WO2022091374A1 - Coffee beverage production device - Google Patents

Coffee beverage production device Download PDF

Info

Publication number
WO2022091374A1
WO2022091374A1 PCT/JP2020/040925 JP2020040925W WO2022091374A1 WO 2022091374 A1 WO2022091374 A1 WO 2022091374A1 JP 2020040925 W JP2020040925 W JP 2020040925W WO 2022091374 A1 WO2022091374 A1 WO 2022091374A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
steam
temperature
hot water
coffee beverage
Prior art date
Application number
PCT/JP2020/040925
Other languages
French (fr)
Japanese (ja)
Inventor
剛平 太田
篤 岡山
Original Assignee
バルミューダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バルミューダ株式会社 filed Critical バルミューダ株式会社
Priority to PCT/JP2020/040925 priority Critical patent/WO2022091374A1/en
Publication of WO2022091374A1 publication Critical patent/WO2022091374A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/04Coffee-making apparatus with rising pipes
    • A47J31/057Coffee-making apparatus with rising pipes with water container separated from beverage container, the hot water passing the filter only once i.e. classical type of drip coffee makers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/44Parts or details or accessories of beverage-making apparatus
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/44Parts or details or accessories of beverage-making apparatus
    • A47J31/46Dispensing spouts, pumps, drain valves or like liquid transporting devices
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J36/00Parts, details or accessories of cooking-vessels
    • A47J36/06Lids or covers for cooking-vessels
    • A47J36/10Lid-locking devices

Definitions

  • the present invention relates to a coffee beverage producing apparatus, and more particularly to a coffee beverage producing apparatus that stores the extracted coffee beverage in a reservoir.
  • Patent Document 1 includes a hot water supply port for supplying hot water to a dripper and a hot water supply port for directly supplying hot water to a coffee cup without going through the dripper, and the hot water is supplied to the dripper to reduce the drip amount to 30 to 70% for one cup.
  • a drip-type electric coffee maker that stops supplying hot water to a dripper and controls the addition of the remaining 70 to 30% of hot water directly to a coffee cup is disclosed.
  • Patent Document 2 coffee that supplies hot water from a water container to a filter case (dripper) in which coffee powder is set by detecting water vapor generated by heating the water stored in the water container. Beverage extractors are disclosed. Further, Patent Document 2 discloses that the cup is heated by discharging the steam to the cup for storing the coffee beverage.
  • a coffee beverage manufacturing device in which the extracted coffee beverage is stored in a reservoir (for example, a server or a coffee cup), there is a problem that the temperature of the coffee beverage stored in the reservoir is not sufficiently high and becomes slimy. be.
  • a coffee beverage manufacturing device equipped with a heat insulating heater for heating a reservoir has also been proposed.
  • the main purpose of the heat insulating heater is to keep the temperature of the coffee beverage stored in the reservoir at a high temperature, such a heat insulating heater keeps heating the reservoir, that is, the coffee beverage for a long time.
  • the coffee component of the coffee beverage is volatilized, which may cause a problem that the taste of the coffee beverage is deteriorated.
  • the number of parts of the coffee beverage manufacturing apparatus increases by providing the heat insulating heater.
  • Patent Document 2 it is conceivable to heat the reservoir by discharging water vapor to the reservoir.
  • the reservoir has another opening in addition to the opening into which water vapor is injected, the water vapor injected from the opening will escape from the other opening, and the reservoir will be efficient. There is a problem that it cannot be heated.
  • Patent Document 2 in addition to the water vapor inlet, there is another opening that communicates with the spout of the reservoir and the filter case, and the steam injected into the reservoir has such other openings. It is thought that it will come out of the opening.
  • An object of the present invention is to efficiently suppress a decrease in temperature of a coffee beverage stored in a storage device while suppressing deterioration of the taste of the coffee beverage in the coffee beverage manufacturing apparatus.
  • the present invention is a coffee beverage manufacturing apparatus including an apparatus main body for extracting coffee beverages and a reservoir which is a container for storing the coffee beverages, and the reservoir is set in the apparatus main body.
  • the coffee beverage manufacturing apparatus is provided with a steam control unit for discharging the steam from the steam discharge port toward the reservoir opening.
  • the steam discharge port opens downward in the vertical direction, and the steam is discharged downward in the vertical direction.
  • the steam control unit discharges the steam from the steam discharge port toward the reservoir opening, and prior to the extraction step in which the hot water is discharged to the extraction unit and the coffee beverage is extracted. Good to do.
  • the steam control unit may execute the steam discharge from the steam discharge port toward the reservoir opening prior to the steaming step of steaming the coffee raw material set in the extraction unit.
  • the apparatus main body is provided in the middle of the upstream side flow path through which water flows, a water supply unit that sends water to the upstream side flow path, a water supply control unit that controls the water supply unit, and the upstream side flow path.
  • a heating unit that heats the water sent by the water supply unit to make the hot water or the steam, a temperature control unit that controls the heating unit, and an outflow destination of the hot water or the steam from the upstream flow path.
  • the steam control unit includes the water supply control unit, the temperature control unit, and the flow path selection unit. Then, the flow path selection unit selects the second flow path, the water supply control unit sends the water to the upstream flow path, and the temperature control unit heats the water into the steam. By controlling the unit, the steam may be discharged from the steam discharge port toward the reservoir opening.
  • the main body of the apparatus further includes a temperature detection unit for detecting the temperature of the hot water, and the temperature control unit heats the heating unit so that the hot water reaches a target temperature based on the detection temperature of the temperature detection unit. It is preferable that the target temperature in the rear side period, which is the period of the extraction step following the front side period, is lower than the target temperature in the front side period of the extraction step.
  • the target temperature is maintained at the first temperature for a certain period, and within the posterior period, the target temperature becomes a second temperature, which is a temperature lower than the first temperature for a certain period. It should be maintained.
  • the reservoir opening may be the spout of the reservoir.
  • the reservoir is formed of a double structure of an inner bottle and an outer bottle, and has a vacuum layer between the inner bottle and the outer bottle.
  • the apparatus main body may further include a posture regulating mechanism that regulates the posture of the reservoir with respect to the apparatus main body so that the reservoir opening faces the steam discharge port in the set state.
  • the coffee beverage manufacturing apparatus it is possible to efficiently suppress the decrease in temperature while suppressing the deterioration of the taste of the coffee beverage stored in the reservoir.
  • FIG. 1 is a functional block diagram of the coffee beverage manufacturing apparatus 10 according to the present embodiment.
  • the coffee beverage manufacturing device 10 is a drip-type device for extracting coffee beverages.
  • the user can operate the coffee beverage producing apparatus 10 by performing only the minimum operation for selecting the operation mode, the number of cups, and the like. As such, the actual extraction operation is automatically performed according to the coffee beverage production program stored in the device.
  • the coffee beverage manufacturing apparatus 10 may be a small one installed in a home, a workplace, or the like, or a large one installed in a coffee shop or the like.
  • the water tank 12 is a tank for storing water, for example, made of resin or the like.
  • the water tank 12 stores water supplied by the user.
  • the pump 14 as a water feeding unit is, for example, an electric pump such as a rotary pump that pumps water by rotation of a motor or a vibration pump driven by electromagnetic force.
  • a rotary pump is used as the pump 14.
  • the pump 14 is controlled by a pump control unit 40, which will be described later, and pumps the water stored in the water tank 12 to the upstream flow path 16.
  • the upstream side flow path 16 is a flow path of water, hot water, or steam extending from the pump 14 to the solenoid valve 20 described later.
  • the heater 18 as a heating unit is provided in the middle of the upstream flow path 16 and heats the water pumped by the pump 14 (not all the water stored in the water tank 12) into hot water or steam. Is. In the present specification, regardless of the temperature, the liquid before heating by the heater 18 is referred to as water, and the liquid heated by the heater 18 is referred to as hot water. Further, water that is heated by the heater 18 to become a gas is called steam.
  • the heater 18 operates under the control of the temperature control unit 42, which will be described later.
  • the solenoid valve 20 includes, for example, a solenoid portion having a coil and a valve portion.
  • the valve portion is driven by the current flowing through the coil, so that the flow path of the hot water or steam flowing through the upstream side flow path 16 after the solenoid valve 20 (in other words, the hot water or steam from the upstream side flow path 16). Outflow destination) can be switched.
  • the solenoid valve 20 operates under the control of the flow path selection unit 44, which will be described later.
  • the solenoid valve 20 allows the inflow of hot water or steam from the upstream side flow path 16 to the main flow path 22, and the inflow of hot water or steam from the upstream side flow path 16 to the bypass flow path 24.
  • the main flow path selection state is prohibited, the inflow of hot water or steam from the upstream side flow path 16 to the main flow path 22 is prohibited, and the inflow of hot water or steam from the upstream side flow path 16 to the bypass flow path 24 is allowed. It is possible to take either a bypass flow path selection state or a bypass flow path selection state. Needless to say, when the solenoid valve 20 is in the main flow path selection state, hot water or steam from the upstream side flow path 16 flows into the main flow path 22 and does not flow into the bypass flow path 24. When the solenoid valve 20 is in the bypass flow path selection state, hot water or steam from the upstream side flow path 16 does not flow into the main flow path 22 but flows into the bypass flow path 24.
  • the solenoid valve 20 takes a state of selecting both flow paths that allows the inflow of hot water or steam from the upstream side flow path 16 to both the main flow path 22 and the bypass flow path 24. May be possible. In such a state of selecting both flow paths, it is desirable to be able to adjust the amount of hot water or steam flowing to the main flow path 22 and the amount of hot water or steam flowing through the bypass flow path 24. Further, the solenoid valve 20 may be capable of taking a flow path non-selection state that prohibits the inflow of hot water or steam from the upstream side flow path 16 to both the main flow path 22 and the bypass flow path 24.
  • the main flow path 22 as the first flow path is a flow path through which hot water or steam flows, which extends from the solenoid valve 20 to the dripper 26 as the extraction unit.
  • hot water discharged to the dripper 26 for extracting coffee beverages circulates in the main flow path 22.
  • the opening on the dripper 26 side of the main flow path 22 opens downward in the vertical direction and is located above the dripper 26. As a result, the hot water flowing through the upstream side flow path 16 and the main flow path 22 is discharged to the dripper 26 from the opening.
  • the bypass flow path 24 as the second flow path is a flow path through which hot water or steam flows, which extends from the solenoid valve 20 to the server 28.
  • the server-side opening 24a which is the opening end of the bypass flow path 24 on the server 28 side, opens downward in the vertical direction, and the server-side opening 24a is mounted on the server stand 30. It is located above the installed server 28.
  • the hot water or steam flowing through the upstream side flow path 16 and the bypass flow path 24 is discharged vertically downward toward the server 28 from the server side opening 24a.
  • the hot water is discharged to the server 28 without passing through the dripper 26.
  • the dripper 26 has a funnel-shaped shape with a large opening at the top and a small opening at the bottom.
  • a filter such as a paper filter or a flannel filter is set in the dripper 26 by the user.
  • the upper part of the filter is open according to the shape of the dripper 26.
  • a coffee raw material such as coffee powder is set by the user from the opening at the top of the filter.
  • the server 28 as a reservoir is a container for storing coffee beverages extracted by the dripper 26.
  • the server 28 is detachably mounted on the server stand 30. With the server 28 mounted on the server stand 30, the server 28 is located directly below the lower opening 26a of the dripper 26. As a result, the coffee beverage extracted by the dripper 26 and dropped from the lower opening 26a is stored inside the server 28. Further, as will be described in detail later, in a state where the server 28 is mounted on the server base 30, the server 28 is located directly under the server-side opening 24a of the bypass flow path 24. As a result, the hot water or steam discharged from the server-side opening 24a is discharged toward the server 28.
  • the server 28 in this embodiment is a so-called thermos bottle. That is, at least the side surface and the bottom surface of the server 28 are formed by a double structure of an inner bottle and an outer bottle, and the server 28 has a vacuum layer between the inner bottle and the outer bottle. As a result, the server 28 can keep the coffee beverage warm for a long time. On the other hand, even if heat is applied to the server 28 from the outside, the coffee beverage stored in the server 28 cannot be effectively heated. Therefore, the coffee beverage manufacturing apparatus 10 according to the present embodiment does not have a heat insulating heater for keeping the server 28 warm.
  • the storage unit 32 includes, for example, a ROM (Read Only Memory) and a RAM (Random Access Memory).
  • the storage unit 32 stores a coffee beverage manufacturing program for operating the controller 38 described later.
  • the coffee beverage production program may be made updatable via a communication line or a storage medium.
  • the input unit 34 includes, for example, a button, a touch panel, and the like.
  • the input unit 34 is used to input the user's instruction to the coffee beverage manufacturing device 10.
  • the input unit 34 may be operably provided on the surface of the coffee beverage manufacturing apparatus 10, or may be operated remotely by a remote controller or the like.
  • the user uses the input unit 34 to instruct the operation mode of the coffee beverage manufacturing apparatus 10, the number of cups, and the start of the coffee manufacturing process.
  • the temperature sensor 36 as a temperature detection unit includes, for example, a thermistor.
  • the temperature sensor 36 is provided to directly or indirectly detect the temperature of hot water or steam.
  • the temperature sensor 36 detects the temperature of hot water or steam flowing through the upstream flow path 16.
  • the temperature sensor 36 detects the temperature of hot water or steam immediately after being heated by the heater 18.
  • the controller 38 includes, for example, a microcomputer and the like. As shown in FIG. 1, the controller 38 exerts functions as a pump control unit 40, a temperature control unit 42, and a flow path selection unit 44 by a coffee beverage manufacturing program stored in the storage unit 32.
  • the pump control unit 40, the temperature control unit 42, and the flow path selection unit 44 exert a function as a steam control unit 46 that discharges steam from the server-side opening 24a of the bypass flow path 24 toward the spout 28b of the server 28. ..
  • the controller 38 also exhibits a function as an operation mode selection unit 48 by the coffee beverage production program.
  • the pump control unit 40 as a water supply control unit controls the rotation speed of the motor of the pump 14 to control the pumping of water from the water tank 12 to the upstream flow path 16. Specifically, the pump control unit 40 controls the amount of water pumped from the water tank 12 to the upstream flow path 16. As the rotation speed of the motor of the pump 14 increases, a larger amount of water is pumped from the water tank 12 to the upstream flow path 16.
  • the temperature control unit 42 controls the heater 18 to control the temperature of hot water or steam. Specifically, the temperature control unit 42 controls the heater 18 so that the temperature of hot water or steam becomes an individual target temperature set by the coffee beverage production program based on the temperature detected by the temperature sensor 36. In the present embodiment, the operation of the temperature control unit 42 will be described assuming that the heater 18 can take only one of the states of ON (heating water) or OFF (not heating water). The temperature control unit 42 controls the temperature of the hot water or steam to be the individual target temperature by adjusting the time when the heater 18 is ON (the time when the heater 18 is OFF).
  • control method of the heater 18 of the temperature control unit 42 in the present embodiment is an example, and various temperature control methods are used depending on the type of the heater 18 and the like as long as the temperature of hot water or steam is controlled to be the target temperature. Can be adopted.
  • the temperature sensor 36 detects the temperature of hot water or steam flowing through the upstream flow path 16, and the detected temperature does not strictly match the temperature inside the dripper 26. Therefore, each target temperature is set in consideration of a predetermined external environment (temperature, atmospheric pressure, etc.) so that the dripper 26 reaches the target temperature.
  • the flow path selection unit 44 selects the outflow destination of hot water or steam from the upstream side flow path 16 among the main flow path 22 and the bypass flow path 24.
  • the flow path selection unit 44 switches the state of the solenoid valve 20 between the main flow path selection state and the bypass flow path selection state, so that the main flow path 22 and the bypass flow flow as a flow path through which hot water or steam flows. Select one of the roads 24.
  • the solenoid valve 20 can take both flow path selection states, or as will be described later, the selection of the main flow path 22 and the bypass flow path 24 is the solenoid valve.
  • the flow path selection unit 44 can select both the main flow path 22 and the bypass flow path 24 as the flow path through which hot water or steam flows. In this case, it is desirable that the flow path selection unit 44 can adjust the amount of hot water or steam flowing to the main flow path 22 and the amount of hot water or steam flowing through the bypass flow path 24. Further, the flow path selection unit 44 can select both flow path non-selection states in which neither the main flow path 22 nor the bypass flow path 24 is selected as the flow path through which hot water or steam flows.
  • Steam is discharged from the server-side opening 24a of the bypass flow path 24 to the server 28 by the control by the steam control unit 46 including the pump control unit 40, the temperature control unit 42, and the flow path selection unit 44. .. Specifically, the flow path selection unit 44 sets the state of the solenoid valve 20 to the bypass flow path selection state or both flow path selection states, that is, the bypass flow path 24 is used as the outflow destination of water vapor from the upstream side flow path 16. Select, the pump control unit 40 pumps water to the upstream side flow path 16, and the temperature control unit 42 controls the heater 18 so as to turn the water into steam, so that the server 28 is opened from the server side opening 24a. Water vapor is discharged toward.
  • the amount of water pumped by the pump control unit 40 may be appropriately determined according to the amount of steam to be discharged. For example, in a coffee beverage production program, the amount of water to be pumped may be predetermined.
  • the operation mode selection unit 48 selects the operation mode of the coffee beverage production device 10 from a plurality of operation modes predetermined by the coffee beverage production program.
  • the type of coffee beverage to be extracted is changed according to the operation mode.
  • three modes are prepared in advance: a normal mode for extracting a coffee beverage having a normal concentration, an American mode for extracting a coffee beverage thinner than the normal mode, and an ice coffee mode for extracting a coffee beverage for iced coffee.
  • the operation mode selection unit 48 selects an operation mode from these according to an instruction from the user prior to the coffee manufacturing process.
  • the operation mode is not limited to this, and other operation modes may be prepared.
  • each functional block of the coffee beverage manufacturing apparatus 10 is as described above.
  • the portion including the parts other than the server 28 (including the dripper 26) is referred to as an apparatus main body. Therefore, the coffee beverage manufacturing apparatus 10 includes the apparatus main body and the server 28.
  • FIG. 2 is a side view showing a coffee beverage manufacturing apparatus 10 in a set state in which the server 28 is set in the main body of the apparatus (that is, the server 28 is arranged at a predetermined position of the server stand 30).
  • the same reference numerals as those in FIG. 1 are attached to the parts described above.
  • the depth direction of the coffee beverage manufacturing apparatus 10 is the X-axis (the back side is the positive side of the X-axis), the left-right direction is the Y-axis, and the height direction is the Z-axis.
  • the device body of the coffee beverage manufacturing device 10 is provided with a posture regulating mechanism 60 that regulates the posture of the server 28 in the set state.
  • the posture of the server 28 is a concept that means the position of the server 28 in the depth direction (X-axis), the position in the left-right direction (Y-axis), and the direction with respect to the apparatus main body.
  • FIG. 3 is a perspective view of the posture regulating mechanism 60 and the server 28 before the server 28 is set in the apparatus main body.
  • FIG. 4 is a plan view of the posture regulating mechanism 60 and the server 28 before the server 28 is set in the main body of the apparatus.
  • each direction means each direction when the direction of the server 28 is the direction in the set state.
  • the server 28 has two openings, a coffee inlet 28a and a spout 28b, which are open upward.
  • the coffee inlet 28a is provided at substantially the center of the server 28 (protruding portion 28d described later) in a plan view.
  • the spout 28b is provided at the inner end of the upper surface 28c of the server 28.
  • the coffee beverage extracted by the dripper 26 is stored in the server 28 through the coffee inlet 28a. Further, the coffee beverage stored in the server 28 is poured into a cup or the like through the spout 28b.
  • the server 28 is provided with a protruding portion 28d protruding upward from the upper surface 28c.
  • the protruding portion 28d has a shape extending in the depth direction.
  • the protruding portion 28d has an arc shape at the back end and the front end, and has a so-called oval shape in a plan view.
  • the posture control mechanism 60 is configured to include a block-shaped base 62 attached to the side surface of the device housing.
  • the base portion 62 has a recess 64 opened toward the front side in the central portion in the left-right direction.
  • the recess 64 connects a pair of side walls 64a extending in the depth direction and the vertical direction (that is, parallel to the XZ plane) and separated in the left-right direction and the innermost ends of the pair of side walls 64a to form the innermost part of the recess 64. It is configured to include the specified back wall 64b.
  • the width of the recess 64 (length in the left-right direction), in other words, the distance between the pair of side walls 64a is substantially the same as the width of the protrusion 28d of the server 28 (length in the left-right direction).
  • the back wall 64b of the recess 64 has a shape corresponding to the back end of the protruding portion 28d of the server 28.
  • the back wall 64b of the recess 64 also has an arc shape in a plan view. ..
  • the protruding portion 28d of the server 28 is inserted into the recess 64.
  • the state in which the protruding portion 28d is inserted to the innermost part of the recess 64 and the inner end of the protruding portion 28d is in contact with the back wall 64b of the recess 64 is a set state in which the server 28 is set in the apparatus main body.
  • FIG. 5 is a perspective view showing the posture control mechanism 60 and the server 28 in the set state.
  • the back end of the protrusion 28d abuts on the back wall 64b of the recess 64, whereby the position of the server 28 in the depth direction is determined.
  • the side wall 64a of the recess 64 and the side wall of the protrusion 28d come into contact with each other, so that the protrusion 28d is restricted from moving in the left-right direction, and the position of the server 28 in the left-right direction is determined.
  • the protrusion 28d has a shape extending in the depth direction, and the width of the recess 64 is substantially the same as the width of the protrusion 28d, so that the orientation of the server 28 is oriented.
  • the protrusion 28d does not enter the recess 64 unless the spout 28b is oriented toward the back side.
  • the handle of the server 28 hits the side surface of the device housing, and the protruding portion 28d enters the innermost part of the recess 64. not.
  • the server 28 cannot be set in the device main body unless the direction of the server 28 is correct (that is, the direction in which the spout 28b is on the back side). It can be said that the orientation is determined.
  • FIG. 6 is a cross-sectional view showing the vicinity of the upper part of the server 28 in the set state.
  • the position of the server-side opening 24a as the steam discharge port of the bypass flow path 24 is the position facing the spout 28b as the reservoir opening of the server 28.
  • the server-side opening 24a since the server-side opening 24a opens downward in the vertical direction, the server-side opening 24a is located directly above the spout 28b.
  • the alternate long and short dash line in FIG. 6 the water vapor discharged from the server-side opening 24a is injected into the server 28 through the spout 28b.
  • the server 28 has a coffee inlet 28a as an opening in addition to the spout 28b.
  • the coffee inlet 28a is closed by the edge of the lower opening 26a of the dripper 26.
  • the coffee inlet 28a and the lower opening 26a communicate with each other, but a filter in which coffee powder is set exists further above the lower opening 26a, and the coffee inlet 28a is provided by the filter. (And the lower opening 26a communicating with it) is blocked. Therefore, in the set state, the coffee inlet 28a is no longer the opening of the server 28, that is, the spout 28b is the only opening of the server 28.
  • the server 28 is warmed by discharging water vapor from the server-side opening 24a of the bypass flow path 24 toward the spout 28b.
  • the water vapor discharged from the server-side opening 24a is injected into the server 28 from the spout 28b, which is the only opening of the server 28 in the set state.
  • the server 28 can be efficiently heated by steam.
  • the server-side opening 24a of the bypass flow path 24 opens downward in the vertical direction, and water vapor is discharged downward in the vertical direction.
  • the server-side opening 24a of the bypass flow path 24 corresponds to the server opening (spout 28b in the present embodiment) which is the only opening of the server 28. , It does not necessarily have to open downward in the vertical direction.
  • the outline of the configuration of the coffee beverage manufacturing apparatus 10 is as described above. Subsequently, with reference to FIG. 7, the flow of the coffee manufacturing process in the coffee beverage manufacturing device 10 and the details of the processing of each part of the coffee beverage manufacturing device 10 will be described.
  • FIG. 7 shows, taking the case of two cups extraction in the normal mode as an example, the target temperature, the hot water temperature which is the detection temperature of the temperature sensor 36, and the temperature control unit 42 in each process included in the coffee manufacturing process are transmitted to the heater 18.
  • the horizontal axis of each graph included in FIG. 7 represents time, and the vertical axis represents each value.
  • the control timing and control amount of each control unit are stored in the storage unit 32 as parameters in advance so that the optimum control is performed according to the operation mode and the number of cups to be extracted, and the operation mode and the number of cups are stored by the coffee beverage manufacturing program. It is set as appropriate according to the above.
  • the target temperature at each timing in each process shown in FIG. 7 is preset in the coffee manufacturing processing program.
  • the heater control signal output by the temperature control unit 42 is determined based on the detection temperature (that is, the hot water temperature) of the temperature sensor 36 and the target temperature. Therefore, even if the target temperature is the same, the graph of the heater control signal may change according to the hot water temperature that may fluctuate depending on the outside air temperature or the like. Further, the pump control signal and the selected flow path in each process shown in FIG. 7 are also preset in the coffee manufacturing processing program.
  • the coffee production process includes a heater preheating step, a steam discharge step, a main flow path preheating step, a steaming step, an extraction step, a bypass flow path preheating step, a hot water step, and a hot water blowing step. ..
  • each step is sequentially executed in the above order according to the operation of the coffee manufacturing processing program.
  • the user fills the water tank 12 with water, sets the filter and coffee raw materials in the dripper 26, sets the server 28 in the main body of the apparatus, inputs the extraction conditions such as the operation mode from the input unit 34, and starts the coffee manufacturing process. Enter the instructions to do.
  • the coffee beverage manufacturing apparatus 10 automatically (that is, does not require user operation) and sequentially executes each of the above-mentioned steps from the heater preheating step.
  • the heater preheating step is a step of preheating the heater 18.
  • the temperature control unit 42 controls the heater 18 to maintain the “ON” state for a predetermined time.
  • the pump control unit 40 controls the rotation amount of the pump 14 to “0”. It is conceivable that the heater 18 is preheated so that the water remaining in the upstream flow path 16 becomes hot water and moves to the downstream side.
  • the flow path selection unit 44 controls the solenoid valve 20.
  • the flow path selection unit 44 controls the solenoid valve 20 to take the bypass flow path selection state. As a result, the water (hot water) remaining in the upstream flow path 16 is discharged to the server 28. If it is not desired to discharge the water (hot water) remaining in the upstream flow path 16 to the server 28, the flow path selection unit 44 controls the solenoid valve 20 so as to take the flow path non-selection state. You may do it.
  • the steam discharge step is a step of discharging steam from the server-side opening 24a of the bypass flow path 24 toward the spout 28b of the server 28 under the control of the steam control unit 46.
  • the hot water temperature in the steam discharge process is "100 ° C.”, but some of the hot water is steam.
  • the temperature control unit 42 controls the heater 18 so that the water pumped by the pump 14 becomes steam.
  • the heater 18 can be sufficiently heated to turn water into steam by the preheating by the heater preheating step. Therefore, the heater 18 is once controlled in the main steam discharge step. Is "OFF". If the heating amount of the heater 18 for converting water into steam is insufficient after the heater preheating step, the temperature control unit 42 maintains the "ON" state of the heater 18 even in the steam discharge step. To.
  • the flow path selection unit 44 selects the bypass flow path 24 in order to allow water vapor to flow into the bypass flow path 24.
  • the flow path selection unit 44 controls the solenoid valve 20 to take the bypass flow path selection state.
  • the flow path selection unit 44 may be controlled to select both the main flow path 22 and the bypass flow path 24 at this time.
  • the pump 14 in the main flow path preheating step, in order to allow water vapor to flow into the bypass flow path 24, the pump 14 is controlled to rotate at a low rotation speed, and an appropriate amount of water vapor for warming the server 28 is supplied.
  • the water to be obtained is pumped to the upstream flow path 16.
  • the server 28 is warmed by the steam discharge process.
  • the steam discharge step is performed prior to the steaming step and the extraction step.
  • the main flow path preheating step is a step of preheating the main flow path 22 prior to the subsequent steaming step or extraction step.
  • a very small amount of water pumped by the pump 14 is converted into steam by the heater 18, and the steam is circulated through the main flow path 22 to preheat the main flow path 22. It is possible to preheat the main flow path 22 by flowing hot water into the main flow path 22, but if this is done, the hot water is discharged to the dripper 26 and unnecessary hot water is discharged to the dripper 26 in the main flow path preheating step. obtain.
  • by preheating the main flow path 22 with steam it is possible to prevent unnecessary hot water from being discharged to the dripper 26.
  • the temperature control unit 42 controls the heater 18 so that the water pumped by the pump 14 becomes steam.
  • the hot water temperature in the main flow path preheating step is "100 ° C.”, but some of the hot water is steam.
  • the heater 18 can apply enough heat to turn water into steam by preheating by the heater preheating step. Therefore, in the main flow path preheating step.
  • the control of the heater 18 is continuously set to "OFF". If the heating amount of the heater 18 for converting water into steam is insufficient after the steam discharge step, the temperature control unit 42 sets the control of the heater 18 to "ON" in the main flow path preheating step. You may do so.
  • the flow path selection unit 44 selects the main flow path 22 in order to allow water vapor to flow into the main flow path 22.
  • the flow path selection unit 44 controls the solenoid valve 20 to take the main flow path selection state.
  • the flow path selection unit 44 may be controlled to select both the main flow path 22 and the bypass flow path 24 at this time. By doing so, steam can be continuously discharged toward the server 28 even in the main flow path preheating step. Further, as shown in FIG.
  • the pump 14 in the main flow path preheating step, in order to allow water vapor to flow into the main flow path 22, the pump 14 is controlled to rotate at a low rotation speed, and an amount sufficient to preheat the main flow path 22. Water for obtaining steam is pumped to the upstream flow path 16.
  • the steaming step is a step of steaming the coffee raw material set in the dripper 26 by pouring a predetermined amount of hot water into the coffee raw material set in the dripper 26 and taking a certain waiting time before moving to the extraction step.
  • the temperature control unit 42 controls the heater 18 so that the temperature of the hot water becomes a temperature suitable for steaming.
  • the target temperature of the temperature control unit 42 in the steaming step is slightly lower than the target temperature (target temperature TTa in FIG. 7) in the pre-extraction period, which is the pre-period of the subsequent extraction step.
  • the target temperature in the steaming step is set to the temperature in the first half of 90 ° C.
  • the pump control unit 40 selects the main flow path 22 by the flow path selection unit 44, and then discharges a predetermined amount of hot water required for steaming from the main flow path 22 to the dripper 26 in a predetermined time.
  • the rotation speed of the pump 14 is controlled.
  • the pump control unit 40 sets the rotation amount of the pump 14 to "0" and stops the discharge of hot water from the pump 14. In this state, wait for several tens of seconds (for example, 20 to 60 seconds) to steam the coffee raw material. During that time, the temperature of the hot water in the upstream flow path 16 is maintained by the residual heat. In order to improve the taste of the coffee beverage, it is desirable that the steaming time is not too short and not too long.
  • the extraction step is a step of extracting a coffee beverage by discharging hot water to the coffee raw material for a predetermined time.
  • hot water is intermittently discharged to the coffee raw material in the extraction step.
  • the extraction step is divided into a plurality of periods.
  • the extraction step is divided into three periods: an early extraction period, which is an anterior period, and an intermediate extraction period and a late extraction period, which are posterior periods following the anterior period.
  • the extraction step may be composed of two periods, or may be composed of four or more periods.
  • the target temperature of the temperature control unit 42 becomes lower as time passes from the start of extraction. That is, the temperature control unit 42 controls the heater 18 so that the temperature of the hot water becomes lower as time passes from the start of extraction. Therefore, ON / OFF of the heater 18 is controlled even in the process of lowering the temperature.
  • the target temperature TTb as the second temperature in the middle stage of extraction and the target temperature TTc in the latter stage of extraction are lower than the target temperature TTa as the first temperature in the first stage of extraction. .. Further, the target temperature TTc in the latter stage of extraction is lower than the target temperature TTb in the middle stage of extraction.
  • the target temperature is maintained at the target temperature TTa for a certain period
  • the target temperature is maintained at the target temperature TTb
  • the target temperature is targeted for a certain period.
  • the temperature is maintained at TTc.
  • the target temperature TTa in the first half of extraction is about 95 ° C
  • the target temperature TTb in the middle of extraction is about 90 ° C
  • the target temperature TTc in the second half of extraction is about 80 ° C. It has become.
  • the target temperature in the middle stage of extraction is lower than the target temperature in the first stage of extraction. Does not have to be low. That is, the target temperature may be set so that the temperature of the hot water in the middle stage of extraction is substantially lower than the temperature of the hot water in the middle stage of extraction. For example, when the target temperature in the first half of extraction is TTa, even if the target temperature is higher than TTa in a short period of time during the middle extraction period, the target temperature is lower than TTa in other periods in the middle period of extraction, which is substantially the same.
  • the target temperature TTb in the middle stage of extraction is lower than the target temperature TTa in the first stage of extraction. This also applies to the relationship between other periods (or the hot water step described later).
  • the target temperature of each period may be defined as the target temperature within the period or the hot water process, or the time average value of the hot water temperature reflecting this.
  • the time average value of the target temperature or the hot water temperature in the middle stage of extraction is compared with the time average value of the target temperature or the hot water temperature in the early stage of extraction.
  • Another definition can be seen from the viewpoint of the amount of extraction in the early stage of extraction and the amount of extraction in the middle stage of extraction.
  • the time average value of each target temperature or hot water temperature in the extraction amount in the first half of extraction is compared with the time average value of individual target temperature or hot water temperature in the extraction amount in the middle stage of extraction.
  • the flow path selection unit 44 selects the main flow path 22, and then the pump control unit 40 rotates the pump 14, so that hot water is discharged to the dripper 26.
  • the pump control unit 40 intermittently rotates the pump 14 (that is, the pump 14 is repeatedly rotated and stopped), and the dripper 26 is intermittently hot water. Is ejected.
  • the flow path selection unit 44 selects the main flow path 22 while the pump 14 is rotating, and the bypass flow path while the pump 14 is not rotating.
  • 24 it is also possible to adopt a simple control method in which the flow path selection unit 44 controls to select the main flow path 22 throughout the extraction process.
  • hot water is intermittently discharged to the dripper 26 in a plurality of times.
  • control timing and control amount of each control unit are stored in advance so that the optimum control is performed according to the operation mode and the number of cups. It is stored in 32 and is appropriately set according to the operation mode and the number of cups by the coffee beverage production program. As a result, for example, when the hot water is intermittently discharged to the dripper 26 in a plurality of times, it is possible to control the discharge amount of the hot water in each time to be different between the normal mode and the American mode.
  • the target temperature in the pre-extraction period by raising the target temperature in the pre-extraction period (early extraction period) and raising the temperature of the hot water discharged to the dripper 26, more components containing sweetness and acidity can be extracted, and moreover, the components containing sweetness and acidity can be extracted.
  • the target temperature in the posterior period By lowering the target temperature in the posterior period (middle and late extraction) following the anterior period and lowering the temperature of the hot water discharged to the dripper 26, it is astringent and astringent compared to constant temperature control. Extract less clear coffee beverages.
  • the extraction first period which is the front period, is the beginning period of the extraction process, but the front period is not necessarily the beginning period of the extraction process.
  • the anterior period may be before the posterior period (in time).
  • the pre-existing period is located on the front side in the extraction step.
  • the bypass flow path preheating step is a step of preheating the bypass flow path 24 prior to the subsequent hot water addition step.
  • the target temperature lowered for extraction is raised to a temperature suitable for preheating, and then the flow path is moved from the main flow path 22 to the bypass flow path 24.
  • the flow path selection unit 44 controls to switch to.
  • the temperature control unit 42 controls the heater 18 so that the water that is pumped by the pump 14 and remains in the upstream side flow path 16 becomes steam.
  • the temperature control unit 42 turns the heater 18 into an “ON” state and heats the water remaining in the upstream flow path 16 until it becomes steam.
  • the flow path selection unit 44 selects the bypass flow path 24 in order to allow water vapor to flow into the bypass flow path 24.
  • the flow path selection unit 44 controls the solenoid valve 20 to take the bypass flow path selection state.
  • the pump control unit 40 rotates the pump 14 at a low rotation speed, and pumps water to the upstream flow path 16 to obtain a sufficient amount of steam to preheat the bypass flow path 24. do.
  • the hot water addition process is a process of discharging hot water from the bypass flow path 24 to the server 28.
  • the target temperature TTd of the temperature control unit 42 in the hot water step is higher than the target temperature in the subsequent period of the extraction step.
  • the target temperature TTd in the hot water step is at least higher than the target temperature TTc in the late extraction period, which is the last period of the extraction process.
  • the target temperature TTd in the hot water step is higher than the target temperature TTb in the middle of extraction, which is the first period in the subsequent period of the extraction step.
  • the target temperature TTd in the hot water step is often higher than the target temperature TTa in the first period of extraction, which is the first period of the extraction step, which is the case in the present embodiment.
  • the target temperature TTd in the hot water step is 100 ° C.
  • the pump control unit 40 controls the pump 14 so that hot water is discharged from the bypass flow path 24 to the server 28. If the temperature of the discharged hot water drops when a large amount of hot water is discharged to the server 28 at one time in the hot water step, the pump control unit 40 pumps the water to the pump 14 with a short break. Is desirable.
  • the temperature control unit 42 lowers the temperature of the hot water discharged to the dripper 26 in the middle and late stages of extraction. ing.
  • the temperature of the coffee beverage stored in the server 28 may be lower than the optimum temperature.
  • the server table 30 is not provided with a heating means to maintain the temperature at an appropriate temperature, but the target temperature in the hot water step is set higher than at least in the latter stage of extraction, that is, in comparison with at least the latter stage of extraction. By raising the temperature of the hot water in the hot water step, the temperature of the coffee beverage stored in the server 28 is raised so as to approach an appropriate temperature.
  • the hot water removing step is a step of turning the hot water remaining in the upstream side flow path 16 and the bypass flow path 24 into steam and discharging the hot water from the server side opening 24a of the bypass flow path 24 after the hot water addition step.
  • the heater control signal is continuously maintained at “ON” from the hot water boiling step, and the flow path selection unit 44 selects the bypass flow path 24.
  • the pump control unit 40 stops the pump 14. As a result, the hot water remaining in the upstream side flow path 16 and the bypass side flow path 24 becomes steam and is discharged from the server side opening 24a.
  • the coffee manufacturing process in the coffee beverage manufacturing apparatus 10 is completed by a series of steps from the heater preheating step to the hot water blowing step described above.
  • the coffee beverage manufacturing apparatus 10 in the process of coffee manufacturing processing, from the server-side opening 24a of the bypass flow path 24 to the spout 28b which is the only opening of the server 28 in the set state. Steam is discharged. As a result, the water vapor injected from the spout 28b does not escape from the other openings of the server 28, and the server 28 is efficiently heated. As a result, a decrease in the temperature of the coffee beverage stored in the server 28 is suppressed.
  • the coffee beverage manufacturing apparatus 10 does not heat the coffee beverage stored in the server 28 for a long time. As a result, the volatilization of the coffee component from the coffee beverage is suppressed, and the deterioration of the taste of the coffee beverage stored in the server 28 is suppressed.
  • the temperature of the hot water discharged to the dripper 26 in the middle stage and the late stage of extraction is lowered as compared with the first stage of extraction.
  • the temperature of the coffee beverage stored in the server 28 may be lower than the optimum temperature.
  • it is more required to suppress a decrease in the temperature of the coffee beverage stored in the server 28, so that it is more useful to heat the server 28 with steam.
  • the coffee beverage manufacturing apparatus 10 executes the steam discharge step prior to the steaming step. Focusing on the target temperature or the temperature of the hot water, as shown in FIG. 7, the temperature of the steam discharge process is the highest, the temperature of the steaming process (the temperature of the hot water is about 90 ° C) is the lowest, and the extraction process ( The temperature (hot water temperature is about 95 ° C) in the first half of extraction is in the middle. Assuming that the steam discharge step is performed after the steaming step, hot water of about 90 ° C. is discharged to the dripper 26 in the steaming step, the heater 18 is heated and waits until the hot water becomes steam, and then the steam is transferred to the server 28.
  • the coffee beverage manufacturing apparatus 10 executes the steam discharge step prior to the steaming step in order to set the steaming time to an appropriate time.
  • the coffee beverage manufacturing apparatus 10 executes the steam discharge step prior to the extraction step.
  • the server 28 can be preheated before the coffee beverage is injected into the server 28.
  • the steam discharge step may be executed before and after the extraction step.
  • the steam discharge step may be executed continuously (immediately before or immediately after the hot water step) in the hot water step.
  • a hot water addition process is also provided.
  • the hot water step it is possible to further suppress the decrease in the temperature of the coffee beverage stored in the server 28 as compared with the case where the server 28 is heated only by the steam discharge step.
  • the hot water step is executed after the extraction step, but the hot water step may be executed before the extraction step.
  • the hot water step may be performed continuously with the steam discharge step (immediately before or immediately after the steam discharge step). Needless to say, even in that case, since the bypass flow path preheating step is executed before the hot water step, the bypass flow path preheating step is executed before the extraction step. Further, the hot water step may be executed before and after the extraction step.
  • the extraction step and the steam discharge step or the hot water step are executed at the same time.
  • the target temperature hot water temperature
  • the extraction step and the steam discharge step or the hot water step are executed at the same time. If so, at least two heaters 18 (and a temperature sensor 36) would be required. For example, it is necessary to provide heaters 18 in the main flow path 22 and the bypass flow path 24, respectively. This complicates the structure of the coffee beverage manufacturing apparatus 10, and increases the cost or size of the coffee beverage producing apparatus 10. Therefore, it is lower in the coffee beverage manufacturing apparatus 10 to execute the steam discharge step or the hot water step before or after the extraction step than to execute the extraction step and the steam discharge step or the hot water step at the same time. It is advantageous in terms of cost reduction or miniaturization.
  • the steam discharge step may be omitted depending on the operation mode of the coffee beverage manufacturing apparatus 10. For example, when the operation mode of the coffee beverage manufacturing apparatus 10 is the ice coffee mode, the steam discharge step is omitted.
  • the hot water step may be omitted depending on the operation mode of the coffee beverage manufacturing apparatus 10. For example, when the operation mode of the coffee beverage manufacturing apparatus 10 is the ice coffee mode, the hot water step is omitted. If the hot water step is omitted, the bypass flow path preheating step is also omitted. The hot water step may be omitted regardless of the operation mode of the coffee beverage manufacturing apparatus 10.
  • the main flow path preheating step and the steaming step can be omitted, and it is possible to further provide an operation mode in which the time required for the coffee manufacturing process is shortened. Whether or not the main flow path preheating step and the steaming step are executed may also be determined according to the operation mode of the coffee beverage manufacturing apparatus 10.
  • the switching of the hot water flow path is executed by the solenoid valve 20, but the hot water flow path may be switched by other means.
  • both the main flow path 22 and the bypass flow path 24 may be directly connected to the water tank 12.
  • a set of a pump 14, a heater 18, and a temperature sensor 36 is provided for the main flow path 22 and the bypass flow path 24, respectively.
  • the pump control unit 40 when the flow path selection unit 44 selects the main flow path 22, the pump control unit 40 operates the pump 14 of the main flow path 22 to pump water from the water tank 12 to the main flow path 22, and the flow path selection unit 44 When the bypass flow path 24 is selected, the pump control unit 40 operates the pump 14 of the bypass flow path 24 to pump the water in the water tank 12 to the bypass flow path 24.
  • the temperature control unit 42 controls the heater 18 of the main flow path 22 based on the temperature sensor 36 of the main flow path 22 and the target temperature, executes the main flow path preheating step, the steaming step, and the extraction step, and executes the main flow path preheating step, the steaming step, and the extraction step of the bypass flow path 24.
  • the heater 18 of the bypass flow path 24 is controlled based on the temperature sensor 36 and the target temperature, and the steam discharge step, the bypass flow path preheating step, and the hot water addition step are executed.
  • the coffee beverage manufacturing apparatus 10 was an apparatus for extracting coffee beverages by a drip type, but the present invention is another method as long as the extracted coffee beverages are stored in the server 28. It can also be suitably applied to a coffee beverage manufacturing apparatus for extracting coffee beverages.
  • the coffee beverage extracted by the dripper 26 is stored in the server 28, but as a reservoir for storing the coffee beverage, the user can directly drink the coffee beverage from there. It may be something, such as a coffee cup.
  • the coffee cup 70 includes a cup portion 72 for storing coffee beverages and a lid portion 74 attached to the cup portion 72 so as to close the upper opening of the cup portion 72.
  • the cup portion 72 (or the lid portion 74) may be a thermos bottle.
  • the lid portion 74 is attached to the cup portion 72 with a certain holding force.
  • the lid portion 74 has a coffee inlet 74a and a drinking port 74b that are open upward.
  • the coffee beverage from the dripper 26 is stored in the cup portion 72 through the coffee inlet 74a.
  • the user can drink the coffee beverage stored in the cup portion 72 from the drinking spout 74b.
  • the lid portion 74 has a protruding portion 74c protruding upward.
  • a coffee inlet 74a is formed on the upper surface of the protrusion 74c.
  • the coffee inlet 74a is closed by the edge of the lower opening 26a of the dripper 26. Further, in the set state, the position of the opening on the coffee cup side of the bypass flow path 24 is a position facing the drinking port 74b as the reservoir opening which is the only opening of the coffee cup 70 in the set state. As a result, water vapor is discharged from the bypass flow path 24 toward the drinking spout 74b.
  • the pump 14 is used as the water supply unit that sends water to the upstream flow path 16 and the pump control unit 40 is used as the water supply control unit, but the water supply unit and the water supply control unit are limited to these. It is not something that can be done.
  • FIG. 9 is a diagram showing an example of modification of the water supply unit and the water supply control unit.
  • the upstream side flow path 16 is provided so as to extend downward from the water tank 12, and the heater 18 is provided in the middle of the upstream side flow path 16.
  • a valve mechanism 80 as a water feeding unit is provided between the water tank 12 and the heater 18.
  • the valve mechanism 80 has an allowable state (a state in which the valve is open) that allows water to flow from the water tank 12 to the upstream flow path 16 by opening and closing the valve, and a valve mechanism 80 from the water tank 12 to the upstream flow path 16. It is possible to take a prohibited state (a state in which the valve is closed) that prohibits the flow of water.
  • the degree of valve opening may be adjustable, whereby the amount of flowing water per unit time may be adjustable. Since the upstream side flow path 16 extends downward from the water tank 12, the water stored in the water tank 12 flows into the upstream side flow path 16 by the action of gravity under the allowable state. On top of that, the water that has flowed into the upstream flow path 16 is heated by the heater 18, and hot water or steam flows into the main flow path 22 or the bypass flow path 24.
  • the control of the valve mechanism 80 is executed by the valve control unit 82 as the water supply control unit, which is a function of the controller 38. Specifically, the valve mechanism 80 switches between the allowable state and the prohibited state based on the signal from the valve control unit 82.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Apparatus For Making Beverages (AREA)

Abstract

This coffee beverage production device (10) has a main flow path (22) that extends to a dripper (26) in which a coffee raw material is set, and a bypass flow path (24) that extends to a server (28) which stores a coffee beverage extracted with the dripper (26). During a set state in which the server (28) has been set in the device body, the position of a server side opening (24a) in the bypass flow path (24) is a position facing a spout (28b) that is the only opening of the server (28) during the set state. Steam is discharged from the server side opening (24a) to the spout (28b).

Description

コーヒー飲料製造装置Coffee beverage making equipment
 本発明は、コーヒー飲料製造装置に関し、特に、抽出したコーヒー飲料を貯留器に貯留するコーヒー飲料製造装置に関する。 The present invention relates to a coffee beverage producing apparatus, and more particularly to a coffee beverage producing apparatus that stores the extracted coffee beverage in a reservoir.
 従来、コーヒー飲料製造装置が知られている。 Conventionally, coffee beverage manufacturing equipment is known.
 例えば、特許文献1には、ドリッパへ給湯する給湯口と、ドリッパを介さずに直接コーヒーカップへ給湯する給湯口とを備え、ドリッパへ給湯してドリップ量が1カップ分の30~70%になったときに、ドリッパへの給湯を止め、残りの70~30%の分量のお湯を直接コーヒーカップに注ぎ足す制御を行うドリップ式電気コーヒーメーカが開示されている。 For example, Patent Document 1 includes a hot water supply port for supplying hot water to a dripper and a hot water supply port for directly supplying hot water to a coffee cup without going through the dripper, and the hot water is supplied to the dripper to reduce the drip amount to 30 to 70% for one cup. A drip-type electric coffee maker that stops supplying hot water to a dripper and controls the addition of the remaining 70 to 30% of hot water directly to a coffee cup is disclosed.
 また、特許文献2には、水容器に貯留された水が加熱されることで発生した水蒸気を検知することで、コーヒー粉がセットされたフィルタケース(ドリッパ)に水容器から湯を供給するコーヒー飲料抽出器が開示されている。また、特許文献2には、コーヒー飲料を貯留するカップに上記水蒸気を吐出することで、カップを温めることが開示されている。 Further, in Patent Document 2, coffee that supplies hot water from a water container to a filter case (dripper) in which coffee powder is set by detecting water vapor generated by heating the water stored in the water container. Beverage extractors are disclosed. Further, Patent Document 2 discloses that the cup is heated by discharging the steam to the cup for storing the coffee beverage.
特許第6376369号明細書Japanese Patent No. 6376369 特開昭62-41620号公報Japanese Unexamined Patent Publication No. 62-41620
 ところで、抽出されたコーヒー飲料が貯留器(例えばサーバやコーヒーカップ)に貯留されるコーヒー飲料製造装置において、貯留器に貯留されたコーヒー飲料の温度が十分に高くなく、ぬるくなってしまうという問題がある。 By the way, in a coffee beverage manufacturing device in which the extracted coffee beverage is stored in a reservoir (for example, a server or a coffee cup), there is a problem that the temperature of the coffee beverage stored in the reservoir is not sufficiently high and becomes slimy. be.
 従来、貯留器を加熱する保温ヒータを備えるコーヒー飲料製造装置も提案されている。しなしながら、保温ヒータの主な目的は、貯留器に貯留されたコーヒー飲料の温度を高い温度に保つものであるから、このような保温ヒータは、貯留器すなわちコーヒー飲料を長時間加熱し続けるのが一般的である。その結果、コーヒー飲料のコーヒー成分が揮発してしまい、コーヒー飲料の味が劣化するという問題が生じ得る。また、保温ヒータを設けることにより、コーヒー飲料製造装置の部品点数が増加するという問題も指摘できる。 Conventionally, a coffee beverage manufacturing device equipped with a heat insulating heater for heating a reservoir has also been proposed. However, since the main purpose of the heat insulating heater is to keep the temperature of the coffee beverage stored in the reservoir at a high temperature, such a heat insulating heater keeps heating the reservoir, that is, the coffee beverage for a long time. Is common. As a result, the coffee component of the coffee beverage is volatilized, which may cause a problem that the taste of the coffee beverage is deteriorated. In addition, it can be pointed out that the number of parts of the coffee beverage manufacturing apparatus increases by providing the heat insulating heater.
 また、例えば特許文献2のように、貯留器に水蒸気を吐出することで貯留器を温めることが考えられる。しかしながら、貯留器が、水蒸気が注入される開口部の他に、他の開口部を有している場合、開口部から注入された水蒸気が他の開口部から抜けてしまい、効率的に貯留器を温めることができないという問題がある。例えば、特許文献2では、水蒸気の注入口の他、貯留器の注ぎ口やフィルタケースへ連通する他の開口部が存在しており、貯留器内に注入された水蒸気は、このような他の開口部から抜けてしまうと考えられる。 Further, as in Patent Document 2, for example, it is conceivable to heat the reservoir by discharging water vapor to the reservoir. However, if the reservoir has another opening in addition to the opening into which water vapor is injected, the water vapor injected from the opening will escape from the other opening, and the reservoir will be efficient. There is a problem that it cannot be heated. For example, in Patent Document 2, in addition to the water vapor inlet, there is another opening that communicates with the spout of the reservoir and the filter case, and the steam injected into the reservoir has such other openings. It is thought that it will come out of the opening.
 本発明の目的は、コーヒー飲料製造装置において、貯留器に貯留されたコーヒー飲料の味の劣化を抑制しつつ、その温度の低下を効率的に抑制することにある。 An object of the present invention is to efficiently suppress a decrease in temperature of a coffee beverage stored in a storage device while suppressing deterioration of the taste of the coffee beverage in the coffee beverage manufacturing apparatus.
 本発明は、コーヒー飲料を抽出する装置本体と、前記コーヒー飲料を貯留する容器である貯留器とを含むコーヒー飲料製造装置であって、前記貯留器は、前記装置本体に前記貯留器がセットされたセット状態における唯一の開口部である貯留器開口部、を備え、前記装置本体は、コーヒー原料がセットされた抽出部まで延び、前記コーヒー飲料を抽出するための湯が流通する第1流路と、前記貯留器まで延び、水蒸気が流通する第2流路であって、前記セット状態においてその開口端である水蒸気吐出口が前記貯留器開口部に対向した位置にある第2流路と、前記水蒸気吐出口から前記貯留器開口部へ向けて、前記水蒸気を吐出させる水蒸気制御部と、を備える、ことを特徴とするコーヒー飲料製造装置である。 The present invention is a coffee beverage manufacturing apparatus including an apparatus main body for extracting coffee beverages and a reservoir which is a container for storing the coffee beverages, and the reservoir is set in the apparatus main body. A first flow path in which a reservoir opening, which is the only opening in the set state, is provided, the main body of the device extends to an extraction section in which the coffee raw material is set, and hot water for extracting the coffee beverage is circulated. A second flow path that extends to the reservoir and allows steam to flow through, and a second flow path in which the steam discharge port, which is the opening end thereof, faces the reservoir opening in the set state. The coffee beverage manufacturing apparatus is provided with a steam control unit for discharging the steam from the steam discharge port toward the reservoir opening.
 前記水蒸気吐出口は、鉛直方向下方に開口し、前記水蒸気は、鉛直方向下方に吐出されるとよい。 It is preferable that the steam discharge port opens downward in the vertical direction, and the steam is discharged downward in the vertical direction.
 前記水蒸気制御部は、前記水蒸気吐出口から前記貯留器開口部へ向けての前記水蒸気の吐出を、前記抽出部に対して前記湯が吐出されて前記コーヒー飲料が抽出される抽出工程に先立って実行するとよい。 The steam control unit discharges the steam from the steam discharge port toward the reservoir opening, and prior to the extraction step in which the hot water is discharged to the extraction unit and the coffee beverage is extracted. Good to do.
 前記水蒸気制御部は、前記水蒸気吐出口から前記貯留器開口部へ向けての前記水蒸気の吐出を、前記抽出部にセットされた前記コーヒー原料を蒸らす蒸らし工程に先立って実行するとよい。 The steam control unit may execute the steam discharge from the steam discharge port toward the reservoir opening prior to the steaming step of steaming the coffee raw material set in the extraction unit.
 前記装置本体は、水が流通する上流側流路と、前記上流側流路へ水を送る送水部と、前記送水部を制御する送水制御部と、前記上流側流路の途中に設けられ、前記送水部により送られた水を加熱して前記湯又は前記水蒸気にする加熱部と、前記加熱部を制御する温度制御部と、前記上流側流路からの前記湯又は前記水蒸気の流出先を、前記第1流路及び前記第2流路から選択する流路選択部と、を備え、前記水蒸気制御部は、前記送水制御部、前記温度制御部、及び前記流路選択部を含んで構成され、前記流路選択部が前記第2流路を選択し、前記送水制御部が前記水を前記上流側流路に送り、且つ、前記温度制御部が前記水を前記水蒸気にするよう前記加熱部を制御することで、前記水蒸気吐出口から前記貯留器開口部へ向けて前記水蒸気が吐出されるとよい。 The apparatus main body is provided in the middle of the upstream side flow path through which water flows, a water supply unit that sends water to the upstream side flow path, a water supply control unit that controls the water supply unit, and the upstream side flow path. A heating unit that heats the water sent by the water supply unit to make the hot water or the steam, a temperature control unit that controls the heating unit, and an outflow destination of the hot water or the steam from the upstream flow path. The steam control unit includes the water supply control unit, the temperature control unit, and the flow path selection unit. Then, the flow path selection unit selects the second flow path, the water supply control unit sends the water to the upstream flow path, and the temperature control unit heats the water into the steam. By controlling the unit, the steam may be discharged from the steam discharge port toward the reservoir opening.
 前記装置本体は、前記湯の温度を検出する温度検出部、をさらに備え、前記温度制御部は、前記温度検出部の検出温度に基づいて、前記湯が目標温度となるように前記加熱部を制御し、前記抽出工程の前側期間における前記目標温度に比して、前記前側期間に後続する前記抽出工程の期間である後側期間における前記目標温度が低い温度であるとよい。 The main body of the apparatus further includes a temperature detection unit for detecting the temperature of the hot water, and the temperature control unit heats the heating unit so that the hot water reaches a target temperature based on the detection temperature of the temperature detection unit. It is preferable that the target temperature in the rear side period, which is the period of the extraction step following the front side period, is lower than the target temperature in the front side period of the extraction step.
 前記前側期間内において、前記目標温度が、一定期間、第1温度に維持され、前記後側期間内において、前記目標温度が、一定期間、前記第1温度よりも低い温度である第2温度に維持されるとよい。 Within the anterior period, the target temperature is maintained at the first temperature for a certain period, and within the posterior period, the target temperature becomes a second temperature, which is a temperature lower than the first temperature for a certain period. It should be maintained.
 前記貯留器開口部は、前記貯留器の注ぎ口であるとよい。 The reservoir opening may be the spout of the reservoir.
 前記貯留器は、内びんと外びんの二重構造で形成され、前記内びんと前記外びんとの間に真空層を有するとよい。 It is preferable that the reservoir is formed of a double structure of an inner bottle and an outer bottle, and has a vacuum layer between the inner bottle and the outer bottle.
 前記装置本体は、前記セット状態において前記貯留器開口部が前記水蒸気吐出口に対向した位置となるように、前記装置本体に対する前記貯留器の姿勢を規制する姿勢規制機構、をさらに備えるとよい。 The apparatus main body may further include a posture regulating mechanism that regulates the posture of the reservoir with respect to the apparatus main body so that the reservoir opening faces the steam discharge port in the set state.
 本発明によれば、コーヒー飲料製造装置において、貯留器に貯留されたコーヒー飲料の味の劣化を抑制しつつ、その温度の低下を効率的に抑制することができる。 According to the present invention, in the coffee beverage manufacturing apparatus, it is possible to efficiently suppress the decrease in temperature while suppressing the deterioration of the taste of the coffee beverage stored in the reservoir.
本実施形態に係るコーヒー飲料製造装置の機能ブロック図である。It is a functional block diagram of the coffee beverage manufacturing apparatus which concerns on this embodiment. 本実施形態に係るコーヒー飲料製造装置の概略外観図である。It is a schematic external view of the coffee beverage manufacturing apparatus which concerns on this embodiment. 装置本体にサーバをセットする前における、姿勢規制機構とサーバとを示す斜視図である。It is a perspective view which shows the posture regulation mechanism and a server before setting a server in the apparatus main body. 装置本体にサーバをセットする前における、姿勢規制機構とサーバとを示す平面図である。It is a top view which shows the posture regulation mechanism and a server before setting a server in the apparatus main body. 装置本体にサーバをセットしたセット状態における、姿勢規制機構により姿勢が規制されたサーバを示す図である。It is a figure which shows the server whose posture is regulated by the posture regulation mechanism in the set state which set the server in the apparatus main body. セット状態におけるサーバ上部近傍を示す断面図である。It is sectional drawing which shows the vicinity of the upper part of a server in a set state. コーヒー製造処理に含まれる各工程における、目標温度、湯温、ヒータ制御信号、ポンプ制御信号、及び、選択流路の時間変化を示すグラフである。It is a graph which shows the time change of a target temperature, a hot water temperature, a heater control signal, a pump control signal, and a selection flow path in each process included in a coffee manufacturing process. 貯留部としてのコーヒーカップの例を示す図である。It is a figure which shows the example of the coffee cup as a storage part. 送水部及び送水制御部の変形例を示す図である。It is a figure which shows the modification of the water supply part and the water supply control part.
 図1は、本実施形態に係るコーヒー飲料製造装置10の機能ブロック図である。コーヒー飲料製造装置10は、ドリップ式でコーヒー飲料を抽出する装置である。本実施形態に係るコーヒー飲料製造装置10においては、使用者(ユーザ)は、動作モード、杯数などの選択のための最小限の操作のみを行うことでコーヒー飲料製造装置10を動かすことができるように、実際の抽出動作は装置内に記憶されたコーヒー飲料製造プログラムに従って自動的に行われる。また、コーヒー飲料製造装置10は、家庭や職場などに設置される小型のものであってもよいし、喫茶店などに設置される大型のものであってもよい。 FIG. 1 is a functional block diagram of the coffee beverage manufacturing apparatus 10 according to the present embodiment. The coffee beverage manufacturing device 10 is a drip-type device for extracting coffee beverages. In the coffee beverage producing apparatus 10 according to the present embodiment, the user can operate the coffee beverage producing apparatus 10 by performing only the minimum operation for selecting the operation mode, the number of cups, and the like. As such, the actual extraction operation is automatically performed according to the coffee beverage production program stored in the device. Further, the coffee beverage manufacturing apparatus 10 may be a small one installed in a home, a workplace, or the like, or a large one installed in a coffee shop or the like.
 水タンク12は、例えば樹脂などで形成された、水を貯留するタンクである。水タンク12には、ユーザによって供給された水が貯留される。 The water tank 12 is a tank for storing water, for example, made of resin or the like. The water tank 12 stores water supplied by the user.
 送水部としてのポンプ14は、例えばモータの回転により水を圧送するロータリーポンプ、あるいは、電磁力により駆動するバイブレーションポンプなどの電動ポンプである。本実施形態では、ポンプ14としてロータリーポンプを使用している。ポンプ14は、後述するポンプ制御部40により制御され、水タンク12に貯留された水を上流側流路16に圧送する。 The pump 14 as a water feeding unit is, for example, an electric pump such as a rotary pump that pumps water by rotation of a motor or a vibration pump driven by electromagnetic force. In this embodiment, a rotary pump is used as the pump 14. The pump 14 is controlled by a pump control unit 40, which will be described later, and pumps the water stored in the water tank 12 to the upstream flow path 16.
 上流側流路16は、ポンプ14から後述の電磁弁20まで延びる、水、湯、又は水蒸気の流路である。 The upstream side flow path 16 is a flow path of water, hot water, or steam extending from the pump 14 to the solenoid valve 20 described later.
 加熱部としてのヒータ18は、上流側流路16の途中に設けられ、(水タンク12に貯留された水の全部ではなく)ポンプ14により圧送された水を加熱して湯又は水蒸気にするものである。本明細書においては、その温度に関わらず、ヒータ18による加熱前のものを水と記載し、ヒータ18によって水が加熱された液体を湯と記載する。また、水がヒータ18によって加熱されて気体となったものを水蒸気と呼ぶ。ヒータ18は、後述する温度制御部42の制御により動作する。 The heater 18 as a heating unit is provided in the middle of the upstream flow path 16 and heats the water pumped by the pump 14 (not all the water stored in the water tank 12) into hot water or steam. Is. In the present specification, regardless of the temperature, the liquid before heating by the heater 18 is referred to as water, and the liquid heated by the heater 18 is referred to as hot water. Further, water that is heated by the heater 18 to become a gas is called steam. The heater 18 operates under the control of the temperature control unit 42, which will be described later.
 電磁弁20は、例えば、コイルを有するソレノイド部と、弁部とを含んで構成される。コイルに電流が流れることで弁部が駆動することにより、上流側流路16を流れてきた湯又は水蒸気の電磁弁20以降の流路(換言すれば上流側流路16からの湯又は水蒸気の流出先)が切り替えられる。電磁弁20は、後述の流路選択部44の制御により動作する。 The solenoid valve 20 includes, for example, a solenoid portion having a coil and a valve portion. The valve portion is driven by the current flowing through the coil, so that the flow path of the hot water or steam flowing through the upstream side flow path 16 after the solenoid valve 20 (in other words, the hot water or steam from the upstream side flow path 16). Outflow destination) can be switched. The solenoid valve 20 operates under the control of the flow path selection unit 44, which will be described later.
 本実施形態においては、電磁弁20は、上流側流路16から主流路22への湯又は水蒸気の流入を許容し、且つ、上流側流路16からバイパス流路24への湯又は水蒸気の流入を禁止した主流路選択状態と、上流側流路16から主流路22への湯又は水蒸気の流入を禁止し、且つ、上流側流路16からバイパス流路24への湯又は水蒸気の流入を許容したバイパス流路選択状態と、のいずれかの状態を取ることができる。言うまでもないが、電磁弁20が主流路選択状態である場合、上流側流路16からの湯又は水蒸気は主流路22に流入しバイパス流路24には流入しない。電磁弁20がバイパス流路選択状態である場合、上流側流路16からの湯又は水蒸気は主流路22には流入せずにバイパス流路24に流入する。 In the present embodiment, the solenoid valve 20 allows the inflow of hot water or steam from the upstream side flow path 16 to the main flow path 22, and the inflow of hot water or steam from the upstream side flow path 16 to the bypass flow path 24. The main flow path selection state is prohibited, the inflow of hot water or steam from the upstream side flow path 16 to the main flow path 22 is prohibited, and the inflow of hot water or steam from the upstream side flow path 16 to the bypass flow path 24 is allowed. It is possible to take either a bypass flow path selection state or a bypass flow path selection state. Needless to say, when the solenoid valve 20 is in the main flow path selection state, hot water or steam from the upstream side flow path 16 flows into the main flow path 22 and does not flow into the bypass flow path 24. When the solenoid valve 20 is in the bypass flow path selection state, hot water or steam from the upstream side flow path 16 does not flow into the main flow path 22 but flows into the bypass flow path 24.
 なお、電磁弁20は、上記の状態を取ることに加え、上流側流路16から主流路22及びバイパス流路24の両方への湯又は水蒸気の流入を許容可能な両流路選択状態を取ることが可能となっていてもよい。このような両流路選択状態においては、主流路22へ流れる湯又は水蒸気の量とバイパス流路24を流れる湯又は水蒸気の量とが調節できるようにすることが望ましい。さらに、電磁弁20は、上流側流路16から主流路22及びバイパス流路24の両方への湯又は水蒸気の流入を禁止する流路非選択状態を取ることが可能となっていてもよい。 In addition to taking the above-mentioned state, the solenoid valve 20 takes a state of selecting both flow paths that allows the inflow of hot water or steam from the upstream side flow path 16 to both the main flow path 22 and the bypass flow path 24. May be possible. In such a state of selecting both flow paths, it is desirable to be able to adjust the amount of hot water or steam flowing to the main flow path 22 and the amount of hot water or steam flowing through the bypass flow path 24. Further, the solenoid valve 20 may be capable of taking a flow path non-selection state that prohibits the inflow of hot water or steam from the upstream side flow path 16 to both the main flow path 22 and the bypass flow path 24.
 第1流路としての主流路22は、電磁弁20から抽出部としてのドリッパ26まで延びる、湯又は水蒸気が流通する流路である。特に、主流路22には、コーヒー飲料を抽出すためにドリッパ26に吐出される湯が流通する。主流路22のドリッパ26側の開口部は、鉛直方向下方に開口し、且つ、ドリッパ26の上側に位置している。これにより、上流側流路16及び主流路22を流通してきた湯が当該開口部からドリッパ26に吐出される。 The main flow path 22 as the first flow path is a flow path through which hot water or steam flows, which extends from the solenoid valve 20 to the dripper 26 as the extraction unit. In particular, hot water discharged to the dripper 26 for extracting coffee beverages circulates in the main flow path 22. The opening on the dripper 26 side of the main flow path 22 opens downward in the vertical direction and is located above the dripper 26. As a result, the hot water flowing through the upstream side flow path 16 and the main flow path 22 is discharged to the dripper 26 from the opening.
 第2流路としてのバイパス流路24は、電磁弁20からサーバ28まで延びる、湯又は水蒸気が流通する流路である。詳しくは後述するが、本実施形態では、バイパス流路24のサーバ28側の開口端であるサーバ側開口24aは、鉛直方向下方に開口し、且つ、サーバ側開口24aは、サーバ台30に載置されたサーバ28の上側に位置している。これにより、上流側流路16及びバイパス流路24を流通してきた湯又は水蒸気がサーバ側開口24aからサーバ28に向かって鉛直方向下方に吐出される。バイパス流路24からサーバ28へ湯が吐出される場合、当該湯はドリッパ26を通らずにサーバ28に吐出される。 The bypass flow path 24 as the second flow path is a flow path through which hot water or steam flows, which extends from the solenoid valve 20 to the server 28. As will be described in detail later, in the present embodiment, the server-side opening 24a, which is the opening end of the bypass flow path 24 on the server 28 side, opens downward in the vertical direction, and the server-side opening 24a is mounted on the server stand 30. It is located above the installed server 28. As a result, the hot water or steam flowing through the upstream side flow path 16 and the bypass flow path 24 is discharged vertically downward toward the server 28 from the server side opening 24a. When hot water is discharged from the bypass flow path 24 to the server 28, the hot water is discharged to the server 28 without passing through the dripper 26.
 ドリッパ26は、上部が大きく開口し下部が小さく開口した漏斗状の形状を有している。ドリッパ26には、ペーパーフィルタやネルフィルタのようなフィルタがユーザによりセットされる。当該フィルタは、ドリッパ26の形状に即して上部が開口している。さらに、当該フィルタの上部の開口よりコーヒー粉末などのコーヒー原料がユーザによりセットされる。ドリッパ26にフィルタ及びコーヒー原料がセットされた状態で主流路22から湯が吐出されると、湯がコーヒー原料に注がれてコーヒー飲料が抽出される。抽出されたコーヒー飲料は、ドリッパ26の下部開口26aからサーバ28に滴下する。 The dripper 26 has a funnel-shaped shape with a large opening at the top and a small opening at the bottom. A filter such as a paper filter or a flannel filter is set in the dripper 26 by the user. The upper part of the filter is open according to the shape of the dripper 26. Further, a coffee raw material such as coffee powder is set by the user from the opening at the top of the filter. When hot water is discharged from the main flow path 22 with the filter and the coffee raw material set in the dripper 26, the hot water is poured into the coffee raw material and the coffee beverage is extracted. The extracted coffee beverage is dropped onto the server 28 from the lower opening 26a of the dripper 26.
 貯留器としてのサーバ28は、ドリッパ26により抽出されたコーヒー飲料を貯留する容器である。サーバ28はサーバ台30に脱着可能に載置される。サーバ台30にサーバ28が載置された状態において、サーバ28は、ドリッパ26の下部開口26aの直下に位置するようになっている。これにより、ドリッパ26にて抽出され下部開口26aから滴下されたコーヒー飲料がサーバ28の内部に貯留される。また、詳しくは後述するが、サーバ台30にサーバ28が載置された状態において、サーバ28は、バイパス流路24のサーバ側開口24aの直下に位置するようになっている。これにより、サーバ側開口24aから吐出された湯又は水蒸気がサーバ28に向けて吐出される。 The server 28 as a reservoir is a container for storing coffee beverages extracted by the dripper 26. The server 28 is detachably mounted on the server stand 30. With the server 28 mounted on the server stand 30, the server 28 is located directly below the lower opening 26a of the dripper 26. As a result, the coffee beverage extracted by the dripper 26 and dropped from the lower opening 26a is stored inside the server 28. Further, as will be described in detail later, in a state where the server 28 is mounted on the server base 30, the server 28 is located directly under the server-side opening 24a of the bypass flow path 24. As a result, the hot water or steam discharged from the server-side opening 24a is discharged toward the server 28.
 本実施形態におけるサーバ28は、いわゆる魔法瓶である。すなわち、サーバ28は、少なくともその側面及び底面が内びんと外びんの二重構造で形成されており、且つ、内びんと外びんとの間に真空層を有している。これにより、サーバ28は、長時間、コーヒー飲料を保温することができる。一方、サーバ28に対して外部から熱を加えても、効果的にサーバ28に貯留されたコーヒー飲料を加熱することはできない。したがって、本実施形態に係るコーヒー飲料製造装置10には、サーバ28を保温する保温ヒータは有していない。 The server 28 in this embodiment is a so-called thermos bottle. That is, at least the side surface and the bottom surface of the server 28 are formed by a double structure of an inner bottle and an outer bottle, and the server 28 has a vacuum layer between the inner bottle and the outer bottle. As a result, the server 28 can keep the coffee beverage warm for a long time. On the other hand, even if heat is applied to the server 28 from the outside, the coffee beverage stored in the server 28 cannot be effectively heated. Therefore, the coffee beverage manufacturing apparatus 10 according to the present embodiment does not have a heat insulating heater for keeping the server 28 warm.
 記憶部32は、例えばROM(Read Only Memory)やRAM(Random Access Memory)を含んで構成される。記憶部32には、後述のコントローラ38を動作させるためのコーヒー飲料製造プログラムが記憶される。なお、このコーヒー飲料製造プログラムは、通信回線又は記憶媒体を介して更新可能とするようにしてもよい。 The storage unit 32 includes, for example, a ROM (Read Only Memory) and a RAM (Random Access Memory). The storage unit 32 stores a coffee beverage manufacturing program for operating the controller 38 described later. The coffee beverage production program may be made updatable via a communication line or a storage medium.
 入力部34は、例えばボタンやタッチパネルなどを含んで構成される。入力部34は、ユーザの指示をコーヒー飲料製造装置10に入力するために用いられる。入力部34はコーヒー飲料製造装置10の表面に操作可能に設けてもよいし、リモコンなどによる遠隔操作によるものであってもよい。特に、ユーザは、入力部34を用いて、コーヒー飲料製造装置10の動作モード、杯数、及び、コーヒー製造処理の開始を指示する。 The input unit 34 includes, for example, a button, a touch panel, and the like. The input unit 34 is used to input the user's instruction to the coffee beverage manufacturing device 10. The input unit 34 may be operably provided on the surface of the coffee beverage manufacturing apparatus 10, or may be operated remotely by a remote controller or the like. In particular, the user uses the input unit 34 to instruct the operation mode of the coffee beverage manufacturing apparatus 10, the number of cups, and the start of the coffee manufacturing process.
 温度検出部としての温度センサ36は、例えばサーミスタなどを含んで構成される。温度センサ36は、直接的に又は間接的に、湯又は水蒸気の温度を検出するために設けられている。本実施形態では、温度センサ36は、上流側流路16を流れる湯又は水蒸気の温度を検出する。具体的には、温度センサ36は、ヒータ18により加熱された直後の湯又は水蒸気の温度を検出する。 The temperature sensor 36 as a temperature detection unit includes, for example, a thermistor. The temperature sensor 36 is provided to directly or indirectly detect the temperature of hot water or steam. In the present embodiment, the temperature sensor 36 detects the temperature of hot water or steam flowing through the upstream flow path 16. Specifically, the temperature sensor 36 detects the temperature of hot water or steam immediately after being heated by the heater 18.
 コントローラ38は、例えばマイクロコンピュータなどを含んで構成される。コントローラ38は、記憶部32に記憶されたコーヒー飲料製造プログラムによって、図1に示すように、ポンプ制御部40、温度制御部42、流路選択部44としての機能を発揮する。ポンプ制御部40、温度制御部42、流路選択部44は、バイパス流路24のサーバ側開口24aからサーバ28の注ぎ口28bへ向けて水蒸気を吐出させる水蒸気制御部46としての機能を発揮する。また、コントローラ38は、コーヒー飲料製造プログラムにより、動作モード選択部48としての機能も発揮する。 The controller 38 includes, for example, a microcomputer and the like. As shown in FIG. 1, the controller 38 exerts functions as a pump control unit 40, a temperature control unit 42, and a flow path selection unit 44 by a coffee beverage manufacturing program stored in the storage unit 32. The pump control unit 40, the temperature control unit 42, and the flow path selection unit 44 exert a function as a steam control unit 46 that discharges steam from the server-side opening 24a of the bypass flow path 24 toward the spout 28b of the server 28. .. Further, the controller 38 also exhibits a function as an operation mode selection unit 48 by the coffee beverage production program.
 送水制御部としてのポンプ制御部40は、ポンプ14のモータの回転数を制御して、水タンク12から上流側流路16への水の圧送を制御する。具体的には、ポンプ制御部40は、水タンク12から上流側流路16への水の圧送量を制御する。ポンプ14のモータの回転数が多い程、多くの量の水が水タンク12から上流側流路16に圧送される。 The pump control unit 40 as a water supply control unit controls the rotation speed of the motor of the pump 14 to control the pumping of water from the water tank 12 to the upstream flow path 16. Specifically, the pump control unit 40 controls the amount of water pumped from the water tank 12 to the upstream flow path 16. As the rotation speed of the motor of the pump 14 increases, a larger amount of water is pumped from the water tank 12 to the upstream flow path 16.
 温度制御部42は、ヒータ18を制御して湯又は水蒸気の温度を制御する。具体的には、温度制御部42は、温度センサ36の検出温度に基づいて、湯又は水蒸気の温度が、コーヒー飲料製造プログラムによって設定される個々の目標温度となるようにヒータ18を制御する。本実施形態では、ヒータ18はON(水を加熱)又はOFF(水を加熱しない)のいずれかの状態のみを取ることができるものとして温度制御部42の動作を説明する。温度制御部42は、ヒータ18がONである時間(OFFである時間)を調整することで、湯又は水蒸気の温度が個々の目標温度となるように制御する。もちろん、本実施形態における温度制御部42のヒータ18の制御方法は一例であり、湯又は水蒸気の温度が目標温度となるように制御する限りにおいて、ヒータ18の種類などによって種々の温度制御方法を採用することができる。なお、本実施形態では、温度センサ36が上流側流路16を流れる湯又は水蒸気の温度を検出するようにしており、この検出温度は厳密にはドリッパ26内の温度とは一致しない。よって、ドリッパ26が目標とする温度になるように、所定の外部環境(温度、気圧など)を考慮して、個々の目標温度は設定される。 The temperature control unit 42 controls the heater 18 to control the temperature of hot water or steam. Specifically, the temperature control unit 42 controls the heater 18 so that the temperature of hot water or steam becomes an individual target temperature set by the coffee beverage production program based on the temperature detected by the temperature sensor 36. In the present embodiment, the operation of the temperature control unit 42 will be described assuming that the heater 18 can take only one of the states of ON (heating water) or OFF (not heating water). The temperature control unit 42 controls the temperature of the hot water or steam to be the individual target temperature by adjusting the time when the heater 18 is ON (the time when the heater 18 is OFF). Of course, the control method of the heater 18 of the temperature control unit 42 in the present embodiment is an example, and various temperature control methods are used depending on the type of the heater 18 and the like as long as the temperature of hot water or steam is controlled to be the target temperature. Can be adopted. In this embodiment, the temperature sensor 36 detects the temperature of hot water or steam flowing through the upstream flow path 16, and the detected temperature does not strictly match the temperature inside the dripper 26. Therefore, each target temperature is set in consideration of a predetermined external environment (temperature, atmospheric pressure, etc.) so that the dripper 26 reaches the target temperature.
 流路選択部44は、主流路22とバイパス流路24のうち、上流側流路16からの湯又は水蒸気の流出先を選択する。本実施形態では、流路選択部44は、電磁弁20の状態を主流路選択状態とバイパス流路選択状態との間で切り替えることで、湯又は水蒸気が流れる流路として主流路22とバイパス流路24のいずれかを選択する。なお、前述の2つの選択状態に加え、電磁弁20が両流路選択状態を取ることが可能となっている場合、あるいは、後述するように主流路22とバイパス流路24の選択が電磁弁20によらずに選択可能な場合などにおいては、流路選択部44は、湯又は水蒸気が流れる流路として主流路22とバイパス流路24の両方が選択可能となる。この場合、流路選択部44は、主流路22へ流れる湯又は水蒸気の量とバイパス流路24を流れる湯又は水蒸気の量とが調節可能であることが望ましい。さらに、流路選択部44は、湯又は水蒸気が流れる流路として主流路22とバイパス流路24のいずれも選択しない両流路非選択状態を選択可能とすることもできる。 The flow path selection unit 44 selects the outflow destination of hot water or steam from the upstream side flow path 16 among the main flow path 22 and the bypass flow path 24. In the present embodiment, the flow path selection unit 44 switches the state of the solenoid valve 20 between the main flow path selection state and the bypass flow path selection state, so that the main flow path 22 and the bypass flow flow as a flow path through which hot water or steam flows. Select one of the roads 24. In addition to the above-mentioned two selection states, when the solenoid valve 20 can take both flow path selection states, or as will be described later, the selection of the main flow path 22 and the bypass flow path 24 is the solenoid valve. In the case where selection is possible regardless of 20, the flow path selection unit 44 can select both the main flow path 22 and the bypass flow path 24 as the flow path through which hot water or steam flows. In this case, it is desirable that the flow path selection unit 44 can adjust the amount of hot water or steam flowing to the main flow path 22 and the amount of hot water or steam flowing through the bypass flow path 24. Further, the flow path selection unit 44 can select both flow path non-selection states in which neither the main flow path 22 nor the bypass flow path 24 is selected as the flow path through which hot water or steam flows.
 ポンプ制御部40、温度制御部42、及び流路選択部44を含んで構成される水蒸気制御部46による制御により、バイパス流路24のサーバ側開口24aからサーバ28に対して水蒸気が吐出される。具体的には、流路選択部44が、電磁弁20の状態をバイパス流路選択状態又は両流路選択状態とし、すなわち、上流側流路16からの水蒸気の流出先としてバイパス流路24を選択し、ポンプ制御部40が、水を上流側流路16に圧送し、且つ、温度制御部42が、当該水を水蒸気にするようヒータ18を制御することで、サーバ側開口24aからサーバ28へ向けて水蒸気が吐出される。ここで、ポンプ制御部40が圧送する水の量は、吐出する水蒸気の量に応じて適宜決められてよい。例えば、コーヒー飲料製造プログラムにおいて、圧送する水の量が予め規定されていてよい。 Steam is discharged from the server-side opening 24a of the bypass flow path 24 to the server 28 by the control by the steam control unit 46 including the pump control unit 40, the temperature control unit 42, and the flow path selection unit 44. .. Specifically, the flow path selection unit 44 sets the state of the solenoid valve 20 to the bypass flow path selection state or both flow path selection states, that is, the bypass flow path 24 is used as the outflow destination of water vapor from the upstream side flow path 16. Select, the pump control unit 40 pumps water to the upstream side flow path 16, and the temperature control unit 42 controls the heater 18 so as to turn the water into steam, so that the server 28 is opened from the server side opening 24a. Water vapor is discharged toward. Here, the amount of water pumped by the pump control unit 40 may be appropriately determined according to the amount of steam to be discharged. For example, in a coffee beverage production program, the amount of water to be pumped may be predetermined.
 動作モード選択部48は、コーヒー飲料製造プログラムにより予め定められている複数の動作モードの中から、コーヒー飲料製造装置10の動作モードを選択する。動作モードに応じて、抽出されるコーヒー飲料の種類が変更される。本実施形態では、通常濃度のコーヒー飲料を抽出する通常モード、通常モードよりも薄いコーヒー飲料を抽出するアメリカンモード、及び、アイスコーヒー用のコーヒー飲料を抽出するアイスコーヒーモードの3モードが予め用意されており、動作モード選択部48は、コーヒー製造処理に先立って、ユーザからの指示に従ってこれらの中から動作モードを選択する。もちろん、動作モードはこれに限られるものではなく、その他の動作モードが用意されていてもよい。 The operation mode selection unit 48 selects the operation mode of the coffee beverage production device 10 from a plurality of operation modes predetermined by the coffee beverage production program. The type of coffee beverage to be extracted is changed according to the operation mode. In the present embodiment, three modes are prepared in advance: a normal mode for extracting a coffee beverage having a normal concentration, an American mode for extracting a coffee beverage thinner than the normal mode, and an ice coffee mode for extracting a coffee beverage for iced coffee. The operation mode selection unit 48 selects an operation mode from these according to an instruction from the user prior to the coffee manufacturing process. Of course, the operation mode is not limited to this, and other operation modes may be prepared.
 コーヒー飲料製造装置10の各機能ブロックは以上の通りである。なお、本明細書では、コーヒー飲料製造装置10が有する上述の各部のうち、サーバ28以外を含む部分(ドリッパ26を含む)を装置本体と呼ぶ。したがって、コーヒー飲料製造装置10は、装置本体とサーバ28とを含んで構成される。 Each functional block of the coffee beverage manufacturing apparatus 10 is as described above. In the present specification, among the above-mentioned parts of the coffee beverage manufacturing apparatus 10, the portion including the parts other than the server 28 (including the dripper 26) is referred to as an apparatus main body. Therefore, the coffee beverage manufacturing apparatus 10 includes the apparatus main body and the server 28.
 次に、図2~図6を参照して、コーヒー飲料製造装置10の機構的な構造について説明する。 Next, the mechanical structure of the coffee beverage manufacturing apparatus 10 will be described with reference to FIGS. 2 to 6.
 図2は、サーバ28が装置本体にセットされた(すなわち、サーバ台30の所定の位置にサーバ28が配置された)セット状態のコーヒー飲料製造装置10を示す側面図である。なお、図2において、説明済みの各部については、図1と同じ符号が付されている。また、図2~図6において、コーヒー飲料製造装置10の奥行方向をX軸(奥側がX軸正側)とし、左右方向をY軸とし、高さ方向をZ軸としている。 FIG. 2 is a side view showing a coffee beverage manufacturing apparatus 10 in a set state in which the server 28 is set in the main body of the apparatus (that is, the server 28 is arranged at a predetermined position of the server stand 30). In FIG. 2, the same reference numerals as those in FIG. 1 are attached to the parts described above. Further, in FIGS. 2 to 6, the depth direction of the coffee beverage manufacturing apparatus 10 is the X-axis (the back side is the positive side of the X-axis), the left-right direction is the Y-axis, and the height direction is the Z-axis.
 コーヒー飲料製造装置10の装置本体には、セット状態におけるサーバ28の姿勢を規制する姿勢規制機構60が設けられている。サーバ28の姿勢とは、装置本体に対するサーバ28の奥行方向(X軸)の位置、左右方向(Y軸)の位置、及び向きを意味する概念である。 The device body of the coffee beverage manufacturing device 10 is provided with a posture regulating mechanism 60 that regulates the posture of the server 28 in the set state. The posture of the server 28 is a concept that means the position of the server 28 in the depth direction (X-axis), the position in the left-right direction (Y-axis), and the direction with respect to the apparatus main body.
 図3は、装置本体にサーバ28がセットされる前における、姿勢規制機構60及びサーバ28の斜視図である。また、図4は、装置本体にサーバ28がセットされる前における、姿勢規制機構60及びサーバ28の平面図である。なお、以下のサーバ28についての説明における各方向は、サーバ28の向きがセット状態における向きである場合における各方向を意味する。 FIG. 3 is a perspective view of the posture regulating mechanism 60 and the server 28 before the server 28 is set in the apparatus main body. Further, FIG. 4 is a plan view of the posture regulating mechanism 60 and the server 28 before the server 28 is set in the main body of the apparatus. In the following description of the server 28, each direction means each direction when the direction of the server 28 is the direction in the set state.
 図3及び図4に示すように、サーバ28は、上方に向かって開口した、コーヒー注入口28a及び注ぎ口28bの2つの開口部を有している。コーヒー注入口28aは、平面視においてサーバ28の略中央(後述の突出部28d)に設けられている。注ぎ口28bは、サーバ28の上面28cの奥側端に設けられている。ドリッパ26において抽出されたコーヒー飲料は、コーヒー注入口28aを通ってサーバ28内に貯留される。また、サーバ28に貯留されたコーヒー飲料は、注ぎ口28bを通って、カップなどに注がれる。 As shown in FIGS. 3 and 4, the server 28 has two openings, a coffee inlet 28a and a spout 28b, which are open upward. The coffee inlet 28a is provided at substantially the center of the server 28 (protruding portion 28d described later) in a plan view. The spout 28b is provided at the inner end of the upper surface 28c of the server 28. The coffee beverage extracted by the dripper 26 is stored in the server 28 through the coffee inlet 28a. Further, the coffee beverage stored in the server 28 is poured into a cup or the like through the spout 28b.
 サーバ28には、上面28cから上方に突出した突出部28dが設けられている。図4に示す通り、突出部28dは、奥行方向に伸長する形状を有している。特に、突出部28dは、奥側端及び手前側端が円弧形状となっており、平面視でいわゆるオーバル形状を呈している。 The server 28 is provided with a protruding portion 28d protruding upward from the upper surface 28c. As shown in FIG. 4, the protruding portion 28d has a shape extending in the depth direction. In particular, the protruding portion 28d has an arc shape at the back end and the front end, and has a so-called oval shape in a plan view.
 姿勢規制機構60は、装置筐体の側面に取り付けられたブロック状の基部62を含んで構成されている。基部62は、左右方向中央部において、手前側に開口した凹部64を有している。凹部64は、奥行方向及び鉛直方向に延伸する(すなわちXZ平面と平行な)、左右方向に離間した一対の側壁64aと、一対の側壁64aの奥側端を接続し凹部64の最奥部を規定する奥壁64bを含んで構成されている。凹部64の幅(左右方向の長さ)、換言すれば、一対の側壁64a間の距離は、サーバ28の突出部28dの幅(左右方向の長さ)と略同一となっている。また、凹部64の奥壁64bは、サーバ28の突出部28dの奥側端に対応した形状となっている。本実施形態では、上述のように、突出部28dの奥側端は平面視で円弧形状となっているから、それに対応して、凹部64の奥壁64bも平面視で円弧形状となっている。 The posture control mechanism 60 is configured to include a block-shaped base 62 attached to the side surface of the device housing. The base portion 62 has a recess 64 opened toward the front side in the central portion in the left-right direction. The recess 64 connects a pair of side walls 64a extending in the depth direction and the vertical direction (that is, parallel to the XZ plane) and separated in the left-right direction and the innermost ends of the pair of side walls 64a to form the innermost part of the recess 64. It is configured to include the specified back wall 64b. The width of the recess 64 (length in the left-right direction), in other words, the distance between the pair of side walls 64a is substantially the same as the width of the protrusion 28d of the server 28 (length in the left-right direction). Further, the back wall 64b of the recess 64 has a shape corresponding to the back end of the protruding portion 28d of the server 28. In the present embodiment, as described above, since the back end of the protrusion 28d has an arc shape in a plan view, the back wall 64b of the recess 64 also has an arc shape in a plan view. ..
 サーバ28が奥側へ移動することでサーバ28の突出部28dが凹部64に挿入される。突出部28dが凹部64の最奥部まで挿入され、突出部28dの奥側端が凹部64の奥壁64bに当接した状態が、装置本体にサーバ28がセットされたセット状態である。 When the server 28 moves to the back side, the protruding portion 28d of the server 28 is inserted into the recess 64. The state in which the protruding portion 28d is inserted to the innermost part of the recess 64 and the inner end of the protruding portion 28d is in contact with the back wall 64b of the recess 64 is a set state in which the server 28 is set in the apparatus main body.
 図5は、セット状態の姿勢規制機構60及びサーバ28を示す斜視図である。セット状態において、突出部28dの奥側端が凹部64の奥壁64bに当接することで、サーバ28の奥行方向の位置が決定される。また、セット状態において、凹部64の側壁64aと突出部28dの側壁とが当接することで、突出部28dが左右方向に移動することが規制されると共に、サーバ28の左右方向の位置が決定される。また、上述のように、突出部28dは奥行方向に伸長する形状を有しており、且つ、凹部64の幅が突出部28dの幅と略同一となっていることから、サーバ28の向きが、注ぎ口28bが奥側となる向きでないと、突出部28dが凹部64に入らない。なお、注ぎ口28bが手前側となる向き(サーバ28の取っ手が奥側となる向き)では、サーバ28の取っ手が装置筐体の側面に当たってしまい、突出部28dが凹部64の最奥部まで入らない。このように、サーバ28の向きが正しい向き(すなわち注ぎ口28bが奥側となる向き)でないとサーバ28を装置本体にセットすることができないので、姿勢規制機構60により、セット状態におけるサーバ28の向きが決定されると言える。 FIG. 5 is a perspective view showing the posture control mechanism 60 and the server 28 in the set state. In the set state, the back end of the protrusion 28d abuts on the back wall 64b of the recess 64, whereby the position of the server 28 in the depth direction is determined. Further, in the set state, the side wall 64a of the recess 64 and the side wall of the protrusion 28d come into contact with each other, so that the protrusion 28d is restricted from moving in the left-right direction, and the position of the server 28 in the left-right direction is determined. To. Further, as described above, the protrusion 28d has a shape extending in the depth direction, and the width of the recess 64 is substantially the same as the width of the protrusion 28d, so that the orientation of the server 28 is oriented. The protrusion 28d does not enter the recess 64 unless the spout 28b is oriented toward the back side. In the direction in which the spout 28b is on the front side (the handle of the server 28 is on the back side), the handle of the server 28 hits the side surface of the device housing, and the protruding portion 28d enters the innermost part of the recess 64. not. In this way, the server 28 cannot be set in the device main body unless the direction of the server 28 is correct (that is, the direction in which the spout 28b is on the back side). It can be said that the orientation is determined.
 図6は、セット状態における、サーバ28の上部近傍を示す断面図である。図6に示す通り、セット状態において、バイパス流路24の水蒸気吐出口としてのサーバ側開口24aの位置は、サーバ28の貯留器開口部としての注ぎ口28bに対向した位置となる。本実施形態では、サーバ側開口24aは鉛直方向下方に開口しているから、サーバ側開口24aは、注ぎ口28bの真上に位置している。これにより、図6の一点鎖線に示すように、サーバ側開口24aから吐出された水蒸気は、注ぎ口28bを通ってサーバ28内に注入される。 FIG. 6 is a cross-sectional view showing the vicinity of the upper part of the server 28 in the set state. As shown in FIG. 6, in the set state, the position of the server-side opening 24a as the steam discharge port of the bypass flow path 24 is the position facing the spout 28b as the reservoir opening of the server 28. In the present embodiment, since the server-side opening 24a opens downward in the vertical direction, the server-side opening 24a is located directly above the spout 28b. As a result, as shown by the alternate long and short dash line in FIG. 6, the water vapor discharged from the server-side opening 24a is injected into the server 28 through the spout 28b.
 上述の通り、サーバ28は、注ぎ口28bの他に、開口部としてコーヒー注入口28aを有している。しかしながら、図6に示すように、セット状態においては、ドリッパ26の下部とサーバ28の上部が密着しており、コーヒー注入口28aは、ドリッパ26の下部開口26aの縁辺により塞がれている。また、セット状態において、コーヒー注入口28aと下部開口26aは連通しているが、下部開口26aのさらに上部には、コーヒー粉がセットされたフィルタが存在しており、フィルタによって、コーヒー注入口28a(及びそれに連通した下部開口26a)が塞がれている。したがって、セット状態においては、コーヒー注入口28aはサーバ28の開口部ではなくなっており、すなわち、注ぎ口28bがサーバ28の唯一の開口部となっている。 As described above, the server 28 has a coffee inlet 28a as an opening in addition to the spout 28b. However, as shown in FIG. 6, in the set state, the lower part of the dripper 26 and the upper part of the server 28 are in close contact with each other, and the coffee inlet 28a is closed by the edge of the lower opening 26a of the dripper 26. Further, in the set state, the coffee inlet 28a and the lower opening 26a communicate with each other, but a filter in which coffee powder is set exists further above the lower opening 26a, and the coffee inlet 28a is provided by the filter. (And the lower opening 26a communicating with it) is blocked. Therefore, in the set state, the coffee inlet 28a is no longer the opening of the server 28, that is, the spout 28b is the only opening of the server 28.
 バイパス流路24のサーバ側開口24aから注ぎ口28bに向かって水蒸気が吐出されることで、サーバ28が温められる。特に、サーバ側開口24aから吐出された水蒸気は、セット状態におけるサーバ28の唯一の開口部である注ぎ口28bからサーバ28内に注入される。これにより、サーバ28内に注入された水蒸気が他の開口部から抜けてしまうことがない。したがって、本実施形態によれば、水蒸気によってサーバ28を効率的に温めることができる。 The server 28 is warmed by discharging water vapor from the server-side opening 24a of the bypass flow path 24 toward the spout 28b. In particular, the water vapor discharged from the server-side opening 24a is injected into the server 28 from the spout 28b, which is the only opening of the server 28 in the set state. As a result, the water vapor injected into the server 28 does not escape from the other openings. Therefore, according to the present embodiment, the server 28 can be efficiently heated by steam.
 なお、本実施形態では、ユーザの安全性を考慮して、バイパス流路24のサーバ側開口24aは鉛直方向下方に開口し、水蒸気が鉛直方向下方に吐出されている。しかしながら、サーバ28を温めるという観点からは、バイパス流路24のサーバ側開口24aは、サーバ28の唯一の開口部であるサーバ開口部(本実施形態では注ぎ口28b)に対応している限りにおいて、必ずしも鉛直方向下方に開口していなくてもよい。 In the present embodiment, in consideration of user safety, the server-side opening 24a of the bypass flow path 24 opens downward in the vertical direction, and water vapor is discharged downward in the vertical direction. However, from the viewpoint of warming the server 28, as long as the server-side opening 24a of the bypass flow path 24 corresponds to the server opening (spout 28b in the present embodiment) which is the only opening of the server 28. , It does not necessarily have to open downward in the vertical direction.
 コーヒー飲料製造装置10の構成概要は以上の通りである。続いて、図7を参照しながら、コーヒー飲料製造装置10におけるコーヒー製造処理の流れと共に、コーヒー飲料製造装置10の各部の処理の詳細について説明する。 The outline of the configuration of the coffee beverage manufacturing apparatus 10 is as described above. Subsequently, with reference to FIG. 7, the flow of the coffee manufacturing process in the coffee beverage manufacturing device 10 and the details of the processing of each part of the coffee beverage manufacturing device 10 will be described.
 図7は、通常モードの2杯抽出の場合を例にとり、コーヒー製造処理に含まれる各工程における、目標温度、温度センサ36の検出温度である湯温、温度制御部42からヒータ18に送信されるヒータ制御信号、ポンプ制御部40からポンプ14に送信されるポンプ制御信号、及び、流路選択部44により選択された選択流路の時間変化を示すグラフである。図7に含まれる各グラフの横軸は時間を表しており、縦軸はそれぞれの値を示している。なお、動作モード、抽出杯数に応じ最適な制御となるように、各制御部の制御タイミング、制御量は、予めパラメータとして記憶部32に記憶され、コーヒー飲料製造プログラムにより、動作モード、杯数に応じて、適宜設定されるようになっている。 FIG. 7 shows, taking the case of two cups extraction in the normal mode as an example, the target temperature, the hot water temperature which is the detection temperature of the temperature sensor 36, and the temperature control unit 42 in each process included in the coffee manufacturing process are transmitted to the heater 18. It is a graph which shows the time change of the heater control signal, the pump control signal transmitted from the pump control unit 40 to the pump 14, and the selection flow path selected by the flow path selection unit 44. The horizontal axis of each graph included in FIG. 7 represents time, and the vertical axis represents each value. The control timing and control amount of each control unit are stored in the storage unit 32 as parameters in advance so that the optimum control is performed according to the operation mode and the number of cups to be extracted, and the operation mode and the number of cups are stored by the coffee beverage manufacturing program. It is set as appropriate according to the above.
 図7に示す各工程における個々のタイミングにおける目標温度は、コーヒー製造処理プログラムにおいて予め設定されている。温度制御部42により出力されるヒータ制御信号は、温度センサ36の検出温度(すなわち湯温)と目標温度に基づいて決定される。したがって、目標温度が同じであっても、外気温などによって変動し得る湯温に応じて、ヒータ制御信号のグラフは変化し得る。また、図7に示す各工程におけるポンプ制御信号及び選択流路もコーヒー製造処理プログラムにおいて予め設定されている。 The target temperature at each timing in each process shown in FIG. 7 is preset in the coffee manufacturing processing program. The heater control signal output by the temperature control unit 42 is determined based on the detection temperature (that is, the hot water temperature) of the temperature sensor 36 and the target temperature. Therefore, even if the target temperature is the same, the graph of the heater control signal may change according to the hot water temperature that may fluctuate depending on the outside air temperature or the like. Further, the pump control signal and the selected flow path in each process shown in FIG. 7 are also preset in the coffee manufacturing processing program.
 図7に示されるように、コーヒー製造処理は、ヒータ予熱工程、蒸気吐出工程、主流路予熱工程、蒸らし工程、抽出工程、バイパス流路予熱工程、加湯工程、及び湯飛ばし工程を含んでいる。本実施形態では、各工程はコーヒー製造処理プログラムの動作に伴い、上記の順番で順次実行される。ユーザは、水タンク12に水を入れ、ドリッパ26にフィルタ及びコーヒー原料をセットし、サーバ28を装置本体にセットし、入力部34から動作モード等の抽出条件を入力し、コーヒー製造処理を開始する指示を入力する。これにより、コーヒー飲料製造装置10は、ヒータ予熱工程から上述の各工程を自動的に(すなわちユーザの操作を必要とすることなく)、順次、実行する。 As shown in FIG. 7, the coffee production process includes a heater preheating step, a steam discharge step, a main flow path preheating step, a steaming step, an extraction step, a bypass flow path preheating step, a hot water step, and a hot water blowing step. .. In the present embodiment, each step is sequentially executed in the above order according to the operation of the coffee manufacturing processing program. The user fills the water tank 12 with water, sets the filter and coffee raw materials in the dripper 26, sets the server 28 in the main body of the apparatus, inputs the extraction conditions such as the operation mode from the input unit 34, and starts the coffee manufacturing process. Enter the instructions to do. As a result, the coffee beverage manufacturing apparatus 10 automatically (that is, does not require user operation) and sequentially executes each of the above-mentioned steps from the heater preheating step.
 ヒータ予熱工程は、ヒータ18の予熱を行う工程である。ヒータ予熱工程においては、温度制御部42は、ヒータ18が所定時間「ON」状態を維持するように制御する。これにより、ヒータ18が予熱される。ヒータ予熱工程においては、水を圧送する必要はないため、ポンプ制御部40は、ポンプ14の回転量を「0」に制御する。ヒータ18が予熱されることで、上流側流路16に残留した水が湯となって下流側に移動する場合が考えられる。当該湯が主流路22からドリッパ26に吐出されて、ドリッパ26にセットされたコーヒー原料に不要な湯が掛かってしまうことを防止するため、流路選択部44は、電磁弁20を制御して主流路22への湯の流入を禁止する。本実施形態では、流路選択部44は、電磁弁20がバイパス流路選択状態を取るように制御する。これにより、上流側流路16に残留した水(湯)は、サーバ28に吐出される。なお、上流側流路16に残留した水(湯)をサーバ28にも吐出させたくない場合には、流路選択部44は、電磁弁20を流路非選択状態を取るように制御するようにしてもよい。 The heater preheating step is a step of preheating the heater 18. In the heater preheating step, the temperature control unit 42 controls the heater 18 to maintain the “ON” state for a predetermined time. As a result, the heater 18 is preheated. Since it is not necessary to pump water in the heater preheating step, the pump control unit 40 controls the rotation amount of the pump 14 to “0”. It is conceivable that the heater 18 is preheated so that the water remaining in the upstream flow path 16 becomes hot water and moves to the downstream side. In order to prevent the hot water from being discharged from the main flow path 22 to the dripper 26 and unnecessary hot water from being applied to the coffee raw material set in the dripper 26, the flow path selection unit 44 controls the solenoid valve 20. The inflow of hot water into the main flow path 22 is prohibited. In the present embodiment, the flow path selection unit 44 controls the solenoid valve 20 to take the bypass flow path selection state. As a result, the water (hot water) remaining in the upstream flow path 16 is discharged to the server 28. If it is not desired to discharge the water (hot water) remaining in the upstream flow path 16 to the server 28, the flow path selection unit 44 controls the solenoid valve 20 so as to take the flow path non-selection state. You may do it.
 蒸気吐出工程は、水蒸気制御部46の制御により、バイパス流路24のサーバ側開口24aからサーバ28の注ぎ口28bに向けて水蒸気を吐出する工程である。図7のグラフでは、蒸気吐出工程における湯温が「100℃」となっているが、一部の湯は水蒸気となっている。 The steam discharge step is a step of discharging steam from the server-side opening 24a of the bypass flow path 24 toward the spout 28b of the server 28 under the control of the steam control unit 46. In the graph of FIG. 7, the hot water temperature in the steam discharge process is "100 ° C.", but some of the hot water is steam.
 蒸気吐出工程においては、温度制御部42は、ポンプ14により圧送された水が水蒸気となるようにヒータ18の制御を行う。本実施形態では、ヒータ予熱工程による予熱により、ヒータ18が水を水蒸気とすることが十分にできる程度の熱を加えることが可能となっているため、主蒸気吐出工程においては一旦ヒータ18の制御は「OFF」となっている。仮に、ヒータ予熱工程後において、水を水蒸気とするためのヒータ18の加熱量が不足している場合には、温度制御部42は、蒸気吐出工程においてもヒータ18の「ON」状態が維持される。 In the steam discharge process, the temperature control unit 42 controls the heater 18 so that the water pumped by the pump 14 becomes steam. In the present embodiment, the heater 18 can be sufficiently heated to turn water into steam by the preheating by the heater preheating step. Therefore, the heater 18 is once controlled in the main steam discharge step. Is "OFF". If the heating amount of the heater 18 for converting water into steam is insufficient after the heater preheating step, the temperature control unit 42 maintains the "ON" state of the heater 18 even in the steam discharge step. To.
 蒸気吐出工程においては、水蒸気をバイパス流路24に流入させるため、流路選択部44は、バイパス流路24を選択する。本実施形態では、流路選択部44は、電磁弁20がバイパス流路選択状態を取るように制御する。これにより、上流側流路16からの水蒸気はバイパス流路24に流入し主流路22には流入しない。なお、別の実施形態として流路選択部44は、このとき、主流路22及びバイパス流路24の両方を選択するように制御してもよい。このようにすることで、蒸気吐出工程において、サーバ28に水蒸気を吐出すると共に、後述の主流路予熱工程と同様に主流路22を予熱することができる。また、図7に示すように、主流路予熱工程においては、水蒸気をバイパス流路24に流入させるべく、ポンプ14を低回転で回転させるように制御し、サーバ28を温めるための適量の水蒸気を得るための水を上流側流路16に圧送する。 In the steam discharge process, the flow path selection unit 44 selects the bypass flow path 24 in order to allow water vapor to flow into the bypass flow path 24. In the present embodiment, the flow path selection unit 44 controls the solenoid valve 20 to take the bypass flow path selection state. As a result, the water vapor from the upstream side flow path 16 flows into the bypass flow path 24 and does not flow into the main flow path 22. As another embodiment, the flow path selection unit 44 may be controlled to select both the main flow path 22 and the bypass flow path 24 at this time. By doing so, in the steam discharge process, steam can be discharged to the server 28 and the main flow path 22 can be preheated in the same manner as in the main flow path preheating step described later. Further, as shown in FIG. 7, in the main flow path preheating step, in order to allow water vapor to flow into the bypass flow path 24, the pump 14 is controlled to rotate at a low rotation speed, and an appropriate amount of water vapor for warming the server 28 is supplied. The water to be obtained is pumped to the upstream flow path 16.
 蒸気吐出工程により、サーバ28が温められる。本実施形態では、蒸気吐出工程は、蒸らし工程及び抽出工程に先立って実行される。 The server 28 is warmed by the steam discharge process. In this embodiment, the steam discharge step is performed prior to the steaming step and the extraction step.
 主流路予熱工程は、後続の蒸らし工程又は抽出工程に先立って、主流路22の予熱を行う工程である。本実施形態では、主流路予熱工程においては、ポンプ14により圧送されたごく少量の水をヒータ18により水蒸気とし、当該水蒸気を主流路22に流通させることで、主流路22の予熱を行う。湯を主流路22に流入させることで主流路22を予熱することも可能ではあるが、そのようにすると、主流路予熱工程において、湯がドリッパ26に吐出されドリッパ26に不要な湯が吐出され得る。本実施形態では、水蒸気により主流路22の予熱を行うことで、ドリッパ26に不要な湯が吐出されることが抑制される。 The main flow path preheating step is a step of preheating the main flow path 22 prior to the subsequent steaming step or extraction step. In the present embodiment, in the main flow path preheating step, a very small amount of water pumped by the pump 14 is converted into steam by the heater 18, and the steam is circulated through the main flow path 22 to preheat the main flow path 22. It is possible to preheat the main flow path 22 by flowing hot water into the main flow path 22, but if this is done, the hot water is discharged to the dripper 26 and unnecessary hot water is discharged to the dripper 26 in the main flow path preheating step. obtain. In the present embodiment, by preheating the main flow path 22 with steam, it is possible to prevent unnecessary hot water from being discharged to the dripper 26.
 主流路予熱工程においては、温度制御部42は、ポンプ14により圧送された水が水蒸気となるようにヒータ18の制御を行う。図7の湯温を示すグラフでは、主流路予熱工程における湯温が「100℃」となっているが、一部の湯は水蒸気となっている。本実施形態では、蒸気吐出工程に引き続き、ヒータ予熱工程による予熱により、ヒータ18が水を水蒸気とすることが十分にできる程度の熱を加えることが可能となっているため、主流路予熱工程においては、引き続きヒータ18の制御は「OFF」となっている。仮に、蒸気吐出工程後において、水を水蒸気とするためのヒータ18の加熱量が不足している場合には、温度制御部42は、主流路予熱工程においてヒータ18の制御を「ON」とするようにしてもよい。 In the main flow path preheating step, the temperature control unit 42 controls the heater 18 so that the water pumped by the pump 14 becomes steam. In the graph showing the hot water temperature in FIG. 7, the hot water temperature in the main flow path preheating step is "100 ° C.", but some of the hot water is steam. In the present embodiment, following the steam discharge step, the heater 18 can apply enough heat to turn water into steam by preheating by the heater preheating step. Therefore, in the main flow path preheating step. The control of the heater 18 is continuously set to "OFF". If the heating amount of the heater 18 for converting water into steam is insufficient after the steam discharge step, the temperature control unit 42 sets the control of the heater 18 to "ON" in the main flow path preheating step. You may do so.
 主流路予熱工程においては、水蒸気を主流路22に流入させるため、流路選択部44は、主流路22を選択する。本実施形態では、流路選択部44は、電磁弁20が主流路選択状態を取るように制御する。これにより、上流側流路16からの水蒸気は主流路22に流入しバイパス流路24には流入しない。なお、別の実施形態として流路選択部44は、このとき、主流路22及びバイパス流路24の両方を選択するように制御してもよい。このようにすることで、主流路予熱工程においても、引き続き、サーバ28に向けて水蒸気が吐出させることができる。また、図7に示すように、主流路予熱工程においては、水蒸気を主流路22に流入させるべく、ポンプ14を低回転で回転させるように制御し、主流路22を予熱するのに十分な量の水蒸気を得るための水を上流側流路16に圧送する。 In the main flow path preheating step, the flow path selection unit 44 selects the main flow path 22 in order to allow water vapor to flow into the main flow path 22. In the present embodiment, the flow path selection unit 44 controls the solenoid valve 20 to take the main flow path selection state. As a result, the water vapor from the upstream side flow path 16 flows into the main flow path 22 and does not flow into the bypass flow path 24. As another embodiment, the flow path selection unit 44 may be controlled to select both the main flow path 22 and the bypass flow path 24 at this time. By doing so, steam can be continuously discharged toward the server 28 even in the main flow path preheating step. Further, as shown in FIG. 7, in the main flow path preheating step, in order to allow water vapor to flow into the main flow path 22, the pump 14 is controlled to rotate at a low rotation speed, and an amount sufficient to preheat the main flow path 22. Water for obtaining steam is pumped to the upstream flow path 16.
 蒸らし工程は、ドリッパ26にセットされたコーヒー原料に所定量の湯を注ぎ、抽出工程に移る前に一定の待機時間をとることで、ドリッパ26にセットされたコーヒー原料を蒸らす工程である。 The steaming step is a step of steaming the coffee raw material set in the dripper 26 by pouring a predetermined amount of hot water into the coffee raw material set in the dripper 26 and taking a certain waiting time before moving to the extraction step.
 蒸らし工程においては、温度制御部42は、湯の温度が蒸らしに適した温度となるようにヒータ18を制御する。本実施形態では、蒸らし工程における温度制御部42の目標温度は、後続する抽出工程の前側期間である抽出前期における目標温度(図7の目標温度TTa)よりも少し低くなっている。具体的には、本実施形態では、蒸らし工程における目標温度は90℃前半の温度としている。 In the steaming step, the temperature control unit 42 controls the heater 18 so that the temperature of the hot water becomes a temperature suitable for steaming. In the present embodiment, the target temperature of the temperature control unit 42 in the steaming step is slightly lower than the target temperature (target temperature TTa in FIG. 7) in the pre-extraction period, which is the pre-period of the subsequent extraction step. Specifically, in the present embodiment, the target temperature in the steaming step is set to the temperature in the first half of 90 ° C.
 蒸らし工程においては、流路選択部44が主流路22を選択した上で、蒸らしに必要な所定量の湯が所定時間で主流路22からドリッパ26に吐出されるように、ポンプ制御部40がポンプ14の回転数を制御する。その後、ポンプ制御部40はポンプ14の回転量を「0」としてポンプ14からの湯の吐出を停止させる。この状態で数十秒(例えば20~60秒)待機してコーヒー原料の蒸らしを実行する。その間も上流側流路16の湯温は余熱により温度を維持している。なお、コーヒー飲料の味を良くするために、蒸らしの時間は短すぎず、長すぎない適当な時間であるのが望ましい。 In the steaming step, the pump control unit 40 selects the main flow path 22 by the flow path selection unit 44, and then discharges a predetermined amount of hot water required for steaming from the main flow path 22 to the dripper 26 in a predetermined time. The rotation speed of the pump 14 is controlled. After that, the pump control unit 40 sets the rotation amount of the pump 14 to "0" and stops the discharge of hot water from the pump 14. In this state, wait for several tens of seconds (for example, 20 to 60 seconds) to steam the coffee raw material. During that time, the temperature of the hot water in the upstream flow path 16 is maintained by the residual heat. In order to improve the taste of the coffee beverage, it is desirable that the steaming time is not too short and not too long.
 抽出工程は、コーヒー原料に所定時間に亘って湯を吐出することで、コーヒー飲料を抽出する工程である。本実施形態では、抽出工程においてはコーヒー原料に断続的に湯が吐出される。コーヒー飲料製造装置10においては、抽出工程は複数の期間に区分されている。本実施形態では、抽出工程は、前側期間である抽出前期、並びに、前側期間に後続する後側期間である抽出中期及び抽出後期の3つの期間に区分されている。なお、抽出工程は、2つの期間から構成されてもよく、また、4つ以上の期間から構成されてもよい。 The extraction step is a step of extracting a coffee beverage by discharging hot water to the coffee raw material for a predetermined time. In the present embodiment, hot water is intermittently discharged to the coffee raw material in the extraction step. In the coffee beverage manufacturing apparatus 10, the extraction step is divided into a plurality of periods. In the present embodiment, the extraction step is divided into three periods: an early extraction period, which is an anterior period, and an intermediate extraction period and a late extraction period, which are posterior periods following the anterior period. The extraction step may be composed of two periods, or may be composed of four or more periods.
 本実施形態では、抽出工程において、温度制御部42の目標温度は、抽出開始から時間が経つ程低い温度となっている。すなわち、温度制御部42は、抽出開始から時間が経つ程、湯の温度が低くなるようにヒータ18を制御する。よって、温度低下の過程においてもヒータ18のON・OFFの制御は行われる。図7に示されている通り、抽出前期の第1温度としての目標温度TTaに比して、抽出中期の第2温度としての目標温度TTb及び抽出後期の目標温度TTcが低い温度となっている。さらに、抽出中期の目標温度TTbに比して、抽出後期の目標温度TTcが低い温度となっている。特に、抽出前期内において、一定期間、目標温度が目標温度TTaに維持され、抽出中期内において、一定期間、目標温度が目標温度TTbに維持され、抽出後期内において、一定期間、目標温度が目標温度TTcに維持されている。具体的には、本実施形態では、抽出前期の目標温度TTaは95℃程度となっており、抽出中期の目標温度TTbは90℃程度となっており、抽出後期の目標温度TTcは80℃程度となっている。 In the present embodiment, in the extraction step, the target temperature of the temperature control unit 42 becomes lower as time passes from the start of extraction. That is, the temperature control unit 42 controls the heater 18 so that the temperature of the hot water becomes lower as time passes from the start of extraction. Therefore, ON / OFF of the heater 18 is controlled even in the process of lowering the temperature. As shown in FIG. 7, the target temperature TTb as the second temperature in the middle stage of extraction and the target temperature TTc in the latter stage of extraction are lower than the target temperature TTa as the first temperature in the first stage of extraction. .. Further, the target temperature TTc in the latter stage of extraction is lower than the target temperature TTb in the middle stage of extraction. In particular, in the early stage of extraction, the target temperature is maintained at the target temperature TTa for a certain period, in the middle stage of extraction, the target temperature is maintained at the target temperature TTb, and in the latter stage of extraction, the target temperature is targeted for a certain period. The temperature is maintained at TTc. Specifically, in the present embodiment, the target temperature TTa in the first half of extraction is about 95 ° C, the target temperature TTb in the middle of extraction is about 90 ° C, and the target temperature TTc in the second half of extraction is about 80 ° C. It has become.
 なお、抽出工程の各期間内において目標温度が変動し得るところ、抽出前期の目標温度よりも抽出中期の目標温度が低いとは、必ずしも抽出中期の全時刻における目標温度が抽出前期の目標温度よりも低くなくてもよい。すなわち、抽出前期における湯の温度に比して、抽出中期における湯の温度が実質的に低くなるように目標温度が設定されればよい。例えば、抽出前期の目標温度がTTaである場合、抽出中期内の短い一時期において目標温度がTTaを上回っていたとしても、抽出中期内のその他の時期において目標温度がTTaを下回っており、実質的に、抽出前期における湯の温度に比して抽出中期における湯の温度が低くなるのであれば、それは、抽出前期の目標温度TTaよりも抽出中期の目標温度TTbが低いといえる。これは、他の期間(又は後述する加湯工程)間の関係においても同様である。 In addition, where the target temperature can fluctuate within each period of the extraction process, the target temperature in the middle stage of extraction is lower than the target temperature in the first stage of extraction. Does not have to be low. That is, the target temperature may be set so that the temperature of the hot water in the middle stage of extraction is substantially lower than the temperature of the hot water in the middle stage of extraction. For example, when the target temperature in the first half of extraction is TTa, even if the target temperature is higher than TTa in a short period of time during the middle extraction period, the target temperature is lower than TTa in other periods in the middle period of extraction, which is substantially the same. If the temperature of the hot water in the middle stage of extraction is lower than the temperature of the hot water in the first stage of extraction, it can be said that the target temperature TTb in the middle stage of extraction is lower than the target temperature TTa in the first stage of extraction. This also applies to the relationship between other periods (or the hot water step described later).
 また、各期間(又は加湯工程)の目標温度を、期間内又は加湯工程内の目標温度、又は、これを反映している湯温の時間平均値と定義してもよい。その場合、例えば、抽出前期内の目標温度又は湯温の時間平均値に比して、抽出中期内の目標温度又は湯温の時間平均値とを比較することになる。他の定義としては、抽出前期の抽出量と抽出中期の抽出量との観点でみることができる。抽出前期の抽出量における個々の目標温度又は湯温の時間平均値と、抽出中期の抽出量における個々の目標温度又は湯温の時間平均値とを比較することになる。 Further, the target temperature of each period (or the hot water step) may be defined as the target temperature within the period or the hot water process, or the time average value of the hot water temperature reflecting this. In that case, for example, the time average value of the target temperature or the hot water temperature in the middle stage of extraction is compared with the time average value of the target temperature or the hot water temperature in the early stage of extraction. Another definition can be seen from the viewpoint of the amount of extraction in the early stage of extraction and the amount of extraction in the middle stage of extraction. The time average value of each target temperature or hot water temperature in the extraction amount in the first half of extraction is compared with the time average value of individual target temperature or hot water temperature in the extraction amount in the middle stage of extraction.
 抽出工程においては、流路選択部44が主流路22を選択した上で、ポンプ制御部40がポンプ14を回転させることで、ドリッパ26に湯が吐出される。本実施形態では、細かく温度、湯量の制御をするために、ポンプ制御部40が断続的にポンプ14を回転させて(つまりポンプ14の回転と停止を繰り返して)、ドリッパ26に断続的に湯が吐出される。なお、図7の例では、流路選択部44は、抽出工程中は、ポンプ14が回転している間については主流路22を選択し、ポンプ14が回転していない間は、バイパス流路24を選択するようにしているが、流路選択部44が、抽出工程の間はずっと主流路22を選択するように制御する簡易な制御方法を採用することも可能である。 In the extraction step, the flow path selection unit 44 selects the main flow path 22, and then the pump control unit 40 rotates the pump 14, so that hot water is discharged to the dripper 26. In the present embodiment, in order to finely control the temperature and the amount of hot water, the pump control unit 40 intermittently rotates the pump 14 (that is, the pump 14 is repeatedly rotated and stopped), and the dripper 26 is intermittently hot water. Is ejected. In the example of FIG. 7, the flow path selection unit 44 selects the main flow path 22 while the pump 14 is rotating, and the bypass flow path while the pump 14 is not rotating. Although 24 is selected, it is also possible to adopt a simple control method in which the flow path selection unit 44 controls to select the main flow path 22 throughout the extraction process.
 上述のように、抽出工程においては、複数回に分けて断続的にドリッパ26に湯が吐出される。 As described above, in the extraction step, hot water is intermittently discharged to the dripper 26 in a plurality of times.
 なお、抽出における基本動作は図7と同じなので、詳細な説明は割愛するが、動作モード、杯数に応じ最適な制御となるように、各制御部の制御タイミング、制御量は、予め記憶部32に記憶され、コーヒー飲料製造プログラムにより、動作モード、杯数に応じて、適宜設定されるようになっている。この結果、例えば、複数回に分けて断続的に湯がドリッパ26に吐出される際に、通常モードと、アメリカンモードとで、各回の湯の吐出量を異ならせるような制御が可能となる。 Since the basic operation in extraction is the same as in FIG. 7, detailed explanation is omitted, but the control timing and control amount of each control unit are stored in advance so that the optimum control is performed according to the operation mode and the number of cups. It is stored in 32 and is appropriately set according to the operation mode and the number of cups by the coffee beverage production program. As a result, for example, when the hot water is intermittently discharged to the dripper 26 in a plurality of times, it is possible to control the discharge amount of the hot water in each time to be different between the normal mode and the American mode.
 上述の通り、コーヒー飲料の抽出を開始した直後においては、甘みや酸味を含む成分がより多く抽出され、抽出開始から時間が経つ程、渋みやえぐみを含む成分がより多く抽出されるようになる。また、湯の温度が高い程、抽出されたコーヒー飲料の濃度が濃くなり(つまりコーヒー原料から成分がより多く抽出され)、湯の温度が低い程、抽出されたコーヒー飲料の濃度が薄くなる(つまりコーヒー原料から成分がより少なく抽出される)。 As described above, immediately after the extraction of the coffee beverage is started, more components containing sweetness and acidity are extracted, and as time passes from the start of extraction, more components including astringency and harshness are extracted. .. Also, the higher the temperature of the hot water, the higher the concentration of the extracted coffee beverage (that is, more components are extracted from the coffee raw material), and the lower the temperature of the hot water, the lower the concentration of the extracted coffee beverage (that is, the more the components are extracted from the coffee raw material). That is, less ingredients are extracted from the coffee ingredients).
 したがって、本実施形態では、抽出工程の前側期間(抽出前期)において目標温度を高くしてドリッパ26に吐出する湯の温度を高くすることで、甘みや酸味を含む成分をより多く抽出し、且つ、前側期間に後続する後側期間(抽出中期及び抽出後期)において目標温度を低くしてドリッパ26に吐出する湯の温度を低くすることで、温度一定の制御に比較して、渋み、えぐみが少ないよりクリアなコーヒー飲料の抽出を行う。 Therefore, in the present embodiment, by raising the target temperature in the pre-extraction period (early extraction period) and raising the temperature of the hot water discharged to the dripper 26, more components containing sweetness and acidity can be extracted, and moreover, the components containing sweetness and acidity can be extracted. By lowering the target temperature in the posterior period (middle and late extraction) following the anterior period and lowering the temperature of the hot water discharged to the dripper 26, it is astringent and astringent compared to constant temperature control. Extract less clear coffee beverages.
 また、本実施形態では、前側期間である抽出前期は、抽出工程の先頭期間となっているが、必ずしも前側期間は抽出工程の先頭期間であることはない。抽出工程の中において、前側期間が後側期間の(時間的に)前にあればよい。尤も、甘みや酸味を含む成分は、抽出工程のより前の期間でより多く抽出されるから、前側期間は抽出工程内の前側に位置しているのが望ましい。 Further, in the present embodiment, the extraction first period, which is the front period, is the beginning period of the extraction process, but the front period is not necessarily the beginning period of the extraction process. In the extraction step, the anterior period may be before the posterior period (in time). However, since more components containing sweetness and acidity are extracted in the period before the extraction step, it is desirable that the pre-existing period is located on the front side in the extraction step.
 バイパス流路予熱工程は、後続の加湯工程に先立って、バイパス流路24の予熱を行う工程である。本実施形態では、主流路予熱工程同様、バイパス流路予熱工程においては、抽出のために下げてきた目標温度を予熱に適した温度に上げ、その後、流路を主流路22からバイパス流路24に切り替える制御を流路選択部44により行う。 The bypass flow path preheating step is a step of preheating the bypass flow path 24 prior to the subsequent hot water addition step. In the present embodiment, as in the main flow path preheating step, in the bypass flow path preheating step, the target temperature lowered for extraction is raised to a temperature suitable for preheating, and then the flow path is moved from the main flow path 22 to the bypass flow path 24. The flow path selection unit 44 controls to switch to.
 バイパス流路予熱工程においては、温度制御部42は、ポンプ14により圧送され、上流側流路16に残留した水が水蒸気となるようにヒータ18の制御を行う。温度制御部42は、ヒータ18を「ON」状態にし、上流側流路16に残留した水が水蒸気となるまで加熱する。 In the bypass flow path preheating step, the temperature control unit 42 controls the heater 18 so that the water that is pumped by the pump 14 and remains in the upstream side flow path 16 becomes steam. The temperature control unit 42 turns the heater 18 into an “ON” state and heats the water remaining in the upstream flow path 16 until it becomes steam.
 バイパス流路予熱工程においては、水蒸気をバイパス流路24に流入させるため、流路選択部44は、バイパス流路24を選択する。本実施形態では、流路選択部44は、電磁弁20がバイパス流路選択状態を取るように制御する。これにより、上流側流路16からの水蒸気はバイパス流路24に流入し主流路22には流入しない。当該水蒸気をバイパス流路24に流通させることで、バイパス流路24の予熱を行う。また、バイパス流路予熱工程では、ポンプ制御部40はポンプ14を低回転で回転させ、バイパス流路24を予熱するのに十分な量の水蒸気を得るための水を上流側流路16に圧送する。 In the bypass flow path preheating step, the flow path selection unit 44 selects the bypass flow path 24 in order to allow water vapor to flow into the bypass flow path 24. In the present embodiment, the flow path selection unit 44 controls the solenoid valve 20 to take the bypass flow path selection state. As a result, the water vapor from the upstream side flow path 16 flows into the bypass flow path 24 and does not flow into the main flow path 22. By circulating the steam in the bypass flow path 24, the bypass flow path 24 is preheated. Further, in the bypass flow path preheating step, the pump control unit 40 rotates the pump 14 at a low rotation speed, and pumps water to the upstream flow path 16 to obtain a sufficient amount of steam to preheat the bypass flow path 24. do.
 加湯工程は、バイパス流路24からの湯をサーバ28に吐出する工程である。 The hot water addition process is a process of discharging hot water from the bypass flow path 24 to the server 28.
 本実施形態では、加湯工程における温度制御部42の目標温度TTdは、抽出工程の後続期間における目標温度よりも高くなっている。具体的には、加湯工程における目標温度TTdは、少なくとも、抽出工程の最後尾の期間である抽出後期の目標温度TTcよりも高くなっている。好適には、加湯工程における目標温度TTdは、抽出工程の後続期間の中の最初の期間である抽出中期の目標温度TTbよりも高くなっている。さらに好適には、加湯工程における目標温度TTdは、抽出工程の先頭期間である抽出前期の目標温度TTaよりも高くなっているのがよく、本実施形態ではそのようになっている。具体的には、本実施形態では、加湯工程における目標温度TTdは100℃となっている。 In the present embodiment, the target temperature TTd of the temperature control unit 42 in the hot water step is higher than the target temperature in the subsequent period of the extraction step. Specifically, the target temperature TTd in the hot water step is at least higher than the target temperature TTc in the late extraction period, which is the last period of the extraction process. Preferably, the target temperature TTd in the hot water step is higher than the target temperature TTb in the middle of extraction, which is the first period in the subsequent period of the extraction step. More preferably, the target temperature TTd in the hot water step is often higher than the target temperature TTa in the first period of extraction, which is the first period of the extraction step, which is the case in the present embodiment. Specifically, in the present embodiment, the target temperature TTd in the hot water step is 100 ° C.
 加湯工程においては、流路選択部44がバイパス流路24を選択した上で、バイパス流路24からサーバ28に湯が吐出されるように、ポンプ制御部40がポンプ14を制御する。なお、加湯工程において一度に多量の湯をサーバ28に吐出すると、吐出される湯の温度が下がってしまう場合には、ポンプ制御部40は小休止を挟みながらポンプ14に水を圧送させることが望ましい。 In the hot water addition process, after the flow path selection unit 44 selects the bypass flow path 24, the pump control unit 40 controls the pump 14 so that hot water is discharged from the bypass flow path 24 to the server 28. If the temperature of the discharged hot water drops when a large amount of hot water is discharged to the server 28 at one time in the hot water step, the pump control unit 40 pumps the water to the pump 14 with a short break. Is desirable.
 上述のように、抽出工程においては、渋み、えぐみが少ないよりクリアなコーヒー飲料を抽出するために、温度制御部42が、抽出中期及び抽出後期においてドリッパ26に吐出する湯の温度を低下させている。一方で、このような制御をとることで、サーバ28に貯留されるコーヒー飲料の温度が適温に対して低くなってしまう場合がある。本実施形態では、サーバ台30に加熱手段を設けで温度を適温に維持する構成をとるのではなく、少なくとも抽出後期に比して加湯工程における目標温度を高くし、すなわち少なくとも抽出後期に比して加湯工程における湯の温度を高くすることで、サーバ28に貯留されたコーヒー飲料の温度を適温に近づくように上昇させている。 As described above, in the extraction step, in order to extract a clearer coffee beverage with less astringency and harshness, the temperature control unit 42 lowers the temperature of the hot water discharged to the dripper 26 in the middle and late stages of extraction. ing. On the other hand, by taking such control, the temperature of the coffee beverage stored in the server 28 may be lower than the optimum temperature. In the present embodiment, the server table 30 is not provided with a heating means to maintain the temperature at an appropriate temperature, but the target temperature in the hot water step is set higher than at least in the latter stage of extraction, that is, in comparison with at least the latter stage of extraction. By raising the temperature of the hot water in the hot water step, the temperature of the coffee beverage stored in the server 28 is raised so as to approach an appropriate temperature.
 また、湯を足すだけなので、抽出工程で抽出したコーヒー飲料のクリアな味わいを維持できる。 Also, since you only need to add hot water, you can maintain the clear taste of the coffee beverage extracted in the extraction process.
 湯飛ばし工程は、加湯工程の後に、上流側流路16及びバイパス流路24に残った湯を水蒸気にしてバイパス流路24のサーバ側開口24aから排出する工程である。湯飛ばし工程においては、加湯工程から引き続きヒータ制御信号が「ON」に維持され、流路選択部44がバイパス流路24を選択している。湯飛ばし工程においては、ポンプ制御部40はポンプ14を停止させる。これにより、上流側流路16及びバイパス流路24に残った湯が水蒸気になってサーバ側開口24aから排出される。 The hot water removing step is a step of turning the hot water remaining in the upstream side flow path 16 and the bypass flow path 24 into steam and discharging the hot water from the server side opening 24a of the bypass flow path 24 after the hot water addition step. In the hot water removing step, the heater control signal is continuously maintained at “ON” from the hot water boiling step, and the flow path selection unit 44 selects the bypass flow path 24. In the hot water blowing process, the pump control unit 40 stops the pump 14. As a result, the hot water remaining in the upstream side flow path 16 and the bypass side flow path 24 becomes steam and is discharged from the server side opening 24a.
 以上説明したヒータ予熱工程から湯飛ばし工程までの一連の工程によってコーヒー飲料製造装置10におけるコーヒー製造処理が完了する。 The coffee manufacturing process in the coffee beverage manufacturing apparatus 10 is completed by a series of steps from the heater preheating step to the hot water blowing step described above.
 本実施形態に係るコーヒー飲料製造装置10によれば、コーヒー製造処理の過程において、バイパス流路24のサーバ側開口24aから、セット状態におけるサーバ28の唯一の開口部である注ぎ口28bに対して水蒸気が吐出される。これにより、注ぎ口28bから注入された水蒸気は、サーバ28の他の開口部から抜けてしまうことがなく、サーバ28が効率的に温められる。これにより、サーバ28に貯留されたコーヒー飲料の温度の低下が抑制される。 According to the coffee beverage manufacturing apparatus 10 according to the present embodiment, in the process of coffee manufacturing processing, from the server-side opening 24a of the bypass flow path 24 to the spout 28b which is the only opening of the server 28 in the set state. Steam is discharged. As a result, the water vapor injected from the spout 28b does not escape from the other openings of the server 28, and the server 28 is efficiently heated. As a result, a decrease in the temperature of the coffee beverage stored in the server 28 is suppressed.
 また、保温ヒータによりコーヒー飲料を保温する場合とは異なり、コーヒー飲料製造装置10では、サーバ28に貯留されたコーヒー飲料を長時間加熱することがない。これにより、コーヒー飲料からのコーヒー成分の揮発が抑制され、サーバ28に貯留されたコーヒー飲料の味の劣化が抑制される。 Further, unlike the case where the coffee beverage is kept warm by the heat retaining heater, the coffee beverage manufacturing apparatus 10 does not heat the coffee beverage stored in the server 28 for a long time. As a result, the volatilization of the coffee component from the coffee beverage is suppressed, and the deterioration of the taste of the coffee beverage stored in the server 28 is suppressed.
 特に、コーヒー飲料製造装置10が実行する抽出工程においては、抽出前期に比して、抽出中期及び抽出後期におけるドリッパ26に吐出する湯の温度を低下させている。これにより、渋み、えぐみが少ないよりクリアなコーヒー飲料が抽出できる一方で、サーバ28に貯留されるコーヒー飲料の温度が適温に対して低くなってしまう場合がある。このような抽出工程を有するコーヒー飲料製造装置においては、サーバ28に貯留されたコーヒー飲料の温度の低下の抑制がより求められるため、水蒸気によりサーバ28を温めることがより有用となる。 In particular, in the extraction step executed by the coffee beverage manufacturing apparatus 10, the temperature of the hot water discharged to the dripper 26 in the middle stage and the late stage of extraction is lowered as compared with the first stage of extraction. As a result, a clearer coffee beverage with less astringency and harshness can be extracted, but the temperature of the coffee beverage stored in the server 28 may be lower than the optimum temperature. In a coffee beverage manufacturing apparatus having such an extraction step, it is more required to suppress a decrease in the temperature of the coffee beverage stored in the server 28, so that it is more useful to heat the server 28 with steam.
 本実施形態では、本実施形態に係るコーヒー飲料製造装置10は、蒸らし工程に先立って蒸気吐出工程を実行している。目標温度又は湯温の高低に着目すると、図7を示されている通り、蒸気吐出工程の温度が一番高く、蒸らし工程の温度(湯温が90℃程度)が一番低く、抽出工程(抽出前期)の温度(湯温が95℃程度)が真ん中となっている。仮に、蒸気吐出工程を蒸らし工程の後に行うとすると、蒸らし工程にて90℃程度の湯をドリッパ26に吐出した後、ヒータ18を加熱して湯が水蒸気になるまで待ち、その後水蒸気をサーバ28に吐出し、その後さらに、抽出工程において95℃程度の湯をドリッパ26に吐出できるようにするためにヒータ18が冷えるのを待つ必要がある。上述のように、コーヒー飲料の味を良くするために、蒸らしの時間は短すぎず、長すぎない適当な時間であるのが望ましいところ、蒸気吐出工程を蒸らし工程の後に行うとすると、上述のように待ち時間が生じ得ることから、蒸らしの時間が長くなってしまう場合がある。したがって、コーヒー飲料製造装置10は、蒸らしの時間を適切な時間とすべく、蒸らし工程に先立って蒸気吐出工程を実行している。 In the present embodiment, the coffee beverage manufacturing apparatus 10 according to the present embodiment executes the steam discharge step prior to the steaming step. Focusing on the target temperature or the temperature of the hot water, as shown in FIG. 7, the temperature of the steam discharge process is the highest, the temperature of the steaming process (the temperature of the hot water is about 90 ° C) is the lowest, and the extraction process ( The temperature (hot water temperature is about 95 ° C) in the first half of extraction is in the middle. Assuming that the steam discharge step is performed after the steaming step, hot water of about 90 ° C. is discharged to the dripper 26 in the steaming step, the heater 18 is heated and waits until the hot water becomes steam, and then the steam is transferred to the server 28. After that, it is necessary to wait for the heater 18 to cool down so that hot water of about 95 ° C. can be discharged to the dripper 26 in the extraction step. As mentioned above, in order to improve the taste of coffee beverages, it is desirable that the steaming time is not too short and not too long. Since there may be a waiting time, the steaming time may become longer. Therefore, the coffee beverage manufacturing apparatus 10 executes the steam discharge step prior to the steaming step in order to set the steaming time to an appropriate time.
 また、本実施形態に係るコーヒー飲料製造装置10は、抽出工程に先立って蒸気吐出工程を実行している。抽出工程に先立って蒸気吐出工程を実行することにより、サーバ28内にコーヒー飲料が注入される前に、サーバ28を予め温めておくことができる。なお、蒸気吐出工程は、抽出工程の前後で実行するようにしてもよい。例えば、蒸らし工程に先立って蒸気吐出工程を実行した後、加湯工程に連続して(加湯工程の直前又は直後に)蒸気吐出工程を実行してもよい。 Further, the coffee beverage manufacturing apparatus 10 according to the present embodiment executes the steam discharge step prior to the extraction step. By executing the steam discharge step prior to the extraction step, the server 28 can be preheated before the coffee beverage is injected into the server 28. The steam discharge step may be executed before and after the extraction step. For example, after executing the steam discharge step prior to the steaming step, the steam discharge step may be executed continuously (immediately before or immediately after the hot water step) in the hot water step.
 また、本実施形態では、蒸気吐出工程に加え、加湯工程も有している。加湯工程を加えることで、蒸気吐出工程のみでサーバ28を温める場合に比して、サーバ28に貯留されたコーヒー飲料の温度の低下をより抑制することができる。 Further, in this embodiment, in addition to the steam discharge process, a hot water addition process is also provided. By adding the hot water step, it is possible to further suppress the decrease in the temperature of the coffee beverage stored in the server 28 as compared with the case where the server 28 is heated only by the steam discharge step.
 本実施形態においては、加湯工程を抽出工程の後に実行するようにしているが、加湯工程は抽出工程の前に実行されてもよい。例えば、加湯工程を蒸気吐出工程と連続して(蒸気吐出工程の直前又は直後に)行うようにしてもよい。言うまでもないが、その場合もバイパス流路予熱工程は加湯工程の前に実行されるから、バイパス流路予熱工程が抽出工程の前に実行されることとなる。また、加湯工程を抽出工程の前後で実行するようにしてもよい。 In the present embodiment, the hot water step is executed after the extraction step, but the hot water step may be executed before the extraction step. For example, the hot water step may be performed continuously with the steam discharge step (immediately before or immediately after the steam discharge step). Needless to say, even in that case, since the bypass flow path preheating step is executed before the hot water step, the bypass flow path preheating step is executed before the extraction step. Further, the hot water step may be executed before and after the extraction step.
 さらに、抽出工程と、蒸気吐出工程又は加湯工程を同時に実行することも考えられ、実際にコーヒー飲料製造装置10においてもそのような実施形態を採用し得る。しかしながら、上述のように、抽出工程と、蒸気吐出工程又は加湯工程との間で目標温度(湯の温度)が異なっているために、抽出工程と、蒸気吐出工程又は加湯工程を同時に実行するならば、少なくとも2つのヒータ18(及び温度センサ36)が必要となってしまう。例えば、主流路22とバイパス流路24とにそれぞれヒータ18を設ける必要がある。これによりコーヒー飲料製造装置10の構造が複雑化し、コーヒー飲料製造装置10が高コスト化あるいは大型化してしまう。したがって、抽出工程の前又は後に、蒸気吐出工程又は加湯工程を実行する方が、抽出工程と、蒸気吐出工程又は加湯工程を同時に実行する場合に比して、コーヒー飲料製造装置10の低コスト化あるいは小型化の面からは有利である。 Further, it is conceivable to execute the extraction step and the steam discharge step or the hot water step at the same time, and such an embodiment can be actually adopted in the coffee beverage manufacturing apparatus 10. However, as described above, since the target temperature (hot water temperature) is different between the extraction step and the steam discharge step or the hot water step, the extraction step and the steam discharge step or the hot water step are executed at the same time. If so, at least two heaters 18 (and a temperature sensor 36) would be required. For example, it is necessary to provide heaters 18 in the main flow path 22 and the bypass flow path 24, respectively. This complicates the structure of the coffee beverage manufacturing apparatus 10, and increases the cost or size of the coffee beverage producing apparatus 10. Therefore, it is lower in the coffee beverage manufacturing apparatus 10 to execute the steam discharge step or the hot water step before or after the extraction step than to execute the extraction step and the steam discharge step or the hot water step at the same time. It is advantageous in terms of cost reduction or miniaturization.
 また、コーヒー飲料製造装置10の動作モードに応じて、蒸気吐出工程が省略されてもよい。例えば、コーヒー飲料製造装置10の動作モードがアイスコーヒーモードである場合には、蒸気吐出工程が省略される。同様に、コーヒー飲料製造装置10の動作モードに応じて、加湯工程も省略可能であってよい。例えば、コーヒー飲料製造装置10の動作モードがアイスコーヒーモードである場合には、加湯工程が省略される。加湯工程が省略される場合、バイパス流路予熱工程も省略される。なお、加湯工程は、コーヒー飲料製造装置10の動作モードに関わらず省略されてもよい。 Further, the steam discharge step may be omitted depending on the operation mode of the coffee beverage manufacturing apparatus 10. For example, when the operation mode of the coffee beverage manufacturing apparatus 10 is the ice coffee mode, the steam discharge step is omitted. Similarly, the hot water step may be omitted depending on the operation mode of the coffee beverage manufacturing apparatus 10. For example, when the operation mode of the coffee beverage manufacturing apparatus 10 is the ice coffee mode, the hot water step is omitted. If the hot water step is omitted, the bypass flow path preheating step is also omitted. The hot water step may be omitted regardless of the operation mode of the coffee beverage manufacturing apparatus 10.
 さらに、加湯工程及びバイパス流路予熱工程の他、主流路予熱工程及び蒸らし工程も省略可能とし、コーヒー製造処理の所要時間が短縮された動作モードをさらに設けることも可能である。主流路予熱工程及び蒸らし工程の実行の有無も、コーヒー飲料製造装置10の動作モードに応じて決定されてよい。 Furthermore, in addition to the hot water heating step and the bypass flow path preheating step, the main flow path preheating step and the steaming step can be omitted, and it is possible to further provide an operation mode in which the time required for the coffee manufacturing process is shortened. Whether or not the main flow path preheating step and the steaming step are executed may also be determined according to the operation mode of the coffee beverage manufacturing apparatus 10.
 また、本実施形態では、湯の流路の切り替えは電磁弁20により実行されていたが、その他の手段により湯の流路を切り替えるようにしてもよい。例えば、主流路22及びバイパス流路24はいずれも水タンク12に直接接続されていてもよい。この場合、主流路22とバイパス流路24に対して、ポンプ14、ヒータ18、温度センサ36のセットがそれぞれ設けられる。この場合、流路選択部44が主流路22を選択すると、ポンプ制御部40は、主流路22のポンプ14を動作させて水タンク12の水を主流路22に圧送し、流路選択部44がバイパス流路24を選択すると、ポンプ制御部40は、バイパス流路24のポンプ14を動作させて水タンク12の水をバイパス流路24に圧送する。温度制御部42は、主流路22の温度センサ36と目標温度とに基づいて主流路22のヒータ18を制御し、主流路予熱工程、蒸らし工程、及び抽出工程を実行し、バイパス流路24の温度センサ36と目標温度とに基づいてバイパス流路24のヒータ18を制御し、蒸気吐出工程、バイパス流路予熱工程、及び加湯工程を実行する。 Further, in the present embodiment, the switching of the hot water flow path is executed by the solenoid valve 20, but the hot water flow path may be switched by other means. For example, both the main flow path 22 and the bypass flow path 24 may be directly connected to the water tank 12. In this case, a set of a pump 14, a heater 18, and a temperature sensor 36 is provided for the main flow path 22 and the bypass flow path 24, respectively. In this case, when the flow path selection unit 44 selects the main flow path 22, the pump control unit 40 operates the pump 14 of the main flow path 22 to pump water from the water tank 12 to the main flow path 22, and the flow path selection unit 44 When the bypass flow path 24 is selected, the pump control unit 40 operates the pump 14 of the bypass flow path 24 to pump the water in the water tank 12 to the bypass flow path 24. The temperature control unit 42 controls the heater 18 of the main flow path 22 based on the temperature sensor 36 of the main flow path 22 and the target temperature, executes the main flow path preheating step, the steaming step, and the extraction step, and executes the main flow path preheating step, the steaming step, and the extraction step of the bypass flow path 24. The heater 18 of the bypass flow path 24 is controlled based on the temperature sensor 36 and the target temperature, and the steam discharge step, the bypass flow path preheating step, and the hot water addition step are executed.
 以上、本発明に係る実施形態を説明したが、本発明は上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。 Although the embodiments according to the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the present invention.
 例えば、本実施形態に係るコーヒー飲料製造装置10は、ドリップ式でコーヒー飲料を抽出する装置であったが、本発明は、抽出されたコーヒー飲料がサーバ28に貯留される限りにおいて、その他の方式でコーヒー飲料を抽出するコーヒー飲料製造装置に対しても好適に適用し得る。 For example, the coffee beverage manufacturing apparatus 10 according to the present embodiment was an apparatus for extracting coffee beverages by a drip type, but the present invention is another method as long as the extracted coffee beverages are stored in the server 28. It can also be suitably applied to a coffee beverage manufacturing apparatus for extracting coffee beverages.
 また、本実施形態では、ドリッパ26にて抽出されたコーヒー飲料は、サーバ28に貯留されていたが、コーヒー飲料を貯留する貯留器としては、ユーザがそこから直接コーヒー飲料を飲むことが可能なもの、例えばコーヒーカップなどであってもよい。 Further, in the present embodiment, the coffee beverage extracted by the dripper 26 is stored in the server 28, but as a reservoir for storing the coffee beverage, the user can directly drink the coffee beverage from there. It may be something, such as a coffee cup.
 そのようなコーヒーカップの例が図8に示されている。コーヒーカップ70は、コーヒー飲料を貯留するカップ部72と、カップ部72の上部開口を閉じるようにカップ部72に取り付けられる蓋部74を含んで構成される。カップ部72(あるいは蓋部74も)は魔法瓶であってよい。蓋部74は、一定の保持力を持ってカップ部72に取り付けられる。蓋部74は、上方に開口した、コーヒー注入口74a及び飲み口74bを有している。ドリッパ26からのコーヒー飲料は、コーヒー注入口74aを通ってカップ部72に貯留される。また、ユーザは、カップ部72に貯留されたコーヒー飲料を飲み口74bから飲むことができる。 An example of such a coffee cup is shown in FIG. The coffee cup 70 includes a cup portion 72 for storing coffee beverages and a lid portion 74 attached to the cup portion 72 so as to close the upper opening of the cup portion 72. The cup portion 72 (or the lid portion 74) may be a thermos bottle. The lid portion 74 is attached to the cup portion 72 with a certain holding force. The lid portion 74 has a coffee inlet 74a and a drinking port 74b that are open upward. The coffee beverage from the dripper 26 is stored in the cup portion 72 through the coffee inlet 74a. In addition, the user can drink the coffee beverage stored in the cup portion 72 from the drinking spout 74b.
 蓋部74は、上方に突出した突出部74cを有している。突出部74cの上面にコーヒー注入口74aが形成されている。コーヒーカップ70が装置本体にセットされたセット状態において、突出部74cが姿勢規制機構60に当接することで、コーヒーカップ70の姿勢が規制される。 The lid portion 74 has a protruding portion 74c protruding upward. A coffee inlet 74a is formed on the upper surface of the protrusion 74c. In the set state in which the coffee cup 70 is set in the main body of the apparatus, the posture of the coffee cup 70 is regulated by the protrusion 74c coming into contact with the posture regulating mechanism 60.
 セット状態において、コーヒー注入口74aは、ドリッパ26の下部開口26aの縁辺により塞がれる。また、セット状態において、バイパス流路24のコーヒーカップ側の開口の位置は、セット状態におけるコーヒーカップ70の唯一の開口部である貯留器開口部としての飲み口74bに対向した位置となる。これにより、バイパス流路24から飲み口74bに向けて水蒸気が吐出される。 In the set state, the coffee inlet 74a is closed by the edge of the lower opening 26a of the dripper 26. Further, in the set state, the position of the opening on the coffee cup side of the bypass flow path 24 is a position facing the drinking port 74b as the reservoir opening which is the only opening of the coffee cup 70 in the set state. As a result, water vapor is discharged from the bypass flow path 24 toward the drinking spout 74b.
 また、本実施形態では、上流側流路16に水を送る送水部としてポンプ14が用いられ、送水制御部としてポンプ制御部40を用いていたが、送水部及び送水制御部は、これらに限られるものではない。 Further, in the present embodiment, the pump 14 is used as the water supply unit that sends water to the upstream flow path 16, and the pump control unit 40 is used as the water supply control unit, but the water supply unit and the water supply control unit are limited to these. It is not something that can be done.
 図9は、送水部及び送水制御部の変形例の一例を示す図である。変形例では、水タンク12から下側に延びるように上流側流路16を設け、上流側流路16の途中にヒータ18を設けている。さらに、変形例では、水タンク12とヒータ18との間に送水部としての弁機構80が設けられている。弁機構80は、弁の開閉動作により、水タンク12から上流側流路16への水の流れを許容する許容状態(弁が開の状態)と、水タンク12から上流側流路16への水の流れを禁止する禁止状態(弁が閉の状態)とを取ることができるものである。また、許容状態においては、弁の開き程度を調整可能であって、これにより単位時間あたりの流水量を調整可能であってもよい。上流側流路16が水タンク12から下側に延びていることで、許容状態においては、水タンク12に貯留された水は、重力の作用によって上流側流路16に流れ込む。その上で、上流側流路16に流れ込んだ水は、ヒータ18によって加熱され、湯又は水蒸気が主流路22又はバイパス流路24に流れ込むようになっている。 FIG. 9 is a diagram showing an example of modification of the water supply unit and the water supply control unit. In the modified example, the upstream side flow path 16 is provided so as to extend downward from the water tank 12, and the heater 18 is provided in the middle of the upstream side flow path 16. Further, in the modified example, a valve mechanism 80 as a water feeding unit is provided between the water tank 12 and the heater 18. The valve mechanism 80 has an allowable state (a state in which the valve is open) that allows water to flow from the water tank 12 to the upstream flow path 16 by opening and closing the valve, and a valve mechanism 80 from the water tank 12 to the upstream flow path 16. It is possible to take a prohibited state (a state in which the valve is closed) that prohibits the flow of water. Further, in the allowable state, the degree of valve opening may be adjustable, whereby the amount of flowing water per unit time may be adjustable. Since the upstream side flow path 16 extends downward from the water tank 12, the water stored in the water tank 12 flows into the upstream side flow path 16 by the action of gravity under the allowable state. On top of that, the water that has flowed into the upstream flow path 16 is heated by the heater 18, and hot water or steam flows into the main flow path 22 or the bypass flow path 24.
 弁機構80の制御は、コントローラ38が有する機能である、送水制御部としての弁制御部82により実行される。具体的には、弁制御部82からの信号に基づいて、弁機構80は、上記許容状態と上記禁止状態とを切り替える。 The control of the valve mechanism 80 is executed by the valve control unit 82 as the water supply control unit, which is a function of the controller 38. Specifically, the valve mechanism 80 switches between the allowable state and the prohibited state based on the signal from the valve control unit 82.
 10 コーヒー飲料製造装置、12 水タンク、14 ポンプ、16 上流側流路、18 ヒータ、20 電磁弁、22 主流路、24 バイパス流路、24a サーバ側開口、26 ドリッパ、26a 下部開口、28 サーバ、28a,74a コーヒー注入口、28b 注ぎ口、28c 上面、28d,74c 突出部、30 サーバ台、32 記憶部、34 入力部、36 温度センサ、38 コントローラ、40 ポンプ制御部、42 温度制御部、44 流路選択部、46 水蒸気制御部、48 動作モード選択部、60 姿勢規制機構、62 基部、64 凹部、64b 側壁、64c 奥壁、70 コーヒーカップ、72 カップ部、74 蓋部、74b 飲み口、80 弁機構、82 弁制御部。 10 coffee beverage manufacturing equipment, 12 water tank, 14 pump, 16 upstream side flow path, 18 heater, 20 electromagnetic valve, 22 main flow path, 24 bypass flow path, 24a server side opening, 26 dripper, 26a lower opening, 28 server, 28a, 74a coffee inlet, 28b spout, 28c top surface, 28d, 74c protrusion, 30 server stand, 32 storage unit, 34 input unit, 36 temperature sensor, 38 controller, 40 pump control unit, 42 temperature control unit, 44 Flow path selection unit, 46 water vapor control unit, 48 operation mode selection unit, 60 posture regulation mechanism, 62 base, 64 recesses, 64b side walls, 64c back wall, 70 coffee cups, 72 cups, 74 lids, 74b drinking spouts, 80 valve mechanism, 82 valve control unit.

Claims (10)

  1.  コーヒー飲料を抽出する装置本体と、前記コーヒー飲料を貯留する容器である貯留器とを含むコーヒー飲料製造装置であって、
     前記貯留器は、
     前記装置本体に前記サーバがセットされたセット状態における唯一の開口部である貯留器開口部、
     を備え、
     前記装置本体は、
     コーヒー原料がセットされた抽出部まで延び、前記コーヒー飲料を抽出するための湯が流通する第1流路と、
     前記貯留器まで延び、水蒸気が流通する第2流路であって、前記セット状態においてその開口端である水蒸気吐出口が前記貯留器開口部に対向した位置にある第2流路と、
     前記水蒸気吐出口から前記貯留器開口部へ向けて、前記水蒸気を吐出させる水蒸気制御部と、
     を備える、
     ことを特徴とするコーヒー飲料製造装置。
    A coffee beverage manufacturing apparatus including a main body of an apparatus for extracting coffee beverages and a reservoir which is a container for storing the coffee beverages.
    The reservoir is
    A reservoir opening, which is the only opening in the set state in which the server is set in the apparatus main body,
    Equipped with
    The main body of the device is
    A first flow path extending to the extraction unit where the coffee raw material is set and flowing hot water for extracting the coffee beverage, and a first flow path.
    A second flow path extending to the reservoir and flowing water vapor, and a second flow path in which the water vapor discharge port, which is the opening end thereof in the set state, faces the reservoir opening.
    A steam control unit that discharges the steam from the steam discharge port toward the reservoir opening, and a steam control unit.
    To prepare
    A coffee beverage manufacturing device characterized by that.
  2.  前記水蒸気吐出口は、鉛直方向下方に開口し、
     前記水蒸気は、鉛直方向下方に吐出される、
     ことを特徴とする請求項1に記載のコーヒー飲料製造装置。
    The steam discharge port opens downward in the vertical direction.
    The water vapor is discharged downward in the vertical direction.
    The coffee beverage manufacturing apparatus according to claim 1.
  3.  前記水蒸気制御部は、前記水蒸気吐出口から前記貯留器開口部へ向けての前記水蒸気の吐出を、前記抽出部に対して前記湯が吐出されて前記コーヒー飲料が抽出される抽出工程に先立って実行する、
     ことを特徴とする請求項1に記載のコーヒー飲料製造装置。
    The steam control unit discharges the steam from the steam discharge port toward the reservoir opening, and prior to the extraction step in which the hot water is discharged to the extraction unit and the coffee beverage is extracted. Run,
    The coffee beverage manufacturing apparatus according to claim 1.
  4.  前記水蒸気制御部は、前記水蒸気吐出口から前記貯留器開口部へ向けての前記水蒸気の吐出を、前記抽出部にセットされた前記コーヒー原料を蒸らす蒸らし工程に先立って実行する、
     ことを特徴とする請求項3に記載のコーヒー飲料製造装置。
    The steam control unit executes the discharge of the steam from the steam discharge port toward the reservoir opening prior to the steaming step of steaming the coffee raw material set in the extraction unit.
    The coffee beverage manufacturing apparatus according to claim 3.
  5.  前記装置本体は、
     水が流通する上流側流路と、
     前記上流側流路へ水を送る送水部と、
     前記送水部を制御する送水制御部と、
     前記上流側流路の途中に設けられ、前記送水部により送られた水を加熱して前記湯又は前記水蒸気にする加熱部と、
     前記加熱部を制御する温度制御部と、
     前記上流側流路からの前記湯又は前記水蒸気の流出先を、前記第1流路及び前記第2流路から選択する流路選択部と、
     を備え、
     前記水蒸気制御部は、前記送水制御部、前記温度制御部、及び前記流路選択部を含んで構成され、前記流路選択部が前記第2流路を選択し、前記送水制御部が前記水を前記上流側流路に送り、且つ、前記温度制御部が前記水を前記水蒸気にするよう前記加熱部を制御することで、前記水蒸気吐出口から前記貯留器開口部へ向けて前記水蒸気が吐出される、
     ことを特徴とする請求項1から4のいずれか1項に記載のコーヒー飲料製造装置。
    The main body of the device is
    The upstream channel through which water flows and
    A water supply unit that sends water to the upstream flow path,
    A water supply control unit that controls the water supply unit,
    A heating unit provided in the middle of the upstream flow path and heating the water sent by the water supply unit to make the hot water or the steam.
    A temperature control unit that controls the heating unit and
    A flow path selection unit that selects the outflow destination of the hot water or the steam from the upstream side flow path from the first flow path and the second flow path.
    Equipped with
    The steam control unit includes the water supply control unit, the temperature control unit, and the flow path selection unit. The flow path selection unit selects the second flow path, and the water supply control unit selects the water. And by controlling the heating unit so that the temperature control unit turns the water into the steam, the steam is discharged from the steam discharge port toward the reservoir opening. Be done,
    The coffee beverage manufacturing apparatus according to any one of claims 1 to 4.
  6.  前記装置本体は、
     前記湯の温度を検出する温度検出部、
     をさらに備え、
     前記温度制御部は、前記温度検出部の検出温度に基づいて、前記湯が目標温度となるように前記加熱部を制御し、
     前記抽出工程の前側期間における前記目標温度に比して、前記前側期間に後続する前記抽出工程の期間である後側期間における前記目標温度が低い温度である、
     ことを特徴とする請求項5に記載のコーヒー飲料製造装置。
    The main body of the device is
    A temperature detector that detects the temperature of the hot water,
    Further prepare
    The temperature control unit controls the heating unit so that the hot water reaches the target temperature based on the detection temperature of the temperature detection unit.
    The target temperature in the posterior period, which is the period of the extraction step following the anterior period, is lower than the target temperature in the anterior period of the extraction step.
    The coffee beverage manufacturing apparatus according to claim 5.
  7.  前記前側期間内において、前記目標温度が、一定期間、第1温度に維持され、
     前記後側期間内において、前記目標温度が、一定期間、前記第1温度よりも低い温度である第2温度に維持される、
     ことを特徴とする請求項6に記載のコーヒー飲料製造装置。
    Within the front period, the target temperature is maintained at the first temperature for a certain period of time.
    Within the posterior period, the target temperature is maintained at a second temperature, which is a temperature lower than the first temperature, for a certain period of time.
    The coffee beverage manufacturing apparatus according to claim 6.
  8.  前記貯留器開口部は、前記貯留器の注ぎ口である、
     ことを特徴とする請求項1に記載のコーヒー飲料製造装置。
    The reservoir opening is a spout of the reservoir.
    The coffee beverage manufacturing apparatus according to claim 1.
  9.  前記貯留器は、内びんと外びんの二重構造で形成され、前記内びんと前記外びんとの間に真空層を有する、
     ことを特徴とする請求項1に記載のコーヒー飲料製造装置。
    The reservoir is formed of a double structure of an inner bottle and an outer bottle, and has a vacuum layer between the inner bottle and the outer bottle.
    The coffee beverage manufacturing apparatus according to claim 1.
  10.  前記装置本体は、
     前記セット状態において前記貯留器開口部が前記水蒸気吐出口に対向した位置となるように、前記装置本体に対する前記貯留器の姿勢を規制する姿勢規制機構、
     をさらに備える、
     ことを特徴とする請求項1に記載のコーヒー飲料製造装置。
    The main body of the device is
    A posture regulating mechanism that regulates the posture of the reservoir with respect to the main body of the device so that the opening of the reservoir faces the steam discharge port in the set state.
    Further prepare,
    The coffee beverage manufacturing apparatus according to claim 1.
PCT/JP2020/040925 2020-10-30 2020-10-30 Coffee beverage production device WO2022091374A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/040925 WO2022091374A1 (en) 2020-10-30 2020-10-30 Coffee beverage production device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/040925 WO2022091374A1 (en) 2020-10-30 2020-10-30 Coffee beverage production device

Publications (1)

Publication Number Publication Date
WO2022091374A1 true WO2022091374A1 (en) 2022-05-05

Family

ID=81383867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040925 WO2022091374A1 (en) 2020-10-30 2020-10-30 Coffee beverage production device

Country Status (1)

Country Link
WO (1) WO2022091374A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5042992U (en) * 1973-08-20 1975-04-30
JPS6241620A (en) * 1985-08-19 1987-02-23 松下電器産業株式会社 Beverage extractor
JPH11346926A (en) * 1998-06-05 1999-12-21 Matsushita Electric Ind Co Ltd Coffee maker
JP2002051914A (en) * 2000-08-08 2002-02-19 Zojirushi Corp Coffee maker
JP2016209459A (en) * 2015-05-13 2016-12-15 象印マホービン株式会社 Beverage extraction machine
JP6376369B1 (en) * 2017-10-26 2018-08-22 清助 竹下 Electric coffee maker

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5042992U (en) * 1973-08-20 1975-04-30
JPS6241620A (en) * 1985-08-19 1987-02-23 松下電器産業株式会社 Beverage extractor
JPH11346926A (en) * 1998-06-05 1999-12-21 Matsushita Electric Ind Co Ltd Coffee maker
JP2002051914A (en) * 2000-08-08 2002-02-19 Zojirushi Corp Coffee maker
JP2016209459A (en) * 2015-05-13 2016-12-15 象印マホービン株式会社 Beverage extraction machine
JP6376369B1 (en) * 2017-10-26 2018-08-22 清助 竹下 Electric coffee maker

Similar Documents

Publication Publication Date Title
US9737081B2 (en) Hot beverage brewing system and use thereof
JP7455438B2 (en) Coffee beverage production equipment and coffee beverage production program
JP2005509477A (en) Coffee machine
JP4397341B2 (en) Milk former
EP1186268B1 (en) Coffee maker
WO2022091374A1 (en) Coffee beverage production device
AU2012222219B2 (en) Hot beverage brewing system and use thereof
JP4326480B2 (en) Coffee beverage production equipment
JPH09192022A (en) Coffee percolator
JP2006263028A (en) Espresso coffee machine
JP2006014922A (en) Coffee beverage making apparatus
JP2006346062A (en) Coffee maker
JP4162649B2 (en) Coffee beverage production equipment
JPH08112204A (en) Beverage extracting apparatus for vending machine
JP6375261B2 (en) Coffee maker
JPH09265574A (en) Automatic vending machine
WO2022264306A1 (en) Coffee beverage production device
JP4186297B2 (en) Beverage heating device
RU2792845C2 (en) Method of preparing coffee drinks in a coffee machine
JP2018007772A (en) Tea beverage generating device
JPS6330355Y2 (en)
JPH0499541A (en) Method and device for extracting coffee liquid
JPS60246718A (en) Electric pot
JPH07288A (en) Device for extracting coffee
JPH04279115A (en) Coffee maker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP