marker, a lane departure warning is realized.
特開2011-008598号公報Japanese Patent Application Publication No. 2011-008598 特開2018-165856号公報Japanese Patent Application Publication No. 2018-165856
 しかしながら、前記従来のシステムでは、次のような問題がある。すなわち、工場や物流倉庫などの施設の床面に設けられる作業者向けの鉄製の踏み板等や、車両が走行する道路を構成する鉄筋コンクリート構造の橋梁やトンネル等は、磁性材料である鉄を含むため磁気発生源となる可能性があり、磁気マーカが作用する磁気であるか、磁気マーカ以外の磁気発生源から作用する磁気であるか、の区別が車両側で困難となるおそれがある。 However, the conventional system has the following problems. In other words, steel footboards for workers installed on the floors of facilities such as factories and distribution warehouses, as well as reinforced concrete bridges and tunnels that make up the roads on which vehicles travel, contain iron, which is a magnetic material. There is a possibility that the magnetic field may become a magnetic source, and it may be difficult for the vehicle to distinguish between the magnetism acting on the magnetic marker and the magnetism acting from a magnetic generating source other than the magnetic marker.
 本発明は、前記従来の問題点に鑑みてなされたものであり、検出確実性が高い磁気マーカ、磁気マーカを確実性高く検出できる車両用システム、及び磁気マーカを確実性高く検出するためのマーカ検出方法、を提供しようとするものである。 The present invention has been made in view of the above conventional problems, and provides a magnetic marker that can be detected with high reliability, a vehicle system that can detect a magnetic marker with high reliability, and a marker that can detect a magnetic marker with high reliability. This paper attempts to provide a detection method.
 本発明の一態様は、車両の走路に間隔を空けて磁気マーカが配置された車両用システムであって、
 前記磁気マーカとしては、車両側で検出される磁極性が交互に異なるように配置された複数の磁石により構成された一の磁気マーカである多極磁気マーカが少なくとも含まれており、
 前記車両は、前記磁気マーカを検出するための処理を実行する検出処理回路を有し、
 当該検出処理回路は、周期的に繰り返し変化する磁気変化を検知できたとき、前記多極磁気マーカである一の磁気マーカを検出できたと判断する多極磁気マーカ検出処理を実行可能である車両用システムにある。
One aspect of the present invention is a vehicle system in which magnetic markers are arranged at intervals on a vehicle running track,
The magnetic markers include at least a multipolar magnetic marker, which is a magnetic marker composed of a plurality of magnets arranged so that the magnetic polarities detected on the vehicle side are alternately different,
The vehicle has a detection processing circuit that executes processing for detecting the magnetic marker,
The detection processing circuit is capable of executing a multipolar magnetic marker detection process in which it is determined that one of the multipolar magnetic markers has been detected when a magnetic change that periodically changes repeatedly can be detected. It's in the system.
 本発明の一態様は、磁気マーカが間隔を空けて配置された走路を走行する車両が、磁気マーカを検出するためのマーカ検出方法であって、
 前記磁気マーカには、車両側で検出する磁極性が交互に異なるように配置された複数の磁石により構成された一の磁気マーカである多極磁気マーカが少なくとも含まれており、
 前記磁気マーカを検出するための検出処理を含み、
 該検出処理には、周期的に繰り返し変化する磁気変化を検知できたとき、前記多極磁気マーカである一の磁気マーカを検出できたと判断する多極磁気マーカ検出処理が少なくとも含まれているマーカ検出方法にある。
One aspect of the present invention is a marker detection method for detecting magnetic markers by a vehicle running on a track where magnetic markers are arranged at intervals, the method comprising:
The magnetic markers include at least a multipolar magnetic marker, which is a magnetic marker composed of a plurality of magnets arranged so that the magnetic polarities detected on the vehicle side are alternately different,
including a detection process for detecting the magnetic marker,
The detection process includes at least a multipolar magnetic marker detection process of determining that one magnetic marker that is the multipolar magnetic marker has been detected when a periodically repeating magnetic change can be detected. It's in the detection method.
 本発明の一態様は、車両が移動中に検出可能なように走路に沿って間隔を空けて配置される磁気マーカであって、
 当該磁気マーカは、磁極性が交互に異なるように配列された複数の磁石により構成された一の磁気マーカである多極磁気マーカであり、
 当該磁気マーカは、周期的に繰り返し変化する磁気変化を車両側で検知することにより検出可能に構成されている磁気マーカにある。
One aspect of the present invention is a magnetic marker arranged at intervals along a running track so as to be detectable while a vehicle is moving, the magnetic marker comprising:
The magnetic marker is a multipolar magnetic marker that is a single magnetic marker composed of a plurality of magnets arranged so that the magnetic polarity is alternately different,
The magnetic marker is configured to be detectable by detecting periodically and repeatedly changing magnetic changes on the vehicle side.
 本発明の技術的特徴のひとつは、磁極性が交互に異なるように配列された複数の磁石によって構成された一の磁気マーカである多極磁気マーカにある。多極磁気マーカは、周期的に繰り返し変化する磁気変化を、車両側に作用する。このような規則的な磁気変化であれば、外乱となる磁気発生源から作用する磁気変化との区別が比較的容易である。車両側では、このような規則的な磁気変化を検出することで、確実性高く多極磁気マーカを検出できる。 One of the technical features of the present invention is a multipolar magnetic marker, which is a magnetic marker composed of a plurality of magnets arranged so that their magnetic polarities are alternately different. The multipolar magnetic marker applies periodically and repeatedly changing magnetic changes to the vehicle side. Such regular magnetic changes are relatively easy to distinguish from magnetic changes acting from a magnetic source that is a disturbance. On the vehicle side, by detecting such regular magnetic changes, multipolar magnetic markers can be detected with high reliability.
車両用システムの説明図。An explanatory diagram of a vehicle system. 単極磁気マーカを示す図。Diagram showing a monopolar magnetic marker. 多極磁気マーカを示す図。A diagram showing a multipolar magnetic marker. 車両の説明図。An explanatory diagram of a vehicle. 磁気センサアレイの構成図。A configuration diagram of a magnetic sensor array. 牽引車両のシステム構成を示すシステム図。FIG. 2 is a system diagram showing the system configuration of the towing vehicle. 磁気マーカを検出する処理の流れを示すフロー図。FIG. 3 is a flow diagram showing the flow of processing for detecting a magnetic marker. 単極磁気マーカが車両に作用する磁気変化の説明図。FIG. 4 is an explanatory diagram of magnetic changes exerted on a vehicle by a unipolar magnetic marker. 多極磁気マーカが車両に作用する磁気変化の説明図。FIG. 3 is an explanatory diagram of magnetic changes caused by a multipolar magnetic marker on a vehicle. 単極磁気マーカが車両に作用する磁気変化(2階差分)の説明図。FIG. 2 is an explanatory diagram of a magnetic change (second order difference) caused by a unipolar magnetic marker on a vehicle. 車幅方向における磁気分布曲線を例示する図。FIG. 3 is a diagram illustrating a magnetic distribution curve in the vehicle width direction. 車幅方向における磁気分布曲線(1階差分)の説明図。An explanatory diagram of a magnetic distribution curve (first floor difference) in the vehicle width direction. 多極磁気マーカが車両に作用する磁気変化(2階差分)の説明図。FIG. 3 is an explanatory diagram of magnetic change (second order difference) that a multipolar magnetic marker acts on a vehicle. 多極磁気マーカを利用する方位検出処理の説明図。FIG. 3 is an explanatory diagram of direction detection processing using a multipolar magnetic marker. テープ状の多極磁気マーカを例示する図。FIG. 3 is a diagram illustrating a tape-shaped multipolar magnetic marker. シート状の多極磁気マーカを例示する図。FIG. 3 is a diagram illustrating a sheet-like multipolar magnetic marker.
 本発明の実施の形態につき、以下の実施例を用いて具体的に説明する。
(実施例1)
 本例は、所定の経路を車両2が自動走行するための車両用システム1に関する例である。この内容について、図1~図16を用いて説明する。
Embodiments of the present invention will be specifically described using the following examples.
(Example 1)
This example relates to a vehicle system 1 for a vehicle 2 to automatically travel along a predetermined route. This content will be explained using FIGS. 1 to 16.
 本例の車両用システム1(図1)は、工場や倉庫などの施設向けのシステムである。車両用システム1では、予め設定された経路1R(走路の一例。)に沿って磁気マーカ10が間隔(例えば2m)を空けて配列されている。車両用システム1では、磁気マーカ10を検出しながら車両2が自動で走行する。 The vehicle system 1 (FIG. 1) of this example is a system for facilities such as factories and warehouses. In the vehicle system 1, magnetic markers 10 are arranged at intervals (for example, 2 m) along a preset route 1R (an example of a running route). In the vehicle system 1, the vehicle 2 automatically travels while detecting the magnetic marker 10.
 本例の車両用システム1は、電線を敷設するための敷設溝(図示略)が床面に設けられた工場や倉庫等にも適用可能である。敷設溝の開口部は、磁気発生源となり得る鉄製の踏み板19により蓋がなされている。経路1Rは、この踏み板19を横切るように設定されている。本例の車両用システム1では、技術的な工夫により、磁気材料である鉄製の踏み板19などの外乱となる磁気発生源の誤検出を抑制しつつ、磁気マーカ10を確実性高く検出可能としている。 The vehicle system 1 of this example is also applicable to factories, warehouses, etc. where laying grooves (not shown) for laying electric wires are provided on the floor surface. The opening of the laying groove is covered with an iron footboard 19 that can serve as a source of magnetism. The route 1R is set to cross this footboard 19. In the vehicle system 1 of this example, through technical ingenuity, it is possible to detect the magnetic marker 10 with high reliability while suppressing false detection of magnetic sources that cause disturbance, such as the footboard 19 made of iron, which is a magnetic material. .
 本例の車両用システム1では、2種類の磁気マーカ10が利用されている。第1の磁気マーカ10は、一の個片状の磁石片100よりなる単極磁気マーカ10A(図2)である。第2の磁気マーカ10は、磁極性が交互に異なるように6個の磁石片100が直線的に連なる一の磁気マーカである多極磁気マーカ10B(図3)である。車両用システム1では、経路1Rに沿って2m間隔で、多極磁気マーカ10B及び単極磁気マーカ10Aのうちのいずれかの磁気マーカ10が配置されている。なお、多極磁気マーカ10Bは、経路1Rの方向に沿って範囲を持っている。多極磁気マーカ10Bと隣り合う磁気マーカ10との間隔である2mは、多極磁気マーカ10Bを構成する6個の磁石片100のうちの代表の一の磁石片100を基準として設定される。 In the vehicle system 1 of this example, two types of magnetic markers 10 are used. The first magnetic marker 10 is a unipolar magnetic marker 10A (FIG. 2) made of a single piece-shaped magnet piece 100. The second magnetic marker 10 is a multipolar magnetic marker 10B (FIG. 3), which is a magnetic marker in which six magnet pieces 100 are linearly arranged so that the magnetic polarities are alternately different. In the vehicle system 1, one of the magnetic markers 10, either the multipolar magnetic marker 10B or the unipolar magnetic marker 10A, is arranged at 2 m intervals along the route 1R. Note that the multipolar magnetic marker 10B has a range along the direction of the route 1R. The distance of 2 m between the multipolar magnetic marker 10B and the adjacent magnetic marker 10 is set with reference to one representative magnet piece 100 among the six magnet pieces 100 constituting the multipolar magnetic marker 10B.
 多極磁気マーカ10Bを構成する6個の磁石片100は、経路1Rの方向に沿う直線上に配列されている。経路1Rが直線路である場合、6個の磁石片100の配列方向は、経路1Rの方向に一致している。経路1Rが曲線路である場合、6個の磁石片100の配列方向は、経路1Rがなす曲線の接線方向に一致している。経路1Rが直線である場合、その直線の方向が経路1Rの方向となる。経路1Rが曲線である場合、接線方向が経路1Rの方向になる。 The six magnet pieces 100 constituting the multipolar magnetic marker 10B are arranged on a straight line along the direction of the route 1R. When the route 1R is a straight route, the arrangement direction of the six magnet pieces 100 matches the direction of the route 1R. When the route 1R is a curved road, the direction in which the six magnet pieces 100 are arranged coincides with the tangential direction of the curve formed by the route 1R. When the route 1R is a straight line, the direction of the straight line is the direction of the route 1R. When the route 1R is a curve, the tangential direction is the direction of the route 1R.
 磁石の一例をなす磁石片100は、単極磁気マーカ10Aを構成するものと、多極磁気マーカ10Bを構成するものと、で共通である。磁石片100は、磁性材料である酸化鉄の磁粉を基材である高分子材料中に分散させたフェライトラバーマグネットである。磁石片100の形状は、直径50mm厚さ2mmのシート状である。磁石片100は、一方の表面がN極をなし、他方の表面がS極をなす永久磁石である。 The magnet piece 100, which is an example of a magnet, is common to both the unipolar magnetic marker 10A and the multipolar magnetic marker 10B. The magnet piece 100 is a ferrite rubber magnet in which magnetic powder of iron oxide, which is a magnetic material, is dispersed in a polymer material, which is a base material. The shape of the magnet piece 100 is a sheet with a diameter of 50 mm and a thickness of 2 mm. The magnet piece 100 is a permanent magnet with one surface serving as a north pole and the other surface serving as a south pole.
 磁石片100は、いずれの表面が上向きに設置されるかにより、車両2側で検出される磁極性が切り替わる。以下、車両2側で検出される磁極性をもって、磁石片100の磁極性とする。なお、以下の説明及び図2や図3等では、N極の磁石片100を磁石片100Nとし、S極の磁石片100を磁石片100Sとする。 The magnetic polarity detected on the vehicle 2 side changes depending on which surface of the magnet piece 100 is installed facing upward. Hereinafter, the magnetic polarity detected on the vehicle 2 side will be defined as the magnetic polarity of the magnet piece 100. In the following description and in FIGS. 2, 3, etc., the N-pole magnet piece 100 is referred to as a magnet piece 100N, and the S-pole magnet piece 100 is referred to as a magnet piece 100S.
 単極磁気マーカ10Aをなす磁石片100は、車両2側で検出可能な磁極性がN極である磁石片100Nである。多極磁気マーカ10Bでは、経路1Rの上流側に位置しており車両2が最先で通過する先頭の磁石片100がS極の磁石片100S、後端の磁石片100がN極の磁石片100Nとなっている。 The magnet piece 100 forming the unipolar magnetic marker 10A is a magnet piece 100N whose magnetic polarity detectable on the vehicle 2 side is north pole. In the multipolar magnetic marker 10B, the leading magnet piece 100, which is located on the upstream side of the route 1R and through which the vehicle 2 passes first, is an S-pole magnet piece 100S, and the rear end magnet piece 100 is an N-pole magnet piece. It is 100N.
 単極磁気マーカ10A及び多極磁気マーカ10Bは、敷設箇所の磁気的な環境に応じて使い分けられる。例えば磁性材料である鉄製の踏み板19(図1参照。)の上や近傍などの外乱となる磁気発生源が近くに存在し、外乱磁気が大きい敷設箇所には、多極磁気マーカ10Bが適用される。一方、外乱となる磁気発生源が近くに存在せず外乱磁気が小さい敷設箇所には、単極磁気マーカ10Aが適用される。なお、各敷設箇所の外乱磁気の大きさ(強度)を実測して、その実測した結果に応じて多極磁気マーカ10Bと単極磁気マーカ10Aとを使い分けることも良い。例えば、閾値を超える外乱磁気が作用する敷設箇所には多極磁気マーカ10Bを配置し、外乱磁気が閾値以下である敷設箇所には単極磁気マーカ10Aを配置すると良い。 The unipolar magnetic marker 10A and the multipolar magnetic marker 10B are used depending on the magnetic environment of the installation location. For example, the multipolar magnetic marker 10B is applied to installation locations where there is a magnetic source that causes disturbance, such as on or near a footboard 19 made of iron (see Figure 1), which is a magnetic material, and where the disturbance magnetic field is large. Ru. On the other hand, the unipolar magnetic marker 10A is applied to an installation location where there is no magnetic disturbance source nearby and the disturbance magnetic field is small. Note that it is also possible to actually measure the magnitude (intensity) of the disturbance magnetism at each installation location and use the multipolar magnetic marker 10B and the unipolar magnetic marker 10A depending on the measured result. For example, it is preferable to arrange the multipolar magnetic marker 10B at the installation location where disturbance magnetism exceeding a threshold value acts, and to arrange the unipolar magnetic marker 10A at the installation location where the disturbance magnetism is below the threshold value.
 次に、本例の車両用システム1を構成する車両2について説明する。車両2は、図4のごとく、駆動輪を備える牽引車両21と、この牽引車両21に牽引される四輪の台車23と、により構成されている。牽引車両21は、長さ2m、幅1mであり、台車23は、長さ2m、幅1mである。 Next, the vehicle 2 that constitutes the vehicle system 1 of this example will be explained. As shown in FIG. 4, the vehicle 2 includes a towing vehicle 21 having drive wheels, and a four-wheeled cart 23 towed by the towing vehicle 21. The towing vehicle 21 has a length of 2 m and a width of 1 m, and the truck 23 has a length of 2 m and a width of 1 m.
 台車23は、牽引車両21あるいは先行する台車23に連結するための連結バー230を備えている。台車23は、左右一対の前側の従動輪231と、左右一対の後ろ側の固定輪232を備えている。 The truck 23 is equipped with a connection bar 230 for connecting to the towing vehicle 21 or the preceding truck 23. The trolley 23 includes a pair of left and right front driven wheels 231 and a left and right pair of rear fixed wheels 232.
 牽引車両21は、操舵輪である1輪の前輪211と、駆動輪である左右一対の後輪212と、を備える3輪車である。牽引車両21では、前輪211の前方に、磁気センサアレイ3が配設されている。棒状の磁気センサアレイ3は、牽引車両21の車幅方向に沿うように取り付けられている。 The towing vehicle 21 is a three-wheeled vehicle that includes one front wheel 211 that is a steered wheel and a pair of left and right rear wheels 212 that are drive wheels. In the towing vehicle 21 , a magnetic sensor array 3 is disposed in front of the front wheels 211 . The rod-shaped magnetic sensor array 3 is attached along the vehicle width direction of the towing vehicle 21.
 磁気センサアレイ3(図5)は、複数の磁気センサCnが一直線上に配列された棒状のユニットであり、牽引車両21の車幅方向に沿うように取り付けられる(図4参照。)。本例の構成では、前輪211よりも前側に磁気センサアレイ3が取り付けられている。なお、車両2が移動する床面を基準とした磁気センサアレイ3の取り付け高さは、100mmとなっている。磁気センサアレイ3の取付位置は、本例の位置に代えて、車体の後部であっても良い。 The magnetic sensor array 3 (FIG. 5) is a rod-shaped unit in which a plurality of magnetic sensors Cn are arranged in a straight line, and is attached along the vehicle width direction of the towing vehicle 21 (see FIG. 4). In the configuration of this example, the magnetic sensor array 3 is attached to the front side of the front wheel 211. Note that the mounting height of the magnetic sensor array 3 with respect to the floor surface on which the vehicle 2 moves is 100 mm. The mounting position of the magnetic sensor array 3 may be at the rear of the vehicle body instead of the position in this example.
 磁気センサアレイ3(図5)は、一直線上に配列された15個の磁気センサCn(nは1~15の整数)と、図示しないCPU等を内蔵した検出処理回路32と、を備えている。棒状の磁気センサアレイ3では、その長手方向に沿って15個の磁気センサCnが5cm間隔で配列されている。車幅方向に沿うように磁気センサアレイ3が牽引車両21に取り付けられたとき、15個の磁気センサCnが車幅方向(横方向)に沿って一直線上に配列される。車幅方向に配列された15個の磁気センサCnによれば、磁気マーカ10を検出した際、その磁気マーカ10の車幅方向の位置を検出できる。15個の磁気センサCnに相対する磁気マーカ10の位置に基づけば、磁気マーカ10に対する牽引車両21の横ずれ量(横方向の偏差)を特定可能である。 The magnetic sensor array 3 (FIG. 5) includes 15 magnetic sensors Cn (n is an integer from 1 to 15) arranged in a straight line, and a detection processing circuit 32 containing a CPU (not shown), etc. . In the rod-shaped magnetic sensor array 3, 15 magnetic sensors Cn are arranged at intervals of 5 cm along its longitudinal direction. When the magnetic sensor array 3 is attached to the towing vehicle 21 along the vehicle width direction, 15 magnetic sensors Cn are arranged in a straight line along the vehicle width direction (lateral direction). According to the 15 magnetic sensors Cn arranged in the vehicle width direction, when the magnetic marker 10 is detected, the position of the magnetic marker 10 in the vehicle width direction can be detected. Based on the position of the magnetic marker 10 relative to the 15 magnetic sensors Cn, the amount of lateral deviation (lateral deviation) of the towing vehicle 21 with respect to the magnetic marker 10 can be specified.
 なお、本例の構成では、15個の磁気センサCnのうち、中央に位置する磁気センサC8が牽引車両21の中心に位置している。本例では、磁気センサC8の位置が基準位置に設定されている。この基準位置は、磁気マーカ10に対する牽引車両21の横ずれ量を特定する際、牽引車両21を代表する位置として取り扱いされる。 Note that in the configuration of this example, among the 15 magnetic sensors Cn, the magnetic sensor C8 located at the center is located at the center of the towing vehicle 21. In this example, the position of the magnetic sensor C8 is set to the reference position. This reference position is treated as a position representative of the towing vehicle 21 when specifying the amount of lateral deviation of the towing vehicle 21 with respect to the magnetic marker 10.
 磁気センサCnとしては、例えば、精度の高いMI(Magnet Impedance)センサを採用すると良い。MIセンサは、アモルファスワイヤなどの感磁体のインピーダンスが外部磁界に応じて敏感に変化するという公知のMI効果(Magnet Impedance Effect)を利用する磁気センサである。各磁気センサCnは、鉛直方向に作用する磁気の強度を計測できるように磁気センサアレイ3に組み込まれている。 As the magnetic sensor Cn, for example, a highly accurate MI (Magnetic Impedance) sensor may be adopted. The MI sensor is a magnetic sensor that utilizes the well-known MI effect (Magnet Impedance Effect) in which the impedance of a magnetically sensitive material such as an amorphous wire changes sensitively in response to an external magnetic field. Each magnetic sensor Cn is incorporated into the magnetic sensor array 3 so as to be able to measure the intensity of magnetism acting in the vertical direction.
 磁気センサアレイ3の検出処理回路32(図5)は、磁気マーカ10を検出するためのマーカ検出処理等を実行する演算回路である。検出処理回路32は、図示は省略するが、各種の演算を実行するCPU(central processing unit)や、ROM(read only memory)・RAM(random access memory)などのメモリ素子、等を利用して構成されている。検出処理回路32は、磁気マーカ10を検出した旨の信号、磁気マーカ10に対する牽引車両21の横ずれ量、牽引車両21の進行方向、などを検出処理の結果として出力する。 The detection processing circuit 32 (FIG. 5) of the magnetic sensor array 3 is an arithmetic circuit that executes marker detection processing and the like for detecting the magnetic marker 10. Although not shown, the detection processing circuit 32 is configured using a CPU (central processing unit) that executes various calculations, memory elements such as ROM (read only memory) and RAM (random access memory), etc. has been done. The detection processing circuit 32 outputs a signal indicating that the magnetic marker 10 has been detected, the amount of lateral deviation of the towing vehicle 21 with respect to the magnetic marker 10, the traveling direction of the towing vehicle 21, etc. as a result of the detection processing.
 牽引車両21は、走行を制御する制御ユニット40を中心として、図6に示すように電気的に構成されている。制御ユニット40には、上記の磁気センサアレイ3、慣性航法を可能にするIMU(Inertial Measurement Unit)42、後輪212を回転駆動するモータユニット44、後輪212の回転に応じてパルスを出力する車輪速ユニット442、操舵輪である前輪211を操舵する操舵ユニット46、地図データベース48、等が接続されている。 The towing vehicle 21 is electrically configured as shown in FIG. 6, centering on a control unit 40 that controls travel. The control unit 40 includes the magnetic sensor array 3 described above, an IMU (Inertial Measurement Unit) 42 that enables inertial navigation, a motor unit 44 that rotationally drives the rear wheel 212, and outputs pulses in accordance with the rotation of the rear wheel 212. A wheel speed unit 442, a steering unit 46 that steers the front wheels 211 that are steered wheels, a map database 48, and the like are connected.
 IMU42は、慣性航法により牽引車両21の相対位置や車両方位などを推定するユニットである。IMU42は、図示は省略するが、方位を計測する電子コンパスである2軸磁気センサ、加速度センサ、yaw軸回りの角速度を計測するジャイロセンサ等、を備えている。ここで、yaw軸は、鉛直方向の軸である。 The IMU 42 is a unit that estimates the relative position and vehicle orientation of the towing vehicle 21 by inertial navigation. Although not shown, the IMU 42 includes a two-axis magnetic sensor that is an electronic compass that measures orientation, an acceleration sensor, a gyro sensor that measures angular velocity around the yaw axis, and the like. Here, the yaw axis is an axis in the vertical direction.
 地図データベース48は、経路1R(図1参照。)の形状や待機位置などを表すマップデータを記憶するデータベースである。マップデータには、経路1Rに配置された磁気マーカ10がひも付けられている。例えば待機位置を出発した後の磁気マーカ10の検出個数を利用してマップデータを参照すれば、直近で検出された磁気マーカ10の位置を特定可能である。制御ユニット40は、磁気マーカ10の位置に基づいて経路1R上の車両2の位置を特定する。 The map database 48 is a database that stores map data representing the shape and waiting position of the route 1R (see FIG. 1). The map data is linked to the magnetic marker 10 placed on the route 1R. For example, by referring to map data using the number of detected magnetic markers 10 after leaving the standby position, the position of the most recently detected magnetic marker 10 can be specified. Control unit 40 identifies the position of vehicle 2 on route 1R based on the position of magnetic marker 10.
 制御ユニット40は、各種の演算を実行するCPUや、ROM・RAMなどのメモリ素子、等を含めて構成された電子回路(図示略)を備えるユニットである。制御ユニット40は、操舵ユニット46やモータユニット44に対し、制御値を入力する。操舵ユニット46に対する制御値は、前輪211の舵角の制御目標である指示舵角である。モータユニット44に対する制御値は、後輪212の回転角速度の制御目標である指示回転角速度である。制御ユニット40は、操舵ユニット46を介して前輪211の舵角を制御すると共に、モータユニット44を介して後輪212の回転角速度を制御する。制御ユニット40は、このような制御により、磁気マーカ10に対する車両2の偏差(横ずれ量)をゼロに近づけるように車両2を走行させる。 The control unit 40 is a unit that includes an electronic circuit (not shown) that includes a CPU that executes various calculations, a memory element such as a ROM/RAM, and the like. The control unit 40 inputs control values to the steering unit 46 and the motor unit 44. The control value for the steering unit 46 is a commanded steering angle that is a control target for the steering angle of the front wheels 211. The control value for the motor unit 44 is a commanded rotational angular velocity that is a control target for the rotational angular velocity of the rear wheel 212. The control unit 40 controls the steering angle of the front wheels 211 via the steering unit 46 and the rotational angular velocity of the rear wheels 212 via the motor unit 44 . Through such control, the control unit 40 causes the vehicle 2 to travel so that the deviation (lateral deviation amount) of the vehicle 2 with respect to the magnetic marker 10 approaches zero.
 以下、(a)磁気センサアレイによる磁気計測、(b)検出対象の磁気マーカの種類を判断する処理、(c)単極磁気マーカ検出処理、(d)多極磁気マーカ検出処理、(e)多極磁気マーカを利用する方位計測処理、の内容について、図7のフロー図を参照しながら順番に説明する。これらの処理は、いずれも、検出処理回路32(磁気センサアレイ3)が実行する処理である。 Below, (a) magnetic measurement by a magnetic sensor array, (b) processing to determine the type of magnetic marker to be detected, (c) unipolar magnetic marker detection processing, (d) multipolar magnetic marker detection processing, (e) The contents of the azimuth measurement process using the multipolar magnetic marker will be explained in order with reference to the flowchart of FIG. These processes are all executed by the detection processing circuit 32 (magnetic sensor array 3).
 (a)磁気センサアレイによる磁気計測は、図7中のステップS101~S102の処理である。(b)検出対象の磁気マーカの種類を判断する処理は、同図中のステップS103~S104・S114の処理である。(c)単極磁気マーカの検出処理は、同図中のステップS105~S108の処理である。(d)多極磁気マーカの検出処理は、同図中のステップS115~S118の処理である。(e)多極磁気マーカを利用する方位計測処理は、同図中のステップS119~S120の処理である。 (a) Magnetic measurement by the magnetic sensor array is the processing of steps S101 to S102 in FIG. (b) The process of determining the type of magnetic marker to be detected is the process of steps S103 to S104 and S114 in the figure. (c) The unipolar magnetic marker detection process is the process of steps S105 to S108 in the figure. (d) The multipolar magnetic marker detection process is the process of steps S115 to S118 in the figure. (e) The direction measurement process using the multipolar magnetic marker is the process of steps S119 to S120 in the figure.
(a)磁気センサアレイによる磁気計測
 磁気センサアレイ3を構成する各磁気センサCnは、上記の通り、鉛直方向に磁気感度を有している。各磁気センサCnは、例えば3kHzの周波数で、鉛直方向に作用する磁気強度を計測する。磁気センサアレイ3の検出処理回路32は、各磁気センサCnが3kHzの周波数で計測した鉛直方向の磁気強度(磁気計測値)を磁気センサCn毎にサンプリングする。
(a) Magnetic measurement by magnetic sensor array As described above, each magnetic sensor Cn constituting the magnetic sensor array 3 has magnetic sensitivity in the vertical direction. Each magnetic sensor Cn measures the magnetic strength acting in the vertical direction, for example, at a frequency of 3 kHz. The detection processing circuit 32 of the magnetic sensor array 3 samples the vertical magnetic intensity (magnetic measurement value) measured by each magnetic sensor Cn at a frequency of 3 kHz for each magnetic sensor Cn.
 このようにして検出処理回路32は、磁気センサC1~15の各磁気センサにつき、時系列の磁気計測値を取得する(図7、S101)。なお、磁気センサCnによる磁気計測値の正負は、本例の構成では、N極の磁石片100Nの場合が正、S極の磁石片100Sの場合が負となっている。単極磁気マーカ10Aに対応する典型的な時系列の磁気計測値の分布曲線は、図8(a)に例示する通りである。多極磁気マーカ10Bに対応する典型的な時系列の磁気計測値の分布曲線は、図9(a)に例示する通りである。 In this way, the detection processing circuit 32 obtains time-series magnetic measurement values for each of the magnetic sensors C1 to C15 (FIG. 7, S101). In addition, in the configuration of this example, the positive/negative value of the magnetic measurement value by the magnetic sensor Cn is positive in the case of the N-pole magnet piece 100N, and negative in the case of the S-pole magnet piece 100S. A typical time-series distribution curve of magnetic measurement values corresponding to the unipolar magnetic marker 10A is as illustrated in FIG. 8(a). A typical time-series distribution curve of magnetic measurement values corresponding to the multipolar magnetic marker 10B is as illustrated in FIG. 9(a).
 なお、図8(a)及び図9(a)は、15個の磁気センサC1~C15のうち、磁気マーカ10の真上あるいは直近を通過する一の磁気センサの時系列の磁気計測値の分布曲線を例示する図である。これらの図の縦軸は、磁気計測値の大きさを示し、横軸は、車両2の進行方向の位置を示している。なお、車両2が一定速度で移動している場合であれば、横軸を時間に置換しても分布曲線の波形は変わらない。 Note that FIGS. 8(a) and 9(a) show the time-series distribution of magnetic measurement values of one of the 15 magnetic sensors C1 to C15 that passes directly above or in the vicinity of the magnetic marker 10. It is a figure which illustrates a curve. The vertical axis of these figures indicates the magnitude of the magnetic measurement value, and the horizontal axis indicates the position of the vehicle 2 in the traveling direction. Note that if the vehicle 2 is moving at a constant speed, the waveform of the distribution curve will not change even if the horizontal axis is replaced with time.
 なお、図8中の丸囲み数字1の地点は、一の磁石片100Nの位置である。図9中の丸囲み数字1~6の地点は、多極磁気マーカ10Bを構成する各磁石片100(本例では6個の磁石片100)の位置である。図9中の丸囲み数字1の地点は、多極磁気マーカ10Bの先頭の磁石片100Sの位置である。丸囲み数字2の地点は、2番目の磁石片100Nの位置である。丸囲み数字6の地点は、最後、6番目の磁石片100Nの位置である。 Note that the point marked by the encircled number 1 in FIG. 8 is the position of the first magnet piece 100N. Points with encircled numbers 1 to 6 in FIG. 9 are the positions of each magnet piece 100 (six magnet pieces 100 in this example) constituting the multipolar magnetic marker 10B. The point marked by the encircled number 1 in FIG. 9 is the position of the first magnet piece 100S of the multipolar magnetic marker 10B. The point with the circled number 2 is the position of the second magnet piece 100N. The point with the circled number 6 is the position of the sixth and final magnet piece 100N.
 検出処理回路32は、各磁気センサCnによる時系列の磁気計測値(図8(a)、図9(a)参照。)について、進行方向の差分を求める。この進行方向の差分は、進行方向の位置に関する微分に相当する。なお、進行方向は、時系列の磁気計測値における時間方向に相当する。進行方向の差分は、一様に近く作用する磁気を除去するために効果的である。一様に近く作用する磁気としては、磁気マーカ10をなす磁石片100よりも大きな磁気発生源(例えば機械装置や鉄製の踏み板19など。)から作用する磁気や、地磁気などの外乱磁気が考えられる。 The detection processing circuit 32 calculates the difference in the traveling direction of the time-series magnetic measurement values (see FIGS. 8(a) and 9(a)) by each magnetic sensor Cn. This difference in the traveling direction corresponds to a differential with respect to the position in the traveling direction. Note that the traveling direction corresponds to the time direction in the time-series magnetic measurement values. The difference in the traveling direction is effective for removing magnetism that acts nearly uniformly. Magnetism that acts uniformly and closely may include magnetism that acts from a magnetic source (for example, a mechanical device or iron footboard 19, etc.) that is larger than the magnet piece 100 forming the magnetic marker 10, or disturbance magnetism such as terrestrial magnetism. .
 例えば図8(a)、図9(a)の時系列の磁気計測値について進行方向の差分(1階差分)を求めれば、図8(b)あるいは図9(b)の時系列データが得られる。これらの時系列データについて、さらに進行方向の差分(2階差分)を求めれば、図8(c)あるいは図9(c)の時系列データが得られる。図8(c)、図9(c)に例示するごとく、進行方向の2階差分の時系列データでは、N極の磁石片100Nに対応して負の極値が現れると共に、S極の磁石片100Sに対応して正の極値が現れる。 For example, if the difference in the traveling direction (first-order difference) is calculated for the time-series magnetic measurement values of Figs. 8(a) and 9(a), the time-series data of Fig. 8(b) or 9(b) can be obtained. It will be done. If the difference in the traveling direction (second order difference) is further calculated for these time series data, the time series data shown in FIG. 8(c) or FIG. 9(c) can be obtained. As illustrated in FIGS. 8(c) and 9(c), in the time series data of the second-order difference in the traveling direction, a negative extreme value appears corresponding to the N-pole magnet piece 100N, and a negative extremum value appears corresponding to the S-pole magnet piece A positive extreme value appears corresponding to the segment 100S.
 検出処理回路32は、各磁気センサCnによる時系列の磁気計測値(例えば図8(a)、図9(a)。)について、それぞれ、進行方向の2階差分値である15個の演算値を求める。各演算値は、図8(c)、図9(c)の時系列データのうちの一の時点のデータ値である。検出処理回路32は、磁気センサC1~15に係る15個の演算値の絶対値に関する閾値処理を実行する(図7、S102)。閾値は、例えば、図8(c)、図9(c)におけるハッチング領域の境界の値である。 The detection processing circuit 32 calculates 15 calculated values, which are second-order difference values in the traveling direction, for the time-series magnetic measurement values (for example, FIGS. 8(a) and 9(a)) obtained by each magnetic sensor Cn. seek. Each calculated value is a data value at one point in time among the time series data in FIGS. 8(c) and 9(c). The detection processing circuit 32 executes threshold processing regarding the absolute values of the 15 calculated values related to the magnetic sensors C1 to C15 (FIG. 7, S102). The threshold value is, for example, the value at the boundary of the hatched area in FIGS. 8(c) and 9(c).
 図7中のステップS102の閾値処理では、上記のごとく求めた15個の演算値(絶対値)のいずれかが閾値を超えるか否かにより、検出対象の磁気マーカ10の有無が判断される。15個の演算値(絶対値)のいずれかが閾値を超える場合、検出処理回路32は、磁気マーカ10の候補である磁気発生源が存在していると判断する。検出処理回路32は、磁気発生源が存在していると判断すると、(b)検出対象の磁気マーカ10の種類を判断する処理を実行する。 In the threshold value processing in step S102 in FIG. 7, the presence or absence of the magnetic marker 10 to be detected is determined depending on whether any of the 15 calculated values (absolute values) obtained as described above exceeds the threshold value. If any of the 15 calculated values (absolute values) exceeds the threshold, the detection processing circuit 32 determines that a magnetic source that is a candidate for the magnetic marker 10 is present. When the detection processing circuit 32 determines that a magnetic source is present, it executes (b) a process of determining the type of magnetic marker 10 to be detected.
 なお、検出処理回路32は、磁気センサC1~15に係る15個の演算値(絶対値)のうち、閾値を超える演算値が1個のみの場合、その演算値に対応する一の磁気センサを特定する。15個の演算値(絶対値)のうち、閾値を超える演算値が2個以上の複数の場合には、絶対値が最も大きい演算値に対応する一の磁気センサを特定する。検出処理回路32は、このようにして、15個の磁気センサC1~15のうち、検出対象の磁気マーカ(外乱の磁気発生源の可能性有り。)の真上あるいは直近を通過する一の磁気センサを特定する。 Note that, if only one of the 15 calculated values (absolute values) related to the magnetic sensors C1 to C15 exceeds the threshold, the detection processing circuit 32 selects the one magnetic sensor corresponding to the calculated value. Identify. If there are two or more calculated values exceeding the threshold among the 15 calculated values (absolute values), one magnetic sensor corresponding to the calculated value with the largest absolute value is identified. In this way, the detection processing circuit 32 detects one of the 15 magnetic sensors C1 to C15 that passes directly above or in the vicinity of the magnetic marker to be detected (which may be a magnetic source of disturbance). Identify the sensor.
(b)検出対象の磁気マーカの種類を判断する処理
 磁気センサアレイ3の検出処理回路32は、閾値処理の結果、磁気発生源が存在していると判断すると(図7、S102:YES)、検出対象の磁気マーカ10の種類(単極磁気マーカ10Aか多極磁気マーカ10Bか)を判断する処理を実行する(S103)。この判断処理は、単極磁気マーカ10Aを検出するための単極磁気マーカ検出処理を実行するか、多極磁気マーカ10Bを検出するための多極磁気マーカ検出処理を実行するか、を選択するための処理である。なお、この段階では、検出対象の磁気発生源が磁気マーカ10であるのか外乱であるのかが不定である。
(b) Processing for determining the type of magnetic marker to be detected When the detection processing circuit 32 of the magnetic sensor array 3 determines that a magnetic source is present as a result of the threshold processing (FIG. 7, S102: YES), A process of determining the type of magnetic marker 10 to be detected (unipolar magnetic marker 10A or multipolar magnetic marker 10B) is executed (S103). This judgment process selects whether to execute the unipolar magnetic marker detection process to detect the unipolar magnetic marker 10A or the multipolar magnetic marker detection process to detect the multipolar magnetic marker 10B. This is a process for Note that at this stage, it is unclear whether the magnetic generation source to be detected is the magnetic marker 10 or a disturbance.
 検出処理回路32は、上記のステップS102の閾値処理において絶対値が閾値を超えた演算値の正負により、検出対象の磁気マーカ10の種類を判断する(S103)。検出処理回路32は、この演算値が負のとき、検出対象の磁気マーカ10を単極磁気マーカ10Aと判断する(S103:単極)。そして、磁気マーカ10を検出するための処理として、単極磁気マーカ検出処理を選択する(S104)。検出処理回路32は、この演算値が正のとき、検出対象の磁気マーカ10を多極磁気マーカ10Bと判断する(S103:多極)。そして、磁気マーカ10を検出するための処理として、多極磁気マーカ検出処理を選択する(S114)。 The detection processing circuit 32 determines the type of the magnetic marker 10 to be detected based on the sign of the calculated value whose absolute value exceeds the threshold in the threshold processing of step S102 described above (S103). When this calculated value is negative, the detection processing circuit 32 determines that the magnetic marker 10 to be detected is the unipolar magnetic marker 10A (S103: unipolar). Then, unipolar magnetic marker detection processing is selected as the processing for detecting the magnetic marker 10 (S104). When this calculated value is positive, the detection processing circuit 32 determines that the magnetic marker 10 to be detected is a multipolar magnetic marker 10B (S103: multipolar). Then, multipolar magnetic marker detection processing is selected as the processing for detecting the magnetic marker 10 (S114).
(c)単極磁気マーカ検出処理
 検出処理回路32は、検出対象の磁気マーカ10が単極磁気マーカ10Aと判断した場合(図7、S103:単極)、単極磁気マーカ検出処理を選択する(S104)。検出処理回路32は、上記のステップS102において検出対象の磁気マーカ10の真上あるいは直近を通過すると特定された一の磁気センサによる時系列データ(進行方向の2階差分値)を対象として単極磁気マーカ検出処理を実行する。検出対象の磁気マーカ10が、外乱の磁気発生源ではなく、正しく単極磁気マーカ10Aであれば、上記一の磁気センサによる時系列データは、図10に例示する分布曲線を呈する。なお、図10の分布曲線は、図8(c)の抜き出しである。
(c) Unipolar magnetic marker detection process When the detection processing circuit 32 determines that the magnetic marker 10 to be detected is the unipolar magnetic marker 10A (FIG. 7, S103: Unipolar), the detection processing circuit 32 selects the unipolar magnetic marker detection process. (S104). The detection processing circuit 32 performs unipolar processing on time-series data (second-order difference value in the traveling direction) from one magnetic sensor identified as passing directly above or in the immediate vicinity of the magnetic marker 10 to be detected in step S102. Execute magnetic marker detection processing. If the magnetic marker 10 to be detected is not a magnetic source of disturbance but is correctly the unipolar magnetic marker 10A, the time-series data from the first magnetic sensor exhibits a distribution curve illustrated in FIG. 10. Note that the distribution curve in FIG. 10 is an excerpt from FIG. 8(c).
 検出処理回路32は、上記のステップS102(図7)において閾値を超える演算値(絶対値)が得られた地点A(図10)を基準とし、単極磁気マーカ検出処理を適用する対象区間P(図10)を設定する。対象区間Pの起点は、地点Aの20cm手前の地点である。対象区間Pの終点は、地点Aを20cm通り過ぎた地点である。検出処理回路32は、対象区間Pにおける上記の一の磁気センサによる時系列データを取り込み(図7、S105)、単極磁気マーカ検出処理を実行する(S106)。 The detection processing circuit 32 uses the point A (FIG. 10) where the calculated value (absolute value) exceeding the threshold value was obtained in step S102 (FIG. 7) as a reference point, and selects a target section P to which the unipolar magnetic marker detection processing is applied. (Figure 10). The starting point of the target section P is a point 20 cm before point A. The end point of the target section P is a point that has passed point A by 20 cm. The detection processing circuit 32 takes in the time-series data from the above-mentioned one magnetic sensor in the target section P (FIG. 7, S105), and executes unipolar magnetic marker detection processing (S106).
 検出処理回路32は、対象区間Pの時系列データの分布波形(図10)が、負の極値を頂点とするひと山の波形となっているか否かを判断する(図7、S107)。検出処理回路32は、分布波形の対称性の度合い、及び他の極値の有無に基づき、この判断を実行する。この判断においては、例えば、負の極値を中心とした波形の対称性が高く、正の閾値を超える極値および負の閾値を超える極値が他に存在していない、等の検出条件を設定すると良い。このような検出条件に合致したとき、検出処理回路32は、対象区間Pの時系列データの分布波形が単極磁気マーカ10Aに起因する波形であると判断する(S107:YES)。 The detection processing circuit 32 determines whether the distribution waveform of the time-series data in the target section P (FIG. 10) is a waveform with a peak at the negative extreme value (FIG. 7, S107). The detection processing circuit 32 makes this determination based on the degree of symmetry of the distribution waveform and the presence or absence of other extreme values. In this judgment, detection conditions are considered, such as, for example, the waveform has high symmetry around the negative extreme value, and there are no other extreme values that exceed the positive threshold or negative threshold. It is good to set it. When such detection conditions are met, the detection processing circuit 32 determines that the distribution waveform of the time series data of the target section P is a waveform caused by the unipolar magnetic marker 10A (S107: YES).
 このようにして単極磁気マーカ10Aを検出できたとき、検出処理回路32は、ひと山の波形の頂点(負側の頂点)の地点B(図10参照。)を特定する。この地点Bは、単極磁気マーカ10Aの真上に磁気センサアレイ3が位置する地点である。そして検出処理回路32は、地点Bにおける各磁気センサCnの磁気計測値を取得し、磁気マーカ10に対する車両2の横方向の偏差である横ずれ量を検出する(図7、S108)。 When the unipolar magnetic marker 10A is detected in this way, the detection processing circuit 32 specifies the point B (see FIG. 10) of the apex (negative side apex) of the single peak waveform. This point B is a point where the magnetic sensor array 3 is located directly above the monopolar magnetic marker 10A. Then, the detection processing circuit 32 acquires the magnetic measurement value of each magnetic sensor Cn at the point B, and detects the amount of lateral deviation, which is the lateral deviation of the vehicle 2 with respect to the magnetic marker 10 (FIG. 7, S108).
 地点Bにおける各磁気センサCnの磁気計測値は、例えば図11に例示するように、磁気計測値の車幅方向の分布をなしている。検出処理回路32は、同図の分布の頂点の位置を特定する。磁気計測値の車幅方向の分布の頂点は、磁気マーカ10の真上に現れる。 The magnetic measurement values of each magnetic sensor Cn at point B have a distribution of magnetic measurement values in the vehicle width direction, as illustrated in FIG. 11, for example. The detection processing circuit 32 identifies the position of the apex of the distribution in the figure. The apex of the distribution of magnetic measurement values in the vehicle width direction appears directly above the magnetic marker 10.
 なお、車幅方向に隣り合う2つの磁気センサの磁気計測値の差分(車幅方向の差分)を求めることも良い。車幅方向に隣り合う2つの磁気センサの磁気計測値(図11)について1回、車幅方向の差分を求めれば、図12のごとく正負が反転する分布波形が得られる。車幅方向の差分によれば、図8及び図9の進行方向の差分の場合と同様、一様に近く作用する外乱磁気を低減できる。 Note that it is also good to find the difference between the magnetic measurement values of two magnetic sensors adjacent in the vehicle width direction (difference in the vehicle width direction). If the difference in the vehicle width direction is calculated once for the magnetic measurement values of two magnetic sensors adjacent in the vehicle width direction (FIG. 11), a distribution waveform whose sign is inverted as shown in FIG. 12 can be obtained. According to the difference in the vehicle width direction, as in the case of the difference in the traveling direction shown in FIGS. 8 and 9, it is possible to reduce the disturbance magnetism that acts almost uniformly.
 例えば図12の車幅方向の差分値の分布波形では、単極磁気マーカ10Aをなす磁石片100Nの真上で正負が反転するゼロクロスが現れる。同図の場合、正負が反転する位置がC9とC10との中間辺りのC9.5に相当する位置となっており、C9.5が車幅方向における磁石片100Nの位置ということになる。上記のように磁気センサC9とC10の間隔は5cmである。また、磁気マーカ10に対する横ずれ量を特定する際の車両2(牽引車両21)の基準位置は上記の通り、磁気センサC8の位置である。それ故、磁気マーカ10に対する車両2(牽引車両21)の横方向の偏差(横ずれ量(絶対値))は(9.5-8)×5cm=7.5cmとなる。同図の例は、磁気マーカ10Aに対して車両2(牽引車両21)が左に寄った場合の例である。なお、横方向の偏差の正負は、磁気マーカ10に対して車両2が右に寄った場合を正、左に寄った場合を負とする。したがって、図12の場合の横ずれ量は、マイナス7.5cmということになる。 For example, in the distribution waveform of the difference value in the vehicle width direction shown in FIG. 12, a zero cross whose polarity is reversed appears directly above the magnet piece 100N forming the unipolar magnetic marker 10A. In the case of the figure, the position where the polarity is reversed is a position corresponding to C9.5, which is about halfway between C9 and C10, and C9.5 is the position of the magnet piece 100N in the vehicle width direction. As mentioned above, the distance between the magnetic sensors C9 and C10 is 5 cm. Further, as described above, the reference position of the vehicle 2 (towing vehicle 21) when specifying the amount of lateral deviation with respect to the magnetic marker 10 is the position of the magnetic sensor C8. Therefore, the lateral deviation (lateral deviation amount (absolute value)) of the vehicle 2 (towing vehicle 21) with respect to the magnetic marker 10 is (9.5-8)×5 cm=7.5 cm. The example in the figure is an example where the vehicle 2 (towing vehicle 21) has moved to the left with respect to the magnetic marker 10A. Note that the sign of the deviation in the lateral direction is positive when the vehicle 2 moves to the right with respect to the magnetic marker 10, and negative when it moves to the left. Therefore, the amount of lateral deviation in the case of FIG. 12 is -7.5 cm.
 磁気センサアレイ3は、単極磁気マーカ検出処理の結果を制御ユニット40に入力する。単極磁気マーカ検出処理の結果には、単極磁気マーカ10Aを検出できた旨、検出時点(検出地点、図10中の地点B)、横ずれ量(横方向の偏差)、等の情報が含まれる。 The magnetic sensor array 3 inputs the results of the unipolar magnetic marker detection process to the control unit 40. The result of the unipolar magnetic marker detection process includes information such as the fact that the unipolar magnetic marker 10A was detected, the detection time point (detection point, point B in FIG. 10), the amount of lateral deviation (lateral deviation), etc. It will be done.
(d)多極磁気マーカ検出処理
 検出処理回路32は、検出対象の磁気マーカ10を多極磁気マーカ10Bと判断した場合(図7、S103:多極)、多極磁気マーカ検出処理を選択する(S114)。検出処理回路32は、上記のステップS102において検出対象の磁気マーカ10の真上あるいは直近を通過すると特定した一の磁気センサによる時系列データ(進行方向の2階差分値)を対象として多極磁気マーカ検出処理を実行する。検出対象の磁気マーカ10が、外乱の磁気発生源ではなく、正しく多極磁気マーカ10Bであれば、上記一の磁気センサによる時系列データは、図13に例示する分布曲線を呈する。なお、同図の分布曲線は、図9(c)の抜き出しである。
(d) Multipolar magnetic marker detection processing When the detection processing circuit 32 determines that the magnetic marker 10 to be detected is the multipolar magnetic marker 10B (FIG. 7, S103: multipolar), the detection processing circuit 32 selects multipolar magnetic marker detection processing. (S114). The detection processing circuit 32 performs multi-polar magnetic processing on the time-series data (second-order difference value in the traveling direction) from the one magnetic sensor identified in step S102 as passing directly above or in the vicinity of the magnetic marker 10 to be detected. Execute marker detection processing. If the magnetic marker 10 to be detected is not a magnetic source of disturbance but is a correct multipolar magnetic marker 10B, the time-series data from the first magnetic sensor exhibits a distribution curve illustrated in FIG. 13. Note that the distribution curve in the figure is an excerpt from FIG. 9(c).
 検出処理回路32は、上記のステップS102(図7)において閾値を超える演算値(絶対値)が得られた地点A(図13)を基準とし、多極磁気マーカ検出処理を適用する対象区間P(図13)を設定する。対象区間Pの起点は、地点Aの20cm手前の地点である。対象区間Pの終点は、地点Aを80cm通り過ぎた地点である。検出処理回路32は、上記の一の磁気センサによる対象区間P(図13中の対象区間P)の時系列データを取り込み(図7、S115)、多極磁気マーカ検出処理を実行する(S116)。 The detection processing circuit 32 uses the point A (FIG. 13) where the calculated value (absolute value) exceeding the threshold value was obtained in step S102 (FIG. 7) as a reference point, and selects a target section P to which the multipolar magnetic marker detection process is applied. (Figure 13). The starting point of the target section P is a point 20 cm before point A. The end point of the target section P is a point that has passed point A by 80 cm. The detection processing circuit 32 takes in the time series data of the target section P (target section P in FIG. 13) obtained by the above-mentioned one magnetic sensor (FIG. 7, S115), and executes the multipolar magnetic marker detection process (S116). .
 検出処理回路32は、対象区間Pの時系列データの分布波形(図13)について、まず、正の頂点及び負の頂点の位置を特定する。検出処理回路32は、周期的に繰り返し変化する磁気変化を検知できたとき、多極磁気マーカ10Bを検出できたと判断する。本例の検出処理回路32による多極磁気マーカ10Bの検出条件は、以下の各要件により構成されている。 The detection processing circuit 32 first identifies the positions of the positive apex and the negative apex of the distribution waveform of the time series data of the target section P (FIG. 13). The detection processing circuit 32 determines that the multipolar magnetic marker 10B has been detected when it is able to detect a magnetic change that changes periodically. The conditions for detecting the multipolar magnetic marker 10B by the detection processing circuit 32 of this example are constituted by the following requirements.
・正の頂点及び負の頂点が3個ずつであること。
・正の頂点が等間隔で並ぶこと。
・負の頂点が等間隔で並ぶこと。
・隣り合う正の頂点の間隙の中点に、負の頂点が位置していること。
・隣り合う負の頂点の間隙の中点に、正の頂点が位置していること。
- There are three positive vertices and three negative vertices.
・Positive vertices are arranged at equal intervals.
・Negative vertices are arranged at equal intervals.
-The negative vertex is located at the midpoint between adjacent positive vertices.
- A positive vertex is located at the midpoint between adjacent negative vertices.
 検出処理回路32は、上記の各要件が全て満たされて検出条件に合致したとき(S117:YES)、多極磁気マーカ10Bを検出したと判断する。このようにして多極磁気マーカ10Bを検出できたとき、検出処理回路32は、さらに、多極磁気マーカ10Bに対する横ずれ量(横方向の偏差)を検出する(S118)。そして、検出処理回路32は、多極磁気マーカ検出処理の結果を制御ユニット40に入力する。多極磁気マーカ検出処理の結果には、多極磁気マーカ10Bを検出した旨、検出時点(検出地点)、及びその磁石片100に対する横ずれ量、等の情報が含まれている。 The detection processing circuit 32 determines that the multipolar magnetic marker 10B has been detected when all of the above requirements are met and the detection conditions are met (S117: YES). When the multipolar magnetic marker 10B can be detected in this way, the detection processing circuit 32 further detects the amount of lateral deviation (lateral deviation) with respect to the multipolar magnetic marker 10B (S118). Then, the detection processing circuit 32 inputs the result of the multipolar magnetic marker detection processing to the control unit 40. The result of the multipolar magnetic marker detection process includes information such as the fact that the multipolar magnetic marker 10B was detected, the detection time point (detection point), and the amount of lateral deviation of the multipolar magnetic marker 10B with respect to the magnet piece 100.
 多極磁気マーカ10Bの検出時点は、予め定めた代表の磁石片100を通過した時点(検出した時点)とすると良い。また、代表の磁石片100に対する車両2の横方向の偏差を、多極磁気マーカ10Bに対する横ずれ量とすると良い。磁石片100に対する横方向の偏差の検出方法については、上記の単極磁気マーカ検出処理の場合と同様である。 The detection time point of the multipolar magnetic marker 10B is preferably the time point when it passes through a predetermined representative magnet piece 100 (the time point at which it is detected). Further, it is preferable that the lateral deviation of the vehicle 2 with respect to the representative magnet piece 100 is the lateral deviation amount with respect to the multipolar magnetic marker 10B. The method for detecting the deviation in the lateral direction with respect to the magnet piece 100 is the same as in the case of the unipolar magnetic marker detection process described above.
 ここで、多極磁気マーカ10Bを構成する6個の磁石片100のうち、両端を除く内側に位置するN極の磁石片100Nは、両隣りのS極の磁石片100Sに向かう磁力線の起点となる。また、内側に位置するS極の磁石片100Sは、両隣りのN極の磁石片100Nを起点とした磁力線の収束点となる。このように多極磁気マーカ10Bにおける内側の磁石片100は、両隣りの磁石片100と磁気的に結合することで大きなループの磁力線を形成し、外部に作用する磁気強度が大きくなる傾向にある。一方、片側において他の磁石片100と隣り合うことがない両端の磁石片100については、当該片側において磁気的に孤立した状態となる。磁気的に孤立した状態の磁石片100では、自身のN極からS極に向かう磁力線が形成されるのみとなる。この場合の磁力線は、上記のように隣り合う磁石片100と磁気的に結合して形成される磁力線のループよりも小さくなる傾向にある。したがって、上記の代表の磁石片100としては、例えば、多極磁気マーカ10Bを構成する6個の磁石片100のうち、2番目、3番目の磁石片100など、両端の磁石片100を除く内側に位置する磁石片100を選択すると良い。 Here, among the six magnet pieces 100 constituting the multipolar magnetic marker 10B, the N-pole magnet piece 100N located inside except for both ends serves as the origin of the magnetic force line toward the S-pole magnet pieces 100S on both sides. Become. Further, the S-pole magnet piece 100S located on the inside becomes a convergence point of the lines of magnetic force starting from the N-pole magnet pieces 100N on both sides. In this way, the inner magnet piece 100 in the multipolar magnetic marker 10B forms a large loop of magnetic lines of force by magnetically coupling with the magnet pieces 100 on both sides, and the magnetic strength acting on the outside tends to increase. . On the other hand, the magnet pieces 100 at both ends that are not adjacent to another magnet piece 100 on one side are magnetically isolated on that side. In the magnetically isolated magnet piece 100, only lines of magnetic force are formed from the north pole to the south pole of the magnet piece 100. The lines of magnetic force in this case tend to be smaller than the loop of lines of magnetic force formed by magnetically coupling with adjacent magnet pieces 100 as described above. Therefore, the representative magnet pieces 100 mentioned above include, for example, the second and third magnet pieces 100 among the six magnet pieces 100 constituting the multipolar magnetic marker 10B, and the inner side excluding the magnet pieces 100 at both ends. It is preferable to select the magnet piece 100 located at .
(e)多極磁気マーカを利用する方位計測処理
 検出処理回路32は、多極磁気マーカ10Bを検出したとき、多極磁気マーカ10Bを利用し車両2の方位を計測する(図7中のS119→S120)。本例の検出処理回路32は、多極磁気マーカ10Bを構成する6個の磁石片100のうち、上流側から2番目の磁石片100と、5番目の磁石片100と、を利用して車両2の方位計測を実行する。
(e) Direction measurement process using multipolar magnetic marker When detecting the multipolar magnetic marker 10B, the detection processing circuit 32 measures the direction of the vehicle 2 using the multipolar magnetic marker 10B (S119 in FIG. 7). →S120). The detection processing circuit 32 of this example uses the second magnet piece 100 from the upstream side and the fifth magnet piece 100 among the six magnet pieces 100 constituting the multipolar magnetic marker 10B to Execute the azimuth measurement in step 2.
 検出処理回路32は、多極磁気マーカ10Bを検出すると、多極磁気マーカ10Bを構成する6個の磁石片100のうちの2番目の磁石片100の真上に磁気センサアレイ3が位置した時点(図13中の地点C)、及び5番目の磁石片100の真上に磁気センサアレイ3が位置した時点(同図中の地点D)を特定する。 When the detection processing circuit 32 detects the multipolar magnetic marker 10B, the detection processing circuit 32 detects when the magnetic sensor array 3 is located directly above the second magnet piece 100 of the six magnet pieces 100 that constitute the multipolar magnetic marker 10B. (point C in FIG. 13) and the point in time when the magnetic sensor array 3 is located directly above the fifth magnet piece 100 (point D in the figure).
 検出処理回路32は、地点C及び地点Dにおいて、それぞれ、磁石片100に対する車両の横ずれ量の検出を試みる(図7中のステップS119。)。具体的には、検出処理回路32は、地点C及び地点Dでの各磁気センサCnの磁気計測値を取得する。そして検出処理回路32は、各磁気センサCnの磁気計測値よりなる車幅方向の分布波形に基づき、磁石片100に対する車両2の横ずれ量を検出する。なお、磁石片100に対する横方向の偏差である横ずれ量の検出方法については、上記の単極磁気マーカ検出処理において説明した検出方法と同様である。 The detection processing circuit 32 attempts to detect the amount of lateral deviation of the vehicle with respect to the magnet piece 100 at each of the points C and D (step S119 in FIG. 7). Specifically, the detection processing circuit 32 acquires the magnetic measurement values of each magnetic sensor Cn at the point C and the point D. Then, the detection processing circuit 32 detects the amount of lateral deviation of the vehicle 2 with respect to the magnet piece 100 based on the distribution waveform in the vehicle width direction made up of the magnetic measurement values of each magnetic sensor Cn. Note that the method for detecting the amount of lateral deviation, which is the deviation in the lateral direction with respect to the magnet piece 100, is the same as the detection method described in the above unipolar magnetic marker detection process.
 図14に例示する通り、2個目の磁石片100に対する横ずれ量をd1、5個目の磁石片100に対する横ずれ量をd2としたとき、経路1Rの方向に対する車両2の方位の偏差θは、以下の式の通り算出できる。例えば図14のように車両2が多極磁気マーカ10Bを通過する場合、2番目の磁石片100に対して車両2が左側に寄っている。そのため、上記の横ずれ量d1は負値となる。また、5番目の磁石片100に対して車両2は右側に寄っている。そのため、上記の横ずれ量d2は正値となる。 As illustrated in FIG. 14, when the amount of lateral deviation with respect to the second magnet piece 100 is d1 and the amount of lateral deviation with respect to the fifth magnet piece 100 is d2, the deviation θ of the orientation of the vehicle 2 with respect to the direction of the route 1R is: It can be calculated using the following formula. For example, when the vehicle 2 passes the multipolar magnetic marker 10B as shown in FIG. 14, the vehicle 2 is closer to the left side with respect to the second magnet piece 100. Therefore, the above-mentioned lateral shift amount d1 becomes a negative value. Furthermore, the vehicle 2 is closer to the right side with respect to the fifth magnet piece 100. Therefore, the above-mentioned lateral shift amount d2 becomes a positive value.
 sinθ=(d2-d1)/S
 θ=arcsin((d2-d1)/S)
 なお、Sは、2番目と5番目の磁石片100の間隔であり、本例では30cmである。
sinθ=(d2-d1)/S
θ=arcsin((d2-d1)/S)
Note that S is the distance between the second and fifth magnet pieces 100, which is 30 cm in this example.
 以上の通り、本例の車両用システム1では、外乱磁気の影響がある敷設箇所であるか否かに応じて、単極磁気マーカ10Aと多極磁気マーカ10Bとを使い分けられる。例えば鉄製の踏み板19を経路1Rが横切るような場合や、他のシステムが利用する磁気テープやその残骸が周辺にある場合など、外乱となる磁気発生源が存在する場合には、磁気マーカ10の検出確実性が十分でなくなるおそれがある。外乱となる磁気発生源からの磁気と、磁気マーカ10から作用する磁気と、の区別が、車両2側で難しくなるためである。 As described above, in the vehicle system 1 of this example, the unipolar magnetic marker 10A and the multipolar magnetic marker 10B can be used depending on whether or not the installation location is affected by disturbance magnetism. For example, if there is a magnetic source that causes disturbance, such as when the path 1R crosses the iron footboard 19 or when there are magnetic tapes used by other systems or their remains in the vicinity, the magnetic marker 10 There is a risk that detection reliability may not be sufficient. This is because it becomes difficult for the vehicle 2 to distinguish between the magnetism from the magnetic source causing the disturbance and the magnetism acting from the magnetic marker 10.
 本例の車両用システム1では、外乱磁気の影響が大きい敷設箇所に、6個の磁石片100が連なる多極磁気マーカ10Bが配置される。経路1Rの方向に沿って配列された6連の磁石片100よりなる多極磁気マーカ10Bを車両2が通過する際には、規則的な繰り返しの磁気変化が生じる。特に、本例の構成では、6連の磁石片100について、交互に磁極性が異なるように構成されている。それ故、車両2が多極磁気マーカ10Bを通過する際の磁気変化が一層、特徴的なものとなっている。 In the vehicle system 1 of this example, a multipolar magnetic marker 10B in which six magnet pieces 100 are arranged in a row is arranged at a installation location where the influence of disturbance magnetism is large. When the vehicle 2 passes the multipolar magnetic marker 10B made up of six magnet pieces 100 arranged along the direction of the route 1R, regularly repeated magnetic changes occur. In particular, in the configuration of this example, the six magnet pieces 100 are configured to alternately have different magnetic polarities. Therefore, the magnetic change when the vehicle 2 passes the multipolar magnetic marker 10B is even more characteristic.
 鉄製の踏み板19や磁気テープ等は外乱の磁気発生源となり得るが、これらの磁気発生源の真上や近傍を車両2が通過する際の磁気変化は規則的に繰り返すようなものではない。規則的に繰り返す磁気変化であるか否かに着目すれば、外乱となる磁気発生源から区別して多極磁気マーカ10Bを確実性高く検出することが可能である。 Although the iron footboard 19, magnetic tape, etc. can be sources of magnetic disturbance, the magnetic changes that occur when the vehicle 2 passes directly above or near these magnetic sources do not repeat regularly. By focusing on whether or not the magnetic change is a regularly repeated magnetic change, it is possible to distinguish the multipolar magnetic marker 10B from a magnetic source causing disturbance and to detect the multipolar magnetic marker 10B with high reliability.
 さらに、本例の車両用システム1では、多極磁気マーカ10Bのうちのいずれか2個の磁石片100に対する横ずれ量に基づき、この2個の磁石片100を結ぶ方向に対する車両2の進行方向の偏差が求められる。経路1Rの方向に沿う直線上に6個の磁石片100が配列された多極磁気マーカ10Bであれば、経路1Rの方向に対する車両2の進行方向の偏差を特定することが可能である。なお、多極磁気マーカ10Bにおける磁石片100の配列方向は、経路1Rの方向に沿うものでなくても良く、例えば、所定の絶対方位に沿う方向であっても良い。 Furthermore, in the vehicle system 1 of this example, based on the amount of lateral deviation of any two of the multipolar magnetic markers 10B with respect to the magnet pieces 100, the traveling direction of the vehicle 2 with respect to the direction connecting these two magnet pieces 100 is determined. Deviation is required. If the multipolar magnetic marker 10B has six magnet pieces 100 arranged on a straight line along the route 1R, it is possible to specify the deviation in the traveling direction of the vehicle 2 with respect to the direction of the route 1R. Note that the arrangement direction of the magnet pieces 100 in the multipolar magnetic marker 10B may not be along the direction of the route 1R, but may be, for example, a direction along a predetermined absolute direction.
 一般に、車両2の進行方向を特定するためには、横ずれ量を求める2つの磁石片100の間隔が広い方が誤差少なく進行方向を特定できるので有利である。多極磁気マーカ10Bの両端の磁石片100の組み合わせであれば、2つの磁石片100の間隔を最も大きくできる。しかし、多極磁気マーカ10Bをなす6連の磁石片100のうち、磁極性が異なる他の磁石片100に挟まれていない両端の磁石片100は、上記のごとく、隣り合う磁石片100との磁気的な結合が不十分である可能性がある。磁気的な結合が不十分であれば、車両2の進行方向の磁気変化が理想的なものから乖離したり、磁気強度が低くなる傾向にある。 In general, in order to specify the traveling direction of the vehicle 2, it is advantageous if the distance between the two magnet pieces 100 for which the amount of lateral deviation is determined is wide, since the traveling direction can be determined with less error. If the magnet pieces 100 at both ends of the multipolar magnetic marker 10B are combined, the distance between the two magnet pieces 100 can be maximized. However, among the six magnet pieces 100 forming the multipolar magnetic marker 10B, the magnet pieces 100 at both ends that are not sandwiched between the other magnet pieces 100 with different magnetic polarities are not sandwiched between the adjacent magnet pieces 100 as described above. Magnetic coupling may be insufficient. If the magnetic coupling is insufficient, the magnetic change in the traveling direction of the vehicle 2 tends to deviate from the ideal one, and the magnetic strength tends to decrease.
 そこで、本例では、車両2の進行方向の偏差を特定するに当たって、多極磁気マーカ10Bをなす6連の磁石片100のうち、2番目の磁石片100と5番目の磁石片100とを利用する。2番目及び5番目の磁石片100の組合せであれば、磁気的な安定性と間隔とを両立でき、車両2の進行方向の変位を特定するために好適である。但し、車両2の進行方向を特定するに当たって、6個の磁石片100のうち2番目と5番目の組合せを利用することは必須ではない。多極磁気マーカ10Bを構成する磁石片100のうち、内側に位置する2つの磁石片100の組合せであれば、車両2の進行方向の特定に適している。 Therefore, in this example, in identifying the deviation in the traveling direction of the vehicle 2, the second magnet piece 100 and the fifth magnet piece 100 of the six magnet pieces 100 forming the multipolar magnetic marker 10B are used. do. The combination of the second and fifth magnet pieces 100 can achieve both magnetic stability and spacing, and is suitable for identifying displacement of the vehicle 2 in the traveling direction. However, in identifying the traveling direction of the vehicle 2, it is not essential to use the second and fifth combinations of the six magnet pieces 100. Among the magnet pieces 100 that constitute the multipolar magnetic marker 10B, a combination of two inner magnet pieces 100 is suitable for specifying the traveling direction of the vehicle 2.
 なお、上記のごとく多極磁気マーカ10Bにおける両端の磁石片100が車両2側に作用する磁気は若干不安定であり、その磁気強度が小さくなる傾向にある。そこで、両端の磁石片100のみ、磁力を強くすることも良い。この場合には、両端に位置する磁石片から車両側に作用する磁気強度が低くなってしまう傾向を補償でき、多極磁気マーカ10Bの各磁石片100が車両側に作用する磁気強度の大きさの均一性を向上できる。例えば、多極磁気マーカ10Bの両端のみ、シート状の磁石片100を2枚重ねで敷設することも良い。 Note that, as described above, the magnetism exerted on the vehicle 2 by the magnet pieces 100 at both ends of the multipolar magnetic marker 10B is somewhat unstable, and its magnetic strength tends to decrease. Therefore, it is also good to strengthen the magnetic force of only the magnet pieces 100 at both ends. In this case, it is possible to compensate for the tendency that the magnetic strength acting on the vehicle side from the magnet pieces located at both ends becomes low, and the magnitude of the magnetic strength that each magnet piece 100 of the multipolar magnetic marker 10B acts on the vehicle side can be compensated for. uniformity can be improved. For example, it is also possible to lay two sheet-like magnet pieces 100 on both ends of the multipolar magnetic marker 10B.
 また、本例では、例えば図13の時系列データの分布波形における正の頂点の個数、負の頂点の個数、頂点の間隔、などに基づき、多極磁気マーカ10Bに由来する磁気変化を検知する構成を例示している。この構成では、周期的に繰り返し変化する磁気変化であって、その周期的に繰り返す回数が多極磁気マーカ10Bを構成する磁石片100の個数に対応する回数である磁気変化を検知している。このような磁気変化を検知する方法としては、上記のほか、周期的な繰り返し波形との類似度を利用する方法や、波形の周波数を利用する方法、など様々な方法が考えられる。類似度を利用する方法としては、例えば、周期的な繰り返し波形との類似度を表す相関係数が閾値を超えるか否かを判断する方法がある。周波数を利用する方法としては、例えば、フーリエ変換等により求められる分布波形の周波数が所定の周波数範囲に属するか否かを判断する方法がある。さらに、周期的に変化する磁気変化における磁気強度の実効値に関する閾値処理を組み合わせることも良い。磁気強度の実効値は、例えば、周期的に電圧が変化する交流電流の実効電圧に相当するものである。 In addition, in this example, magnetic changes originating from the multipolar magnetic marker 10B are detected based on, for example, the number of positive vertices, the number of negative vertices, the interval between vertices, etc. in the distribution waveform of the time series data in FIG. The configuration is illustrated. This configuration detects a magnetic change that changes periodically, and the number of times the magnetic change is periodically repeated corresponds to the number of magnet pieces 100 that constitute the multipolar magnetic marker 10B. In addition to the methods described above, various methods for detecting such magnetic changes can be considered, such as a method that uses similarity with a periodically repeated waveform, and a method that uses the frequency of the waveform. As a method of using the degree of similarity, for example, there is a method of determining whether a correlation coefficient representing the degree of similarity with a periodically repeated waveform exceeds a threshold value. As a method using frequency, for example, there is a method of determining whether the frequency of a distribution waveform obtained by Fourier transform or the like belongs to a predetermined frequency range. Furthermore, it is also good to combine threshold processing regarding the effective value of the magnetic intensity in periodically changing magnetic changes. The effective value of the magnetic strength corresponds to, for example, the effective voltage of an alternating current whose voltage changes periodically.
 本例では、6個の磁石片100が配列された多極磁気マーカ10Bを例示している。多極磁気マーカ10Bにおいて、直線に沿って磁石片100を1次元的に配列する個数は、4個以上11個以下とすると良い。3個未満であると、外乱磁気との区別の難易度が高くなるおそれがある。11個を超えると、多極磁気マーカ10Bを検出するために車両2が移動を要する距離が長くなり過ぎ、多極磁気マーカ10Bの検出に時間がかかるようになる。 In this example, a multipolar magnetic marker 10B in which six magnet pieces 100 are arranged is illustrated. In the multipolar magnetic marker 10B, the number of magnet pieces 100 arranged one-dimensionally along a straight line is preferably 4 or more and 11 or less. If the number is less than three, there is a risk that it will be difficult to distinguish from disturbance magnetism. If the number exceeds 11, the distance the vehicle 2 needs to move to detect the multipolar magnetic marker 10B becomes too long, and it takes time to detect the multipolar magnetic marker 10B.
 本例では、経路1Rの方向に沿って1次元的に配列された6個の磁石片100よりなる多極磁気マーカ10Bを例示している。多極磁気マーカ10Bにおいて、複数の磁石片100を配列する所定方向はいずれの方向であっても良い。例えば、多極磁気マーカ10Bは、車幅方向に沿って複数の磁石片100を配列したものであっても良い。さらに、多極磁気マーカ10Bは、複数の磁石片100が2次元的に配列されたものであっても良い。 In this example, a multipolar magnetic marker 10B made up of six magnet pieces 100 arranged one-dimensionally along the direction of the path 1R is illustrated. In the multipolar magnetic marker 10B, the predetermined direction in which the plurality of magnet pieces 100 are arranged may be any direction. For example, the multipolar magnetic marker 10B may be one in which a plurality of magnet pieces 100 are arranged along the vehicle width direction. Furthermore, the multipolar magnetic marker 10B may be one in which a plurality of magnet pieces 100 are two-dimensionally arranged.
 本例では、多極磁気マーカ10Bとして、個片状の磁石片100が複数、配列された磁気マーカを例示している。この多極磁気マーカ10Bに代えて、テープ状のマーカテープ(図15)、あるいはシート状のマーカシート(図16)であっても良い。マーカテープは、例えば、複数の磁石片(磁石)が1次元的に連なるテープ状の部材である。マーカシートは、例えば、複数の磁石片(磁石)が2次元的に連なるシート状の部材である。複数の磁石片が連なるマーカテープ(あるいはマーカシート)としては、例えば、樹脂材料よりなるテープ状(あるいはシート状)の基材に、磁性材料よりなる磁性層が積層されたものであっても良い。マーカテープの磁性層を領域毎に着磁して、磁性片をなす領域を形成すると良い。このマーカテープ(あるいはマーカシート)における着磁領域は、隣り合う磁石片をなす領域が隣接していても良く、隙間を空けて配置されていても良い。 In this example, a magnetic marker in which a plurality of individual magnet pieces 100 are arranged is exemplified as the multipolar magnetic marker 10B. Instead of this multipolar magnetic marker 10B, a tape-shaped marker tape (FIG. 15) or a sheet-shaped marker sheet (FIG. 16) may be used. A marker tape is, for example, a tape-shaped member in which a plurality of magnet pieces (magnets) are one-dimensionally connected. The marker sheet is, for example, a sheet-like member in which a plurality of magnet pieces (magnets) are two-dimensionally connected. The marker tape (or marker sheet) in which a plurality of magnet pieces are connected may be, for example, one in which a magnetic layer made of a magnetic material is laminated on a tape-shaped (or sheet-shaped) base material made of a resin material. . It is preferable to magnetize the magnetic layer of the marker tape region by region to form regions forming magnetic pieces. In the magnetized regions of this marker tape (or marker sheet), regions forming adjacent magnet pieces may be adjacent to each other, or may be arranged with a gap between them.
 マーカテープあるいはマーカシートにおいて、端をなす磁石片(磁石)については、内側に位置する他の磁石片よりも磁力を強くすることも良い。マーカテープにおける端の磁石片(磁石)とは、両端の磁石片である。マーカシートにおける端の磁石片(磁石)とは、シートの外周をなす磁石片である。マーカシートにおいては、角部に位置する磁石片の磁力を、外周をなす磁石片のうちの他の磁石片よりも強くすることも良い。この場合には、マーカテープの端あるいはマーカーシートの端から車両側に作用する磁気強度が低くなってしまう傾向を補償でき、多極磁気マーカの各磁石片(磁石)が車両側に作用する磁気強度の大きさの均一性を向上できる。 In the marker tape or marker sheet, it is also good to make the magnetic force of the magnetic pieces (magnets) forming the ends stronger than that of other magnetic pieces located on the inside. The end magnet pieces (magnets) in the marker tape are the magnet pieces at both ends. The end magnet piece (magnet) in the marker sheet is a magnet piece that forms the outer periphery of the sheet. In the marker sheet, it is also good to make the magnetic force of the magnet pieces located at the corners stronger than the other magnet pieces among the magnet pieces forming the outer periphery. In this case, it is possible to compensate for the tendency that the magnetic strength acting on the vehicle side from the edge of the marker tape or marker sheet becomes low, and each magnet piece (magnet) of the multipolar magnetic marker The uniformity of intensity can be improved.
 本例では、単極磁気マーカ10Aと多極磁気マーカ10Bとが混在する車両用システム1を例示したが、全ての磁気マーカが多極磁気マーカ10Bであっても良い。この場合には、外乱磁気の有無に関わらず、全ての磁気マーカ10を確実性高く検出できるようになる。 In this example, the vehicle system 1 is illustrated in which the unipolar magnetic marker 10A and the multipolar magnetic marker 10B coexist, but all the magnetic markers may be the multipolar magnetic marker 10B. In this case, all magnetic markers 10 can be detected with high reliability regardless of the presence or absence of disturbance magnetism.
 本例では、工場等の施設向けの車両用システム1を例示したが、走路の一例をなす道路を走行する車両向けの車両用システムであっても良い。また本例では、施設の床面等に貼付される磁気マーカ10を例示したが、埋設される柱状の磁石よりなる単極磁気マーカ10Aあるいは多極磁気マーカ10Bであっても良い。 In this example, the vehicle system 1 for facilities such as factories is illustrated, but it may also be a vehicle system for vehicles traveling on a road that is an example of a running route. Further, in this example, the magnetic marker 10 that is affixed to the floor of a facility is illustrated, but it may be a monopolar magnetic marker 10A or a multipolar magnetic marker 10B that is made of a columnar magnet that is buried.
 以上、実施例のごとく本発明の具体例を詳細に説明したが、これらの具体例は、特許請求の範囲に包含される技術の一例を開示しているにすぎない。言うまでもなく、具体例の構成や数値等によって、特許請求の範囲が限定的に解釈されるべきではない。特許請求の範囲は、公知技術や当業者の知識等を利用して前記具体例を多様に変形、変更あるいは適宜組み合わせた技術を包含している。 Although specific examples of the present invention have been described above in detail as in the embodiments, these specific examples merely disclose an example of technology included in the scope of the claims. Needless to say, the scope of the claims should not be interpreted to be limited by the configurations, numerical values, etc. of the specific examples. The scope of the claims includes techniques in which the specific examples described above are variously modified, changed, or appropriately combined using known techniques and the knowledge of those skilled in the art.
 1 車両用システム
 1R 経路(走路)
 10 磁気マーカ
 10A 単極磁気マーカ
 10B 多極磁気マーカ
 100 磁石片(磁石)
 100N N極の磁石片
 100S S極の磁石片
 2 車両
 21 牽引車両
 23 台車
 3 磁気センサアレイ
 32 検出処理回路
 40 制御ユニット
 42 IMU
 44 モータユニット
 46 操舵ユニット
 48 地図データベース
 Cn(C1~15) 磁気センサ
1 Vehicle system 1R route (runway)
10 Magnetic marker 10A Unipolar magnetic marker 10B Multipolar magnetic marker 100 Magnet piece (magnet)
100N N-pole magnet piece 100S S-pole magnet piece 2 Vehicle 21 Traction vehicle 23 Dolly 3 Magnetic sensor array 32 Detection processing circuit 40 Control unit 42 IMU
44 Motor unit 46 Steering unit 48 Map database Cn (C1 to 15) Magnetic sensor

Claims (17)

  1.  車両の走路に間隔を空けて磁気マーカが配置された車両用システムであって、
     前記磁気マーカとしては、車両側で検出される磁極性が交互に異なるように配置された複数の磁石により構成された一の磁気マーカである多極磁気マーカが少なくとも含まれており、
     前記車両は、前記磁気マーカを検出するための処理を実行する検出処理回路を有し、
     当該検出処理回路は、周期的に繰り返し変化する磁気変化を検知できたとき、前記多極磁気マーカである一の磁気マーカを検出できたと判断する多極磁気マーカ検出処理を実行可能である車両用システム。
    A vehicle system in which magnetic markers are arranged at intervals on a vehicle running path,
    The magnetic markers include at least a multipolar magnetic marker, which is a magnetic marker composed of a plurality of magnets arranged so that the magnetic polarities detected on the vehicle side are alternately different,
    The vehicle has a detection processing circuit that executes processing for detecting the magnetic marker,
    The detection processing circuit is capable of executing a multipolar magnetic marker detection process in which it is determined that one of the multipolar magnetic markers has been detected when a magnetic change that periodically changes repeatedly can be detected. system.
  2.  請求項1において、前記多極磁気マーカは、1次元的あるいは2次元的に配置された前記複数の磁石により構成された一の磁気マーカである車両用システム。 2. The vehicle system according to claim 1, wherein the multipolar magnetic marker is a single magnetic marker made up of the plurality of magnets arranged one-dimensionally or two-dimensionally.
  3.  請求項2において、前記複数の磁石のうち、1次元的あるいは2次元的な配置における端に位置する磁石は、他の磁石よりも磁力が強い磁石である車両用システム。 3. The vehicle system according to claim 2, wherein among the plurality of magnets, a magnet located at an end in a one-dimensional or two-dimensional arrangement has a stronger magnetic force than other magnets.
  4.  請求項3において、前記複数の磁石は、いずれも、シート状の磁石片により構成されており、前記他の磁石が1片の前記磁石片である一方、前記端に位置する磁石は2片の前記磁石片を重ねたものである車両用システム。 In claim 3, each of the plurality of magnets is composed of sheet-like magnet pieces, and while the other magnet is one piece of the magnet piece, the magnet located at the end is composed of two pieces. A vehicle system comprising a stack of the above magnet pieces.
  5.  請求項1において、前記多極磁気マーカは、前記複数の磁石が所定方向に沿って配列された一の磁気マーカであり、
     前記多極磁気マーカ検出処理は、前記多極磁気マーカを構成する前記複数の磁石のうちの少なくともいずれか2個の磁石を利用して、前記所定方向に対する車両の進行方向を特定する処理を含むことを特徴とする車両用システム。
    In claim 1, the multipolar magnetic marker is one magnetic marker in which the plurality of magnets are arranged along a predetermined direction,
    The multipolar magnetic marker detection process includes a process of identifying the traveling direction of the vehicle with respect to the predetermined direction by using at least any two of the plurality of magnets constituting the multipolar magnetic marker. A vehicle system characterized by:
  6.  請求項5において、前記多極磁気マーカは、前記複数の磁石として少なくとも4個の磁石を含んでおり、
     前記車両の進行方向を特定するために利用される前記少なくともいずれか2個の磁石は、前記複数の磁石のうちの両端の2個の磁石を除く磁石である車両用システム。
    In claim 5, the multipolar magnetic marker includes at least four magnets as the plurality of magnets,
    The at least two magnets used to specify the traveling direction of the vehicle are magnets other than two magnets at both ends of the plurality of magnets.
  7.  請求項5において、前記多極磁気マーカは、直線である場合の走路に沿って一定の間隔を空けて配置された4個以上11個以下の前記複数の磁石により構成された一の磁気マーカであるか、あるいは曲線である場合の走路の接線方向に沿って一定の間隔を空けて配置された4個以上11個以下の前記複数の磁石により構成された一の磁気マーカである車両用システム。 In claim 5, the multipolar magnetic marker is one magnetic marker composed of the plurality of magnets of 4 or more and 11 or less arranged at regular intervals along a straight line. A vehicle system which is one magnetic marker constituted by the plurality of magnets, 4 or more and 11 or less, arranged at regular intervals along the tangential direction of a running track, which may be a straight line or a curved line.
  8.  請求項1において、前記多極磁気マーカは、前記複数の磁石が1次元的に連なるテープ状のマーカテープ、あるいは前記複数の磁石が2次元的に連なるシート状のマーカシートよりなる一の磁気マーカである車両用システム。 In claim 1, the multipolar magnetic marker is a magnetic marker made of a tape-shaped marker tape in which the plurality of magnets are arranged one-dimensionally, or a sheet-shaped marker sheet in which the plurality of magnets are arranged in a two-dimensional arrangement. A vehicle system.
  9.  請求項8において、前記複数の磁石のうち、前記マーカテープあるいは前記マーカシートにおいて端に位置する磁石は、他の磁石よりも磁力が強い磁石である車両用システム。 9. The vehicle system according to claim 8, wherein among the plurality of magnets, a magnet located at an end of the marker tape or the marker sheet has a stronger magnetic force than other magnets.
  10.  請求項1~9のいずれか1項において、前記磁気マーカには、一の磁石よりなる単極磁気マーカが含まれ、
     前記検出処理回路は、前記多極磁気マーカ検出処理のほか、前記単極磁気マーカを検出するための単極磁気マーカ検出処理を実行可能なように構成されている車両用システム。
    In any one of claims 1 to 9, the magnetic marker includes a unipolar magnetic marker made of one magnet,
    The detection processing circuit is configured to be capable of executing a unipolar magnetic marker detection process for detecting the unipolar magnetic marker in addition to the multipolar magnetic marker detection process.
  11.  請求項10において、前記検出処理回路は、前記多極磁気マーカ検出処理及び前記単極磁気マーカ検出処理のいずれかを選択する処理を実行可能であり、当該選択する処理の結果に応じて、前記多極磁気マーカ検出処理と前記単極磁気マーカ検出処理とを切り替えて実行するように構成されている車両用システム。 In claim 10, the detection processing circuit is capable of executing processing for selecting either the multipolar magnetic marker detection processing or the unipolar magnetic marker detection processing, and depending on the result of the selected processing, the detection processing circuit A vehicle system configured to switch between multipolar magnetic marker detection processing and unipolar magnetic marker detection processing.
  12.  請求項10において、前記多極磁気マーカと前記単極磁気マーカとは、外乱磁気の大きさに応じて使い分けられ、前記多極磁気マーカは、前記単極磁気マーカとの比較において、外乱磁気が大きい敷設箇所に配置される車両用システム。 In claim 10, the multipolar magnetic marker and the unipolar magnetic marker are used depending on the magnitude of disturbance magnetism, and the multipolar magnetic marker has a disturbance magnetism that is lower than the unipolar magnetic marker. A vehicle system installed in large installation areas.
  13.  磁気マーカが間隔を空けて配置された走路を走行する車両が、磁気マーカを検出するためのマーカ検出方法であって、
     前記磁気マーカには、車両側で検出する磁極性が交互に異なるように配置された複数の磁石により構成された一の磁気マーカである多極磁気マーカが少なくとも含まれており、
     前記磁気マーカを検出するための検出処理を含み、
     当該検出処理には、周期的に繰り返し変化する磁気変化を検知できたとき、前記多極磁気マーカである一の磁気マーカを検出できたと判断する多極磁気マーカ検出処理が少なくとも含まれているマーカ検出方法。
    A marker detection method for detecting magnetic markers by a vehicle running on a track on which magnetic markers are arranged at intervals, the method comprising:
    The magnetic markers include at least a multipolar magnetic marker, which is a magnetic marker composed of a plurality of magnets arranged so that the magnetic polarities detected on the vehicle side are alternately different,
    including a detection process for detecting the magnetic marker,
    The detection process includes at least a multipolar magnetic marker detection process of determining that one magnetic marker that is the multipolar magnetic marker has been detected when a magnetic change that changes periodically can be detected. Detection method.
  14.  請求項13において、前記磁気マーカには、一の磁石よりなる単極磁気マーカが含まれ、
     前記多極磁気マーカを検出対象とするか前記単極磁気マーカを検出対象とするかを判断する処理を含み、
     前記検出処理には、前記多極磁気マーカ検出処理のほか、前記単極磁気マーカを検出するための単極磁気マーカ検出処理が含まれ、
     前記判断する処理の結果に応じて、前記多極磁気マーカ検出処理および前記単極磁気マーカ検出処理のうちのいずれかが選択的に実行されるマーカ検出方法。
    In claim 13, the magnetic marker includes a unipolar magnetic marker made of one magnet,
    including a process of determining whether the multipolar magnetic marker is to be detected or the unipolar magnetic marker is to be detected;
    The detection process includes, in addition to the multipolar magnetic marker detection process, a unipolar magnetic marker detection process for detecting the unipolar magnetic marker,
    A marker detection method in which either the multipolar magnetic marker detection process or the unipolar magnetic marker detection process is selectively executed depending on the result of the determining process.
  15.  車両が移動中に検出可能なように走路に沿って間隔を空けて配置される磁気マーカであって、
     当該磁気マーカは、磁極性が交互に異なるように配列された複数の磁石により構成された一の磁気マーカである多極磁気マーカであり、
     当該磁気マーカは、周期的に繰り返し変化する磁気変化を車両側で検知することにより検出可能に構成されている磁気マーカ。
    Magnetic markers placed at intervals along a track so as to be detectable while the vehicle is moving,
    The magnetic marker is a multipolar magnetic marker that is a single magnetic marker composed of a plurality of magnets arranged so that the magnetic polarity is alternately different,
    The magnetic marker is configured to be detectable by detecting periodically and repeatedly changing magnetic changes on the vehicle side.
  16.  請求項15において、前記磁気マーカは、前記複数の磁石が1次元的に連なるテープ状のマーカテープ、あるいは前記複数の磁石が2次元的に連なるシート状のマーカシートであることを特徴とする磁気マーカ。 16. The magnetic marker according to claim 15, wherein the magnetic marker is a tape-shaped marker tape in which the plurality of magnets are one-dimensionally connected, or a sheet-like marker sheet in which the plurality of magnets are two-dimensionally connected. marker.
  17.  請求項16において、前記複数の磁石のうち、前記マーカテープあるいは前記マーカシートにおいて端に位置する磁石は、他の磁石よりも磁力が強い磁石である磁気マーカ。
     
    17. The magnetic marker according to claim 16, wherein among the plurality of magnets, a magnet located at an end of the marker tape or the marker sheet has a stronger magnetic force than other magnets.
PCT/JP2023/021800 2022-06-14 2023-06-12 Magnetic marker, vehicular system, and marker detection method WO2023243617A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-096050 2022-06-14
JP2022096050 2022-06-14

Publications (1)

Publication Number Publication Date
WO2023243617A1 true WO2023243617A1 (en) 2023-12-21

Family

ID=89191329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021800 WO2023243617A1 (en) 2022-06-14 2023-06-12 Magnetic marker, vehicular system, and marker detection method

Country Status (1)

Country Link
WO (1) WO2023243617A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04112213A (en) * 1990-08-31 1992-04-14 Makome Kenkyusho:Kk Magnetic guiding device
US5347456A (en) * 1991-05-22 1994-09-13 The Regents Of The University Of California Intelligent roadway reference system for vehicle lateral guidance and control
JP2000029514A (en) * 1998-07-10 2000-01-28 Fuji Heavy Ind Ltd Laying method for magnet mat and magnetic guide path for magnetically guided travel vehicle
JP2020057301A (en) * 2018-10-04 2020-04-09 愛知製鋼株式会社 Magnetic marker system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04112213A (en) * 1990-08-31 1992-04-14 Makome Kenkyusho:Kk Magnetic guiding device
US5347456A (en) * 1991-05-22 1994-09-13 The Regents Of The University Of California Intelligent roadway reference system for vehicle lateral guidance and control
JP2000029514A (en) * 1998-07-10 2000-01-28 Fuji Heavy Ind Ltd Laying method for magnet mat and magnetic guide path for magnetically guided travel vehicle
JP2020057301A (en) * 2018-10-04 2020-04-09 愛知製鋼株式会社 Magnetic marker system

Similar Documents

Publication Publication Date Title
CA2469652C (en) Driverless vehicle guidance system and method
JP6766527B2 (en) Vehicle system and course estimation method
WO1999017079A1 (en) Magnetic apparatus for detecting position of vehicle
JP6828314B2 (en) Learning system and learning method for vehicles
EP3831680B1 (en) Method for generating magnetic field, method for detecting lane by using magnetic field, and vehicle using same
WO2018181050A1 (en) Marker detection system and marker detection method
CN110741286B (en) Marker detection method and system for vehicle
JP6733289B2 (en) Driving support system
KR101062431B1 (en) Magnetic Driving Guidance System
WO2023243617A1 (en) Magnetic marker, vehicular system, and marker detection method
CN109642783B (en) Attitude detection system for vehicle
JP2021012702A (en) System for vehicle and course estimation method
CN109916403B (en) Short-time accurate positioning device and method for AGV trolley
JP2002260154A (en) Lane marker system
WO2022270365A1 (en) Vehicular system
WO2024063079A1 (en) Vehicular system
EP1647465A2 (en) Driverless vehicle guidance system
EP4318436A1 (en) Magnetic marker detection method and system
WO2022270507A1 (en) Magnetic marker detection method and detection system
JP2002230683A (en) On-vehicle magnetic sensor and vehicle position detector equipped therewith
JP3875871B2 (en) Vehicle detection device
JP2023082578A (en) Automatic turning system
JPH04288605A (en) Vehicle running position detector
JP2004302550A (en) Vehicle detection device
JPH02103607A (en) Car body position detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823907

Country of ref document: EP

Kind code of ref document: A1