WO2022158485A1 - Rear surface grinding method for wafer and electronic device production method - Google Patents

Rear surface grinding method for wafer and electronic device production method Download PDF

Info

Publication number
WO2022158485A1
WO2022158485A1 PCT/JP2022/001764 JP2022001764W WO2022158485A1 WO 2022158485 A1 WO2022158485 A1 WO 2022158485A1 JP 2022001764 W JP2022001764 W JP 2022001764W WO 2022158485 A1 WO2022158485 A1 WO 2022158485A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
grinding
protective
layer
adhesive tape
Prior art date
Application number
PCT/JP2022/001764
Other languages
French (fr)
Japanese (ja)
Inventor
崇 畦▲崎▼
浩登 安井
周穂 谷本
孝 鈴木
仁 木下
Original Assignee
三井化学東セロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学東セロ株式会社 filed Critical 三井化学東セロ株式会社
Priority to JP2022576717A priority Critical patent/JPWO2022158485A1/ja
Publication of WO2022158485A1 publication Critical patent/WO2022158485A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D5/00Planing or slotting machines cutting otherwise than by relative movement of the tool and workpiece in a straight line
    • B23D5/02Planing or slotting machines cutting otherwise than by relative movement of the tool and workpiece in a straight line involving rotary and straight-line movements only, e.g. for cutting helical grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/04Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor involving a rotary work-table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a method for grinding the back surface of a wafer, among methods for thinning a wafer having surface irregularities, and more specifically, after protecting the surface of the wafer with a protective layer, A wafer backside grinding method for suppressing the influence of unevenness on the wafer surface by flattening the non-contact surface, and the wafer backside having improved handleability in a wide variety of processing processes after wafer thinning. It relates to a grinding method.
  • wafers with circuits formed thereon are ground to a uniform thickness and thinness, and backside grinding is widely used.
  • electronic devices such as semiconductor devices, circuits or the like are formed on the surface of a semiconductor wafer made of silicon, gallium-arsenide, or the like in a so-called pre-process, or unevenness exists on the surface of the wafer due to bump electrodes or the like. sell.
  • power devices used in power converters such as inverters and converters in particular have irregularities on the surface of wafers due to their characteristics, structures, manufacturing processes, and the like.
  • the unevenness on the surface of the wafer will be transferred to the back side of the wafer, and the unevenness will be reflected in the finished thickness of the wafer. In power devices, it affects device characteristics.
  • Patent Document 1 As a method of grinding the backside of a wafer that suppresses the effects of unevenness on the surface of the wafer, after supporting the wafer with adhesive tape, the base material of the tape is flattened with a surface planer, thereby making the finished thickness of the backside grinding of the wafer uniform.
  • Patent Document 1 A method (Patent Document 1) is known. However, although this method can suppress variations in the finished thickness of the wafer, there is a problem in that handling properties such as transportability of the thinned wafer become difficult.
  • the present inventors have found that prior to grinding the back surface of the wafer, after protecting the surface of the wafer with a protective layer, the surface of the protective layer that is not in contact with the wafer is flattened, and through the adhesive layer, The inventors have found that the above problems can be solved by bonding the flattened surface of the protective layer that is not in contact with the wafer to the support, and have completed the present invention.
  • the present invention [1] A method for grinding the back surface of a wafer having an uneven surface, comprising, prior to grinding the back surface of the wafer, step (1) of forming a protective layer on the surface of the wafer; Step (2) of flattening the surface of the protective layer that is not in contact with the wafer, and Step (3) of bonding the surface of the protective layer that is not in contact with the wafer and a support via an adhesive layer, It relates to a method for grinding the back surface of a wafer, characterized by comprising:
  • [2] to [15] below are all preferable aspects or embodiments of the present invention.
  • the base layer of the protective adhesive tape contains at least one resin selected from the group consisting of PET, PEN, PBT, LCP, PI, PA, PEEK and PPS. grinding method.
  • Any one of [1] to [3], wherein the wafer having unevenness on the surface is a wafer having unevenness due to at least one of electrodes, circuit patterns, polyimide, defective marks, or bumps formed on the surface. 3.
  • the planarizing step is a step of planarizing by cutting, grinding, or polishing.
  • the adhesive layer is a liquid adhesive or an adhesive tape.
  • the adhesive layer is applied to the flattened surface of the protective layer that is not in contact with the wafer, the surface of the support, or both.
  • the wafer backside grinding method according to [10] wherein the wafer backside processing step includes at least one of etching, electrode formation, ion implantation, and annealing.
  • [12] The wafer backside grinding method according to [1] to [11], wherein the thickness of the wafer after backside grinding is 200 ⁇ m or less.
  • a method for manufacturing an electronic device including the wafer backside grinding method according to any one of [1] to [12] in the manufacturing process.
  • the wafer backside grinding method of the present invention it is possible to suppress the influence of unevenness on the surface of the wafer when grinding the backside of the wafer, and the handling property after thinning the wafer is improved and the thickness is reduced. Since the wafer can be stably processed in a wide variety of subsequent processes, it prevents damage to the circuits formed on the wafer, suppresses unintended effects on the characteristics of electronic devices such as semiconductor devices, and protects the wafer. It is possible to perform a large number and/or a wide variety of processes with high productivity and yield, thereby greatly contributing to the improvement of productivity of electronic devices such as semiconductor devices.
  • FIG. 1 shows a wafer 1 whose back surface 12 is ground according to the present invention.
  • (b) shows the wafer 1 with the protective adhesive tape 3 applied to the surface 11 of the wafer 1 by the step (1) using the protective adhesive tape 3 as a protective layer.
  • (c) shows the wafer 1 in which the base layer 31 of the protective adhesive tape 3 has been flattened by the step (2).
  • (d) shows the wafer 1 in which the adhesive layer 4 is formed on the flattened base layer 33 of the protective adhesive tape 3 obtained in step (2).
  • (e) shows the wafer 1 to which the support 5 and the flattened base material layer 33 of the protective adhesive tape 3 are adhered via the adhesive layer 4 in step (3).
  • the present invention A method for grinding the back surface of a wafer having an uneven surface, comprising, prior to grinding the back surface of the wafer, step (1) of forming a protective layer on the surface of the wafer; Step (2) of flattening the surface of the protective layer that is not in contact with the wafer, and Step (3) of bonding the surface of the protective layer that is not in contact with the wafer and a support via an adhesive layer,
  • a wafer backside grinding method comprising:
  • the wafer to be back-ground by the method of the present invention has concavo-convex surface.
  • the irregularities on the wafer surface include, for example, electrodes, circuit patterns, thick polyimide (5 to 20 ⁇ m) protective films, defect marks (5 to 100 ⁇ m) for identifying defective chips, and gold for bump bonding instead of wire bonding. Those derived from bumps (10 to 100 ⁇ m), solder bumps (50 to 300 ⁇ m), etc. can be mentioned, and the height of the irregularities can be 5 to 300 ⁇ m.
  • the material of the wafer is usually used in the manufacture of electronic devices, is a material that can be used to form electronic circuits, etc., and is expected to be thin as a base material to be ground.
  • silicon wafers, compound semiconductor wafers such as SiC, AlSb, AlAs, AlN, AlP, BN, BP, BAs, GaSb, GaAs, GaN, GaP, InSb, InAs, InN, or InP, crystal wafers, sapphire, glass, etc. include, but are not limited to. Silicon wafers and compound semiconductor wafers may be doped.
  • Wafers with uneven surfaces include power device wafers used in electronic devices such as power converters such as inverters and converters.
  • Step (1) is a step of forming a protective layer on the surface of the wafer.
  • the protective layer is intended to prevent electronic circuits and the like on the front surface of the wafer from being damaged and contaminated with grinding dust and grinding water during back grinding of the wafer.
  • the wafer In order to grind the back surface of the wafer, the wafer is sucked and held on a vacuum chuck type chuck table, and the chuck table is rotated to rotate the wafer while pressing a grinding tool such as a whetstone against the back surface of the wafer. Feed grinding is generally employed.
  • the protective layer includes, for example, a protective adhesive tape, a protective resin layer, and the like, and the protective layer is preferably a protective adhesive tape.
  • the protective layer in the present invention has a thickness suitable for protecting the surface of the wafer, and at the same time, it has a thickness that can withstand flattening in step (2) described later, that is, has a thickness that is sufficient for the required cutting thickness.
  • step (1) is a step of applying the protective adhesive tape to the surface of the wafer.
  • the application of the protective adhesive tape to the surface of the wafer may be performed by a conventionally known method, but is preferably performed using an automatic application device. It is preferable to appropriately adjust the pressure, temperature, time, and the like.
  • the protective adhesive tape as a preferable protective layer used in the method of the present invention has adhesiveness to withstand flattening in step (2) described later, machinability, and adhesiveness to withstand back-grinding described later. There is no particular limitation as long as it can be removed from the wafer with chemical resistance and heat resistance that can withstand the back surface treatment process, and finally, the contamination of the surface of the wafer is reduced. It is preferably selected from those used as and can also be used.
  • Materials for the base layer of the protective adhesive tape include, for example, high density polyethylene (HDPE), medium density polyethylene (MDPE), low density polyethylene (LDPE), very low density polyethylene (VLDPE), linear low density polyethylene ( L-LDPE), random copolymer polypropylene (random PP), block copolymer polypropylene (block PP), homopolypropylene (homoPP), polybutene (PB), polymethylpentene (PMP), ethylene-vinyl acetate copolymer (EVA), ethylene acrylic acid copolymers, ethylene methacrylic acid copolymers and their metal crosslinked products (ionomers) and other polyolefins, and polyethylene terephthalate (PET) and polyethylene naphthalate (PEN).
  • HDPE high density polyethylene
  • MDPE medium density polyethylene
  • LDPE low density polyethylene
  • VLDPE very low density polyethylene
  • L-LDPE linear low density polyethylene
  • random PP random copolymer poly
  • polybutylene terephthalate PBT
  • polyesters such as liquid crystal polymer (LCP), polyurethane (PU), polycarbonate (PC), polyimide (PI), polyether ether ketone (PEEK), Polyetherimide (PEI), polyamide (PA), wholly aromatic polyamide, polyphenyl sulfide (PPS), fluororesin, polyvinyl chloride, polyvinylidene chloride, cellulose resin and the like are also included.
  • LCP liquid crystal polymer
  • PU polyurethane
  • PC polycarbonate
  • PPI polyimide
  • PEEK polyether ketone
  • PEI Polyetherimide
  • PA polyamide
  • PPS polyphenyl sulfide
  • fluororesin polyvinyl chloride
  • polyvinylidene chloride polyvinylidene chloride
  • cellulose resin and the like are also included.
  • the above resin may be used alone as a single-layer base material, or a combination of a plurality of
  • the base layer of the protective adhesive tape contains PET, PEN, PBT, LCP, PI, PA, PEEK, PPS considering the following conditions.
  • the base layer of the protective adhesive tape Since the base layer of the protective adhesive tape must be able to withstand flattening, it preferably has a thickness of 10 to 1000 ⁇ m, particularly preferably 25 to 500 ⁇ m, before flattening. If the thickness of the base layer of the protective pressure-sensitive adhesive tape is reduced, the thickness of the protective layer is reduced and the amount that can be ground during flattening is limited, so the effect of flattening the protective layer tends to be reduced. Therefore, when the unevenness on the wafer surface is large, the thickness accuracy of the wafer after grinding may be degraded due to its influence.
  • the rigidity of the protective layer is high, and workability in the form of tape tends to deteriorate, and cuttability when cutting the tape into a wafer form tends to deteriorate.
  • the protective adhesive tape is less likely to be deformed, so there is a tendency for the releasability of the protective adhesive tape to deteriorate in the step of removing the protective layer after backside grinding of the wafer.
  • the base layer of the protective tape preferably has a tensile modulus of elasticity of 1 ⁇ 10 7 Pa or more at 23° C. according to JIS K7113, more preferably 5 ⁇ 10 7 Pa or more. .
  • a low tensile modulus tends to affect flattening of the base layer of the masking tape. Specifically, even after flattening, there is a tendency for the thickness accuracy of the wafer after back grinding to decrease due to the unevenness of the surface of the wafer.
  • the tensile modulus of elasticity is preferably 1 ⁇ 10 10 Pa or less, more preferably 6 ⁇ 10 9 Pa or less, from the viewpoints of workability, cuttability, bendability, etc. of the base material layer.
  • the adhesive layer of the protective adhesive tape commonly used pressure-sensitive adhesives and curable adhesives can be used.
  • the adhesive layer may be a single layer or multiple layers, and from the viewpoint of conforming to the unevenness of the wafer surface, a multiple layer in which a flexible intermediate layer and a low-contamination adhesive layer are laminated. It may be a layered structure.
  • Examples of the pressure-sensitive adhesive include acrylic adhesives, rubber-based adhesives, and silicone-based adhesives.
  • Acrylic adhesive with acrylic polymer as the base polymer in terms of adhesiveness to semiconductor wafers and substrate layers, and cleanability with organic solvents such as ultrapure water and alcohol after peeling off the protective adhesive tape. agents are preferred.
  • Examples of the curable adhesive include a photocurable adhesive that is crosslinked and cured by light irradiation and a thermosetting adhesive that is crosslinked and cured by heating.
  • Examples of the photocurable adhesive include a photocurable adhesive containing a photopolymerization initiator as a main component of a polymerizable polymer.
  • Examples of the thermosetting adhesive include a thermosetting adhesive containing a polymerizable polymer as a main component and a thermal polymerization initiator.
  • the thickness is preferably 5 to 500 ⁇ m, particularly preferably 10 to 100 ⁇ m, from the viewpoint of the final separation from the wafer.
  • the 180° peeling adhesive strength (peeling speed 300 mm/min) according to JIS Z0237 (2009) is preferably 0.3 to 10 N/25 mm, and 0.5 to 7 N /25 mm is particularly preferred. Within this range, it is adjusted as appropriate according to the process.
  • a protective resin layer can also be used as the protective layer.
  • the protective resin layer is formed by applying a raw material resin dissolved in a solvent or a liquid raw material resin itself (hereinafter referred to as a precursor resin liquid) by a known method such as spin coating, followed by light irradiation, It functions as a solid protective layer by being hardened by heating, drying, or the like. It may be formed in multiple layers.
  • the protective resin layer that can be used as a protective layer has adhesiveness and machinability that can withstand flattening in the step (2) described later, and adhesiveness that can withstand backside grinding described later.
  • adhesiveness and machinability that can withstand flattening in the step (2) described later
  • adhesiveness that can withstand backside grinding described later.
  • the precursor resin liquid include rubber-based resin liquid in which rubber, elastomer, etc. are dissolved in a solvent, one-component thermosetting resin liquid based on epoxy, urethane, etc., and two-component thermosetting resin liquid based on epoxy, urethane, acrylic, etc.
  • Liquid mixing reaction type resin liquids, hot melt adhesives, ultraviolet (UV) or electron beam curing type resin liquids based on acrylic, epoxy, etc., and water dispersion type resin liquids can be used.
  • Additives include thickeners, plasticizers, dispersants, fillers, flame retardants, heat antioxidants, and the like.
  • a plurality of protective resin layers may be formed.
  • Step (2) is a step of flattening the surface of the protective layer that is not in contact with the wafer.
  • the step is to flatten the base layer of the protective adhesive tape.
  • step (1) when a protective adhesive tape is attached to the surface of the wafer, the unevenness of the wafer surface is transferred to the base layer of the protective adhesive tape. Therefore, the unevenness of the base layer of the protective adhesive tape is reflected, and the unevenness is transferred to the back surface of the wafer.
  • the protective layer is formed from a protective resin layer, sufficient flattening may not be achieved by simple spin coating, and unevenness may occur on the surface of the protective layer, which may be transferred to the back surface of the wafer.
  • the force of the back grinder is applied uniformly, thereby preventing the unevenness from being transferred to the back surface of the wafer. can be prevented.
  • the planarization is not particularly limited as long as it can prevent unevenness from being transferred to the back surface of the wafer, but for example, it preferably satisfies the following conditions.
  • the difference between the concave portions and the convex portions on the surface of the protective layer not in contact with the wafer is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, and particularly 1 ⁇ m or less over the entire cut surface. preferable.
  • the planarization is performed by cutting, grinding or polishing.
  • the cutting is performed with a cutting tool.
  • a cutting tool By cutting with a cutting tool, problems such as clogging of the whetstone during polishing can be solved, and flattening can be easily performed, as compared with the case where flattening is performed by polishing with a polishing machine.
  • Bite cutting may be performed by a surface planer.
  • Step (3) is a step of bonding the surface of the protective layer that is not in contact with the wafer to the support via an adhesive layer to form a laminate.
  • the adhesive layer is used to adhere the surface of the protective layer not in contact with the wafer to the support.
  • the tacky-adhesive layer is formed by temporarily fixing the wafer to the support, and after processing is completed, for example, IR laser method, UV irradiation method, laser lift-off method, solvent peeling method, heat/UV foaming method, mechanical peeling method, etc.
  • a known temporary fixing material that can be easily separated may be applied, and a liquid adhesive (such as an adhesive dissolved in a solvent) may be applied by spin coating or the like and molded, or an adhesive tape may be used.
  • the adhesive layer may be formed on the support, on the protective layer, or on both. Variation in the thickness of the adhesive layer is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, and particularly preferably 1 ⁇ m or less.
  • the adhesive layer is at least one selected from acrylic, silicone, polyimide, and rubber.
  • the adhesive layer is an adhesive tape
  • the adhesive tape may be a single layer or a laminate of multiple layers, and may be a double-sided tape containing a base film in the layer.
  • the support preferably has sufficient strength and rigidity, and is excellent in heat resistance, chemical resistance, and thickness accuracy.
  • a known support can be used as the support, and preferred materials include silicon, sapphire, crystal, metals (e.g., aluminum, copper, steel, stainless steel), various glasses and ceramics, and resins (e.g., , polyimide, polyamide, epoxy, phenol, polyphenylene ether, polyetheretherketone, polyetherimide, wholly aromatic polyamide, polyphenylsulfide resin).
  • the support may be composed of a single material, but it may also be composed of multiple materials and may include other materials deposited on the substrate. For example, it may have a deposited layer of silicon nitride or the like on a silicon wafer.
  • the support is made of glass, silicon, ceramic, metal, resin, or a composite material thereof.
  • the adhesive layer may be formed on the base layer of the protective adhesive tape flattened in step (2), or may be formed on the surface of the support, It may be formed on both sides.
  • a method for forming the adhesive layer for example, when the adhesive layer is a liquid adhesive (adhesive dissolved in a solvent, etc.), spin coating is performed, and when the adhesive layer is a tape, the tape is applied. Examples include, but are not limited to, methods involving lamination.
  • the backside grinding process is typically wafer grinding and polishing, but is not limited to this, and may include singulation and the like.
  • the electrode-free surface (back surface) is ground or polished.
  • the thickness of the wafer after such back surface grinding or polishing varies depending on the electronic equipment in which the obtained semiconductor device is used, but is preferably set to 200 ⁇ m or less, more preferably set to 50 ⁇ m or less. As a result, the thickness of the semiconductor device obtained is reduced, and the size reduction of electronic equipment using such a semiconductor device is realized.
  • step (3) When the wafer is ground or polished, in step (3), it is laminated with a rigid support with an adhesive layer interposed therebetween to form a laminate with high thickness accuracy, whereby the wafer can be processed with superior processing accuracy.
  • the wafer After grinding, etc., the wafer can be subjected to a back surface treatment step, which will be described later, and can be easily separated from the support and the adhesive layer without damaging the wafer.
  • the wafer backside grinding method of the present invention includes at least one of a wafer backside processing step, a support removing step, an adhesive layer removing step, or a protective adhesive tape removing step after the wafer backside grinding. Further steps can be included.
  • the wafer back surface grinding method of the present invention may further include processing and/or chemical treatment of the wafer as a back surface treatment step after back surface grinding of the wafer.
  • the above processing includes, for example, annealing, back electrode formation (sputtering), vapor deposition, etching, chemical vapor deposition (CVD), physical vapor deposition (PVD), resist coating/patterning, reflow, and dopant ionization. Injection and the like include, but are not limited to.
  • the chemical treatment is typically a treatment using an acid, an alkali, or an organic solvent.
  • Examples include, but are not limited to, wet etching, resist stripping processes using N-methyl-2-pyrrolidone, monoethanolamine, DMSO, etc., and cleaning processes using concentrated sulfuric acid, ammonia water, hydrogen peroxide water, etc. .
  • the back surface treatment includes at least one of etching, electrode formation, ion implantation, and annealing.
  • the support removal step is a step of removing the support from the laminate.
  • methods for removing the support include, but are not limited to, IR laser method, UV irradiation method, laser lift-off method, solvent peeling method, heat/UV foaming method, and mechanical peeling method.
  • the protective layer and adhesive layer removal step is a step of removing the protective layer and the like from the thinned wafer.
  • the protective layer and the adhesive layer may be removed simultaneously or sequentially. can be intentionally removed. Examples of the removal method include peeling, washing, and the like.
  • a method for manufacturing an electronic device that includes the wafer backside grinding method of the present invention in the manufacturing process. That is, the wafer ground by the wafer backside grinding method of the present invention can be further subjected to the subsequent steps to produce the final product.
  • circuits, etc. are formed on the wafer, dicing, bonding, packaging, sealing, and other processes normally used in the manufacture of semiconductor devices or electronic devices are performed, and semiconductor devices and electronic devices as products are processed. Devices can be manufactured.
  • the electronic device is a power device.
  • power devices are used in power converters such as inverters and converters, and the wafer surface has irregularities due to its characteristics, structure, manufacturing process, and the like. According to the present invention, it is possible to suppress the influence of the unevenness on the device characteristics. In addition, not only in grinding the backside of the wafer, but also in a wide variety of processing processes, the influence of unevenness can be suppressed and the handling property can be improved. It can also be applied to bump wafer grinding applications.
  • Reference numeral 1 in FIG. 1(a) denotes a semiconductor wafer (hereinafter referred to as a wafer) which is thinned by back grinding.
  • This wafer 1 is a silicon wafer or the like, and has a uniform thickness of, for example, 700 ⁇ m to 800 ⁇ m before processing.
  • a plurality of rectangular devices are partitioned on the surface 11 of the wafer 1 by grid-like dividing lines. Electrodes and the like are formed in the device, and the surface 11 of the wafer 1 is uneven.
  • the wafer backside grinding method of the present embodiment as shown in FIGS. 31 is flattened by grinding with a bite, then the flattened base layer 33 of the protective adhesive tape 3 and the support 5 are adhered via the adhesive layer 4, and then the back surface 12 of the wafer 1 is ground. is thinned to a target thickness (for example, 200 ⁇ m or less). The process will be described in detail below.
  • the protective adhesive tape 3 is attached to the surface 11 of the wafer 1 first.
  • the sticking is performed by reducing the pressure to 100 Pa or less using an automatic sticking device and heating at 100° C. or less.
  • the irregularities on the surface 11 of the wafer 1 are transferred to the base layer 31 of the protective adhesive tape 3 attached.
  • the base layer 31 of the protective adhesive tape 3 is cut flat.
  • a surface planer is used for the cutting. According to this surface planer, the back surface 12 of the wafer 1 is held by being attracted to the suction surface of a vacuum chuck type chuck table, and the substrate layer 31 of the protective adhesive tape 3 is flattened by the rotating cutting tool of the cutting unit. is cut to
  • the adhesive layer 4 is formed on the flattened base layer 33 of the protective adhesive tape.
  • the substrate layer 33 of the flattened protective adhesive tape is exposed on a table that is driven to rotate, and the center of the wafer 1 is aligned with the rotation axis of the table.
  • the wafer 1 is placed and held so as to match, the table is rotated, the liquid adhesive is dropped onto the center of the rotating wafer 1, and the adhesive is applied to the base of the protective adhesive tape flattened by centrifugal force.
  • a spin coating method in which the material is spread over the entire surface of the material layer 33 and applied, is preferably employed.
  • An adhesive layer 4 is formed on the base layer 33 of the protective adhesive tape that has been flattened as shown in FIG. 1(d).
  • the laminate shown in FIG. 1(e) can be obtained.
  • the base layer 33 of the protective adhesive tape 3 has no unevenness, the unevenness of the front surface 11 of the wafer 1 is not transferred by grinding the back surface 12 of the wafer 1. Even if the substrate 1 is thinned, it still has the support 5, so that it does not lose handling properties such as transportability in the subsequent treatment processes.
  • the back surface 12 of the wafer 1 is ground to thin the wafer 1 to a desired thickness.
  • a grinding apparatus that performs infeed grinding is preferably used for grinding the back surface of the wafer 1 .
  • the back surface 12 of the wafer 1 is ground by two grinding units (one for rough grinding and one for finish grinding). Rough grinding and finish grinding are performed in order.
  • the protective adhesive tape 3 is removed after the support 5 is removed.
  • the support 5 is removed by a mechanical peeling method in which a remover is inserted into the interface between the support 5 and the adhesive layer 4 and the support 5 is pulled up. Removal of the protective adhesive tape 3 is performed by peeling off the protective adhesive tape 3 from the wafer 1 .
  • the use of the protective adhesive tape 3 eliminates or minimizes the need for cleaning the wafer after peeling, resulting in excellent workability and lower manufacturing costs for semiconductor devices and electronic devices.
  • a protective resin layer can be used instead of the protective adhesive tape 3 of the first embodiment to protect the surface 11 of the wafer 1 .
  • the wafer 1 is placed and held on a rotationally driven table such that the surface 11 of the wafer 1 is exposed and the center of the wafer 1 coincides with the rotation axis of the table, and the table is rotated.
  • a spin coating method is preferably employed in which the precursor resin liquid is dropped onto the center of the rotating wafer 1 and spread over the entire surface 11 of the wafer 1 by centrifugal force.
  • the coating film after spin coating is placed on a hot plate and dried to completely remove the solvent in the film to form a protective layer.
  • Other steps are the same as in the first embodiment.
  • the protective layer is removed by a washing process.
  • the wafer 1 is fixed on a rotating table with the protective layer facing up, the cleaning solvent is sprayed, the cleaning solvent is placed on the wafer, the cleaning solvent is left to stand, the cleaning solvent is discarded, and the wafer is placed again in the same manner.
  • the wafer 1 is rinsed by spraying isopropyl alcohol (IPA) while rotating it.
  • IPA isopropyl alcohol
  • the wafer backside grinding method of the present invention can suppress the influence of unevenness on the surface of the wafer and can improve the handleability in a wide variety of processing processes after thinning the wafer, so that it can be used for semiconductor devices, electronic devices, and the like. It greatly contributes to the improvement of productivity and has high applicability in various industrial fields such as the semiconductor process industry and other electronic component industries, the electrical and electronic industry that uses electronic components, the transport machinery industry, the information and communication industry, and the precision equipment industry. have

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

The present invention addresses the problem of providing a rear surface grinding method for a wafer, in which the rear surface of a wafer is ground such that the impact of recesses and protrusions on the front surface of the wafer can be suppressed and in which handling after wafer thinning is improved. The present problem is solved by a rear surface grinding method for a wafer having recesses and protrusions on the front surface thereof, the rear surface grinding method for a wafer being characterized by comprising, prior to rear surface grinding of the wafer, a step (1) for forming a protective layer on the front surface of the wafer, a step (2) for flattening the surface of the protective layer that is not in contact with the wafer, and a step (3) for adhering a support to the surface of the protective layer that is not in contact with the wafer, with an adhesive layer therebetween.

Description

ウエハの裏面研削方法及び電子デバイスの製造方法WAFER BACK GRINDING METHOD AND ELECTRONIC DEVICE MANUFACTURING METHOD
 本発明は、表面に凹凸を有するウエハを薄化処理等する方法のうち、ウエハの裏面研削方法に関し、より具体的には、ウエハの表面を保護層で保護した後、前記保護層のウエハと接していない面を平坦化することにより、ウエハの表面の凹凸の影響を抑制するウエハの裏面研削方法であって、かつ、ウエハ薄化後の多岐にわたる処理プロセスにおいてハンドリング性が向上したウエハの裏面研削方法に関する。 TECHNICAL FIELD The present invention relates to a method for grinding the back surface of a wafer, among methods for thinning a wafer having surface irregularities, and more specifically, after protecting the surface of the wafer with a protective layer, A wafer backside grinding method for suppressing the influence of unevenness on the wafer surface by flattening the non-contact surface, and the wafer backside having improved handleability in a wide variety of processing processes after wafer thinning. It relates to a grinding method.
 半導体デバイスの高度集積のために、又は高性能な半導体デバイスを製造するために、回路が形成されたウエハを均一な厚みで、かつ薄く研削する、裏面研削が広く行われている。しかし、半導体デバイス等の電子デバイスの製造工程において、いわゆる前工程でシリコンやガリウム-ヒ素等の半導体ウエハの表面に回路等が形成され、又はバンプ電極等により、ウエハの表面には凹凸が存在しうる。このような電子デバイスのうち、特にインバーターやコンバーター等の電力変換器に用いられるパワーデバイスでは、その特性、構造、及び製造工程等の理由からウエハの表面の凹凸がある。これを、いわゆる後工程において、保護粘着テープ等の保護層を作成し、そのまま裏面研削すると、ウエハの表面の凹凸がウエハの裏側に転写され、ウエハの仕上げ厚みに凹凸が反映されてしまい、特にパワーデバイスにおいてはデバイス特性に影響を与える。  In order to achieve high integration of semiconductor devices or to manufacture high-performance semiconductor devices, wafers with circuits formed thereon are ground to a uniform thickness and thinness, and backside grinding is widely used. However, in the manufacturing process of electronic devices such as semiconductor devices, circuits or the like are formed on the surface of a semiconductor wafer made of silicon, gallium-arsenide, or the like in a so-called pre-process, or unevenness exists on the surface of the wafer due to bump electrodes or the like. sell. Among such electronic devices, power devices used in power converters such as inverters and converters in particular have irregularities on the surface of wafers due to their characteristics, structures, manufacturing processes, and the like. In the so-called post-process, if a protective layer such as a protective adhesive tape is created and the back surface is ground as it is, the unevenness on the surface of the wafer will be transferred to the back side of the wafer, and the unevenness will be reflected in the finished thickness of the wafer. In power devices, it affects device characteristics.
 ウエハの表面の凹凸の影響を抑制するウエハの裏面研削方法として、粘着テープでウエハを支持した後、サーフェスプレーナーによってテープの基材を平坦化することにより、ウエハの裏面研削の仕上がり厚みを均一にする方法(特許文献1)が知られている。しかし、この方法では、ウエハの仕上げ厚みのバラつきを抑制できるものの、薄化後のウエハの搬送性等のハンドリング性が難化する課題があった。 As a method of grinding the backside of a wafer that suppresses the effects of unevenness on the surface of the wafer, after supporting the wafer with adhesive tape, the base material of the tape is flattened with a surface planer, thereby making the finished thickness of the backside grinding of the wafer uniform. A method (Patent Document 1) is known. However, although this method can suppress variations in the finished thickness of the wafer, there is a problem in that handling properties such as transportability of the thinned wafer become difficult.
 一方、薄化ウエハのハンドリング性を向上させる方法として、保護層によってウエハと支持基板を仮固定してハンドリングを容易にする方法(特許文献2)が知られている。しかし、この方法では、ウエハの表面の凹凸に起因する等の理由で、保護層の塗布のムラ等により、ウエハの仕上げ厚みのバラつきの抑制が不十分な場合があった。 On the other hand, as a method for improving the handleability of thinned wafers, a method is known in which the wafer and support substrate are temporarily fixed with a protective layer to facilitate handling (Patent Document 2). However, in this method, there have been cases where the variation in the finished thickness of the wafer is not sufficiently suppressed due to uneven coating of the protective layer due to unevenness on the surface of the wafer.
特開第2009-43931号公報Japanese Patent Application Laid-Open No. 2009-43931 特開第2004-64040号公報Japanese Unexamined Patent Publication No. 2004-64040
 上記技術背景に鑑み、本発明の目的は、ウエハの表面の凹凸の影響を抑制可能なウエハの裏面研削であって、かつ、ウエハ薄化後のハンドリング性を向上させるウエハの裏面研削方法を提供することにある。 In view of the above technical background, it is an object of the present invention to provide a wafer back grinding method capable of suppressing the effects of unevenness on the surface of the wafer and improving the handling properties after thinning the wafer. to do.
 本発明者らは、鋭意検討の結果、ウエハの裏面研削に先立ち、ウエハの表面を保護層で保護した後、保護層のウエハと接していない面を平坦化し、粘接着層を介して、平坦化した保護層のウエハと接していない面と支持体とを接着することで上記課題を解決し得ることを見出し、本発明を完成するに至った。
 すなわち本発明は、
[1]
 表面に凹凸を有するウエハの裏面研削方法であって、ウエハの裏面研削に先立ち、
 前記ウエハの表面に、保護層を形成する工程(1)、
 前記保護層のウエハと接していない面を平坦化する工程(2)、及び
 粘接着層を介して前記保護層のウエハと接していない面と支持体とを接着する工程(3)、
を備えることを特徴とするウエハの裏面研削方法
 に関する。
As a result of extensive studies, the present inventors have found that prior to grinding the back surface of the wafer, after protecting the surface of the wafer with a protective layer, the surface of the protective layer that is not in contact with the wafer is flattened, and through the adhesive layer, The inventors have found that the above problems can be solved by bonding the flattened surface of the protective layer that is not in contact with the wafer to the support, and have completed the present invention.
That is, the present invention
[1]
A method for grinding the back surface of a wafer having an uneven surface, comprising, prior to grinding the back surface of the wafer,
step (1) of forming a protective layer on the surface of the wafer;
Step (2) of flattening the surface of the protective layer that is not in contact with the wafer, and Step (3) of bonding the surface of the protective layer that is not in contact with the wafer and a support via an adhesive layer,
It relates to a method for grinding the back surface of a wafer, characterized by comprising:
 以下、[2]~[15]は、いずれも本発明の好ましい一態様又は一実施形態である。
[2]
 前記保護層が保護粘着テープである、[1]に記載のウエハの裏面研削方法。
[3]
 前記保護粘着テープの基材層が、PET、PEN、PBT、LCP、PI、PA、PEEK及びPPSからなる群から選ばれた少なくとも1種の樹脂を含有する、[2]に記載のウエハの裏面研削方法。
[4]
 前記表面に凹凸を有するウエハが、表面に形成された電極、回路パターン、ポリイミド、不良マーク、又はバンプの少なくとも1つにより凹凸を有するウエハである、[1]~[3]のいずれか一項に記載のウエハの裏面研削方法。
[5]
 前記平坦化する工程が、切削、研削、又は研磨によって平坦化する工程である、[1]~[4]のいずれか一項に記載のウエハの裏面研削方法。
[6]
 前記切削がバイト切削によって行われる、[5]に記載のウエハの裏面研削方法。
[7]
 前記粘接着層が、液状接着剤又は粘接着テープである、[1]~[6]のいずれか一項に記載のウエハの裏面研削方法。
[8]
 前記支持体が、ガラス、シリコン、セラミック、金属、樹脂又はそれらの複合材料からなる[1]~[7]のいずれか一項に記載のウエハの裏面研削方法。
[9]
 前記工程(2)の後であって、前記工程(3)の前に、平坦化された前記保護層のウエハと接していない面、前記支持体の表面又はその両方に、前記粘接着層を形成する工程を含む、[1]~[8]のいずれか一項に記載のウエハの裏面研削方法。
[10]
 ウエハの裏面研削後に、ウエハの裏面処理工程をさらに含む、[1]~[9]のいずれか一項に記載のウエハの裏面研削方法。
[11]
 前記ウエハの裏面処理工程がエッチング、電極形成、イオン注入、アニールのうち少なくとも1つが含まれる、[10]に記載のウエハの裏面研削方法。
[12]
 前記ウエハの裏面研削後の厚さが、200μm以下である、[1]~[11]に記載のウエハの裏面研削方法。
[13]
 [1]~[12]のいずれか一項に記載のウエハの裏面研削方法を、製造工程に含む電子デバイスの製造方法。
[14]
 前記電子デバイスが、裏面側にも電極を備えるデバイスである、[13]に記載の電子デバイスの製造方法。
[15]
 前記電子デバイスが、パワーデバイスである、[14]に記載の電子デバイスの製造方法。
[2] to [15] below are all preferable aspects or embodiments of the present invention.
[2]
The wafer backside grinding method according to [1], wherein the protective layer is a protective adhesive tape.
[3]
The back surface of the wafer according to [2], wherein the base layer of the protective adhesive tape contains at least one resin selected from the group consisting of PET, PEN, PBT, LCP, PI, PA, PEEK and PPS. grinding method.
[4]
Any one of [1] to [3], wherein the wafer having unevenness on the surface is a wafer having unevenness due to at least one of electrodes, circuit patterns, polyimide, defective marks, or bumps formed on the surface. 3. The wafer backside grinding method according to 1.
[5]
The wafer backside grinding method according to any one of [1] to [4], wherein the planarizing step is a step of planarizing by cutting, grinding, or polishing.
[6]
The wafer backside grinding method according to [5], wherein the cutting is performed by cutting with a cutting tool.
[7]
The wafer backside grinding method according to any one of [1] to [6], wherein the adhesive layer is a liquid adhesive or an adhesive tape.
[8]
The wafer backside grinding method according to any one of [1] to [7], wherein the support is made of glass, silicon, ceramic, metal, resin, or a composite material thereof.
[9]
After the step (2) and before the step (3), the adhesive layer is applied to the flattened surface of the protective layer that is not in contact with the wafer, the surface of the support, or both. The wafer backside grinding method according to any one of [1] to [8], comprising the step of forming
[10]
The wafer backside grinding method according to any one of [1] to [9], further comprising a wafer backside treatment step after the wafer backside grinding.
[11]
The wafer backside grinding method according to [10], wherein the wafer backside processing step includes at least one of etching, electrode formation, ion implantation, and annealing.
[12]
The wafer backside grinding method according to [1] to [11], wherein the thickness of the wafer after backside grinding is 200 μm or less.
[13]
A method for manufacturing an electronic device, including the wafer backside grinding method according to any one of [1] to [12] in the manufacturing process.
[14]
The method for manufacturing an electronic device according to [13], wherein the electronic device is a device having an electrode on the back side as well.
[15]
The method for manufacturing an electronic device according to [14], wherein the electronic device is a power device.
 本発明のウエハの裏面研削方法によれば、ウエハの裏面研削の際に、ウエハの表面の凹凸の影響を抑制することが可能であり、かつ、ウエハ薄化後のハンドリング性が向上し薄化後に多岐にわたる処理プロセスにおいてウエハを安定的に処理できるので、ウエハに形成された回路等が損傷するのを防ぎ、半導体デバイス等の電子デバイスの特性に意図しない影響が出ることを抑え、ウエハに対して多数の及び/又は多岐にわたる工程を高い生産性と歩留まりで実施することが可能となり、半導体デバイス等の電子デバイスの生産性向上に大きく貢献する。 According to the wafer backside grinding method of the present invention, it is possible to suppress the influence of unevenness on the surface of the wafer when grinding the backside of the wafer, and the handling property after thinning the wafer is improved and the thickness is reduced. Since the wafer can be stably processed in a wide variety of subsequent processes, it prevents damage to the circuits formed on the wafer, suppresses unintended effects on the characteristics of electronic devices such as semiconductor devices, and protects the wafer. It is possible to perform a large number and/or a wide variety of processes with high productivity and yield, thereby greatly contributing to the improvement of productivity of electronic devices such as semiconductor devices.
本発明の一実施形態における工程を説明する模式図である。(a)は、本発明で裏面12を研削するウエハ1を示す。(b)は、保護層として保護粘着テープ3を用いて工程(1)により、ウエハ1の表面11に保護粘着テープ3が貼られたウエハ1を示す。(c)は、工程(2)により、保護粘着テープ3の基材層31が平坦化されたウエハ1を示す。(d)は、工程(2)で得られた保護粘着テープ3の平坦化された基材層33に粘接着層4を形成したウエハ1を示す。(e)は、工程(3)により、粘接着層4を介して支持体5と保護粘着テープ3の平坦化された基材層33を接着したウエハ1を示す。It is a schematic diagram explaining the process in one embodiment of the present invention. (a) shows a wafer 1 whose back surface 12 is ground according to the present invention. (b) shows the wafer 1 with the protective adhesive tape 3 applied to the surface 11 of the wafer 1 by the step (1) using the protective adhesive tape 3 as a protective layer. (c) shows the wafer 1 in which the base layer 31 of the protective adhesive tape 3 has been flattened by the step (2). (d) shows the wafer 1 in which the adhesive layer 4 is formed on the flattened base layer 33 of the protective adhesive tape 3 obtained in step (2). (e) shows the wafer 1 to which the support 5 and the flattened base material layer 33 of the protective adhesive tape 3 are adhered via the adhesive layer 4 in step (3).
 本発明は、
 表面に凹凸を有するウエハの裏面研削方法であって、ウエハの裏面研削に先立ち、
 前記ウエハの表面に、保護層を形成する工程(1)、
 前記保護層のウエハと接していない面を平坦化する工程(2)、及び
 粘接着層を介して前記保護層のウエハと接していない面と支持体とを接着する工程(3)、
を備えることを特徴とするウエハの裏面研削方法
 である。
The present invention
A method for grinding the back surface of a wafer having an uneven surface, comprising, prior to grinding the back surface of the wafer,
step (1) of forming a protective layer on the surface of the wafer;
Step (2) of flattening the surface of the protective layer that is not in contact with the wafer, and Step (3) of bonding the surface of the protective layer that is not in contact with the wafer and a support via an adhesive layer,
A wafer backside grinding method comprising:
 表面に凹凸を有するウエハ
 本発明の方法によって裏面研削されるウエハは、表面に凹凸を有する。ウエハの表面の凹凸は、例えば、電極、回路パターン、保護膜である厚いポリイミド(5~20μm)、不良チップを判別するための不良マーク(5~100μm)、ワイヤ接合に替わるバンプ接合用の金バンプ(10~100μm)や半田バンプ(50~300μm)等に由来するものが挙げられ、凹凸の高さは、5~300μmとなり得る。
Wafer having Concavo-convex Surface The wafer to be back-ground by the method of the present invention has concavo-convex surface. The irregularities on the wafer surface include, for example, electrodes, circuit patterns, thick polyimide (5 to 20 μm) protective films, defect marks (5 to 100 μm) for identifying defective chips, and gold for bump bonding instead of wire bonding. Those derived from bumps (10 to 100 μm), solder bumps (50 to 300 μm), etc. can be mentioned, and the height of the irregularities can be 5 to 300 μm.
 ウエハの素材は、通常電子デバイスの製造に用いられ、電子回路等の形成が可能な材料であって、被研削基材として薄肉化されることが期待されるものが用いられる。例えば、シリコンウエハやSiC、AlSb、AlAs、AlN、AlP、BN、BP、BAs、GaSb、GaAs、GaN、GaP、InSb、InAs、InN、又はInPなどの化合物半導体ウエハ、水晶ウエハ、サファイヤ又はガラス等が挙げられるが、これらに限定されない。シリコンウエハや化合物半導体ウエハは、ドーピングされていてもよい。 The material of the wafer is usually used in the manufacture of electronic devices, is a material that can be used to form electronic circuits, etc., and is expected to be thin as a base material to be ground. For example, silicon wafers, compound semiconductor wafers such as SiC, AlSb, AlAs, AlN, AlP, BN, BP, BAs, GaSb, GaAs, GaN, GaP, InSb, InAs, InN, or InP, crystal wafers, sapphire, glass, etc. include, but are not limited to. Silicon wafers and compound semiconductor wafers may be doped.
 特に表面に凹凸を有するウエハとしては、電子デバイスで、インバーターやコンバーター等の電力変換器に用いられるパワーデバイスのウエハが挙げられる。 Wafers with uneven surfaces in particular include power device wafers used in electronic devices such as power converters such as inverters and converters.
 工程(1)
 工程(1)は、ウエハの表面に、保護層を形成する工程である。
Step (1)
Step (1) is a step of forming a protective layer on the surface of the wafer.
 保護層
 保護層は、ウエハの裏面研削の際に、ウエハの表面の電子回路等が損傷したり、研削くずや研削水等により汚染されたりするのを防止するためのものである。ウエハの裏面を研削するには、ウエハを真空チャック式のチャックテーブルに吸着、保持し、このチャックテーブルを回転させることによりウエハを自転させながら、砥石等の研削工具をウエハの裏面に押し付けるといったインフィード研削が、一般的に採用されているが、このようにウエハの裏面を研削する場合には、ウエハの表面を保護層で被覆し、チャックテーブルの保持面にウエハの表面が直接接触し、ウエハの表面の電子回路等が損傷しないように配慮している。
 一態様において、保護層としては、例えば、保護粘着テープ、保護樹脂層等が挙げられ、好ましくは、保護層は保護粘着テープである。
Protective Layer The protective layer is intended to prevent electronic circuits and the like on the front surface of the wafer from being damaged and contaminated with grinding dust and grinding water during back grinding of the wafer. In order to grind the back surface of the wafer, the wafer is sucked and held on a vacuum chuck type chuck table, and the chuck table is rotated to rotate the wafer while pressing a grinding tool such as a whetstone against the back surface of the wafer. Feed grinding is generally employed. When grinding the back surface of the wafer in this way, the surface of the wafer is covered with a protective layer, and the surface of the wafer is in direct contact with the holding surface of the chuck table. Care is taken not to damage the electronic circuits on the surface of the wafer.
In one aspect, the protective layer includes, for example, a protective adhesive tape, a protective resin layer, and the like, and the protective layer is preferably a protective adhesive tape.
 本発明における保護層は、ウエハの表面の保護に適切な厚みを有すると同時に、後述する工程(2)において平坦化に耐えうる、すなわち、必要な切削厚みに対し余裕のある厚みを有する。 The protective layer in the present invention has a thickness suitable for protecting the surface of the wafer, and at the same time, it has a thickness that can withstand flattening in step (2) described later, that is, has a thickness that is sufficient for the required cutting thickness.
 保護層としては保護粘着テープを用いることが好ましい。保護層が保護粘着テープの場合、工程(1)は、保護粘着テープをウエハの表面へ貼付する工程である。保護粘着テープのウエハの表面への貼付は、従来の公知の方法で行われてよいが、自動貼付装置を用いて行われるのが好ましく、ウエハ及び保護粘着テープの材質や種類等に応じて、圧力、温度、時間等を適宜調整することが好ましい。 It is preferable to use a protective adhesive tape as the protective layer. When the protective layer is a protective adhesive tape, step (1) is a step of applying the protective adhesive tape to the surface of the wafer. The application of the protective adhesive tape to the surface of the wafer may be performed by a conventionally known method, but is preferably performed using an automatic application device. It is preferable to appropriately adjust the pressure, temperature, time, and the like.
 保護粘着テープ
 本発明の方法に用いられる好ましい保護層としての保護粘着テープは、後述する工程(2)において平坦化に耐えうる粘着性、切削加工性、及び後述する裏面研削に耐える粘着性、後述する裏面処理工程に耐える耐薬品性、耐熱性、及び最終的に、ウエハの表面の汚染が低減された状態でウエハから除去できれば特に制限はなく、一般に半導体ウエハの裏面研削のために保護粘着テープとして用いられるものから好ましく選択され、使用することもできる。
Protective adhesive tape The protective adhesive tape as a preferable protective layer used in the method of the present invention has adhesiveness to withstand flattening in step (2) described later, machinability, and adhesiveness to withstand back-grinding described later. There is no particular limitation as long as it can be removed from the wafer with chemical resistance and heat resistance that can withstand the back surface treatment process, and finally, the contamination of the surface of the wafer is reduced. It is preferably selected from those used as and can also be used.
 保護粘着テープの基材層の素材としては、例えば、高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)、低密度ポリエチレン(LDPE)、超低密度ポリエチレン(VLDPE)、直鎖状低密度ポリエチレン(L-LDPE)、ランダム共重合ポリプロピレン(ランダムPP)、ブロック共重合ポリプロピレン(ブロックPP)、ホモポリプロレン(ホモPP)、ポリブテン(PB)、ポリメチルペンテン(PMP)、エチレン-酢酸ビニル共重合体(EVA)、エチレンアクリル酸共重合体やエチレンメタクリル酸共重合体とそれらの金属架橋体(アイオノマー)等のポリオレフィン類であるものが挙げられ、また、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)、液晶ポリマー(LCP)等のポリエステル類であるものが挙げられ、さらに、ポリウレタン(PU)、ポリカーボネート(PC)、ポリイミド(PI)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド(PEI)、ポリアミド(PA)、全芳香族ポリアミド、ポリフェニルスルフィド(PPS)、フッ素樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、セルロース系樹脂等であるものも挙げられる。また、前記樹脂を単独で単層基材として使用したものでもよく、前記の複数の樹脂を組み合わせてブレンドしたもの又は異なる樹脂の複層構成としたものでもよい。耐熱性の観点から、融点又はガラス転移温度100℃以上を有する基材が好ましく、150℃以上であるものが特に好ましい。
 一実施形態において、保護粘着テープの基材層は、以下の条件を考慮すると、PET、PEN、PBT、LCP、PI、PA、PEEK、PPSを含むことが特に好ましい。
Materials for the base layer of the protective adhesive tape include, for example, high density polyethylene (HDPE), medium density polyethylene (MDPE), low density polyethylene (LDPE), very low density polyethylene (VLDPE), linear low density polyethylene ( L-LDPE), random copolymer polypropylene (random PP), block copolymer polypropylene (block PP), homopolypropylene (homoPP), polybutene (PB), polymethylpentene (PMP), ethylene-vinyl acetate copolymer (EVA), ethylene acrylic acid copolymers, ethylene methacrylic acid copolymers and their metal crosslinked products (ionomers) and other polyolefins, and polyethylene terephthalate (PET) and polyethylene naphthalate (PEN). ), polybutylene terephthalate (PBT), and polyesters such as liquid crystal polymer (LCP), polyurethane (PU), polycarbonate (PC), polyimide (PI), polyether ether ketone (PEEK), Polyetherimide (PEI), polyamide (PA), wholly aromatic polyamide, polyphenyl sulfide (PPS), fluororesin, polyvinyl chloride, polyvinylidene chloride, cellulose resin and the like are also included. Also, the above resin may be used alone as a single-layer base material, or a combination of a plurality of the above resins may be blended, or a multi-layer structure of different resins may be used. From the viewpoint of heat resistance, substrates having a melting point or glass transition temperature of 100° C. or higher are preferred, and those having a melting point or glass transition temperature of 150° C. or higher are particularly preferred.
In one embodiment, it is particularly preferred that the base layer of the protective adhesive tape contains PET, PEN, PBT, LCP, PI, PA, PEEK, PPS considering the following conditions.
 保護粘着テープの基材層は、平坦化に耐えうる必要があることから、平坦化前の厚みが10~1000μmであるものが好ましく、25~500μmであるものが特に好ましい。保護粘着テープの基材層の厚さが薄くなれば、保護層が薄く、平坦化の際に研削できる量が限定されるため、保護層を平坦化する効果が小さくなる傾向がある。そのため、ウエハ表面上の凹凸形状が大きい場合には、その影響で、研削後のウエハ厚み精度が低下する場合がある。一方、平坦化前の保護層が厚くなると、保護層の剛性が高く、テープ形状での加工性が低下し、ウエハ形状にテープをカットする際のカット性が低下する傾向がある。また、その剛性のため、保護粘着テープが変形しづらくなるため、ウエハの裏面研削後の保護層除去工程での剥離性が低下する傾向がある。 Since the base layer of the protective adhesive tape must be able to withstand flattening, it preferably has a thickness of 10 to 1000 μm, particularly preferably 25 to 500 μm, before flattening. If the thickness of the base layer of the protective pressure-sensitive adhesive tape is reduced, the thickness of the protective layer is reduced and the amount that can be ground during flattening is limited, so the effect of flattening the protective layer tends to be reduced. Therefore, when the unevenness on the wafer surface is large, the thickness accuracy of the wafer after grinding may be degraded due to its influence. On the other hand, when the thickness of the protective layer before flattening is increased, the rigidity of the protective layer is high, and workability in the form of tape tends to deteriorate, and cuttability when cutting the tape into a wafer form tends to deteriorate. In addition, due to its rigidity, the protective adhesive tape is less likely to be deformed, so there is a tendency for the releasability of the protective adhesive tape to deteriorate in the step of removing the protective layer after backside grinding of the wafer.
 また、保護テープの基材層は、JIS K7113に準じた23℃における引張り弾性率が、1×107Pa以上のものが好ましく、引張り弾性率は、5×107Pa以上のものがより好ましい。引張り弾性率が低くなると、保護テープの基材層の平坦化に影響が出る傾向がある。具体的には、平坦化後であっても、ウエハの表面の凹凸による影響で、裏面研削後のウエハ厚み精度が低下する傾向がある。一方、引張り弾性率は、基材層の加工性、切断性、曲げ性等の点から、1×1010Pa以下のものが好ましく、6×10Pa以下のものがより好ましい。 The base layer of the protective tape preferably has a tensile modulus of elasticity of 1×10 7 Pa or more at 23° C. according to JIS K7113, more preferably 5×10 7 Pa or more. . A low tensile modulus tends to affect flattening of the base layer of the masking tape. Specifically, even after flattening, there is a tendency for the thickness accuracy of the wafer after back grinding to decrease due to the unevenness of the surface of the wafer. On the other hand, the tensile modulus of elasticity is preferably 1×10 10 Pa or less, more preferably 6×10 9 Pa or less, from the viewpoints of workability, cuttability, bendability, etc. of the base material layer.
 保護粘着テープの粘着層には、一般的に使用されている感圧性粘着剤や硬化型粘着剤等を使用できる。また、一般的に当該粘着層は、単層であっても複数層であってもよく、ウエハの表面の凹凸に追従させる観点から、柔軟な中間層と低汚染な粘着層を積層させた複層構成であってもよい。 For the adhesive layer of the protective adhesive tape, commonly used pressure-sensitive adhesives and curable adhesives can be used. In general, the adhesive layer may be a single layer or multiple layers, and from the viewpoint of conforming to the unevenness of the wafer surface, a multiple layer in which a flexible intermediate layer and a low-contamination adhesive layer are laminated. It may be a layered structure.
 上記感圧性粘着剤としては、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤等の粘着剤が挙げられる。半導体ウエハや基材層との粘接着性、保護粘着テープ剥離後のウエハの超純水やアルコール等の有機溶剤による清浄洗浄性等の点から、アクリル系ポリマーをベースポリマーとするアクリル系粘着剤が好ましい。 Examples of the pressure-sensitive adhesive include acrylic adhesives, rubber-based adhesives, and silicone-based adhesives. Acrylic adhesive with acrylic polymer as the base polymer in terms of adhesiveness to semiconductor wafers and substrate layers, and cleanability with organic solvents such as ultrapure water and alcohol after peeling off the protective adhesive tape. agents are preferred.
 上記硬化型接着剤としては、光照射により架橋、硬化する光硬化型接着剤や加熱により架橋、硬化する熱硬化型接着剤が挙げられる。上記光硬化型接着剤としては、例えば、重合性ポリマーを主成分として、光重合開始剤を含有する光硬化型接着剤が挙げられる。上記熱硬化型接着剤としては、例えば、重合性ポリマーを主成分として、熱重合開始剤を含有する熱硬化型接着剤が挙げられる。 Examples of the curable adhesive include a photocurable adhesive that is crosslinked and cured by light irradiation and a thermosetting adhesive that is crosslinked and cured by heating. Examples of the photocurable adhesive include a photocurable adhesive containing a photopolymerization initiator as a main component of a polymerizable polymer. Examples of the thermosetting adhesive include a thermosetting adhesive containing a polymerizable polymer as a main component and a thermal polymerization initiator.
 保護粘着テープの粘着層は、剥離粘着力が小さいと、保護粘着テープの基材層を平坦化する時のせん断力に対しウエハへの粘着力が不足し、保護粘着テープがウエハから剥れてしまうといった問題がある。一方、剥離粘着力が大きいと、保護粘着テープをウエハから剥離が困難となる可能性がある。そのため、最終的なウエハからの剥離の観点からその厚さは5~500μmであることが好ましく、10~100μmであることが特に好ましい。被着体をシリコンミラーウエハとした以外はJIS Z0237(2009)に準じた180°剥離粘着力(剥離速度300mm/分)は0.3~10N/25mmであることが好ましく、0.5~7N/25mmであることが特に好ましい。この範囲の中でプロセスに応じて適宜調整する。 If the adhesive layer of the protective adhesive tape has a low peeling adhesive strength, the adhesive strength to the wafer will be insufficient against the shearing force applied when flattening the base layer of the protective adhesive tape, and the protective adhesive tape will peel off from the wafer. There is a problem that it will be lost. On the other hand, if the peel adhesive strength is high, it may become difficult to peel the protective adhesive tape from the wafer. Therefore, the thickness is preferably 5 to 500 μm, particularly preferably 10 to 100 μm, from the viewpoint of the final separation from the wafer. Except for using a silicon mirror wafer as the adherend, the 180° peeling adhesive strength (peeling speed 300 mm/min) according to JIS Z0237 (2009) is preferably 0.3 to 10 N/25 mm, and 0.5 to 7 N /25 mm is particularly preferred. Within this range, it is adjusted as appropriate according to the process.
 保護層としては保護樹脂層を用いることもできる。保護層が保護樹脂層の場合、保護樹脂層は、溶剤に溶かした原料樹脂や液状の原料樹脂そのもの(以下、前駆体樹脂液という)をスピンコート等の公知の方法で塗布し、光照射、加熱、乾燥等により、硬化させることで固体の保護層として機能する。複数層で形成してもよい。 A protective resin layer can also be used as the protective layer. When the protective layer is a protective resin layer, the protective resin layer is formed by applying a raw material resin dissolved in a solvent or a liquid raw material resin itself (hereinafter referred to as a precursor resin liquid) by a known method such as spin coating, followed by light irradiation, It functions as a solid protective layer by being hardened by heating, drying, or the like. It may be formed in multiple layers.
 保護樹脂層
 保護層として用いることができる保護樹脂層は、後述する工程(2)において平坦化に耐えうる接着性、切削加工性、及び後述する裏面研削に耐える接着性、後述する裏面処理工程に耐える耐薬品性、耐熱性、及び最終的に、ウエハの表面の汚染が低減された状態でウエハから除去できれば特に制限はなく、デバイスウエハを支持体に仮固定する公知の材料から好ましく選択され、使用することもできる。前駆体樹脂液としては、例えば、ゴム、エラストマー等を溶剤に溶解したゴム系樹脂液、エポキシ、ウレタン等をベースとする一液熱硬化型樹脂液、エポキシ、ウレタン、アクリル等をベースとする二液混合反応型樹脂液、ホットメルト型接着剤、アクリル、エポキシ等をベースとする紫外線(UV)若しくは電子線硬化型樹脂液、水分散型樹脂液が挙げられる。ウレタンアクリレート、エポキシアクリレート又はポリエステルアクリレート等の重合性ビニル基を有するオリゴマー及び/又はアクリル若しくはメタクリルモノマーに光重合開始剤、及び、場合により、添加剤を添加したUV硬化型樹脂液が好適に使用される。添加剤としては、増粘剤、可塑剤、分散剤、フィラー、難燃剤及び熱老化防止剤等が挙げられる。保護樹脂層は複数層で形成しても良い。
Protective resin layer The protective resin layer that can be used as a protective layer has adhesiveness and machinability that can withstand flattening in the step (2) described later, and adhesiveness that can withstand backside grinding described later. There is no particular limitation as long as it can be removed from the wafer with durable chemical resistance, heat resistance, and finally, contamination of the surface of the wafer is reduced, and is preferably selected from known materials for temporarily fixing the device wafer to the support, can also be used. Examples of the precursor resin liquid include rubber-based resin liquid in which rubber, elastomer, etc. are dissolved in a solvent, one-component thermosetting resin liquid based on epoxy, urethane, etc., and two-component thermosetting resin liquid based on epoxy, urethane, acrylic, etc. Liquid mixing reaction type resin liquids, hot melt adhesives, ultraviolet (UV) or electron beam curing type resin liquids based on acrylic, epoxy, etc., and water dispersion type resin liquids can be used. A UV curable resin liquid obtained by adding a photopolymerization initiator to an oligomer having a polymerizable vinyl group such as urethane acrylate, epoxy acrylate or polyester acrylate and/or an acrylic or methacrylic monomer and, in some cases, additives is preferably used. be. Additives include thickeners, plasticizers, dispersants, fillers, flame retardants, heat antioxidants, and the like. A plurality of protective resin layers may be formed.
 工程(2)
 工程(2)は、保護層のウエハと接していない面を平坦化する工程である。
Step (2)
Step (2) is a step of flattening the surface of the protective layer that is not in contact with the wafer.
 例えば、保護層が、保護粘着テープの場合、保護粘着テープの基材層を平坦化する工程である。工程(1)で、ウエハの表面に保護粘着テープを貼付すると、ウエハの表面の凹凸が保護粘着テープの基材層に転写され、さらに、そのまま裏面研削を行うとバックグラインダーの力が均一にかからず、保護粘着テープの基材層の凹凸が反映され、ウエハの裏面にも凹凸が転写されてしまう。保護層が保護樹脂層から形成される場合にも、単なるスピンコートでは十分な平坦化ができない場合があり、やはり保護層表面に凹凸が生じ、これがウエハの裏面に転写される場合がある。
 この様に凹凸が転写された保護粘着テープの基材層を、裏面研削に先立ち平坦化することで、バックグラインダーの力が均一にかかるようになり、ウエハの裏面に凹凸が転写されるのを防ぐことができる。
For example, when the protective layer is a protective adhesive tape, the step is to flatten the base layer of the protective adhesive tape. In step (1), when a protective adhesive tape is attached to the surface of the wafer, the unevenness of the wafer surface is transferred to the base layer of the protective adhesive tape. Therefore, the unevenness of the base layer of the protective adhesive tape is reflected, and the unevenness is transferred to the back surface of the wafer. Even when the protective layer is formed from a protective resin layer, sufficient flattening may not be achieved by simple spin coating, and unevenness may occur on the surface of the protective layer, which may be transferred to the back surface of the wafer.
By flattening the base layer of the protective adhesive tape onto which the unevenness has been transferred in this way prior to back grinding, the force of the back grinder is applied uniformly, thereby preventing the unevenness from being transferred to the back surface of the wafer. can be prevented.
 平坦化は、上記ウエハの裏面への凹凸の転写を防ぐことができれば、特に制限されないが、例えば、以下の条件を満足することが好ましい。
 前記保護層のウエハと接していない面の凹部と凸部の差が、切削された面全体にわたって、5μm以下となるのが好ましく、3μm以下となるのがより好ましく、1μm以下となるのが特に好ましい。
 一実施形態において、前記平坦化は、切削、研削又は研磨によって実施される。
The planarization is not particularly limited as long as it can prevent unevenness from being transferred to the back surface of the wafer, but for example, it preferably satisfies the following conditions.
The difference between the concave portions and the convex portions on the surface of the protective layer not in contact with the wafer is preferably 5 μm or less, more preferably 3 μm or less, and particularly 1 μm or less over the entire cut surface. preferable.
In one embodiment, the planarization is performed by cutting, grinding or polishing.
 一実施形態において、前記切削は、バイト切削によって行われる。バイト切削により、研磨機で研磨することにより平坦化を行う場合と比較して、研磨時の砥石の目詰まり等の問題を解消することができ、平坦化を容易に行うことができる。バイト切削は、サーフェスプレーナーによって実施されてもよい。 In one embodiment, the cutting is performed with a cutting tool. By cutting with a cutting tool, problems such as clogging of the whetstone during polishing can be solved, and flattening can be easily performed, as compared with the case where flattening is performed by polishing with a polishing machine. Bite cutting may be performed by a surface planer.
 工程(3)
 工程(3)は、粘接着層を介して、前記保護層のウエハと接していない面と支持体とを接着し、積層体を形成する工程である。
Step (3)
Step (3) is a step of bonding the surface of the protective layer that is not in contact with the wafer to the support via an adhesive layer to form a laminate.
 粘接着層
 粘接着層は、保護層のウエハと接していない面と支持体とを接着するために用いられる。粘接着層は、ウエハを支持体に仮固定して、加工終了後に例えば、IRレーザー法、UV照射法、レーザーリフトオフ法、溶剤剥離法、熱・UV発泡法、機械剥離法等により支持体を易分離できる公知の仮固定材を適用するとよく、液状接着剤(溶剤に溶かした接着剤等)をスピンコート等により塗布して成形したものでも粘接着テープであってもよい。粘接着層は支持体上、保護層上、またはその両方に形成しても良い。粘接着層の厚みバラツキは、5μm以下となるのが好ましく、3μm以下となるのがより好ましく、1μm以下となるのが特に好ましい。
Adhesive Layer The adhesive layer is used to adhere the surface of the protective layer not in contact with the wafer to the support. The tacky-adhesive layer is formed by temporarily fixing the wafer to the support, and after processing is completed, for example, IR laser method, UV irradiation method, laser lift-off method, solvent peeling method, heat/UV foaming method, mechanical peeling method, etc. A known temporary fixing material that can be easily separated may be applied, and a liquid adhesive (such as an adhesive dissolved in a solvent) may be applied by spin coating or the like and molded, or an adhesive tape may be used. The adhesive layer may be formed on the support, on the protective layer, or on both. Variation in the thickness of the adhesive layer is preferably 5 μm or less, more preferably 3 μm or less, and particularly preferably 1 μm or less.
 粘接着層としては、アクリル系、シリコーン系、ポリイミド系、ゴム系から選ばれる少なくとも1種である。粘接着層が粘接着テープの場合、粘接着テープは単層であっても、複数の層の積層体であってもよく、層の中に基材フィルムを含んだ両面テープであってもよい。 The adhesive layer is at least one selected from acrylic, silicone, polyimide, and rubber. When the adhesive layer is an adhesive tape, the adhesive tape may be a single layer or a laminate of multiple layers, and may be a double-sided tape containing a base film in the layer. may
 支持体
 支持体としては、充分な強度と剛性を有し、耐熱性、耐薬品性、厚み精度に優れるものが好ましい。その様な支持体を用いることで、研削後にウエハが薄化した場合であっても、ウエハを安定的にハンドリングすることが可能となり、湾曲等を生ずることなく、ウエハを多数の及び/又は多岐にわたるプロセスに供することが可能となる。
Support The support preferably has sufficient strength and rigidity, and is excellent in heat resistance, chemical resistance, and thickness accuracy. By using such a support, even if the wafer is thinned after grinding, it becomes possible to handle the wafer stably, and the wafer can be processed into multiple and/or multi-layered wafers without bending or the like. It becomes possible to provide for the process of
 支持体には公知の支持体を用いることができるが、好ましく用いられる素材としては、シリコン、サファイヤ、水晶、金属(例えば、アルミニウム、銅、鋼、ステンレス)、種々のガラス及びセラミック、樹脂(例えば、ポリイミド、ポリアミド、エポキシ、フェノール、ポリフェニレンエーテル、ポリエーテルエーテルケトン、ポリエーテルイミド、全芳香族ポリアミド、ポリフェニルスルフィド樹脂)を挙げることができる。支持体は単一の素材で構成されていてもよいが、複数の素材で構成されていてもよく、基材上に堆積された他の素材を含んでいてもよい。例えば、シリコンウエハ上に窒化ケイ素等の蒸着層を有していてもよい。特に好ましくは、支持体は、ガラス、シリコン、セラミック、金属、樹脂、又はそれらの複合材料からなる。 A known support can be used as the support, and preferred materials include silicon, sapphire, crystal, metals (e.g., aluminum, copper, steel, stainless steel), various glasses and ceramics, and resins (e.g., , polyimide, polyamide, epoxy, phenol, polyphenylene ether, polyetheretherketone, polyetherimide, wholly aromatic polyamide, polyphenylsulfide resin). The support may be composed of a single material, but it may also be composed of multiple materials and may include other materials deposited on the substrate. For example, it may have a deposited layer of silicon nitride or the like on a silicon wafer. Particularly preferably, the support is made of glass, silicon, ceramic, metal, resin, or a composite material thereof.
 一実施形態においては、前記粘接着層は、工程(2)で平坦化された前記保護粘着テープの基材層に作成されてもよく、また、前記支持体の表面に作成されても、両面に形成してもよい。粘接着層の作成方法としては、例えば、粘接着層が、液状接着剤(溶剤に溶かした接着剤等)の場合にはスピンコートにより行われ、粘着層がテープの場合にはテープの貼り合わせにより行われる方法が挙げられるが、これらには限定されない。 In one embodiment, the adhesive layer may be formed on the base layer of the protective adhesive tape flattened in step (2), or may be formed on the surface of the support, It may be formed on both sides. As a method for forming the adhesive layer, for example, when the adhesive layer is a liquid adhesive (adhesive dissolved in a solvent, etc.), spin coating is performed, and when the adhesive layer is a tape, the tape is applied. Examples include, but are not limited to, methods involving lamination.
 裏面研削工程
 裏面研削工程は、典型的にはウエハの研削、研磨処理であるが、これには限定されず、個片化等を含んでもよい。
 表面上に電極が形成されているウエハを研削又は研磨する場合には、電極の非形成面(裏面)が研削又は研磨される。かかる裏面の研削又は研磨後のウエハの厚さは、得られる半導体デバイスが使用される電子機器によっても異なるが、好ましくは200μm以下に設定され、より好ましくは50μm以下に設定される。これにより、得られる半導体デバイスの薄型化が行われ、かかる半導体デバイスを使用する電子機器の小型化が実現される。
Backside Grinding Process The backside grinding process is typically wafer grinding and polishing, but is not limited to this, and may include singulation and the like.
When grinding or polishing a wafer having electrodes formed on its surface, the electrode-free surface (back surface) is ground or polished. The thickness of the wafer after such back surface grinding or polishing varies depending on the electronic equipment in which the obtained semiconductor device is used, but is preferably set to 200 μm or less, more preferably set to 50 μm or less. As a result, the thickness of the semiconductor device obtained is reduced, and the size reduction of electronic equipment using such a semiconductor device is realized.
 ウエハを研削又は研磨する際に、工程(3)にて、粘接着層を介して剛直な支持体と積層して積層体を厚み精度よく形成することで、より優れた加工精度でウエハを研削等し得るとともに、この研削等の後に、ウエハにダメージを与えることなく、ウエハを後述する裏面処理工程に供したり、支持体及び粘接着層から容易に分離したりすることができる。 When the wafer is ground or polished, in step (3), it is laminated with a rigid support with an adhesive layer interposed therebetween to form a laminate with high thickness accuracy, whereby the wafer can be processed with superior processing accuracy. After grinding, etc., the wafer can be subjected to a back surface treatment step, which will be described later, and can be easily separated from the support and the adhesive layer without damaging the wafer.
 一実施形態においては、本発明のウエハの裏面研削方法は、ウエハの裏面研削後に、ウエハの裏面処理工程、支持体除去工程、粘接着層除去工程、又は保護粘着テープ除去工程の少なくとも1つの工程をさらに含むことができる。 In one embodiment, the wafer backside grinding method of the present invention includes at least one of a wafer backside processing step, a support removing step, an adhesive layer removing step, or a protective adhesive tape removing step after the wafer backside grinding. Further steps can be included.
 裏面処理工程
 本発明のウエハの裏面研削方法では、さらに、ウエハの裏面研削後に裏面処理工程として、ウエハを、加工処理、及び/又は化学的処理する工程を有してもよい。
Back surface treatment step The wafer back surface grinding method of the present invention may further include processing and/or chemical treatment of the wafer as a back surface treatment step after back surface grinding of the wafer.
 上記加工処理は、例えば、アニール処理、裏面電極形成(スパッタリング)、蒸着、エッチング、化学気相成長法(CVD)、物理気相成長法(PVD)、レジスト塗布・パターンニング、リフロー、ドーパントのイオン注入等が挙げられるが、これらには限定されない。 The above processing includes, for example, annealing, back electrode formation (sputtering), vapor deposition, etching, chemical vapor deposition (CVD), physical vapor deposition (PVD), resist coating/patterning, reflow, and dopant ionization. Injection and the like include, but are not limited to.
 上記化学処理は、典型的には、酸、アルカリ又は有機溶剤を用いる処理であり、例えば、電解めっき、無電解めっき等のめっき処理や、フッ酸、水酸化テトラメチルアンモニウム水溶液(TMAH)等によるウェットエッチング処理や、N-メチル-2-ピロリドン、モノエタノールアミン、DMSO等によるレジスト剥離プロセスや、濃硫酸、アンモニア水、過酸化水素水等による洗浄プロセス等が挙げられるが、これらには限定されない。 The chemical treatment is typically a treatment using an acid, an alkali, or an organic solvent. Examples include, but are not limited to, wet etching, resist stripping processes using N-methyl-2-pyrrolidone, monoethanolamine, DMSO, etc., and cleaning processes using concentrated sulfuric acid, ammonia water, hydrogen peroxide water, etc. .
 一実施形態においては、上記裏面処理には、エッチング、電極形成、イオン注入、アニール処理のうち少なくとも1つが含まれる。 In one embodiment, the back surface treatment includes at least one of etching, electrode formation, ion implantation, and annealing.
 支持体除去工程
 支持体除去工程は、前記積層体から前記支持体を除去する工程である。支持体の除去方法としては、例えば、IRレーザー法、UV照射法、レーザーリフトオフ法、溶剤剥離法、熱・UV発泡法、機械剥離法等が挙げられるが、これらには限定されない。
Support Removal Step The support removal step is a step of removing the support from the laminate. Examples of methods for removing the support include, but are not limited to, IR laser method, UV irradiation method, laser lift-off method, solvent peeling method, heat/UV foaming method, and mechanical peeling method.
 保護層及び粘接着層除去工程
 保護層及び粘接着層除去工程は、薄化ウエハから保護層等を除去する工程であり、保護層及び粘接着層は同時に除去してもよく、逐次的に除去してもよい。除去の方法としては、剥離、洗浄等が挙げられる。
Protective Layer and Adhesive Layer Removal Step The protective layer and adhesive layer removal step is a step of removing the protective layer and the like from the thinned wafer. The protective layer and the adhesive layer may be removed simultaneously or sequentially. can be intentionally removed. Examples of the removal method include peeling, washing, and the like.
 一態様において、本発明のウエハの裏面研削方法を製造工程に含む電子デバイスの製造方法を提供する。すなわち、本発明のウエハの裏面研削方法で研削処理されたウエハを、さらにその後の工程に供して、最終製品を製造することができる。ウエハ上に回路等が形成されている場合には、ダイシング、ボンディング、パッケージング、及び封止等の、半導体デバイス、又は電子デバイスの製造に通常用いられる工程を行い、製品としての半導体デバイス、電子デバイスを製造することができる。 In one aspect, there is provided a method for manufacturing an electronic device that includes the wafer backside grinding method of the present invention in the manufacturing process. That is, the wafer ground by the wafer backside grinding method of the present invention can be further subjected to the subsequent steps to produce the final product. When circuits, etc. are formed on the wafer, dicing, bonding, packaging, sealing, and other processes normally used in the manufacture of semiconductor devices or electronic devices are performed, and semiconductor devices and electronic devices as products are processed. Devices can be manufactured.
 一実施形態においては、前記電子デバイスは、パワーデバイスである。前述の通り、パワーデバイスは、インバーターやコンバーター等の電力変換器に用いられており、その特性、構造、及び製造工程等からウエハの表面に凹凸がある。本発明により、その凹凸の影響によるデバイス特性への影響を抑制することが可能である。
 また、ウエハの裏面研削においてのみならず、多岐にわたる処理プロセスにおいて、凹凸の影響を抑制しハンドリング性を向上させることができるので、例えば、シリコン基板を垂直に貫通する電極(TSV)や凹凸の大きいバンプウエハの研削用途においても応用可能である。
In one embodiment, the electronic device is a power device. As described above, power devices are used in power converters such as inverters and converters, and the wafer surface has irregularities due to its characteristics, structure, manufacturing process, and the like. According to the present invention, it is possible to suppress the influence of the unevenness on the device characteristics.
In addition, not only in grinding the backside of the wafer, but also in a wide variety of processing processes, the influence of unevenness can be suppressed and the handling property can be improved. It can also be applied to bump wafer grinding applications.
 以下、図面を参照して本発明の一実施形態に係るウエハの裏面研削方法をさらに説明するが、本発明はこれらの実施形態に限定されるものではない。 The method for grinding the back surface of a wafer according to one embodiment of the present invention will be further described below with reference to the drawings, but the present invention is not limited to these embodiments.
(実施形態1)
 図1(a)の符号1は、裏面研削されて薄化される半導体ウエハ(以下ウエハと称する)を示している。このウエハ1はシリコンウエハ等であって、加工前の厚さは例えば700μm~800μmで均一とされている。ウエハ1の表面11には格子状の分割予定ラインによって複数の矩形状のデバイスが区画されている。デバイスには電極等が形成されており、ウエハ1の表面11上に凹凸を生じさせる。
(Embodiment 1)
Reference numeral 1 in FIG. 1(a) denotes a semiconductor wafer (hereinafter referred to as a wafer) which is thinned by back grinding. This wafer 1 is a silicon wafer or the like, and has a uniform thickness of, for example, 700 μm to 800 μm before processing. A plurality of rectangular devices are partitioned on the surface 11 of the wafer 1 by grid-like dividing lines. Electrodes and the like are formed in the device, and the surface 11 of the wafer 1 is uneven.
 本実施形態のウエハの裏面研削方法は、図1(a)~(e)に示すように、ウエハ1の表面11に保護粘着テープ3を貼付し、次いで、その保護粘着テープ3の基材層31をバイト研削により平坦化し、次いで、粘接着層4を介して平坦化された保護粘着テープ3の基材層33と支持体5とを接着し、次いで、ウエハ1の裏面12を研削して目的の厚さ(例えば200μm以下)に薄化するものである。以下、その過程を詳述する。 In the wafer backside grinding method of the present embodiment, as shown in FIGS. 31 is flattened by grinding with a bite, then the flattened base layer 33 of the protective adhesive tape 3 and the support 5 are adhered via the adhesive layer 4, and then the back surface 12 of the wafer 1 is ground. is thinned to a target thickness (for example, 200 μm or less). The process will be described in detail below.
 上記のように、本実施形態は、まずウエハ1の表面11に、保護粘着テープ3を貼付する。貼付は自動貼付装置を用いて100Pa以下に減圧し、100℃以下で加熱して行われる。図1(b)で示すように、貼付された保護粘着テープ3の基材層31にはウエハ1の表面11上の凹凸が転写される。 As described above, in this embodiment, the protective adhesive tape 3 is attached to the surface 11 of the wafer 1 first. The sticking is performed by reducing the pressure to 100 Pa or less using an automatic sticking device and heating at 100° C. or less. As shown in FIG. 1B, the irregularities on the surface 11 of the wafer 1 are transferred to the base layer 31 of the protective adhesive tape 3 attached.
 表面11に保護粘着テープ3が貼付されたウエハ1は、次いで、その保護粘着テープ3の基材層31が平坦に切削される。その切削には、サーフェスプレーナーが用いられる。このサーフェスプレーナーによれば、ウエハ1の裏面12を真空チャック式のチャックテーブルの吸着面に吸着させて保持し、切削ユニットの回転する切削工具のバイトによって保護粘着テープ3の基材層31が平坦に切削される。 After the wafer 1 with the protective adhesive tape 3 attached to the surface 11, the base layer 31 of the protective adhesive tape 3 is cut flat. A surface planer is used for the cutting. According to this surface planer, the back surface 12 of the wafer 1 is held by being attracted to the suction surface of a vacuum chuck type chuck table, and the substrate layer 31 of the protective adhesive tape 3 is flattened by the rotating cutting tool of the cutting unit. is cut to
 次いで、平坦化された保護粘着テープの基材層33に、粘接着層4を形成する。この粘接着層4を形成するには、回転駆動されるテーブルの上に、平坦化された保護粘着テープの基材層33が露出する状態に、かつウエハ1の中心がテーブルの回転軸に一致するようにしてウエハ1を載せて保持し、テーブルを回転させ、回転するウエハ1の中心に液状接着剤を滴下して、粘接着剤を遠心力で平坦化された保護粘着テープの基材層33の全面に行き渡らせて塗布するといったスピンコート法が好適に採用される。そのようにして図1(d)に示されているように平坦化された保護粘着テープの基材層33上には、粘接着層4が形成される。 Next, the adhesive layer 4 is formed on the flattened base layer 33 of the protective adhesive tape. In order to form this adhesive layer 4, the substrate layer 33 of the flattened protective adhesive tape is exposed on a table that is driven to rotate, and the center of the wafer 1 is aligned with the rotation axis of the table. The wafer 1 is placed and held so as to match, the table is rotated, the liquid adhesive is dropped onto the center of the rotating wafer 1, and the adhesive is applied to the base of the protective adhesive tape flattened by centrifugal force. A spin coating method, in which the material is spread over the entire surface of the material layer 33 and applied, is preferably employed. An adhesive layer 4 is formed on the base layer 33 of the protective adhesive tape that has been flattened as shown in FIG. 1(d).
 次いで、粘接着層4に支持体5を接合することで、図1(e)に示されている積層体を得ることができる。こうして得られた積層体は、保護粘着テープ3の基材層33に凹凸がないため、ウエハ1の裏面12の研削で、ウエハ1の表面11の凹凸を転写することがなく、裏面研削によりウエハ1が薄化しても支持体5を有するため、その後の処理プロセスにおいて搬送性等のハンドリング性を失うことがない。 Then, by bonding the support 5 to the adhesive layer 4, the laminate shown in FIG. 1(e) can be obtained. In the laminated body thus obtained, since the base layer 33 of the protective adhesive tape 3 has no unevenness, the unevenness of the front surface 11 of the wafer 1 is not transferred by grinding the back surface 12 of the wafer 1. Even if the substrate 1 is thinned, it still has the support 5, so that it does not lose handling properties such as transportability in the subsequent treatment processes.
 次いで、ウエハ1の裏面12を研削してウエハ1を目的の厚さに薄化する。ウエハ1の裏面研削には、インフィード研削を行う研削装置が好適に用いられる。この研削装置によれば、支持体5を真空チャック式のチャックテーブルの吸着面に吸着させて積層体を保持し、2台の研削ユニット(粗研削用と仕上げ研削用)によってウエハ1の裏面12に対し粗研削と仕上げ研削を順次行う。 Next, the back surface 12 of the wafer 1 is ground to thin the wafer 1 to a desired thickness. A grinding apparatus that performs infeed grinding is preferably used for grinding the back surface of the wafer 1 . According to this grinding apparatus, the back surface 12 of the wafer 1 is ground by two grinding units (one for rough grinding and one for finish grinding). Rough grinding and finish grinding are performed in order.
 この場合、薄化したウエハ1を取り外すためには、支持体5を除去した後、保護粘着テープ3を除去する。支持体5の除去は、リムーバを支持体5と粘接着層4の界面に差し込み、支持体5を引き上げる機械剥離法で行われる。保護粘着テープ3の除去は、保護粘着テープ3をウエハ1から引き剥がすことで行われる。保護粘着テープ3を用いることにより、剥離後のウエハの洗浄工程が不要又は最小限でよいため、作業性に優れ、半導体デバイス、電子デバイスの製造コストをより低く抑えることが可能である。 In this case, to remove the thinned wafer 1, the protective adhesive tape 3 is removed after the support 5 is removed. The support 5 is removed by a mechanical peeling method in which a remover is inserted into the interface between the support 5 and the adhesive layer 4 and the support 5 is pulled up. Removal of the protective adhesive tape 3 is performed by peeling off the protective adhesive tape 3 from the wafer 1 . The use of the protective adhesive tape 3 eliminates or minimizes the need for cleaning the wafer after peeling, resulting in excellent workability and lower manufacturing costs for semiconductor devices and electronic devices.
(実施形態2)
 実施形態1の保護粘着テープ3の代わりに保護樹脂層を用いて、ウエハ1の表面11を保護することができる。この場合、回転駆動されるテーブルの上に、ウエハ1の表面11が露出する状態に、かつウエハ1の中心がテーブルの回転軸に一致するようにしてウエハ1を載せて保持し、テーブルを回転させ、回転するウエハ1の中心に前駆体樹脂液を滴下して、前駆体樹脂液を遠心力でウエハ1の表面11の全面に行き渡らせて塗布するといったスピンコート法が好適に採用される。スピンコート後の塗膜をホットプレート上に置いて乾燥させ、膜内の溶剤を完全に除去することで保護層とする。それ以外の工程は、実施形態1と同様である。
(Embodiment 2)
A protective resin layer can be used instead of the protective adhesive tape 3 of the first embodiment to protect the surface 11 of the wafer 1 . In this case, the wafer 1 is placed and held on a rotationally driven table such that the surface 11 of the wafer 1 is exposed and the center of the wafer 1 coincides with the rotation axis of the table, and the table is rotated. A spin coating method is preferably employed in which the precursor resin liquid is dropped onto the center of the rotating wafer 1 and spread over the entire surface 11 of the wafer 1 by centrifugal force. The coating film after spin coating is placed on a hot plate and dried to completely remove the solvent in the film to form a protective layer. Other steps are the same as in the first embodiment.
 この場合、上記実施形態1の保護粘着テープ3の剥離に代わり、洗浄工程により保護層を除去する。洗浄工程では、保護層を上にして、回転駆動されるテーブルの上にウエハ1を固定し、洗浄溶剤を噴霧し、洗浄溶剤を乗せ、静置した後、洗浄溶剤を捨て、新たに同様にして洗浄溶剤を乗せ静置する同様の操作を2回繰り返した後、ウエハ1を回転させながらイソプロピルアルコール(IPA)を噴霧してリンスを行う。 In this case, instead of removing the protective adhesive tape 3 in Embodiment 1, the protective layer is removed by a washing process. In the cleaning process, the wafer 1 is fixed on a rotating table with the protective layer facing up, the cleaning solvent is sprayed, the cleaning solvent is placed on the wafer, the cleaning solvent is left to stand, the cleaning solvent is discarded, and the wafer is placed again in the same manner. After repeating the same operation of placing the cleaning solvent on the wafer 1 and allowing it to stand still twice, the wafer 1 is rinsed by spraying isopropyl alcohol (IPA) while rotating it.
 本発明のウエハの裏面研削方法は、ウエハの表面の凹凸の影響を抑制し、かつ、ウエハ薄化後の多岐にわたる処理プロセスにおいてハンドリング性を向上させることができるので、半導体デバイス、電子デバイス等の生産性向上に大きく貢献し、半導体プロセス産業をはじめとする電子部品産業、電子部品を使用する電気電子産業、輸送機械産業、情報通信産業、精密機器産業等の産業の各分野において高い利用可能性を有する。 The wafer backside grinding method of the present invention can suppress the influence of unevenness on the surface of the wafer and can improve the handleability in a wide variety of processing processes after thinning the wafer, so that it can be used for semiconductor devices, electronic devices, and the like. It greatly contributes to the improvement of productivity and has high applicability in various industrial fields such as the semiconductor process industry and other electronic component industries, the electrical and electronic industry that uses electronic components, the transport machinery industry, the information and communication industry, and the precision equipment industry. have
1 半導体ウエハ
11 ウエハの表面
12 ウエハの裏面
3 保護粘着テープ
31 保護粘着テープの基材層
32 保護粘着テープの粘着層
33 平坦化された保護粘着テープの基材層
4 粘接着層
5 支持体
 
1 Semiconductor Wafer 11 Wafer Front Surface 12 Wafer Back Surface 3 Protective Adhesive Tape 31 Protective Adhesive Tape Base Layer 32 Protective Adhesive Tape Adhesive Layer 33 Flattened Protective Adhesive Tape Base Layer 4 Adhesive Layer 5 Support

Claims (15)

  1.  表面に凹凸を有するウエハの裏面研削方法であって、ウエハの裏面研削に先立ち、
     前記ウエハの表面に、保護層を形成する工程(1)、
     前記保護層のウエハと接していない面を平坦化する工程(2)、及び
     粘接着層を介して前記保護層のウエハと接していない面と支持体とを接着する工程(3)、
    を備えることを特徴とするウエハの裏面研削方法。
    A method for grinding the back surface of a wafer having an uneven surface, comprising, prior to grinding the back surface of the wafer,
    step (1) of forming a protective layer on the surface of the wafer;
    Step (2) of flattening the surface of the protective layer that is not in contact with the wafer, and Step (3) of bonding the surface of the protective layer that is not in contact with the wafer and a support via an adhesive layer,
    A wafer backside grinding method comprising:
  2.  前記保護層が保護粘着テープである、請求項1に記載のウエハの裏面研削方法。 The wafer backside grinding method according to claim 1, wherein the protective layer is a protective adhesive tape.
  3.  前記保護粘着テープの基材層が、PET、PEN、PBT、LCP、PI、PA、PEEK及びPPSからなる群から選ばれた少なくとも1種の樹脂を含有する、請求項2に記載のウエハの裏面研削方法。 The back surface of the wafer according to claim 2, wherein the base layer of the protective adhesive tape contains at least one resin selected from the group consisting of PET, PEN, PBT, LCP, PI, PA, PEEK and PPS. grinding method.
  4.  前記表面に凹凸を有するウエハが、表面に形成された電極、回路パターン、ポリイミド、不良マーク、又はバンプの少なくとも1つにより凹凸を有するウエハである、請求項1~3のいずれか一項に記載のウエハの裏面研削方法。 4. The wafer having unevenness on its surface is a wafer having unevenness due to at least one of electrodes, circuit patterns, polyimide, defective marks, or bumps formed on the surface. wafer backgrinding method.
  5.  前記平坦化する工程が、切削、研削、又は研磨によって平坦化する工程である、請求項1~4のいずれか一項に記載のウエハの裏面研削方法。 The wafer backside grinding method according to any one of claims 1 to 4, wherein the planarizing step is a step of planarizing by cutting, grinding, or polishing.
  6.  前記切削がバイト切削によって行われる、請求項5に記載のウエハの裏面研削方法。 The wafer backside grinding method according to claim 5, wherein the cutting is performed by cutting with a cutting tool.
  7.  前記粘接着層が、液状接着剤又は粘接着テープである、請求項1~6のいずれか一項に記載のウエハの裏面研削方法。 The wafer backside grinding method according to any one of claims 1 to 6, wherein the adhesive layer is a liquid adhesive or an adhesive tape.
  8.  前記支持体が、ガラス、シリコン、セラミック、金属、樹脂又はそれらの複合材料からなる請求項1~7のいずれか一項に記載のウエハの裏面研削方法。 The wafer backside grinding method according to any one of claims 1 to 7, wherein the support is made of glass, silicon, ceramic, metal, resin, or a composite material thereof.
  9.  前記工程(2)の後であって、前記工程(3)の前に、平坦化された前記保護層のウエハと接していない面、前記支持体の表面又はその両方に、前記粘接着層を形成する工程を含む、請求項1~8のいずれか一項に記載のウエハの裏面研削方法。 After the step (2) and before the step (3), the adhesive layer is applied to the flattened surface of the protective layer that is not in contact with the wafer, the surface of the support, or both. The wafer backside grinding method according to any one of claims 1 to 8, comprising the step of forming a
  10.  ウエハの裏面研削後に、ウエハの裏面処理工程をさらに含む、請求項1~9のいずれか一項に記載のウエハの裏面研削方法。 The wafer backside grinding method according to any one of claims 1 to 9, further comprising a wafer backside processing step after the wafer backside grinding.
  11.  前記ウエハの裏面処理工程がエッチング、電極形成、イオン注入、アニールのうち少なくとも1つが含まれる、請求項10に記載のウエハの裏面研削方法。 The wafer backside grinding method according to claim 10, wherein the wafer backside processing step includes at least one of etching, electrode formation, ion implantation, and annealing.
  12.  前記ウエハの裏面研削後の厚さが、200μm以下である、請求項1~11に記載のウエハの裏面研削方法。 The wafer backside grinding method according to claims 1 to 11, wherein the thickness of the wafer after backside grinding is 200 µm or less.
  13.  請求項1~12のいずれか一項に記載のウエハの裏面研削方法を、製造工程に含む電子デバイスの製造方法。 A method for manufacturing an electronic device including the method for grinding the wafer back surface according to any one of claims 1 to 12 in the manufacturing process.
  14.  前記電子デバイスが、裏面側にも電極を備えるデバイスである、請求項13に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to claim 13, wherein the electronic device is a device having an electrode on the back side as well.
  15.  前記電子デバイスが、パワーデバイスである、請求項14に記載の電子デバイスの製造方法。
     
    15. The method of manufacturing an electronic device according to claim 14, wherein said electronic device is a power device.
PCT/JP2022/001764 2021-01-21 2022-01-19 Rear surface grinding method for wafer and electronic device production method WO2022158485A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022576717A JPWO2022158485A1 (en) 2021-01-21 2022-01-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-008306 2021-01-21
JP2021008306 2021-01-21

Publications (1)

Publication Number Publication Date
WO2022158485A1 true WO2022158485A1 (en) 2022-07-28

Family

ID=82549415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001764 WO2022158485A1 (en) 2021-01-21 2022-01-19 Rear surface grinding method for wafer and electronic device production method

Country Status (3)

Country Link
JP (1) JPWO2022158485A1 (en)
TW (1) TW202236407A (en)
WO (1) WO2022158485A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013021017A (en) * 2011-07-07 2013-01-31 Disco Abrasive Syst Ltd Wafer grinding method
JP2013026380A (en) * 2011-07-20 2013-02-04 Disco Abrasive Syst Ltd Processing method
JP2013118324A (en) * 2011-12-05 2013-06-13 Disco Abrasive Syst Ltd Wafer processing method
JP2018190855A (en) * 2017-05-09 2018-11-29 株式会社ディスコ Method for working wafer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013021017A (en) * 2011-07-07 2013-01-31 Disco Abrasive Syst Ltd Wafer grinding method
JP2013026380A (en) * 2011-07-20 2013-02-04 Disco Abrasive Syst Ltd Processing method
JP2013118324A (en) * 2011-12-05 2013-06-13 Disco Abrasive Syst Ltd Wafer processing method
JP2018190855A (en) * 2017-05-09 2018-11-29 株式会社ディスコ Method for working wafer

Also Published As

Publication number Publication date
JPWO2022158485A1 (en) 2022-07-28
TW202236407A (en) 2022-09-16

Similar Documents

Publication Publication Date Title
KR101426572B1 (en) Holding jig, semiconductor wafer grinding method
TW529095B (en) Method of dividing wafer and manufacture of semiconductor device
US9064686B2 (en) Method and apparatus for temporary bonding of ultra thin wafers
WO2005038894A1 (en) Surface-protecting sheet and semiconductor wafer lapping method
KR20080007120A (en) Method for working object to be worked
TWI795402B (en) Protective sheeting for use in processing wafer, handling system for wafer, and combination of wafer and protective sheeting
US20190109034A1 (en) Method and device for bonding two substrates
TW201717266A (en) Procedure of processing a workpiece and an apparatus designed for the procedure
JP2009239124A (en) Wafer surface protective tape
CN110858564B (en) Method for processing substrate
KR20180020951A (en) Surface protective film with integrated mask
TW201942969A (en) Semiconductor chip production method and surface protection tape
TW201729276A (en) Mask-integrated surface protection tape
TW201933452A (en) Semiconductor chip production method
TWI686853B (en) Mask integrated surface protection tape with release liner
WO2022158485A1 (en) Rear surface grinding method for wafer and electronic device production method
WO2022202653A1 (en) Wafer treatment method
JP2009130333A (en) Manufacturing method of semiconductor device
WO2022019160A1 (en) Method for producing electronic device
WO2022019166A1 (en) Method for producing electronic device
WO2021251420A1 (en) Method for producing electronic device
WO2022019158A1 (en) Adhesive film for back grinding , and electronic device manufacturing method
WO2021251422A1 (en) Method for producing electronic device
WO2022202659A1 (en) Workpiece processing method
WO2021215247A1 (en) Back-grinding adhesive film, and electronic device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742607

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576717

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22742607

Country of ref document: EP

Kind code of ref document: A1