WO2022130725A1 - Entry/exit determination system and entry/exit determination method - Google Patents

Entry/exit determination system and entry/exit determination method Download PDF

Info

Publication number
WO2022130725A1
WO2022130725A1 PCT/JP2021/034833 JP2021034833W WO2022130725A1 WO 2022130725 A1 WO2022130725 A1 WO 2022130725A1 JP 2021034833 W JP2021034833 W JP 2021034833W WO 2022130725 A1 WO2022130725 A1 WO 2022130725A1
Authority
WO
WIPO (PCT)
Prior art keywords
beacon
exit
entry
beacon signal
unit
Prior art date
Application number
PCT/JP2021/034833
Other languages
French (fr)
Japanese (ja)
Inventor
健太 山口
哲 西村
直輝 大串
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2022569718A priority Critical patent/JPWO2022130725A1/ja
Publication of WO2022130725A1 publication Critical patent/WO2022130725A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/68Marker, boundary, call-sign, or like beacons transmitting signals not carrying directional information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves

Definitions

  • the present invention relates to a technique for determining the entry / exit of a person or the like into a predetermined area.
  • Patent Document 1 describes a system for detecting entry / exit.
  • the system of Patent Document 1 includes at least two beacons.
  • the first beacon is placed in one area of the boundary for determining entry / exit, and the second beacon is placed in the other area of the boundary.
  • the first beacon and the second beacon transmit the beacon toward the boundary.
  • the object whose entry / exit is detected is equipped with a receiving unit that receives a beacon.
  • the system detects the entry / exit of an object by using the first beacon signal from the first beacon received by the receiving unit and the second beacon signal from the second beacon received by the receiving unit.
  • an object of the present invention is to provide a technique capable of accurately determining the entry / exit of an object such as a person with a simple configuration.
  • the entry / exit determination system of the present invention includes a shielding member, a first beacon transmitter, a beacon receiving unit, and a determining unit.
  • the shielding member has a first surface facing a region on one side of a boundary for determining entry / exit, and has electromagnetic shielding properties.
  • the first beacon transmitter is arranged on the first surface and transmits the first beacon signal.
  • the beacon receiving unit is attached to a moving body that enters and exits, and measures the reception strength of the received first beacon signal.
  • the determination unit determines entry / exit using the reception strength of the first beacon signal at a plurality of times.
  • the first beacon signal is propagated to the region on one side of the boundary without being shielded. Then, in the region on one side of the boundary, the first beacon signal has a signal strength according to the distance from the first beacon transmitter.
  • the propagation of the first beacon signal is shielded by the shielding member for the region on the other side of the boundary. Therefore, in the region on the other side of the boundary, the signal strength of the first beacon signal is greatly attenuated and becomes low.
  • the first beacon signal when the moving object moves from one area of the boundary to the other, or when the moving body moves from the other area of the boundary to the other area, the first beacon signal at multiple times.
  • the reception intensity of is a value according to the moving direction and the moving position.
  • the shielding member may be arranged at or near the boundary, and the first beacon transmitter may be arranged at the shielding member, so that the configuration is simplified.
  • FIG. 1 (A), 1 (B), 1 (C), and 1 (D) are diagrams showing an example of how to use the entrance / exit determination system according to the first embodiment.
  • FIG. 2 is a functional block diagram showing an example of an entrance / exit determination system according to the first embodiment.
  • FIG. 3 is a functional block diagram showing an example of the configuration of the beacon receiving unit according to the first embodiment.
  • FIG. 4 is a functional block diagram showing an example of the configuration of the determination unit according to the first embodiment.
  • 5A is a graph showing an example of time displacement of reception intensity
  • FIG. 5B is a graph showing an example of time displacement of reception intensity difference
  • FIG. 5C is a determination signal. It is a graph which shows an example of the waveform of.
  • FIG. 5A is a graph showing an example of time displacement of reception intensity
  • FIG. 5B is a graph showing an example of time displacement of reception intensity difference
  • FIG. 5C is a determination signal. It is a graph which shows an example of the waveform of
  • FIG. 6 is a flowchart showing an example of the entrance / exit determination method according to the first embodiment.
  • 7 (A), 7 (B), 7 (C), and 7 (D) are diagrams showing an example of the usage mode of the entrance / exit determination system according to the second embodiment.
  • 8 (A), 8 (B), and 8 (C) are diagrams showing an example of how to use the entrance / exit determination system according to the third embodiment.
  • FIG. 9 is a functional block diagram showing an example of the entrance / exit determination system according to the third embodiment.
  • FIG. 10 is a functional block diagram showing an example of the configuration of the beacon receiving unit according to the third embodiment.
  • FIG. 11 is a functional block diagram showing an example of the configuration of the determination unit according to the third embodiment.
  • FIG. 12 (A) and 12 (B) are graphs showing an example of the time displacement of the reception intensity.
  • FIG. 13 is a flowchart showing an example of the entrance / exit determination method according to the third embodiment.
  • FIG. 14 is a functional block diagram showing an example of the configuration of the beacon receiving unit according to the fourth embodiment.
  • FIG. 15A shows an example of reception control when the reception intensity RSSI is low
  • FIG. 15B shows an example of reception control when the reception intensity RSSI is high.
  • FIG. 16 is a flowchart showing an example of a process executed by the beacon receiving unit according to the fourth embodiment.
  • FIG. 17 is a functional block diagram showing an example of the configuration of the beacon receiving unit according to the fifth embodiment.
  • FIG. 18 is a functional block diagram showing an example of an expansion system for entry / exit determination according to the sixth embodiment.
  • FIG. 19 is an external perspective view showing an example of the entrance / exit gate according to the seventh embodiment.
  • FIG. 1 (A), 1 (B), 1 (C), and 1 (D) are diagrams showing an example of how to use the entrance / exit determination system according to the first embodiment.
  • FIG. 2 is a functional block diagram showing an example of an entrance / exit determination system according to the first embodiment.
  • the entry / exit determination system 10 includes a beacon transmitter 221, a beacon transmitter 222, a beacon receiver 30, a determination unit 40, and a notification unit 50.
  • the beacon transmitter 221 and the beacon transmitter 222 are arranged in the vicinity of the boundary BD for determining entry / exit. More specifically, the shielding member 21 is installed at the boundary BD.
  • the shielding member 21 is plate-shaped and has a main surface 211 and a main surface 212. The shielding member 21 is installed so that the main surface 211 faces the first region AR1 side and the main surface 212 faces the second region AR2 side.
  • the position where the shielding member 21 is installed and the position of the boundary BD are arranged so as to overlap each other, but the present invention is not limited to this.
  • the shielding member 21 faces the first region AR1 side and the main surface 212 faces the second region AR2 side. May be located near the boundary BD.
  • the shielding member 21 has a structure having an electromagnetic shielding property.
  • the shielding member 21 is formed of a metal plate, a radio wave absorber, a radio wave absorbing sheet, or the like.
  • the shielding member 21 does not have to be entirely made of a material having an electromagnetic shielding property, and at least the main surface 211 and the main surface 212 may be formed of a material having an electromagnetic shielding property.
  • the shielding member 21 corresponds to the "member" of the present invention.
  • the beacon transmitter 221 is arranged on the main surface 211.
  • the beacon transmitter 222 is arranged on the main surface 212.
  • the set of the main surface 211 and the main surface 212 corresponds to the set of the "first surface” and the "second surface” of the present invention
  • the set of the beacon transmitter 221 and the beacon transmitter 222 corresponds to the "first surface” and the "second surface” of the present invention.
  • the beacon transmitter 221 and the beacon transmitter 222 are, for example, transmitters of BLE (Bluetooth (registered trademark) Low Energy).
  • the beacon transmitter 221 includes an antenna (not shown) and the like, and generates and transmits a beacon signal BW 221 at a predetermined transmission cycle.
  • the beacon transmitter 222 includes an antenna (not shown) and the like, and generates and transmits a beacon signal BW 222 at a predetermined transmission cycle.
  • the transmission cycle and transmission timing of the beacon transmitter 221 and the transmission cycle and transmission timing of the beacon transmitter 222 are preferably the same, but the present invention is not limited to this, and at least the transmission periods may overlap.
  • the set of the beacon signal BW 221 and the beacon signal BW 222 corresponds to the set of the "first beacon signal" and the "second beacon signal” of the present invention.
  • the directivity of the beacon transmitter 221 and the directivity of the beacon transmitter 222 are not particularly limited, but are preferably not narrow directional.
  • the beacon signal BW 221 and the beacon signal BW 222 have distinguishable characteristics.
  • the frequency of the beacon signal BW 221 is different from the frequency of the beacon signal BW 222 .
  • the beacon signal BW 221 is attached with an identification ID unique to the beacon signal BW 221 and an identification ID unique to the beacon signal BW 222 .
  • the beacon signal BW 221 from the beacon transmitter 221 arranged on the main surface 211 is propagated with low loss on the first region AR1 side without being shielded. Will be done. Then, in the first region AR1, the signal strength of the beacon signal BW 221 changes according to the distance from the beacon transmitter 221. Generally, the longer the distance from the beacon transmitter 221 is, the lower (attenuated) the signal strength of the beacon signal BW 221 is. On the other hand, the beacon signal BW 221 is shielded by the shielding member 21 and hardly propagates to the second region AR2 side. As a result, the signal strength of the beacon signal BW 221 has different strength characteristics in the first region AR1 and the second region AR2.
  • the shielding member 21 has the above-mentioned configuration and installation, the beacon signal BW 222 from the beacon transmitter 222 arranged on the main surface 212 is not shielded on the second region AR2 side. , Propagate with low loss. Then, in the second region AR2, the signal strength of the beacon signal BW 222 changes according to the distance from the beacon transmitter 222. Generally, as the distance from the beacon transmitter 222 increases, the signal strength of the beacon signal BW 222 decreases (attenuates). On the other hand, the beacon signal BW 222 is shielded by the shielding member 21 and hardly propagates to the first region AR1 side. As a result, the signal strength of the beacon signal BW 222 has different strength characteristics in the first region AR1 and the second region AR2.
  • the beacon receiving unit 30 includes an antenna (not shown) and the like, and receives a beacon signal from the outside.
  • the beacon receiving unit 30 is attached to the helmet 39, for example, as shown in FIGS. 1 (A) and 1 (B).
  • the helmet 39 is worn on the person HM passing through the boundary BD.
  • the helmet 39 corresponds to the "wearing object" of the present invention, and the human HM corresponds to the "moving body" of the present invention.
  • FIG. 3 is a functional block diagram showing an example of the configuration of the beacon receiving unit according to the first embodiment.
  • FIG. 4 is a functional block diagram showing an example of the configuration of the determination unit according to the first embodiment.
  • 5A is a graph showing an example of time displacement of reception intensity
  • FIG. 5B is a graph showing an example of time displacement of reception intensity difference
  • FIG. 5C is a determination signal. It is a graph which shows an example of the waveform of.
  • the beacon receiving unit 30 includes a receiving intensity measuring unit 300 and a demodulation unit 301.
  • the reception intensity measurement unit 300 detects the received beacon signal and measures the reception intensity. More specifically, for example, the reception intensity measuring unit 300 measures the RSSI of the received beacon signal.
  • the reception intensity measurement unit 300 outputs the detected beacon signal and the reception intensity to the demodulation unit 301.
  • the demodulation unit 301 demodulates the detected beacon signal and distinguishes between the beacon signal BW 221 and the beacon signal BW 222 .
  • the demodulation unit 301 associates the beacon signal BW 221 with its reception intensity RSSI1, associates the beacon signal BW 222 with its reception intensity RSSI2, and outputs the beacon signal BW 222 to the determination unit 40.
  • the beacon receiving unit 30 continuously executes the measurement of the reception strength RSSI1 of the beacon signal BW 221 and the reception strength RSSI2 of the beacon signal BW 222 in a predetermined reception cycle. As a result, the beacon receiving unit 30 measures the reception strength RSSI1 of the beacon signal BW 221 and the reception strength RSSI2 of the beacon signal BW 222 at a plurality of times.
  • the demodulation unit 301 of the beacon receiving unit 30 calculates the output reception intensity for each beacon signal using the reception intensity RSSI measured at each measurement timing.
  • the reception intensity measurement unit 300 sets an output cycle longer than the measurement cycle of the reception intensity RSSI.
  • the reception intensity measuring unit 300 has a plurality of times within a predetermined time including the output timing (for example, the time from the measurement timing immediately after the immediately preceding output timing to the current output timing).
  • the average value of the reception strength RSSI of is calculated as the output reception strength.
  • the average value of the reception intensity RSSI is used, but other statistical values such as the maximum value, the minimum value, and the median value may be used.
  • the time displacement characteristics of the reception intensity RSSI1 and the reception intensity RSSI2 as shown in FIG. 5A can be obtained.
  • undesired variation in reception strength can be suppressed, and reception strength RSSI1 and reception strength RSSI2, which will be described later, are significant for determining entry / exit.
  • the demodulation unit 301 of the beacon reception unit 30 outputs the reception intensity RSSI1 of the beacon signal BW 221 and the reception intensity RSSI2 of the beacon signal BW 222 at the plurality of output times processed by the above-mentioned average value to the determination unit 40. ..
  • the determination unit 40 includes a reception intensity difference calculation unit 401, a determination signal generation unit 402, and a determination calculation unit 403.
  • the determination unit 40 may be provided in the housing in which the beacon receiving unit 30 is configured, or may be provided in a separate body.
  • the determination unit 40 can perform data communication with the beacon receiving unit 30 by wire or wirelessly.
  • the reception strength RSSI1 of the beacon signal BW 221 and the reception strength RSSI2 of the beacon signal BW 222 are input to the reception strength difference calculation unit 401.
  • the reception intensity difference calculation unit 401 calculates the reception intensity difference ⁇ RSSI between the reception intensity RSSI1 of the beacon signal BW 221 and the reception intensity RSSI2 of the beacon signal BW 222 obtained at the same time. Specifically, for example, the reception intensity difference calculation unit 401 subtracts the reception intensity RSSI2 from the reception intensity RSSI1 to calculate the reception intensity difference ⁇ RSSI.
  • the reception intensity difference calculation unit 401 calculates the reception intensity difference ⁇ RSSI in a predetermined calculation cycle.
  • the calculation cycle of the reception intensity difference calculation unit 401 is the same as the output cycle of the beacon reception unit 30.
  • the calculation cycle of the reception intensity difference calculation unit 401 may be longer than the output cycle of the beacon reception unit 30.
  • the reception intensity difference calculation unit 401 outputs the reception intensity difference (output reception intensity difference) ⁇ RSSI to the determination signal generation unit 402.
  • the determination signal generation unit 402 generates a determination signal using the reception intensity difference ⁇ RSSI. More specifically, the determination signal generation unit 402 sets the determination signal generation threshold values TH1 and TH2 (see FIG. 5B).
  • the determination signal generation threshold value TH1 is larger than the determination signal generation threshold value TH2.
  • the determination signal generation threshold value TH1 is a positive value
  • the determination signal generation threshold value TH2 is a negative value.
  • the determination signal generation unit 402 generates a determination signal using the reception intensity difference ⁇ RSSI and the determination signal generation thresholds TH1 and TH2. More specifically, the determination signal generation unit 402 sets the level VH if the reception intensity difference ⁇ RSSI is larger than the determination signal generation threshold value TH1. The determination signal generation unit 402 sets the level VL ( ⁇ VH) when the reception intensity difference ⁇ RSSI is smaller than the determination signal generation threshold value TH2.
  • the determination signal generation unit 402 holds the level for a period in which the determination signal level transition does not occur. For example, the determination signal generation unit 402 detects that the reception intensity difference ⁇ RSSI is larger than the determination signal generation threshold value TH1, and when the level VH is set, until it detects that the reception intensity difference ⁇ RSSI is smaller than the determination signal generation threshold value TH2. The level VH is maintained even when the reception intensity difference ⁇ RSSI becomes equal to or less than the determination signal generation threshold value TH1. By using this process, it is possible to suppress undesired fluctuations in the level of the determination signal.
  • the determination signal generation unit 402 generates a determination signal binarized by the level VH and the level VL.
  • the determination signal generation unit 402 outputs the determination signal to the determination calculation unit 403.
  • the determination calculation unit 403 determines entry / exit using the level of the determination signal. More specifically, the determination calculation unit 403 determines that the human HM has moved from the first region AR1 to the second region AR2 at the timing when the determination signal is displaced from the level VH to the level VL.
  • this state (RSSI1> RSSI2) occurs when the beacon receiving unit 30 is present in the first region AR1. It does not occur when the beacon receiving unit 30 is present in the second region AR2.
  • the determination signal is level VL
  • the reception intensity RSSI1 is smaller than the reception intensity RSSI2.
  • the beacon receiving unit 30 can be regarded as having moved from the first region AR1 to the second region AR2.
  • the determination calculation unit 403 determines that the human HM has moved from the second region AR2 to the first region AR1 at the timing when the determination signal is displaced from the level VL to the level VH.
  • the entry / exit determination system 10 is such that a person HM such as a worker is inside the work site by the determination calculation unit 403. It can be determined that the person has left the work site and entered the work site from outside the work site.
  • the entry / exit determination system 10 can accurately determine the movement of a moving body such as a person between regions and the entry / exit to a specific place.
  • the determination is performed after binarizing the determination signal. Therefore, the entry / exit determination system 10 can clearly determine the movement of a moving object such as a person between areas and the entry / exit to a specific place.
  • the entry / exit determination system 10 can accurately determine the movement of a moving object such as a person between areas and the entry / exit to a specific place with a simple configuration.
  • the beacon receiving unit 30 is preferably arranged on the back of the head 390 of the helmet 39, but is not limited to this. However, by arranging the beacon receiving unit 30 on the back of the head 390 of the helmet 39, the following effects can be obtained.
  • the beacon receiver 30 When the beacon receiver 30 is placed on the back of the head 390 of the helmet 39, when the human HM correctly wears the helmet 39 and approaches the boundary BD, the helmet 39 and the human HM become obstacles, and the beacon transmitter 221 and the beacon transmitter The 222 beacon signal is difficult to reach the beacon receiving unit 30. That is, the beacon signal BW 222 of the beacon transmitter 222, which is farther from the shielding member 21 with respect to the beacon receiving unit 30, becomes more difficult to reach the beacon receiving unit 30. As a result, the difference between the reception strength of the beacon signal BW 221 and the reception strength of the beacon signal BW 222 in the beacon receiving unit 30 becomes larger when approaching the boundary BD. Therefore, the fluctuation range of the reception intensity difference ⁇ RSSI in the determination unit 40, which will be described later, becomes large, and the accuracy of the determination is further improved.
  • the mode in which the beacon transmitter 221 and the beacon transmitter 222 are arranged on the shielding member 21 is shown.
  • the first main surface and the second main surface of the shielding member 21 may have a beacon transmission function.
  • FIG. 6 is a flowchart showing an example of the entrance / exit determination method according to the first embodiment. The specific contents of each process in the flowchart shown in FIG. 6 are described in the above-mentioned configuration and description of the process, and only the parts that need to be added are described below.
  • the beacon receiving unit 30 receives the beacon signal BW 221 and the beacon signal BW 222 (S11).
  • the reception intensity measurement unit 300 of the beacon reception unit 30 measures the reception intensity RSSI1 of the beacon signal BW 221 and the reception intensity RSSI2 of the beacon signal BW 222 (S12).
  • the reception intensity difference calculation unit 401 of the determination unit 40 calculates the reception intensity difference ⁇ RSSI between the reception intensity RSSI1 of the beacon signal BW 221 and the reception intensity RSSI2 of the beacon signal BW 222 (S13).
  • the determination signal generation unit 402 of the determination unit 40 generates a determination signal using the reception intensity difference ⁇ RSSI (S14).
  • the determination calculation unit 403 of the determination unit 40 determines entry / exit using the determination signal (S15).
  • the entrance / exit determination system according to the second embodiment relates to the first embodiment. It differs from the entry / exit determination system 10 in that it is provided with a shielding frame.
  • Other configurations of the entrance / exit determination system according to the second embodiment are the same as those of the entrance / exit determination system 10 according to the first embodiment, and the description of the same parts will be omitted.
  • the shielding frame includes a shielding member 290, a shielding member 291 and a shielding member 292.
  • the shielding member 290, the shielding member 291 and the shielding member 292 are each plate-shaped and have electromagnetic shielding properties.
  • the shielding member 290 is arranged on the top surface of the shielding member 21.
  • the main surface of the shielding member 290 is orthogonal to the main surface 211 and the main surface 212 of the shielding member 21.
  • the shielding member 290 is arranged so as to project from the main surface 211 and the main surface 212 of the shielding member 21, respectively.
  • the shielding member 291 is arranged on one side surface of the shielding member 21.
  • the main surface of the shielding member 291 is orthogonal to the main surface 211 and the main surface 212 of the shielding member 21.
  • the shielding member 291 is arranged so as to project from the main surface 211 and the main surface 212 of the shielding member 21, respectively.
  • the shielding member 292 is arranged on the other side surface of the shielding member 21.
  • the main surface of the shielding member 292 is orthogonal to the main surface 211 and the main surface 212 of the shielding member 21.
  • the shielding member 292 is arranged so as to project from the main surface 211 and the main surface 212 of the shielding member 21, respectively.
  • the shielding member 290, the shielding member 291 and the shielding member 292 are arranged so as to surround the main surface 211 of the shielding member 21 and the beacon transmitter 221 and surround the main surface 212 of the shielding member 21 and the beacon transmitter 222. ..
  • the entry / exit determination system can more accurately determine the movement of a moving body such as a person between regions and the entry / exit to a specific place.
  • directivity can be provided, and the influence of multipath (radio wave reflection) in the surrounding environment can be reduced.
  • FIG. 8 (A), 8 (B), and 8 (C) are diagrams showing an example of how to use the entrance / exit determination system according to the third embodiment.
  • FIG. 9 is a functional block diagram showing an example of the entrance / exit determination system according to the third embodiment.
  • the entrance / exit determination system 10B according to the third embodiment is the entrance / exit determination system according to the first embodiment. It differs from 10 in that the number of beacon transmitters is one and the specific content of the determination process associated therewith.
  • the other configurations of the entry / exit determination system 10B are the same as those of the entry / exit determination system 10, and the description of the same parts will be omitted.
  • the entrance / exit determination system 10B includes a beacon transmitter 221, a beacon receiving unit 30B, and a determination unit 40B.
  • the beacon transmitter 221 is arranged on the main surface 211 of the shielding member 21 having electromagnetic shielding properties.
  • a beacon transmitter is not arranged on the main surface 212 of the shielding member 21.
  • FIG. 10 is a functional block diagram showing an example of the configuration of the beacon receiving unit according to the third embodiment.
  • the beacon receiving unit 30B includes a receiving intensity measuring unit 300 and a demodulation unit 301.
  • the reception intensity measurement unit 300 detects the received beacon signal and measures the reception intensity. More specifically, for example, the reception intensity measuring unit 300 measures RSSI1 of the received beacon signal BW 221 .
  • the reception intensity measurement unit 300 outputs the detected beacon signal BW 221 and the reception intensity RSSI 1 to the demodulation unit 301.
  • the demodulation unit 301 demodulates and identifies the detected beacon signal BW 221 .
  • the demodulation unit 301 associates the beacon signal BW 221 with the reception strength RSSI 1 and outputs the beacon signal BW 221 to the determination unit 40B.
  • FIG. 11 is a functional block diagram showing an example of the configuration of the determination unit according to the third embodiment.
  • 12 (A) and 12 (B) are graphs showing an example of the time displacement of the reception intensity.
  • FIG. 12A shows an example of the case where the moving body moves from the first region AR1 to the second region AR2
  • FIG. 12B shows the moving body moving from the second region AR2 to the first region AR1. An example of the case is shown.
  • the determination unit 40B includes a time displacement calculation unit 405 and a determination calculation unit 403B.
  • the time displacement calculation unit 405 calculates the time displacement of the reception intensity RSSI1. More specifically, the time displacement calculation unit 405 calculates the differential value of the reception intensity RSSI1 at a plurality of times as the time displacement. The time displacement calculation unit 405 sequentially calculates the differential value. As a result, the time displacement calculation unit 405 can calculate the differential value at a plurality of times as the time displacement at a plurality of times. The time displacement calculation unit 405 outputs the time displacement at a plurality of times to the determination calculation unit 403B.
  • the determination calculation unit 403B uses time displacements at a plurality of times to determine entry / exit and detect entry / exit timing. More specifically, it detects a sudden change in time displacement at a plurality of times.
  • the reception intensity RSSI1 gradually increases as it approaches the boundary BD in the first region AR1. .. Then, at the time when the moving body passes the boundary BD (see time tj1 in FIG. 12A), the reception intensity RSSI1 drops sharply. Further, when the moving body enters the second region AR2, the reception intensity RSSI1 stabilizes at a low value. Therefore, the time displacement (differential value) of the reception intensity RSSI1 changes abruptly when the boundary BD is exceeded.
  • the determination calculation unit 403B can determine that the moving object has entered the second region AR2 from the first region AR1 beyond the boundary BD, and can detect the time tj1.
  • the reception intensity RSSI1 stabilizes at a low value in the second region AR2. Then, at the time when the moving body passes the boundary BD (see time tj2 in FIG. 12B), the reception intensity RSSI1 increases sharply. Further, as the moving object enters the first region AR1, the reception intensity RSSI1 gradually decreases as the distance from the boundary BD increases. Therefore, the time displacement (differential value) of the reception intensity RSSI1 changes abruptly when the boundary BD is exceeded.
  • the determination calculation unit 403B can determine that the moving object has entered the first region AR1 from the second region AR2 beyond the boundary BD, and can detect the time tj2.
  • the determination calculation unit 403B determines whether the moving body has entered the second region AR2 from the first region AR1 beyond the boundary BD, or the moving body has crossed the boundary BD from the second region AR2. It can be determined whether or not one region AR1 has been entered.
  • the determination calculation unit 403 can determine whether the moving body is approaching or moving away from the boundary BD in the first region AR1.
  • the mode in which the differential value is used as the time displacement is shown.
  • the entrance / exit can be determined and the time (timing) can be detected.
  • the entry / exit determination system 10B can accurately determine the movement of a moving object such as a person between areas and the entry / exit to a specific place even if there is only one beacon transmitter. Further, in the entry / exit determination system 10B, a further simple configuration can be realized by using only one beacon transmitter.
  • FIG. 13 is a flowchart showing an example of the entrance / exit determination method according to the third embodiment. The specific contents of each process in the flowchart shown in FIG. 13 are described in the above-mentioned configuration and description of the process, and only the parts that need to be added are described below.
  • the beacon receiving unit 30B receives the beacon signal BW 221 (S11).
  • the reception intensity measurement unit 300 of the beacon reception unit 30 measures the reception intensity RSSI1 of the beacon signal BW 221 (S12).
  • the time displacement calculation unit 405 of the determination unit 40B calculates the time displacement of the reception intensity RSSI1 of the beacon signal BW 221 (S21).
  • the determination calculation unit 403B of the determination unit 40B determines entry / exit using the time displacement of the reception intensity RSSI1 (S22).
  • the entry / exit determination system 10B an aspect in which only the beacon transmitter 221 is used is shown.
  • the beacon transmitter 222 is arranged on the main surface 212 of the shielding member 21 and the beacon transmitter is not arranged on the main surface 211.
  • the entry / exit determination system can accurately determine the movement of a moving object such as a person between areas and the entry / exit to a specific place.
  • FIG. 14 is a functional block diagram showing an example of the configuration of the beacon receiving unit according to the fourth embodiment.
  • the entry / exit determination system according to the fourth embodiment is different from the entry / exit determination system 10 according to the first embodiment in the configuration and processing of the beacon receiving unit 30C.
  • Other configurations and processes of the entrance / exit determination system according to the fourth embodiment are the same as those of the entrance / exit determination system 10 according to the first embodiment, and the description of the same parts will be omitted.
  • the beacon receiving unit 30C includes a receiving intensity measuring unit 300, a demodulation unit 301, and a receiving control unit 302.
  • the basic processing of the reception strength measuring unit 300 and the demodulation unit 301 is as described above, and the description thereof will be omitted.
  • the reception control unit 302 observes the reception intensity RSSI and controls the reception period (reception period) in the reception intensity measurement unit 300 according to the reception intensity RSSI.
  • FIG. 15A shows an example of reception control when the reception intensity RSSI is low
  • FIG. 15B shows an example of reception control when the reception intensity RSSI is high.
  • the reception control unit 302 shortens the reception period in the unit period of reception control, as shown in FIG. 15A. As shown in FIG. 15B, if the reception intensity RSSI is high, the reception control unit 302 continuously receives the reception in the unit period of the reception control if the reception intensity RSSI is high. In other words, if the reception intensity RSSI is low, the reception control unit 302 provides a reception pause period as shown in FIG. 15A, and if the reception intensity RSSI is high, the reception control unit 302 does not provide a reception pause period.
  • the reception control unit 302 may lengthen the reception period in the unit period of reception control when the reception strength RSSI is high and as compared with when the reception strength RSSI is low. In other words, the reception control unit 302 may shorten the reception period in the unit period of reception control when the reception intensity RSSI is low as compared with when the reception intensity RSSI is high.
  • reception period and the reception pause period are periodically switched.
  • the switching between the reception period and the reception pause period does not have to be periodic, and a pause period of a predetermined time length may be provided at a predetermined timing.
  • FIG. 16 is a flowchart showing an example of a process executed by the beacon receiving unit according to the fourth embodiment.
  • the reception intensity measurement unit 300 of the beacon reception unit 30C receives the beacon signal (S11) and measures the reception intensity RSSI (S12).
  • the reception control unit 302 of the beacon reception unit 30C determines that the reception intensity RSSI is equal to or higher than the switching threshold value (S31: NO), and that the reception strength is not less than the switching threshold value is continuously equal to or higher than the threshold value (S32: YES).
  • the reception period in the unit period is shortened (S33). If the reception control unit 302 continuously exceeds the switching threshold value and is less than the threshold number (S32: NO), the reception control unit 302 continues to observe the reception intensity RSSI and does not change the reception period.
  • the reception control unit 302 receives the reception period in the unit period of the reception control. (S35). If the reception control unit 302 continuously keeps less than the switching threshold value and less than the threshold number (S34: NO), the reception control unit 302 continues to observe the reception intensity RSSI and does not change the reception period.
  • the reception control unit 302 performs this processing for each of the beacon signal BW 221 and the beacon signal BW 222 .
  • the beacon receiving unit 30C can reduce the number of receptions per unit time and the number of measurement of reception intensity when the moving body is far from the boundary BD. Further, the beacon receiving unit 30C can increase the number of receptions per unit time and the number of measurement of reception intensity when the moving body is close to the boundary BD. As a result, the beacon receiving unit 30C can reduce the power consumption without deteriorating the accuracy of the determination.
  • the process of holding (not changing) the reception cycle until the threshold number is reached can be omitted.
  • the reception control unit 302 changes the reception cycle only by determining whether the reception intensity RSSI is less than the switching threshold value or greater than or equal to the switching threshold value.
  • it is better to suppress erroneous determination due to a sudden change in reception intensity by using a process of holding (not changing) the reception cycle until the threshold number is reached.
  • this configuration and processing can also be applied to the entrance / exit determination system 10B (a mode in which one beacon transmitter is used) according to the third embodiment.
  • FIG. 17 is a functional block diagram showing an example of the configuration of the beacon receiving unit according to the fifth embodiment.
  • the beacon receiving unit 30C includes a receiving intensity measuring unit 300, a demodulation unit 301, and a receiving control unit 302.
  • the basic processing of the reception strength measuring unit 300 and the demodulation unit 301 is as described above, and the description thereof will be omitted.
  • the entrance / exit determination system according to the fifth embodiment is different from the entrance / exit determination system according to the fourth embodiment in the configuration and processing of the beacon receiving unit 30D.
  • Other configurations and processes of the entrance / exit determination system according to the fifth embodiment are the same as those of the entry / exit determination system according to the fourth embodiment, and the description of the same parts will be omitted.
  • the beacon receiving unit 30D includes a receiving intensity measuring unit 300, a demodulation unit 301, a receiving control unit 302D, and an IMU sensor 303.
  • the reception strength measurement unit 300 and the demodulation unit 301 have the same configuration as those shown in the above-described embodiment, and the description thereof will be omitted.
  • the IMU sensor 303 is, for example, an acceleration sensor, detects the acceleration applied to the beacon receiving unit 30D, and generates a sensor signal according to the acceleration.
  • the IMU sensor 303 outputs the sensor signal to the reception control unit 302D.
  • the IMU sensor 303 is attached to, for example, a helmet 39 in which the beacon receiving unit 30D is installed. As a result, the IMU sensor 303 can detect the movement of the person HM wearing the helmet 39.
  • the reception control unit 302D controls the reception period (reception period) in the reception intensity measurement unit 300 based on the sensor signal. More specifically, when the bell (amplitude or the like) of the sensor signal is less than the switching threshold value, the reception control unit 302D shortens the reception period in the unit period of reception control. Alternatively, when the bell (amplitude or the like) of the sensor signal is less than the switching threshold value, the reception control unit 302D stops the operation of the reception intensity measurement unit 300. On the other hand, when the bell (amplitude or the like) of the sensor signal is equal to or larger than the switching threshold value, the reception control unit 302D prolongs the reception period in the unit period of reception control. Alternatively, the reception control unit 302D continuously operates the reception intensity measurement unit 300 when the bell (amplitude or the like) of the sensor signal is equal to or higher than the switching threshold value.
  • the beacon receiver 30D shortens the reception period when the human HM is not moving or when there is almost no movement of the human HM, and the human HM has a certain speed. When moving above, extend the reception period. As a result, the beacon receiving unit 30D can reduce the power consumption without deteriorating the accuracy of the determination.
  • FIG. 18 is a functional block diagram showing an example of an expansion system for entry / exit determination according to the sixth embodiment.
  • the expansion system 1 includes an entry / exit determination system 10E, a cloud 2, and a management device 3.
  • the entrance / exit determination system 10E is different from the entrance / exit determination system 10 according to the first embodiment in that the communication unit 60 is provided.
  • Other configurations of the entry / exit determination system 10E are the same as those of the entry / exit determination system 10, and the description of the same parts will be omitted.
  • Entrance / exit information including the entrance / exit determination result by the determination unit 40 is input to the communication unit 60.
  • the entry / exit information includes the entry / exit determination for the boundary BD described above, the entry / exit time (timing), and the identification ID (identification information of the person HM) of the beacon receiving unit 30.
  • the communication unit 60 transmits the entrance / exit information to the cloud 2.
  • Cloud 2 records the entrance / exit information transmitted in this way as a database.
  • the management device 3 is, for example, a management PC.
  • the management device 3 can access the cloud 2 and acquires entry / exit information from the cloud 2.
  • the management device 3 has a function capable of displaying entry / exit information. Thereby, for example, the manager of the above-mentioned workplace can view and manage the entrance / exit information of each worker at a remote place.
  • FIG. 18 shows a mode in which entry / exit information at one location is recorded in the cloud 2
  • entry / exit information at a plurality of locations can be recorded in the cloud 2.
  • the manager can centrally manage the entrance / exit information of a plurality of workplaces, and the management efficiency is improved.
  • FIG. 19 is an external perspective view showing an example of the entrance / exit gate according to the seventh embodiment.
  • the entrance / exit determination system according to the seventh embodiment is different from the entrance / exit determination system 10 according to the first embodiment in that an entrance / exit gate is provided.
  • Other configurations of the entrance / exit determination system according to the sixth embodiment are the same as those of the entrance / exit determination system 10, and the description of the same parts will be omitted.
  • the entrance / exit gate 80 includes a ceiling wall 81, a side wall 821, and a side wall 822.
  • the side wall 821 and the side wall 822 are arranged on the ground at a distance so that their main surfaces face each other.
  • the ceiling wall 81 is supported by the side wall 821 and the side wall 822. As a result, a space surrounded by the ceiling wall 81, the side wall 821, the side wall 822, and the ground is formed.
  • the shielding member 21 is arranged in this space.
  • the main surface 211 and the main surface 212 of the shielding member 21 are orthogonal to the main surface (bottom surface) of the ceiling wall 81, the main surface (side surface) of the side wall 821, and the main surface (side surface) of the side wall 822.
  • the shielding member 21 is arranged so as to open a part of the space surrounded by the ceiling wall 81, the side wall 821, the side wall 822, and the ground. This opening serves as a path through which the moving body passes.
  • the beacon transmitter 221 is arranged on the main surface 211 of the shielding member 21, and the beacon transmitter 222 is arranged on the main surface 212 of the shielding member 21.
  • the moving body enters and exits by passing by the ceiling wall 81, the side wall 821, the side wall 822, and the shielding member 21 in the space surrounded by the ground. Therefore, when entering and exiting, the moving body follows a path close to the shielding member 21. As a result, entry / exit can be determined more reliably.
  • the entrance / exit gate 80 may not be installed according to the arrangement of the shielding member 21, and the shielding member 21 and the beacon transmitter may be attached to the originally existing entrance / exit gate 80.
  • any of the embodiments and combinations thereof can be installed without taking up space, and even an omnidirectional beacon can be used.
  • Expansion system 2 Cloud 3: Management device 10, 10B, 10E: Entrance / exit determination system 21: Shielding member 30, 30B, 30C, 30D: Beacon receiving unit 39: Helmet 40, 40B: Determination unit 50: Notification unit 60 : Communication unit 80: Entrance / exit gate 81: Ceiling wall 211, 212: Main surface 221, 222: Beacon transmitter 290, 291, 292: Shielding member 300: Reception strength measurement unit 301: Demodulation unit 302, 302D: Reception control unit 390: Rear head 401: Reception intensity difference calculation unit 402: Judgment signal generation unit 403, 403B: Judgment calculation unit 405: Time displacement calculation unit 821, 822: Side wall AR1: First region AR2: Second region BD: Boundary BW 221 BW 222 : Beacon signal HM: Human RSSI, RSSI1, RSSI2: Reception strength

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Time Recorders, Dirve Recorders, Access Control (AREA)

Abstract

This entry/exit determination system (10) comprises: a shielding member (21); beacon transmitters (221, 222); a beacon receiving unit (30), and a determination unit (40). The shielding member (21) has a main surface (211) facing an area on one side of the boundary for determining entry/exit and a main surface (212) facing an area on the other side, and has electromagnetic shielding properties. A beacon transmitter (221) is disposed on the main surface (211) and transmits a beacon signal (BW221). The beacon transmitter (222) is disposed on the main surface (212) and transmits a beacon signal (BW222). The beacon receiving unit (30) is attached to a moving body that enters and exits, and measures the reception strengths (RSSI1, RSSI2) of the received beacon signals (BW221, BW222). The determination unit (40) determines entry/exit using the reception strengths (RSSI1, RSSI2) at a plurality of times.

Description

入退場判定システム、および、入退場判定方法Entrance / exit judgment system and entrance / exit judgment method
 本発明は、所定領域への人等の入退場を判定する技術に関する。 The present invention relates to a technique for determining the entry / exit of a person or the like into a predetermined area.
 特許文献1には、入退室を検出するシステムが記載されている。特許文献1のシステムは、少なくとも2個のビーコンを備える。第1のビーコンは、入退室を判定するための境界における一方側の領域に配置され、第2のビーコンは、前記境界における他方側の領域に配置される。第1のビーコンと第2のビーコンは、境界に向けてビーコンを送信する。 Patent Document 1 describes a system for detecting entry / exit. The system of Patent Document 1 includes at least two beacons. The first beacon is placed in one area of the boundary for determining entry / exit, and the second beacon is placed in the other area of the boundary. The first beacon and the second beacon transmit the beacon toward the boundary.
 入退場を検出される対象物は、ビーコンを受信する受信部を備えている。システムは、受信部で受信した第1のビーコンからの第1ビーコン信号と、受信部で受信した第2のビーコンからの第2ビーコン信号とを用いて、対象物の入退場を検出する。 The object whose entry / exit is detected is equipped with a receiving unit that receives a beacon. The system detects the entry / exit of an object by using the first beacon signal from the first beacon received by the receiving unit and the second beacon signal from the second beacon received by the receiving unit.
特表2018-515789号公報Special Table 2018-515789A
 しかしながら、特許文献1に記載の構成では、複数のビーコンが境界から離間した所定位置に配置される。このため、配置やビーコンの指向性を工夫しないと、入退場を高精度に検出(判定)できない。 However, in the configuration described in Patent Document 1, a plurality of beacons are arranged at predetermined positions separated from the boundary. For this reason, entry / exit cannot be detected (determined) with high accuracy unless the arrangement and the directivity of the beacon are devised.
 したがって、本発明の目的は、簡素な構成で、人等の対象物の入退場を精度良く判定できる技術を提供することにある。 Therefore, an object of the present invention is to provide a technique capable of accurately determining the entry / exit of an object such as a person with a simple configuration.
 この発明の入退場判定システムは、遮蔽部材、第1ビーコン発信機、ビーコン受信部、および、判定部を備える。遮蔽部材は、入退場を判定する境界の一方側の領域に面する第1面を有し、電磁シールド性を備える。第1ビーコン発信機は、第1面に配置され、第1ビーコン信号を送信する。ビーコン受信部は、入退場を行う移動体に装着され、受信した第1ビーコン信号の受信強度を計測する。判定部は、複数時刻での第1ビーコン信号の受信強度を用いて、入退場を判定する。 The entry / exit determination system of the present invention includes a shielding member, a first beacon transmitter, a beacon receiving unit, and a determining unit. The shielding member has a first surface facing a region on one side of a boundary for determining entry / exit, and has electromagnetic shielding properties. The first beacon transmitter is arranged on the first surface and transmits the first beacon signal. The beacon receiving unit is attached to a moving body that enters and exits, and measures the reception strength of the received first beacon signal. The determination unit determines entry / exit using the reception strength of the first beacon signal at a plurality of times.
 この構成では、遮蔽部材が存在することで、第1ビーコン信号は、境界の一方側の領域には、遮蔽されることなく伝搬される。そして、境界の一方側の領域では、第1ビーコン信号は、第1ビーコン発信機からの距離に応じた信号強度となる。 In this configuration, due to the presence of the shielding member, the first beacon signal is propagated to the region on one side of the boundary without being shielded. Then, in the region on one side of the boundary, the first beacon signal has a signal strength according to the distance from the first beacon transmitter.
 また、境界の他方側の領域に対しては、第1ビーコン信号の伝搬が遮蔽部材によって遮蔽される。このため、境界の他方側の領域では、第1ビーコン信号の信号強度は大きく減衰し、低くなる。 Further, the propagation of the first beacon signal is shielded by the shielding member for the region on the other side of the boundary. Therefore, in the region on the other side of the boundary, the signal strength of the first beacon signal is greatly attenuated and becomes low.
 したがって、移動体が境界の一方側の領域から他方側の領域に移動するとき、または、移動体が境界の他方側の領域から一方側の領域に移動するとき、複数時刻での第1ビーコン信号の受信強度は、移動方向、移動位置に応じた値となる。この移動方向、移動位置に応じた値を得られることによって、入退場の判定が可能になる。 Thus, when the moving object moves from one area of the boundary to the other, or when the moving body moves from the other area of the boundary to the other area, the first beacon signal at multiple times. The reception intensity of is a value according to the moving direction and the moving position. By obtaining the values corresponding to the moving direction and the moving position, it is possible to determine the entrance / exit.
 また、この際、遮蔽部材を境界または境界付近に配置し、第1ビーコン発信機を遮蔽部材に配置すればよいので、構成は簡素化される。 Further, at this time, the shielding member may be arranged at or near the boundary, and the first beacon transmitter may be arranged at the shielding member, so that the configuration is simplified.
 この発明によれば、簡素な構成で、人等の対象物の入退場を精度良く判定できる。 According to the present invention, it is possible to accurately determine the entry / exit of an object such as a person with a simple configuration.
図1(A)、図1(B)、図1(C)、および、図1(D)は、第1の実施形態に係る入退場判定システムの使用態様の一例を示す図である。1 (A), 1 (B), 1 (C), and 1 (D) are diagrams showing an example of how to use the entrance / exit determination system according to the first embodiment. 図2は、第1の実施形態に係る入退場判定システムの一例を示す機能ブロック図である。FIG. 2 is a functional block diagram showing an example of an entrance / exit determination system according to the first embodiment. 図3は、第1の実施形態に係るビーコン受信部の構成の一例を示す機能ブロック図である。FIG. 3 is a functional block diagram showing an example of the configuration of the beacon receiving unit according to the first embodiment. 図4は、第1の実施形態に係る判定部の構成の一例を示す機能ブロック図である。FIG. 4 is a functional block diagram showing an example of the configuration of the determination unit according to the first embodiment. 図5(A)は、受信強度の時間変位の一例を示すグラフであり、図5(B)は、受信強度差の時間変位の一例を示すグラフであり、図5(C)は、判定信号の波形の一例を示すグラフである。5A is a graph showing an example of time displacement of reception intensity, FIG. 5B is a graph showing an example of time displacement of reception intensity difference, and FIG. 5C is a determination signal. It is a graph which shows an example of the waveform of. 図6は、第1の実施形態に係る入退場判定方法の一例を示すフローチャートである。FIG. 6 is a flowchart showing an example of the entrance / exit determination method according to the first embodiment. 図7(A)、図7(B)、図7(C)、および、図7(D)は、第2の実施形態に係る入退場判定システムの使用態様の一例を示す図である。7 (A), 7 (B), 7 (C), and 7 (D) are diagrams showing an example of the usage mode of the entrance / exit determination system according to the second embodiment. 図8(A)、図8(B)、および、図8(C)は、第3の実施形態に係る入退場判定システムの使用態様の一例を示す図である。8 (A), 8 (B), and 8 (C) are diagrams showing an example of how to use the entrance / exit determination system according to the third embodiment. 図9は、第3の実施形態に係る入退場判定システムの一例を示す機能ブロック図である。FIG. 9 is a functional block diagram showing an example of the entrance / exit determination system according to the third embodiment. 図10は、第3の実施形態に係るビーコン受信部の構成の一例を示す機能ブロック図である。FIG. 10 is a functional block diagram showing an example of the configuration of the beacon receiving unit according to the third embodiment. 図11は、第3の実施形態に係る判定部の構成の一例を示す機能ブロック図である。FIG. 11 is a functional block diagram showing an example of the configuration of the determination unit according to the third embodiment. 図12(A)、図12(B)は、受信強度の時間変位の一例を示すグラフである。12 (A) and 12 (B) are graphs showing an example of the time displacement of the reception intensity. 図13は、第3の実施形態に係る入退場判定方法の一例を示すフローチャートである。FIG. 13 is a flowchart showing an example of the entrance / exit determination method according to the third embodiment. 図14は、第4の実施形態に係るビーコン受信部の構成の一例を示す機能ブロック図である。FIG. 14 is a functional block diagram showing an example of the configuration of the beacon receiving unit according to the fourth embodiment. 図15(A)は、受信強度RSSIが低いときの受信制御の一例を示し、図15(B)は、受信強度RSSIが高いときの受信制御の一例を示す。FIG. 15A shows an example of reception control when the reception intensity RSSI is low, and FIG. 15B shows an example of reception control when the reception intensity RSSI is high. 図16は、第4の実施形態に係るビーコン受信部で実行する処理の一例を示すフローチャートである。FIG. 16 is a flowchart showing an example of a process executed by the beacon receiving unit according to the fourth embodiment. 図17は、第5の実施形態に係るビーコン受信部の構成の一例を示す機能ブロック図である。FIG. 17 is a functional block diagram showing an example of the configuration of the beacon receiving unit according to the fifth embodiment. 図18は、第6の実施形態に係る入退場判定の拡張システムの一例を示す機能ブロック図である。FIG. 18 is a functional block diagram showing an example of an expansion system for entry / exit determination according to the sixth embodiment. 図19は、第7の実施形態に係る入退場ゲートの一例を示す外観斜視図である。FIG. 19 is an external perspective view showing an example of the entrance / exit gate according to the seventh embodiment.
 [第1の実施形態]
 (入退場判定システムの構成および処理)
 本発明の第1の実施形態に係る入退場判定技術について、図を参照して説明する。図1(A)、図1(B)、図1(C)、および、図1(D)は、第1の実施形態に係る入退場判定システムの使用態様の一例を示す図である。図2は、第1の実施形態に係る入退場判定システムの一例を示す機能ブロック図である。
[First Embodiment]
(Configuration and processing of entry / exit judgment system)
The entrance / exit determination technique according to the first embodiment of the present invention will be described with reference to the drawings. 1 (A), 1 (B), 1 (C), and 1 (D) are diagrams showing an example of how to use the entrance / exit determination system according to the first embodiment. FIG. 2 is a functional block diagram showing an example of an entrance / exit determination system according to the first embodiment.
 図2に示すように、入退場判定システム10は、ビーコン発信機221、ビーコン発信機222、ビーコン受信部30、判定部40、および、通知部50を備える。 As shown in FIG. 2, the entry / exit determination system 10 includes a beacon transmitter 221, a beacon transmitter 222, a beacon receiver 30, a determination unit 40, and a notification unit 50.
 図1(A)、図1(B)に示すように、ビーコン発信機221およびビーコン発信機222は、入退場を判定する境界BDの近傍に配置される。より具体的には、境界BDには、遮蔽部材21が設置される。遮蔽部材21は、板状であり、主面211と主面212とを有する。遮蔽部材21は、主面211が第1領域AR1側を向き、主面212が第2領域AR2側を向くように、設置される。 As shown in FIGS. 1A and 1B, the beacon transmitter 221 and the beacon transmitter 222 are arranged in the vicinity of the boundary BD for determining entry / exit. More specifically, the shielding member 21 is installed at the boundary BD. The shielding member 21 is plate-shaped and has a main surface 211 and a main surface 212. The shielding member 21 is installed so that the main surface 211 faces the first region AR1 side and the main surface 212 faces the second region AR2 side.
 なお、図1(A)、図1(B)では、遮蔽部材21の設置位置と境界BDの位置とが重なるように配置されるが、これに限るものではない。例えば、遮蔽部材21の設置位置と境界BDの位置とが重なっていなくても、主面211が第1領域AR1側を向き、主面212が第2領域AR2側を向くように、遮蔽部材21は、境界BDの近傍に配置されていればよい。ただし、遮蔽部材21の設置位置と境界BDの位置とが重なる方が好ましい。 Note that, in FIGS. 1 (A) and 1 (B), the position where the shielding member 21 is installed and the position of the boundary BD are arranged so as to overlap each other, but the present invention is not limited to this. For example, even if the installation position of the shielding member 21 and the position of the boundary BD do not overlap, the shielding member 21 faces the first region AR1 side and the main surface 212 faces the second region AR2 side. May be located near the boundary BD. However, it is preferable that the installation position of the shielding member 21 and the position of the boundary BD overlap.
 遮蔽部材21は、電磁シールド性を有する構造を備える。例えば、遮蔽部材21は、金属板、電波吸収体、電波吸収シート等によって形成される。なお、遮蔽部材21は、全体が電磁シールド性を有する材料である必要はなく、少なくとも主面211および主面212が電磁シールド性を有する材料によって形成されていればよい。遮蔽部材21が、本発明の「部材」に対応する。 The shielding member 21 has a structure having an electromagnetic shielding property. For example, the shielding member 21 is formed of a metal plate, a radio wave absorber, a radio wave absorbing sheet, or the like. The shielding member 21 does not have to be entirely made of a material having an electromagnetic shielding property, and at least the main surface 211 and the main surface 212 may be formed of a material having an electromagnetic shielding property. The shielding member 21 corresponds to the "member" of the present invention.
 図1(A)、図1(B)、図1(C)に示すように、ビーコン発信機221は、主面211に配置される。図1(A)、図1(B)、図1(C)に示すように、ビーコン発信機222は、主面212に配置される。なお、主面211および主面212の組が、本発明の「第1面」および「第2面」の組に対応し、ビーコン発信機221およびビーコン発信機222の組が、本発明の「第1ビーコン発信部」および「第2ビーコン発信部」の組に対応する。 As shown in FIGS. 1 (A), 1 (B), and 1 (C), the beacon transmitter 221 is arranged on the main surface 211. As shown in FIGS. 1 (A), 1 (B), and 1 (C), the beacon transmitter 222 is arranged on the main surface 212. The set of the main surface 211 and the main surface 212 corresponds to the set of the "first surface" and the "second surface" of the present invention, and the set of the beacon transmitter 221 and the beacon transmitter 222 corresponds to the "first surface" and the "second surface" of the present invention. Corresponds to the set of "first beacon transmitting unit" and "second beacon transmitting unit".
 ビーコン発信機221およびビーコン発信機222は、例えば、BLE(Bluetooth(登録商標) Low Energy)の発信機である。ビーコン発信機221は、アンテナ(図示を省略する)等を備えており、所定の送信周期でビーコン信号BW221を生成して送信する。ビーコン発信機222は、アンテナ(図示を省略する)等を備えており、所定の送信周期でビーコン信号BW222を生成して送信する。ビーコン発信機221の送信周期および送信タイミングとビーコン発信機222の送信周期および送信タイミングは、同じであることが好ましいが、これに限るものではなく、少なくとも送信期間が重なっていればよい。ビーコン信号BW221およびビーコン信号BW222の組が、本発明の「第1ビーコン信号」および「第2ビーコン信号」の組に対応する。 The beacon transmitter 221 and the beacon transmitter 222 are, for example, transmitters of BLE (Bluetooth (registered trademark) Low Energy). The beacon transmitter 221 includes an antenna (not shown) and the like, and generates and transmits a beacon signal BW 221 at a predetermined transmission cycle. The beacon transmitter 222 includes an antenna (not shown) and the like, and generates and transmits a beacon signal BW 222 at a predetermined transmission cycle. The transmission cycle and transmission timing of the beacon transmitter 221 and the transmission cycle and transmission timing of the beacon transmitter 222 are preferably the same, but the present invention is not limited to this, and at least the transmission periods may overlap. The set of the beacon signal BW 221 and the beacon signal BW 222 corresponds to the set of the "first beacon signal" and the "second beacon signal" of the present invention.
 ビーコン発信機221の指向性およびビーコン発信機222の指向性は、特に限定されないが、狭指向性でないことが好ましい。ビーコン信号BW221とビーコン信号BW222とは、識別可能な特性を有する。例えば、ビーコン信号BW221の周波数と、ビーコン信号BW222の周波数とは異なる。また、ビーコン信号BW221には、ビーコン信号BW221に固有の識別IDが添付され、ビーコン信号BW222に固有の識別IDが添付される。 The directivity of the beacon transmitter 221 and the directivity of the beacon transmitter 222 are not particularly limited, but are preferably not narrow directional. The beacon signal BW 221 and the beacon signal BW 222 have distinguishable characteristics. For example, the frequency of the beacon signal BW 221 is different from the frequency of the beacon signal BW 222 . Further, the beacon signal BW 221 is attached with an identification ID unique to the beacon signal BW 221 and an identification ID unique to the beacon signal BW 222 .
 遮蔽部材21が上述の構成および設置であることによって、主面211に配置されたビーコン発信機221からのビーコン信号BW221は、第1領域AR1側では、遮蔽されること無く、低損失で伝搬される。そして、第1領域AR1において、ビーコン発信機221からの距離に応じて、ビーコン信号BW221の信号強度は変化する。概略的には、ビーコン発信機221からの距離が長くなるほど、ビーコン信号BW221の信号強度は低下(減衰)する。一方、ビーコン信号BW221は、遮蔽部材21によって遮蔽され、第2領域AR2側には殆ど伝搬されない。これにより、ビーコン信号BW221の信号強度は、第1領域AR1と第2領域AR2とで異なる強度特性を有する。 Due to the above-mentioned configuration and installation of the shielding member 21, the beacon signal BW 221 from the beacon transmitter 221 arranged on the main surface 211 is propagated with low loss on the first region AR1 side without being shielded. Will be done. Then, in the first region AR1, the signal strength of the beacon signal BW 221 changes according to the distance from the beacon transmitter 221. Generally, the longer the distance from the beacon transmitter 221 is, the lower (attenuated) the signal strength of the beacon signal BW 221 is. On the other hand, the beacon signal BW 221 is shielded by the shielding member 21 and hardly propagates to the second region AR2 side. As a result, the signal strength of the beacon signal BW 221 has different strength characteristics in the first region AR1 and the second region AR2.
 また、同様に、遮蔽部材21が上述の構成および設置であることによって、主面212に配置されたビーコン発信機222からのビーコン信号BW222は、第2領域AR2側では、遮蔽されること無く、低損失で伝搬される。そして、第2領域AR2において、ビーコン発信機222からの距離に応じて、ビーコン信号BW222の信号強度は変化する。概略的には、ビーコン発信機222からの距離が長くなるほど、ビーコン信号BW222の信号強度は低下(減衰)する。一方、ビーコン信号BW222は、遮蔽部材21によって遮蔽され、第1領域AR1側には殆ど伝搬されない。これにより、ビーコン信号BW222の信号強度は、第1領域AR1と第2領域AR2とで異なる強度特性を有する。 Similarly, because the shielding member 21 has the above-mentioned configuration and installation, the beacon signal BW 222 from the beacon transmitter 222 arranged on the main surface 212 is not shielded on the second region AR2 side. , Propagate with low loss. Then, in the second region AR2, the signal strength of the beacon signal BW 222 changes according to the distance from the beacon transmitter 222. Generally, as the distance from the beacon transmitter 222 increases, the signal strength of the beacon signal BW 222 decreases (attenuates). On the other hand, the beacon signal BW 222 is shielded by the shielding member 21 and hardly propagates to the first region AR1 side. As a result, the signal strength of the beacon signal BW 222 has different strength characteristics in the first region AR1 and the second region AR2.
 ビーコン受信部30は、アンテナ(図示を省略する)等を備えており、外部からのビーコン信号を受信する。ビーコン受信部30は、例えば、図1(A)、図1(B)に示すように、ヘルメット39に装着される。ヘルメット39は、境界BDを通過する人HMに装着される。ヘルメット39が、本発明の「装着物」に対応し、人HMが、本発明の「移動体」に対応する。 The beacon receiving unit 30 includes an antenna (not shown) and the like, and receives a beacon signal from the outside. The beacon receiving unit 30 is attached to the helmet 39, for example, as shown in FIGS. 1 (A) and 1 (B). The helmet 39 is worn on the person HM passing through the boundary BD. The helmet 39 corresponds to the "wearing object" of the present invention, and the human HM corresponds to the "moving body" of the present invention.
 図3は、第1の実施形態に係るビーコン受信部の構成の一例を示す機能ブロック図である。図4は、第1の実施形態に係る判定部の構成の一例を示す機能ブロック図である。図5(A)は、受信強度の時間変位の一例を示すグラフであり、図5(B)は、受信強度差の時間変位の一例を示すグラフであり、図5(C)は、判定信号の波形の一例を示すグラフである。 FIG. 3 is a functional block diagram showing an example of the configuration of the beacon receiving unit according to the first embodiment. FIG. 4 is a functional block diagram showing an example of the configuration of the determination unit according to the first embodiment. 5A is a graph showing an example of time displacement of reception intensity, FIG. 5B is a graph showing an example of time displacement of reception intensity difference, and FIG. 5C is a determination signal. It is a graph which shows an example of the waveform of.
 図3に示すように、ビーコン受信部30は、受信強度計測部300、復調部301を備える。受信強度計測部300は、受信したビーコン信号を検波して、受信強度を計測する。より具体的には、例えば、受信強度計測部300は、受信したビーコン信号のRSSIを計測する。受信強度計測部300は、検波したビーコン信号および受信強度を、復調部301に出力する。復調部301は、検波したビーコン信号を復調し、ビーコン信号BW221とビーコン信号BW222を識別する。復調部301は、ビーコン信号BW221とその受信強度RSSI1とを関連付けし、ビーコン信号BW222とその受信強度RSSI2とを関連付けして、判定部40に出力する。 As shown in FIG. 3, the beacon receiving unit 30 includes a receiving intensity measuring unit 300 and a demodulation unit 301. The reception intensity measurement unit 300 detects the received beacon signal and measures the reception intensity. More specifically, for example, the reception intensity measuring unit 300 measures the RSSI of the received beacon signal. The reception intensity measurement unit 300 outputs the detected beacon signal and the reception intensity to the demodulation unit 301. The demodulation unit 301 demodulates the detected beacon signal and distinguishes between the beacon signal BW 221 and the beacon signal BW 222 . The demodulation unit 301 associates the beacon signal BW 221 with its reception intensity RSSI1, associates the beacon signal BW 222 with its reception intensity RSSI2, and outputs the beacon signal BW 222 to the determination unit 40.
 ビーコン受信部30は、ビーコン信号BW221の受信強度RSSI1、および、ビーコン信号BW222の受信強度RSSI2の計測を、所定の受信周期で継続的に実行する。これにより、ビーコン受信部30は、複数時刻におけるビーコン信号BW221の受信強度RSSI1、および、ビーコン信号BW222の受信強度RSSI2を計測する。 The beacon receiving unit 30 continuously executes the measurement of the reception strength RSSI1 of the beacon signal BW 221 and the reception strength RSSI2 of the beacon signal BW 222 in a predetermined reception cycle. As a result, the beacon receiving unit 30 measures the reception strength RSSI1 of the beacon signal BW 221 and the reception strength RSSI2 of the beacon signal BW 222 at a plurality of times.
 この際、ビーコン受信部30の復調部301は、各計測タイミングで計測された受信強度RSSIを用いて、ビーコン信号毎に、出力受信強度を算出する。具体的には、受信強度計測部300は、受信強度RSSIの計測周期よりも長い出力周期を設定する。受信強度計測部300は、出力周期によって設定された出力タイミングになると、当該出力タイミングを含む所定時間(例えば、直前の出力タイミングの直後の計測タイミングから今回の出力タイミングまでの時間)内の複数時刻の受信強度RSSIの平均値を、出力受信強度として算出する。なお、この実施形態では、受信強度RSSIの平均値を用いたが、最大値、最小値、中央値等の他の統計値を用いてもよい。 At this time, the demodulation unit 301 of the beacon receiving unit 30 calculates the output reception intensity for each beacon signal using the reception intensity RSSI measured at each measurement timing. Specifically, the reception intensity measurement unit 300 sets an output cycle longer than the measurement cycle of the reception intensity RSSI. When the output timing set by the output cycle is reached, the reception intensity measuring unit 300 has a plurality of times within a predetermined time including the output timing (for example, the time from the measurement timing immediately after the immediately preceding output timing to the current output timing). The average value of the reception strength RSSI of is calculated as the output reception strength. In this embodiment, the average value of the reception intensity RSSI is used, but other statistical values such as the maximum value, the minimum value, and the median value may be used.
 このような処理を行うことによって、図5(A)に示すような受信強度RSSI1および受信強度RSSI2の時間変位特性を得ることができる。これにより、受信強度の不所望なバラツキを抑制でき、後述する入退場の判定に有意な受信強度RSSI1および受信強度RSSI2を得られる。 By performing such processing, the time displacement characteristics of the reception intensity RSSI1 and the reception intensity RSSI2 as shown in FIG. 5A can be obtained. As a result, undesired variation in reception strength can be suppressed, and reception strength RSSI1 and reception strength RSSI2, which will be described later, are significant for determining entry / exit.
 ビーコン受信部30の復調部301は、上述の平均値処理された複数の出力時刻でのビーコン信号BW221の受信強度RSSI1、および、ビーコン信号BW222の受信強度RSSI2を、判定部40に出力する。 The demodulation unit 301 of the beacon reception unit 30 outputs the reception intensity RSSI1 of the beacon signal BW 221 and the reception intensity RSSI2 of the beacon signal BW 222 at the plurality of output times processed by the above-mentioned average value to the determination unit 40. ..
 図4に示すように、判定部40は、受信強度差算出部401、判定信号生成部402、および、判定演算部403を備える。判定部40は、ビーコン受信部30が構成された筐体内に備えられいてもよく、別体に備えられていてもよい。判定部40は、有線または無線によって、ビーコン受信部30とデータ通信を行うことができる。 As shown in FIG. 4, the determination unit 40 includes a reception intensity difference calculation unit 401, a determination signal generation unit 402, and a determination calculation unit 403. The determination unit 40 may be provided in the housing in which the beacon receiving unit 30 is configured, or may be provided in a separate body. The determination unit 40 can perform data communication with the beacon receiving unit 30 by wire or wirelessly.
 受信強度差算出部401には、ビーコン信号BW221の受信強度RSSI1、および、ビーコン信号BW222の受信強度RSSI2が入力される。 The reception strength RSSI1 of the beacon signal BW 221 and the reception strength RSSI2 of the beacon signal BW 222 are input to the reception strength difference calculation unit 401.
 受信強度差算出部401は、同時刻に得られたビーコン信号BW221の受信強度RSSI1とビーコン信号BW222の受信強度RSSI2との受信強度差ΔRSSIを算出する。具体的には、例えば、受信強度差算出部401は、受信強度RSSI1から受信強度RSSI2を減算し、受信強度差ΔRSSIを算出する。 The reception intensity difference calculation unit 401 calculates the reception intensity difference ΔRSSI between the reception intensity RSSI1 of the beacon signal BW 221 and the reception intensity RSSI2 of the beacon signal BW 222 obtained at the same time. Specifically, for example, the reception intensity difference calculation unit 401 subtracts the reception intensity RSSI2 from the reception intensity RSSI1 to calculate the reception intensity difference ΔRSSI.
 受信強度差算出部401は、所定の算出周期で、受信強度差ΔRSSIを算出する。受信強度差算出部401の算出周期は、ビーコン受信部30の出力周期と同じである。これにより、図5(B)に示すような時間変位の受信強度差ΔRSSIを得られる。なお、受信強度差算出部401の算出周期は、ビーコン受信部30の出力周期よりも長くてもよい。受信強度差算出部401は、受信強度差(出力受信強度差)ΔRSSIを、判定信号生成部402に出力する。 The reception intensity difference calculation unit 401 calculates the reception intensity difference ΔRSSI in a predetermined calculation cycle. The calculation cycle of the reception intensity difference calculation unit 401 is the same as the output cycle of the beacon reception unit 30. As a result, the reception intensity difference ΔRSSI of the time displacement as shown in FIG. 5B can be obtained. The calculation cycle of the reception intensity difference calculation unit 401 may be longer than the output cycle of the beacon reception unit 30. The reception intensity difference calculation unit 401 outputs the reception intensity difference (output reception intensity difference) ΔRSSI to the determination signal generation unit 402.
 判定信号生成部402は、受信強度差ΔRSSIを用いて判定信号を生成する。より具体的には、判定信号生成部402は、判定信号生成用閾値TH1、TH2を設定する(図5(B)参照)。判定信号生成用閾値TH1は、判定信号生成用閾値TH2よりも大きい。例えば、判定信号生成用閾値TH1は正値であり、判定信号生成用閾値TH2は負値である。 The determination signal generation unit 402 generates a determination signal using the reception intensity difference ΔRSSI. More specifically, the determination signal generation unit 402 sets the determination signal generation threshold values TH1 and TH2 (see FIG. 5B). The determination signal generation threshold value TH1 is larger than the determination signal generation threshold value TH2. For example, the determination signal generation threshold value TH1 is a positive value, and the determination signal generation threshold value TH2 is a negative value.
 判定信号生成部402は、受信強度差ΔRSSIと判定信号生成用閾値TH1、TH2とを用いて、判定信号を生成する。より具体的には、判定信号生成部402は、受信強度差ΔRSSIが判定信号生成用閾値TH1よりも大きければ、レベルVHを設定する。判定信号生成部402は、受信強度差ΔRSSIが判定信号生成用閾値TH2よりも小さければ、レベルVL(<VH)を設定する。 The determination signal generation unit 402 generates a determination signal using the reception intensity difference ΔRSSI and the determination signal generation thresholds TH1 and TH2. More specifically, the determination signal generation unit 402 sets the level VH if the reception intensity difference ΔRSSI is larger than the determination signal generation threshold value TH1. The determination signal generation unit 402 sets the level VL (<VH) when the reception intensity difference ΔRSSI is smaller than the determination signal generation threshold value TH2.
 この際、判定信号生成部402は、判定信号のレベルの遷移が生じない期間はレベルを保持する。例えば、判定信号生成部402は、受信強度差ΔRSSIが判定信号生成用閾値TH1より大きいことを検出し、レベルVHを設定すると、受信強度差ΔRSSIが判定信号生成用閾値TH2より小さいこと検出するまで、受信強度差ΔRSSIが判定信号生成用閾値TH1以下になってもレベルVHを保持する。この処理を用いることによって、判定信号のレベルが不所望に変動することを抑制できる。 At this time, the determination signal generation unit 402 holds the level for a period in which the determination signal level transition does not occur. For example, the determination signal generation unit 402 detects that the reception intensity difference ΔRSSI is larger than the determination signal generation threshold value TH1, and when the level VH is set, until it detects that the reception intensity difference ΔRSSI is smaller than the determination signal generation threshold value TH2. The level VH is maintained even when the reception intensity difference ΔRSSI becomes equal to or less than the determination signal generation threshold value TH1. By using this process, it is possible to suppress undesired fluctuations in the level of the determination signal.
 これにより、図5(C)に示すように、判定信号生成部402は、レベルVHとレベルVLで2値化された判定信号を生成する。判定信号生成部402は、判定信号を、判定演算部403に出力する。 As a result, as shown in FIG. 5C, the determination signal generation unit 402 generates a determination signal binarized by the level VH and the level VL. The determination signal generation unit 402 outputs the determination signal to the determination calculation unit 403.
 判定演算部403は、判定信号のレベルを用いて、入退場を判定する。より具体的には、判定演算部403は、判定信号がレベルVHからレベルVLに変位するタイミングで、人HMが第1領域AR1から第2領域AR2に移動したと判定する。 The determination calculation unit 403 determines entry / exit using the level of the determination signal. More specifically, the determination calculation unit 403 determines that the human HM has moved from the first region AR1 to the second region AR2 at the timing when the determination signal is displaced from the level VH to the level VL.
 これは、次の原理による。判定信号がレベルVHの場合、受信強度RSSI1は、受信強度RSSI2よりも大きい。ビーコン発信機221、ビーコン発信機222、および遮蔽部材21が上述のように配置されることによって、この状態(RSSI1>RSSI2)は、ビーコン受信部30が第1領域AR1に存在するときに起こり、ビーコン受信部30が第2領域AR2に存在するときには起こらない。一方、判定信号がレベルVLの場合、受信強度RSSI1は、受信強度RSSI2よりも小さい。ビーコン発信機221、ビーコン発信機222、および遮蔽部材21が上述のように配置されることによって、この状態(RSSI1<RSSI2)は、ビーコン受信部30が第2領域AR2に存在するときに起こり、ビーコン受信部30が第1領域AR1に存在するときには起こらない。 This is based on the following principle. When the determination signal is level VH, the reception intensity RSSI1 is larger than the reception intensity RSSI2. By arranging the beacon transmitter 221, the beacon transmitter 222, and the shielding member 21 as described above, this state (RSSI1> RSSI2) occurs when the beacon receiving unit 30 is present in the first region AR1. It does not occur when the beacon receiving unit 30 is present in the second region AR2. On the other hand, when the determination signal is level VL, the reception intensity RSSI1 is smaller than the reception intensity RSSI2. By arranging the beacon transmitter 221, the beacon transmitter 222, and the shielding member 21 as described above, this state (RSSI1 <RSSI2) occurs when the beacon receiving unit 30 is present in the second region AR2. It does not occur when the beacon receiving unit 30 is present in the first region AR1.
 したがって、判定信号がレベルVHからレベルVKに変位したとき、ビーコン受信部30は、第1領域AR1から第2領域AR2に移動したものとみなせる。 Therefore, when the determination signal is displaced from the level VH to the level VK, the beacon receiving unit 30 can be regarded as having moved from the first region AR1 to the second region AR2.
 一方、同様の原理によって、判定演算部403は、判定信号がレベルVLからレベルVHに変位するタイミングで、人HMが第2領域AR2から第1領域AR1に移動したと判定する。 On the other hand, according to the same principle, the determination calculation unit 403 determines that the human HM has moved from the second region AR2 to the first region AR1 at the timing when the determination signal is displaced from the level VL to the level VH.
 そして、例えば、第1領域AR1を作業現場内とし、第2領域AR2を作業現場外とすれば、入退場判定システム10は、判定演算部403によって、作業者等の人HMが、作業現場内から作業現場外へ退場したこと、作業現場外から作業現場内に入場したことを、判定できる。 Then, for example, if the first area AR1 is inside the work site and the second area AR2 is outside the work site, the entry / exit determination system 10 is such that a person HM such as a worker is inside the work site by the determination calculation unit 403. It can be determined that the person has left the work site and entered the work site from outside the work site.
 さらに、上述の構成および処理では、第1領域AR1と第2領域AR2とで、受信強度RSSI1および受信強度RSSI2のレベル変位が明確に異なる。したがって、入退場判定システム10は、人等の移動体の領域間の移動、特定場所への入退場を、精度良く判定できる。 Further, in the above configuration and processing, the level displacements of the reception intensity RSSI1 and the reception intensity RSSI2 are clearly different between the first region AR1 and the second region AR2. Therefore, the entry / exit determination system 10 can accurately determine the movement of a moving body such as a person between regions and the entry / exit to a specific place.
 また、さらに、上述の処理では、判定信号を二値化した後に、判定を行う。したがって、入退場判定システム10は、人等の移動体の領域間の移動、特定場所への入退場を、明確に判定できる。 Further, in the above-mentioned processing, the determination is performed after binarizing the determination signal. Therefore, the entry / exit determination system 10 can clearly determine the movement of a moving object such as a person between areas and the entry / exit to a specific place.
 また、さらに、上述の構成では、ビーコン発信機221とビーコン発信機222とが配置された遮蔽部材21を境界BDに設置するだけでよい。したがって、入退場判定システム10は、簡素な構成で、人等の移動体の領域間の移動、特定場所への入退場を、精度良く判定できる。 Further, in the above configuration, it is only necessary to install the shielding member 21 in which the beacon transmitter 221 and the beacon transmitter 222 are arranged at the boundary BD. Therefore, the entry / exit determination system 10 can accurately determine the movement of a moving object such as a person between areas and the entry / exit to a specific place with a simple configuration.
 なお、図1(A)、図1(B)に示すように、ビーコン受信部30は、ヘルメット39の後頭部390に配置されることが好ましいが、これに限るものではない。ただし、ビーコン受信部30がヘルメット39の後頭部390に配置されることによって、次の作用効果が得られる。 As shown in FIGS. 1A and 1B, the beacon receiving unit 30 is preferably arranged on the back of the head 390 of the helmet 39, but is not limited to this. However, by arranging the beacon receiving unit 30 on the back of the head 390 of the helmet 39, the following effects can be obtained.
 ヘルメット39の後頭部390にビーコン受信部30が配置された場合、人HMが正しくヘルメット39を装着して境界BDに接近すると、ヘルメット39や人HMが障害物となり、ビーコン発信機221とビーコン発信機222のビーコン信号は、ビーコン受信部30に到達し難い。すなわち、ビーコン受信部30に対して遮蔽部材21よりも遠方にあるビーコン発信機222のビーコン信号BW222は、より一層、ビーコン受信部30に到達し難くなる。これにより、境界BDへの接近時において、ビーコン受信部30におけるビーコン信号BW221の受信強度とビーコン信号BW222の受信強度との差は、より大きくなる。したがって、後述する判定部40における受信強度差ΔRSSIの変動幅が大きくなり、判定の精度がさらに向上する。 When the beacon receiver 30 is placed on the back of the head 390 of the helmet 39, when the human HM correctly wears the helmet 39 and approaches the boundary BD, the helmet 39 and the human HM become obstacles, and the beacon transmitter 221 and the beacon transmitter The 222 beacon signal is difficult to reach the beacon receiving unit 30. That is, the beacon signal BW 222 of the beacon transmitter 222, which is farther from the shielding member 21 with respect to the beacon receiving unit 30, becomes more difficult to reach the beacon receiving unit 30. As a result, the difference between the reception strength of the beacon signal BW 221 and the reception strength of the beacon signal BW 222 in the beacon receiving unit 30 becomes larger when approaching the boundary BD. Therefore, the fluctuation range of the reception intensity difference ΔRSSI in the determination unit 40, which will be described later, becomes large, and the accuracy of the determination is further improved.
 また、上述の構成では、遮蔽部材21にビーコン発信機221とビーコン発信機222とが配置される態様を示した。しかしながら、例えば、遮蔽部材21の第1主面および第2主面がビーコンの発信機能を備えていてもよい。 Further, in the above configuration, the mode in which the beacon transmitter 221 and the beacon transmitter 222 are arranged on the shielding member 21 is shown. However, for example, the first main surface and the second main surface of the shielding member 21 may have a beacon transmission function.
 (入退場判定方法)
 図6は、第1の実施形態に係る入退場判定方法の一例を示すフローチャートである。なお、図6に示すフローチャートの各処理の具体的な内容は、上述の構成および処理の説明において行っており、以下では追記が必要な箇所のみを記載する。
(Entry / exit judgment method)
FIG. 6 is a flowchart showing an example of the entrance / exit determination method according to the first embodiment. The specific contents of each process in the flowchart shown in FIG. 6 are described in the above-mentioned configuration and description of the process, and only the parts that need to be added are described below.
 ビーコン受信部30は、ビーコン信号BW221およびビーコン信号BW222を受信する(S11)。ビーコン受信部30の受信強度計測部300は、ビーコン信号BW221の受信強度RSSI1およびビーコン信号BW222の受信強度RSSI2を計測する(S12)。 The beacon receiving unit 30 receives the beacon signal BW 221 and the beacon signal BW 222 (S11). The reception intensity measurement unit 300 of the beacon reception unit 30 measures the reception intensity RSSI1 of the beacon signal BW 221 and the reception intensity RSSI2 of the beacon signal BW 222 (S12).
 判定部40の受信強度差算出部401は、ビーコン信号BW221の受信強度RSSI1とビーコン信号BW222の受信強度RSSI2との受信強度差ΔRSSIを算出する(S13)。判定部40の判定信号生成部402は、受信強度差ΔRSSIを用いて、判定信号を生成する(S14)。判定部40の判定演算部403は、判定信号を用いて、入退場を判定する(S15)。 The reception intensity difference calculation unit 401 of the determination unit 40 calculates the reception intensity difference ΔRSSI between the reception intensity RSSI1 of the beacon signal BW 221 and the reception intensity RSSI2 of the beacon signal BW 222 (S13). The determination signal generation unit 402 of the determination unit 40 generates a determination signal using the reception intensity difference ΔRSSI (S14). The determination calculation unit 403 of the determination unit 40 determines entry / exit using the determination signal (S15).
 [第2の実施形態]
 本発明の第2の実施形態に係る入退場判定技術について、図を参照して説明する。図7(A)、図7(B)、図7(C)、および、図7(D)は、第2の実施形態に係る入退場判定システムの使用態様の一例を示す図である。
[Second Embodiment]
The entrance / exit determination technique according to the second embodiment of the present invention will be described with reference to the drawings. 7 (A), 7 (B), 7 (C), and 7 (D) are diagrams showing an example of the usage mode of the entrance / exit determination system according to the second embodiment.
 図7(A)、図7(B)、図7(C)、および、図7(D)に示すように、第2の実施形態に係る入退場判定システムでは、第1の実施形態に係る入退場判定システム10に対して、遮蔽枠を備える点で異なる。第2の実施形態に係る入退場判定システムの他の構成は、第1の実施形態に係る入退場判定システム10と同様であり、同様の箇所の説明は省略する。 As shown in FIGS. 7 (A), 7 (B), 7 (C), and 7 (D), the entrance / exit determination system according to the second embodiment relates to the first embodiment. It differs from the entry / exit determination system 10 in that it is provided with a shielding frame. Other configurations of the entrance / exit determination system according to the second embodiment are the same as those of the entrance / exit determination system 10 according to the first embodiment, and the description of the same parts will be omitted.
 図7(A)、図7(B)、図7(C)、図7(D)に示すように、遮蔽枠は、遮蔽部材290、遮蔽部材291、および、遮蔽部材292を備える。遮蔽部材290、遮蔽部材291、および、遮蔽部材292は、それぞれに板状であり、電磁シールド性を有する。 As shown in FIGS. 7 (A), 7 (B), 7 (C), and 7 (D), the shielding frame includes a shielding member 290, a shielding member 291 and a shielding member 292. The shielding member 290, the shielding member 291 and the shielding member 292 are each plate-shaped and have electromagnetic shielding properties.
 遮蔽部材290は、遮蔽部材21の天面に配置される。遮蔽部材290の主面は、遮蔽部材21の主面211および主面212に直交する。遮蔽部材290は、遮蔽部材21の主面211および主面212からそれぞれ突出するように配置される。 The shielding member 290 is arranged on the top surface of the shielding member 21. The main surface of the shielding member 290 is orthogonal to the main surface 211 and the main surface 212 of the shielding member 21. The shielding member 290 is arranged so as to project from the main surface 211 and the main surface 212 of the shielding member 21, respectively.
 遮蔽部材291は、遮蔽部材21の一方側面に配置される。遮蔽部材291の主面は、遮蔽部材21の主面211および主面212に直交する。遮蔽部材291は、遮蔽部材21の主面211および主面212からそれぞれ突出するように配置される。 The shielding member 291 is arranged on one side surface of the shielding member 21. The main surface of the shielding member 291 is orthogonal to the main surface 211 and the main surface 212 of the shielding member 21. The shielding member 291 is arranged so as to project from the main surface 211 and the main surface 212 of the shielding member 21, respectively.
 遮蔽部材292は、遮蔽部材21の他方側面に配置される。遮蔽部材292の主面は、遮蔽部材21の主面211および主面212に直交する。遮蔽部材292は、遮蔽部材21の主面211および主面212からそれぞれ突出するように配置される。 The shielding member 292 is arranged on the other side surface of the shielding member 21. The main surface of the shielding member 292 is orthogonal to the main surface 211 and the main surface 212 of the shielding member 21. The shielding member 292 is arranged so as to project from the main surface 211 and the main surface 212 of the shielding member 21, respectively.
 これにより、遮蔽部材290、遮蔽部材291、遮蔽部材292は、遮蔽部材21の主面211およびビーコン発信機221を囲み、遮蔽部材21の主面212およびビーコン発信機222を囲むように配置される。 As a result, the shielding member 290, the shielding member 291 and the shielding member 292 are arranged so as to surround the main surface 211 of the shielding member 21 and the beacon transmitter 221 and surround the main surface 212 of the shielding member 21 and the beacon transmitter 222. ..
 このような構成によって、ビーコン発信機221からのビーコン信号BW221は、第2領域AR2に、さらに伝搬し難くなる。また、ビーコン発信機222からのビーコン信号BW222は、第1領域AR1に、さらに伝搬し難くなる。したがって、第2の実施形態に係る入退場判定システムは、人等の移動体の領域間の移動、特定場所への入退場を、より精度良く判定できる。また、遮蔽枠を設けることで指向性を持たせることができ、周囲環境のマルチパス(電波反射)の影響を減らすことができる。 With such a configuration, the beacon signal BW 221 from the beacon transmitter 221 is more difficult to propagate to the second region AR2. Further, the beacon signal BW222 from the beacon transmitter 222 is more difficult to propagate to the first region AR1. Therefore, the entry / exit determination system according to the second embodiment can more accurately determine the movement of a moving body such as a person between regions and the entry / exit to a specific place. In addition, by providing a shielding frame, directivity can be provided, and the influence of multipath (radio wave reflection) in the surrounding environment can be reduced.
 [第3の実施形態]
 本発明の第3の実施形態に係る入退場判定技術について、図を参照して説明する。図8(A)、図8(B)、および、図8(C)は、第3の実施形態に係る入退場判定システムの使用態様の一例を示す図である。図9は、第3の実施形態に係る入退場判定システムの一例を示す機能ブロック図である。
[Third Embodiment]
The entrance / exit determination technique according to the third embodiment of the present invention will be described with reference to the drawings. 8 (A), 8 (B), and 8 (C) are diagrams showing an example of how to use the entrance / exit determination system according to the third embodiment. FIG. 9 is a functional block diagram showing an example of the entrance / exit determination system according to the third embodiment.
 図8(A)、図8(B)、図8(C)、図9に示すように、第3の実施形態に係る入退場判定システム10Bは、第1の実施形態に係る入退場判定システム10に対して、ビーコン発信機を1個にした点、これに伴う判定処理の具体的な内容において異なる。入退場判定システム10Bの他の構成は、入退場判定システム10と同様であり、同様の箇所の説明は省略する。 As shown in FIGS. 8A, 8B, 8C, and 9, the entrance / exit determination system 10B according to the third embodiment is the entrance / exit determination system according to the first embodiment. It differs from 10 in that the number of beacon transmitters is one and the specific content of the determination process associated therewith. The other configurations of the entry / exit determination system 10B are the same as those of the entry / exit determination system 10, and the description of the same parts will be omitted.
 図9に示すように、入退場判定システム10Bは、ビーコン発信機221、ビーコン受信部30B、および、判定部40Bを備える。 As shown in FIG. 9, the entrance / exit determination system 10B includes a beacon transmitter 221, a beacon receiving unit 30B, and a determination unit 40B.
 図8(A)、図8(B)、および、図8(C)に示すように、ビーコン発信機221は、電磁シールド性を有する遮蔽部材21の主面211に配置される。遮蔽部材21の主面212には、ビーコン発信機は配置されない。 As shown in FIGS. 8A, 8B, and 8C, the beacon transmitter 221 is arranged on the main surface 211 of the shielding member 21 having electromagnetic shielding properties. A beacon transmitter is not arranged on the main surface 212 of the shielding member 21.
 図10は、第3の実施形態に係るビーコン受信部の構成の一例を示す機能ブロック図である。ビーコン受信部30Bは、受信強度計測部300および復調部301を備える。受信強度計測部300は、受信したビーコン信号を検波して、受信強度を計測する。より具体的には、例えば、受信強度計測部300は、受信したビーコン信号BW221のRSSI1を計測する。受信強度計測部300は、検波したビーコン信号BW221および受信強度RSSI1を、復調部301に出力する。復調部301は、検波したビーコン信号BW221を復調し、識別する。復調部301は、ビーコン信号BW221とその受信強度RSSI1とを関連付けして、判定部40Bに出力する。 FIG. 10 is a functional block diagram showing an example of the configuration of the beacon receiving unit according to the third embodiment. The beacon receiving unit 30B includes a receiving intensity measuring unit 300 and a demodulation unit 301. The reception intensity measurement unit 300 detects the received beacon signal and measures the reception intensity. More specifically, for example, the reception intensity measuring unit 300 measures RSSI1 of the received beacon signal BW 221 . The reception intensity measurement unit 300 outputs the detected beacon signal BW 221 and the reception intensity RSSI 1 to the demodulation unit 301. The demodulation unit 301 demodulates and identifies the detected beacon signal BW 221 . The demodulation unit 301 associates the beacon signal BW 221 with the reception strength RSSI 1 and outputs the beacon signal BW 221 to the determination unit 40B.
 図11は、第3の実施形態に係る判定部の構成の一例を示す機能ブロック図である。図12(A)、図12(B)は、受信強度の時間変位の一例を示すグラフである。図12(A)は、移動体が第1領域AR1から第2領域AR2に移動する場合の一例を示し、図12(B)は、移動体が第2領域AR2から第1領域AR1に移動する場合の一例を示す。 FIG. 11 is a functional block diagram showing an example of the configuration of the determination unit according to the third embodiment. 12 (A) and 12 (B) are graphs showing an example of the time displacement of the reception intensity. FIG. 12A shows an example of the case where the moving body moves from the first region AR1 to the second region AR2, and FIG. 12B shows the moving body moving from the second region AR2 to the first region AR1. An example of the case is shown.
 図11に示すように、判定部40Bは、時間変位算出部405、および、判定演算部403Bを備える。 As shown in FIG. 11, the determination unit 40B includes a time displacement calculation unit 405 and a determination calculation unit 403B.
 時間変位算出部405は、受信強度RSSI1の時間変位を算出する。より具体的には、時間変位算出部405は、複数時刻の受信強度RSSI1の微分値を、時間変位として算出する。時間変位算出部405は、微分値の算出を逐次的に行う。これにより、時間変位算出部405は、複数時刻の微分値を、複数時刻の時間変位として算出できる。時間変位算出部405は、複数時刻の時間変位を、判定演算部403Bに出力する。 The time displacement calculation unit 405 calculates the time displacement of the reception intensity RSSI1. More specifically, the time displacement calculation unit 405 calculates the differential value of the reception intensity RSSI1 at a plurality of times as the time displacement. The time displacement calculation unit 405 sequentially calculates the differential value. As a result, the time displacement calculation unit 405 can calculate the differential value at a plurality of times as the time displacement at a plurality of times. The time displacement calculation unit 405 outputs the time displacement at a plurality of times to the determination calculation unit 403B.
 判定演算部403Bは、複数時刻の時間変位を用いて、入退場の判定、および、入退場のタイミングの検出を行う。より具体的には、複数時刻の時間変位の急激な変化を検出する。 The determination calculation unit 403B uses time displacements at a plurality of times to determine entry / exit and detect entry / exit timing. More specifically, it detects a sudden change in time displacement at a plurality of times.
 図12(A)に示すように、移動体が第1領域AR1から第2領域AR2に向かって移動するとき、受信強度RSSI1は、第1領域AR1内において境界BDに近づくにつれて、徐々に高くなる。そして、移動体が境界BDを通過した時点(図12(A)の時刻tj1参照)で、受信強度RSSI1は、急激に低下する。さらに、移動体が第2領域AR2内に入ると、受信強度RSSI1は、低い値で安定する。したがって、受信強度RSSI1の時間変位(微分値)は、境界BDを超えるとき、急激に変化する。 As shown in FIG. 12A, when the moving body moves from the first region AR1 to the second region AR2, the reception intensity RSSI1 gradually increases as it approaches the boundary BD in the first region AR1. .. Then, at the time when the moving body passes the boundary BD (see time tj1 in FIG. 12A), the reception intensity RSSI1 drops sharply. Further, when the moving body enters the second region AR2, the reception intensity RSSI1 stabilizes at a low value. Therefore, the time displacement (differential value) of the reception intensity RSSI1 changes abruptly when the boundary BD is exceeded.
 この急激な変化を検出することで、判定演算部403Bは、移動体が第1領域AR1から境界BDを超えて第2領域AR2に入ったことを判定でき、その時刻tj1を検出できる。 By detecting this sudden change, the determination calculation unit 403B can determine that the moving object has entered the second region AR2 from the first region AR1 beyond the boundary BD, and can detect the time tj1.
 また、図12(B)に示すように、移動体が第2領域AR2から第1領域AR1に向かって移動するとき、受信強度RSSI1は、第2領域AR2内において低い値で安定する。そして、移動体が境界BDを通過した時点(図12(B)の時刻tj2参照)で、受信強度RSSI1は、急激に高くなる。さらに、移動体が第1領域AR1内に入ると、受信強度RSSI1は、境界BDから遠ざかるにつれて、徐々に低くなる。したがって、受信強度RSSI1の時間変位(微分値)は、境界BDを超えるとき、急激に変化する。 Further, as shown in FIG. 12B, when the moving body moves from the second region AR2 toward the first region AR1, the reception intensity RSSI1 stabilizes at a low value in the second region AR2. Then, at the time when the moving body passes the boundary BD (see time tj2 in FIG. 12B), the reception intensity RSSI1 increases sharply. Further, as the moving object enters the first region AR1, the reception intensity RSSI1 gradually decreases as the distance from the boundary BD increases. Therefore, the time displacement (differential value) of the reception intensity RSSI1 changes abruptly when the boundary BD is exceeded.
 この急激な変化を検出することで、判定演算部403Bは、移動体が第2領域AR2から境界BDを超えて第1領域AR1に入ったことを判定でき、その時刻tj2を検出できる。 By detecting this sudden change, the determination calculation unit 403B can determine that the moving object has entered the first region AR1 from the second region AR2 beyond the boundary BD, and can detect the time tj2.
 そして、微分値を用いることによって、判定演算部403Bは、移動体が第1領域AR1から境界BDを超えて第2領域AR2に入ったか、移動体が第2領域AR2から境界BDを超えて第1領域AR1に入ったか、を判別できる。 Then, by using the differential value, the determination calculation unit 403B determines whether the moving body has entered the second region AR2 from the first region AR1 beyond the boundary BD, or the moving body has crossed the boundary BD from the second region AR2. It can be determined whether or not one region AR1 has been entered.
 さらに、この構成および処理では、判定演算部403は、第1領域AR1において、移動体が境界BDに近づいているのか、遠ざかっているのか、を判別できる。 Further, in this configuration and processing, the determination calculation unit 403 can determine whether the moving body is approaching or moving away from the boundary BD in the first region AR1.
 なお、この構成および処理では、時間変位として微分値を用いる態様を示した。しかしながら、複数時刻の受信強度RSSI1の差を用いても、入退場を判定することができ、その時刻(タイミング)を検出できる。 In this configuration and processing, the mode in which the differential value is used as the time displacement is shown. However, even if the difference in the reception strength RSSI1 at a plurality of times is used, the entrance / exit can be determined and the time (timing) can be detected.
 このように、入退場判定システム10Bは、ビーコン発信機が1個であっても、人等の移動体の領域間の移動、特定場所への入退場を、精度良く判定できる。さらに、入退場判定システム10Bでは、ビーコン発信機が1個になることで、更なる簡素な構成を実現できる。 In this way, the entry / exit determination system 10B can accurately determine the movement of a moving object such as a person between areas and the entry / exit to a specific place even if there is only one beacon transmitter. Further, in the entry / exit determination system 10B, a further simple configuration can be realized by using only one beacon transmitter.
 (入退場判定方法)
 図13は、第3の実施形態に係る入退場判定方法の一例を示すフローチャートである。なお、図13に示すフローチャートの各処理の具体的な内容は、上述の構成および処理の説明において行っており、以下では追記が必要な箇所のみを記載する。
(Entry / exit judgment method)
FIG. 13 is a flowchart showing an example of the entrance / exit determination method according to the third embodiment. The specific contents of each process in the flowchart shown in FIG. 13 are described in the above-mentioned configuration and description of the process, and only the parts that need to be added are described below.
 ビーコン受信部30Bは、ビーコン信号BW221を受信する(S11)。ビーコン受信部30の受信強度計測部300は、ビーコン信号BW221の受信強度RSSI1を計測する(S12)。 The beacon receiving unit 30B receives the beacon signal BW 221 (S11). The reception intensity measurement unit 300 of the beacon reception unit 30 measures the reception intensity RSSI1 of the beacon signal BW 221 (S12).
 判定部40Bの時間変位算出部405は、ビーコン信号BW221の受信強度RSSI1の時間変位を算出する(S21)。判定部40Bの判定演算部403Bは、受信強度RSSI1の時間変位を用いて、入退場を判定する(S22)。 The time displacement calculation unit 405 of the determination unit 40B calculates the time displacement of the reception intensity RSSI1 of the beacon signal BW 221 (S21). The determination calculation unit 403B of the determination unit 40B determines entry / exit using the time displacement of the reception intensity RSSI1 (S22).
 なお、入退場判定システム10Bでは、ビーコン発信機221のみを用いる態様を示した。しかしながら、遮蔽部材21の主面212にビーコン発信機222を配置し、主面211にビーコン発信機を配置しない態様を用いることもできる。入退場判定システムは、この場合も同様の処理によって、人等の移動体の領域間の移動、特定場所への入退場を、精度良く判定できる。 In addition, in the entrance / exit determination system 10B, an aspect in which only the beacon transmitter 221 is used is shown. However, it is also possible to use an embodiment in which the beacon transmitter 222 is arranged on the main surface 212 of the shielding member 21 and the beacon transmitter is not arranged on the main surface 211. In this case as well, the entry / exit determination system can accurately determine the movement of a moving object such as a person between areas and the entry / exit to a specific place.
 また、入退場判定システム10Bの処理と、入退場判定システム10の処理とを組み合わせて、入退場を判定することも可能である。これにより、入退場の判定の精度は、さらに向上する。 It is also possible to determine entry / exit by combining the processing of the entry / exit determination system 10B and the processing of the entry / exit determination system 10. As a result, the accuracy of entry / exit determination is further improved.
 [第4の実施形態]
 本発明の第4の実施形態に係る入退場判定技術について、図を参照して説明する。図14は、第4の実施形態に係るビーコン受信部の構成の一例を示す機能ブロック図である。
[Fourth Embodiment]
The entrance / exit determination technique according to the fourth embodiment of the present invention will be described with reference to the drawings. FIG. 14 is a functional block diagram showing an example of the configuration of the beacon receiving unit according to the fourth embodiment.
 第4の実施形態に係る入退場判定システムは、第1の実施形態に係る入退場判定システム10に対して、ビーコン受信部30Cの構成および処理において異なる。第4の実施形態に係る入退場判定システムの他の構成および処理は、第1の実施形態に係る入退場判定システム10と同様であり、同様の箇所の説明は省略する。 The entry / exit determination system according to the fourth embodiment is different from the entry / exit determination system 10 according to the first embodiment in the configuration and processing of the beacon receiving unit 30C. Other configurations and processes of the entrance / exit determination system according to the fourth embodiment are the same as those of the entrance / exit determination system 10 according to the first embodiment, and the description of the same parts will be omitted.
 図14に示すように、ビーコン受信部30Cは、受信強度計測部300、復調部301、および、受信制御部302を備える。受信強度計測部300および復調部301の基本的な処理は、上述の通りであり、説明を省略する。 As shown in FIG. 14, the beacon receiving unit 30C includes a receiving intensity measuring unit 300, a demodulation unit 301, and a receiving control unit 302. The basic processing of the reception strength measuring unit 300 and the demodulation unit 301 is as described above, and the description thereof will be omitted.
 受信制御部302は、受信強度RSSIを観測し、受信強度RSSIに応じて、受信強度計測部300において受信する期間(受信期間)を制御する。図15(A)は、受信強度RSSIが低いときの受信制御の一例を示し、図15(B)は、受信強度RSSIが高いときの受信制御の一例を示す。 The reception control unit 302 observes the reception intensity RSSI and controls the reception period (reception period) in the reception intensity measurement unit 300 according to the reception intensity RSSI. FIG. 15A shows an example of reception control when the reception intensity RSSI is low, and FIG. 15B shows an example of reception control when the reception intensity RSSI is high.
 受信制御部302は、受信強度RSSIが低ければ、図15(A)に示すように、受信制御の単位期間における受信期間を短くする。受信制御部302は、受信強度RSSIが高ければ、図15(B)に示すように、受信制御部302は、受信強度RSSIが高ければ、受信制御の単位期間において連続で受信を行う。言い換えれば、受信制御部302は、受信強度RSSIが低ければ、図15(A)に示すように、受信の休止期間を設け、受信強度RSSIが高ければ、受信の休止期間を設けない。 If the reception intensity RSSI is low, the reception control unit 302 shortens the reception period in the unit period of reception control, as shown in FIG. 15A. As shown in FIG. 15B, if the reception intensity RSSI is high, the reception control unit 302 continuously receives the reception in the unit period of the reception control if the reception intensity RSSI is high. In other words, if the reception intensity RSSI is low, the reception control unit 302 provides a reception pause period as shown in FIG. 15A, and if the reception intensity RSSI is high, the reception control unit 302 does not provide a reception pause period.
 なお、受信制御部302は、受信強度RSSIが高いときに、受信強度RSSIが低いときよりも受信制御の単位期間における受信期間を長くすればよい。言い換えれば、受信制御部302は、受信強度RSSIが低いときに、受信強度RSSIが高いときよりも受信制御の単位期間における受信期間を短くすればよい。 Note that the reception control unit 302 may lengthen the reception period in the unit period of reception control when the reception strength RSSI is high and as compared with when the reception strength RSSI is low. In other words, the reception control unit 302 may shorten the reception period in the unit period of reception control when the reception intensity RSSI is low as compared with when the reception intensity RSSI is high.
 また、この実施形態では、受信期間と受信の休止期間とを周期的に切り替える態様を示した。しかしながら、受信期間と受信の休止期間との切り替えは、周期的でなくてもよく、所定のタイミングで所定の時間長の休止期間を設けてもよい。 Further, in this embodiment, an embodiment in which the reception period and the reception pause period are periodically switched is shown. However, the switching between the reception period and the reception pause period does not have to be periodic, and a pause period of a predetermined time length may be provided at a predetermined timing.
 例えば、ビーコン受信部30Cは、例えば、図16に示す処理を実行する。図16は、第4の実施形態に係るビーコン受信部で実行する処理の一例を示すフローチャートである。 For example, the beacon receiving unit 30C executes the process shown in FIG. 16, for example. FIG. 16 is a flowchart showing an example of a process executed by the beacon receiving unit according to the fourth embodiment.
 ビーコン受信部30Cの受信強度計測部300は、ビーコン信号を受信し(S11)、受信強度RSSIを計測する(S12)。ビーコン受信部30Cの受信制御部302は、受信強度RSSIが切替閾値以上であり(S31:NO)、切替閾値未満であることが連続で閾値回数以上であると(S32:YES)、受信制御の単位期間における受信期間を短時間化する(S33)。なお、受信制御部302は、切替閾値以上であることが連続で閾値回数未満であると(S32:NO)、受信強度RSSIの観測を継続し、受信期間の変更は行わない。 The reception intensity measurement unit 300 of the beacon reception unit 30C receives the beacon signal (S11) and measures the reception intensity RSSI (S12). The reception control unit 302 of the beacon reception unit 30C determines that the reception intensity RSSI is equal to or higher than the switching threshold value (S31: NO), and that the reception strength is not less than the switching threshold value is continuously equal to or higher than the threshold value (S32: YES). The reception period in the unit period is shortened (S33). If the reception control unit 302 continuously exceeds the switching threshold value and is less than the threshold number (S32: NO), the reception control unit 302 continues to observe the reception intensity RSSI and does not change the reception period.
 受信制御部302は、受信強度RSSIが切替閾値未満であり(S31:YES)、切替閾値未満であることが連続で閾値回数以上であると(S34:YES)、受信制御の単位期間における受信期間を長時間化する(S35)。なお、受信制御部302は、切替閾値未満であることが連続で閾値回数未満であると(S34:NO)、受信強度RSSIの観測を継続し、受信期間の変更は行わない。 When the reception intensity RSSI is less than the switching threshold value (S31: YES) and the reception strength RSSI is less than the switching threshold value continuously equal to or more than the threshold value (S34: YES), the reception control unit 302 receives the reception period in the unit period of the reception control. (S35). If the reception control unit 302 continuously keeps less than the switching threshold value and less than the threshold number (S34: NO), the reception control unit 302 continues to observe the reception intensity RSSI and does not change the reception period.
 受信制御部302は、この処理を、ビーコン信号BW221、ビーコン信号BW222毎に行う。 The reception control unit 302 performs this processing for each of the beacon signal BW 221 and the beacon signal BW 222 .
 第1領域AR1では、境界BDに近いほど、ビーコン信号BW221の受信強度は高くなり、遠ざかるほど、ビーコン信号BW221の受信強度は低くなる。また、第2領域AR2では、境界BDに近いほど、ビーコン信号BW222の受信強度は高くなり、遠ざかるほど、ビーコン信号BW222の受信強度は低くなる。 In the first region AR1, the closer to the boundary BD, the higher the reception strength of the beacon signal BW 221 , and the farther away, the lower the reception strength of the beacon signal BW 221 . Further, in the second region AR2, the closer to the boundary BD, the higher the reception strength of the beacon signal BW 222 , and the farther away, the lower the reception strength of the beacon signal BW 222 .
 したがって、上述の処理を行うことで、ビーコン受信部30Cは、移動体が境界BDから遠いときには、単位時間当たりの受信回数、受信強度の計測回数を減らすことができる。また、ビーコン受信部30Cは、移動体が境界BDに近いときには、単位時間当たりの受信回数、受信強度の計測回数を増やすことができる。これにより、ビーコン受信部30Cは、判定の精度を低下させることなく、消費電力を低減できる。 Therefore, by performing the above processing, the beacon receiving unit 30C can reduce the number of receptions per unit time and the number of measurement of reception intensity when the moving body is far from the boundary BD. Further, the beacon receiving unit 30C can increase the number of receptions per unit time and the number of measurement of reception intensity when the moving body is close to the boundary BD. As a result, the beacon receiving unit 30C can reduce the power consumption without deteriorating the accuracy of the determination.
 なお、上述の処理において、閾値回数に達するまで、受信周期を保持する(変更しない)処理は、省略することも可能である。この場合、受信制御部302は、受信強度RSSIが切替閾値未満か切替閾値以上かの判定のみで、受信周期を変更する。ただし、閾値回数に達するまで、受信周期を保持する(変更しない)処理を用いることで、受信強度の急激な変化による誤判定を抑制でき、よりよい。 In the above process, the process of holding (not changing) the reception cycle until the threshold number is reached can be omitted. In this case, the reception control unit 302 changes the reception cycle only by determining whether the reception intensity RSSI is less than the switching threshold value or greater than or equal to the switching threshold value. However, it is better to suppress erroneous determination due to a sudden change in reception intensity by using a process of holding (not changing) the reception cycle until the threshold number is reached.
 また、この構成および処理は、第3の実施形態に係る入退場判定システム10B(ビーコン発信機が1個の態様)にも適用できる。 Further, this configuration and processing can also be applied to the entrance / exit determination system 10B (a mode in which one beacon transmitter is used) according to the third embodiment.
 [第5の実施形態]
 本発明の第5の実施形態に係る入退場判定技術について、図を参照して説明する。図17は、第5の実施形態に係るビーコン受信部の構成の一例を示す機能ブロック図である。
[Fifth Embodiment]
The entrance / exit determination technique according to the fifth embodiment of the present invention will be described with reference to the drawings. FIG. 17 is a functional block diagram showing an example of the configuration of the beacon receiving unit according to the fifth embodiment.
 図17に示すように、ビーコン受信部30Cは、受信強度計測部300、復調部301、および、受信制御部302を備える。受信強度計測部300および復調部301の基本的な処理は、上述の通りであり、説明を省略する。 As shown in FIG. 17, the beacon receiving unit 30C includes a receiving intensity measuring unit 300, a demodulation unit 301, and a receiving control unit 302. The basic processing of the reception strength measuring unit 300 and the demodulation unit 301 is as described above, and the description thereof will be omitted.
 第5の実施形態に係る入退場判定システムは、第4の実施形態に係る入退場判定システムに対して、ビーコン受信部30Dの構成および処理において異なる。第5の実施形態に係る入退場判定システムの他の構成および処理は、第4の実施形態に係る入退場判定システムと同様であり、同様の箇所の説明は省略する。 The entrance / exit determination system according to the fifth embodiment is different from the entrance / exit determination system according to the fourth embodiment in the configuration and processing of the beacon receiving unit 30D. Other configurations and processes of the entrance / exit determination system according to the fifth embodiment are the same as those of the entry / exit determination system according to the fourth embodiment, and the description of the same parts will be omitted.
 図17に示すように、ビーコン受信部30Dは、受信強度計測部300、復調部301、受信制御部302D、および、IMUセンサ303を備える。受信強度計測部300、復調部301は、上述の実施形態に示すものと同様の構成であり、説明は省略する。 As shown in FIG. 17, the beacon receiving unit 30D includes a receiving intensity measuring unit 300, a demodulation unit 301, a receiving control unit 302D, and an IMU sensor 303. The reception strength measurement unit 300 and the demodulation unit 301 have the same configuration as those shown in the above-described embodiment, and the description thereof will be omitted.
 IMUセンサ303は、例えば、加速度センサであり、ビーコン受信部30Dに加わる加速度を検出し、加速度に応じたセンサ信号を生成する。IMUセンサ303は、センサ信号を、受信制御部302Dに出力する。 The IMU sensor 303 is, for example, an acceleration sensor, detects the acceleration applied to the beacon receiving unit 30D, and generates a sensor signal according to the acceleration. The IMU sensor 303 outputs the sensor signal to the reception control unit 302D.
 IMUセンサ303は、例えば、ビーコン受信部30Dが設置されるヘルメット39に装着される。これにより、IMUセンサ303は、ヘルメット39を装着した人HMの移動を検出できる。 The IMU sensor 303 is attached to, for example, a helmet 39 in which the beacon receiving unit 30D is installed. As a result, the IMU sensor 303 can detect the movement of the person HM wearing the helmet 39.
 受信制御部302Dは、センサ信号に基づいて、受信強度計測部300において受信する期間(受信期間)を制御する。より具体的には、受信制御部302Dは、センサ信号のベル(振幅等)が切替閾値未満であると、受信制御の単位期間における受信期間を短くする。または、受信制御部302Dは、センサ信号のベル(振幅等)が切替閾値未満であると、受信強度計測部300の動作を停止させる。一方、受信制御部302Dは、センサ信号のベル(振幅等)が切替閾値以上であると、受信制御の単位期間における受信期間を長くする。または、受信制御部302Dは、センサ信号のベル(振幅等)が切替閾値以上であると、受信強度計測部300を連続的に動作させる。 The reception control unit 302D controls the reception period (reception period) in the reception intensity measurement unit 300 based on the sensor signal. More specifically, when the bell (amplitude or the like) of the sensor signal is less than the switching threshold value, the reception control unit 302D shortens the reception period in the unit period of reception control. Alternatively, when the bell (amplitude or the like) of the sensor signal is less than the switching threshold value, the reception control unit 302D stops the operation of the reception intensity measurement unit 300. On the other hand, when the bell (amplitude or the like) of the sensor signal is equal to or larger than the switching threshold value, the reception control unit 302D prolongs the reception period in the unit period of reception control. Alternatively, the reception control unit 302D continuously operates the reception intensity measurement unit 300 when the bell (amplitude or the like) of the sensor signal is equal to or higher than the switching threshold value.
 このような構成および制御を用いることによって、ビーコン受信部30Dは、人HMが移動していないとき、または、人HMの移動が殆ど無いときに、受信期間を短くし、人HMがある程度の速度以上で移動しているときに、受信期間を長くする。これにより、ビーコン受信部30Dは、判定の精度を低下させることなく、消費電力を低減できる。 By using such a configuration and control, the beacon receiver 30D shortens the reception period when the human HM is not moving or when there is almost no movement of the human HM, and the human HM has a certain speed. When moving above, extend the reception period. As a result, the beacon receiving unit 30D can reduce the power consumption without deteriorating the accuracy of the determination.
 [第6の実施形態]
 本発明の第6の実施形態に係る入退場判定技術について、図を参照して説明する。図18は、第6の実施形態に係る入退場判定の拡張システムの一例を示す機能ブロック図である。
[Sixth Embodiment]
The entrance / exit determination technique according to the sixth embodiment of the present invention will be described with reference to the drawings. FIG. 18 is a functional block diagram showing an example of an expansion system for entry / exit determination according to the sixth embodiment.
 図18に示すように、拡張システム1は、入退場判定システム10E、クラウド2、および、管理装置3を備える。入退場判定システム10Eは、第1の実施形態に係る入退場判定システム10に対して、通信部60を備える点で異なる。入退場判定システム10Eの他の構成は、入退場判定システム10と同様であり、同様の箇所の説明は省略する。 As shown in FIG. 18, the expansion system 1 includes an entry / exit determination system 10E, a cloud 2, and a management device 3. The entrance / exit determination system 10E is different from the entrance / exit determination system 10 according to the first embodiment in that the communication unit 60 is provided. Other configurations of the entry / exit determination system 10E are the same as those of the entry / exit determination system 10, and the description of the same parts will be omitted.
 通信部60には、判定部40による入退場の判定結果を含む入退場情報が入力される。入退場情報は、上述の境界BDに対する入退場の判定、入退場の時刻(タイミング)とともに、ビーコン受信部30の識別ID(人HMの識別情報)を含んでいる。通信部60は、入退場情報をクラウド2に送信する。 Entrance / exit information including the entrance / exit determination result by the determination unit 40 is input to the communication unit 60. The entry / exit information includes the entry / exit determination for the boundary BD described above, the entry / exit time (timing), and the identification ID (identification information of the person HM) of the beacon receiving unit 30. The communication unit 60 transmits the entrance / exit information to the cloud 2.
 クラウド2は、このように送信された入退場情報を、データベース化して記録する。 Cloud 2 records the entrance / exit information transmitted in this way as a database.
 管理装置3は、例えば、管理用PCである。管理装置3は、クラウド2にアクセス可能であり、クラウド2から入退場情報を取得する。管理装置3は、入退場情報を表示可能な機能を備える。これにより、例えば、上述の作業場の管理者は、遠隔地において、各作業者の入退場情報を閲覧でき、管理できる。 The management device 3 is, for example, a management PC. The management device 3 can access the cloud 2 and acquires entry / exit information from the cloud 2. The management device 3 has a function capable of displaying entry / exit information. Thereby, for example, the manager of the above-mentioned workplace can view and manage the entrance / exit information of each worker at a remote place.
 なお、図18では、1箇所の入退場情報がクラウド2に記録される態様を示したが、複数箇所の入退場情報をクラウド2に記録することができる。これにより、管理者は、複数の作業場の入退場情報を一元管理でき、管理効率は向上する。 Although FIG. 18 shows a mode in which entry / exit information at one location is recorded in the cloud 2, entry / exit information at a plurality of locations can be recorded in the cloud 2. As a result, the manager can centrally manage the entrance / exit information of a plurality of workplaces, and the management efficiency is improved.
 [第7の実施形態]
 本発明の第7の実施形態に係る入退場判定技術について、図を参照して説明する。図19は、第7の実施形態に係る入退場ゲートの一例を示す外観斜視図である。
[7th Embodiment]
The entrance / exit determination technique according to the seventh embodiment of the present invention will be described with reference to the drawings. FIG. 19 is an external perspective view showing an example of the entrance / exit gate according to the seventh embodiment.
 第7の実施形態に係る入退場判定システムは、第1の実施形態に係る入退場判定システム10に対して、入退場ゲートを備える点で異なる。第6の実施形態に係る入退場判定システムの他の構成は、入退場判定システム10と同様であり、同様の箇所の説明は省略する。 The entrance / exit determination system according to the seventh embodiment is different from the entrance / exit determination system 10 according to the first embodiment in that an entrance / exit gate is provided. Other configurations of the entrance / exit determination system according to the sixth embodiment are the same as those of the entrance / exit determination system 10, and the description of the same parts will be omitted.
 図19に示すように、入退場ゲート80は、天井壁81、側壁821、および、側壁822を備える。側壁821と側壁822とは、互いの主面が対向するように距離をおいて、地面に配設される。天井壁81は、側壁821と側壁822とによって支持される。これにより、天井壁81、側壁821、側壁822、および、地面に囲まれる空間が形成される。 As shown in FIG. 19, the entrance / exit gate 80 includes a ceiling wall 81, a side wall 821, and a side wall 822. The side wall 821 and the side wall 822 are arranged on the ground at a distance so that their main surfaces face each other. The ceiling wall 81 is supported by the side wall 821 and the side wall 822. As a result, a space surrounded by the ceiling wall 81, the side wall 821, the side wall 822, and the ground is formed.
 遮蔽部材21は、この空間内に配置される。遮蔽部材21の主面211および主面212は、天井壁81の主面(底面)、側壁821の主面(側面)、および、側壁822の主面(側面)に直交する。この際、遮蔽部材21は、天井壁81、側壁821、側壁822、および、地面に囲まれる空間の一部を開口するように配置される。この開口が、移動体の通過する経路となる。 The shielding member 21 is arranged in this space. The main surface 211 and the main surface 212 of the shielding member 21 are orthogonal to the main surface (bottom surface) of the ceiling wall 81, the main surface (side surface) of the side wall 821, and the main surface (side surface) of the side wall 822. At this time, the shielding member 21 is arranged so as to open a part of the space surrounded by the ceiling wall 81, the side wall 821, the side wall 822, and the ground. This opening serves as a path through which the moving body passes.
 ビーコン発信機221は、遮蔽部材21の主面211に配置され、ビーコン発信機222は、遮蔽部材21の主面212に配置される。 The beacon transmitter 221 is arranged on the main surface 211 of the shielding member 21, and the beacon transmitter 222 is arranged on the main surface 212 of the shielding member 21.
 このような構成では、移動体は、天井壁81、側壁821、側壁822、および、地面に囲まれる空間における遮蔽部材21の横を通って、入退場する。したがって、入退場時に、移動体は、遮蔽部材21に近い経路を通る。これにより、入退場は、より確実に判定できる。 In such a configuration, the moving body enters and exits by passing by the ceiling wall 81, the side wall 821, the side wall 822, and the shielding member 21 in the space surrounded by the ground. Therefore, when entering and exiting, the moving body follows a path close to the shielding member 21. As a result, entry / exit can be determined more reliably.
 なお、入退場ゲート80は、遮蔽部材21の配置に合わせて設置するものなくてもよく、元々存在する入退場ゲート80に、遮蔽部材21およびビーコン発信機を取り付けてもよい。 The entrance / exit gate 80 may not be installed according to the arrangement of the shielding member 21, and the shielding member 21 and the beacon transmitter may be attached to the originally existing entrance / exit gate 80.
 上述の各実施形態の構成および処理は、適宜組み合わせることが可能であり、それぞれの組合せに応じた作用効果を奏することができる。例えば、いずれの実施形態、および、それらの組合せであっても、スペースを取らずに設置可能であること、無指向性のビーコンであっても利用できること等の効果を奏することができる。 The configurations and treatments of the above-mentioned embodiments can be appropriately combined, and the effects can be exerted according to each combination. For example, any of the embodiments and combinations thereof can be installed without taking up space, and even an omnidirectional beacon can be used.
1:拡張システム
2:クラウド
3:管理装置
10、10B、10E:入退場判定システム
21:遮蔽部材
30、30B、30C、30D:ビーコン受信部
39:ヘルメット
40、40B:判定部
50:通知部
60:通信部
80:入退場ゲート
81:天井壁
211、212:主面
221、222:ビーコン発信機
290、291、292:遮蔽部材
300:受信強度計測部
301:復調部
302、302D:受信制御部
390:後頭部
401:受信強度差算出部
402:判定信号生成部
403、403B:判定演算部
405:時間変位算出部
821、822:側壁
AR1:第1領域
AR2:第2領域
BD:境界
BW221、BW222:ビーコン信号
HM:人
RSSI、RSSI1、RSSI2:受信強度
1: Expansion system 2: Cloud 3: Management device 10, 10B, 10E: Entrance / exit determination system 21: Shielding member 30, 30B, 30C, 30D: Beacon receiving unit 39: Helmet 40, 40B: Determination unit 50: Notification unit 60 : Communication unit 80: Entrance / exit gate 81: Ceiling wall 211, 212: Main surface 221, 222: Beacon transmitter 290, 291, 292: Shielding member 300: Reception strength measurement unit 301: Demodulation unit 302, 302D: Reception control unit 390: Rear head 401: Reception intensity difference calculation unit 402: Judgment signal generation unit 403, 403B: Judgment calculation unit 405: Time displacement calculation unit 821, 822: Side wall AR1: First region AR2: Second region BD: Boundary BW 221 BW 222 : Beacon signal HM: Human RSSI, RSSI1, RSSI2: Reception strength

Claims (15)

  1.  第1面を有し、電磁シールド性を備える部材と、
     前記第1面に配置され、第1ビーコン信号を送信する第1ビーコン発信部と、
     移動体に装着され、前記第1ビーコン信号を受信可能なビーコン受信部と、
     前記第1ビーコン信号の受信強度を用いて、入退場を判定する判定部と、
     を備える、
     入退場判定システム。
    A member having a first surface and having electromagnetic shielding properties,
    A first beacon transmitting unit arranged on the first surface and transmitting a first beacon signal,
    A beacon receiver that is attached to a moving body and can receive the first beacon signal,
    A determination unit that determines entry / exit using the reception strength of the first beacon signal, and
    To prepare
    Entrance / exit judgment system.
  2.  前記判定部は、
     第1時刻に受信した前記第1ビーコン信号と、第2時刻に受信した前記第1ビーコン信号の受信強度の時間変位を算出する時間変位算出部と、
     前記時間変位を用いて前記入退場を判定する判定演算部と、
     を備える、
     請求項1に記載の入退場判定システム。
    The determination unit
    A time displacement calculation unit that calculates the time displacement of the reception intensity of the first beacon signal received at the first time and the first beacon signal received at the second time.
    A determination calculation unit that determines entry / exit using the time displacement,
    To prepare
    The entry / exit determination system according to claim 1.
  3.  前記時間変位算出部は、前記第1時刻と前記第2時刻とによる前記受信強度の微分値を、前記受信強度の時間変位として算出する、
     請求項2に記載の入退場判定システム。
    The time displacement calculation unit calculates the differential value of the reception intensity between the first time and the second time as the time displacement of the reception intensity.
    The entry / exit determination system according to claim 2.
  4.  前記ビーコン受信部は、
      所定の期間で受信する前記第1ビーコン信号の受信強度を計測し、
      前記計測時に、所定時間内に計測した前記第1ビーコン信号の受信強度に基づく値を出力する、
     請求項1乃至請求項3のいずれかに記載の入退場判定システム。
    The beacon receiving unit is
    The reception strength of the first beacon signal received in a predetermined period is measured, and the reception strength is measured.
    At the time of the measurement, a value based on the reception intensity of the first beacon signal measured within a predetermined time is output.
    The entry / exit determination system according to any one of claims 1 to 3.
  5.  前記部材は、前記第1面と反対側に面する第2面を有し、
     前記第2面に配置され、第2ビーコン信号を送信する第2ビーコン発信部を備え、
     前記ビーコン受信部は、前記第2ビーコン信号を受信可能であり、
     前記判定部は、前記第1ビーコン信号の受信強度、および、前記第2ビーコン信号の受信強度を用いて、前記入退場を判定する、
     請求項1に記載の入退場判定システム。
    The member has a second surface facing the opposite side of the first surface.
    A second beacon transmitting unit, which is arranged on the second surface and transmits a second beacon signal, is provided.
    The beacon receiving unit can receive the second beacon signal and can receive the second beacon signal.
    The determination unit determines the entry / exit using the reception strength of the first beacon signal and the reception strength of the second beacon signal.
    The entry / exit determination system according to claim 1.
  6.  前記判定部は、
     前記第1ビーコン信号の受信強度と前記第2ビーコン信号の受信強度との受信強度差を算出する受信強度差算出部と、
     前記受信強度差から判定信号を生成する判定信号生成部と、
     前記判定信号を用いて前記入退場を判定する判定演算部と、
     を備える、
     請求項5に記載の入退場判定システム。
    The determination unit
    A reception strength difference calculation unit that calculates a reception strength difference between the reception strength of the first beacon signal and the reception strength of the second beacon signal, and a reception strength difference calculation unit.
    A judgment signal generation unit that generates a judgment signal from the reception intensity difference,
    A determination calculation unit that determines entry / exit using the determination signal,
    To prepare
    The entry / exit determination system according to claim 5.
  7.  前記判定信号生成部は、
     前記受信強度差の時間変位を用いて前記判定信号を生成する、
     請求項6に記載の入退場判定システム。
    The determination signal generation unit
    The determination signal is generated using the time displacement of the reception intensity difference.
    The entry / exit determination system according to claim 6.
  8.  前記判定信号生成部は、
     前記受信強度差と判定信号生成用の閾値とを用いて、2値化された前記判定信号を生成する、
     請求項7に記載の入退場判定システム。
    The determination signal generation unit
    Using the reception intensity difference and the threshold value for generating the determination signal, the binarized determination signal is generated.
    The entry / exit determination system according to claim 7.
  9.  前記ビーコン受信部は、
      所定の時間間隔で前記第1ビーコン信号の受信強度と前記第2ビーコン信号の受信強度を計測し、
      前記計測時に、所定時間内に計測した前記第1ビーコン信号の受信強度に基づく値と前記所定時間内に計測した前記第2ビーコン信号の受信強度に基づく値とを出力する、
     請求項5乃至請求項8のいずれかに記載の入退場判定システム。
    The beacon receiving unit is
    The reception strength of the first beacon signal and the reception strength of the second beacon signal are measured at predetermined time intervals, and the reception strength is measured.
    At the time of the measurement, a value based on the reception intensity of the first beacon signal measured within a predetermined time and a value based on the reception intensity of the second beacon signal measured within the predetermined time are output.
    The entry / exit determination system according to any one of claims 5 to 8.
  10.  前記ビーコン受信部は、前記受信強度が小さくなるのに応じて、受信期間を短くする、
     請求項1乃至請求項9のいずれかに記載の入退場判定システム。
    The beacon receiving unit shortens the receiving period as the receiving intensity decreases.
    The entry / exit determination system according to any one of claims 1 to 9.
  11.  前記移動体の移動を検出するIMUセンサを備え、
     前記ビーコン受信部は、前記IMUセンサが検出した前記移動体の移動状態に応じて、受信期間の長さを設定する、
     請求項1乃至請求項10のいずれかに記載の入退場判定システム。
    It is equipped with an IMU sensor that detects the movement of the moving object.
    The beacon receiving unit sets the length of the receiving period according to the moving state of the moving body detected by the IMU sensor.
    The entry / exit determination system according to any one of claims 1 to 10.
  12.  前記入退場の判定結果を通知する通知部を備える、
     請求項1乃至請求項11のいずれかに記載の入退場判定システム。
    A notification unit for notifying the entrance / exit determination result is provided.
    The entry / exit determination system according to any one of claims 1 to 11.
  13.  前記移動体が装着する装着物を備え、
     前記ビーコン受信部は、前記装着物における前記移動体の移動方向における後部側に配置される、
     請求項1乃至請求項12のいずれかに記載の入退場判定システム。
    Equipped with an attachment to be worn by the moving body
    The beacon receiving unit is arranged on the rear side in the moving direction of the moving body in the mounted object.
    The entry / exit determination system according to any one of claims 1 to 12.
  14.  電磁シールド性を備える部材における第1面に配置された第1ビーコン発信部から、入退場を判定する境界の一方側の領域に第1ビーコン信号を発信するステップと、
     移動体に装着されたビーコン受信部で、前記第1ビーコン信号を受信するステップと、
     前記第1ビーコン信号の受信強度を用いて、前記入退場を判定するステップと、
     を有する、
     入退場判定方法。
    A step of transmitting a first beacon signal from a first beacon transmitting unit arranged on the first surface of a member having electromagnetic shielding properties to a region on one side of a boundary for determining entry / exit.
    The step of receiving the first beacon signal at the beacon receiving unit mounted on the moving body, and
    The step of determining entry / exit using the reception strength of the first beacon signal, and
    Have,
    Entry / exit judgment method.
  15.  電磁シールド性を備える部材における第1面に配置された第1ビーコン発信部から、入退場を判定する境界の一方側の領域に第1ビーコン信号を発信し、前記第1面と反対側の第2面に配置された第2ビーコン発信機から前記境界の他方側の領域に第2ビーコン信号を発信するステップと、
     移動体に装着されたビーコン受信部で、前記第1ビーコン信号および前記第2ビーコン信号を受信するステップと、
     前記第1ビーコン信号の受信強度、および、前記第2ビーコン信号の受信強度を用いて、前記入退場を判定するステップと、
     を有する、
     入退場判定方法。
    A first beacon transmitter arranged on the first surface of a member having electromagnetic shielding properties transmits a first beacon signal to a region on one side of a boundary for determining entry / exit, and a first beacon signal on the opposite side to the first surface. A step of transmitting a second beacon signal from a second beacon transmitter arranged on two surfaces to a region on the other side of the boundary, and a step of transmitting the second beacon signal.
    A step of receiving the first beacon signal and the second beacon signal at the beacon receiving unit mounted on the moving body, and
    A step of determining entry / exit using the reception strength of the first beacon signal and the reception strength of the second beacon signal.
    Have,
    Entry / exit judgment method.
PCT/JP2021/034833 2020-12-16 2021-09-22 Entry/exit determination system and entry/exit determination method WO2022130725A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022569718A JPWO2022130725A1 (en) 2020-12-16 2021-09-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-208047 2020-12-16
JP2020208047 2020-12-16

Publications (1)

Publication Number Publication Date
WO2022130725A1 true WO2022130725A1 (en) 2022-06-23

Family

ID=82059010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034833 WO2022130725A1 (en) 2020-12-16 2021-09-22 Entry/exit determination system and entry/exit determination method

Country Status (2)

Country Link
JP (1) JPWO2022130725A1 (en)
WO (1) WO2022130725A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018054485A (en) * 2016-09-29 2018-04-05 Kddi株式会社 Terminal position determination device and terminal position determination program
JP2018064238A (en) * 2016-10-14 2018-04-19 ぷらっとホーム株式会社 Travel path detection system
JP2019002850A (en) * 2017-06-16 2019-01-10 株式会社竹中工務店 Location identification system, location identification device, and location identification program

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6294117B2 (en) * 2014-03-25 2018-03-14 株式会社シブタニ Electric lock system
JP2017116389A (en) * 2015-12-24 2017-06-29 シャープ株式会社 Portable communication terminal and method for detecting position of portable communication terminal
JP2018207151A (en) * 2017-05-30 2018-12-27 セイコーエプソン株式会社 Display device, reception device, program, and control method of reception device
JP7304713B2 (en) * 2019-02-28 2023-07-07 ニッタン株式会社 Location information systems and personal digital assistants
JP2020165687A (en) * 2019-03-28 2020-10-08 株式会社日立製作所 Worker position and posture detection system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018054485A (en) * 2016-09-29 2018-04-05 Kddi株式会社 Terminal position determination device and terminal position determination program
JP2018064238A (en) * 2016-10-14 2018-04-19 ぷらっとホーム株式会社 Travel path detection system
JP2019002850A (en) * 2017-06-16 2019-01-10 株式会社竹中工務店 Location identification system, location identification device, and location identification program

Also Published As

Publication number Publication date
JPWO2022130725A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
JP3793822B1 (en) Microwave sensor
CA3081537A1 (en) Motion detection and localization based on bi-directional channel sounding
Scholz et al. Challenges for device-free radio-based activity recognition
JP3964405B2 (en) Alarm device
KR100974946B1 (en) System and method for preventing collision of cranes
WO2022130725A1 (en) Entry/exit determination system and entry/exit determination method
US20110148419A1 (en) Apparatus and method for detecting underground objects
JP2017181108A (en) Electric wave sending unit, mobile terminal, radio communication system, radio communication program, and radio communication method
KR102001246B1 (en) Apparatus for detecting metal explosives buried underground by multi mode of time domain and frequency domain method
CN212012668U (en) Intelligent synchronous light curtain for safety detection and measurement
CN207976580U (en) A kind of undersea detection Sonar system based on Du Fen chaos systems
US10591590B1 (en) Control algorithm for wireless sensor to estimate and calculate environmental parameters
KR102036368B1 (en) Railroad test system and method thereof
KR101455927B1 (en) Method and apparatus for detecting intruder
CA2874704C (en) Systems and methods for detecting a change in position of an object
CN108169754A (en) A kind of undersea detection Sonar system based on Du Fen chaos systems
KR101881230B1 (en) Device for sensing motion
JP2014137295A (en) Monitoring device, monitoring system, and monitoring method and monitoring program
WO2011070370A1 (en) Proximity monitoring
JP2013120104A (en) Vibration sensor system
JP7088544B2 (en) Approach detection system
US20170140621A1 (en) Site profiling and automated calibration
JP2013024844A (en) Intrusion detection device, intrusion detection system, intrusion detection method, and intrusion detection program
JP5872152B2 (en) Railroad crossing obstacle detection device
JP2014135004A (en) Monitoring system, monitoring device, monitoring method and monitoring program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906090

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022569718

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906090

Country of ref document: EP

Kind code of ref document: A1