WO2021251422A1 - Method for producing electronic device - Google Patents

Method for producing electronic device Download PDF

Info

Publication number
WO2021251422A1
WO2021251422A1 PCT/JP2021/021873 JP2021021873W WO2021251422A1 WO 2021251422 A1 WO2021251422 A1 WO 2021251422A1 JP 2021021873 W JP2021021873 W JP 2021021873W WO 2021251422 A1 WO2021251422 A1 WO 2021251422A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
electronic component
electronic device
adhesive film
resin layer
Prior art date
Application number
PCT/JP2021/021873
Other languages
French (fr)
Japanese (ja)
Inventor
浩登 安井
宏嘉 栗原
仁 木下
Original Assignee
三井化学東セロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学東セロ株式会社 filed Critical 三井化学東セロ株式会社
Priority to KR1020227042840A priority Critical patent/KR20230007493A/en
Priority to CN202180041382.0A priority patent/CN115699263A/en
Priority to JP2022530601A priority patent/JP7440633B2/en
Publication of WO2021251422A1 publication Critical patent/WO2021251422A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/50Additional features of adhesives in the form of films or foils characterized by process specific features
    • C09J2301/502Additional features of adhesives in the form of films or foils characterized by process specific features process for debonding adherents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6834Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer

Definitions

  • the present invention relates to a method for manufacturing an electronic device.
  • an adhesive film is attached to the circuit forming surface of the electronic components in order to fix the electronic components and prevent damage to the electronic components. Be done.
  • an adhesive film a film in which an adhesive resin layer is laminated on a base film is generally used.
  • a pre-dicing method is used in which a groove having a predetermined depth is formed on the surface of an electronic component before grinding the electronic component, and then grinding is performed to separate the electronic component into individual pieces.
  • a pre-stealth method in which a modified region is formed by irradiating the inside of an electronic component with a laser before grinding, and then grinding is performed to individualize the electronic component.
  • Patent Document 1 Japanese Patent Laid-Open No. 2014-75560
  • Patent Document 2 Japanese Patent Laid-Open No. 2016-72546
  • Patent Document 1 describes a surface protective sheet having an adhesive layer on a base material and satisfying the following requirements (a) to (d).
  • (A) Young's modulus of the substrate is 450 MPa or more
  • (b) Storage elastic modulus of the pressure-sensitive adhesive layer at 25 ° C. is 0.10 MPa or more
  • (c) Storage elasticity of the pressure-sensitive adhesive layer at 50 ° C. The ratio is 0.20 MPa or less.
  • (D) The thickness of the pressure-sensitive adhesive layer is 30 ⁇ m or more. It is described that it is possible to suppress the infiltration of water (sludge infiltration) into the protected surface of the work from the gap formed by the work and prevent the protected surface of the work from being contaminated.
  • Patent Document 2 has a base material resin film and a radiation-curable pressure-sensitive adhesive layer formed on at least one side of the base material resin film, and the base material resin film has a tensile elasticity of 1 to 1 to 2.
  • a semiconductor characterized by having at least one rigid layer having 10 GPa and having a peeling force of 0.1 to 3.0 N / 25 mm at a peeling angle of 30 ° after the pressure-sensitive adhesive layer is radiation-cured. Adhesive tape for protecting the surface of the wafer is described.
  • such an adhesive tape for protecting the surface of a semiconductor wafer suppresses calf shift of an individualized semiconductor chip in a backside grinding process of a semiconductor wafer to which a pre-dicing method or a pre-stealth method is applied.
  • the semiconductor wafer can be processed without being damaged or contaminated.
  • the present invention has been made in view of the above circumstances, and a method for manufacturing an electronic device capable of suppressing adhesive residue on the electronic component side when peeling an adhesive film from an electronic component after a backgrinding process is provided. It is to provide.
  • the present inventors have made extensive studies in order to achieve the above-mentioned problems. As a result, by adjusting the breaking elongation of the adhesive resin layer after irradiation with ultraviolet rays to a specific range, the adhesive residue on the electronic component side when the adhesive film is peeled off from the electronic component after the backgrinding process.
  • the present invention has been completed by finding that it is possible to suppress the above.
  • the following method for manufacturing an electronic device is provided.
  • a method of manufacturing an electronic device that includes at least The adhesive film comprises a base material layer and an ultraviolet curable adhesive resin layer provided on one surface side of the base material layer.
  • a method for manufacturing an electronic device in the step (C), wherein the breaking elongation of the adhesive resin layer after irradiation with ultraviolet rays is 20% or more and 200% or less.
  • the above step (A) is At least one step (A1-2) selected from a step of half-cutting the electronic component (A1-1) and a step of irradiating the electronic component with a laser to form a modified layer on the electronic component (A1-2).
  • a method of manufacturing an electronic device including. [3] In the method for manufacturing an electronic device according to the above [1] or [2].
  • the adhesive resin layer is photo-cured by irradiating the adhesive film with ultraviolet rays having a dose of 200 mJ / cm 2 or more and 2000 mJ / cm 2 or less to obtain the adhesive resin layer.
  • a method for manufacturing an electronic device that removes the adhesive film from the electronic component after reducing the adhesive strength. [4] In the method for manufacturing an electronic device according to any one of the above [1] to [3]. The method for manufacturing an electronic device, wherein the adhesive resin layer contains a (meth) acrylic resin having a polymerizable carbon-carbon double bond in the molecule and a photoinitiator. [5] In the method for manufacturing an electronic device according to any one of the above [1] to [4].
  • the resins constituting the base material layer are polyolefin, polyester, polyamide, polyacrylate, polymethacrylate, polyvinyl chloride, polyvinylidene chloride, polyimide, polyetherimide, ethylene / vinyl acetate copolymer, polyacrylonitrile, polycarbonate, polystyrene.
  • a method for producing an electronic device comprising one or more selected from ionomer, polysulfone, polyethersulfone and polyphenylene ether.
  • the present invention it is possible to provide a method for manufacturing an electronic device capable of suppressing adhesive residue on the electronic component side when the adhesive film is peeled from the electronic component after the back grind process.
  • FIG. 1 is a cross-sectional view schematically showing an example of the structure of the adhesive film 50 according to the embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an example of a method for manufacturing an electronic device according to an embodiment of the present invention.
  • the method for manufacturing an electronic device according to the present embodiment prepares a structure 100 including an electronic component 30 having a circuit forming surface 30A and an adhesive film 50 bonded to the circuit forming surface 30A side of the electronic component 30.
  • a method for manufacturing an electronic device including at least a removing step (C), wherein the adhesive film 50 is an ultraviolet curable adhesive provided on one surface side of the base material layer 10 and the base material layer 10.
  • the adhesive resin layer 20 is provided with the sex resin layer 20, and in the step (C), the breaking elongation of the adhesive resin layer 20 after being irradiated with ultraviolet rays (after curing by ultraviolet rays) is 20% or more and 200% or less.
  • the breaking elongation of the adhesive resin layer 20 after being cured by ultraviolet rays is a value measured by the following method.
  • the adhesive resin layer 20 is cut into a length of 110 mm and a width of 10 mm together with the base material layer 10, and a tensile tester (for example, Shimadzu Corporation, Autograph AGS-X) is used so that the initial chuck distance Lo is 50 mm. Chuck.
  • the sample is pulled at a speed of 30 mm / min, and the point at which fracture is visually observed in the adhesive resin layer 20 is defined as the fracture point, and the distance between chucks at that time is defined as L.
  • the elongation at break (%) is determined by (L-Lo) / Lo ⁇ 100 (%).
  • the breaking elongation of the adhesive resin layer 20 after UV curing is the same as that of the adhesive resin layer 20 used in the manufacturing method of the electronic device according to the present embodiment, and the adhesive resin layer 20 is prepared separately.
  • a value obtained by measuring the elongation at break by the following method may be adopted.
  • the adhesive film 50 according to the present embodiment is used on the corona-treated surface of the corona-treated ethylene-vinyl acetate copolymer extruded film (MFR: 1.7 g / 10 min, vinyl acetate content: 9% by mass, thickness: 140 ⁇ m).
  • MFR corona-treated ethylene-vinyl acetate copolymer extruded film
  • a release film such as a silicone terephthalate film treated with silicone is laminated on the adhesive resin layer 20 side.
  • a release film such as a silicone terephthalate film treated with silicone
  • the laminating method include the following methods. An adhesive resin layer 20 is formed on the release-treated surface of the silicone release-treated polyethylene terephthalate film, and then a corona-treated ethylene-vinyl acetate copolymer film is laminated on the adhesive resin layer 20. Get the body. Then, the obtained laminate is heated in an oven at 40 ° C. for 3 days and aged.
  • the adhesive resin layer 20 is irradiated with ultraviolet rays from the ethylene-vinyl acetate copolymer film side of the obtained laminate to photocure the adhesive resin layer 20.
  • the laminate obtained by photocuring the adhesive resin layer 20 is cut into a length of 110 mm and a width of 10 mm, and the polyethylene terephthalate film as a separator is peeled off from the laminate.
  • the adhesive resin layer 20 is chucked together with the ethylene-vinyl acetate copolymer film with a tensile tester (for example, Shimadzu Corporation, Autograph AGS-X) so that the initial chuck distance Lo is 50 mm.
  • a tensile tester for example, Shimadzu Corporation, Autograph AGS-X
  • the sample is pulled at a speed of 30 mm / min, and the point at which fracture is visually observed in the adhesive resin layer 20 is defined as the fracture point, and the distance between chucks at that time is defined as L.
  • the elongation at break (%) is determined by (L-Lo) / Lo ⁇ 100 (%).
  • the breaking elongation of the adhesive resin layer 20 after irradiation with ultraviolet rays in the step (C) is 20% or more and 200% or less, but the adhesive resin layer 20 has From the viewpoint of designing the adhesive resin layer 20 in which adhesive residue is less likely to occur by giving an appropriate toughness, it is preferably 30% or more, more preferably 40% or more, and preferably 150% or less, more preferably 100. % Or less, more preferably 80% or less.
  • the breaking elongation of the adhesive resin layer 20 after irradiation with ultraviolet rays in the step (C) is, for example, the type and blending ratio of the adhesive resin and the cross-linking agent constituting the adhesive resin layer 20, the light initiator, and the adhesiveness. It can be controlled within the above range by controlling the type and content ratio of each monomer in the sex resin and the ultraviolet irradiation conditions (for example, the amount of ultraviolet rays, the irradiation intensity, and the irradiation time) in the step (C).
  • the adhesive film 50 includes a base material layer 10 and an ultraviolet curable adhesive resin layer 20 provided on one surface side of the base material layer 10. , Equipped with.
  • the thickness of the entire adhesive film 50 according to the present embodiment is preferably 50 ⁇ m or more and 600 ⁇ m or less, more preferably 50 ⁇ m or more and 400 ⁇ m or less, and further preferably 50 ⁇ m or more and 300 ⁇ m, from the viewpoint of the balance between mechanical properties and handleability. It is as follows.
  • the adhesive film 50 according to the present embodiment is provided with other layers such as a concave-convex absorbent resin layer, an adhesive layer, and an antistatic layer (not shown) between the layers as long as the effects of the present invention are not impaired. May be good.
  • the unevenness absorbing resin layer the unevenness absorbing property of the adhesive film 50 can be improved.
  • the adhesive layer the adhesiveness between the layers can be improved.
  • the antistatic layer the antistatic property of the adhesive film 50 can be improved.
  • the base material layer 10 is a layer provided for the purpose of improving the handleability, mechanical properties, heat resistance, and other properties of the adhesive film 50.
  • the base material layer 10 is not particularly limited as long as it has mechanical strength capable of withstanding an external force applied when processing the electronic component 30, and examples thereof include a resin film.
  • the resin constituting the base material layer 10 include polyolefins such as polyethylene, polypropylene, poly (4-methyl-1-pentene) and poly (1-butene); polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and the like.
  • Polyester such as Nylon-6, Nylon-66, Polymethoxylen adipamide; (Meta) acrylic resin; Polyvinyl chloride; Polyvinyl chloride; Polyethylene; Polyetherimide; Ethylene-vinyl acetate copolymer; Poly One or more selected from acrylonitrile; polycarbonate; polystyrene; ionomer; polysulfone; polyethersulfone; polyether ether ketone and the like can be mentioned.
  • one or more selected from polyethylene terephthalate and polyethylene naphthalate are more preferable.
  • the base material layer 10 may be a single layer or two or more types of layers. Further, the form of the resin film used for forming the base material layer 10 may be a stretched film or a film stretched in a uniaxial direction or a biaxial direction, but the base material layer 10 may be used. From the viewpoint of improving the mechanical strength of the film, a film stretched in a uniaxial direction or a biaxial direction is preferable.
  • the base material layer 10 is preferably annealed in advance from the viewpoint of suppressing warpage of electronic components after grinding.
  • the base material layer 10 may be surface-treated in order to improve the adhesiveness with other layers. Specifically, corona treatment, plasma treatment, undercoat treatment, primer coating treatment and the like may be performed.
  • the thickness of the base material layer 10 is preferably 20 ⁇ m or more and 250 ⁇ m or less, more preferably 30 ⁇ m or more and 200 ⁇ m or less, and further preferably 50 ⁇ m or more and 150 ⁇ m or less from the viewpoint of obtaining good film characteristics.
  • the adhesive film 50 includes an ultraviolet curable adhesive resin layer 20.
  • the adhesive resin layer 20 is a layer provided on one surface side of the base material layer 10, and when the adhesive film 50 is attached to the circuit forming surface 30A of the electronic component 30, the circuit forming surface 30A of the electronic component 30 is attached. It is a layer that comes into contact with and adheres to.
  • Examples of the adhesive constituting the adhesive resin layer 20 include (meth) acrylic adhesive, silicone adhesive, urethane adhesive, olefin adhesive, styrene adhesive and the like. Among these, a (meth) acrylic pressure-sensitive adhesive using a (meth) acrylic resin as a base polymer is preferable because the adhesive strength can be easily adjusted.
  • the pressure-sensitive adhesive constituting the pressure-sensitive adhesive resin layer 20 it is preferable to use an ultraviolet cross-linked pressure-sensitive adhesive whose adhesive strength is lowered by ultraviolet rays. Since the adhesive resin layer 20 composed of the ultraviolet cross-linking type adhesive is crosslinked by irradiation with ultraviolet rays and the adhesive force is remarkably reduced, the electronic component 30 can be easily peeled off from the adhesive film 50.
  • Examples of the (meth) acrylic resin contained in the (meth) acrylic pressure-sensitive adhesive include a homopolymer of a (meth) acrylic acid ester compound, a copolymer of a (meth) acrylic acid ester compound and a comonomer, and the like. Be done.
  • Examples of the (meth) acrylic acid ester compound include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, hydroxyethyl (meth) acrylate, and hydroxypropyl (meth).
  • Examples thereof include acrylate, dimethylaminoethyl (meth) acrylate, and glycidyl (meth) acrylate. These (meth) acrylic acid ester compounds may be used alone or in combination of two or more.
  • Examples of the comonomer constituting the (meth) acrylic copolymer include vinyl acetate, (meth) acrylonitrile, styrene, (meth) acrylic acid, itaconic acid, (meth) acrylic amide, and methylol (meth) acrylic. Examples thereof include acrylamide and maleic anhydride. These comonomer may be used alone or in combination of two or more.
  • the ultraviolet cross-linking type (meth) acrylic pressure-sensitive adhesive contains a (meth) acrylic resin having a polymerizable carbon-carbon double bond in the molecule and a photoinitiator, and if necessary, a cross-linking agent can be used as described above ( Meta)
  • Meta An example of a pressure-sensitive adhesive obtained by cross-linking an acrylic resin can be exemplified.
  • the UV-crosslinked (meth) acrylic pressure-sensitive adhesive may further contain a low molecular weight compound having two or more polymerizable carbon-carbon double bonds in the molecule.
  • a (meth) acrylic resin having a polymerizable carbon-carbon double bond in the molecule can be obtained as follows. First, a monomer having an ethylenic double bond and a copolymerizable monomer having a functional group (P) are copolymerized. Next, the functional group (P) contained in this copolymer and the monomer having a functional group (Q) capable of causing an addition reaction, a condensation reaction, etc. with the functional group (P) are double-bonded in the monomer. The reaction is carried out while leaving the above, and a polymerizable carbon-carbon double bond is introduced into the copolymer molecule.
  • Examples of the monomer having an ethylenic double bond include acrylic acid alkyl esters such as methyl (meth) acrylate, -2-ethylhexyl (meth) acrylate, butyl (meth) acrylate, and ethyl (meth) acrylate. And, one or more of the monomers having an ethylenic double bond such as an alkyl methacrylate ester monomer, a vinyl ester such as vinyl acetate, (meth) acrylonitrile, (meth) acrylamide, and styrene are used.
  • Examples of the copolymerizable monomer having the functional group (P) include (meth) acrylic acid, maleic acid, 2-hydroxyethyl (meth) acrylate, glycidyl (meth) acrylate, N-methylol (meth) acrylamide, and (meth). ) Acryloyloxyethyl isocyanate and the like can be mentioned. These may be used alone or in combination of two or more.
  • the ratio of the monomer having an ethylenic double bond to the copolymerizable monomer having a functional group (P) is 70 to 99% by mass of the monomer having an ethylenic double bond and has a functional group (P).
  • the copolymerizable monomer is preferably 1 to 30% by mass. More preferably, the monomer having an ethylenic double bond is 80 to 95% by mass, and the copolymerizable monomer having a functional group (P) is 5 to 20% by mass.
  • the monomer having the functional group (Q) include a monomer similar to the copolymerizable monomer having the functional group (P).
  • a combination such as a carboxyl group and an epoxy group, a carboxyl group and an aziridyl group, a hydroxyl group and an isocyanate group, etc., in which an addition reaction easily occurs is desirable.
  • any reaction may be used as long as it is a reaction in which a polymerizable carbon-carbon double bond can be easily introduced, such as a condensation reaction between a carboxylic acid group and a hydroxyl group.
  • Examples of the low molecular weight compound having two or more polymerizable carbon-carbon double bonds in the molecule include tripropylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethanetetraacrylate, and pentaerythritol. Examples thereof include tetra (meth) acrylate, dipentaerythritol monohydroxypenta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and ditrimethylolpropane tetraacrylate. These may be used alone or in combination of two or more.
  • the amount of the low molecular weight compound having two or more polymerizable carbon-carbon double bonds in the molecule is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin. More preferably, it is 5 to 18 parts by mass.
  • photoinitiator examples include benzoin, isopropylbenzoin ether, isobutyl benzoin ether, benzophenone, Michler ketone, chlorothioxanthone, dodecylthioxanthone, dimethylthioxanthone, diethylthioxanthone, acetophenone diethyl ketal, benzyl dimethyl ketal, 1-hydroxycyclohexylphenyl ketone, 2 -Hydroxy-2-methyl-1-phenylpropan-1-one, 2-benzyl-2-dimethylamino-4'-morpholinobtyrophenone, 2,2-dimethoxy-2-phenylacetophenone, 2-dimethylamino-2- Examples thereof include (4-methylbenzyl) -1- (4-morpholin-4-yl-phenyl) butane-1-one.
  • the amount of the photoinitiator added is preferably 0.1 to 15 parts by mass, more preferably 1 to 10 parts by mass, still more preferably 4 to 4 to 100 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin. It is 10 parts by mass.
  • a cross-linking agent may be added to the ultraviolet curable pressure-sensitive adhesive.
  • the cross-linking agent include epoxy compounds such as sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, and diglycerol polyglycidyl ether, and tetramethylolmethane-tri- ⁇ -aziridinyl propionate.
  • the ultraviolet curable pressure-sensitive adhesive may be any of solvent type, emulsion type, hot melt type and the like.
  • the content of the cross-linking agent is usually preferably in a range such that the number of functional groups in the cross-linking agent does not become larger than the number of functional groups in the (meth) acrylic resin. However, if a new functional group is generated in the cross-linking reaction or the cross-linking reaction is slow, the cross-linking reaction may be excessively contained as needed.
  • the content of the cross-linking agent in the (meth) acrylic pressure-sensitive adhesive is 0. It is preferably 1 part by mass or more and 15 parts by mass or less, and more preferably 0.5 parts by mass or more and 5 parts by mass or less.
  • the adhesive resin layer 20 can be formed, for example, by applying an adhesive coating liquid on the base material layer 10.
  • a method for applying the pressure-sensitive adhesive coating liquid for example, a conventionally known coating method such as a roll coater method, a reverse roll coater method, a gravure roll method, a bar coat method, a comma coater method, or a die coater method can be adopted. ..
  • the drying conditions of the applied pressure-sensitive adhesive are not particularly limited, but in general, it is preferable to dry the applied adhesive in a temperature range of 80 to 200 ° C. for 10 seconds to 10 minutes. More preferably, it is dried at 80 to 170 ° C. for 15 seconds to 5 minutes.
  • the pressure-sensitive adhesive coating liquid may be heated at 40 to 80 ° C. for about 5 to 300 hours after the drying is completed.
  • the thickness of the adhesive resin layer 20 is preferably 5 ⁇ m or more and 300 ⁇ m or less, more preferably 10 ⁇ m or more and 100 ⁇ m or less, and further preferably 10 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the adhesive resin layer 20 is within the above range, the balance between the adhesiveness to the surface of the electronic component 30 and the handleability is good.
  • the manufacturing method of the electronic device according to the present embodiment includes at least the following three steps.
  • a step of preparing a structure 100 including an electronic component 30 having a circuit forming surface 30A and an adhesive film 50 bonded to the circuit forming surface 30A side of the electronic component 30 (B) Circuit of the electronic component 30. Step of backgrinding the surface opposite to the formation surface 30A side (C) Step of removing the adhesive film 50 from the electronic component 30 after irradiating the adhesive film 50 with ultraviolet rays Then, in step (C), ultraviolet rays are applied.
  • the adhesive resin layer 20 after irradiation is characterized in that the breaking elongation is 20% or more and 200% or less.
  • Step (A) First, a structure 100 including an electronic component 30 having a circuit forming surface 30A and an adhesive film 50 bonded to the circuit forming surface 30A side of the electronic component 30 is prepared.
  • the release film is peeled off from the adhesive resin layer 20 of the adhesive film 50 to expose the surface of the adhesive resin layer 20, and an electronic component is placed on the adhesive resin layer 20. It can be manufactured by pasting the circuit forming surface 30A of 30.
  • the conditions for attaching the circuit forming surface 30A of the electronic component 30 to the adhesive film 50 are not particularly limited, but for example, the temperature is 20 to 80 ° C., the pressure is 0.05 to 0.5 MPa, and the attachment speed. Can be 0.5 to 20 mm / sec.
  • the step (A) is selected from a step of half-cutting the electronic component 30 (A1-1) and a step of irradiating the electronic component 30 with a laser to form a modified layer on the electronic component 30 (A1-2). It is preferable to further include at least one step (A1) and a step (A2) of attaching the adhesive film 50 to the circuit forming surface 30A side of the electronic component 30 after the step (A1).
  • a pre-dicing method, a pre-stealth method, or the like when the adhesive film 50 is peeled off from the electronic component 30 after the back grind process, adhesive residue remains on the electronic component 30 side.
  • the method for manufacturing an electronic device according to the present embodiment can be suitably applied to a manufacturing process for an electronic device using a pre-dicing method, a pre-stealth method, or the like. Therefore, a manufacturing method in which the above-mentioned step (A1-1), which is a pre-dicing method, or the above-mentioned step (A1-2), which is a pre-stealth method, is preferable.
  • the adhesive film 50 can be heated and attached to the circuit forming surface 30A of the electronic component 30. Thereby, the adhesive state between the adhesive resin layer 20 and the electronic component 30 can be improved for a long time.
  • the heating temperature is not particularly limited, but is, for example, 60 to 80 ° C.
  • the operation of attaching the adhesive film 50 to an electronic component may be performed manually, but in general, it can be performed by a device called an automatic attaching machine to which a roll-shaped adhesive film is attached.
  • the electronic component 30 to be attached to the adhesive film 50 is not particularly limited, but is preferably the electronic component 30 having the circuit forming surface 30A.
  • Examples thereof include semiconductor wafers, epoxy mold wafers, mold panels, mold array packages, semiconductor substrates and the like, and semiconductor wafers and epoxy mold wafers are preferable.
  • semiconductor wafers include silicon wafers, sapphire wafers, germanium wafers, germanium-arsenic wafers, gallium-phosphorus wafers, gallium-arsenic-aluminum wafers, gallium-arsenic wafers, lithium tartrate wafers, and the like. It is suitably used for.
  • Examples of the epoxy molded wafer include a wafer manufactured by the eWLB (Embedded Wafer Level Ball Grid Array) process, which is one of the methods for manufacturing a fan-out type WLP.
  • the semiconductor wafer and the epoxy molded wafer having a circuit forming surface are not particularly limited, and are used, for example, those in which a circuit such as a wiring, a capacitor, a diode or a transistor is formed on the surface. Further, the circuit forming surface may be subjected to plasma treatment.
  • the circuit forming surface 30A of the electronic component 30 may be an uneven surface by having, for example, a bump electrode or the like. Further, for example, when the electronic device is mounted on the mounting surface, the bump electrode is bonded to the electrode formed on the mounting surface, and the bump electrode is formed between the electronic device and the mounting surface (mounting surface such as a printed substrate). It forms an electrical connection.
  • the bump electrode include bump electrodes such as ball bumps, printed bumps, stud bumps, plated bumps, and pillar bumps. That is, the bump electrode is usually a convex electrode. These bump electrodes may be used alone or in combination of two or more.
  • the height and diameter of the bump electrode are not particularly limited, but are preferably 10 to 400 ⁇ m, more preferably 50 to 300 ⁇ m, respectively.
  • the bump pitch at that time is also not particularly limited, but is preferably 20 to 600 ⁇ m, and more preferably 100 to 500 ⁇ m.
  • the metal type constituting the bump electrode is not particularly limited, and examples thereof include solder, silver, gold, copper, tin, lead, bismuth, and alloys thereof.
  • the bump electrode is a solder bump. It is preferably used in the case of. These metal species may be used alone or in combination of two or more.
  • Step (B) the surface (also referred to as the back surface) opposite to the circuit forming surface 30A side of the electronic component 30 is back grinded.
  • backgrinding means that the electronic component is thinned to a predetermined thickness without being damaged.
  • the structure 100 is fixed to a chuck table or the like of a grinder, and the back surface (circuit non-formed surface) of an electronic component is ground.
  • the electronic component 30 is ground until the thickness becomes equal to or less than a desired thickness.
  • the thickness of the electronic component before grinding is appropriately determined by the diameter, type and the like of the electronic component 30, and the thickness of the electronic component 30 after grinding is appropriately determined by the size of the obtained chip, the type of circuit and the like. Further, when the electronic component 30 is half-cut or the modified layer is formed by laser irradiation, the electronic component 30 is individualized by the step (B) as shown in FIG.
  • the back surface grinding method is not particularly limited, but a known grinding method can be adopted. Each grinding can be performed while cooling water by applying it to an electronic component and a grindstone. If necessary, a dry polishing process, which is a grinding method that does not use grinding water, can be performed at the end of the grinding process. After the back surface grinding is completed, chemical etching is performed as necessary. Chemical etching adheres to an etching solution selected from the group consisting of an acidic aqueous solution consisting of a single or mixed solution of hydrofluoric acid, nitric acid, sulfuric acid, acetic acid, etc., an aqueous solution of potassium hydroxide, an aqueous solution of sodium hydroxide, etc.
  • This is performed by a method such as immersing an electronic component in a state where the sex film 50 is attached.
  • the etching is performed for the purpose of removing strain generated on the back surface of the electronic component, further thinning the electronic component, removing an oxide film or the like, and pretreating when forming an electrode on the back surface.
  • the etching solution is appropriately selected according to the above purpose.
  • the adhesive film 50 is removed from the electronic component 30.
  • the adhesive resin layer 20 is photocured by irradiating the adhesive film 50 with ultraviolet rays having a dose of, for example, 200 mJ / cm 2 or more and 2000 mJ / cm 2 or less to photo-cure the adhesive resin layer 20.
  • the adhesive film 50 is removed from the electronic component 30.
  • the ultraviolet irradiation can be performed using, for example, an ultraviolet ray having a main wavelength of 365 nm using a high-pressure mercury lamp.
  • the irradiation intensity of ultraviolet rays is, for example, 50 mW / cm 2 or more and 500 mW / cm 2 or less.
  • the electronic component 30 Before removing the adhesive film from the electronic component 30, the electronic component 30 may be mounted on the dicing tape or the dicing tape with the die attach film.
  • the operation of removing the adhesive film 50 from the electronic component 30 may be performed manually, but it can be performed by a device generally called an automatic peeling machine.
  • the surface of the electronic component 30 after the adhesive film 50 has been peeled off may be cleaned if necessary.
  • the cleaning method include wet cleaning such as water cleaning and solvent cleaning, and dry cleaning such as plasma cleaning. In the case of wet cleaning, ultrasonic cleaning may be used in combination. These cleaning methods can be appropriately selected depending on the state of contamination of the surface of the electronic component.
  • a step of mounting the obtained semiconductor chip on a circuit board or the like may be further performed. These steps can be performed based on known information.
  • Base material layer 1 Polyethylene terephthalate film (manufactured by Toyobo Co., Ltd., product name: E7180, thickness: 50 ⁇ m, single-sided corona treated product)
  • Base material layer 2 Laminated film composed of low-density polyethylene film / polyethylene terephthalate film / low-density polyethylene film (total thickness: 110 ⁇ m) A low-density polyethylene film (density: 0.925 kg / m 3 , thickness: 30 ⁇ m) was laminated on both sides of a polyethylene terephthalate film (manufactured by Toray Industries, Inc., product name: Lumirror S10, thickness: 50 ⁇ m). Corona treatment was performed on one side of the obtained laminated film.
  • Base material layer 3 Laminated film composed of polyethylene terephthalate film / ethylene / vinyl acetate copolymer film / acrylic film (total thickness: 145 ⁇ m) Polyethylene terephthalate film (manufactured by Toyo Boseki Co., Ltd., product name: E7180, thickness: 50 ⁇ m) and ethylene-vinyl acetate copolymer (manufactured by Mitsui / Dow Polychemical Co., Ltd., MFR: 2.5 g / 10 minutes) film (thickness: 70 ⁇ m) was laminated by applying corona treatment to the bonded surface side of the ethylene-vinyl acetate copolymer film with the polyethylene terephthalate film.
  • the opposite side of the polyethylene terephthalate film of the ethylene-vinyl acetate copolymer film was also subjected to a corona discharge treatment.
  • the acrylic resin coating liquid for the base material shown below was coated and dried on the release surface of the release-treated polyethylene terephthalate film (separator) so as to have a dry thickness of 20 ⁇ m, and the above-mentioned polyethylene terephthalate film / It was bonded to a laminated film made of an ethylene-vinyl acetate copolymer film via an ethylene-vinyl acetate copolymer film and aged (40 ° C. for 3 days). Then, the separator was peeled off to obtain a base material layer 3.
  • ⁇ Acrylic resin coating liquid for base material> Using 0.5 parts by mass of 4,4'-azobis-4-cyanovaleric acid (manufactured by Otsuka Chemical Co., Ltd., product name: ACVA) as a polymerization initiator, 74 parts by mass of butyl acrylate, 14 parts by mass of methyl methacrylate, 9 parts by mass of -2-hydroxyethyl methacrylate, 2 parts by mass of methacrylic acid, 1 part by mass of acrylamide, 3 parts by mass of an aqueous solution of polyoxyethylene nonylpropenylphenylphenyl ether ammonium sulfate (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., product name: Aqualon HS-1025) The moiety was emulsion-polymerized in deionized water at 70 ° C.
  • Acrylic resin solution 1 Toluene contains 49 parts by mass of ethyl acrylate, 20 parts by mass of -2-ethylhexyl acrylate, 21 parts by mass of methyl acrylate, 10 parts by mass of glycidyl methacrylate, and 0.5 parts by mass of a benzoyl peroxide-based polymerization initiator as a polymerization initiator. The reaction was carried out at 80 ° C. for 10 hours in 65 parts by mass and 50 parts by mass of ethyl acetate.
  • (Meta) Acrylic resin solution 2 77 parts by mass of n-butyl acrylate, 16 parts by mass of methyl methacrylate, 16 parts by mass of 2-hydroxyethyl acrylate, and 0.3 parts by mass of t-butylperoxy-2-ethylhexanoate as a polymerization initiator. The reaction was carried out at 85 ° C. for 10 hours in 20 parts by mass of toluene and 80 parts by mass of ethyl acetate.
  • (Meta) Acrylic resin solution 3 30 parts by mass of ethyl acrylate, 11 parts by mass of methyl acrylate, 26 parts by mass of -2-ethylhexyl acrylate, 7 parts by mass of 2-hydroxyethyl mecrylate, and 0.8 parts by mass of a benzoyl peroxide-based polymerization initiator as a polymerization initiator.
  • the parts were reacted at 80 ° C. for 9 hours in 7 parts by mass of toluene and 50 parts by mass of ethyl acetate. After completion of the reaction, the obtained solution was cooled, and 25 parts by mass of toluene was added to the cooled solution to obtain a (meth) acrylic resin solution 3.
  • ⁇ Adhesive film for evaluation of elongation at break> By adding the additives shown in Table 1 to the acrylic resin solution, a pressure-sensitive adhesive coating liquid for the pressure-sensitive adhesive resin layer was prepared. This coating liquid was applied to the mold release-treated surface of the polyethylene terephthalate film (separator) that had been mold-released with silicone, and dried at 120 ° C. for 3 minutes to form an adhesive resin layer having a thickness of 20 ⁇ m.
  • a corona-treated surface of a corona-treated ethylene-vinyl acetate copolymer extruded film (MFR: 1.7 g / 10 min, vinyl acetate content: 9% by mass, thickness: 140 ⁇ m) is bonded onto the adhesive resin layer. Obtained a laminate. Then, the obtained laminate was heated in an oven at 40 ° C. for 3 days and aged.
  • a pressure-sensitive adhesive coating liquid for the pressure-sensitive adhesive resin layer was prepared.
  • This coating liquid was applied to a polyethylene terephthalate film (separator) that had been subjected to a silicone mold release treatment. Then, it was dried at 120 ° C. for 3 minutes to form an adhesive resin layer having a thickness of 20 ⁇ m, which was attached to the base material layer.
  • the base material layers 1 and 2 were bonded to the corona-treated surface.
  • the separator was peeled off and bonded to the acrylic layer side. The obtained laminate was heated in an oven at 40 ° C. for 3 days and aged.
  • ⁇ Evaluation method> Breaking elongation of the adhesive resin layer after UV curing High-pressure mercury from the ethylene-vinyl acetate copolymer extruded film side of the adhesive film for evaluating breaking elongation to the adhesive resin layer in an environment of 25 ° C.
  • ultraviolet rays having a main wavelength of 365 nm were irradiated with an irradiation intensity of 100 mW / cm 2 and an ultraviolet amount of 1080 mJ / cm 2 . Then, it was cut into a length of 110 mm and a width of 10 mm, and the polyethylene terephthalate film as a separator was peeled off from the laminate.
  • the adhesive resin layer was chucked together with an ethylene-vinyl acetate copolymer extruded film with a tensile tester (Shimadzu Corporation, product name: Autograph AGS-X) so that the initial chuck distance Lo was 50 mm. ..
  • the sample was pulled at a speed of 30 mm / min, and the point at which fracture was visually observed in the adhesive resin layer was defined as the fracture point, and the distance between the chucks at that time was defined as L.
  • the elongation at break (%) was determined by (L-Lo) / Lo ⁇ 100 (%).
  • Adhesive strength evaluation Adhesive wafer: The mirror surface of the silicon mirror wafer (4-inch single-sided mirror wafer) was ozone-cleaned with a UV ozone cleaning device (UV-208, manufactured by Technovision Co., Ltd.) (ozone treatment time: 60 seconds). Then, the wafer mirror surface was wiped off with ethanol to obtain an adherend wafer.
  • UV ozone cleaning device UV-208, manufactured by Technovision Co., Ltd.
  • Adhesive strength before UV irradiation In an environment of 23 ° C. and 50% RH, the adhesive film for adhesive strength evaluation is cut into a width of 50 mm, the separator is peeled off, and the adhesive film is passed through the adhesive resin layer using a hand roller to the adherend wafer. It was attached to a mirror surface and left for 1 hour. After leaving it to stand, a tensile tester (Shimadzu Corporation, product name: Autograph AGS-X) is used to pinch one end of the adhesive film, and the peeling angle is 180 degrees and the peeling speed is 300 mm / min. The adhesive film was peeled off from the surface. The stress at that time was measured and converted to N / 25 mm to determine the adhesive strength.
  • a tensile tester Shiadzu Corporation, product name: Autograph AGS-X
  • Adhesive strength after irradiation with ultraviolet rays Under an environment of 23 ° C. and 50% RH, the adhesive film for adhesive strength evaluation is cut into a width of 50 mm, the separator is peeled off, and the adhesive film is passed through the adhesive resin layer using a hand roller. Then, it was attached to the mirror surface of the adherend wafer and left for 1 hour. After being left to stand, the adhesive film was irradiated with ultraviolet rays having a main wavelength of 365 nm at an irradiation intensity of 100 mW / cm 2 and an ultraviolet amount of 1080 mJ / cm 2 under an environment of 25 ° C.
  • Adhesive residue evaluation The adherend wafer after the peeling was visually observed and evaluated according to the following criteria. ⁇ (Good): No glue residue confirmed ⁇ (Bad): No glue residue confirmed
  • Evaluation wafer 2 Using a dicing saw, a first-step half-cut was performed on the mirror surface of a mirror wafer (8-inch mirror wafer, diameter: 200 ⁇ 0.5 mm, thickness: 725 ⁇ 50 ⁇ m, single-sided mirror) (blade: Z09-SD2000). -Y1 58 x 0.25A x 40 x 45E-L, chip size: 5 mm x 8 mm, depth of cut: 15 ⁇ m, blade rotation speed: 30,000 rpm). When observed with an optical microscope, the calf width was 60 ⁇ m.
  • UV irradiation and peeling of the adhesive film for evaluation of pre-dicing were performed, and the adhesive residue after the pre-dicing method was evaluated.
  • an ultraviolet ray having a main wavelength of 365 nm was irradiated with an irradiation intensity of 100 mW / cm 2 using a high-pressure mercury lamp in an environment of 25 ° C., and an ultraviolet ray amount of 1080 mJ / cm 2 was irradiated to the adhesive film for dicing evaluation.
  • the adhesive film for pre-dicing evaluation was peeled off by the following procedure.
  • a dicing tape (used as a mounting tape) prepared separately is passed through the adhesive surface of the dicing tape to form an 8-inch wafer ring frame and the above-mentioned individual pieces. It was attached to the wafer side of the diced wafer.
  • a tape peeling machine manufactured by Nitto Denko Corporation, HR3000III
  • the adhesive film for advanced dicing evaluation was peeled off from the wafer notch portion by a peeling tape (manufactured by Lasting System Co., Ltd., PET38REL).
  • the device peelability was evaluated according to the following criteria.
  • the adhesive residue on the individualized wafer after the pre-dicing method was evaluated using an optical microscope (manufactured by Olympus Corporation) according to the following criteria. ⁇ (Good): No glue residue confirmed ⁇ (Bad): No glue residue confirmed
  • Example 1 6.9 parts by mass of 2,2-dimethoxy-2-phenylacetophenone (manufactured by IGM, trade name: Omnirad 651) as a photoinitiator with respect to 100 parts by mass of (meth) acrylic resin solution 1 (solid content). 0.93 parts by mass of an isocyanate-based cross-linking agent (manufactured by Mitsui Chemicals, Inc., trade name: Olestar P49-75S) was added to obtain a pressure-sensitive adhesive coating liquid 1 for a pressure-sensitive adhesive resin layer.
  • an adhesive film for evaluation of breaking elongation, an adhesive film for evaluation of adhesive strength, and an adhesive film for evaluation of pre-dicing were produced.
  • the breaking elongation of the adhesive material after UV curing, the adhesive strength evaluation, and the pre-dicing method evaluation were carried out. The results are shown in Table 1.
  • Example 2 to 10 and Comparative Examples 1 and 2 Adhesive films were prepared in the same manner as in Example 1 except that the types of the adhesive resin layer and the base material layer were changed to those shown in Table 1. Moreover, each evaluation was performed in the same manner as in Example 1. The results obtained are shown in Table 1. The compounds listed in Table 1 are as follows.
  • Omnirad 651 (manufactured by IGM): 2,2-dimethoxy-2-phenylacetophenone Omnirad 369 (manufactured by IGM): 2-benzyl-2-dimethylamino-4'-morpholinobtyrophenone Aronix M400 (manufactured by Toa Synthetic Co., Ltd.): Mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate NK ester AD-TMP (manufactured by Shin Nakamura Chemical Industry Co., Ltd.): Ditrimethylol propanetetraacrylate
  • Base material layer Adhesive resin layer 30 Electronic components 30A Circuit forming surface 50 Adhesive film 100 Structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

A method for producing an electronic device comprising at least: a step (A) for preparing a structure (100) which is provided with an electronic component (30) that has a circuit formation surface (30A) and an adhesive film (50) that is bonded to the circuit formation surface (30A) of the electronic component (30); a step (B) for back grinding a surface of the electronic component (30), said surface being on the reverse side of the circuit formation surface (30A); and a step (C) for removing the adhesive film (50) from the electronic component (30) after irradiating the adhesive film (50) with ultraviolet light. With respect to this method for producing an electronic device, the adhesive film (50) comprises a base material layer (10) and an ultraviolet curable adhesive resin layer (20) that is provided on one surface of the base material layer (10), and the elongation at break of the adhesive resin layer (20) after being irradiated with ultraviolet light in the step (C) is from 20% to 200%.

Description

電子装置の製造方法Manufacturing method of electronic device
 本発明は、電子装置の製造方法に関する。 The present invention relates to a method for manufacturing an electronic device.
 電子装置の製造工程の中で、電子部品を研削する工程においては、電子部品を固定したり、電子部品の損傷を防止したりするために、電子部品の回路形成面に粘着性フィルムが貼り付けられる。
 このような粘着性フィルムには、一般的に、基材フィルムに粘着性樹脂層を積層させたフィルムが用いられている。
In the process of grinding electronic components in the manufacturing process of electronic devices, an adhesive film is attached to the circuit forming surface of the electronic components in order to fix the electronic components and prevent damage to the electronic components. Be done.
As such an adhesive film, a film in which an adhesive resin layer is laminated on a base film is generally used.
 高密度実装技術の進歩に伴い、半導体ウエハ等の電子部品の薄厚化の要求があり、例えば50μm以下の厚さまで薄厚加工することが求められている。
 このような薄厚加工の一つとして、電子部品の研削加工の前に、電子部品の表面に所定の深さの溝を形成し、次いで研削を行うことで電子部品を個片化する先ダイシング法がある。また、研削加工の前に、電子部品内部にレーザーを照射することで改質領域を形成し、次いで研削を行うことで電子部品を個片化する先ステルス法がある。
With the progress of high-density mounting technology, there is a demand for thinning of electronic parts such as semiconductor wafers, and for example, it is required to thin the thickness to 50 μm or less.
As one of such thin-thickening processes, a pre-dicing method is used in which a groove having a predetermined depth is formed on the surface of an electronic component before grinding the electronic component, and then grinding is performed to separate the electronic component into individual pieces. There is. Further, there is a pre-stealth method in which a modified region is formed by irradiating the inside of an electronic component with a laser before grinding, and then grinding is performed to individualize the electronic component.
 このような先ダイシング法や先ステルス法用の粘着性フィルムに関する技術としては、例えば、特許文献1(特開2014-75560号公報)および特許文献2(特開2016-72546号公報)に記載のものが挙げられる。 As a technique relating to such an adhesive film for a pre-dicing method or a pre-stealth method, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2014-75560) and Patent Document 2 (Japanese Patent Laid-Open No. 2016-72546) are described. Things can be mentioned.
 特許文献1には、基材上に粘着剤層を有する表面保護シートであって、下記要件(a)~(d)を満たす、表面保護シートが記載されている。
(a)上記基材のヤング率が、450MPa以上である
(b)上記粘着剤層の25℃における貯蔵弾性率が、0.10MPa以上である
(c)上記粘着剤層の50℃における貯蔵弾性率が0.20MPa以下である
(d)上記粘着剤層の厚さが、30μm以上である
 特許文献1には、このような表面保護シートは、ワークの裏面研削工程の際に、ワークが割断され形成される間隙からワークの被保護表面に、水の浸入(スラッジ浸入) を抑制して、ワークの被保護表面の汚染を防止し得ると記載されている。
Patent Document 1 describes a surface protective sheet having an adhesive layer on a base material and satisfying the following requirements (a) to (d).
(A) Young's modulus of the substrate is 450 MPa or more (b) Storage elastic modulus of the pressure-sensitive adhesive layer at 25 ° C. is 0.10 MPa or more (c) Storage elasticity of the pressure-sensitive adhesive layer at 50 ° C. The ratio is 0.20 MPa or less. (D) The thickness of the pressure-sensitive adhesive layer is 30 μm or more. It is described that it is possible to suppress the infiltration of water (sludge infiltration) into the protected surface of the work from the gap formed by the work and prevent the protected surface of the work from being contaminated.
 特許文献2には、基材樹脂フィルムと、上記基材樹脂フィルムの少なくとも片面側に形成された放射線硬化性の粘着剤層とを有し、上記基材樹脂フィルムは、引張弾性率が1~10GPaである剛性層を少なくとも1層有し、上記粘着剤層を放射線硬化させた後における剥離角度30°での剥離力が、0.1~3.0N/25mmであることを特徴とする半導体ウエハ表面保護用粘着テープが記載されている。
 特許文献2には、このような半導体ウエハ表面保護用粘着テープによれば、先ダイシング法または先ステルス法を適用した半導体ウエハの裏面研削工程において、個片化された半導体チップのカーフシフトを抑制するとともに、半導体ウエハを破損や汚染することなく加工することができると記載されている。
Patent Document 2 has a base material resin film and a radiation-curable pressure-sensitive adhesive layer formed on at least one side of the base material resin film, and the base material resin film has a tensile elasticity of 1 to 1 to 2. A semiconductor characterized by having at least one rigid layer having 10 GPa and having a peeling force of 0.1 to 3.0 N / 25 mm at a peeling angle of 30 ° after the pressure-sensitive adhesive layer is radiation-cured. Adhesive tape for protecting the surface of the wafer is described.
According to Patent Document 2, such an adhesive tape for protecting the surface of a semiconductor wafer suppresses calf shift of an individualized semiconductor chip in a backside grinding process of a semiconductor wafer to which a pre-dicing method or a pre-stealth method is applied. At the same time, it is stated that the semiconductor wafer can be processed without being damaged or contaminated.
特開2014-75560号公報Japanese Unexamined Patent Publication No. 2014-75560 特開2016-72546号公報Japanese Unexamined Patent Publication No. 2016-72546
 本発明者らの検討によれば、例えば、先ダイシング法や先ステルス法等を用いた電子装置の製造プロセスおいて、バックグラインド工程後に電子部品から粘着性フィルムを剥離する際に、電子部品側に糊残りが生じやすいことが明らかになった。 According to the studies by the present inventors, for example, in the manufacturing process of an electronic device using a pre-dicing method, a pre-stealth method, etc., when the adhesive film is peeled off from the electronic component after the backgrinding process, the electronic component side It became clear that adhesive residue was likely to occur in the product.
 本発明は上記事情に鑑みてなされたものであり、バックグラインド工程後において、電子部品から粘着性フィルムを剥離する際の電子部品側の糊残りを抑制することが可能な電子装置の製造方法を提供するものである。 The present invention has been made in view of the above circumstances, and a method for manufacturing an electronic device capable of suppressing adhesive residue on the electronic component side when peeling an adhesive film from an electronic component after a backgrinding process is provided. It is to provide.
 本発明者らは、上記課題を達成するために鋭意検討を重ねた。その結果、紫外線を照射した後の粘着性樹脂層の破断伸度を特定の範囲に調整することにより、バックグラインド工程後において、電子部品から粘着性フィルムを剥離する際の電子部品側の糊残りを抑制することができることを見出して、本発明を完成させた。 The present inventors have made extensive studies in order to achieve the above-mentioned problems. As a result, by adjusting the breaking elongation of the adhesive resin layer after irradiation with ultraviolet rays to a specific range, the adhesive residue on the electronic component side when the adhesive film is peeled off from the electronic component after the backgrinding process. The present invention has been completed by finding that it is possible to suppress the above.
 本発明によれば、以下に示す電子装置の製造方法が提供される。 According to the present invention, the following method for manufacturing an electronic device is provided.
[1]
 回路形成面を有する電子部品と、上記電子部品の上記回路形成面側に貼り合わされた粘着性フィルムと、を備える構造体を準備する工程(A)と、
 上記電子部品の上記回路形成面側とは反対側の面をバックグラインドする工程(B)と、
 上記粘着性フィルムに紫外線を照射した後に上記電子部品から上記粘着性フィルムを除去する工程(C)と、
を少なくとも備える電子装置の製造方法であって、
 上記粘着性フィルムが、基材層と、上記基材層の一方の面側に設けられた紫外線硬化型の粘着性樹脂層と、を備え、
 上記工程(C)において、紫外線を照射した後の上記粘着性樹脂層の破断伸度が20%以上200%以下である電子装置の製造方法。
[2]
 上記[1]に記載の電子装置の製造方法において、
 上記工程(A)は、
  上記電子部品をハーフカットする工程(A1-1)および上記電子部品に対してレーザーを照射し、上記電子部品に改質層を形成する工程(A1-2)から選択される少なくとも一種の工程(A1)と、
 上記工程(A1)の後に、上記電子部品の上記回路形成面側に上記粘着性フィルムを貼り付ける工程(A2)と、
を含む電子装置の製造方法。
[3]
 上記[1]または[2]に記載の電子装置の製造方法において、
 上記工程(C)では、上記粘着性フィルムに対し、200mJ/cm以上2000mJ/cm以下の線量の紫外線を照射することによって、上記粘着性樹脂層を光硬化させて上記粘着性樹脂層の粘着力を低下させた後に、上記電子部品から上記粘着性フィルムを除去する電子装置の製造方法。
[4]
 上記[1]乃至[3]のいずれか一つに記載の電子装置の製造方法において、
 上記粘着性樹脂層は、分子中に重合性炭素-炭素二重結合を有する(メタ)アクリル系樹脂と、光開始剤と、を含む電子装置の製造方法。
[5]
 上記[1]乃至[4]のいずれか一つに記載の電子装置の製造方法において、
 上記粘着性樹脂層の厚みが5μm以上300μm以下である電子装置の製造方法。
[6]
 上記[1]乃至[5]のいずれか一つに記載の電子装置の製造方法において、
 上記基材層を構成する樹脂がポリオレフィン、ポリエステル、ポリアミド、ポリアクリレート、ポリメタアクリレート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイミド、ポリエーテルイミド、エチレン・酢酸ビニル共重合体、ポリアクリロニトリル、ポリカーボネート、ポリスチレン、アイオノマー、ポリスルホン、ポリエーテルスルホンおよびポリフェニレンエーテルから選択される一種または二種以上を含む電子装置の製造方法。
[1]
A step (A) of preparing a structure including an electronic component having a circuit forming surface and an adhesive film bonded to the circuit forming surface side of the electronic component.
The step (B) of backgrinding the surface of the electronic component opposite to the circuit forming surface side, and
The step (C) of removing the adhesive film from the electronic component after irradiating the adhesive film with ultraviolet rays, and
A method of manufacturing an electronic device that includes at least
The adhesive film comprises a base material layer and an ultraviolet curable adhesive resin layer provided on one surface side of the base material layer.
A method for manufacturing an electronic device in the step (C), wherein the breaking elongation of the adhesive resin layer after irradiation with ultraviolet rays is 20% or more and 200% or less.
[2]
In the method for manufacturing an electronic device according to the above [1],
The above step (A) is
At least one step (A1-2) selected from a step of half-cutting the electronic component (A1-1) and a step of irradiating the electronic component with a laser to form a modified layer on the electronic component (A1-2). A1) and
After the step (A1), the step (A2) of attaching the adhesive film to the circuit forming surface side of the electronic component and the step (A2).
A method of manufacturing an electronic device including.
[3]
In the method for manufacturing an electronic device according to the above [1] or [2].
In the step (C), the adhesive resin layer is photo-cured by irradiating the adhesive film with ultraviolet rays having a dose of 200 mJ / cm 2 or more and 2000 mJ / cm 2 or less to obtain the adhesive resin layer. A method for manufacturing an electronic device that removes the adhesive film from the electronic component after reducing the adhesive strength.
[4]
In the method for manufacturing an electronic device according to any one of the above [1] to [3].
The method for manufacturing an electronic device, wherein the adhesive resin layer contains a (meth) acrylic resin having a polymerizable carbon-carbon double bond in the molecule and a photoinitiator.
[5]
In the method for manufacturing an electronic device according to any one of the above [1] to [4].
A method for manufacturing an electronic device in which the thickness of the adhesive resin layer is 5 μm or more and 300 μm or less.
[6]
In the method for manufacturing an electronic device according to any one of the above [1] to [5].
The resins constituting the base material layer are polyolefin, polyester, polyamide, polyacrylate, polymethacrylate, polyvinyl chloride, polyvinylidene chloride, polyimide, polyetherimide, ethylene / vinyl acetate copolymer, polyacrylonitrile, polycarbonate, polystyrene. , A method for producing an electronic device comprising one or more selected from ionomer, polysulfone, polyethersulfone and polyphenylene ether.
 本発明によれば、バックグラインド工程後において、電子部品から粘着性フィルムを剥離する際の電子部品側の糊残りを抑制することが可能な電子装置の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for manufacturing an electronic device capable of suppressing adhesive residue on the electronic component side when the adhesive film is peeled from the electronic component after the back grind process.
本発明に係る実施形態の粘着性フィルムの構造の一例を模式的に示した断面図である。It is sectional drawing which shows typically an example of the structure of the adhesive film of embodiment which concerns on this invention. 本発明に係る実施形態の電子装置の製造方法の一例を模式的に示した断面図である。It is sectional drawing which shows typically an example of the manufacturing method of the electronic apparatus of embodiment which concerns on this invention.
 以下、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には共通の符号を付し、適宜説明を省略する。また、図は概略図であり、実際の寸法比率とは一致していない。なお、数値範囲の「A~B」は特に断りがなければ、A以上B以下を表す。また、本実施形態において、「(メタ)アクリル」とは、アクリル、メタクリルまたはアクリルおよびメタクリルの両方を意味する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, similar components are designated by a common reference numeral, and the description thereof will be omitted as appropriate. Further, the figure is a schematic view and does not match the actual dimensional ratio. Unless otherwise specified, "A to B" in the numerical range represent A or more and B or less. Further, in the present embodiment, "(meth) acrylic" means acrylic, methacryl or both acrylic and methacrylic.
 図1は、本発明に係る実施形態の粘着性フィルム50の構造の一例を模式的に示した断面図である。図2は、本発明に係る実施形態の電子装置の製造方法の一例を模式的に示した断面図である。
 本実施形態に係る電子装置の製造方法は、回路形成面30Aを有する電子部品30と、電子部品30の回路形成面30A側に貼り合わされた粘着性フィルム50と、を備える構造体100を準備する工程(A)と、電子部品30の回路形成面30A側とは反対側の面をバックグラインドする工程(B)と、粘着性フィルム50に紫外線を照射した後に電子部品30から粘着性フィルム50を除去する工程(C)と、を少なくとも備える電子装置の製造方法であって、粘着性フィルム50が、基材層10と、基材層10の一方の面側に設けられた紫外線硬化型の粘着性樹脂層20と、を備え、工程(C)において、紫外線を照射した後(紫外線硬化後)の粘着性樹脂層20の破断伸度が20%以上200%以下である。
 ここで、紫外線硬化後の粘着性樹脂層20の破断伸度は以下の方法で測定した値である。
(方法)
 粘着性樹脂層20を基材層10とともに、長さ110mm、幅10mmに切り、初期のチャック間距離Loが50mmになるように、引張試験機(例えば、島津製作所、オートグラフAGS-X)でチャックする。サンプルを30mm/分の速度で引張り、目視にて粘着性樹脂層20に破断が観測された点を破断点とし、その時のチャック間距離をLとする。破断伸度(%)は、(L-Lo)/Lo×100(%)によって求める。
 また、紫外線硬化後の粘着性樹脂層20の破断伸度は、本実施形態に係る電子装置の製造方法で使用する粘着性樹脂層20と同じものを別に準備し、その粘着性樹脂層20の破断伸度を下記の方法で測定した値を採用してもよい。
 コロナ処理されたエチレン・酢酸ビニル共重合体押出フィルム(MFR:1.7g/10min、酢酸ビニル含量:9質量%、厚み:140μm)のコロナ処理面に、本実施形態に係る粘着性フィルム50の粘着性樹脂層20と厚み、組成等が同等のものを積層し、さらに当該粘着性樹脂層20側にシリコーン離型処理されたポリエチレンテレフタレートフィルム等の離型フィルム(セパレータ)が積層された状態の測定用サンプルを作製する。
 積層方法としては、例えば以下の方法が挙げられる。
 シリコーン離型処理されたポリエチレンテレフタレートフィルムの離型処理面に粘着性樹脂層20を形成し、次いで、粘着性樹脂層20上にコロナ処理されたエチレン・酢酸ビニル共重合体フィルムを貼り合わせて積層体を得る。次いで、得られた積層体をオーブンで40℃、3日間加熱し、熟成させる。
 次いで、得られた積層体のエチレン・酢酸ビニル共重合体フィルム側から粘着性樹脂層20に対し、紫外線を照射して粘着性樹脂層20を光硬化させる。次いで、粘着性樹脂層20を光硬化させた積層体を長さ110mm、幅10mmに切り、セパレータであるポリエチレンテレフタレートフィルムを積層体から剥がす。
 次いで、粘着性樹脂層20をエチレン・酢酸ビニル共重合体フィルムとともに、初期のチャック間距離Loが50mmになるように、引張試験機(例えば、島津製作所、オートグラフAGS-X)でチャックする。サンプルを30mm/分の速度で引張り、目視にて粘着性樹脂層20に破断が観測された点を破断点とし、その時のチャック間距離をLとする。破断伸度(%)は、(L-Lo)/Lo×100(%)によって求める。
FIG. 1 is a cross-sectional view schematically showing an example of the structure of the adhesive film 50 according to the embodiment of the present invention. FIG. 2 is a cross-sectional view schematically showing an example of a method for manufacturing an electronic device according to an embodiment of the present invention.
The method for manufacturing an electronic device according to the present embodiment prepares a structure 100 including an electronic component 30 having a circuit forming surface 30A and an adhesive film 50 bonded to the circuit forming surface 30A side of the electronic component 30. The step (A), the step (B) of backgrinding the surface of the electronic component 30 opposite to the circuit forming surface 30A side, and the adhesive film 50 from the electronic component 30 after irradiating the adhesive film 50 with ultraviolet rays. A method for manufacturing an electronic device including at least a removing step (C), wherein the adhesive film 50 is an ultraviolet curable adhesive provided on one surface side of the base material layer 10 and the base material layer 10. The adhesive resin layer 20 is provided with the sex resin layer 20, and in the step (C), the breaking elongation of the adhesive resin layer 20 after being irradiated with ultraviolet rays (after curing by ultraviolet rays) is 20% or more and 200% or less.
Here, the breaking elongation of the adhesive resin layer 20 after being cured by ultraviolet rays is a value measured by the following method.
(Method)
The adhesive resin layer 20 is cut into a length of 110 mm and a width of 10 mm together with the base material layer 10, and a tensile tester (for example, Shimadzu Corporation, Autograph AGS-X) is used so that the initial chuck distance Lo is 50 mm. Chuck. The sample is pulled at a speed of 30 mm / min, and the point at which fracture is visually observed in the adhesive resin layer 20 is defined as the fracture point, and the distance between chucks at that time is defined as L. The elongation at break (%) is determined by (L-Lo) / Lo × 100 (%).
Further, the breaking elongation of the adhesive resin layer 20 after UV curing is the same as that of the adhesive resin layer 20 used in the manufacturing method of the electronic device according to the present embodiment, and the adhesive resin layer 20 is prepared separately. A value obtained by measuring the elongation at break by the following method may be adopted.
On the corona-treated surface of the corona-treated ethylene-vinyl acetate copolymer extruded film (MFR: 1.7 g / 10 min, vinyl acetate content: 9% by mass, thickness: 140 μm), the adhesive film 50 according to the present embodiment is used. A state in which a taper having the same thickness, composition, etc. as the adhesive resin layer 20 is laminated, and a release film (separator) such as a silicone terephthalate film treated with silicone is laminated on the adhesive resin layer 20 side. Prepare a sample for measurement.
Examples of the laminating method include the following methods.
An adhesive resin layer 20 is formed on the release-treated surface of the silicone release-treated polyethylene terephthalate film, and then a corona-treated ethylene-vinyl acetate copolymer film is laminated on the adhesive resin layer 20. Get the body. Then, the obtained laminate is heated in an oven at 40 ° C. for 3 days and aged.
Next, the adhesive resin layer 20 is irradiated with ultraviolet rays from the ethylene-vinyl acetate copolymer film side of the obtained laminate to photocure the adhesive resin layer 20. Next, the laminate obtained by photocuring the adhesive resin layer 20 is cut into a length of 110 mm and a width of 10 mm, and the polyethylene terephthalate film as a separator is peeled off from the laminate.
Next, the adhesive resin layer 20 is chucked together with the ethylene-vinyl acetate copolymer film with a tensile tester (for example, Shimadzu Corporation, Autograph AGS-X) so that the initial chuck distance Lo is 50 mm. The sample is pulled at a speed of 30 mm / min, and the point at which fracture is visually observed in the adhesive resin layer 20 is defined as the fracture point, and the distance between chucks at that time is defined as L. The elongation at break (%) is determined by (L-Lo) / Lo × 100 (%).
 上述したように、本発明者らの検討によれば、例えば、先ダイシング法や先ステルス法等を用いた電子装置の製造プロセスおいて、バックグラインド工程後に電子部品から粘着性フィルムを剥離する際に、電子部品側に糊残りが生じやすいことが明らかになった。
 この理由は明らかではないが、通常の電子部品のバックグラインド工程と異なり、割断された電子部品から粘着性フィルム50を剥離する必要があるため、割断された電子部品のエッジ部に糊残りが生じやすくなると考えられる。
 本発明者らは、上記課題を達成するために鋭意検討を重ねた。その結果、紫外線硬化後の粘着性樹脂層20の破断伸度を上記範囲に調整することにより、バックグラインド工程後において、電子部品30から粘着性フィルム50を剥離する際の電子部品30側の糊残りを抑制することができることを初めて見出した。
As described above, according to the studies by the present inventors, for example, in the manufacturing process of an electronic device using a pre-dicing method, a pre-stealth method, etc., when the adhesive film is peeled off from an electronic component after a back grind process. In addition, it became clear that adhesive residue is likely to occur on the electronic component side.
The reason for this is not clear, but unlike the backgrinding process of a normal electronic component, the adhesive film 50 needs to be peeled off from the split electronic component, so that adhesive residue is generated at the edge of the split electronic component. It will be easier.
The present inventors have made extensive studies to achieve the above-mentioned problems. As a result, by adjusting the breaking elongation of the adhesive resin layer 20 after UV curing to the above range, the glue on the electronic component 30 side when the adhesive film 50 is peeled from the electronic component 30 after the back grind step. For the first time, I found that the rest could be suppressed.
 本実施形態に係る電子装置の製造方法において、工程(C)における、紫外線を照射した後の粘着性樹脂層20の破断伸度は20%以上200%以下であるが、粘着性樹脂層20に適度な靭性を持たせることで、糊残りが生じにくい粘着性樹脂層20を設計する観点から、好ましくは30%以上、より好ましくは40%以上、そして、好ましくは150%以下、より好ましくは100%以下、さらに好ましくは80%以下に調整する。
 工程(C)における、紫外線を照射した後の粘着性樹脂層20の破断伸度は、例えば、粘着性樹脂層20を構成する粘着性樹脂や架橋剤、光開始剤の種類や配合割合、粘着性樹脂における各モノマーの種類や含有割合、工程(C)における紫外線照射条件(例えば、紫外線量、照射強度、照射時間)を制御することにより上記範囲内に制御することができる。
In the method for manufacturing an electronic device according to the present embodiment, the breaking elongation of the adhesive resin layer 20 after irradiation with ultraviolet rays in the step (C) is 20% or more and 200% or less, but the adhesive resin layer 20 has From the viewpoint of designing the adhesive resin layer 20 in which adhesive residue is less likely to occur by giving an appropriate toughness, it is preferably 30% or more, more preferably 40% or more, and preferably 150% or less, more preferably 100. % Or less, more preferably 80% or less.
The breaking elongation of the adhesive resin layer 20 after irradiation with ultraviolet rays in the step (C) is, for example, the type and blending ratio of the adhesive resin and the cross-linking agent constituting the adhesive resin layer 20, the light initiator, and the adhesiveness. It can be controlled within the above range by controlling the type and content ratio of each monomer in the sex resin and the ultraviolet irradiation conditions (for example, the amount of ultraviolet rays, the irradiation intensity, and the irradiation time) in the step (C).
1.粘着性フィルム
 図1に示すように、本実施形態に係る粘着性フィルム50は、基材層10と、基材層10の一方の面側に設けられた紫外線硬化型の粘着性樹脂層20と、を備える。
1. 1. Adhesive film As shown in FIG. 1, the adhesive film 50 according to the present embodiment includes a base material layer 10 and an ultraviolet curable adhesive resin layer 20 provided on one surface side of the base material layer 10. , Equipped with.
 本実施形態に係る粘着性フィルム50全体の厚さは、機械的特性と取扱い性のバランスから、好ましくは50μm以上600μm以下であり、より好ましくは50μm以上400μm以下であり、さらに好ましくは50μm以上300μm以下である。 The thickness of the entire adhesive film 50 according to the present embodiment is preferably 50 μm or more and 600 μm or less, more preferably 50 μm or more and 400 μm or less, and further preferably 50 μm or more and 300 μm, from the viewpoint of the balance between mechanical properties and handleability. It is as follows.
 本実施形態に係る粘着性フィルム50は、本発明の効果を損なわない範囲で、各層の間に凹凸吸収性樹脂層や接着層、帯電防止層(図示せず)等の他の層を設けてもよい。凹凸吸収性樹脂層によれば、粘着性フィルム50の凹凸吸収性を向上させることができる。接着層によれば、各層の間の接着性を向上させることができる。また、帯電防止層によれば、粘着性フィルム50の帯電防止性を向上させることができる。 The adhesive film 50 according to the present embodiment is provided with other layers such as a concave-convex absorbent resin layer, an adhesive layer, and an antistatic layer (not shown) between the layers as long as the effects of the present invention are not impaired. May be good. According to the unevenness absorbing resin layer, the unevenness absorbing property of the adhesive film 50 can be improved. According to the adhesive layer, the adhesiveness between the layers can be improved. Further, according to the antistatic layer, the antistatic property of the adhesive film 50 can be improved.
 次に、本実施形態に係る粘着性フィルム50を構成する各層について説明する。 Next, each layer constituting the adhesive film 50 according to the present embodiment will be described.
<基材層>
 基材層10は、粘着性フィルム50の取り扱い性や機械的特性、耐熱性等の特性をより良好にすることを目的として設けられる層である。
 基材層10は、電子部品30を加工する際に加わる外力に耐えうる機械的強度があれば特に限定されないが、例えば、樹脂フィルムが挙げられる。
 基材層10を構成する樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリ(4-メチル-1-ペンテン)、ポリ(1-ブテン)等のポリオレフィン;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ナイロン-6、ナイロン-66、ポリメタキシレンアジパミド等のポリアミド;(メタ)アクリル系樹脂;ポリ塩化ビニル;ポリ塩化ビニリデン;ポリイミド;ポリエーテルイミド;エチレン・酢酸ビニル共重合体;ポリアクリロニトリル;ポリカーボネート;ポリスチレン;アイオノマー;ポリスルホン;ポリエーテルスルホン;ポリエーテルエーテルケトン等から選択される一種または二種以上を挙げることができる。
 これらの中でも、機械物性および透明性を良好にする観点から、ポリプロピレン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリイミド、エチレン・酢酸ビニル共重合体およびポリブチレンテレフタレートから選択される一種または二種以上が好ましく、ポリエチレンテレフタレート、ポリエチレンナフタレートから選択される一種または二種以上がより好ましい。
<Base layer>
The base material layer 10 is a layer provided for the purpose of improving the handleability, mechanical properties, heat resistance, and other properties of the adhesive film 50.
The base material layer 10 is not particularly limited as long as it has mechanical strength capable of withstanding an external force applied when processing the electronic component 30, and examples thereof include a resin film.
Examples of the resin constituting the base material layer 10 include polyolefins such as polyethylene, polypropylene, poly (4-methyl-1-pentene) and poly (1-butene); polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and the like. Polyester; Polyester such as Nylon-6, Nylon-66, Polymethoxylen adipamide; (Meta) acrylic resin; Polyvinyl chloride; Polyvinyl chloride; Polyethylene; Polyetherimide; Ethylene-vinyl acetate copolymer; Poly One or more selected from acrylonitrile; polycarbonate; polystyrene; ionomer; polysulfone; polyethersulfone; polyether ether ketone and the like can be mentioned.
Among these, one or more selected from polypropylene, polyethylene terephthalate, polyethylene naphthalate, polyamide, polyimide, ethylene-vinyl acetate copolymer and polybutylene terephthalate from the viewpoint of improving mechanical properties and transparency. Preferably, one or more selected from polyethylene terephthalate and polyethylene naphthalate are more preferable.
 基材層10は、単層であっても、二種以上の層であってもよい。
 また、基材層10を形成するために使用する樹脂フィルムの形態としては、延伸フィルムであってもよいし、一軸方向または二軸方向に延伸したフィルムであってもよいが、基材層10の機械的強度を向上させる観点から、一軸方向または二軸方向に延伸したフィルムであることが好ましい。基材層10は研削後の電子部品の反りを抑制する観点から、予めアニール処理されているものが好ましい。基材層10は他の層との接着性を改良するために、表面処理を行ってもよい。具体的には、コロナ処理、プラズマ処理、アンダーコート処理、プライマーコート処理等を行ってもよい。
The base material layer 10 may be a single layer or two or more types of layers.
Further, the form of the resin film used for forming the base material layer 10 may be a stretched film or a film stretched in a uniaxial direction or a biaxial direction, but the base material layer 10 may be used. From the viewpoint of improving the mechanical strength of the film, a film stretched in a uniaxial direction or a biaxial direction is preferable. The base material layer 10 is preferably annealed in advance from the viewpoint of suppressing warpage of electronic components after grinding. The base material layer 10 may be surface-treated in order to improve the adhesiveness with other layers. Specifically, corona treatment, plasma treatment, undercoat treatment, primer coating treatment and the like may be performed.
 基材層10の厚さは、良好なフィルム特性を得る観点から、20μm以上250μm以下が好ましく、30μm以上200μm以下がより好ましく、50μm以上150μm以下がさらに好ましい。 The thickness of the base material layer 10 is preferably 20 μm or more and 250 μm or less, more preferably 30 μm or more and 200 μm or less, and further preferably 50 μm or more and 150 μm or less from the viewpoint of obtaining good film characteristics.
<粘着性樹脂層>
 本実施形態に係る粘着性フィルム50は紫外線硬化型の粘着性樹脂層20を備える。
 粘着性樹脂層20は、基材層10の一方の面側に設けられる層であり、粘着性フィルム50を電子部品30の回路形成面30Aに貼り付ける際に、電子部品30の回路形成面30Aに接触して粘着する層である。
<Adhesive resin layer>
The adhesive film 50 according to the present embodiment includes an ultraviolet curable adhesive resin layer 20.
The adhesive resin layer 20 is a layer provided on one surface side of the base material layer 10, and when the adhesive film 50 is attached to the circuit forming surface 30A of the electronic component 30, the circuit forming surface 30A of the electronic component 30 is attached. It is a layer that comes into contact with and adheres to.
 粘着性樹脂層20を構成する粘着剤は、(メタ)アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、オレフィン系粘着剤、スチレン系粘着剤等が挙げられる。これらの中でも、接着力の調整を容易にできる点等から、(メタ)アクリル系樹脂をベースポリマーとする(メタ)アクリル系粘着剤が好ましい。 Examples of the adhesive constituting the adhesive resin layer 20 include (meth) acrylic adhesive, silicone adhesive, urethane adhesive, olefin adhesive, styrene adhesive and the like. Among these, a (meth) acrylic pressure-sensitive adhesive using a (meth) acrylic resin as a base polymer is preferable because the adhesive strength can be easily adjusted.
 また、粘着性樹脂層20を構成する粘着剤としては、紫外線により粘着力を低下させる紫外線架橋型粘着剤を用いることが好ましい。
 紫外線架橋型粘着剤により構成された粘着性樹脂層20は、紫外線の照射により架橋して粘着力が著しく減少するため、粘着性フィルム50から電子部品30を剥離し易くなる。
Further, as the pressure-sensitive adhesive constituting the pressure-sensitive adhesive resin layer 20, it is preferable to use an ultraviolet cross-linked pressure-sensitive adhesive whose adhesive strength is lowered by ultraviolet rays.
Since the adhesive resin layer 20 composed of the ultraviolet cross-linking type adhesive is crosslinked by irradiation with ultraviolet rays and the adhesive force is remarkably reduced, the electronic component 30 can be easily peeled off from the adhesive film 50.
 (メタ)アクリル系粘着剤に含まれる(メタ)アクリル系樹脂としては、例えば、(メタ)アクリル酸エステル化合物の単独重合体、(メタ)アクリル酸エステル化合物とコモノマーとの共重合体等が挙げられる。(メタ)アクリル酸エステル化合物としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、グリシジル(メタ)アクリレート等が挙げられる。これらの(メタ)アクリル酸エステル化合物は一種単独で用いてもよく、二種以上を併用して用いてもよい。
 また、(メタ)アクリル系共重合体を構成するコモノマーとしては、例えば、酢酸ビニル、(メタ)アクリルニトリル、スチレン、(メタ)アクリル酸、イタコン酸、(メタ)アクリルアマイド、メチロール(メタ)アクリルアマイド、無水マレイン酸等が挙げられる。これらのコモノマーは一種単独で用いてもよく、二種以上を併用して用いてもよい。
Examples of the (meth) acrylic resin contained in the (meth) acrylic pressure-sensitive adhesive include a homopolymer of a (meth) acrylic acid ester compound, a copolymer of a (meth) acrylic acid ester compound and a comonomer, and the like. Be done. Examples of the (meth) acrylic acid ester compound include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, hydroxyethyl (meth) acrylate, and hydroxypropyl (meth). Examples thereof include acrylate, dimethylaminoethyl (meth) acrylate, and glycidyl (meth) acrylate. These (meth) acrylic acid ester compounds may be used alone or in combination of two or more.
Examples of the comonomer constituting the (meth) acrylic copolymer include vinyl acetate, (meth) acrylonitrile, styrene, (meth) acrylic acid, itaconic acid, (meth) acrylic amide, and methylol (meth) acrylic. Examples thereof include acrylamide and maleic anhydride. These comonomer may be used alone or in combination of two or more.
 紫外線架橋型の(メタ)アクリル系粘着剤としては、分子中に重合性炭素-炭素二重結合を有する(メタ)アクリル系樹脂と、光開始剤を含み、必要に応じて架橋剤により上記(メタ)アクリル系樹脂を架橋させて得られる粘着剤を例示することができる。紫外線架橋型の(メタ)アクリル系粘着剤は、分子内に重合性炭素-炭素二重結合を2個以上有する低分子量化合物をさらに含んでもよい。 The ultraviolet cross-linking type (meth) acrylic pressure-sensitive adhesive contains a (meth) acrylic resin having a polymerizable carbon-carbon double bond in the molecule and a photoinitiator, and if necessary, a cross-linking agent can be used as described above ( Meta) An example of a pressure-sensitive adhesive obtained by cross-linking an acrylic resin can be exemplified. The UV-crosslinked (meth) acrylic pressure-sensitive adhesive may further contain a low molecular weight compound having two or more polymerizable carbon-carbon double bonds in the molecule.
 分子中に重合性炭素-炭素二重結合を有する(メタ)アクリル系樹脂は、具体的には次のようにして得られる。まず、エチレン性二重結合を有するモノマーと官能基(P)を有する共重合性モノマーを共重合させる。次いで、この共重合体に含まれる官能基(P)と、該官能基(P)と付加反応、縮合反応等を起こしうる官能基(Q)を有するモノマーとを、該モノマー中の二重結合を残したまま反応させ、共重合体分子中に重合性炭素-炭素二重結合を導入する。 Specifically, a (meth) acrylic resin having a polymerizable carbon-carbon double bond in the molecule can be obtained as follows. First, a monomer having an ethylenic double bond and a copolymerizable monomer having a functional group (P) are copolymerized. Next, the functional group (P) contained in this copolymer and the monomer having a functional group (Q) capable of causing an addition reaction, a condensation reaction, etc. with the functional group (P) are double-bonded in the monomer. The reaction is carried out while leaving the above, and a polymerizable carbon-carbon double bond is introduced into the copolymer molecule.
 上記エチレン性二重結合を有するモノマーとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸-2-エチルヘキシル、(メタ)アクリル酸ブチル、(メタ)アクリル酸エチル等のアクリル酸アルキルエステル及びメタクリル酸アルキルエステルモノマー、酢酸ビニルの如きビニルエステル、(メタ)アクリロニトリル、(メタ)アクリルアミド、スチレン等のエチレン性二重結合を有するモノマーの中から、1種又は2種以上が用いられる。 Examples of the monomer having an ethylenic double bond include acrylic acid alkyl esters such as methyl (meth) acrylate, -2-ethylhexyl (meth) acrylate, butyl (meth) acrylate, and ethyl (meth) acrylate. And, one or more of the monomers having an ethylenic double bond such as an alkyl methacrylate ester monomer, a vinyl ester such as vinyl acetate, (meth) acrylonitrile, (meth) acrylamide, and styrene are used.
 上記官能基(P)を有する共重合性モノマーとしては、(メタ)アクリル酸、マレイン酸、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸グリシジル、Nーメチロール(メタ)アクリルアミド、(メタ)アクリロイルオキシエチルイソシアネート等が挙げられる。これらは1種でもよく、2種以上組み合わせて使用してもよい。
 上記エチレン性二重結合を有するモノマーと官能基(P)を有する共重合性モノマーの割合は、上記エチレン性二重結合を有するモノマーが70~99質量%であり、官能基(P)を有する共重合性モノマーが1~30質量%であることが好ましい。さらに好ましくは、上記エチレン性二重結合を有するモノマーが80~95質量%であり、官能基(P)を有する共重合性モノマーが5~20質量%である。
 上記官能基(Q)を有するモノマーとしては、例えば、上記官能基(P)を有する共重合性モノマーと同様のモノマーを挙げることができる。
Examples of the copolymerizable monomer having the functional group (P) include (meth) acrylic acid, maleic acid, 2-hydroxyethyl (meth) acrylate, glycidyl (meth) acrylate, N-methylol (meth) acrylamide, and (meth). ) Acryloyloxyethyl isocyanate and the like can be mentioned. These may be used alone or in combination of two or more.
The ratio of the monomer having an ethylenic double bond to the copolymerizable monomer having a functional group (P) is 70 to 99% by mass of the monomer having an ethylenic double bond and has a functional group (P). The copolymerizable monomer is preferably 1 to 30% by mass. More preferably, the monomer having an ethylenic double bond is 80 to 95% by mass, and the copolymerizable monomer having a functional group (P) is 5 to 20% by mass.
Examples of the monomer having the functional group (Q) include a monomer similar to the copolymerizable monomer having the functional group (P).
 エチレン性二重結合を有するモノマーと官能基(P)を有する共重合性モノマーとの共重合体に、重合性炭素-炭素二重結合を導入する際に反応させる官能基(P)と官能基(Q)の組み合わせとして、カルボキシル基とエポキシ基、カルボキシル基とアジリジル基、水酸基とイソシアネート基等、容易に付加反応が起こる組み合わせが望ましい。又、付加反応に限らずカルボン酸基と水酸基との縮合反応等、重合性炭素-炭素二重結合が容易に導入できる反応であれば如何なる反応を用いてもよい。 A functional group (P) and a functional group to be reacted when a polymerizable carbon-carbon double bond is introduced into a copolymer of a monomer having an ethylenic double bond and a copolymerizable monomer having a functional group (P). As the combination of (Q), a combination such as a carboxyl group and an epoxy group, a carboxyl group and an aziridyl group, a hydroxyl group and an isocyanate group, etc., in which an addition reaction easily occurs is desirable. Further, not limited to the addition reaction, any reaction may be used as long as it is a reaction in which a polymerizable carbon-carbon double bond can be easily introduced, such as a condensation reaction between a carboxylic acid group and a hydroxyl group.
 分子中に重合性炭素-炭素二重結合を2個以上有する低分子量化合物としては、例えば、トリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート等が挙げられる。これらは1種又は2種以上を用いてもよい。分子中に重合性炭素-炭素二重結合を2個以上有する低分子量化合物の添加量は、上記(メタ)アクリル系樹脂100質量部に対して、好ましくは0.1~20質量部であり、より好ましくは5~18質量部である。 Examples of the low molecular weight compound having two or more polymerizable carbon-carbon double bonds in the molecule include tripropylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethanetetraacrylate, and pentaerythritol. Examples thereof include tetra (meth) acrylate, dipentaerythritol monohydroxypenta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and ditrimethylolpropane tetraacrylate. These may be used alone or in combination of two or more. The amount of the low molecular weight compound having two or more polymerizable carbon-carbon double bonds in the molecule is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin. More preferably, it is 5 to 18 parts by mass.
 光開始剤としては、例えば、ベンゾイン、イソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、ベンゾフェノン、ミヒラーケトン、クロロチオキサントン、ドデシルチオキサントン、ジメチルチオキサントン、ジエチルチオキサントン、アセトフェノンジエチルケタール、ベンジルジメチルケタール、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-4'-モルフォリノブチロフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イル-フェニル)ブタン-1-オン等が挙げられる。これらは1種又は2種以上用いてもよい。光開始剤の添加量は、上記(メタ)アクリル系樹脂100質量部に対して、好ましくは0.1~15質量部であり、より好ましくは1~10質量部であり、さらに好ましくは4~10質量部である。 Examples of the photoinitiator include benzoin, isopropylbenzoin ether, isobutyl benzoin ether, benzophenone, Michler ketone, chlorothioxanthone, dodecylthioxanthone, dimethylthioxanthone, diethylthioxanthone, acetophenone diethyl ketal, benzyl dimethyl ketal, 1-hydroxycyclohexylphenyl ketone, 2 -Hydroxy-2-methyl-1-phenylpropan-1-one, 2-benzyl-2-dimethylamino-4'-morpholinobtyrophenone, 2,2-dimethoxy-2-phenylacetophenone, 2-dimethylamino-2- Examples thereof include (4-methylbenzyl) -1- (4-morpholin-4-yl-phenyl) butane-1-one. These may be used alone or in combination of two or more. The amount of the photoinitiator added is preferably 0.1 to 15 parts by mass, more preferably 1 to 10 parts by mass, still more preferably 4 to 4 to 100 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin. It is 10 parts by mass.
 上記紫外線硬化型粘着剤には架橋剤を添加してもよい。架橋剤としては、例えば、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル等のエポキシ系化合物、テトラメチロールメタン-トリ-β-アジリジニルプロピオネート、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート、N,N'-ジフェニルメタン-4,4'-ビス(1-アジリジンカルボキシアミド)、N,N'-ヘキサメチレン-1,6-ビス(1-アジリジンカルボキシアミド)等のアジリジン系化合物、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ポリイソシアネート等のイソシアネート系化合物等が挙げられる。上記紫外線硬化型粘着剤は、溶剤タイプ、エマルションタイプ、ホットメルトタイプ等の何れでもよい。 A cross-linking agent may be added to the ultraviolet curable pressure-sensitive adhesive. Examples of the cross-linking agent include epoxy compounds such as sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, and diglycerol polyglycidyl ether, and tetramethylolmethane-tri-β-aziridinyl propionate. Trimethylolpropane-tri-β-aziridinyl propionate, N, N'-diphenylmethane-4,4'-bis (1-azilidine carboxylamide), N, N'-hexamethylene-1,6-bis ( Examples thereof include aziridin-based compounds such as 1-azilysin carboxylamide), and isocyanate-based compounds such as tetramethylene diisocyanate, hexamethylene diisocyanate, and polyisocyanate. The ultraviolet curable pressure-sensitive adhesive may be any of solvent type, emulsion type, hot melt type and the like.
 架橋剤の含有量は、通常、架橋剤中の官能基数が(メタ)アクリル系樹脂中の官能基数よりも多くならない程度の範囲が好ましい。しかし、架橋反応で新たに官能基が生じる場合や、架橋反応が遅い場合等、必要に応じて過剰に含有してもよい。
 (メタ)アクリル系粘着剤中の架橋剤の含有量は、粘着性樹脂層20の耐熱性や密着力とのバランスを向上させる観点から、(メタ)アクリル系樹脂100質量部に対し、0.1質量部以上15質量部以下であることが好ましく、0.5質量部以上5質量部以下であることがより好ましい。
The content of the cross-linking agent is usually preferably in a range such that the number of functional groups in the cross-linking agent does not become larger than the number of functional groups in the (meth) acrylic resin. However, if a new functional group is generated in the cross-linking reaction or the cross-linking reaction is slow, the cross-linking reaction may be excessively contained as needed.
The content of the cross-linking agent in the (meth) acrylic pressure-sensitive adhesive is 0. It is preferably 1 part by mass or more and 15 parts by mass or less, and more preferably 0.5 parts by mass or more and 5 parts by mass or less.
 粘着性樹脂層20は、例えば、基材層10上に粘着剤塗布液を塗布することにより形成することができる。
 粘着剤塗布液を塗布する方法としては、例えば、ロールコーター法、リバースロールコーター法、グラビアロール法、バーコート法、コンマコーター法、ダイコーター法等の従来公知の塗布方法を採用することができる。塗布された粘着剤の乾燥条件は特に制限はないが、一般的には、80~200℃の温度範囲において、10秒~10分間乾燥することが好ましい。更に好ましくは、80~170℃において、15秒~5分間乾燥する。架橋剤と(メタ)アクリル系樹脂との架橋反応を十分に促進させるために、粘着剤塗布液の乾燥が終了した後、40~80℃において5~300時間程度加熱してもよい。
The adhesive resin layer 20 can be formed, for example, by applying an adhesive coating liquid on the base material layer 10.
As a method for applying the pressure-sensitive adhesive coating liquid, for example, a conventionally known coating method such as a roll coater method, a reverse roll coater method, a gravure roll method, a bar coat method, a comma coater method, or a die coater method can be adopted. .. The drying conditions of the applied pressure-sensitive adhesive are not particularly limited, but in general, it is preferable to dry the applied adhesive in a temperature range of 80 to 200 ° C. for 10 seconds to 10 minutes. More preferably, it is dried at 80 to 170 ° C. for 15 seconds to 5 minutes. In order to sufficiently promote the cross-linking reaction between the cross-linking agent and the (meth) acrylic resin, the pressure-sensitive adhesive coating liquid may be heated at 40 to 80 ° C. for about 5 to 300 hours after the drying is completed.
 本実施形態に係る粘着性フィルム50において、粘着性樹脂層20の厚みは好ましくは5μm以上300μm以下であり、より好ましくは10μm以上100μm以下、さらに好ましくは10μm以上50μm以下である。粘着性樹脂層20の厚みが上記範囲内であると、電子部品30への表面への粘着性と、取扱い性とのバランスが良好である。 In the adhesive film 50 according to the present embodiment, the thickness of the adhesive resin layer 20 is preferably 5 μm or more and 300 μm or less, more preferably 10 μm or more and 100 μm or less, and further preferably 10 μm or more and 50 μm or less. When the thickness of the adhesive resin layer 20 is within the above range, the balance between the adhesiveness to the surface of the electronic component 30 and the handleability is good.
2.電子装置の製造方法
 本実施形態に係る電子装置の製造方法は、以下の3つの工程を少なくとも備えている。
 (A)回路形成面30Aを有する電子部品30と、電子部品30の回路形成面30A側に貼り合わされた粘着性フィルム50と、を備える構造体100を準備する工程
 (B)電子部品30の回路形成面30A側とは反対側の面をバックグラインドする工程
 (C)粘着性フィルム50に紫外線を照射した後に電子部品30から粘着性フィルム50を除去する工程
 そして、工程(C)において、紫外線を照射した後の粘着性樹脂層20の破断伸度が20%以上200%以下であることに特徴がある。
 以下、本実施形態に係る電子装置の製造方法の各工程について説明する。
2. 2. Manufacturing Method of Electronic Device The manufacturing method of the electronic device according to the present embodiment includes at least the following three steps.
(A) A step of preparing a structure 100 including an electronic component 30 having a circuit forming surface 30A and an adhesive film 50 bonded to the circuit forming surface 30A side of the electronic component 30 (B) Circuit of the electronic component 30. Step of backgrinding the surface opposite to the formation surface 30A side (C) Step of removing the adhesive film 50 from the electronic component 30 after irradiating the adhesive film 50 with ultraviolet rays Then, in step (C), ultraviolet rays are applied. The adhesive resin layer 20 after irradiation is characterized in that the breaking elongation is 20% or more and 200% or less.
Hereinafter, each step of the method for manufacturing an electronic device according to the present embodiment will be described.
(工程(A))
 はじめに、回路形成面30Aを有する電子部品30と、電子部品30の回路形成面30A側に貼り合わされた粘着性フィルム50と、を備える構造体100を準備する。
 このような構造体100は、例えば、粘着性フィルム50の粘着性樹脂層20から離型フィルムを剥離し、粘着性樹脂層20の表面を露出させ、その粘着性樹脂層20上に、電子部品30の回路形成面30Aを貼り付けることにより作製することができる。
(Step (A))
First, a structure 100 including an electronic component 30 having a circuit forming surface 30A and an adhesive film 50 bonded to the circuit forming surface 30A side of the electronic component 30 is prepared.
In such a structure 100, for example, the release film is peeled off from the adhesive resin layer 20 of the adhesive film 50 to expose the surface of the adhesive resin layer 20, and an electronic component is placed on the adhesive resin layer 20. It can be manufactured by pasting the circuit forming surface 30A of 30.
 ここで、粘着性フィルム50に電子部品30の回路形成面30Aを貼り付ける際の条件は特に限定されないが、例えば、温度は20~80℃、圧力は0.05~0.5MPa、貼り付け速度は0.5~20mm/秒とすることができる。 Here, the conditions for attaching the circuit forming surface 30A of the electronic component 30 to the adhesive film 50 are not particularly limited, but for example, the temperature is 20 to 80 ° C., the pressure is 0.05 to 0.5 MPa, and the attachment speed. Can be 0.5 to 20 mm / sec.
 工程(A)は、電子部品30をハーフカットする工程(A1-1)および電子部品30に対してレーザーを照射し、電子部品30に改質層を形成する工程(A1-2)から選択される少なくとも一種の工程(A1)と、工程(A1)の後に、電子部品30の回路形成面30A側に粘着性フィルム50を貼り付ける工程(A2)と、をさらに含むことが好ましい。
 前述したように、先ダイシング法や先ステルス法等を用いた電子装置の製造プロセスおいて、バックグラインド工程後に電子部品30から粘着性フィルム50を剥離する際に、電子部品30側に糊残りが生じやすいため、先ダイシング法や先ステルス法等を用いた電子装置の製造プロセスに、本実施形態に係る電子装置の製造方法を好適に適用することができる。そのため、先ダイシング法となる上記工程(A1-1)や先ステルス法となる上記工程(A1-2)をおこなう製造方法が好ましい。
The step (A) is selected from a step of half-cutting the electronic component 30 (A1-1) and a step of irradiating the electronic component 30 with a laser to form a modified layer on the electronic component 30 (A1-2). It is preferable to further include at least one step (A1) and a step (A2) of attaching the adhesive film 50 to the circuit forming surface 30A side of the electronic component 30 after the step (A1).
As described above, in the manufacturing process of an electronic device using a pre-dicing method, a pre-stealth method, or the like, when the adhesive film 50 is peeled off from the electronic component 30 after the back grind process, adhesive residue remains on the electronic component 30 side. Since it is likely to occur, the method for manufacturing an electronic device according to the present embodiment can be suitably applied to a manufacturing process for an electronic device using a pre-dicing method, a pre-stealth method, or the like. Therefore, a manufacturing method in which the above-mentioned step (A1-1), which is a pre-dicing method, or the above-mentioned step (A1-2), which is a pre-stealth method, is preferable.
 工程(A2)では、電子部品30の回路形成面30Aに粘着性フィルム50を加温して貼り付けることができる。これにより、粘着性樹脂層20と電子部品30との接着状態を長時間にわたって良好にすることができる。加温温度としては特に限定されないが、例えば、60~80℃である。 In the step (A2), the adhesive film 50 can be heated and attached to the circuit forming surface 30A of the electronic component 30. Thereby, the adhesive state between the adhesive resin layer 20 and the electronic component 30 can be improved for a long time. The heating temperature is not particularly limited, but is, for example, 60 to 80 ° C.
 粘着性フィルム50を電子部品に貼り付ける操作は、人手により行われる場合もあるが、一般に、ロール状の粘着性フィルムを取り付けた自動貼り機と称される装置によって行うことができる。 The operation of attaching the adhesive film 50 to an electronic component may be performed manually, but in general, it can be performed by a device called an automatic attaching machine to which a roll-shaped adhesive film is attached.
 粘着性フィルム50に貼り付ける電子部品30としては特に限定されないが、回路形成面30Aを有する電子部品30であることが好ましい。例えば、半導体ウエハ、エポキシモールドウエハ、モールドパネル、モールドアレイパッケージ、半導体基板等が挙げられ、好ましくは半導体ウエハおよびエポキシモールドウエハである。
 また、半導体ウエハは、例えば、シリコンウエハ、サファイアウエハ、ゲルマニウムウエハ、ゲルマニウム-ヒ素ウエハ、ガリウム-リンウエハ、ガリウム-ヒ素-アルミニウムウエハ、ガリウム-ヒ素ウエハ、タンタル酸リチウムウエハ等が挙げられるが、シリコンウエハに好適に用いられる。エポキシモールドウエハは、ファンアウト型WLPの作製方法のひとつであるeWLB(Embedded Wafer Level Ball Grid Array)プロセスによって作製されたウエハが挙げられる。
 回路形成面を有する半導体ウエハおよびエポキシモールドウエハとしては特に限定されないが、例えば、表面に配線、キャパシタ、ダイオードまたはトランジスタ等の回路が形成されたものに用いられる。また、回路形成面にプラズマ処理がされていてもよい。
The electronic component 30 to be attached to the adhesive film 50 is not particularly limited, but is preferably the electronic component 30 having the circuit forming surface 30A. Examples thereof include semiconductor wafers, epoxy mold wafers, mold panels, mold array packages, semiconductor substrates and the like, and semiconductor wafers and epoxy mold wafers are preferable.
Examples of semiconductor wafers include silicon wafers, sapphire wafers, germanium wafers, germanium-arsenic wafers, gallium-phosphorus wafers, gallium-arsenic-aluminum wafers, gallium-arsenic wafers, lithium tartrate wafers, and the like. It is suitably used for. Examples of the epoxy molded wafer include a wafer manufactured by the eWLB (Embedded Wafer Level Ball Grid Array) process, which is one of the methods for manufacturing a fan-out type WLP.
The semiconductor wafer and the epoxy molded wafer having a circuit forming surface are not particularly limited, and are used, for example, those in which a circuit such as a wiring, a capacitor, a diode or a transistor is formed on the surface. Further, the circuit forming surface may be subjected to plasma treatment.
 電子部品30の回路形成面30Aは、例えば、バンプ電極等を有することにより、凹凸面となっていてもよい。
 また、バンプ電極は、例えば、電子装置を実装面に実装する際に、実装面に形成された電極に対して接合されて、電子装置と実装面(プリント基板等の実装面)との間の電気的接続を形成するものである。
 バンプ電極としては、例えば、ボールバンプ、印刷バンプ、スタッドバンプ、めっきバンプ、ピラーバンプ等のバンプ電極が挙げられる。すなわち、バンプ電極は、通常凸電極である。これらのバンプ電極は1種単独で用いてもよく2種以上を併用してもよい。
 バンプ電極の高さおよび径は特に限定されないが、それぞれ、好ましくは10~400μm、より好ましくは50~300μmである。その際のバンプピッチにおいても特に限定されないが、好ましくは20~600μm、より好ましくは100~500μmである。
 また、バンプ電極を構成する金属種は特に限定されず、例えば、はんだ、銀、金、銅、錫、鉛、ビスマス及びこれらの合金等が挙げられるが、粘着性フィルム50はバンプ電極がはんだバンプの場合に好適に用いられる。これらの金属種は1種単独で用いてもよく2種以上を併用してもよい。
The circuit forming surface 30A of the electronic component 30 may be an uneven surface by having, for example, a bump electrode or the like.
Further, for example, when the electronic device is mounted on the mounting surface, the bump electrode is bonded to the electrode formed on the mounting surface, and the bump electrode is formed between the electronic device and the mounting surface (mounting surface such as a printed substrate). It forms an electrical connection.
Examples of the bump electrode include bump electrodes such as ball bumps, printed bumps, stud bumps, plated bumps, and pillar bumps. That is, the bump electrode is usually a convex electrode. These bump electrodes may be used alone or in combination of two or more.
The height and diameter of the bump electrode are not particularly limited, but are preferably 10 to 400 μm, more preferably 50 to 300 μm, respectively. The bump pitch at that time is also not particularly limited, but is preferably 20 to 600 μm, and more preferably 100 to 500 μm.
The metal type constituting the bump electrode is not particularly limited, and examples thereof include solder, silver, gold, copper, tin, lead, bismuth, and alloys thereof. In the adhesive film 50, the bump electrode is a solder bump. It is preferably used in the case of. These metal species may be used alone or in combination of two or more.
(工程(B))
 次に、電子部品30の回路形成面30A側とは反対側の面(裏面とも呼ぶ。)をバックグラインドする。
 ここで、バックグラインドするとは、電子部品を破損することなく、所定の厚みまで薄化加工することを意味する。
 例えば、研削機のチャックテーブル等に構造体100を固定し、電子部品の裏面(回路非形成面)を研削する。
(Step (B))
Next, the surface (also referred to as the back surface) opposite to the circuit forming surface 30A side of the electronic component 30 is back grinded.
Here, backgrinding means that the electronic component is thinned to a predetermined thickness without being damaged.
For example, the structure 100 is fixed to a chuck table or the like of a grinder, and the back surface (circuit non-formed surface) of an electronic component is ground.
 このような裏面研削操作において、電子部品30は、厚みが所望の厚み以下になるまで研削される。研削する前の電子部品の厚みは、電子部品30の直径、種類等により適宜決められ、研削後の電子部品30の厚みは、得られるチップのサイズ、回路の種類等により適宜決められる。
 また、電子部品30がハーフカットされている、またはレーザー照射により改質層が形成されている場合、図1に示すように工程(B)によって、電子部品30は個片化される。
In such a back surface grinding operation, the electronic component 30 is ground until the thickness becomes equal to or less than a desired thickness. The thickness of the electronic component before grinding is appropriately determined by the diameter, type and the like of the electronic component 30, and the thickness of the electronic component 30 after grinding is appropriately determined by the size of the obtained chip, the type of circuit and the like.
Further, when the electronic component 30 is half-cut or the modified layer is formed by laser irradiation, the electronic component 30 is individualized by the step (B) as shown in FIG.
 裏面研削方式としては特に限定されないが、公知の研削方式を採用することができる。それぞれ研削は、水を電子部品と砥石にかけて冷却しながら行うことができる。必要に応じて、研削工程の最後に研削水を用いない研削方式であるドライポリッシュ工程を行うことができる。裏面研削終了後、必要に応じてケミカルエッチングが行われる。ケミカルエッチングは、弗化水素酸、硝酸、硫酸、酢酸等の単独若しくは混合液からなる酸性水溶液、水酸化カリウム水溶液、水酸化ナトリウム水溶液等のアルカリ性水溶液からなる群から選ばれたエッチング液に、粘着性フィルム50を貼着した状態で電子部品を浸漬する等の方法により行われる。該エッチングは、電子部品の裏面に生じた歪みの除去、電子部品のさらなる薄層化、酸化膜等の除去、電極を裏面に形成する際の前処理等を目的として行われる。エッチング液は、上記の目的に応じて適宜選択される。 The back surface grinding method is not particularly limited, but a known grinding method can be adopted. Each grinding can be performed while cooling water by applying it to an electronic component and a grindstone. If necessary, a dry polishing process, which is a grinding method that does not use grinding water, can be performed at the end of the grinding process. After the back surface grinding is completed, chemical etching is performed as necessary. Chemical etching adheres to an etching solution selected from the group consisting of an acidic aqueous solution consisting of a single or mixed solution of hydrofluoric acid, nitric acid, sulfuric acid, acetic acid, etc., an aqueous solution of potassium hydroxide, an aqueous solution of sodium hydroxide, etc. This is performed by a method such as immersing an electronic component in a state where the sex film 50 is attached. The etching is performed for the purpose of removing strain generated on the back surface of the electronic component, further thinning the electronic component, removing an oxide film or the like, and pretreating when forming an electrode on the back surface. The etching solution is appropriately selected according to the above purpose.
(工程(C))
 次いで、粘着性フィルム50に紫外線を照射した後に電子部品30から粘着性フィルム50を除去する。工程(C)では、粘着性フィルム50に対し、例えば、200mJ/cm以上2000mJ/cm以下の線量の紫外線を照射することによって、粘着性樹脂層20を光硬化させて粘着性樹脂層20の粘着力を低下させた後に、電子部品30から粘着性フィルム50を除去する。
 また、紫外線照射は、例えば、高圧水銀ランプを用いて主波長365nmの紫外線を用いておこなうことができる。
 紫外線の照射強度は、例えば、50mW/cm以上500mW/cm以下である。
(Process (C))
Next, after irradiating the adhesive film 50 with ultraviolet rays, the adhesive film 50 is removed from the electronic component 30. In the step (C), the adhesive resin layer 20 is photocured by irradiating the adhesive film 50 with ultraviolet rays having a dose of, for example, 200 mJ / cm 2 or more and 2000 mJ / cm 2 or less to photo-cure the adhesive resin layer 20. After reducing the adhesive strength of the adhesive film 50, the adhesive film 50 is removed from the electronic component 30.
Further, the ultraviolet irradiation can be performed using, for example, an ultraviolet ray having a main wavelength of 365 nm using a high-pressure mercury lamp.
The irradiation intensity of ultraviolet rays is, for example, 50 mW / cm 2 or more and 500 mW / cm 2 or less.
 電子部品30から粘着性フィルムを除去する前に、ダイシングテープ、またはダイアタッチフィルム付きダイシングテープ上に電子部品30をマウントしてもよい。電子部品30から粘着性フィルム50を除去する操作は、人手により行われる場合もあるが、一般には自動剥がし機と称される装置により行うことができる。
 粘着性フィルム50を剥離した後の電子部品30の表面は、必要に応じて洗浄してもよい。洗浄方法としては、水洗浄、溶剤洗浄等の湿式洗浄、プラズマ洗浄等の乾式洗浄等が挙げられる。湿式洗浄の場合、超音波洗浄を併用してもよい。これらの洗浄方法は、電子部品の表面の汚染状況により適宜選択することができる。
Before removing the adhesive film from the electronic component 30, the electronic component 30 may be mounted on the dicing tape or the dicing tape with the die attach film. The operation of removing the adhesive film 50 from the electronic component 30 may be performed manually, but it can be performed by a device generally called an automatic peeling machine.
The surface of the electronic component 30 after the adhesive film 50 has been peeled off may be cleaned if necessary. Examples of the cleaning method include wet cleaning such as water cleaning and solvent cleaning, and dry cleaning such as plasma cleaning. In the case of wet cleaning, ultrasonic cleaning may be used in combination. These cleaning methods can be appropriately selected depending on the state of contamination of the surface of the electronic component.
(その他の工程)
 工程(A)~工程(C)を行った後、得られた半導体チップを回路基板に実装する工程等をさらに行ってもよい。これらの工程は、公知の情報に基づいておこなうことができる。
(Other processes)
After performing the steps (A) to (C), a step of mounting the obtained semiconductor chip on a circuit board or the like may be further performed. These steps can be performed based on known information.
 以上、本発明の好ましい実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 Although the preferred embodiments of the present invention have been described above, these are examples of the present invention, and various configurations other than the above can be adopted.
 以下、実施例および比較例により本発明を具体的に説明するが本発明はこれに限定されるものではない。
 粘着性フィルムの作製に関する詳細は以下の通りである。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
Details regarding the production of the adhesive film are as follows.
<基材層>
 基材層1:ポリエチレンテレフタレートフィルム(東洋紡社製、製品名:E7180、厚み:50μm、片面コロナ処理品)
<Base layer>
Base material layer 1: Polyethylene terephthalate film (manufactured by Toyobo Co., Ltd., product name: E7180, thickness: 50 μm, single-sided corona treated product)
 基材層2:低密度ポリエチレンフィルム/ポリエチレンテレフタレートフィルム/低密度ポリエチレンフィルムからなる積層フィルム(総厚み:110μm)
 ポリエチレンテレフタレートフィルム(東レ社製、製品名:ルミラーS10、厚み:50μm)の両側に低密度ポリエチレンフィルム(密度:0.925kg/m、厚み:30μm)をラミネートして得た。得られた積層フィルムの片側にコロナ処理を実施した。
Base material layer 2: Laminated film composed of low-density polyethylene film / polyethylene terephthalate film / low-density polyethylene film (total thickness: 110 μm)
A low-density polyethylene film (density: 0.925 kg / m 3 , thickness: 30 μm) was laminated on both sides of a polyethylene terephthalate film (manufactured by Toray Industries, Inc., product name: Lumirror S10, thickness: 50 μm). Corona treatment was performed on one side of the obtained laminated film.
 基材層3:ポリエチレンテレフタレートフィルム/エチレン・酢酸ビニル共重合体フィルム/アクリルフィルムからなる積層フィルム(総厚み:145μm)
 ポリエチレンテレフタレートフィルム(東洋紡社製、製品名:E7180、厚み:50μm)とエチレン・酢酸ビニル共重合体(三井・ダウポリケミカル株式会社製、MFR:2.5g/10分)フィルム(厚み:70μm)を、エチレン・酢酸ビニル共重合体フィルムのポリエチレンテレフタレートフィルムとの貼り合わせ面側にコロナ処理を施すことで積層した。さらに、エチレン-酢酸ビニル共重合体フィルムのポリエチレンテレフタレートフィルムの反対面側にもコロナ放電処理を施した。
 次に、離型処理されたポリエチレンテレフタレートフィルム(セパレータ)の離型面に次に示す基材用のアクリル系樹脂塗布液をドライ厚み20μmになるようにコート・乾燥させ、上記のポリエチレンテレフタレートフィルム/エチレン・酢酸ビニル共重合体フィルムからなる積層フィルムにエチレン・酢酸ビニル共重合体フィルムを介して貼り合わせ、熟成(40℃、3日間)した。次いで、セパレータを剥離し、基材層3を得た。
Base material layer 3: Laminated film composed of polyethylene terephthalate film / ethylene / vinyl acetate copolymer film / acrylic film (total thickness: 145 μm)
Polyethylene terephthalate film (manufactured by Toyo Boseki Co., Ltd., product name: E7180, thickness: 50 μm) and ethylene-vinyl acetate copolymer (manufactured by Mitsui / Dow Polychemical Co., Ltd., MFR: 2.5 g / 10 minutes) film (thickness: 70 μm) Was laminated by applying corona treatment to the bonded surface side of the ethylene-vinyl acetate copolymer film with the polyethylene terephthalate film. Further, the opposite side of the polyethylene terephthalate film of the ethylene-vinyl acetate copolymer film was also subjected to a corona discharge treatment.
Next, the acrylic resin coating liquid for the base material shown below was coated and dried on the release surface of the release-treated polyethylene terephthalate film (separator) so as to have a dry thickness of 20 μm, and the above-mentioned polyethylene terephthalate film / It was bonded to a laminated film made of an ethylene-vinyl acetate copolymer film via an ethylene-vinyl acetate copolymer film and aged (40 ° C. for 3 days). Then, the separator was peeled off to obtain a base material layer 3.
<基材用のアクリル系樹脂塗布液>
 重合開始剤として4,4'-アゾビス-4-シアノバレリックアシッド(大塚化学社製、製品名:ACVA)を0.5質量部用い、アクリル酸ブチル74質量部、メタクリル酸メチル14質量部、メタクリル酸-2-ヒドロキシエチル9質量部、メタクリル酸2質量部、アクリルアミド1質量部、ポリオキシエチレンノニルプロペニルフェニルエーテル硫酸アンモニウムの水溶液(第一工業製薬社製、製品名:アクアロンHS-1025)3質量部を、脱イオン水中で70℃において9時間乳化重合させた。重合終了後、アンモニア水でPH=7に調整し、固形分濃度42.5%のアクリルポリマー水系エマルジョンを得た。次に、このアクリルポリマー水系エマルジョン100質量部に対し、アンモニア水を用いて、ph=9以上に調整するとともに、アジリジン系架橋剤〔日本触媒化学工業製、ケミタイトPZ-33〕0.75質量部、およびジエチレングリコールモノブチルエーテル5質量部を配合し、基材用の塗布液を得た。
<Acrylic resin coating liquid for base material>
Using 0.5 parts by mass of 4,4'-azobis-4-cyanovaleric acid (manufactured by Otsuka Chemical Co., Ltd., product name: ACVA) as a polymerization initiator, 74 parts by mass of butyl acrylate, 14 parts by mass of methyl methacrylate, 9 parts by mass of -2-hydroxyethyl methacrylate, 2 parts by mass of methacrylic acid, 1 part by mass of acrylamide, 3 parts by mass of an aqueous solution of polyoxyethylene nonylpropenylphenylphenyl ether ammonium sulfate (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., product name: Aqualon HS-1025) The moiety was emulsion-polymerized in deionized water at 70 ° C. for 9 hours. After completion of the polymerization, the pH was adjusted to 7 with aqueous ammonia to obtain an acrylic polymer aqueous emulsion having a solid content concentration of 42.5%. Next, 100 parts by mass of this acrylic polymer aqueous emulsion was adjusted to ph = 9 or more by using aqueous ammonia, and 0.75 parts by mass of an aziridine-based cross-linking agent [Chemitite PZ-33, manufactured by Nippon Shokubai Kagaku Kogyo Co., Ltd.]. , And 5 parts by mass of diethylene glycol monobutyl ether were blended to obtain a coating liquid for a base material.
<(メタ)アクリル系樹脂溶液>
(メタ)アクリル系樹脂溶液1:
 アクリル酸エチル49質量部、アクリル酸-2-エチルヘキシル20質量部、アクリル酸メチル21質量部、メタクリル酸グリシジル10質量部、および重合開始剤としてベンゾイルパーオキサイド系重合開始剤0.5質量部をトルエン65質量部および酢酸エチル50質量部中で80℃で10時間反応させた。反応終了後、得られた溶液を冷却し、冷却した溶液にキシレン25質量部、アクリル酸5質量部、およびテトラデシルジメチルベンジルアンモニウムクロライド0.5質量部を加え、空気を吹き込みながら85℃で32時間反応させ、(メタ)アクリル系樹脂溶液1を得た。
<(Meta) acrylic resin solution>
(Meta) Acrylic resin solution 1:
Toluene contains 49 parts by mass of ethyl acrylate, 20 parts by mass of -2-ethylhexyl acrylate, 21 parts by mass of methyl acrylate, 10 parts by mass of glycidyl methacrylate, and 0.5 parts by mass of a benzoyl peroxide-based polymerization initiator as a polymerization initiator. The reaction was carried out at 80 ° C. for 10 hours in 65 parts by mass and 50 parts by mass of ethyl acetate. After completion of the reaction, the obtained solution was cooled, 25 parts by mass of xylene, 5 parts by mass of acrylic acid, and 0.5 part by mass of tetradecyldimethylbenzylammonium chloride were added to the cooled solution, and 32 by mass at 85 ° C. while blowing air. The reaction was carried out for a time to obtain a (meth) acrylic resin solution 1.
(メタ)アクリル系樹脂溶液2:
 アクリル酸n-ブチル77質量部、メタクリル酸メチル16質量部、アクリル酸2-ヒドロキシエチル16質量部、および重合開始剤としてt-ブチルパーオキシ-2-エチルヘキサノエート0.3質量部を、トルエン20質量部および酢酸エチル80質量部中で85℃で10時間反応させた。反応終了後、この溶液を冷却し、これにトルエン30質量部、メタクリロイルオキシエチルイソシアネート(昭和電工製、製品名:カレンズMOI)7質量部、およびジラウリル酸ジブチル錫0.05質量部を加え、空気を吹き込みながら85℃で12時間反応させ、(メタ)アクリル系樹脂溶液2を得た。
(Meta) Acrylic resin solution 2:
77 parts by mass of n-butyl acrylate, 16 parts by mass of methyl methacrylate, 16 parts by mass of 2-hydroxyethyl acrylate, and 0.3 parts by mass of t-butylperoxy-2-ethylhexanoate as a polymerization initiator. The reaction was carried out at 85 ° C. for 10 hours in 20 parts by mass of toluene and 80 parts by mass of ethyl acetate. After completion of the reaction, this solution is cooled, and 30 parts by mass of toluene, 7 parts by mass of methacryloyloxyethyl isocyanate (manufactured by Showa Denko, product name: Karens MOI), and 0.05 part by mass of dibutyltin dilaurylate are added to the solution, and air is added. Was reacted at 85 ° C. for 12 hours while blowing in to obtain a (meth) acrylic resin solution 2.
(メタ)アクリル系樹脂溶液3:
 アクリル酸エチル30質量部、アクリル酸メチル11質量部、アクリル酸-2-エチルヘキシル26質量部、メクリル酸2-ヒドロキシエチル7質量部、および重合開始剤としてベンゾイルパーオキサイド系重合開始剤0.8質量部を、トルエン7質量部および酢酸エチル50質量部中で80℃で9時間反応させた。反応終了後、得られた溶液を冷却し、冷却した溶液にトルエン25質量部を加え、(メタ)アクリル系樹脂溶液3を得た。
(Meta) Acrylic resin solution 3:
30 parts by mass of ethyl acrylate, 11 parts by mass of methyl acrylate, 26 parts by mass of -2-ethylhexyl acrylate, 7 parts by mass of 2-hydroxyethyl mecrylate, and 0.8 parts by mass of a benzoyl peroxide-based polymerization initiator as a polymerization initiator. The parts were reacted at 80 ° C. for 9 hours in 7 parts by mass of toluene and 50 parts by mass of ethyl acetate. After completion of the reaction, the obtained solution was cooled, and 25 parts by mass of toluene was added to the cooled solution to obtain a (meth) acrylic resin solution 3.
<破断伸度評価用粘着性フィルム>
 アクリル系樹脂溶液に表1に示す添加剤を加えることで、粘着性樹脂層用の粘着剤塗布液を調製した。この塗布液を、シリコーン離型処理されたポリエチレンテレフタレートフィルム(セパレータ)の離型処理面に塗布し、120℃で3分間乾燥させて、厚み20μmの粘着性樹脂層を形成した。次いで、粘着性樹脂層上に、コロナ処理されたエチレン・酢酸ビニル共重合体押出フィルム(MFR:1.7g/10min、酢酸ビニル含量:9質量%、厚み:140μm)のコロナ処理面を貼り合わせて積層体を得た。次いで、得られた積層体をオーブンで40℃、3日間加熱し、熟成させた。
<Adhesive film for evaluation of elongation at break>
By adding the additives shown in Table 1 to the acrylic resin solution, a pressure-sensitive adhesive coating liquid for the pressure-sensitive adhesive resin layer was prepared. This coating liquid was applied to the mold release-treated surface of the polyethylene terephthalate film (separator) that had been mold-released with silicone, and dried at 120 ° C. for 3 minutes to form an adhesive resin layer having a thickness of 20 μm. Next, a corona-treated surface of a corona-treated ethylene-vinyl acetate copolymer extruded film (MFR: 1.7 g / 10 min, vinyl acetate content: 9% by mass, thickness: 140 μm) is bonded onto the adhesive resin layer. Obtained a laminate. Then, the obtained laminate was heated in an oven at 40 ° C. for 3 days and aged.
<粘着力および先ダイシング評価用粘着性フィルム>
 アクリル系樹脂溶液に表1に示す添加剤を加えることで、粘着性樹脂層用の粘着剤塗布液を調製した。この塗布液を、シリコーン離型処理されたポリエチレンテレフタレートフィルム(セパレータ)に塗布した。次いで、120℃で3分間乾燥させて、厚み20μmの粘着性樹脂層を形成し、基材層に貼り合わせた。基材層1および2については、コロナ処理面に貼り合わせた。基材層3については、セパレータを剥がし、アクリル層側に貼り合わせた。得られた積層体をオーブンで40℃、3日間加熱し、熟成させた。
<Adhesive film for evaluation of adhesive strength and tip dicing>
By adding the additives shown in Table 1 to the acrylic resin solution, a pressure-sensitive adhesive coating liquid for the pressure-sensitive adhesive resin layer was prepared. This coating liquid was applied to a polyethylene terephthalate film (separator) that had been subjected to a silicone mold release treatment. Then, it was dried at 120 ° C. for 3 minutes to form an adhesive resin layer having a thickness of 20 μm, which was attached to the base material layer. The base material layers 1 and 2 were bonded to the corona-treated surface. For the base material layer 3, the separator was peeled off and bonded to the acrylic layer side. The obtained laminate was heated in an oven at 40 ° C. for 3 days and aged.
 <評価方法>
(1)紫外線硬化後の粘着性樹脂層の破断伸度
 破断伸度評価用粘着性フィルムのエチレン・酢酸ビニル共重合体押出フィルム側から粘着性樹脂層に対し、25℃の環境下で高圧水銀ランプを用いて主波長365nmの紫外線を照射強度100mW/cmで紫外線量1080mJ/cm照射した。次いで、長さ110mm、幅10mmに切り、セパレータであるポリエチレンテレフタレートフィルムを積層体から剥がした。
 次いで、粘着性樹脂層をエチレン・酢酸ビニル共重合体押出フィルムとともに、初期のチャック間距離Loが50mmになるように、引張試験機(島津製作所、製品名:オートグラフAGS-X)でチャックした。サンプルを30mm/分の速度で引張り、目視にて粘着性樹脂層に破断が観測された点を破断点とし、その時のチャック間距離をLとした。破断伸度(%)は、(L-Lo)/Lo×100(%)によって求めた。評価はN=2で実施し、その値を平均して測定値とした。
<Evaluation method>
(1) Breaking elongation of the adhesive resin layer after UV curing High-pressure mercury from the ethylene-vinyl acetate copolymer extruded film side of the adhesive film for evaluating breaking elongation to the adhesive resin layer in an environment of 25 ° C. Using a lamp, ultraviolet rays having a main wavelength of 365 nm were irradiated with an irradiation intensity of 100 mW / cm 2 and an ultraviolet amount of 1080 mJ / cm 2 . Then, it was cut into a length of 110 mm and a width of 10 mm, and the polyethylene terephthalate film as a separator was peeled off from the laminate.
Next, the adhesive resin layer was chucked together with an ethylene-vinyl acetate copolymer extruded film with a tensile tester (Shimadzu Corporation, product name: Autograph AGS-X) so that the initial chuck distance Lo was 50 mm. .. The sample was pulled at a speed of 30 mm / min, and the point at which fracture was visually observed in the adhesive resin layer was defined as the fracture point, and the distance between the chucks at that time was defined as L. The elongation at break (%) was determined by (L-Lo) / Lo × 100 (%). The evaluation was carried out at N = 2, and the values were averaged to obtain the measured value.
(2)粘着力評価
 被着体ウエハ:
 シリコンミラーウエハ(4インチ片面ミラーウエハ)の鏡面をUVオゾン洗浄装置(テクノビジョン社製、UV-208)により、オゾン洗浄した(オゾン処理時間:60秒)。その後、ウエハ鏡面をエタノールでふき取ったものを被着体ウエハとした。
(2) Adhesive strength evaluation Adhesive wafer:
The mirror surface of the silicon mirror wafer (4-inch single-sided mirror wafer) was ozone-cleaned with a UV ozone cleaning device (UV-208, manufactured by Technovision Co., Ltd.) (ozone treatment time: 60 seconds). Then, the wafer mirror surface was wiped off with ethanol to obtain an adherend wafer.
 紫外線照射前粘着力:
 23℃、50%RHの環境下、粘着力評価用粘着性フィルムを横幅50mmに切り、セパレータを剥がし、ハンドローラを用いて、粘着性フィルムをその粘着性樹脂層を介して、被着体ウエハ鏡面に貼り付け、1時間放置した。放置後、引張試験機(島津製作所、製品名:オートグラフAGS-X)を用いて、粘着性フィルムの一端を挟持し、剥離角度:180度、剥離速度:300mm/分で被着体ウエハの表面から粘着性フィルムを剥離した。その際の応力を測定してN/25mmに換算し、粘着力を求めた。評価はN=2で実施し、その値を平均して測定値とした。
 紫外線照射後粘着力:23℃、50%RHの環境下、粘着力評価用粘着性フィルムを横幅50mmに切り、セパレータを剥がし、ハンドローラを用いて、粘着性フィルムをその粘着性樹脂層を介して、被着体ウエハ鏡面に貼り付け、1時間放置した。放置後、25℃の環境下で高圧水銀ランプを用いて主波長365nmの紫外線を照射強度100mW/cmで、粘着性フィルムに紫外線量1080mJ/cmを照射した。その後、引張試験機(島津製作所、製品名:オートグラフAGS-X)を用いて、粘着性フィルムの一端を挟持し、剥離角度:180度、剥離速度:300mm/分で被着体ウエハの表面から粘着性フィルムを剥離する。その際の応力を測定してN/25mmに換算し、粘着力を求めた。評価はN=2で実施し、その値を平均して測定値とした。
Adhesive strength before UV irradiation:
In an environment of 23 ° C. and 50% RH, the adhesive film for adhesive strength evaluation is cut into a width of 50 mm, the separator is peeled off, and the adhesive film is passed through the adhesive resin layer using a hand roller to the adherend wafer. It was attached to a mirror surface and left for 1 hour. After leaving it to stand, a tensile tester (Shimadzu Corporation, product name: Autograph AGS-X) is used to pinch one end of the adhesive film, and the peeling angle is 180 degrees and the peeling speed is 300 mm / min. The adhesive film was peeled off from the surface. The stress at that time was measured and converted to N / 25 mm to determine the adhesive strength. The evaluation was carried out at N = 2, and the values were averaged to obtain the measured value.
Adhesive strength after irradiation with ultraviolet rays: Under an environment of 23 ° C. and 50% RH, the adhesive film for adhesive strength evaluation is cut into a width of 50 mm, the separator is peeled off, and the adhesive film is passed through the adhesive resin layer using a hand roller. Then, it was attached to the mirror surface of the adherend wafer and left for 1 hour. After being left to stand, the adhesive film was irradiated with ultraviolet rays having a main wavelength of 365 nm at an irradiation intensity of 100 mW / cm 2 and an ultraviolet amount of 1080 mJ / cm 2 under an environment of 25 ° C. using a high-pressure mercury lamp. After that, using a tensile tester (Shimadzu Corporation, product name: Autograph AGS-X), one end of the adhesive film was sandwiched, and the peeling angle: 180 degrees and the peeling speed: 300 mm / min on the surface of the adherend wafer. Peel off the adhesive film from. The stress at that time was measured and converted to N / 25 mm to determine the adhesive strength. The evaluation was carried out at N = 2, and the values were averaged to obtain the measured value.
糊残り評価:
 上記剥離後の被着体ウエハを目視により観察し、次の基準で評価した。
〇(良い):糊残りが確認されなかったもの
×(悪い):糊残りが確認されたもの
Adhesive residue evaluation:
The adherend wafer after the peeling was visually observed and evaluated according to the following criteria.
〇 (Good): No glue residue confirmed × (Bad): No glue residue confirmed
(3)先ダイシング法評価
評価ウエハ1:
 ダイシングソーを用いて、ミラーウエハ(8インチミラーウエハ、直径:200±0.5mm、厚さ:725±50μm、片面ミラー)の鏡面をハーフカットし、評価ウエハ1を得た。(ブレード:ZH05-SD3500-N1-70-DD、チップサイズ:5mm×8mm、切込み深さ:58μm、ブレード回転速度:30000rpm)。評価ウエハ1を光学顕微鏡で観察したところ、カーフ幅は35μmであった。
(3) First dicing method evaluation Evaluation wafer 1:
Using a dicing saw, the mirror surface of a mirror wafer (8-inch mirror wafer, diameter: 200 ± 0.5 mm, thickness: 725 ± 50 μm, single-sided mirror) was half-cut to obtain an evaluation wafer 1. (Blade: ZH05-SD3500-N1-70-DD, chip size: 5 mm × 8 mm, cutting depth: 58 μm, blade rotation speed: 30,000 rpm). When the evaluation wafer 1 was observed with an optical microscope, the calf width was 35 μm.
評価ウエハ2:
 ダイシングソーを用いて、ミラーウエハ(8インチミラーウエハ、直径:200±0.5mm、厚さ:725±50μm、片面ミラー)の鏡面に1段階目のハーフカットを実施した(ブレード:Z09-SD2000-Y1 58×0.25A×40×45E-L、チップサイズ:5mm×8mm、切込み深さ:15μm、ブレード回転速度:30000rpm)。光学顕微鏡で観察したところ、カーフ幅は60μmであった。続いて、2段階目のハーフカットを実施し(ブレード:ZH05-SD3500-N1-70-DD、チップサイズ:5mm×8mm、切込み深さ:58μm、ブレード回転速度:30000rpm)、評価ウエハ2を得た。
Evaluation wafer 2:
Using a dicing saw, a first-step half-cut was performed on the mirror surface of a mirror wafer (8-inch mirror wafer, diameter: 200 ± 0.5 mm, thickness: 725 ± 50 μm, single-sided mirror) (blade: Z09-SD2000). -Y1 58 x 0.25A x 40 x 45E-L, chip size: 5 mm x 8 mm, depth of cut: 15 μm, blade rotation speed: 30,000 rpm). When observed with an optical microscope, the calf width was 60 μm. Subsequently, a second half cut was performed (blade: ZH05-SD3500-N1-70-DD, chip size: 5 mm × 8 mm, cutting depth: 58 μm, blade rotation speed: 30,000 rpm), and the evaluation wafer 2 was obtained. rice field.
 先ダイシング法:
 テープラミネータ(日東電工社製、DR3000II)を用いて、先ダイシング評価用粘着性フィルムを上記評価ウエハのハーフカットされた面に貼り付けた(23℃、貼付速度:5mm/分、貼付圧力:0.36MPa)。
 続いて、グラインダ(DISCO社製、DGP8760)を用いて、上記ウエハを裏面研削し(粗削りおよび精密削り、精密削り量:40μm、ポリッシュなし、研削後厚み:38μm)、個片化した。
 先ダイシング時のチップ飛びは、裏面研削実施後、目視にて次の基準で評価した。
 〇(良い):三角コーナー部を含めて、チップ飛びが確認されなかったもの
 ×(悪い):三角コーナー部を含めて、チップ飛びが確認されたもの
First dicing method:
Using a tape laminator (manufactured by Nitto Denko, DR3000II), the adhesive film for advanced dicing evaluation was attached to the half-cut surface of the evaluation wafer (23 ° C, application speed: 5 mm / min, application pressure: 0). .36MPa).
Subsequently, the wafer was back-ground (roughing and precision-grinding, precision-grinding amount: 40 μm, no polishing, post-grinding thickness: 38 μm) using a grinding machine (DGP8760, manufactured by DISCO) to make individual pieces.
Chip skipping during pre-dicing was visually evaluated according to the following criteria after backside grinding.
〇 (Good): Chip skipping was not confirmed including the triangular corner part × (Bad): Chip skipping was confirmed including the triangular corner part
 さらに、UV照射および先ダイシング評価用粘着性フィルム剥離を行い、先ダイシング法後の糊残りを評価した。
 UV照射は25℃の環境下で高圧水銀ランプを用いて主波長365nmの紫外線を照射強度100mW/cmで、先ダイシング評価用粘着性フィルムに紫外線量1080mJ/cmを照射した。
 先ダイシング評価用粘着性フィルムの剥離は、以下の手順でおこなった。まず、ウエハマウンター(日東電工社製、MSA300)を用いて、別途用意したダイシングテープ(マウント用テープとして利用)を当該ダイシングテープの粘着面を介して、8インチウエハ用リングフレームおよび上述の個片化されたウエハのウエハ側に貼り付けた。続いて、テープ剥離機(日東電工社製、HR3000III)を用いて、剥離テープ(ラスティングシステム社製、PET38REL)により、ウエハノッチ部から先ダイシング評価用粘着性フィルムを剥離した。装置剥離性は、次の基準で評価した。
 〇(良い):1度目で先ダイシング評価用粘着性フィルムをウエハから剥離できたもの
 ×(悪い):1度目で先ダイシング評価用粘着性フィルムをウエハから剥離できなかったもの
Further, UV irradiation and peeling of the adhesive film for evaluation of pre-dicing were performed, and the adhesive residue after the pre-dicing method was evaluated.
For UV irradiation, an ultraviolet ray having a main wavelength of 365 nm was irradiated with an irradiation intensity of 100 mW / cm 2 using a high-pressure mercury lamp in an environment of 25 ° C., and an ultraviolet ray amount of 1080 mJ / cm 2 was irradiated to the adhesive film for dicing evaluation.
The adhesive film for pre-dicing evaluation was peeled off by the following procedure. First, using a wafer mounter (MSA300 manufactured by Nitto Denko Corporation), a dicing tape (used as a mounting tape) prepared separately is passed through the adhesive surface of the dicing tape to form an 8-inch wafer ring frame and the above-mentioned individual pieces. It was attached to the wafer side of the diced wafer. Subsequently, using a tape peeling machine (manufactured by Nitto Denko Corporation, HR3000III), the adhesive film for advanced dicing evaluation was peeled off from the wafer notch portion by a peeling tape (manufactured by Lasting System Co., Ltd., PET38REL). The device peelability was evaluated according to the following criteria.
〇 (Good): The adhesive film for advanced dicing evaluation could be peeled off from the wafer at the first time. × (Bad): The adhesive film for advanced dicing evaluation could not be peeled off from the wafer at the first time.
 先ダイシング法後の個片化されたウエハ上の糊残りは、光学顕微鏡(オリンパス社製)を用いて、以下の基準で評価した。
 〇(良い):糊残りが確認されなかったもの
 ×(悪い):糊残りが確認されたもの
The adhesive residue on the individualized wafer after the pre-dicing method was evaluated using an optical microscope (manufactured by Olympus Corporation) according to the following criteria.
〇 (Good): No glue residue confirmed × (Bad): No glue residue confirmed
[実施例1]
 (メタ)アクリル系樹脂溶液1(固形分)100質量部に対して、光開始剤として2,2―ジメトキシ-2-フェニルアセトフェノン(IGM社製、商品名:オムニラッド651)6.9質量部、イソシアネート系架橋剤(三井化学社製、商品名:オレスターP49-75S)0.93質量部を添加し、粘着性樹脂層用の粘着剤塗布液1を得た。上述の方法により、破断伸度評価用粘着性フィルム、粘着力評価用粘着性フィルムおよび先ダイシング評価用粘着性フィルムを作製した。また、先に述べた評価方法に基づき、紫外線硬化後の粘着材の破断伸度、粘着力評価および先ダイシング法評価を実施した。結果を表1に示した。
[Example 1]
6.9 parts by mass of 2,2-dimethoxy-2-phenylacetophenone (manufactured by IGM, trade name: Omnirad 651) as a photoinitiator with respect to 100 parts by mass of (meth) acrylic resin solution 1 (solid content). 0.93 parts by mass of an isocyanate-based cross-linking agent (manufactured by Mitsui Chemicals, Inc., trade name: Olestar P49-75S) was added to obtain a pressure-sensitive adhesive coating liquid 1 for a pressure-sensitive adhesive resin layer. By the above-mentioned method, an adhesive film for evaluation of breaking elongation, an adhesive film for evaluation of adhesive strength, and an adhesive film for evaluation of pre-dicing were produced. In addition, based on the evaluation method described above, the breaking elongation of the adhesive material after UV curing, the adhesive strength evaluation, and the pre-dicing method evaluation were carried out. The results are shown in Table 1.
[実施例2~10および比較例1および2]
 粘着性樹脂層および基材層の種類を表1に示すものに変更した以外は実施例1と同様にして、粘着性フィルムをそれぞれ作製した。また、実施例1と同様に各評価をそれぞれ行った。得られた結果を表1にそれぞれ示す。
 なお、表1に記載されている化合物は以下の通りである。
 オムニラッド651(IGM社製):2,2―ジメトキシ-2-フェニルアセトフェノン
 オムニラッド369(IGM社製):2-ベンジル-2-ジメチルアミノ-4'-モルフォリノブチロフェノン
 アロニックスM400(東亜合成社製):ジペンタエリスリトールペンタアクリレートおよびジペンタエリスリトールヘキサアクリレートの混合物
 NKエステルAD-TMP(新中村化学工業社製):ジトリメチロールプロパンテトラアクリレート
[Examples 2 to 10 and Comparative Examples 1 and 2]
Adhesive films were prepared in the same manner as in Example 1 except that the types of the adhesive resin layer and the base material layer were changed to those shown in Table 1. Moreover, each evaluation was performed in the same manner as in Example 1. The results obtained are shown in Table 1.
The compounds listed in Table 1 are as follows.
Omnirad 651 (manufactured by IGM): 2,2-dimethoxy-2-phenylacetophenone Omnirad 369 (manufactured by IGM): 2-benzyl-2-dimethylamino-4'-morpholinobtyrophenone Aronix M400 (manufactured by Toa Synthetic Co., Ltd.): Mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate NK ester AD-TMP (manufactured by Shin Nakamura Chemical Industry Co., Ltd.): Ditrimethylol propanetetraacrylate
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この出願は、2020年6月10日に出願された日本出願特願2020-101120号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Application Japanese Patent Application No. 2020-101120 filed on June 10, 2020, and incorporates all of its disclosures herein.
10   基材層
20   粘着性樹脂層
30   電子部品
30A  回路形成面
50   粘着性フィルム
100   構造体
10 Base material layer 20 Adhesive resin layer 30 Electronic components 30A Circuit forming surface 50 Adhesive film 100 Structure

Claims (6)

  1.  回路形成面を有する電子部品と、前記電子部品の前記回路形成面側に貼り合わされた粘着性フィルムと、を備える構造体を準備する工程(A)と、
     前記電子部品の前記回路形成面側とは反対側の面をバックグラインドする工程(B)と、
     前記粘着性フィルムに紫外線を照射した後に前記電子部品から前記粘着性フィルムを除去する工程(C)と、
    を少なくとも備える電子装置の製造方法であって、
     前記粘着性フィルムが、基材層と、前記基材層の一方の面側に設けられた紫外線硬化型の粘着性樹脂層と、を備え、
     前記工程(C)において、紫外線を照射した後の前記粘着性樹脂層の破断伸度が20%以上200%以下である電子装置の製造方法。
    A step (A) of preparing a structure including an electronic component having a circuit forming surface and an adhesive film bonded to the circuit forming surface side of the electronic component.
    The step (B) of backgrinding the surface of the electronic component opposite to the circuit forming surface side, and
    A step (C) of removing the adhesive film from the electronic component after irradiating the adhesive film with ultraviolet rays.
    A method of manufacturing an electronic device that includes at least
    The adhesive film comprises a base material layer and an ultraviolet curable adhesive resin layer provided on one surface side of the base material layer.
    A method for manufacturing an electronic device in the step (C), wherein the breaking elongation of the adhesive resin layer after irradiation with ultraviolet rays is 20% or more and 200% or less.
  2.  請求項1に記載の電子装置の製造方法において、
     前記工程(A)は、
      前記電子部品をハーフカットする工程(A1-1)および前記電子部品に対してレーザーを照射し、前記電子部品に改質層を形成する工程(A1-2)から選択される少なくとも一種の工程(A1)と、
      前記工程(A1)の後に、前記電子部品の前記回路形成面側に前記粘着性フィルムを貼り付ける工程(A2)と、
    を含む電子装置の製造方法。
    In the method for manufacturing an electronic device according to claim 1,
    The step (A) is
    At least one step (A1-2) selected from a step of half-cutting the electronic component (A1-1) and a step of irradiating the electronic component with a laser to form a modified layer on the electronic component (A1-2). A1) and
    After the step (A1), a step (A2) of attaching the adhesive film to the circuit forming surface side of the electronic component,
    A method of manufacturing an electronic device including.
  3.  請求項1または2に記載の電子装置の製造方法において、
     前記工程(C)では、前記粘着性フィルムに対し、200mJ/cm以上2000mJ/cm以下の線量の紫外線を照射することによって、前記粘着性樹脂層を光硬化させて前記粘着性樹脂層の粘着力を低下させた後に、前記電子部品から前記粘着性フィルムを除去する電子装置の製造方法。
    In the method for manufacturing an electronic device according to claim 1 or 2.
    In the step (C), the adhesive resin layer is photo-cured by irradiating the adhesive film with ultraviolet rays having a dose of 200 mJ / cm 2 or more and 2000 mJ / cm 2 or less to obtain the adhesive resin layer. A method for manufacturing an electronic device for removing the adhesive film from the electronic component after reducing the adhesive strength.
  4.  請求項1乃至3のいずれか一項に記載の電子装置の製造方法において、
     前記粘着性樹脂層は、分子中に重合性炭素-炭素二重結合を有する(メタ)アクリル系樹脂と、光開始剤と、を含む電子装置の製造方法。
    In the method for manufacturing an electronic device according to any one of claims 1 to 3.
    A method for producing an electronic device, wherein the adhesive resin layer contains a (meth) acrylic resin having a polymerizable carbon-carbon double bond in the molecule and a photoinitiator.
  5.  請求項1乃至4のいずれか一項に記載の電子装置の製造方法において、
     前記粘着性樹脂層の厚みが5μm以上300μm以下である電子装置の製造方法。
    In the method for manufacturing an electronic device according to any one of claims 1 to 4.
    A method for manufacturing an electronic device in which the thickness of the adhesive resin layer is 5 μm or more and 300 μm or less.
  6.  請求項1乃至5のいずれか一項に記載の電子装置の製造方法において、
     前記基材層を構成する樹脂がポリオレフィン、ポリエステル、ポリアミド、ポリアクリレート、ポリメタアクリレート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイミド、ポリエーテルイミド、エチレン・酢酸ビニル共重合体、ポリアクリロニトリル、ポリカーボネート、ポリスチレン、アイオノマー、ポリスルホン、ポリエーテルスルホンおよびポリフェニレンエーテルから選択される一種または二種以上を含む電子装置の製造方法。
    In the method for manufacturing an electronic device according to any one of claims 1 to 5.
    The resins constituting the base material layer are polyolefin, polyester, polyamide, polyacrylate, polymethacrylate, polyvinyl chloride, polyvinylidene chloride, polyimide, polyetherimide, ethylene / vinyl acetate copolymer, polyacrylonitrile, polycarbonate, polystyrene. , A method for producing an electronic device comprising one or more selected from ionomer, polysulfone, polyethersulfone and polyphenylene ether.
PCT/JP2021/021873 2020-06-10 2021-06-09 Method for producing electronic device WO2021251422A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227042840A KR20230007493A (en) 2020-06-10 2021-06-09 Methods of manufacturing electronic devices
CN202180041382.0A CN115699263A (en) 2020-06-10 2021-06-09 Method for manufacturing electronic device
JP2022530601A JP7440633B2 (en) 2020-06-10 2021-06-09 Electronic device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020101120 2020-06-10
JP2020-101120 2020-06-10

Publications (1)

Publication Number Publication Date
WO2021251422A1 true WO2021251422A1 (en) 2021-12-16

Family

ID=78845737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021873 WO2021251422A1 (en) 2020-06-10 2021-06-09 Method for producing electronic device

Country Status (5)

Country Link
JP (1) JP7440633B2 (en)
KR (1) KR20230007493A (en)
CN (1) CN115699263A (en)
TW (1) TW202204561A (en)
WO (1) WO2021251422A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053819A (en) * 2000-08-08 2002-02-19 Mitsui Chemicals Inc Tacky film for protecting semiconductor wafer surface and method for protecting semiconductor wafer surface by using the same film
JP2009035635A (en) * 2007-08-01 2009-02-19 Nitto Denko Corp Stain resistant heat peelable adhesive sheet
JP2009138183A (en) * 2007-11-12 2009-06-25 Lintec Corp Adhesive sheet
WO2009110426A1 (en) * 2008-03-03 2009-09-11 リンテック株式会社 Adhesive sheet
WO2017061132A1 (en) * 2015-10-05 2017-04-13 リンテック株式会社 Sheet for semiconductor processing
WO2019181731A1 (en) * 2018-03-20 2019-09-26 リンテック株式会社 Adhesive tape, and method for producing semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5582836B2 (en) * 2010-03-26 2014-09-03 古河電気工業株式会社 Dicing die bonding tape
JP6059499B2 (en) 2012-10-05 2017-01-11 リンテック株式会社 Surface protection sheet
JP6287200B2 (en) 2013-12-27 2018-03-07 日立化成株式会社 Dicing tape for dicing and die bonding integrated tape
JP5823591B1 (en) 2014-10-01 2015-11-25 古河電気工業株式会社 Adhesive tape for protecting semiconductor wafer surface and method for processing semiconductor wafer
WO2016148110A1 (en) 2015-03-16 2016-09-22 古河電気工業株式会社 Adhesive tape for semiconductor wafer processing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053819A (en) * 2000-08-08 2002-02-19 Mitsui Chemicals Inc Tacky film for protecting semiconductor wafer surface and method for protecting semiconductor wafer surface by using the same film
JP2009035635A (en) * 2007-08-01 2009-02-19 Nitto Denko Corp Stain resistant heat peelable adhesive sheet
JP2009138183A (en) * 2007-11-12 2009-06-25 Lintec Corp Adhesive sheet
WO2009110426A1 (en) * 2008-03-03 2009-09-11 リンテック株式会社 Adhesive sheet
WO2017061132A1 (en) * 2015-10-05 2017-04-13 リンテック株式会社 Sheet for semiconductor processing
WO2019181731A1 (en) * 2018-03-20 2019-09-26 リンテック株式会社 Adhesive tape, and method for producing semiconductor device

Also Published As

Publication number Publication date
JP7440633B2 (en) 2024-02-28
CN115699263A (en) 2023-02-03
TW202204561A (en) 2022-02-01
JPWO2021251422A1 (en) 2021-12-16
KR20230007493A (en) 2023-01-12

Similar Documents

Publication Publication Date Title
WO2021251422A1 (en) Method for producing electronic device
WO2021251420A1 (en) Method for producing electronic device
WO2021215247A1 (en) Back-grinding adhesive film, and electronic device manufacturing method
WO2022019166A1 (en) Method for producing electronic device
WO2022019160A1 (en) Method for producing electronic device
WO2022019158A1 (en) Adhesive film for back grinding , and electronic device manufacturing method
WO2022250128A1 (en) Back grinding adhesive film and method for producing electronic device
WO2022250137A1 (en) Method for producing electronic device
WO2022250129A1 (en) Method for producing electronic device
WO2022250138A1 (en) Adhesive film for backgrinding and production method for electronic device
WO2022250131A1 (en) Method for producing electronic device
WO2022250132A1 (en) Method for producing electronic device
WO2022250133A1 (en) Method for producing electronic device
WO2022250136A1 (en) Method for producing electronic device
WO2022250130A1 (en) Adhesive film for backgrinding, and method for manufacturing electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822351

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227042840

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2022530601

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21822351

Country of ref document: EP

Kind code of ref document: A1