WO2021223170A1 - Prioritized lte and 5g non-standalone system selection for smart cards missing mspl - Google Patents

Prioritized lte and 5g non-standalone system selection for smart cards missing mspl Download PDF

Info

Publication number
WO2021223170A1
WO2021223170A1 PCT/CN2020/089007 CN2020089007W WO2021223170A1 WO 2021223170 A1 WO2021223170 A1 WO 2021223170A1 CN 2020089007 W CN2020089007 W CN 2020089007W WO 2021223170 A1 WO2021223170 A1 WO 2021223170A1
Authority
WO
WIPO (PCT)
Prior art keywords
serving cell
priority list
wireless communication
ran
communication network
Prior art date
Application number
PCT/CN2020/089007
Other languages
French (fr)
Inventor
Guojing LIU
Dongsheng Wang
Chaofeng HUI
Xiaomeng Lu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/089007 priority Critical patent/WO2021223170A1/en
Publication of WO2021223170A1 publication Critical patent/WO2021223170A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service

Definitions

  • This application relates to wireless communication systems, and more particularly to prioritized Long-Term Evolution (LTE) and Fifth-Generation (5G) non-standalone system selection for smart cards missing multi-mode system selection (MMSS) system priority list (MSPL) .
  • LTE Long-Term Evolution
  • 5G Fifth-Generation non-standalone system selection for smart cards missing multi-mode system selection (MMSS) system priority list (MSPL) .
  • MMSS multi-mode system selection
  • MSPL system priority list
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • multiple-access systems include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, and orthogonal frequency division multiple access (OFDMA) systems, (e.g., LTE system) .
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • a wireless multiple-access communications system may include a number of base stations (BSs) , each simultaneously supporting communication for multiple wireless communication devices, which may be otherwise known as user equipment (UE) .
  • BSs base stations
  • UE user equipment
  • NR next generation new radio
  • NR may provide lower latency and a higher bandwidth or throughput than LTE.
  • One approach to providing the improved NR functionalities is to deploy an NR network that is deployed within an LTE network.
  • the NR network may be overlaid on top of the LTE network with overlapping coverage areas, where the NR network and the LTE network may operate over overlapping spectrums.
  • the NR network can be accessed via the LTE network to provide a 5G non-standalone (NSA) service.
  • NSA non-standalone
  • system selection in a wireless communication environment is based on priority lists, which list the preferred order in which a wireless communication device is to attempt access to systems in a coverage area.
  • priority lists are generally associated with particular access technologies and/or sets of access technologies (e.g., based on communication standards) , and contain formatting and information that are particular to the technologies and/or sets of technologies to which the lists correspond.
  • MMSS Multi-Mode System Selection
  • MSPL MMSS System Priority List
  • the MSPL is a prioritized list of CDMA2000 and non-CDMA2000 cellular systems.
  • SIM Subscriber Identity Module
  • a wireless communication device such as smartphones and laptops
  • SIM card allows users to change wireless communication devices by simply removing the SIM card from one wireless communication device and inserting it into another wireless communication device or broadband telephony device.
  • the wireless communication device When there is no valid MSPL file in a SIM card, the wireless communication device is not capable to acquire service through an LTE anchor cell because the prioritized list of CDMA2000 and non-CDMA2000 cellular systems is not available. As such, this causes the wireless communication device to fail to register with an LTE anchor cell, thus causing any 5G non-standalone service to not be available.
  • an open-marking SIM card is typically used, where the MSPL is absent from the SIM card, so carriers in these regions and/or coverage areas may not be capable of provisioning LTE and 5G NR services.
  • a method of wireless communication performed by a user equipment includes determining whether a system selection priority list is present; obtaining a default priority list stored in the user equipment when the system selection priority list is not present; selecting a radio access network (RAN) based on the default priority list; and selecting a first serving cell in the RAN.
  • RAN radio access network
  • a user equipment for wireless communication includes a processor configured to determine whether a system selection priority list is present, obtain a default priority list stored in the user equipment when the system selection priority list is not present, select a radio access network (RAN) based on the default priority list, and select a first serving cell in the RAN; and a transceiver configured to communicate, with the first serving cell, one or more messages to access a first service via the first serving cell.
  • RAN radio access network
  • an non-transitory computer-readable medium having program code recorded thereon, the program code including code for causing a user equipment (UE) to determine whether a system selection priority list is present; code for causing the UE to obtain a default priority list stored in the user equipment when the system selection priority list is not present; code for causing the UE to select a radio access network (RAN) based on the default priority list; code for causing the UE to select a first serving cell in the RAN; and code for causing the UE to communicate, with the first serving cell, one or more messages to access a first service via the first serving cell.
  • UE user equipment
  • RAN radio access network
  • a user equipment (UE) for wireless communication includes means for determining whether a system selection priority list is present; means for obtaining a default priority list stored in the user equipment when the system selection priority list is not present; means for selecting a radio access network (RAN) based on the default priority list; means for selecting a first serving cell in the RAN; and means for communicating, with the first serving cell, one or more messages to access a first service via the first serving cell.
  • RAN radio access network
  • FIG. 1 illustrates a wireless communication network according to aspects of the present disclosure.
  • FIG. 2 illustrates a communication system that performs multi-mode system selection (MMSS) according to aspects of the present disclosure.
  • MMSS multi-mode system selection
  • FIG. 3 illustrates a block diagram of a user equipment according to some aspects of the present disclosure.
  • FIG. 4 illustrates a block diagram of an exemplary base station according to some aspects of the present disclosure.
  • FIG. 5 illustrates a flow chart of an example process of multi-mode system selection according to aspects of the present disclosure.
  • FIG. 6 illustrates a simplified diagram of an example frame exchange between a user equipment and a base station for selecting a default prioritized network according to aspects of the present disclosure.
  • FIG. 7 illustrates a network system for dual connectivity according to aspects of the present disclosure.
  • FIG. 8 illustrates a simplified diagram of an example frame exchange between a user equipment and an anchor base station using non-standalone signaling messages according to aspects of the present disclosure.
  • FIG. 9 illustrates a flow chart of an example process of smart card operation for multi-mode system selection according to instances of the present disclosure.
  • FIG. 10 illustrates a flow chart of an example process of non-standalone operation according to instances of the present disclosure.
  • FIG. 11 illustrates a flow chart of an example process of non-standalone connection setup according to instances of the present disclosure.
  • CDMA code-division multiple access
  • TDMA time-division multiple access
  • FDMA frequency-division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • SC-FDMA single-carrier FDMA
  • a CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA) , CDMA2000, etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • CDMA2000 covers IS-2000, IS-95 and IS-856 standards.
  • a TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • GSM Global System for Mobile Communications
  • An OFDMA network may implement a radio technology such as Evolved UTRA (E-UTRA) , Ultra Mobile Broadband (UMB) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDMA, etc.
  • E-UTRA Evolved UTRA
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDMA
  • UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) .
  • 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are new releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-Aand GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) .
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • 3GPP 3rd Generation Partnership Project
  • 3GPP long term evolution (LTE) is a 3GPP project which was aimed at improving the UMTS mobile phone standard.
  • the 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices.
  • the present disclosure is concerned with the evolution of wireless technologies from LTE, 4G, 5G, NR, and beyond with shared access to wireless spectrum between networks using a collection of new and different radio access technologies or radio air interfaces.
  • 5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface.
  • the 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with a ultra-high density (e.g., ⁇ 1M nodes/km 2 ) , ultra-low complexity (e.g., ⁇ 10s of bits/sec) , ultra-low energy (e.g., ⁇ 10+ years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ⁇ 99.9999%reliability) , ultra-low latency (e.g., ⁇ 1 ms) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ⁇ 10 Tbps/km 2 ) , extreme data rates (e.g., multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
  • IoTs Internet of things
  • the 5G NR may be implemented to use optimized OFDM-based waveforms with scalable numerology and transmission time interval (TTI) ; having a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and with advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility.
  • TTI transmission time interval
  • MIMO massive multiple input, multiple output
  • mmWave millimeter wave
  • Scalability of the numerology in 5G NR with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments.
  • subcarrier spacing may occur with 15 kHz, for example over 5, 10, 20 MHz, and the like bandwidth (BW) .
  • BW bandwidth
  • subcarrier spacing may occur with 30 kHz over 80/100 MHz BW.
  • the subcarrier spacing may occur with 60 kHz over a 160 MHz BW.
  • subcarrier spacing may occur with 120 kHz over a 500 MHz BW.
  • the scalable numerology of the 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency.
  • QoS quality of service
  • 5G NR also contemplates a self-contained integrated subframe design with UL/downlink scheduling information, data, and acknowledgement in the same subframe.
  • the self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive UL/downlink that may be flexibly configured on a per-cell basis to dynamically switch between UL and downlink to meet the current traffic needs.
  • the wireless communication device when there is no valid MSPL file in a SIM card, the wireless communication device is not capable to acquire service through an LTE anchor cell because the prioritized list of CDMA2000 and non-CDMA2000 cellular systems is not available. As such, this causes the wireless communication device to fail to register with an LTE anchor cell, thus causing any 5G non-standalone service to not be available.
  • the subject technology provides for prioritized LTE and 5G NSA system selection for smart cards missing the MSPL file.
  • the subject technology describes enhancements for Over-the-Air Service Provisioning (OTASP) for spread spectrum systems, in particular for MMSS that enables a wireless communication device to select a radio access technology (RAT) or system amongst a number of candidates, when the MSPL is not available (or absent) .
  • OTASP Over-the-Air Service Provisioning
  • RAT radio access technology
  • 3GPP RATs e.g., LTE, UMTS or GSM
  • 3GPP2 RATs e.g., 1 ⁇ or HRPD
  • a set of parameters that supports MMSS includes a default priority list in lieu of the MMSS System Priority List (MSPL) that defines relative priorities of the various RATs among the various technologies (3GPP, 3GPP2, WiMAX, etc) .
  • MSPL MMSS System Priority List
  • a user equipment for wireless communication can determine whether a system selection priority list, such as the MSPL, is present in a smart card, for example. If the MSPL is present in the smart card, then normal MMSS system selection is performed with the MSPL. However, if the MSPL is absent from the smart card, the user equipment can default to a priority list stored in its memory. As such, the user equipment obtains a default priority list stored in either a non-volatile memory or volatile memory of the user equipment, when the system selection priority list is not present. The user equipment can select a radio access network (RAN) based on the default priority list and select a first serving cell in the selected RAN.
  • RAN radio access network
  • the user equipment can communicate, with the first serving cell, one or more messages to access a first service via the first serving cell.
  • the user equipment has a mechanism to consider the LTE network and/or service as higher priority over other networks and/or services.
  • the first service can be LTE service via an LTE serving cell.
  • the first service can be 5G NR service with a 5G serving cell via an LTE anchor cell.
  • the techniques of the subject technology allow for a user equipment to perform cell selection on an LTE anchor cell and thereby provide available access to the 5G NSA service.
  • the subject technology enables an improved user experience to the end user.
  • multi-mode generally refers to wireless communication devices, such as user equipment, which are compatible with more than one form of data transmission or network.
  • a dual-mode user equipment can be a smartphone that uses more than one technique for sending and receiving voice and data, such as LTE and 5G NSA.
  • a wireless communication device can also be called a system, a subscriber unit, a subscriber station, mobile station, mobile, mobile device, cellular device, multi-mode device, remote station, remote terminal, access terminal, user terminal, user agent, a user device, or user equipment, or the like.
  • a subscriber station can be a cellular telephone, a cordless telephone, a Session Initiation Protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA) , a handheld device having wireless connection capability, or other processing device connected to a wireless modem or similar mechanism facilitating wireless communication with a processing device.
  • SIP Session Initiation Protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • an aspect disclosed herein may be implemented independently of any other aspects and that two or more of these aspects may be combined in various ways.
  • an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein.
  • such an apparatus may be implemented or such a method may be practiced using other structure, functionality, or structure and functionality in addition to or other than one or more of the aspects set forth herein.
  • a method may be implemented as part of a system, device, apparatus, and/or as instructions stored on a computer readable medium for execution on a processor or computer.
  • an aspect may comprise at least one element of a claim.
  • FIG. 1 illustrates a wireless communication network 100 according to instances of the present disclosure.
  • the network 100 includes BSs 105, UEs 115, and a core network 130.
  • the network 100 operates over a shared spectrum.
  • the shared spectrum may be unlicensed or partially licensed to one or more network operators. Access to the spectrum may be limited and may be controlled by a separate coordination entity.
  • the network 100 may be a LTE or LTE-A network.
  • the network 100 may be a millimeter wave (mmW) network, a new radio (NR) network, a 5G network, or any other successor network to LTE.
  • the network 100 may be operated by more than one network operator. Wireless resources may be partitioned and arbitrated among the different network operators for coordinated communication between the network operators over the network 100.
  • the BSs 105 may wirelessly communicate with the UEs 115 via one or more BS antennas. Each BS 105 may provide communication coverage for a respective geographic coverage area 110.
  • the term “cell” can refer to this particular geographic coverage area of a BS and/or a BS subsystem serving the coverage area, depending on the context in which the term is used.
  • a BS 105 may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cell.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a pico cell may generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a femto cell may also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • the BSs 105a, 105b and 105c are examples of macro BSs for the coverage areas 110a, 110b and 110c, respectively.
  • the BSs 105d is an example of a pico BS or a femto BS for the coverage area 110d.
  • a BS 105 may support one or multiple (e.g., two, three, four, and the like) cells.
  • Communication links 125 shown in the network 100 may include uplink (UL) transmissions from a UE 115 to a BS 105, or downlink (DL) transmissions, from a BS 105 to a UE 115.
  • the UEs 115 may be dispersed throughout the network 100, and each UE 115 may be stationary or mobile.
  • a UE 115 may also be referred to as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • a UE 115 may also be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless phone, a personal electronic device, a handheld device, a personal computer, a wireless local loop (WLL) station, an Internet of things (IoT) device, an Internet of Everything (IoE) device, a machine type communication (MTC) device, an appliance, an automobile, or the like.
  • a UE 115 may be a device that includes a Universal Integrated Circuit Card (UICC) .
  • a UE may be a device that does not include a UICC.
  • the UEs 115 that do not include UICCs may also be referred to as IoT devices or internet of everything (IoE) devices.
  • the UEs 115a-115d are examples of mobile smart phone-type devices accessing network 100.
  • UEs 115c and 115d are in communication with one another through sidelink transmissions between the UEs 115c and 115d in a coverage area 110f.
  • a UE 115 may also be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like.
  • MTC machine type communication
  • eMTC enhanced MTC
  • NB-IoT narrowband IoT
  • the UEs 115e-115h are examples of various machines configured for communication that access the network 100.
  • the UEs 115i-115k are examples of vehicles in coverage area 110e that are equipped with wireless communication devices configured for communication that access the network 100.
  • a UE 115 may be able to communicate with any type of the BSs, whether macro BS, small cell, or the like.
  • a lightning bolt e.g., communication links
  • the network 100 may also support mission critical communications with ultra-reliable and redundant links for mission critical devices, such as the UE 115e, which may be a drone. Redundant communication links with the UE 115e may include links from the macro BS 105c, as well as links from the small cell BS 105f.
  • UE 115f e.g., a thermometer
  • UE 115g e.g., smart meter
  • UE 115h e.g., wearable device
  • the network 100 may also provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such asV2V, V2X, C-V2X communications between a UE 115i, 115j, or 115k and other UEs 115, and/or vehicle-to-infrastructure (V2I) communications between a UE 115i, 115j, or 115k and the BS 105a.
  • V2V dynamic, low-latency TDD/FDD communications
  • V2X V2X
  • C-V2X C-V2X communications between a UE 115i, 115j, or 115k and other UEs 115
  • V2I vehicle-to-infrastructure
  • the BSs 105 may communicate with the core network 130 and with one another.
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • IP Internet Protocol
  • At least some of the BSs 105 e.g., which may be an example of an evolved NodeB (eNB) , a next generation NodeB (gNB) , or an access node controller (ANC)
  • eNB evolved NodeB
  • gNB next generation NodeB
  • ANC access node controller
  • the BSs 105 may communicate, either directly or indirectly (e.g., through core network 130) , with each other over backhaul links 134 (e.g., X1, X2, etc. ) , which may be wired or wireless communication links.
  • backhaul links 134 e.g., X1, X2, etc.
  • Each BS 105 may also communicate with a number of UEs 115 through a number of other BSs 105, where the BS 105 may be an example of a smart radio head.
  • various functions of each BS 105 may be distributed across various BSs 105 (e.g., radio heads and access network controllers) or consolidated into a single BS 105.
  • the network 100 utilizes orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the UL.
  • OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, or the like.
  • K orthogonal subcarriers
  • Each subcarrier may be modulated with data.
  • modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM.
  • the spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth.
  • the system bandwidth may also be partitioned into subbands.
  • the BSs 105 can assign or schedule transmission resources (e.g., in the form of time-frequency resource blocks) for DL and UL transmissions in the network 100.
  • DL refers to the transmission direction from a BS 105 to a UE 115
  • UL refers to the transmission direction from a UE 115 to a BS 105.
  • the communication can be in the form of radio frames.
  • a radio frame may be divided into a plurality of subframes, for example, about 10.
  • Each subframe can be divided into slots, for example, about 2.
  • Each slot may be further divided into min-slots, as described in greater detail herein.
  • FDD frequency-division duplexing
  • each subframe includes a UL subframe in a UL frequency band and a DL subframe in a DL frequency band.
  • TDD time-division duplexing
  • UL and DL transmissions occur at different time periods using the same frequency band.
  • a subset of the subframes (e.g., DL subframes) in a radio frame may be used for DL transmissions and another subset of the subframes (e.g., UL subframes) in the radio frame may be used for UL transmissions.
  • each DL or UL subframe may have pre-defined regions for transmissions of reference signals, control information, and data.
  • Reference signals are predetermined signals that facilitate the communications between the BSs 105 and the UEs 115.
  • a reference signal can have a particular pilot pattern or structure, where pilot tones may span across an operational bandwidth or frequency band, each positioned at a pre-defined time and a pre-defined frequency.
  • a BS 105 may transmit cell-specific reference signals (CRSs) and/or channel state information –reference signals (CSI-RSs) to enable a UE 115 to estimate a DL channel.
  • CRSs cell-specific reference signals
  • CSI-RSs channel state information –reference signals
  • a UE 115 may transmit sounding reference signals (SRSs) to enable a BS 105 to estimate a UL channel.
  • Control information may include resource assignments and protocol controls.
  • Data may include protocol data and/or operational data.
  • the BSs 105 and the UEs 115 may communicate using self-contained subframes.
  • a self-contained subframe may include a portion for DL communication and a portion for UL communication.
  • a self-contained subframe can be DL-centric or UL-centric.
  • a DL-centric subframe may include a longer duration for DL communication than UL communication.
  • a UL-centric subframe may include a longer duration for UL communication than UL communication.
  • the network 100 may be an NR network deployed over a licensed spectrum.
  • the BSs 105 can transmit synchronization signals (e.g., including a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) ) in the network 100 to facilitate synchronization.
  • the BSs 105 can broadcast system information associated with the network 100 (e.g., including a master information block (MIB) , remaining system information (RMSI) , and other system information (OSI) ) to facilitate initial network access.
  • MIB master information block
  • RMSI remaining system information
  • OSI system information
  • the BSs 105 may broadcast the PSS, the SSS, and/or the MIB in the form of synchronization signal block (SSBs) over a physical broadcast channel (PBCH) and may broadcast the RMSI and/or the OSI over a physical downlink shared channel (PDSCH) .
  • PBCH physical broadcast channel
  • PDSCH physical downlink shared channel
  • a UE 115 attempting to access the network 100 may perform an initial cell search by detecting a primary synchronization signal (PSS) from a BS 105.
  • PSS primary synchronization signal
  • the PSS may enable synchronization of period timing and may indicate a sector identity value (e.g., 0, 1, 2, etc. ) .
  • the UE 115 may then receive a secondary synchronization signal (SSS) .
  • SSS secondary synchronization signal
  • the SSS may enable radio frame synchronization, and may provide a cell identity value, which may be combined with the PSS identity value to identify the physical cell identity.
  • the SSS may also enable detection of a duplexing mode and a cyclic prefix length. Both the PSS and the SSS may be located in a central portion of a carrier, respectively.
  • the UE 115 may receive a master information block (MIB) , which may be transmitted in the physical broadcast channel (PBCH) .
  • the MIB may contain system bandwidth information, a system frame number (SFN) , and a Physical Hybrid-ARQ Indicator Channel (PHICH) configuration.
  • SIBs system information blocks
  • SIB1 may contain cell access parameters and scheduling information for other SIBs. Decoding SIB1 may enable the UE 115 to receive SIB2.
  • SIB2 may contain radio resource configuration (RRC) configuration information related to random access channel (RACH) procedures, paging, physical uplink control channel (PUCCH) , physical uplink shared channel (PUSCH) , power control, SRS, and cell barring.
  • RRC radio resource configuration
  • the UE 115 can perform random access procedures to establish a connection with the BS 105.
  • the UE 115 and the BS 105 can enter a normal operation stage, where operational data may be exchanged.
  • the BS 105 may schedule the UE 115 for UL and/or DL communications.
  • the BS 105 may transmit UL and/or DL scheduling grants to the UE 115 via a PDCCH.
  • the scheduling grants may be transmitted in the form of DL control information (DCI) .
  • the BS 105 may transmit a DL communication signal (e.g., carrying data) to the UE 115 via a PDSCH according to a DL scheduling grant.
  • the UE 115 may transmit a UL communication signal to the BS 105 via a PUSCH and/or PUCCH according to a UL scheduling grant.
  • the network 100 may support sidelink communication among the UEs 115 over a shared radio frequency band (e.g., in a shared spectrum or an unlicensed spectrum) .
  • the UEs 115 may communicate with each other over a 2.4 GHz unlicensed band, which may be shared by multiple network operating entities using various radio access technologies (RATs) such as NR-U, WiFi, and/or licensed-assisted access (LAA) .
  • RATs radio access technologies
  • NR-U NR-U
  • WiFi WiFi
  • LAA licensed-assisted access
  • the UEs 115 and the BSs 105 may be operated by multiple network operators or network operating entities and may operate in a shared radio frequency spectrum, which may include licensed or unlicensed frequency bands.
  • the shared spectrum may be time-partitioned for sharing among the multiple network operating entities to facilitate coordinated communication.
  • the BS 105a and the UE 115a may be associated with one network operating entity, while the BS 105b and the UE 115b may be associated with another network operating entity.
  • the communications between the BS 105a and the UE 115a and the communications between the BS 105b and the UE 115b may each occur during respective time periods and may avail themselves of an entirety of a designated shared spectrum.
  • the network 100 may support multiple networks with different RAT technologies.
  • the network 100 may be initially deployed as an LTE network and subsequently add advanced RAT technologies such as NR to provide improved network functionalities, such as lower latency, greater bandwidth, and/or higher throughput.
  • advanced RAT technologies such as NR
  • Mechanisms for deploying an NR network within an LTE network are described in greater detailer herein.
  • the UEs 15 can determine whether a system selection priority list, such as the MSPL, is present in a smart card that is interfaced to and/or stored at the UE 115, to interface with a subscriber service (e.g., LTE, 5G NR, CDMA2000, etc. ) . If the MSPL is present in the smart card, then normal MMSS system selection is performed with the MSPL. However, if the MSPL is absent from the smart card, the UE 115 can default to a priority list stored in its memory. As such, the UE 115 can obtain a default priority list stored in either a non-volatile memory or volatile memory of the UE 115, when the system selection priority list is not present.
  • a system selection priority list such as the MSPL
  • the UE 115 can select a RAN (e.g., coverage area 110c) based on the default priority list and select a first serving cell (e.g., BS 105c) in the selected RAN.
  • the user equipment can communicate, with the first serving cell, one or more messages to access a first service via the first serving cell.
  • the UE 115 has a mechanism to consider the LTE network and/or service as higher priority over other networks and/or services.
  • the first service can be an LTE service via an LTE serving cell (e.g., BS 105c) .
  • the first service can be a 5G NR service with a 5G serving cell (e.g., BS 105b) via an LTE anchor cell (e.g., BS 105c) .
  • FIG. 2 illustrates a communication system 200 that performs multi-mode system selection (MMSS) according to instances of the present disclosure.
  • the UE 115 may access a MMSS scheme for selecting a RAT 212, 222 from a plurality of RATs 212, 222, or may select a RAN 210, 220 associated with respective RATs 212, 222 from a plurality of RANs 210, 220.
  • the communication system 200 enables the UE 115 to use a system selection priority list that includes a list of prioritized networks and/or system technologies by which the UE 115 can access. Thereby, an appropriate radio access node 214, 224 can be selected according a preferred or appropriate RAT 212, 222.
  • the RAT 212 may be present in a first coverage area that corresponds to a first RAN (e.g., 210) and the RAT 222 may be present in a second coverage area that corresponds to a second RAN (e.g., 220) .
  • an apparatus depicted as the UE 115 can support multi-mode system selection in the communication system 200.
  • the UE 115 can select a system selection priority list, such as an MMSS System Priority List (MSPL) file, from one or more of the smart cards 242 and 244.
  • the MSPL file includes a prioritized list of CDMA2000 and non-CDMA2000 cellular systems.
  • the MSPL file can assist a multi-mode wireless communication device, such as the UE 115, in selecting a system. Once a system is selected, the UE 115 follows the standard network selection procedures for the selected system to acquire a network.
  • the UE 115 includes a smart card 242 and may optionally include a smart card 244.
  • the smart cards 242 and 244 may correspond to different cellular user accounts (e.g., different telephone numbers) .
  • the smart cards 242 and/or 244 may store and/or record thereon the MSPL file.
  • the MSPL file may be unavailable or missing from the smart cards 242, 244.
  • the UE 115 can obtain a default priority list 232 from a memory 230 of the UE 115.
  • the default priority list 232 can contain a prioritized listing of networks and/or system technologies, similar to the MSPL file.
  • the UE 115 can select an available access node 214 in accordance with the RAT 212 that is selected according to the default priority list 232.
  • the UE 115 communicates with the selected access node 108 for access to a service via the selected access node 108.
  • the UE 115 may be capable of utilizing a variety of networks under different air interface technologies, and can implement one or more procedures for selecting a preferred system with which to communicate in a system (e.g., network 100, system 200) .
  • the UE 115 can base its system selection on information such the default priority list 232 when the MSPL file is missing (or unavailable) . As illustrated in FIG.
  • the default priority list 232 can be stored locally at the UE 115 and the MSPL file can be obtained from an associated smart card that is interfaced to and/or stored at the UE 115 via a smart card module of the UE 115; however, it should be appreciated that UE 115 can obtain such information, and/or any other information suitable for conducting system selection, from any source within or separate from the system (e.g., 100, 200) . It should further be appreciated that unless explicitly stated otherwise, the claims appended hereto are not intended to limit to specific location (s) of information.
  • the default priority list 232 and/or MSPL file can, in one example, be stored at the UE 115 as a set of lists that correspond to respective air interface technologies and/or groups of technologies that can be utilized by the UE 115.
  • different lists can be provided that correspond to 3GGP technologies, 3GGP2 technologies, IEEE technologies, and/or any other suitable groups of technologies.
  • Such lists can be stored at the UE 115 via one or more of the smart cards 242, 244, the memory 230, and/or other machine-readable data storage such as a hard disk, memory card, CD-ROM disc, or the like.
  • Network priorities of systems within a standard can be dictated by the rules of that standard.
  • the priorities of that standard may take precedence.
  • the default priority list 232 may be used to identify cross-standard system priorities and priorities of radio access technologies (RATs) within the same standard when a RAT is unspecified. For example, if the UE 115 is in CDMA2000 mode, then the default priority list 232 can point the UE 115 to a system of a non-3GPP standard or another 3GPP RAT (e.g. LTE) of the same RAN (or Public Land Mobile Network (PLMN) ) when the RAN entry does not specify the RAT. The latter occurs for a single entry when no RAT is specified or when two or more RATs are indicated.
  • the provisioning of the default priority list 232 can be consistent with the system selection rules of the underlying individual systems.
  • the smart card 242 may include a Subscriber Identity Module (SIM) card.
  • SIM Subscriber Identity Module
  • the SIM card may contains a unique serial number, International Mobile Subscriber Identifier (IMSI) of the user equipment, security authentication and ciphering information, temporary information related to a local network, a list of the services the user has access to and two passwords (PIN for usual use and PUK for unlocking) .
  • IMSI International Mobile Subscriber Identifier
  • PIN personal identification
  • PUK passwords
  • the SIM card may also store a unique International Mobile Subscriber Identity (IMSI) , of a number format, for example: (a) the first 3 digits represent a Mobile Country Code (MCC) ; (b) the next two or three digits represent a Mobile Network Code (MNC) ; (c) the remaining digits represent a Mobile Station Identification (MSID) number; and (d) the smart card may also have an Integrated Circuit Card Identification (ICC-ID) number.
  • IMSI International Mobile Subscriber Identity
  • the smart card 242 may include a Removable User Identification Module (R-UIM) card that is a removable (or non-permanent) smart card for wireless communication devices made for the CDMA2000 network.
  • R-UIM may be the 3GPP/ETSI SIM for CDMA2000 systems-which are both based on an Integrated Circuit Card (ICC) .
  • ICC Integrated Circuit Card
  • the R-UIM card store personal user information such as name and account number, cell phone number, phone book, text messages and other settings.
  • the smart card 242 may include a CDMA2000 Subscriber Identify Module (CSIM) that is an application that runs on a smart card known as a Universal Integrated Circuit Card (UICC) .
  • the UICC can store a CSIM application, a Universal SIM (USIM) application, SIM and/or R-UIM and can be used to enable operation with cellular networks globally.
  • the UICC can carry the Application Directory Files (ADF) of CSIM and USIM and others.
  • the SIM and R-UIM may be legacy smart cards based on the ICC. Both SIM and R-UIM can be added on to the UICC as a directory file (DF) .
  • the UICC which can carry a CSIM application, can allow users to change wireless communication devices by simply removing the smart card from one wireless communication device and inserting it into another wireless communication device or broadband telephony device.
  • the UE 115 includes a virtual SIM (not shown) that is a mobile phone number provided by a mobile network operator that does not require a physical smart card (e.g., 242) to terminate phone calls on the UE 115.
  • a virtual SIM not shown
  • a physical smart card e.g., 242
  • ICCs Integrated Circuit Cards
  • a dual-mode CDMA2000 and GSM smartphone may utilize either two cards (R-UIM and SIM) or one card (SIM-only) , where the R-UIM information is stored in the UE 115.
  • R-UIM and SIM two cards
  • SIM-only SIM-only
  • the R-UIM information is stored in the UE 115.
  • a LTE+cdma2000 terminal that can be outfitted with UICC.
  • the UICC can contain a USIM application (essentially a SIM for LTE) and a CSIM application (in place of the R-UIM card for CDMA2000) .
  • FIG. 3 is a block diagram of an exemplary UE 300 according to some aspects of the present disclosure.
  • the UE 300 may be a UE 115 discussed above in FIG. 1 or a UE 215 discussed above in FIG. 2.
  • the UE 300 may include a processor 302, a memory 304, a system selection module 308, a smart card module 309, a transceiver 310 including a modem subsystem 312 and a radio frequency (RF) unit 314, and one or more antennas 316.
  • RF radio frequency
  • the processor 302 may include a central processing unit (CPU) , a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a controller, a field programmable gate array (FPGA) device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein.
  • the processor 302 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • the memory 304 may include a cache memory (e.g., a cache memory of the processor 302) , random access memory (RAM) , magnetoresistive RAM (MRAM) , read-only memory (ROM) , programmable read-only memory (PROM) , erasable programmable read only memory (EPROM) , electrically erasable programmable read only memory (EEPROM) , flash memory, solid state memory device, hard disk drives, other forms of volatile and non-volatile memory, or a combination of different types of memory.
  • the memory 304 includes a non-transitory computer-readable medium.
  • the memory 304 may store, or have recorded thereon, instructions 306.
  • the instructions 306 may include instructions that, when executed by the processor 302, cause the processor 302 to perform the operations described herein with reference to the UEs 115 in connection with aspects of the present disclosure, for example, aspects of FIGS. 1-3 and 5-8. Instructions 306 may also be referred to as program code.
  • the program code may be for causing a wireless communication device to perform these operations, for example by causing one or more processors (such as processor 302) to control or command the wireless communication device to do so.
  • the terms “instructions” and “code” should be interpreted broadly to include any type of computer-readable statement (s) .
  • the terms “instructions” and “code” may refer to one or more programs, routines, sub-routines, functions, procedures, etc. “Instructions” and “code” may include a single computer-readable statement or many computer-readable statements.
  • the memory 304 may store, or have recorded thereon, a default priority list 307.
  • the default priority list 307 may include a list of records for prioritizing the LTE system over other system technologies, including prioritizing CDMA2000 and non-CDMA2000 cellular systems.
  • the default priority list 307 may assist the UE 115 in selecting a system. Once a system is selected, the UE 115 can follow the network selection procedures according to the requirements of that system.
  • the default priority list 307 includes a table.
  • the table may include the following fields and values as depicted in Table 1.
  • the values may be a multi-bit binary word value.
  • the EUTRAN (LTE) network (denoted with value “b’00000000” ) has a higher priority over the CDMA2000 network (denoted with value “b’00000001” ) for system selection.
  • the remaining system types may be prioritized in descending order of priority.
  • Table 1 lists different system types in an exemplary prioritized listing, the system types of Table 1 may be listed in a different order of prioritization without departing from the scope of the present disclosure.
  • the default priority list 307 is stored in at least a portion of a non-volatile memory portion of the memory 304. In other aspects, the default priority list 307 is stored in at least a portion of a volatile memory. In some aspects, the volatile memory includes an embedded file system (EFS) . In some aspects, the default priority list 307 is stored in at least a portion of the EFS.
  • EFS embedded file system
  • the system selection module 308 may be implemented via hardware, software, or combinations thereof.
  • the system selection module 308 may be implemented as a processor, circuit, and/or instructions 306 stored in the memory 304 and executed by the processor 302.
  • the system selection module 308 can be integrated within the modem subsystem 312.
  • the system selection module 308 can be implemented by a combination of software components (e.g., executed by a DSP or a general processor) and hardware components (e.g., logic gates and circuitry) within the modem subsystem 312.
  • the system selection module 308 may be used for various aspects of the present disclosure, for example, aspects of FIGS. 2, 3 and 5-8. For instance, the system selection module 308 may coordinate with the processor 302 to determine whether a system selection priority list is present. The system selection module 308 may coordinate with the processor 302 to obtain a default priority list stored in the user equipment when the system selection priority list is not present. The system selection module 308 may coordinate with the processor 302 to select a radio access network (RAN) based on the default priority list. The system selection module 308 may coordinate with the processor 302 to select a first serving cell in the RAN.
  • RAN radio access network
  • the selected RAN corresponds to one of a plurality of RANs listed with different priorities in the default priority list.
  • the system selection module 308 may coordinate with the processor 302 to select the RAN based on a first priority of the RAN in the default priority list.
  • the system selection module 308 may coordinate with the processor 302 to select the RAN using a selected radio access technology (RAT) based on a priority of the selected RAT in the default priority list.
  • the selected RAT corresponds to one of a plurality of prioritized RATs listed in the default priority list.
  • the plurality of prioritized RATs includes a first prioritized RAT that corresponds to a Long-Term Evolution (LTE) wireless communication network.
  • LTE Long-Term Evolution
  • the first prioritized RAT has a first priority.
  • the plurality of prioritized RATs also includes a second prioritized RAT that corresponds to a CDMA2000 wireless communication network.
  • the second prioritized RAT has a second priority different from the first priority.
  • the first priority of the first prioritized RAT is higher than the second priority of the second prioritized RAT.
  • the LTE wireless communication network has a higher priority than the CDMA2000 wireless communication network.
  • the second priority of the second priority RAT may be higher than the first priority of the first prioritized RAT.
  • the system selection module 308 may coordinate with the processor 302 and/or the smart card module 309 to access a smart card included in the UE 300.
  • the system selection module 308 may coordinate with the processor 302 and/or the smart card module 309 to determine that the smart card is ready for operation.
  • the system selection module 308 may coordinate with the processor 302 and/or the smart card module 309 to determine whether the system selection priority list is present in the smart card.
  • the system selection module 308 may coordinate with the processor 302 and/or the smart card module 309 to obtain the system selection priority list when the system selection priority list is present in the smart card.
  • the system selection module 308 may coordinate with the processor 302 to select the RAN based on the system selection priority list.
  • the system selection priority list includes a multi-mode system selection (MMSS) system priority list (MSPL) .
  • the selected RAN corresponds to one of a plurality of RANs listed with different priorities in the MSPL.
  • the smart card module 309 can interface to a smart card (e.g., 242, 244) .
  • the smart card module 309 may perform read and/or write operations with the smart card. For example, the smart card module 309 may perform a read operation to access the MSPL file stored in the smart card. In some aspects, the smart card module 309 may make changes and/or updates to the MSPL file using one or more write operations. In some aspects, the smart card module 309 may perform an erase operation to remove at least any portion of the MSPL file from one or more storage locations in the smart card.
  • Various types of smart cards can be employed, such as R-UIM, UICC with CSIM only, UICC with USIM and CSIM, SIM, etc.
  • the MSPL can employ defined MMSS elementary files (EFs) on a smart card.
  • the smart card can support defined MMSS commands.
  • the MMSS commands can be defined in binary form or in records-based form.
  • the system selection module 308 may coordinate with the transceiver 310 to communicate, with the first serving cell, one or more messages to access a first service via the first serving cell.
  • the transceiver 310 may communicate, with a second serving cell, one or more RRC connection setup messages.
  • the transceiver 310 may communicate, with the second serving cell, one or more RRC connection reconfiguration setup messages.
  • the processor 302 may coordinate with the transceiver 310 to operate in a non-standalone mode, such as the 5G NSA mode.
  • the processor 302 may coordinate with the transceiver 310 to utilize a first serving cell (e.g., 5G NR) to access a first service (e.g., 5G service) associated with a first wireless communication network (e.g., 5G network) and a second serving cell (e.g., LTE anchor cell) associated with a second wireless communication network (e.g., LTE network) to support a connectivity of the user equipment to the first service via the first serving cell.
  • a first serving cell e.g., 5G NR
  • a second serving cell e.g., LTE anchor cell
  • LTE network e.g., LTE network
  • the transceiver 310 may include the modem subsystem 312 and the RF unit 314.
  • the transceiver 310 can be configured to communicate bi-directionally with other devices, such as the BSs 105.
  • the modem subsystem 312 may be configured to modulate and/or encode the data from the memory 304 and/or the system selection module 308 according to a modulation and coding scheme (MCS) , e.g., a low-density parity check (LDPC) coding scheme, a turbo coding scheme, a convolutional coding scheme, a polar coding scheme, a digital beamforming scheme, etc.
  • MCS modulation and coding scheme
  • LDPC low-density parity check
  • the RF unit 314 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc.
  • modulated/encoded data e.g., uplink data, RRC connection request/complete, RRC connection reconfiguration request/complete
  • modulated/encoded data e.g., uplink data, RRC connection request/complete, RRC connection reconfiguration request/complete
  • the RF unit 314 may be further configured to perform analog beamforming in conjunction with the digital beamforming.
  • the modem subsystem 312 and the RF unit 314 may be separate devices that are coupled together at the UE 115 to enable the UE 115 to communicate with other devices.
  • the RF unit 314 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to the antennas 316 for transmission to one or more other devices.
  • the antennas 316 may further receive data messages transmitted from other devices.
  • the antennas 316 may provide the received data messages for processing and/or demodulation at the transceiver 310.
  • the transceiver 310 may provide the demodulated and decoded data (e.g., SIB, RRC connection, RRC connection reconfiguration, synchronization signal, SSBs) to the system selection module 308 for processing.
  • the antennas 316 may include multiple antennas of similar or different designs in order to sustain multiple transmission links.
  • the RF unit 314 may configure the antennas 316.
  • the RF unit 314 may include various RF components, such as local oscillator (LO) , analog filters, and/or mixers.
  • the LO and the mixers can be configured based on a certain channel center frequency.
  • the analog filters may be configured to have a certain passband depending on a channel BW.
  • the RF components may be configured to operate at various power modes (e.g., a normal power mode, a low-power mode, power-off mode) and may be switched among the different power modes depending on transmission and/or reception requirements at the UE 300.
  • the UE 300 can include multiple transceivers 310 implementing different RATs (e.g., NR and LTE) .
  • the UE 300 can include a single transceiver 310 implementing multiple RATs (e.g., NR and LTE) .
  • the transceiver 310 can include various components, where different combinations of components can implement different RATs.
  • FIG. 4 is a block diagram of an exemplary BS 400 according to some aspects of the present disclosure.
  • the BS 400 may be a BS 105 in the network 100 as discussed above in FIG. 1 or a BS 205 in the network 200 as discussed above in FIG. 2.
  • the BS 400 may include a processor 402, a memory 404, a transceiver 410 including a modem subsystem 412 and a RF unit 414, and one or more antennas 416. These elements may be in direct or indirect communication with each other, for example via one or more buses.
  • the processor 402 may have various features as a specific-type processor. For example, these may include a CPU, a DSP, an ASIC, a controller, a FPGA device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein.
  • the processor 402 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • the memory 404 may include a cache memory (e.g., a cache memory of the processor 402) , RAM, MRAM, ROM, PROM, EPROM, EEPROM, flash memory, a solid state memory device, one or more hard disk drives, memristor-based arrays, other forms of volatile and non-volatile memory, or a combination of different types of memory.
  • the memory 404 may include a non-transitory computer-readable medium.
  • the memory 404 may store instructions 406.
  • the instructions 406 may include instructions that, when executed by the processor 402, cause the processor 402 to perform operations described herein, for example, aspects of FIGS. 1, 2, 4, 6-8. Instructions 406 may also be referred to as code, which may be interpreted broadly to include any type of computer-readable statement (s) as discussed above with respect to FIG. 3.
  • the transceiver 410 may include the modem subsystem 412 and the RF unit 414.
  • the transceiver 410 can be configured to communicate bi-directionally with other devices, such as the UEs 115 and/or 300 and/or another core network element.
  • the modem subsystem 412 may be configured to modulate and/or encode data according to a MCS, e.g., a LDPC coding scheme, a turbo coding scheme, a convolutional coding scheme, a polar coding scheme, a digital beamforming scheme, etc.
  • the RF unit 414 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc.
  • modulated/encoded data e.g., SIB2, RRC connection reconfiguration, PDCCH, PDSCH, SSBs
  • modulated/encoded data e.g., SIB2, RRC connection reconfiguration, PDCCH, PDSCH, SSBs
  • the RF unit 414 may be further configured to perform analog beamforming in conjunction with the digital beamforming.
  • the modem subsystem 412 and/or the RF unit 414 may be separate devices that are coupled together at the BS 105 to enable the BS 105 to communicate with other devices.
  • the RF unit 414 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to the antennas 416 for transmission to one or more other devices. This may include, for example, transmission of information to complete attachment to a network and communication with a camped UE 115 or 300 according to some aspects of the present disclosure.
  • the antennas 416 may further receive data messages transmitted from other devices and provide the received data messages for processing and/or demodulation at the transceiver 410.
  • the transceiver 410 may provide the demodulated and decoded data (e.g., RRC connection complete, RRC connection reconfiguration complete) to the processor 402 for processing.
  • the antennas 416 may include multiple antennas of similar or different designs in order to sustain multiple transmission links.
  • the BS 400 can include multiple transceivers 410 implementing different RATs (e.g., NR and LTE) .
  • the BS 400 can include a single transceiver 410 implementing multiple RATs (e.g., NR and LTE) .
  • the transceiver 410 can include various components, where different combinations of components can implement different RATs.
  • FIG. 5 illustrates a flow chart of an example process of multi-mode system selection according to instances of the present disclosure.
  • Aspects of the process 500 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device or other suitable means for performing the steps.
  • a wireless communication device such as the UEs 115 and/or 300, may utilize one or more components, such as the processor 302, the memory 304, the reporting communication module 308, the transceiver 310, the modem 312, and the one or more antennas 316, to execute the steps of process 500.
  • the process 500 includes a number of enumerated steps, but aspects of the process 500 may include additional steps before, after, and in between the enumerated steps. In some aspects, one or more of the enumerated steps may be omitted or performed in a different order.
  • the UE determines whether a system selection priority list, such as an MSPL file, is present. For example, the UE may access a smart card that is interfaced to and/or stored at the UE. The UE may scan through the smart card to search for the system selection priority list. For instance, the UE may utilize one or more components, such as the processor 302, the default priority list 307, the system selection module 308, and the smart card module 309, to search for the system selection priority list.
  • a system selection priority list such as an MSPL file
  • step 504 the decision by the UE is made to whether the system selection priority list is present in the smart card. If the system selection priority list is present, the process 500 proceeds to step 506. If the system selection priority list is not present (or is found to be unavailable) , the process 500 proceeds to step 508. For instance, the UE may utilize one or more components, such as the processor 302, the default priority list 307, the system selection module 308, and the smart card module 309, to determine whether the system selection priority list is available.
  • the processor 302 the default priority list 307, the system selection module 308, and the smart card module 309
  • the UE obtains a default priority list stored in the UE when the system selection priority list is not present.
  • the default priority list is stored in either non-volatile memory or volatile memory of the UE.
  • the UE may utilize one or more components, such as the processor 302, the default priority list 307, the system selection module 308, and the smart card module 309, to access the default priority list 307.
  • the UE selects a radio access network (RAN) based on the default priority list.
  • the UE may select a RAN having a particular RAT based on a prioritization of the RAN within the default priority list.
  • the default priority list may indicate an LTE network has a higher priority over a CDMA2000 network, so the selected RAN may be an LTE-based RAN.
  • the UE may utilize one or more components, such as the processor 302, the default priority list 307, the system selection module 308, the smart card module 309, the transceiver 310, the modem 312, and the one or more antennas 316, to select the RAN based on the default priority list 307.
  • the UE obtains the system selection priority list stored in a smart card interfaced to the smart card module 309 of the UE 300 when the system selection priority list is present.
  • the UE may utilize one or more components, such as the processor 302, the system selection module 308, the smart card module 309, the transceiver 310, the modem 312, and the one or more antennas 316, to obtain the system selection priority list.
  • the UE can select the RAN based on the system selection priority list.
  • the UE may utilize one or more components, such as the processor 302, the system selection module 308, the smart card module 309, the transceiver 310, the modem 312, and the one or more antennas 316, to select the RAN based on the system selection priority list.
  • the UE selects a first serving cell in the RAN.
  • the UE may perform measurements of any existing serving cells in the selected RAN.
  • the UE may camp on a serving cell and monitor for system information, such as SIB2, SSB, MIB, etc.
  • system information such as SIB2, SSB, MIB, etc.
  • the UE may utilize one or more components, such as the processor 302, the default priority list 307, the system selection module 308, the smart card module 309, the transceiver 310, the modem 312, and the one or more antennas 316, to select the first serving cell in the selected RAN.
  • the user equipment communicates, with the first serving cell, one or more messages to access a first service via the first serving cell.
  • the user equipment may communicate RRC connection setup messages for LTE service and/or RRC connection reconfiguration setup messages for 5G NSA service.
  • RRC connection setup messages for LTE service
  • RRC connection reconfiguration setup messages for 5G NSA service.
  • data associated with the requested service may flow between the user equipment and the serving cell.
  • the UE may utilize one or more components, such as the processor 302, the system selection module 308, the smart card module 309, the transceiver 310, the modem 312, and the one or more antennas 316, to communicate the one or more messages for access to a first service.
  • FIG. 6 illustrates a simplified diagram of an example frame exchange 600 between a user equipment and a base station for selecting a default prioritized network according to instances of the present disclosure.
  • the frame exchange 600 may be implemented between a UE 610 and a BS 630 (depicted as “Serving Cell” ) .
  • the BS 630 may be similar to the BS 105, 400 and the UE 610 may be similar to the UE 115, 300. Additionally, the BS 630 and the UE 610 may operate in a network such as the network 100 or 200.
  • the frame exchange 600 includes a number of enumerated actions, but instances of the frame exchange 600 may include additional actions before, after, and in between the enumerated actions. In some aspects, one or more of the enumerated actions may be omitted or performed in a different order.
  • the UE 610 is powered on and proceeds with performing any startup operations.
  • the UE 610 accesses a smart card included in the UE 610.
  • the smart card may be found in a smart card socket of the UE 610, where the smart is non-permanently attached to the UE 610.
  • the smart card may be stored in memory of the UE 610.
  • the UE 610 determines whether the smart card is ready for operation. In some aspects, the UE 610 may check that the smart card is positioned in the smart card socket, if the smart card is non-permanently attached to the UE 610.
  • the smart card may undergo an initialization process to ensure stability in performance prior to operation.
  • the UE 610 determines that the system selection priority list, such as an MSPL file, is not present in the smart card.
  • the user equipment may access a smart card that is interfaced to and/or stored at the UE 610.
  • the UE 610 may scan through the smart card to search for the system selection priority list and determine that the system selection priority list is missing.
  • Some cellular carriers may not supply the MSPL file in the smart card.
  • the UE 610 obtains a default priority list stored in the 610 in lieu of the MSPL file.
  • the default priority list is stored in either non-volatile memory or volatile memory of the UE 610.
  • the UE 610 selects a RAN based on the default priority list.
  • the UE 610 may select a RAN having a particular RAT, such as LTE, based on a prioritization of the RAN within the default priority list.
  • the default priority list may indicate that an LTE-based RAN has a higher priority over a CDMA2000-based RAN.
  • the UE 610 selects a first serving cell in the selected RAN.
  • the UE 610 may perform measurements of any existing serving cells in the selected RAN including a serving cell and neighboring cells based on measurement rules. In some aspects, UE 610 may select a better serving cell to camp on based on cell-reselection criteria.
  • the UE 610 may camp on a serving cell, such as the serving cell 630, and monitor for system information, such as SIB2, SSB, MIB, etc.
  • the UE 610 may perform cell selection or reselection using selection or reselection parameters from the system information received from the serving cell 630.
  • the user equipment communicates, with the serving cell 630, one or more messages to access a first service via the serving cell 630.
  • the UE 610 may communicate RRC connection setup messages for LTE service and/or RRC connection reconfiguration setup messages for 5G NSA service.
  • RRC connection setup messages for LTE service
  • RRC connection reconfiguration setup messages for 5G NSA service.
  • FIG. 7 illustrates a network system 700 for dual connectivity according to instances of the present disclosure.
  • the system 700 may correspond to a portion of the network 100 and include an LTE-NR tight interworking architecture with dual connectivity.
  • the NR network may be unstable because it does not have ubiquitous coverage and has small cell radius. To overcome this problem, it may be desirable for a UE 115 to connect to both the LTE network and the NR network.
  • the NR network may be overlaid over the LTE network.
  • the UE 702 supports dual connectivity, which allows the UE 702 to connect to both the LTE and NR network simultaneously.
  • the UE 702 supports a non-standalone mode that utilizes the LTE network to support the connectivity of the UE 702 to the NR network.
  • the UE 702 is also connected to the LTE network.
  • the NR network may be a “best effort” network that is anchored in the LTE network. For example, if the UE 702 is within NR network coverage, the UE 702 can use the NR network to transmit data. In this example, the UE 702 harnesses the lower latency, greater bandwidth, and/or higher throughput offered by the NR network, while leveraging the stable links provided by the LTE network. If the connection to the NR network is not stable or is weak, the UE 702 may connect to the LTE network without connecting to the NR network.
  • the UE 702 may transmit data using an Evolved Packet Core (EPC) 704, which is the core network of the LTE system.
  • the EPC 704 includes a Mobility Management Entity (MME) 705 and a P/SGW 707.
  • MME Mobility Management Entity
  • the data traffic may be split.
  • the UE 702 may transmit LTE Radio Link Control (RLC) /Media Access Control (MAC) 706 to an eNB 708 and transmit NR RLC/MAC 710 and LTE/NR Packet Data Convergence Protocol (PDCP) 712 to the gNB 714.
  • RLC Radio Link Control
  • MAC Media Access Control
  • PDCP LTE/NR Packet Data Convergence Protocol
  • a split bearer may be located at the gNB 714, and the data sent to the eNB 708 can be merged at the gNB 714 with other data.
  • the gNB 714 may aggregate the data and send it to the P/SGW 707 using the S1-U interface. Additionally, signaling information may pass through the eNB 708 to the MME 705 using the S1-MME interface.
  • the eNB 708 may include an interface to the P/SGW 707 using the S1-U interface. In some aspects, the eNB 708 and the gNB 714 communicate with another using the X2-U interface.
  • FIG. 7 illustrates an LTE-NR/EPC system, this is not intended to be limiting and other instances may include different systems. For example, in another instance, the system may include an LTE-NR/NGC system.
  • the UE 702 may be in at most one state of a plurality of states. If the UE 702 is connected to a first wireless communication network (e.g., NR network, 5G network, etc. ) and a second wireless communication network (e.g., LTE network, 4G network, etc. ) simultaneously, the UE 702 may be in a first connected mode. In this example, the UE 702 may be connected to both the NR network and the LTE network. The LTE network may be associated with an LTE anchor cell, and the NR network may be associated with a 5G NR cell. If the UE 702 is connected to the second network, but not the first network, the UE 702 may be in a second connected mode.
  • a first wireless communication network e.g., NR network, 5G network, etc.
  • LTE network Long Term Evolution
  • 4G network fourth generation
  • the UE 702 may be in a second connected mode.
  • the UE 702 may be connected to the LTE network, but not to the NR network. If the UE 702 is idle, the UE 702 may be in an idle mode connected to the second network, but not the first network. In this example, the UE 702 may be camped on the LTE anchor cell in the LTE network. The UE 702 may be in the idle mode if the UE 702 has no data to transmit or is not receiving data from another device. If the UE 702 is in the second connected mode or the idle mode, the UE 702 may monitor the LTE network, not the NR network.
  • the eNB 708 may perform a procedure that adds the gNB 714 as part of a secondary cell group (SCG) , where the eNB 708 is part of a master cell group (MCG) .
  • SCG secondary cell group
  • MCG master cell group
  • the eNB 708 is a master base station and the gNB 714 is a secondary base station.
  • FIG. 8 illustrates a simplified diagram of an example frame exchange between a user equipment and an anchor base station using non-standalone signaling messages according to instances of the present disclosure.
  • the frame exchange 800 may be implemented between a UE 810, a BS 820 (depicted as “Anchor LTE Cell” ) and a BS 830 (depicted as “5G NR Cell” ) .
  • the BSs 820 and 830 may be similar to the BS 105, 400 and the UE 810 may be similar to the UE 115, 300. Additionally, the BS 820, the BS 830 and the UE 810 may operate in a network such as the network 100 or 200.
  • the frame exchange 800 includes a number of enumerated actions, but instances of the frame exchange 800 may include additional actions before, after, and in between the enumerated actions. In some aspects, one or more of the enumerated actions may be omitted or performed in a different order.
  • the UE 810 selects a RAN from the default priority list (e.g., 307) based on the MSPL being absent (or unavailable) .
  • the UE 810 selects an LTE anchor cell 820 in the selected RAN.
  • the UE 810 camps on the LTE anchor cell 820. As part of the camping, the UE 810 may obtain signal measurements of downlink signals from the LTE anchor cell 820.
  • the UE 810 monitors for system information from the LTE anchor cell 820.
  • the UE 810 receives, from the LTE anchor cell 820, the system information.
  • the UE 810 may receive, from the LTE anchor cell 820, a system information block type 2 (SIB2) message.
  • SIB2 message may include radio resource configuration information that indicates capability of the network to support dual connectivity with a first wireless communication network (e.g., 5G NR) and a second wireless communication network (e.g., LTE) .
  • the UE 810 may operate in a non-standalone mode, such as the 5G NSA mode.
  • the UE 810 may utilize the 5G NR cell 830 to access the 5G service associated with the 5G network and the LTE anchor cell 820 associated with the LTE network to support a connectivity of the UE 810 to the 5G service via the 5G NR cell 830.
  • the LTE anchor cell 820 and the 5G NR cell 830 are connected to an EPC associated with the LTE network.
  • the UE 810 may communicate, with the LTE anchor cell 820, first connection messages for registering the UE 810 for service with the EPC.
  • the UE 810 may communicate, with the LTE anchor cell 820 and the 5G NR cell 830, second connection messages for establishing simultaneous connections to the LTE network and the 5G network.
  • the UE 810 may receive, from the LTE anchor cell 820, a radio resource control (RRC) connection reconfiguration message for dual connectivity with the LTE network.
  • RRC radio resource control
  • the RRC connection reconfiguration messages includes an indication of the SCG, of which the SCG identifies the first serving cell as part of the SCG.
  • the UE 810 may transmit, to the LTE anchor cell 820, a RRC connection reconfiguration complete message based on the RRC connection reconfiguration message for establishing a connection to the 5G network.
  • the LTE anchor cell 820 may deliver the RRC connection reconfiguration complete to the 5G NR cell 830 via the EPC to inform the 5G NR cell 830 about the reconfiguration complete.
  • FIG. 9 illustrates a flow chart of an example process 900 of smart card operation for multi-mode system selection according to instances of the present disclosure.
  • a computing device e.g., a processor, processing circuit, and/or other suitable component
  • a wireless communication device such as the UEs 115 and/or 300, may utilize one or more components, such as the processor 302, the memory 304, the reporting communication module 308, the transceiver 310, the modem 312, and the one or more antennas 316, to execute the steps of process 900.
  • the process 900 includes a number of enumerated steps, but aspects of the process 900 may include additional steps before, after, and in between the enumerated steps. In some aspects, one or more of the enumerated steps may be omitted or performed in a different order.
  • the UE accesses a smart card included in the UE.
  • the smart card may be interfaced to the smart card module 309 of the UE and/or stored in the memory 304 of the UE.
  • the UE may utilize one or more components, such as the processor 302, the system selection module 308, and the smart card module 309, to access the smart card.
  • the UE determines that the smart card is ready for operation.
  • the UE may utilize one or more components, such as the processor 302, the system selection module 308, and the smart card module 309, to determine the smart card is ready for operation.
  • the UE determines whether the system selection priority list is present in the smart card.
  • the UE may utilize one or more components, such as the processor 302, the system selection module 308, and the smart card module 309, to determine the system selection priority list is present in the smart card.
  • the UE obtains the system selection priority list when the system selection priority list is present in the smart card.
  • the UE may utilize one or more components, such as the processor 302, the default priority list 307, the system selection module 308, and the smart card module 309, to obtain the system selection priority list.
  • the UE selects the RAN based on the system selection priority list.
  • the UE may utilize one or more components, such as the processor 302, the default priority list 307, the system selection module 308, the smart card module 309, the transceiver 310, the modem 312, and the one or more antennas 316, to select the RAN based on the system selection priority list.
  • FIG. 10 illustrates a flow chart of an example process 1000 of non-standalone operation according to instances of the present disclosure.
  • a computing device e.g., a processor, processing circuit, and/or other suitable component
  • a wireless communication device such as the UEs 115 and/or 300, may utilize one or more components, such as the processor 302, the memory 304, the reporting communication module 308, the transceiver 310, the modem 312, and the one or more antennas 316, to execute the steps of process 1000.
  • the process 1000 includes a number of enumerated steps, but aspects of the process 1000 may include additional steps before, after, and in between the enumerated steps. In some aspects, one or more of the enumerated steps may be omitted or performed in a different order.
  • the UE operates in a non-standalone mode.
  • the UE may utilize one or more components, such as the processor 302, to operate in the non-standalone mode.
  • the UE utilizes the first serving cell to access the first service associated with a first wireless communication network and a second serving cell associated with a second wireless communication network to support a connectivity of the user equipment to the first service via the first serving cell.
  • the UE may utilize one or more components, such as the processor 302, the transceiver 310, the modem 312, and the one or more antennas 316, to utilize the first and second serving cells as part of the non-standalone operation.
  • the UE camps on the second serving cell.
  • the UE may utilize one or more components, such as the processor 302, the transceiver 310, the modem 312, and the one or more antennas 316, to camp on the second serving cell.
  • the UE monitors for system information from the second serving cell.
  • the UE may utilize one or more components, such as the processor 302, the transceiver 310, the modem 312, and the one or more antennas 316, to monitor for the system information.
  • the UE receives, from the second serving cell, the system information.
  • the UE may utilize one or more components, such as the processor 302, the transceiver 310, the modem 312, and the one or more antennas 316, to receive the system information.
  • the UE communicates, with the second serving cell, first connection messages for registering the user equipment for service with an evolved packet core.
  • the UE may utilize one or more components, such as the processor 302, the transceiver 310, the modem 312, and the one or more antennas 316, to communicate the first connection messages.
  • the UE communicates, with the first serving cell and the second serving cell, second connection messages for establishing simultaneous connections to the first wireless communication network and the second wireless communication network.
  • the UE may utilize one or more components, such as the processor 302, the transceiver 310, the modem 312, and the one or more antennas 316, to communicate the second connection messages.
  • FIG. 11 illustrates a flow chart of an example process 1100 of non-standalone connection setup according to instances of the present disclosure.
  • a computing device e.g., a processor, processing circuit, and/or other suitable component
  • a wireless communication device such as the UEs 115 and/or 300, may utilize one or more components, such as the processor 302, the memory 304, the reporting communication module 308, the transceiver 310, the modem 312, and the one or more antennas 316, to execute the steps of process 1100.
  • the process 1100 includes a number of enumerated steps, but aspects of the process 1100 may include additional steps before, after, and in between the enumerated steps. In some aspects, one or more of the enumerated steps may be omitted or performed in a different order.
  • the UE receives, from the second serving cell, a system information block type 2 (SIB2) message.
  • SIB2 system information block type 2
  • the UE may utilize one or more components, such as the processor 302, the transceiver 310, the modem 312, and the one or more antennas 316, to receive the SIB2 message.
  • the SIB2 message comprises radio resource configuration information that indicates capability to support dual connectivity with the first wireless communication network and the second wireless communication network.
  • the UE receives, from the second serving cell, a radio resource control (RRC) connection reconfiguration message for dual connectivity with the first wireless communication network.
  • RRC radio resource control
  • the RRC connection reconfiguration messages comprises an indication of a secondary cell group (SCG) .
  • the SCG identifying the first serving cell.
  • the UE may utilize one or more components, such as the processor 302, the transceiver 310, the modem 312, and the one or more antennas 316, to receive the RRC connection reconfiguration message.
  • step 1106 transmits, to the second serving cell, a RRC connection reconfiguration complete message based on the RRC connection reconfiguration message for establishing a connection to the first wireless communication network.
  • the UE may utilize one or more components, such as the processor 302, the transceiver 310, the modem 312, and the one or more antennas 316, to transmit the RRC connection reconfiguration complete message.
  • Information and signals may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • “or” as used in a list of items indicates an inclusive list such that, for example, a list of [at least one of A, B, or C] means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Wireless communications systems and methods related to prioritized Long-Term Evolution (LTE) and Fifth-Generation (5G) non-standalone system selection for smart cards missing multi-mode system selection (MMSS) system priority list (MSPL), are provided. A user equipment (UE) determines whether a system selection priority list is present and obtains a default priority list stored in the user equipment when the system selection priority list is not present. The UE selects a radio access network (RAN) based on the default priority list and selects a first serving cell in the selected RAN. The UE communicates, with the first serving cell, one or more messages to access a first service via the first serving cell.

Description

PRIORITIZED LTE AND 5G NON-STANDALONE SYSTEM SELECTION FOR SMART CARDS MISSING MSPL
Guojing LIU, Dongsheng WANG, ChaoFeng HUI, Xiaomeng LU
TECHNICAL FIELD
This application relates to wireless communication systems, and more particularly to prioritized Long-Term Evolution (LTE) and Fifth-Generation (5G) non-standalone system selection for smart cards missing multi-mode system selection (MMSS) system priority list (MSPL) .
INTRODUCTION
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, and orthogonal frequency division multiple access (OFDMA) systems, (e.g., LTE system) . A wireless multiple-access communications system may include a number of base stations (BSs) , each simultaneously supporting communication for multiple wireless communication devices, which may be otherwise known as user equipment (UE) .
To meet the growing demands for expanded connectivity, wireless communication technologies or radio access technologies (RATs) are advancing from the LTE technology to a next generation new radio (NR) technology. For example, NR may provide lower latency and a higher bandwidth or throughput than LTE. One approach to providing the improved NR functionalities is to deploy an NR network that is deployed within an LTE network. In other words, the NR network may be overlaid on top of the LTE network with overlapping coverage areas, where the NR network and the LTE network may operate over overlapping spectrums. In this respect, the NR network can be accessed via the LTE network to provide a 5G non-standalone (NSA) service.
Conventionally, system selection in a wireless communication environment is based on priority lists, which list the preferred order in which a wireless communication device is to  attempt access to systems in a coverage area. Such priority lists are generally associated with particular access technologies and/or sets of access technologies (e.g., based on communication standards) , and contain formatting and information that are particular to the technologies and/or sets of technologies to which the lists correspond. Presently for Multi-Mode System Selection (MMSS) , an MMSS System Priority List (MSPL) is used to assist a multi-mode wireless communication device in selecting a system. The MSPL is a prioritized list of CDMA2000 and non-CDMA2000 cellular systems.
In order for handsets to interface with subscriber networks, subscriber identification carried by the wireless communication device may be required. For example, a Subscriber Identity Module (SIM) on a removable SIM card securely stores the service-subscriber key for identification purposes on a wireless communication device (such as smartphones and laptops) . The SIM card allows users to change wireless communication devices by simply removing the SIM card from one wireless communication device and inserting it into another wireless communication device or broadband telephony device.
When there is no valid MSPL file in a SIM card, the wireless communication device is not capable to acquire service through an LTE anchor cell because the prioritized list of CDMA2000 and non-CDMA2000 cellular systems is not available. As such, this causes the wireless communication device to fail to register with an LTE anchor cell, thus causing any 5G non-standalone service to not be available. In some geographical regions and/or coverage areas, an open-marking SIM card is typically used, where the MSPL is absent from the SIM card, so carriers in these regions and/or coverage areas may not be capable of provisioning LTE and 5G NR services.
This can, in turn, lead to difficulty and/or adversely impactful user experience to an end user. Accordingly, it would be desirable to implement techniques for multi-mode wireless system selection that mitigate at least the above shortcomings.
BRIEF SUMMARY OF SOME EXAMPLES
The following summarizes some aspects of the present disclosure to provide a basic understanding of the discussed technology. This summary is not an extensive overview of all contemplated features of the disclosure, and is intended neither to identify key or critical elements of all aspects of the disclosure nor to delineate the scope of any or all aspects of the disclosure. Its sole purpose is to present some concepts of one or more aspects of the disclosure in summary form as a prelude to the more detailed description that is presented later.
For example, in an aspect of the disclosure, a method of wireless communication performed by a user equipment includes determining whether a system selection priority list is present; obtaining a default priority list stored in the user equipment when the system selection priority list is not present; selecting a radio access network (RAN) based on the default priority list; and selecting a first serving cell in the RAN.
In an additional aspect of the disclosure, a user equipment for wireless communication includes a processor configured to determine whether a system selection priority list is present, obtain a default priority list stored in the user equipment when the system selection priority list is not present, select a radio access network (RAN) based on the default priority list, and select a first serving cell in the RAN; and a transceiver configured to communicate, with the first serving cell, one or more messages to access a first service via the first serving cell.
In an additional aspect of the disclosure, an non-transitory computer-readable medium having program code recorded thereon, the program code including code for causing a user equipment (UE) to determine whether a system selection priority list is present; code for causing the UE to obtain a default priority list stored in the user equipment when the system selection priority list is not present; code for causing the UE to select a radio access network (RAN) based on the default priority list; code for causing the UE to select a first serving cell in the RAN; and code for causing the UE to communicate, with the first serving cell, one or more messages to access a first service via the first serving cell.
In an additional aspect of the disclosure, a user equipment (UE) for wireless communication includes means for determining whether a system selection priority list is present; means for obtaining a default priority list stored in the user equipment when the system selection priority list is not present; means for selecting a radio access network (RAN) based on the default priority list; means for selecting a first serving cell in the RAN; and means for communicating, with the first serving cell, one or more messages to access a first service via the first serving cell.
Other aspects, features, and instances of the present disclosure will become apparent to those of ordinary skill in the art, upon reviewing the following description of specific, exemplary instances of the present disclosure in conjunction with the accompanying figures. While features of the present disclosure may be discussed relative to certain instances and figures below, all instances of the present disclosure can include one or more of the advantageous features discussed herein. In other words, while one or more instances may be discussed as having certain advantageous features, one or more of such features may also be  used in accordance with the various instances of the disclosure discussed herein. In similar fashion, while exemplary instances may be discussed below as device, system, or method instances it should be understood that such exemplary instances can be implemented in various devices, systems, and methods.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates a wireless communication network according to aspects of the present disclosure.
FIG. 2 illustrates a communication system that performs multi-mode system selection (MMSS) according to aspects of the present disclosure.
FIG. 3 illustrates a block diagram of a user equipment according to some aspects of the present disclosure.
FIG. 4 illustrates a block diagram of an exemplary base station according to some aspects of the present disclosure.
FIG. 5 illustrates a flow chart of an example process of multi-mode system selection according to aspects of the present disclosure.
FIG. 6 illustrates a simplified diagram of an example frame exchange between a user equipment and a base station for selecting a default prioritized network according to aspects of the present disclosure.
FIG. 7 illustrates a network system for dual connectivity according to aspects of the present disclosure.
FIG. 8 illustrates a simplified diagram of an example frame exchange between a user equipment and an anchor base station using non-standalone signaling messages according to aspects of the present disclosure.
FIG. 9 illustrates a flow chart of an example process of smart card operation for multi-mode system selection according to instances of the present disclosure.
FIG. 10 illustrates a flow chart of an example process of non-standalone operation according to instances of the present disclosure.
FIG. 11 illustrates a flow chart of an example process of non-standalone connection setup according to instances of the present disclosure.
DETAILED DESCRIPTION
The detailed description set forth below, in connection with the appended drawings, is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of the various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
The techniques described herein may be used for various wireless communication networks such as code-division multiple access (CDMA) , time-division multiple access (TDMA) , frequency-division multiple access (FDMA) , orthogonal frequency-division multiple access (OFDMA) , single-carrier FDMA (SC-FDMA) and other networks. The terms “network” and “system” are often used interchangeably. A CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA) , CDMA2000, etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. CDMA2000 covers IS-2000, IS-95 and IS-856 standards. A TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) . An OFDMA network may implement a radio technology such as Evolved UTRA (E-UTRA) , Ultra Mobile Broadband (UMB) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDMA, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) . 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are new releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-Aand GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) . CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . These various radio technologies and standards are known or are being developed. For example, the 3rd Generation Partnership Project (3GPP) is a collaboration between groups of telecommunications associations that aims to define a globally applicable third generation (3G) mobile phone specification. 3GPP long term evolution (LTE) is a 3GPP project which was aimed at improving the UMTS mobile phone standard. The 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices. The present disclosure is concerned with the evolution of wireless technologies from LTE, 4G, 5G, NR, and beyond with shared access to  wireless spectrum between networks using a collection of new and different radio access technologies or radio air interfaces.
5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface. In order to achieve these goals, further enhancements to LTE and LTE-Aare considered in addition to development of the new radio technology for 5G NR networks. The 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with a ultra-high density (e.g., ~1M nodes/km 2) , ultra-low complexity (e.g., ~10s of bits/sec) , ultra-low energy (e.g., ~10+ years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ~99.9999%reliability) , ultra-low latency (e.g., ~ 1 ms) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ~ 10 Tbps/km 2) , extreme data rates (e.g., multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
The 5G NR may be implemented to use optimized OFDM-based waveforms with scalable numerology and transmission time interval (TTI) ; having a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and with advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility. Scalability of the numerology in 5G NR, with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments. For example, in various outdoor and macro coverage deployments of less than 3GHz FDD/TDD implementations, subcarrier spacing may occur with 15 kHz, for example over 5, 10, 20 MHz, and the like bandwidth (BW) . For other various outdoor and small cell coverage deployments of TDD greater than 3 GHz, subcarrier spacing may occur with 30 kHz over 80/100 MHz BW. For other various indoor wideband implementations, using a TDD over the unlicensed portion of the 5 GHz band, the subcarrier spacing may occur with 60 kHz over a 160 MHz BW. Finally, for various deployments transmitting with mmWave components at a TDD of 28 GHz, subcarrier spacing may occur with 120 kHz over a 500 MHz BW.
The scalable numerology of the 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency. The  efficient multiplexing of long and short TTIs to allow transmissions to start on symbol boundaries. 5G NR also contemplates a self-contained integrated subframe design with UL/downlink scheduling information, data, and acknowledgement in the same subframe. The self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive UL/downlink that may be flexibly configured on a per-cell basis to dynamically switch between UL and downlink to meet the current traffic needs.
As discussed above, when there is no valid MSPL file in a SIM card, the wireless communication device is not capable to acquire service through an LTE anchor cell because the prioritized list of CDMA2000 and non-CDMA2000 cellular systems is not available. As such, this causes the wireless communication device to fail to register with an LTE anchor cell, thus causing any 5G non-standalone service to not be available.
The subject technology provides for prioritized LTE and 5G NSA system selection for smart cards missing the MSPL file. In particular, the subject technology describes enhancements for Over-the-Air Service Provisioning (OTASP) for spread spectrum systems, in particular for MMSS that enables a wireless communication device to select a radio access technology (RAT) or system amongst a number of candidates, when the MSPL is not available (or absent) . These candidates span 3GPP RATs (e.g., LTE, UMTS or GSM) , 3GPP2 RATs (e.g., 1× or HRPD) or others from other standards bodies. In some examples, a set of parameters that supports MMSS includes a default priority list in lieu of the MMSS System Priority List (MSPL) that defines relative priorities of the various RATs among the various technologies (3GPP, 3GPP2, WiMAX, etc) .
In various instances, a user equipment for wireless communication can determine whether a system selection priority list, such as the MSPL, is present in a smart card, for example. If the MSPL is present in the smart card, then normal MMSS system selection is performed with the MSPL. However, if the MSPL is absent from the smart card, the user equipment can default to a priority list stored in its memory. As such, the user equipment obtains a default priority list stored in either a non-volatile memory or volatile memory of the user equipment, when the system selection priority list is not present. The user equipment can select a radio access network (RAN) based on the default priority list and select a first serving cell in the selected RAN. The user equipment can communicate, with the first serving cell, one or more messages to access a first service via the first serving cell. When there is no valid MSPL file in the smart card, the user equipment has a mechanism to consider the LTE network and/or service as higher priority over other networks and/or services. In some  examples, the first service can be LTE service via an LTE serving cell. In other examples, the first service can be 5G NR service with a 5G serving cell via an LTE anchor cell.
The techniques of the subject technology allow for a user equipment to perform cell selection on an LTE anchor cell and thereby provide available access to the 5G NSA service. By having a means to prioritize the LTE and 5G NSA services for system selection when the MSPL file is absent and/or unavailable to the user equipment, the subject technology enables an improved user experience to the end user.
As used herein, the term “multi-mode” generally refers to wireless communication devices, such as user equipment, which are compatible with more than one form of data transmission or network. For instance, a dual-mode user equipment can be a smartphone that uses more than one technique for sending and receiving voice and data, such as LTE and 5G NSA.
Various aspects are described herein in connection with a wireless communication device. A wireless communication device can also be called a system, a subscriber unit, a subscriber station, mobile station, mobile, mobile device, cellular device, multi-mode device, remote station, remote terminal, access terminal, user terminal, user agent, a user device, or user equipment, or the like. A subscriber station can be a cellular telephone, a cordless telephone, a Session Initiation Protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA) , a handheld device having wireless connection capability, or other processing device connected to a wireless modem or similar mechanism facilitating wireless communication with a processing device.
Various other aspects and features of the disclosure are further described below. It should be apparent that the teachings herein may be embodied in a wide variety of forms and that any specific structure, function, or both being disclosed herein is merely representative and not limiting. Based on the teachings herein one of an ordinary level of skill in the art should appreciate that an aspect disclosed herein may be implemented independently of any other aspects and that two or more of these aspects may be combined in various ways. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, such an apparatus may be implemented or such a method may be practiced using other structure, functionality, or structure and functionality in addition to or other than one or more of the aspects set forth herein. For example, a method may be implemented as part of a system, device, apparatus, and/or as instructions stored on a computer readable medium for execution on a processor or computer. Furthermore, an aspect may comprise at least one element of a claim.
FIG. 1 illustrates a wireless communication network 100 according to instances of the present disclosure. The network 100 includes BSs 105, UEs 115, and a core network 130. In some instances, the network 100 operates over a shared spectrum. The shared spectrum may be unlicensed or partially licensed to one or more network operators. Access to the spectrum may be limited and may be controlled by a separate coordination entity. In some instances, the network 100 may be a LTE or LTE-A network. In yet other instances, the network 100 may be a millimeter wave (mmW) network, a new radio (NR) network, a 5G network, or any other successor network to LTE. The network 100 may be operated by more than one network operator. Wireless resources may be partitioned and arbitrated among the different network operators for coordinated communication between the network operators over the network 100.
The BSs 105 may wirelessly communicate with the UEs 115 via one or more BS antennas. Each BS 105 may provide communication coverage for a respective geographic coverage area 110. In 3GPP, the term “cell” can refer to this particular geographic coverage area of a BS and/or a BS subsystem serving the coverage area, depending on the context in which the term is used. In this regard, a BS 105 may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cell. A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider. A pico cell may generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A femto cell may also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in FIG. 1, the  BSs  105a, 105b and 105c are examples of macro BSs for the  coverage areas  110a, 110b and 110c, respectively. The BSs 105d is an example of a pico BS or a femto BS for the coverage area 110d. As will be recognized, a BS 105 may support one or multiple (e.g., two, three, four, and the like) cells.
Communication links 125 shown in the network 100 may include uplink (UL) transmissions from a UE 115 to a BS 105, or downlink (DL) transmissions, from a BS 105 to a UE 115. The UEs 115 may be dispersed throughout the network 100, and each UE 115 may be stationary or mobile. A UE 115 may also be referred to as a mobile station, a subscriber  station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology. A UE 115 may also be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless phone, a personal electronic device, a handheld device, a personal computer, a wireless local loop (WLL) station, an Internet of things (IoT) device, an Internet of Everything (IoE) device, a machine type communication (MTC) device, an appliance, an automobile, or the like. In one aspect, a UE 115 may be a device that includes a Universal Integrated Circuit Card (UICC) . In another aspect, a UE may be a device that does not include a UICC. In some aspects, the UEs 115 that do not include UICCs may also be referred to as IoT devices or internet of everything (IoE) devices. The UEs 115a-115d are examples of mobile smart phone-type devices accessing network 100. In one aspects,  UEs  115c and 115d are in communication with one another through sidelink transmissions between the  UEs  115c and 115d in a coverage area 110f. A UE 115 may also be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like. The UEs 115e-115h are examples of various machines configured for communication that access the network 100. The UEs 115i-115k are examples of vehicles in coverage area 110e that are equipped with wireless communication devices configured for communication that access the network 100. A UE 115 may be able to communicate with any type of the BSs, whether macro BS, small cell, or the like. In FIG. 1, a lightning bolt (e.g., communication links) indicates wireless transmissions between a UE 115 and a serving BS 105, which is a BS designated to serve the UE 115 on the downlink (DL) and/or uplink (UL) , desired transmission between BSs 105, backhaul transmissions between BSs, or sidelink transmissions between UEs 115.
The network 100 may also support mission critical communications with ultra-reliable and redundant links for mission critical devices, such as the UE 115e, which may be a drone. Redundant communication links with the UE 115e may include links from the macro BS 105c, as well as links from the small cell BS 105f. Other machine type devices, such as the UE 115f (e.g., a thermometer) , the UE 115g (e.g., smart meter) , and UE 115h (e.g., wearable device) may communicate through the network 100 either directly with BSs, such as the small cell BS 105f, and the macro BS 105c, or in multi-step-size configurations by communicating with another user device which relays its information to the network, such as the UE 115f  communicating temperature measurement information to the smart meter, the UE 115g, which is then reported to the network through the small cell BS 105f. The network 100 may also provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such asV2V, V2X, C-V2X communications between a  UE  115i, 115j, or 115k and other UEs 115, and/or vehicle-to-infrastructure (V2I) communications between a  UE  115i, 115j, or 115k and the BS 105a.
The BSs 105 may communicate with the core network 130 and with one another. The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. At least some of the BSs 105 (e.g., which may be an example of an evolved NodeB (eNB) , a next generation NodeB (gNB) , or an access node controller (ANC) ) may interface with the core network 130 through backhaul links 132 (e.g., S1, S2, etc. ) and may perform radio configuration and scheduling for communication with the UEs 115. In various examples, the BSs 105 may communicate, either directly or indirectly (e.g., through core network 130) , with each other over backhaul links 134 (e.g., X1, X2, etc. ) , which may be wired or wireless communication links.
Each BS 105 may also communicate with a number of UEs 115 through a number of other BSs 105, where the BS 105 may be an example of a smart radio head. In alternative configurations, various functions of each BS 105 may be distributed across various BSs 105 (e.g., radio heads and access network controllers) or consolidated into a single BS 105.
In some implementations, the network 100 utilizes orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the UL. OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, or the like. Each subcarrier may be modulated with data. In general, modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM. The spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth. The system bandwidth may also be partitioned into subbands.
In an instance, the BSs 105 can assign or schedule transmission resources (e.g., in the form of time-frequency resource blocks) for DL and UL transmissions in the network 100. DL refers to the transmission direction from a BS 105 to a UE 115, whereas UL refers to the transmission direction from a UE 115 to a BS 105. The communication can be in the form of radio frames. A radio frame may be divided into a plurality of subframes, for example, about 10. Each subframe can be divided into slots, for example, about 2. Each slot may be further  divided into min-slots, as described in greater detail herein. In a frequency-division duplexing (FDD) mode, simultaneous UL and DL transmissions may occur in different frequency bands. For example, each subframe includes a UL subframe in a UL frequency band and a DL subframe in a DL frequency band. In a time-division duplexing (TDD) mode, UL and DL transmissions occur at different time periods using the same frequency band. For example, a subset of the subframes (e.g., DL subframes) in a radio frame may be used for DL transmissions and another subset of the subframes (e.g., UL subframes) in the radio frame may be used for UL transmissions.
The DL subframes and the UL subframes can be further divided into several regions. For example, each DL or UL subframe may have pre-defined regions for transmissions of reference signals, control information, and data. Reference signals are predetermined signals that facilitate the communications between the BSs 105 and the UEs 115. For example, a reference signal can have a particular pilot pattern or structure, where pilot tones may span across an operational bandwidth or frequency band, each positioned at a pre-defined time and a pre-defined frequency. For example, a BS 105 may transmit cell-specific reference signals (CRSs) and/or channel state information –reference signals (CSI-RSs) to enable a UE 115 to estimate a DL channel. Similarly, a UE 115 may transmit sounding reference signals (SRSs) to enable a BS 105 to estimate a UL channel. Control information may include resource assignments and protocol controls. Data may include protocol data and/or operational data. In some instances, the BSs 105 and the UEs 115 may communicate using self-contained subframes. A self-contained subframe may include a portion for DL communication and a portion for UL communication. A self-contained subframe can be DL-centric or UL-centric. A DL-centric subframe may include a longer duration for DL communication than UL communication. A UL-centric subframe may include a longer duration for UL communication than UL communication.
In some aspects, the network 100 may be an NR network deployed over a licensed spectrum. The BSs 105 can transmit synchronization signals (e.g., including a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) ) in the network 100 to facilitate synchronization. The BSs 105 can broadcast system information associated with the network 100 (e.g., including a master information block (MIB) , remaining system information (RMSI) , and other system information (OSI) ) to facilitate initial network access. In some instances, the BSs 105 may broadcast the PSS, the SSS, and/or the MIB in the form of synchronization signal block (SSBs) over a physical broadcast channel (PBCH) and may broadcast the RMSI and/or the OSI over a physical downlink shared channel (PDSCH) .
In an instance, a UE 115 attempting to access the network 100 may perform an initial cell search by detecting a primary synchronization signal (PSS) from a BS 105. The PSS may enable synchronization of period timing and may indicate a sector identity value (e.g., 0, 1, 2, etc. ) . The UE 115 may then receive a secondary synchronization signal (SSS) . The SSS may enable radio frame synchronization, and may provide a cell identity value, which may be combined with the PSS identity value to identify the physical cell identity. The SSS may also enable detection of a duplexing mode and a cyclic prefix length. Both the PSS and the SSS may be located in a central portion of a carrier, respectively. After receiving the PSS and SSS, the UE 115 may receive a master information block (MIB) , which may be transmitted in the physical broadcast channel (PBCH) . The MIB may contain system bandwidth information, a system frame number (SFN) , and a Physical Hybrid-ARQ Indicator Channel (PHICH) configuration. After decoding the MIB, the UE 115 may receive one or more system information blocks (SIBs) . For example, SIB1 may contain cell access parameters and scheduling information for other SIBs. Decoding SIB1 may enable the UE 115 to receive SIB2. SIB2 may contain radio resource configuration (RRC) configuration information related to random access channel (RACH) procedures, paging, physical uplink control channel (PUCCH) , physical uplink shared channel (PUSCH) , power control, SRS, and cell barring. After obtaining the MIB and/or the SIBs, the UE 115 can perform random access procedures to establish a connection with the BS 105.
After establishing the connection, the UE 115 and the BS 105 can enter a normal operation stage, where operational data may be exchanged. For example, the BS 105 may schedule the UE 115 for UL and/or DL communications. The BS 105 may transmit UL and/or DL scheduling grants to the UE 115 via a PDCCH. The scheduling grants may be transmitted in the form of DL control information (DCI) . The BS 105 may transmit a DL communication signal (e.g., carrying data) to the UE 115 via a PDSCH according to a DL scheduling grant. The UE 115 may transmit a UL communication signal to the BS 105 via a PUSCH and/or PUCCH according to a UL scheduling grant.
In some aspects, the network 100 may support sidelink communication among the UEs 115 over a shared radio frequency band (e.g., in a shared spectrum or an unlicensed spectrum) . In some aspects, the UEs 115 may communicate with each other over a 2.4 GHz unlicensed band, which may be shared by multiple network operating entities using various radio access technologies (RATs) such as NR-U, WiFi, and/or licensed-assisted access (LAA) .
In some instances, the UEs 115 and the BSs 105 may be operated by multiple network operators or network operating entities and may operate in a shared radio frequency spectrum, which may include licensed or unlicensed frequency bands. The shared spectrum may be time-partitioned for sharing among the multiple network operating entities to facilitate coordinated communication. For example, in the network 100, the BS 105a and the UE 115a may be associated with one network operating entity, while the BS 105b and the UE 115b may be associated with another network operating entity. By time-partitioning the shared spectrum according to network operating entities, the communications between the BS 105a and the UE 115a and the communications between the BS 105b and the UE 115b may each occur during respective time periods and may avail themselves of an entirety of a designated shared spectrum.
In an instance, the network 100 may support multiple networks with different RAT technologies. For example, the network 100 may be initially deployed as an LTE network and subsequently add advanced RAT technologies such as NR to provide improved network functionalities, such as lower latency, greater bandwidth, and/or higher throughput. Mechanisms for deploying an NR network within an LTE network are described in greater detailer herein.
In various instances, the UEs 15 can determine whether a system selection priority list, such as the MSPL, is present in a smart card that is interfaced to and/or stored at the UE 115, to interface with a subscriber service (e.g., LTE, 5G NR, CDMA2000, etc. ) . If the MSPL is present in the smart card, then normal MMSS system selection is performed with the MSPL. However, if the MSPL is absent from the smart card, the UE 115 can default to a priority list stored in its memory. As such, the UE 115 can obtain a default priority list stored in either a non-volatile memory or volatile memory of the UE 115, when the system selection priority list is not present. The UE 115 can select a RAN (e.g., coverage area 110c) based on the default priority list and select a first serving cell (e.g., BS 105c) in the selected RAN. The user equipment can communicate, with the first serving cell, one or more messages to access a first service via the first serving cell. When there is no valid MSPL file in the smart card, the UE 115 has a mechanism to consider the LTE network and/or service as higher priority over other networks and/or services. In some examples, the first service can be an LTE service via an LTE serving cell (e.g., BS 105c) . In other examples, the first service can be a 5G NR service with a 5G serving cell (e.g., BS 105b) via an LTE anchor cell (e.g., BS 105c) .
FIG. 2 illustrates a communication system 200 that performs multi-mode system selection (MMSS) according to instances of the present disclosure. In FIG. 2, the UE 115 may  access a MMSS scheme for selecting a  RAT  212, 222 from a plurality of  RATs  212, 222, or may select a  RAN  210, 220 associated with  respective RATs  212, 222 from a plurality of  RANs  210, 220. The communication system 200 enables the UE 115 to use a system selection priority list that includes a list of prioritized networks and/or system technologies by which the UE 115 can access. Thereby, an appropriate  radio access node  214, 224 can be selected according a preferred or  appropriate RAT  212, 222. The RAT 212 may be present in a first coverage area that corresponds to a first RAN (e.g., 210) and the RAT 222 may be present in a second coverage area that corresponds to a second RAN (e.g., 220) . Thus, an apparatus depicted as the UE 115 can support multi-mode system selection in the communication system 200. To that end, the UE 115 can select a system selection priority list, such as an MMSS System Priority List (MSPL) file, from one or more of the  smart cards  242 and 244. In some aspects, the MSPL file includes a prioritized list of CDMA2000 and non-CDMA2000 cellular systems. The MSPL file can assist a multi-mode wireless communication device, such as the UE 115, in selecting a system. Once a system is selected, the UE 115 follows the standard network selection procedures for the selected system to acquire a network.
The UE 115 includes a smart card 242 and may optionally include a smart card 244. In some aspects, the  smart cards  242 and 244 may correspond to different cellular user accounts (e.g., different telephone numbers) . The smart cards 242 and/or 244 may store and/or record thereon the MSPL file. In some aspects, the MSPL file may be unavailable or missing from the  smart cards  242, 244. In this respect, the UE 115 can obtain a default priority list 232 from a memory 230 of the UE 115. In some aspects, the default priority list 232 can contain a prioritized listing of networks and/or system technologies, similar to the MSPL file. The UE 115 can select an available access node 214 in accordance with the RAT 212 that is selected according to the default priority list 232. The UE 115 communicates with the selected access node 108 for access to a service via the selected access node 108.
In some aspects, the UE 115 may be capable of utilizing a variety of networks under different air interface technologies, and can implement one or more procedures for selecting a preferred system with which to communicate in a system (e.g., network 100, system 200) . In one example, the UE 115 can base its system selection on information such the default priority list 232 when the MSPL file is missing (or unavailable) . As illustrated in FIG. 2, the default priority list 232 can be stored locally at the UE 115 and the MSPL file can be obtained from an associated smart card that is interfaced to and/or stored at the UE 115 via a smart card module of the UE 115; however, it should be appreciated that UE 115 can obtain such  information, and/or any other information suitable for conducting system selection, from any source within or separate from the system (e.g., 100, 200) . It should further be appreciated that unless explicitly stated otherwise, the claims appended hereto are not intended to limit to specific location (s) of information.
The default priority list 232 and/or MSPL file can, in one example, be stored at the UE 115 as a set of lists that correspond to respective air interface technologies and/or groups of technologies that can be utilized by the UE 115. Thus, for example, different lists can be provided that correspond to 3GGP technologies, 3GGP2 technologies, IEEE technologies, and/or any other suitable groups of technologies. Such lists can be stored at the UE 115 via one or more of the  smart cards  242, 244, the memory 230, and/or other machine-readable data storage such as a hard disk, memory card, CD-ROM disc, or the like.
Network priorities of systems within a standard (e.g. 3GPP, 3GPP2) can be dictated by the rules of that standard. In case there is a conflict between the default priority list 232 and the system priorities of another standard, the priorities of that standard may take precedence. The default priority list 232 may be used to identify cross-standard system priorities and priorities of radio access technologies (RATs) within the same standard when a RAT is unspecified. For example, if the UE 115 is in CDMA2000 mode, then the default priority list 232 can point the UE 115 to a system of a non-3GPP standard or another 3GPP RAT (e.g. LTE) of the same RAN (or Public Land Mobile Network (PLMN) ) when the RAN entry does not specify the RAT. The latter occurs for a single entry when no RAT is specified or when two or more RATs are indicated. In some aspects, the provisioning of the default priority list 232 can be consistent with the system selection rules of the underlying individual systems.
In some aspects, the smart card 242 may include a Subscriber Identity Module (SIM) card. The SIM card may contains a unique serial number, International Mobile Subscriber Identifier (IMSI) of the user equipment, security authentication and ciphering information, temporary information related to a local network, a list of the services the user has access to and two passwords (PIN for usual use and PUK for unlocking) . The SIM card may also store a unique International Mobile Subscriber Identity (IMSI) , of a number format, for example: (a) the first 3 digits represent a Mobile Country Code (MCC) ; (b) the next two or three digits represent a Mobile Network Code (MNC) ; (c) the remaining digits represent a Mobile Station Identification (MSID) number; and (d) the smart card may also have an Integrated Circuit Card Identification (ICC-ID) number.
In some aspects, the smart card 242 may include a Removable User Identification Module (R-UIM) card that is a removable (or non-permanent) smart card for wireless communication devices made for the CDMA2000 network. The R-UIM may be the 3GPP/ETSI SIM for CDMA2000 systems-which are both based on an Integrated Circuit Card (ICC) . The R-UIM card store personal user information such as name and account number, cell phone number, phone book, text messages and other settings.
In some aspects, the smart card 242 may include a CDMA2000 Subscriber Identify Module (CSIM) that is an application that runs on a smart card known as a Universal Integrated Circuit Card (UICC) . The UICC can store a CSIM application, a Universal SIM (USIM) application, SIM and/or R-UIM and can be used to enable operation with cellular networks globally. The UICC can carry the Application Directory Files (ADF) of CSIM and USIM and others. The SIM and R-UIM may be legacy smart cards based on the ICC. Both SIM and R-UIM can be added on to the UICC as a directory file (DF) . The UICC, which can carry a CSIM application, can allow users to change wireless communication devices by simply removing the smart card from one wireless communication device and inserting it into another wireless communication device or broadband telephony device.
In some aspects, the UE 115 includes a virtual SIM (not shown) that is a mobile phone number provided by a mobile network operator that does not require a physical smart card (e.g., 242) to terminate phone calls on the UE 115. In a further aspect, could have multiple UICCs or Integrated Circuit Cards (ICCs) in the UE 115, such as the  smart cards  242 and 244.
In some examples, a dual-mode CDMA2000 and GSM smartphone may utilize either two cards (R-UIM and SIM) or one card (SIM-only) , where the R-UIM information is stored in the UE 115. In an exemplary use case, consider a LTE+cdma2000 terminal that can be outfitted with UICC. The UICC can contain a USIM application (essentially a SIM for LTE) and a CSIM application (in place of the R-UIM card for CDMA2000) .
Hereinafter, the term “smart card” can generally refer to encompass these technologies and their equivalents.
FIG. 3 is a block diagram of an exemplary UE 300 according to some aspects of the present disclosure. The UE 300 may be a UE 115 discussed above in FIG. 1 or a UE 215 discussed above in FIG. 2. As shown, the UE 300 may include a processor 302, a memory 304, a system selection module 308, a smart card module 309, a transceiver 310 including a modem subsystem 312 and a radio frequency (RF) unit 314, and one or more antennas 316.  These elements may be in direct or indirect communication with each other, for example via one or more buses.
The processor 302 may include a central processing unit (CPU) , a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a controller, a field programmable gate array (FPGA) device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein. The processor 302 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The memory 304 may include a cache memory (e.g., a cache memory of the processor 302) , random access memory (RAM) , magnetoresistive RAM (MRAM) , read-only memory (ROM) , programmable read-only memory (PROM) , erasable programmable read only memory (EPROM) , electrically erasable programmable read only memory (EEPROM) , flash memory, solid state memory device, hard disk drives, other forms of volatile and non-volatile memory, or a combination of different types of memory. In an aspect, the memory 304 includes a non-transitory computer-readable medium. The memory 304 may store, or have recorded thereon, instructions 306. The instructions 306 may include instructions that, when executed by the processor 302, cause the processor 302 to perform the operations described herein with reference to the UEs 115 in connection with aspects of the present disclosure, for example, aspects of FIGS. 1-3 and 5-8. Instructions 306 may also be referred to as program code. The program code may be for causing a wireless communication device to perform these operations, for example by causing one or more processors (such as processor 302) to control or command the wireless communication device to do so. The terms “instructions” and “code” should be interpreted broadly to include any type of computer-readable statement (s) . For example, the terms “instructions” and “code” may refer to one or more programs, routines, sub-routines, functions, procedures, etc. “Instructions” and “code” may include a single computer-readable statement or many computer-readable statements.
In various aspects, the memory 304 may store, or have recorded thereon, a default priority list 307. The default priority list 307 may include a list of records for prioritizing the LTE system over other system technologies, including prioritizing CDMA2000 and non-CDMA2000 cellular systems. The default priority list 307 may assist the UE 115 in selecting a system. Once a system is selected, the UE 115 can follow the network selection procedures according to the requirements of that system.
In some aspects, the default priority list 307 includes a table. The table may include the following fields and values as depicted in Table 1. In some aspects, the values may be a multi-bit binary word value. As depicted in Table 1, the EUTRAN (LTE) network (denoted with value “b’00000000” ) has a higher priority over the CDMA2000 network (denoted with value “b’00000001” ) for system selection. The remaining system types may be prioritized in descending order of priority. Although Table 1 lists different system types in an exemplary prioritized listing, the system types of Table 1 may be listed in a different order of prioritization without departing from the scope of the present disclosure.
Table 1 –Default Priority List Table
Figure PCTCN2020089007-appb-000001
In some aspects, the default priority list 307 is stored in at least a portion of a non-volatile memory portion of the memory 304. In other aspects, the default priority list 307 is stored in at least a portion of a volatile memory. In some aspects, the volatile memory includes an embedded file system (EFS) . In some aspects, the default priority list 307 is stored in at least a portion of the EFS.
The system selection module 308 may be implemented via hardware, software, or combinations thereof. For example, the system selection module 308 may be implemented as a processor, circuit, and/or instructions 306 stored in the memory 304 and executed by the processor 302. In some instances, the system selection module 308 can be integrated within the modem subsystem 312. For example, the system selection module 308 can be implemented by a combination of software components (e.g., executed by a DSP or a general processor) and hardware components (e.g., logic gates and circuitry) within the modem subsystem 312.
The system selection module 308 may be used for various aspects of the present disclosure, for example, aspects of FIGS. 2, 3 and 5-8. For instance, the system selection  module 308 may coordinate with the processor 302 to determine whether a system selection priority list is present. The system selection module 308 may coordinate with the processor 302 to obtain a default priority list stored in the user equipment when the system selection priority list is not present. The system selection module 308 may coordinate with the processor 302 to select a radio access network (RAN) based on the default priority list. The system selection module 308 may coordinate with the processor 302 to select a first serving cell in the RAN.
In some aspects, the selected RAN corresponds to one of a plurality of RANs listed with different priorities in the default priority list. In some aspects, the system selection module 308 may coordinate with the processor 302 to select the RAN based on a first priority of the RAN in the default priority list. In other aspects, the system selection module 308 may coordinate with the processor 302 to select the RAN using a selected radio access technology (RAT) based on a priority of the selected RAT in the default priority list. In some aspects, the selected RAT corresponds to one of a plurality of prioritized RATs listed in the default priority list. In some aspects, the plurality of prioritized RATs includes a first prioritized RAT that corresponds to a Long-Term Evolution (LTE) wireless communication network. In some aspects, the first prioritized RAT has a first priority. In some aspects, the plurality of prioritized RATs also includes a second prioritized RAT that corresponds to a CDMA2000 wireless communication network. In some aspects, the second prioritized RAT has a second priority different from the first priority. In some aspects, the first priority of the first prioritized RAT is higher than the second priority of the second prioritized RAT. In this respect, the LTE wireless communication network has a higher priority than the CDMA2000 wireless communication network. In other aspects, the second priority of the second priority RAT may be higher than the first priority of the first prioritized RAT.
The system selection module 308 may coordinate with the processor 302 and/or the smart card module 309 to access a smart card included in the UE 300. The system selection module 308 may coordinate with the processor 302 and/or the smart card module 309 to determine that the smart card is ready for operation. The system selection module 308 may coordinate with the processor 302 and/or the smart card module 309 to determine whether the system selection priority list is present in the smart card.
The system selection module 308 may coordinate with the processor 302 and/or the smart card module 309 to obtain the system selection priority list when the system selection priority list is present in the smart card. The system selection module 308 may coordinate with the processor 302 to select the RAN based on the system selection priority list. In some  aspects, the system selection priority list includes a multi-mode system selection (MMSS) system priority list (MSPL) . In some aspects, the selected RAN corresponds to one of a plurality of RANs listed with different priorities in the MSPL.
The smart card module 309 can interface to a smart card (e.g., 242, 244) . The smart card module 309 may perform read and/or write operations with the smart card. For example, the smart card module 309 may perform a read operation to access the MSPL file stored in the smart card. In some aspects, the smart card module 309 may make changes and/or updates to the MSPL file using one or more write operations. In some aspects, the smart card module 309 may perform an erase operation to remove at least any portion of the MSPL file from one or more storage locations in the smart card. Various types of smart cards can be employed, such as R-UIM, UICC with CSIM only, UICC with USIM and CSIM, SIM, etc. In some aspects, the MSPL can employ defined MMSS elementary files (EFs) on a smart card. The smart card can support defined MMSS commands. The MMSS commands can be defined in binary form or in records-based form.
In some aspects, the system selection module 308 may coordinate with the transceiver 310 to communicate, with the first serving cell, one or more messages to access a first service via the first serving cell. In other aspects, the transceiver 310 may communicate, with a second serving cell, one or more RRC connection setup messages. In still other aspects, the transceiver 310 may communicate, with the second serving cell, one or more RRC connection reconfiguration setup messages.
The processor 302 may coordinate with the transceiver 310 to operate in a non-standalone mode, such as the 5G NSA mode. For example, the processor 302 may coordinate with the transceiver 310 to utilize a first serving cell (e.g., 5G NR) to access a first service (e.g., 5G service) associated with a first wireless communication network (e.g., 5G network) and a second serving cell (e.g., LTE anchor cell) associated with a second wireless communication network (e.g., LTE network) to support a connectivity of the user equipment to the first service via the first serving cell.
As shown, the transceiver 310 may include the modem subsystem 312 and the RF unit 314. The transceiver 310 can be configured to communicate bi-directionally with other devices, such as the BSs 105. The modem subsystem 312 may be configured to modulate and/or encode the data from the memory 304 and/or the system selection module 308 according to a modulation and coding scheme (MCS) , e.g., a low-density parity check (LDPC) coding scheme, a turbo coding scheme, a convolutional coding scheme, a polar coding scheme, a digital beamforming scheme, etc. The RF unit 314 may be configured to  process (e.g., perform analog to digital conversion or digital to analog conversion, etc. ) modulated/encoded data (e.g., uplink data, RRC connection request/complete, RRC connection reconfiguration request/complete) from the modem subsystem 312 (on outbound transmissions) or of transmissions originating from another source such as a UE 115 or a BS 105. The RF unit 314 may be further configured to perform analog beamforming in conjunction with the digital beamforming. Although shown as integrated together in transceiver 310, the modem subsystem 312 and the RF unit 314 may be separate devices that are coupled together at the UE 115 to enable the UE 115 to communicate with other devices.
The RF unit 314 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to the antennas 316 for transmission to one or more other devices. The antennas 316 may further receive data messages transmitted from other devices. The antennas 316 may provide the received data messages for processing and/or demodulation at the transceiver 310. The transceiver 310 may provide the demodulated and decoded data (e.g., SIB, RRC connection, RRC connection reconfiguration, synchronization signal, SSBs) to the system selection module 308 for processing. The antennas 316 may include multiple antennas of similar or different designs in order to sustain multiple transmission links. The RF unit 314 may configure the antennas 316. In some aspects, the RF unit 314 may include various RF components, such as local oscillator (LO) , analog filters, and/or mixers. The LO and the mixers can be configured based on a certain channel center frequency. The analog filters may be configured to have a certain passband depending on a channel BW. The RF components may be configured to operate at various power modes (e.g., a normal power mode, a low-power mode, power-off mode) and may be switched among the different power modes depending on transmission and/or reception requirements at the UE 300.
In an aspect, the UE 300 can include multiple transceivers 310 implementing different RATs (e.g., NR and LTE) . In an aspect, the UE 300 can include a single transceiver 310 implementing multiple RATs (e.g., NR and LTE) . In an aspect, the transceiver 310 can include various components, where different combinations of components can implement different RATs.
FIG. 4 is a block diagram of an exemplary BS 400 according to some aspects of the present disclosure. The BS 400 may be a BS 105 in the network 100 as discussed above in FIG. 1 or a BS 205 in the network 200 as discussed above in FIG. 2. As shown, the BS 400 may include a processor 402, a memory 404, a transceiver 410 including a modem subsystem  412 and a RF unit 414, and one or more antennas 416. These elements may be in direct or indirect communication with each other, for example via one or more buses.
The processor 402 may have various features as a specific-type processor. For example, these may include a CPU, a DSP, an ASIC, a controller, a FPGA device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein. The processor 402 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The memory 404 may include a cache memory (e.g., a cache memory of the processor 402) , RAM, MRAM, ROM, PROM, EPROM, EEPROM, flash memory, a solid state memory device, one or more hard disk drives, memristor-based arrays, other forms of volatile and non-volatile memory, or a combination of different types of memory. In some aspects, the memory 404 may include a non-transitory computer-readable medium. The memory 404 may store instructions 406. The instructions 406 may include instructions that, when executed by the processor 402, cause the processor 402 to perform operations described herein, for example, aspects of FIGS. 1, 2, 4, 6-8. Instructions 406 may also be referred to as code, which may be interpreted broadly to include any type of computer-readable statement (s) as discussed above with respect to FIG. 3.
As shown, the transceiver 410 may include the modem subsystem 412 and the RF unit 414. The transceiver 410 can be configured to communicate bi-directionally with other devices, such as the UEs 115 and/or 300 and/or another core network element. The modem subsystem 412 may be configured to modulate and/or encode data according to a MCS, e.g., a LDPC coding scheme, a turbo coding scheme, a convolutional coding scheme, a polar coding scheme, a digital beamforming scheme, etc. The RF unit 414 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc. ) modulated/encoded data (e.g., SIB2, RRC connection reconfiguration, PDCCH, PDSCH, SSBs) from the modem subsystem 412 (on outbound transmissions) or of transmissions originating from another source such as a UE 115 and/or UE 300. The RF unit 414 may be further configured to perform analog beamforming in conjunction with the digital beamforming. Although shown as integrated together in transceiver 410, the modem subsystem 412 and/or the RF unit 414 may be separate devices that are coupled together at the BS 105 to enable the BS 105 to communicate with other devices.
The RF unit 414 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to the antennas 416 for transmission to one or more other devices. This may include, for example, transmission of information to complete attachment to a network and communication with a camped UE 115 or 300 according to some aspects of the present disclosure. The antennas 416 may further receive data messages transmitted from other devices and provide the received data messages for processing and/or demodulation at the transceiver 410. The transceiver 410 may provide the demodulated and decoded data (e.g., RRC connection complete, RRC connection reconfiguration complete) to the processor 402 for processing. The antennas 416 may include multiple antennas of similar or different designs in order to sustain multiple transmission links.
In an aspect, the BS 400 can include multiple transceivers 410 implementing different RATs (e.g., NR and LTE) . In an aspect, the BS 400 can include a single transceiver 410 implementing multiple RATs (e.g., NR and LTE) . In an aspect, the transceiver 410 can include various components, where different combinations of components can implement different RATs.
FIG. 5 illustrates a flow chart of an example process of multi-mode system selection according to instances of the present disclosure. Aspects of the process 500 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device or other suitable means for performing the steps. For example, a wireless communication device, such as the UEs 115 and/or 300, may utilize one or more components, such as the processor 302, the memory 304, the reporting communication module 308, the transceiver 310, the modem 312, and the one or more antennas 316, to execute the steps of process 500. As illustrated, the process 500 includes a number of enumerated steps, but aspects of the process 500 may include additional steps before, after, and in between the enumerated steps. In some aspects, one or more of the enumerated steps may be omitted or performed in a different order.
At block 502, the UE determines whether a system selection priority list, such as an MSPL file, is present. For example, the UE may access a smart card that is interfaced to and/or stored at the UE. The UE may scan through the smart card to search for the system selection priority list. For instance, the UE may utilize one or more components, such as the processor 302, the default priority list 307, the system selection module 308, and the smart card module 309, to search for the system selection priority list.
Next, at step 504, the decision by the UE is made to whether the system selection priority list is present in the smart card. If the system selection priority list is present, the process 500 proceeds to step 506. If the system selection priority list is not present (or is found to be unavailable) , the process 500 proceeds to step 508. For instance, the UE may utilize one or more components, such as the processor 302, the default priority list 307, the system selection module 308, and the smart card module 309, to determine whether the system selection priority list is available.
At step 508, the UE obtains a default priority list stored in the UE when the system selection priority list is not present. In some examples, the default priority list is stored in either non-volatile memory or volatile memory of the UE. For instance, the UE may utilize one or more components, such as the processor 302, the default priority list 307, the system selection module 308, and the smart card module 309, to access the default priority list 307.
Next, at step 510, the UE selects a radio access network (RAN) based on the default priority list. In some aspects, the UE may select a RAN having a particular RAT based on a prioritization of the RAN within the default priority list. For example, the default priority list may indicate an LTE network has a higher priority over a CDMA2000 network, so the selected RAN may be an LTE-based RAN. For instance, the UE may utilize one or more components, such as the processor 302, the default priority list 307, the system selection module 308, the smart card module 309, the transceiver 310, the modem 312, and the one or more antennas 316, to select the RAN based on the default priority list 307.
Alternatively, at step 506, the UE obtains the system selection priority list stored in a smart card interfaced to the smart card module 309 of the UE 300 when the system selection priority list is present. For instance, the UE may utilize one or more components, such as the processor 302, the system selection module 308, the smart card module 309, the transceiver 310, the modem 312, and the one or more antennas 316, to obtain the system selection priority list.
Next, at step 512, the UE can select the RAN based on the system selection priority list. For instance, the UE may utilize one or more components, such as the processor 302, the system selection module 308, the smart card module 309, the transceiver 310, the modem 312, and the one or more antennas 316, to select the RAN based on the system selection priority list.
Subsequently, at step 514, the UE selects a first serving cell in the RAN. The UE may perform measurements of any existing serving cells in the selected RAN. The UE may camp on a serving cell and monitor for system information, such as SIB2, SSB, MIB, etc. For  instance, the UE may utilize one or more components, such as the processor 302, the default priority list 307, the system selection module 308, the smart card module 309, the transceiver 310, the modem 312, and the one or more antennas 316, to select the first serving cell in the selected RAN.
Next, at step 516, the user equipment communicates, with the first serving cell, one or more messages to access a first service via the first serving cell. For example, the user equipment may communicate RRC connection setup messages for LTE service and/or RRC connection reconfiguration setup messages for 5G NSA service. Once the connection between the user equipment and the corresponding serving cell is established, data associated with the requested service may flow between the user equipment and the serving cell. For instance, the UE may utilize one or more components, such as the processor 302, the system selection module 308, the smart card module 309, the transceiver 310, the modem 312, and the one or more antennas 316, to communicate the one or more messages for access to a first service.
FIG. 6 illustrates a simplified diagram of an example frame exchange 600 between a user equipment and a base station for selecting a default prioritized network according to instances of the present disclosure. The frame exchange 600 may be implemented between a UE 610 and a BS 630 (depicted as “Serving Cell” ) . The BS 630 may be similar to the BS 105, 400 and the UE 610 may be similar to the UE 115, 300. Additionally, the BS 630 and the UE 610 may operate in a network such as the  network  100 or 200. As illustrated, the frame exchange 600 includes a number of enumerated actions, but instances of the frame exchange 600 may include additional actions before, after, and in between the enumerated actions. In some aspects, one or more of the enumerated actions may be omitted or performed in a different order.
At action 612, the UE 610 is powered on and proceeds with performing any startup operations. At action 614, the UE 610 accesses a smart card included in the UE 610. In some aspects, the smart card may be found in a smart card socket of the UE 610, where the smart is non-permanently attached to the UE 610. In other aspects, the smart card may be stored in memory of the UE 610. At action 616, the UE 610 determines whether the smart card is ready for operation. In some aspects, the UE 610 may check that the smart card is positioned in the smart card socket, if the smart card is non-permanently attached to the UE 610. In some aspects, the smart card may undergo an initialization process to ensure stability in performance prior to operation. At action 618, the UE 610 determines that the system selection priority list, such as an MSPL file, is not present in the smart card. For example, the user equipment may access a smart card that is interfaced to and/or stored at the UE 610. The  UE 610 may scan through the smart card to search for the system selection priority list and determine that the system selection priority list is missing. Some cellular carriers may not supply the MSPL file in the smart card.
At action 620, the UE 610 obtains a default priority list stored in the 610 in lieu of the MSPL file. In some examples, the default priority list is stored in either non-volatile memory or volatile memory of the UE 610. At action 622, the UE 610 selects a RAN based on the default priority list. In some aspects, the UE 610 may select a RAN having a particular RAT, such as LTE, based on a prioritization of the RAN within the default priority list. For example, the default priority list may indicate that an LTE-based RAN has a higher priority over a CDMA2000-based RAN.
At action 622, the UE 610 selects a first serving cell in the selected RAN. The UE 610 may perform measurements of any existing serving cells in the selected RAN including a serving cell and neighboring cells based on measurement rules. In some aspects, UE 610 may select a better serving cell to camp on based on cell-reselection criteria. The UE 610 may camp on a serving cell, such as the serving cell 630, and monitor for system information, such as SIB2, SSB, MIB, etc. The UE 610 may perform cell selection or reselection using selection or reselection parameters from the system information received from the serving cell 630.
At action 632, the user equipment communicates, with the serving cell 630, one or more messages to access a first service via the serving cell 630. For example, the UE 610 may communicate RRC connection setup messages for LTE service and/or RRC connection reconfiguration setup messages for 5G NSA service. Once the connection between the UE 610 and the serving cell 630 is established, data associated with the requested service may flow between the UE 610 and the serving cell 630.
FIG. 7 illustrates a network system 700 for dual connectivity according to instances of the present disclosure. The system 700 may correspond to a portion of the network 100 and include an LTE-NR tight interworking architecture with dual connectivity. The NR network may be unstable because it does not have ubiquitous coverage and has small cell radius. To overcome this problem, it may be desirable for a UE 115 to connect to both the LTE network and the NR network. In an instance, the NR network may be overlaid over the LTE network. The UE 702 supports dual connectivity, which allows the UE 702 to connect to both the LTE and NR network simultaneously. The UE 702 supports a non-standalone mode that utilizes the LTE network to support the connectivity of the UE 702 to the NR network. If the UE 702 is connected to the NR network, the UE 702 is also connected to the LTE network. The NR network may be a “best effort” network that is anchored in the LTE network. For example, if  the UE 702 is within NR network coverage, the UE 702 can use the NR network to transmit data. In this example, the UE 702 harnesses the lower latency, greater bandwidth, and/or higher throughput offered by the NR network, while leveraging the stable links provided by the LTE network. If the connection to the NR network is not stable or is weak, the UE 702 may connect to the LTE network without connecting to the NR network.
The UE 702 may transmit data using an Evolved Packet Core (EPC) 704, which is the core network of the LTE system. The EPC 704 includes a Mobility Management Entity (MME) 705 and a P/SGW 707. The data traffic may be split. For example, the UE 702 may transmit LTE Radio Link Control (RLC) /Media Access Control (MAC) 706 to an eNB 708 and transmit NR RLC/MAC 710 and LTE/NR Packet Data Convergence Protocol (PDCP) 712 to the gNB 714. A split bearer may be located at the gNB 714, and the data sent to the eNB 708 can be merged at the gNB 714 with other data. The gNB 714 may aggregate the data and send it to the P/SGW 707 using the S1-U interface. Additionally, signaling information may pass through the eNB 708 to the MME 705 using the S1-MME interface. The eNB 708 may include an interface to the P/SGW 707 using the S1-U interface. In some aspects, the eNB 708 and the gNB 714 communicate with another using the X2-U interface. Although FIG. 7 illustrates an LTE-NR/EPC system, this is not intended to be limiting and other instances may include different systems. For example, in another instance, the system may include an LTE-NR/NGC system.
In some instances, the UE 702 may be in at most one state of a plurality of states. If the UE 702 is connected to a first wireless communication network (e.g., NR network, 5G network, etc. ) and a second wireless communication network (e.g., LTE network, 4G network, etc. ) simultaneously, the UE 702 may be in a first connected mode. In this example, the UE 702 may be connected to both the NR network and the LTE network. The LTE network may be associated with an LTE anchor cell, and the NR network may be associated with a 5G NR cell. If the UE 702 is connected to the second network, but not the first network, the UE 702 may be in a second connected mode. In this example, the UE 702 may be connected to the LTE network, but not to the NR network. If the UE 702 is idle, the UE 702 may be in an idle mode connected to the second network, but not the first network. In this example, the UE 702 may be camped on the LTE anchor cell in the LTE network. The UE 702 may be in the idle mode if the UE 702 has no data to transmit or is not receiving data from another device. If the UE 702 is in the second connected mode or the idle mode, the UE 702 may monitor the LTE network, not the NR network.
In some aspects, the eNB 708 may perform a procedure that adds the gNB 714 as part of a secondary cell group (SCG) , where the eNB 708 is part of a master cell group (MCG) . In some aspects, the eNB 708 is a master base station and the gNB 714 is a secondary base station.
FIG. 8 illustrates a simplified diagram of an example frame exchange between a user equipment and an anchor base station using non-standalone signaling messages according to instances of the present disclosure. The frame exchange 800 may be implemented between a UE 810, a BS 820 (depicted as “Anchor LTE Cell” ) and a BS 830 (depicted as “5G NR Cell” ) . The  BSs  820 and 830 may be similar to the BS 105, 400 and the UE 810 may be similar to the UE 115, 300. Additionally, the BS 820, the BS 830 and the UE 810 may operate in a network such as the  network  100 or 200. As illustrated, the frame exchange 800 includes a number of enumerated actions, but instances of the frame exchange 800 may include additional actions before, after, and in between the enumerated actions. In some aspects, one or more of the enumerated actions may be omitted or performed in a different order.
At action 812, the UE 810 selects a RAN from the default priority list (e.g., 307) based on the MSPL being absent (or unavailable) . At action 814, the UE 810 selects an LTE anchor cell 820 in the selected RAN. At action 822, the UE 810 camps on the LTE anchor cell 820. As part of the camping, the UE 810 may obtain signal measurements of downlink signals from the LTE anchor cell 820. At action 816, the UE 810 monitors for system information from the LTE anchor cell 820.
At action 824, the UE 810 receives, from the LTE anchor cell 820, the system information. For example, the UE 810 may receive, from the LTE anchor cell 820, a system information block type 2 (SIB2) message. In some aspects, the SIB2 message may include radio resource configuration information that indicates capability of the network to support dual connectivity with a first wireless communication network (e.g., 5G NR) and a second wireless communication network (e.g., LTE) . In this respect, the UE 810 may operate in a non-standalone mode, such as the 5G NSA mode. For example, the UE 810 may utilize the 5G NR cell 830 to access the 5G service associated with the 5G network and the LTE anchor cell 820 associated with the LTE network to support a connectivity of the UE 810 to the 5G service via the 5G NR cell 830.
In some aspects, the LTE anchor cell 820 and the 5G NR cell 830 are connected to an EPC associated with the LTE network. At action 826, the UE 810 may communicate, with the LTE anchor cell 820, first connection messages for registering the UE 810 for service with  the EPC. At action 828, the UE 810 may communicate, with the LTE anchor cell 820 and the 5G NR cell 830, second connection messages for establishing simultaneous connections to the LTE network and the 5G network. For example, the UE 810 may receive, from the LTE anchor cell 820, a radio resource control (RRC) connection reconfiguration message for dual connectivity with the LTE network. In some aspects, the RRC connection reconfiguration messages includes an indication of the SCG, of which the SCG identifies the first serving cell as part of the SCG. In some aspects, the UE 810 may transmit, to the LTE anchor cell 820, a RRC connection reconfiguration complete message based on the RRC connection reconfiguration message for establishing a connection to the 5G network. At action 832, the LTE anchor cell 820 may deliver the RRC connection reconfiguration complete to the 5G NR cell 830 via the EPC to inform the 5G NR cell 830 about the reconfiguration complete.
FIG. 9 illustrates a flow chart of an example process 900 of smart card operation for multi-mode system selection according to instances of the present disclosure. Aspects of the process 900 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device or other suitable means for performing the steps. For example, a wireless communication device, such as the UEs 115 and/or 300, may utilize one or more components, such as the processor 302, the memory 304, the reporting communication module 308, the transceiver 310, the modem 312, and the one or more antennas 316, to execute the steps of process 900. As illustrated, the process 900 includes a number of enumerated steps, but aspects of the process 900 may include additional steps before, after, and in between the enumerated steps. In some aspects, one or more of the enumerated steps may be omitted or performed in a different order.
At step 902, the UE accesses a smart card included in the UE. For example, the smart card may be interfaced to the smart card module 309 of the UE and/or stored in the memory 304 of the UE. In some aspects, the UE may utilize one or more components, such as the processor 302, the system selection module 308, and the smart card module 309, to access the smart card.
Next, at step 904, the UE determines that the smart card is ready for operation. In some aspects, the UE may utilize one or more components, such as the processor 302, the system selection module 308, and the smart card module 309, to determine the smart card is ready for operation.
Subsequently, at step 906, the UE determines whether the system selection priority list is present in the smart card. In some aspects, the UE may utilize one or more components,  such as the processor 302, the system selection module 308, and the smart card module 309, to determine the system selection priority list is present in the smart card.
Next, at step 908, the UE obtains the system selection priority list when the system selection priority list is present in the smart card. For instance, the UE may utilize one or more components, such as the processor 302, the default priority list 307, the system selection module 308, and the smart card module 309, to obtain the system selection priority list.
Subsequently, at step 910, the UE selects the RAN based on the system selection priority list. For instance, the UE may utilize one or more components, such as the processor 302, the default priority list 307, the system selection module 308, the smart card module 309, the transceiver 310, the modem 312, and the one or more antennas 316, to select the RAN based on the system selection priority list.
FIG. 10 illustrates a flow chart of an example process 1000 of non-standalone operation according to instances of the present disclosure. Aspects of the process 1000 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device or other suitable means for performing the steps. For example, a wireless communication device, such as the UEs 115 and/or 300, may utilize one or more components, such as the processor 302, the memory 304, the reporting communication module 308, the transceiver 310, the modem 312, and the one or more antennas 316, to execute the steps of process 1000. As illustrated, the process 1000 includes a number of enumerated steps, but aspects of the process 1000 may include additional steps before, after, and in between the enumerated steps. In some aspects, one or more of the enumerated steps may be omitted or performed in a different order.
At block 1002, the UE operates in a non-standalone mode. For instance, the UE may utilize one or more components, such as the processor 302, to operate in the non-standalone mode.
Subsequently, at step 1004, the UE utilizes the first serving cell to access the first service associated with a first wireless communication network and a second serving cell associated with a second wireless communication network to support a connectivity of the user equipment to the first service via the first serving cell. For instance, the UE may utilize one or more components, such as the processor 302, the transceiver 310, the modem 312, and the one or more antennas 316, to utilize the first and second serving cells as part of the non-standalone operation.
Next, at step 1006, the UE camps on the second serving cell. For instance, the UE may utilize one or more components, such as the processor 302, the transceiver 310, the modem 312, and the one or more antennas 316, to camp on the second serving cell.
At step 1008, the UE monitors for system information from the second serving cell. For instance, the UE may utilize one or more components, such as the processor 302, the transceiver 310, the modem 312, and the one or more antennas 316, to monitor for the system information.
Subsequently, at step 1010, the UE receives, from the second serving cell, the system information. For instance, the UE may utilize one or more components, such as the processor 302, the transceiver 310, the modem 312, and the one or more antennas 316, to receive the system information.
Next, at step 1012, the UE communicates, with the second serving cell, first connection messages for registering the user equipment for service with an evolved packet core. For instance, the UE may utilize one or more components, such as the processor 302, the transceiver 310, the modem 312, and the one or more antennas 316, to communicate the first connection messages.
Subsequently, at step 1014, the UE communicates, with the first serving cell and the second serving cell, second connection messages for establishing simultaneous connections to the first wireless communication network and the second wireless communication network. For instance, the UE may utilize one or more components, such as the processor 302, the transceiver 310, the modem 312, and the one or more antennas 316, to communicate the second connection messages.
FIG. 11 illustrates a flow chart of an example process 1100 of non-standalone connection setup according to instances of the present disclosure. Aspects of the process 1100 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device or other suitable means for performing the steps. For example, a wireless communication device, such as the UEs 115 and/or 300, may utilize one or more components, such as the processor 302, the memory 304, the reporting communication module 308, the transceiver 310, the modem 312, and the one or more antennas 316, to execute the steps of process 1100. As illustrated, the process 1100 includes a number of enumerated steps, but aspects of the process 1100 may include additional steps before, after, and in between the enumerated steps. In some aspects, one or more of the enumerated steps may be omitted or performed in a different order.
At step 1102, the UE receives, from the second serving cell, a system information block type 2 (SIB2) message. For instance, the UE may utilize one or more components, such as the processor 302, the transceiver 310, the modem 312, and the one or more antennas 316, to receive the SIB2 message. In some aspects, the SIB2 message comprises radio resource configuration information that indicates capability to support dual connectivity with the first wireless communication network and the second wireless communication network.
Next, at step 1104, the UE receives, from the second serving cell, a radio resource control (RRC) connection reconfiguration message for dual connectivity with the first wireless communication network. In some aspects, the RRC connection reconfiguration messages comprises an indication of a secondary cell group (SCG) . In some aspects, the SCG identifying the first serving cell. For instance, the UE may utilize one or more components, such as the processor 302, the transceiver 310, the modem 312, and the one or more antennas 316, to receive the RRC connection reconfiguration message.
Subsequently, at step 1106, transmits, to the second serving cell, a RRC connection reconfiguration complete message based on the RRC connection reconfiguration message for establishing a connection to the first wireless communication network. For instance, the UE may utilize one or more components, such as the processor 302, the transceiver 310, the modem 312, and the one or more antennas 316, to transmit the RRC connection reconfiguration complete message.
Information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and modules described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations. Also, as used herein, including in the claims, “or” as used in a list of items (for example, a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of [at least one of A, B, or C] means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) .
As those of some skill in this art will by now appreciate and depending on the particular application at hand, many modifications, substitutions and variations can be made in and to the materials, apparatus, configurations and methods of use of the devices of the present disclosure without departing from the spirit and scope thereof. In light of this, the scope of the present disclosure should not be limited to that of the particular instances illustrated and described herein, as they are merely by way of some examples thereof, but rather, should be fully commensurate with that of the claims appended hereafter and their functional equivalents.

Claims (80)

  1. A method of wireless communication performed by a user equipment, the method comprising:
    determining whether a system selection priority list is present;
    obtaining a default priority list stored in the user equipment when the system selection priority list is not present;
    selecting a radio access network (RAN) based on the default priority list;
    selecting a first serving cell in the RAN; and
    communicating, with the first serving cell, one or more messages to access a first service via the first serving cell.
  2. The method of claim 1, further comprising:
    accessing a smart card included in the user equipment; and
    determining that the smart card is ready for operation,
    wherein the determining whether the system selection priority list is present comprises determining whether the system selection priority list is present in the smart card.
  3. The method of claim 2, further comprising:
    obtaining the system selection priority list when the system selection priority list is present in the smart card,
    wherein the selecting the RAN comprises selecting the RAN based on the system selection priority list.
  4. The method of claim 1, wherein the system selection priority list comprises a multi-mode system selection (MMSS) system priority list (MSPL) .
  5. The method of claim 4, wherein the RAN corresponds to one of a plurality of RANs listed with different priorities in the MSPL.
  6. The method of claim 1, wherein the RAN corresponds to one of a plurality of RANs listed with different priorities in the default priority list.
  7. The method of claim 6, wherein the selecting the RAN comprises selecting the RAN based on a first priority of the RAN in the default priority list.
  8. The method of claim 1, wherein the selecting the RAN comprises selecting the RAN using a selected radio access technology (RAT) based on a priority of the selected RAT in the default priority list.
  9. The method of claim 8, wherein the selected RAT corresponds to one of a plurality of prioritized RATs listed in the default priority list.
  10. The method of claim 9, wherein the plurality of prioritized RATs comprises a first prioritized RAT that corresponds to a Long-Term Evolution (LTE) wireless communication network, the first prioritized RAT having a first priority.
  11. The method of claim 10, wherein the plurality of prioritized RATs comprises a second prioritized RAT that corresponds to a CDMA2000 wireless communication network, the second prioritized RAT having a second priority different from the first priority.
  12. The method of claim 11, wherein the first priority is higher than the second priority.
  13. The method of claim 1, further comprising:
    operating in a non-standalone mode,
    wherein the operating in the non-standalone mode comprises:
    utilizing the first serving cell to access the first service associated with a first wireless communication network and a second serving cell associated with a second wireless communication network to support a connectivity of the user equipment to the first service via the first serving cell.
  14. The method of claim 13, wherein:
    the second wireless communication network includes a Long-Term Evolution (LTE) network,
    the first wireless communication network includes a Fifth-Generation (5G) New Radio (NR) network, and
    the first service corresponds to a 5G service.
  15. The method of claim 13, wherein the first serving cell and the second serving cell are connected to an evolved packet core (EPC) associated with the second wireless communication network,
    further comprising:
    camping on the second serving cell;
    monitoring for system information from the second serving cell;
    receiving, from the second serving cell, the system information;
    communicating, with the second serving cell, first connection messages for registering the user equipment for service with the EPC; and
    communicating, with the first serving cell and the second serving cell, second connection messages for establishing simultaneous connections to the first wireless communication network and the second wireless communication network,
    wherein the second serving cell is a master base station and the first serving cell is a secondary base station.
  16. The method of claim 15, wherein:
    the receiving the system information comprises receiving, from the second serving cell, a system information block type 2 (SIB2) message, wherein the SIB2 message comprises radio resource configuration information that indicates capability to support dual connectivity with the first wireless communication network and the second wireless communication network,
    the communicating the second connection messages comprises:
    receiving, from the second serving cell, a radio resource control (RRC) connection reconfiguration message for dual connectivity with the first wireless communication network, wherein the RRC connection reconfiguration messages comprises an indication of a secondary cell group (SCG) , the SCG identifying the first serving cell; and
    transmitting, to the second serving cell, a RRC connection reconfiguration complete message based on the RRC connection reconfiguration message for establishing a connection to the first wireless communication network.
  17. The method of claim 13, wherein the first serving cell includes a next-generation evolved Node B (gNB) and the second serving cell includes an evolved Node B (eNB) .
  18. The method of claim 1, wherein the default priority list is stored in non-volatile memory (NVM) of the user equipment.
  19. The method of claim 1, wherein the default priority list is stored in a volatile memory of the user equipment.
  20. The method of claim 19, wherein the default priority list is stored in an embedded file system (EFS) in the volatile memory.
  21. A user equipment (UE) comprising:
    a processor configured to:
    determine whether a system selection priority list is present;
    obtain a default priority list stored in the user equipment when the system selection priority list is not present;
    select a radio access network (RAN) based on the default priority list; and
    select a first serving cell in the RAN; and
    a transceiver configured to:
    communicate, with the first serving cell, one or more messages to access a first service via the first serving cell.
  22. The UE of claim 21, wherein the processor is further configured to:
    access a smart card included in the user equipment; and
    determine that the smart card is ready for operation,
    wherein the processor configured to determine whether the system selection priority list is present is further configured to determine whether the system selection priority list is present in the smart card.
  23. The UE of claim 22, wherein the processor is further configured to:
    obtain the system selection priority list when the system selection priority list is present in the smart card,
    wherein the processor configured to select the RAN is further configured to select the RAN based on the system selection priority list.
  24. The UE of claim 21, wherein the system selection priority list comprises a multi-mode system selection (MMSS) system priority list (MSPL) .
  25. The UE of claim 24, wherein the RAN corresponds to one of a plurality of RANs listed with different priorities in the MSPL.
  26. The UE of claim 21, wherein the RAN corresponds to one of a plurality of RANs listed with different priorities in the default priority list.
  27. The UE of claim 26, wherein the processor configured to select the RAN is further configured to select the RAN based on a first priority of the RAN in the default priority list.
  28. The UE of claim 21, wherein the processor configured to select the RAN is further configured to select the RAN using a selected radio access technology (RAT) based on a priority of the selected RAT in the default priority list.
  29. The UE of claim 28, wherein the selected RAT corresponds to one of a plurality of prioritized RATs listed in the default priority list.
  30. The UE of claim 29, wherein the plurality of prioritized RATs comprises a first prioritized RAT that corresponds to a Long-Term Evolution (LTE) wireless communication network, the first prioritized RAT having a first priority.
  31. The UE of claim 30, wherein the plurality of prioritized RATs comprises a second prioritized RAT that corresponds to a CDMA2000 wireless communication network, the second prioritized RAT having a second priority different from the first priority.
  32. The UE of claim 31, wherein the first priority is higher than the second priority.
  33. The UE of claim 21, wherein the processor is further configured to:
    operate in a non-standalone mode,
    wherein the processor configured to operate in the non-standalone mode is further configured to:
    utilize the first serving cell to access the first service associated with a first wireless communication network and a second serving cell associated with a second wireless communication network to support a connectivity of the user equipment to the first service via the first serving cell.
  34. The UE of claim 33, wherein:
    the second wireless communication network includes a Long-Term Evolution (LTE) network,
    the first wireless communication network includes a Fifth-Generation (5G) New Radio (NR) network, and
    the first service corresponds to a 5G service.
  35. The UE of claim 33, wherein the first serving cell and the second serving cell are connected to an evolved packet core (EPC) associated with the second wireless communication network,
    wherein the transceiver is further configured to:
    camp on the second serving cell;
    monitor for system information from the second serving cell;
    receive, from the second serving cell, the system information;
    communicate, with the second serving cell, first connection messages for registering the user equipment for service with the EPC; and
    communicate, with the first serving cell and the second serving cell, second connection messages for establishing simultaneous connections to the first wireless communication network and the second wireless communication network,
    wherein the second serving cell is a master base station and the first serving cell is a secondary base station.
  36. The UE of claim 35, wherein:
    the transceiver configured to receive the system information is further configured to receive, from the second serving cell, a system information block type 2 (SIB2) message,  wherein the SIB2 message comprises radio resource configuration information that indicates capability to support dual connectivity with the first wireless communication network and the second wireless communication network,
    the transceiver configured to communicate the second connection messages is further configured to:
    receive, from the second serving cell, a radio resource control (RRC) connection reconfiguration message for dual connectivity with the first wireless communication network, wherein the RRC connection reconfiguration messages comprises an indication of a secondary cell group (SCG) , the SCG identifying the first serving cell, and
    transmit, to the second serving cell, a RRC connection reconfiguration complete message based on the RRC connection reconfiguration message for establishing a connection to the first wireless communication network.
  37. The UE of claim 33, wherein the first serving cell includes a next-generation evolved Node B (gNB) and the second serving cell includes an evolved Node B (eNB) .
  38. The UE of claim 21, further comprising:
    a non-volatile memory (NVM) , wherein the default priority list is stored in at least a portion of the NVM.
  39. The UE of claim 21, further comprising:
    a volatile memory, wherein the default priority list is stored in at least a portion of the volatile memory.
  40. The UE of claim 39, wherein the volatile memory comprises an embedded file system (EFS) , wherein the default priority list is stored in at least a portion of the EFS.
  41. A non-transitory computer-readable medium having program code recorded thereon, the program code comprising:
    code for causing a user equipment (UE) to determine whether a system selection priority list is present;
    code for causing the UE to obtain a default priority list stored in the user equipment when the system selection priority list is not present;
    code for causing the UE to select a radio access network (RAN) based on the default priority list; and
    code for causing the UE to select a first serving cell in the RAN; and
    code for causing the UE to communicate, with the first serving cell, one or more messages to access a first service via the first serving cell.
  42. The non-transitory computer-readable medium of claim 41, further comprising code causing the UE to:
    access a smart card included in the UE; and
    determine that the smart card is ready for operation,
    wherein the code for causing the UE to determine whether the system selection priority list is present is further configured to determine whether the system selection priority list is present in the smart card.
  43. The non-transitory computer-readable medium of claim 42, further comprising code for causing the UE to:
    obtain the system selection priority list when the system selection priority list is present in the smart card,
    wherein the code for causing the UE to select the RAN is further configured to select the RAN based on the system selection priority list.
  44. The non-transitory computer-readable medium of claim 41, wherein the system selection priority list comprises a multi-mode system selection (MMSS) system priority list (MSPL) .
  45. The non-transitory computer-readable medium of claim 44, wherein the RAN corresponds to one of a plurality of RANs listed with different priorities in the MSPL.
  46. The non-transitory computer-readable medium of claim 41, wherein the RAN corresponds to one of a plurality of RANs listed with different priorities in the default priority list.
  47. The non-transitory computer-readable medium of claim 46, wherein the code for causing the UE to select the RAN is further configured to select the RAN based on a first priority of the RAN in the default priority list.
  48. The non-transitory computer-readable medium of claim 41, wherein the code for causing the UE to select the RAN is further configured to select the RAN using a selected radio access technology (RAT) based on a priority of the selected RAT in the default priority list.
  49. The non-transitory computer-readable medium of claim 48, wherein the selected RAT corresponds to one of a plurality of prioritized RATs listed in the default priority list.
  50. The non-transitory computer-readable medium of claim 49, wherein the plurality of prioritized RATs comprises a first prioritized RAT that corresponds to a Long-Term Evolution (LTE) wireless communication network, the first prioritized RAT having a first priority.
  51. The non-transitory computer-readable medium of claim 50, wherein the plurality of prioritized RATs comprises a second prioritized RAT that corresponds to a CDMA2000 wireless communication network, the second prioritized RAT having a second priority different from the first priority.
  52. The non-transitory computer-readable medium of claim 51, wherein the first priority is higher than the second priority.
  53. The non-transitory computer-readable medium of claim 41, further comprising code for causing the UE to:
    operate in a non-standalone mode,
    wherein the code for causing the UE to operate in the non-standalone mode is further configured to:
    utilize the first serving cell to access the first service associated with a first wireless communication network and a second serving cell associated with a second wireless  communication network to support a connectivity of the user equipment to the first service via the first serving cell.
  54. The non-transitory computer-readable medium of claim 53, wherein:
    the second wireless communication network includes a Long-Term Evolution (LTE) network,
    the first wireless communication network includes a Fifth-Generation (5G) New Radio (NR) network, and
    the first service corresponds to a 5G service.
  55. The non-transitory computer-readable medium of claim 53, wherein the first serving cell and the second serving cell are connected to an evolved packet core (EPC) associated with the second wireless communication network,
    further comprising code for causing the UE to:
    camp on the second serving cell;
    monitor for system information from the second serving cell;
    receive, from the second serving cell, the system information;
    communicate, with the second serving cell, first connection messages for registering the user equipment for service with the EPC; and
    communicate, with the first serving cell and the second serving cell, second connection messages for establishing simultaneous connections to the first wireless communication network and the second wireless communication network,
    wherein the second serving cell is a master base station and the first serving cell is a secondary base station.
  56. The non-transitory computer-readable medium of claim 55, wherein:
    the code for causing the UE to receive the system information is further configured to receive, from the second serving cell, a system information block type 2 (SIB2) message, wherein the SIB2 message comprises radio resource configuration information that indicates capability to support dual connectivity with the first wireless communication network and the second wireless communication network,
    the code for causing the UE to communicate the second connection messages is further configured to:
    receive, from the second serving cell, a radio resource control (RRC) connection reconfiguration message for dual connectivity with the first wireless communication network, wherein the RRC connection reconfiguration messages comprises an indication of a secondary cell group (SCG) , the SCG identifying the first serving cell; and
    transmit, to the second serving cell, a RRC connection reconfiguration complete message based on the RRC connection reconfiguration message for establishing a connection to the first wireless communication network.
  57. The non-transitory computer-readable medium of claim 53, wherein the first serving cell includes a next-generation evolved Node B (gNB) and the second serving cell includes an evolved Node B (eNB) .
  58. The non-transitory computer-readable medium of claim 41, wherein the default priority list is stored in non-volatile memory (NVM) of the user equipment.
  59. The non-transitory computer-readable medium of claim 41, wherein the default priority list is stored in a volatile memory of the user equipment.
  60. The non-transitory computer-readable medium of claim 59, wherein the default priority list is stored in an embedded file system (EFS) in the volatile memory.
  61. A user equipment (UE) comprising:
    means for determining whether a system selection priority list is present;
    means for obtaining a default priority list stored in the user equipment when the system selection priority list is not present;
    means for selecting a radio access network (RAN) based on the default priority list;
    means for selecting a first serving cell in the RAN; and
    means for communicating, with the first serving cell, one or more messages to access a first service via the first serving cell.
  62. The UE of claim 61, further comprising:
    means for accessing a smart card included in the user equipment; and
    means for determining that the smart card is ready for operation,
    wherein the means for determining whether the system selection priority list is present is further configured to determine whether the system selection priority list is present in the smart card.
  63. The UE of claim 62, further comprising:
    means for obtaining the system selection priority list when the system selection priority list is present in the smart card,
    wherein the means for selecting the RAN is further configured to select the RAN based on the system selection priority list.
  64. The UE of claim 61, wherein the system selection priority list comprises a multi-mode system selection (MMSS) system priority list (MSPL) .
  65. The UE of claim 64, wherein the RAN corresponds to one of a plurality of RANs listed with different priorities in the MSPL.
  66. The UE of claim 61, wherein the RAN corresponds to one of a plurality of RANs listed with different priorities in the default priority list.
  67. The UE of claim 66, wherein the means for selecting the RAN is further configured to select the RAN based on a first priority of the RAN in the default priority list.
  68. The UE of claim 61, wherein the means for selecting the RAN is further configured to select the RAN using a selected radio access technology (RAT) based on a priority of the selected RAT in the default priority list.
  69. The UE of claim 68, wherein the selected RAT corresponds to one of a plurality of prioritized RATs listed in the default priority list.
  70. The UE of claim 69, wherein the plurality of prioritized RATs comprises a first prioritized RAT that corresponds to a Long-Term Evolution (LTE) wireless communication network, the first prioritized RAT having a first priority.
  71. The UE of claim 70, wherein the plurality of prioritized RATs comprises a second prioritized RAT that corresponds to a CDMA2000 wireless communication network, the second prioritized RAT having a second priority different from the first priority.
  72. The UE of claim 71, wherein the first priority is higher than the second priority.
  73. The UE of claim 61, further comprising:
    means for operating in a non-standalone mode,
    wherein the means for operating in the non-standalone mode is further configured to:
    utilize the first serving cell to access the first service associated with a first wireless communication network and a second serving cell associated with a second wireless communication network to support a connectivity of the user equipment to the first service via the first serving cell.
  74. The UE of claim 73, wherein:
    the second wireless communication network includes a Long-Term Evolution (LTE) network,
    the first wireless communication network includes a Fifth-Generation (5G) New Radio (NR) network, and
    the first service corresponds to a 5G service.
  75. The UE of claim 73, wherein the first serving cell and the second serving cell are connected to an evolved packet core (EPC) associated with the second wireless communication network,
    further comprising:
    means for camping on the second serving cell;
    means for monitoring for system information from the second serving cell;
    means for receiving, from the second serving cell, the system information;
    means for communicating, with the second serving cell, first connection messages for registering the user equipment for service with the EPC; and
    means for communicating, with the first serving cell and the second serving cell, second connection messages for establishing simultaneous connections to the first wireless communication network and the second wireless communication network,
    wherein the second serving cell is a master base station and the first serving cell is a secondary base station.
  76. The UE of claim 75, wherein:
    the means for receiving the system information is further configured to receive, from the second serving cell, a system information block type 2 (SIB2) message, wherein the SIB2 message comprises radio resource configuration information that indicates capability to support dual connectivity with the first wireless communication network and the second wireless communication network,
    the means for communicating the second connection messages is further configured to:
    receive, from the second serving cell, a radio resource control (RRC) connection reconfiguration message for dual connectivity with the first wireless communication network, wherein the RRC connection reconfiguration messages comprises an indication of a secondary cell group (SCG) , the SCG identifying the first serving cell; and
    transmit, to the second serving cell, a RRC connection reconfiguration complete message based on the RRC connection reconfiguration message for establishing a connection to the first wireless communication network.
  77. The UE of claim 73, wherein the first serving cell includes a next-generation evolved Node B (gNB) and the second serving cell includes an evolved Node B (eNB) .
  78. The UE of claim 61, wherein the default priority list is stored in non-volatile memory (NVM) of the user equipment.
  79. The UE of claim 61, wherein the default priority list is stored in a volatile memory of the user equipment.
  80. The UE of claim 79, wherein the default priority list is stored in an embedded file system (EFS) in the volatile memory.
PCT/CN2020/089007 2020-05-07 2020-05-07 Prioritized lte and 5g non-standalone system selection for smart cards missing mspl WO2021223170A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/089007 WO2021223170A1 (en) 2020-05-07 2020-05-07 Prioritized lte and 5g non-standalone system selection for smart cards missing mspl

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/089007 WO2021223170A1 (en) 2020-05-07 2020-05-07 Prioritized lte and 5g non-standalone system selection for smart cards missing mspl

Publications (1)

Publication Number Publication Date
WO2021223170A1 true WO2021223170A1 (en) 2021-11-11

Family

ID=78467675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089007 WO2021223170A1 (en) 2020-05-07 2020-05-07 Prioritized lte and 5g non-standalone system selection for smart cards missing mspl

Country Status (1)

Country Link
WO (1) WO2021223170A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110034169A1 (en) * 2008-04-09 2011-02-10 Huawei Technologies Co., Ltd. Method, terminal, and system for cell reselection
US20140141776A1 (en) * 2012-11-22 2014-05-22 Samsung Electronics Co., Ltd. Apparatus and method for selecting network in communication system
US20140308986A1 (en) * 2013-04-15 2014-10-16 Via Telecom, Inc. Mobile communication device and integrated circuit thereof
CN106937337A (en) * 2015-12-30 2017-07-07 华为技术有限公司 The method and user equipment of a kind of cell switching control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110034169A1 (en) * 2008-04-09 2011-02-10 Huawei Technologies Co., Ltd. Method, terminal, and system for cell reselection
US20140141776A1 (en) * 2012-11-22 2014-05-22 Samsung Electronics Co., Ltd. Apparatus and method for selecting network in communication system
US20140308986A1 (en) * 2013-04-15 2014-10-16 Via Telecom, Inc. Mobile communication device and integrated circuit thereof
CN106937337A (en) * 2015-12-30 2017-07-07 华为技术有限公司 The method and user equipment of a kind of cell switching control

Similar Documents

Publication Publication Date Title
US11632694B2 (en) Network slice availability check and indication
US11812377B2 (en) Mobility enhancement with network slicing
US10912002B2 (en) Cell reselection race condition handling and reduction in unnecessary cell reselections
WO2018213688A1 (en) Options to provide a network icon in non-standalone mode
WO2021071912A1 (en) System and apparatus for providing network assistance for traffic handling in downlink streaming
WO2021021423A1 (en) Network slice availability check and indication
US11706833B2 (en) On-demand ultra-reliable, low-latency communication (URLLC)
EP3698576A1 (en) Connection gateway selection in a mobile communications device
US11044647B2 (en) Increase in-service time and robustness for sustained mobility in idle mode
US20240155326A1 (en) Management of default data subscription (dds) in multi-subscriber identity module devices
US20240129911A1 (en) Enhanced initial access with multi-beam operations
US11510065B2 (en) Automatic frequency coordination (AFC) for unlicensed spectrum
WO2021223170A1 (en) Prioritized lte and 5g non-standalone system selection for smart cards missing mspl
WO2022056718A1 (en) Priority-based radio access technology reselection handling
CN113286334A (en) ULI cell selection prioritization
WO2021223241A1 (en) 5g icon display to align network capability using idle mode measurements
US11917475B2 (en) Idle mode cell reselection priority configurations
WO2021217634A1 (en) Fifth generation (5g) service recovery for cell redirection
US11917636B2 (en) Dynamic selection of NDDS resource in 5G NR with SRS carrier switching
US20230171709A1 (en) Dynamic switching between power mode configurations
US20230007632A1 (en) Configuring a search space set for downlink control information
CN117378249A (en) Opportunistic dual SIM dual active operation in a multi-subscriber identity module device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934412

Country of ref document: EP

Kind code of ref document: A1