WO2021215099A1 - Waste water treatment method, ultrapure water production method, and waste water treatment apparatus - Google Patents

Waste water treatment method, ultrapure water production method, and waste water treatment apparatus Download PDF

Info

Publication number
WO2021215099A1
WO2021215099A1 PCT/JP2021/006424 JP2021006424W WO2021215099A1 WO 2021215099 A1 WO2021215099 A1 WO 2021215099A1 JP 2021006424 W JP2021006424 W JP 2021006424W WO 2021215099 A1 WO2021215099 A1 WO 2021215099A1
Authority
WO
WIPO (PCT)
Prior art keywords
wastewater
ultrapure water
weakly acidic
acidic cation
water
Prior art date
Application number
PCT/JP2021/006424
Other languages
French (fr)
Japanese (ja)
Inventor
清一 中村
Original Assignee
野村マイクロ・サイエンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 野村マイクロ・サイエンス株式会社 filed Critical 野村マイクロ・サイエンス株式会社
Priority to KR1020227037088A priority Critical patent/KR20230004537A/en
Priority to CN202180029928.0A priority patent/CN115485245A/en
Publication of WO2021215099A1 publication Critical patent/WO2021215099A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0031Degasification of liquids by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • B01D61/026Reverse osmosis; Hyperfiltration comprising multiple reverse osmosis steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/48Apparatus therefor having one or more compartments filled with ion-exchange material, e.g. electrodeionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/07Processes using organic exchangers in the weakly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/50Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents
    • B01J49/53Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents for cationic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • C02F1/4695Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis electrodeionisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • This disclosure relates to a wastewater treatment method, an ultrapure water production method, and a wastewater treatment device.
  • Japanese Patent Application Laid-Open No. 2010-36160 describes a method and an apparatus capable of suppressing the growth of microorganisms and preventing clogging of the separation membrane due to the generation of slime even if the waste water is highly concentrated.
  • concentrated water of a reverse osmosis filtration (RO) membrane and / or a nanofiltration membrane (NF membrane) separated in advance by solid-liquid separation is treated by a softening treatment method and / or an organic substance removal method.
  • a water treatment device and a water treatment method capable of suppressing fouling and scale even in high recovery rate operation are described. As described above, the generation of products leading to the instability of the operation of the device needs to be highly suppressed.
  • the ultrapure water production equipment of the ultrapure water production system is, for example, ⁇ Pretreatment part that removes suspended solids in raw water to obtain pretreatment water ⁇
  • Primary pure water production part that removes TOC components and ionic components in pretreatment water to produce primary pure water ⁇
  • In primary pure water It is mainly composed of a secondary pure water production unit that produces ultrapure water by removing a very small amount of impurities.
  • the ultrapure water production device includes a desalination treatment device such as a reverse osmosis device and a nano-membrane filtration device in the primary pure water production section.
  • the concentrates of these desalination treatment devices are preferably reused from the viewpoints of cost reduction, effective use of water resources, and downsizing of wastewater treatment steps, for example.
  • the concentrated water of the desalination treatment equipment installed upstream of the ultrapure water production equipment generally has a high concentration of impurities such as salts and organic substances, and also contains components that cause scale at a concentration close to the precipitation limit concentration. There is.
  • a device that divides the water to be treated into treated water from which impurities have been removed and concentrated water in which impurities have been further concentrated such as a reverse osmosis device and an electrodeionization device. (EDI) may be used.
  • EDI electrospray osmosis device
  • the recovery rate of the device the ratio of the amount of treated water to the amount of water to be treated
  • a dispersant also called a scale inhibitor, which will be described later, is also added to the water to be treated.
  • This scale inhibitor is a dispersant for improving the precipitation limit concentration by suppressing the crystal growth of impurities.
  • a scale inhibitor is added to the water to be treated, it is difficult to significantly improve the precipitation limit concentration, so that there is a limit to the improvement of the recovery rate described above.
  • acid wastewater is generated in equipment that uses ultrapure water, such as semiconductor, liquid crystal panel, and display manufacturing plants.
  • acid effluent include cleaning effluent using acid, etching effluent, resist removal effluent, and CMP effluent.
  • the purpose of this disclosure is to appropriately treat the wastewater generated in the process of producing ultrapure water.
  • the hardness component of the desalted wastewater generated in the desalting treatment in the ultrapure water production process is replaced with the ion exchange component of the weakly acidic cation exchange resin, and the weakly acidic cation exchange resin is used.
  • the weakly acidic cation exchange resin is regenerated by substituting the hardness component adsorbed on the water with a regenerated component contained in the used wastewater after using the ultrapure water produced in the ultrapure water production step.
  • the hardness component of the desalted wastewater generated by the desalination treatment in the ultrapure water production process is replaced with the ion exchange component of the weakly acidic cation exchange resin. As a result, the hardness component in the wastewater after desalting is reduced.
  • a hardness component is adsorbed on the weakly acidic cation exchange resin, and this hardness component is replaced with a regenerated component contained in the used wastewater after using the ultrapure water produced in the ultrapure water manufacturing process.
  • the weakly acidic cation exchange resin is regenerated.
  • the used wastewater after using the ultrapure water produced in the ultrapure water manufacturing process is used as a regenerating agent for the regeneration of the weakly acidic cation exchange resin, so that the weakly acidic cation exchange resin can be regenerated. Therefore, it is not necessary to add acid.
  • the amount of neutralizing alkali added required for the treatment of used wastewater is reduced by the amount of the regenerated components consumed in the neutralization reaction during regeneration.
  • the hardness component contains at least one of calcium ion and magnesium ion.
  • the regenerated component contains hydrogen ions.
  • the weakly acidic cation exchange resin can be regenerated by effectively using the hydrogen ions contained in the used wastewater.
  • the weakly acidic cation exchange resin is regenerated by using the concentrated wastewater obtained by concentrating the regenerated components with respect to the used wastewater. ..
  • the concentration treatment is performed a plurality of times on the used wastewater to concentrate the regenerated component.
  • the concentration of the regenerated component of the concentrated wastewater can be increased as compared with the case where the concentration treatment is performed only once, and the weakly acidic cation exchange resin can be regenerated more effectively and is used for regeneration.
  • the amount of drainage after being discharged can be reduced.
  • the treated water in which the hardness component is replaced with the ion exchange component is degassed to remove the gas component.
  • a salt removal treatment for removing salt is performed on the treated water in which the hardness component is replaced with the ion exchange component.
  • the desalting treatment is performed by infiltrating the reverse osmosis membrane with water to be treated.
  • ultra-pure water is produced by an ultra-pure water production process including at least desalting treatment of raw water, and the hardness component of the drainage after desalting generated by the desalting treatment is weakened.
  • the hardness component adsorbed on the weakly acidic cation exchange resin is used as used wastewater after using the ultrapure water produced in the ultrapure water production process.
  • the weakly acidic cation exchange resin is regenerated by replacing it with a contained recycled component, and the used wastewater that was not used for the regeneration of the weakly acidic cation exchange resin among the used wastewater is returned to the ultrapure water production process. ..
  • ultrapure water is produced by performing an ultrapure water production process on raw water. Since the ultrapure water production process includes at least desalting treatment, in the ultrapure water production process, wastewater containing a hardness component is generated as wastewater after desalting.
  • a hardness component is adsorbed on the weakly acidic cation exchange resin, and this hardness component is replaced with a regenerated component contained in the used wastewater after using the ultrapure water produced in the ultrapure water manufacturing process.
  • the weakly acidic cation exchange resin is regenerated.
  • the used wastewater after using the ultrapure water produced in the ultrapure water manufacturing process is used as a regenerating agent for the regeneration of the weakly acidic cation exchange resin, so that the weakly acidic cation exchange resin can be regenerated. Therefore, it is not necessary to add acid.
  • the amount of neutralizing alkali added required for the treatment of used wastewater is reduced by the amount of the regenerated components consumed in the neutralization reaction during regeneration.
  • the used wastewater that was not used to regenerate the weakly acidic cation exchange resin is returned to the ultrapure water manufacturing process, so the used wastewater can be effectively reused without wasting it, and the ultrapure water can be reused. Can be manufactured.
  • a weakly acidic cation exchange apparatus that replaces the hardness component of the desalted wastewater generated by the desalting treatment in the ultrapure water production process with an ion exchange component of a weakly acidic cation exchange resin,
  • the hardness component adsorbed on the weakly acidic cation exchange resin is replaced with a regenerated component contained in the used wastewater after using the ultrapure water produced in the ultrapure water manufacturing process, and the weakly acidic cation is replaced. It has a regenerated water supply device that supplies regenerated water for regenerating the ion exchange resin.
  • the hardness component of the desalinated wastewater generated by the desalting treatment in the ultrapure water production process is replaced with the ion exchange component of the weakly acidic cation exchange resin. As a result, the hardness component in the wastewater after desalting is reduced.
  • the hardness component adsorbed on the weakly acidic cation exchange resin is replaced with the reclaimed water contained in the used wastewater after using the ultrapure water produced in the ultrapure water manufacturing process, and the reclaimed water is weakly acidic.
  • the hardness component adsorbed on the weakly acidic cation exchange resin is replaced with the regenerated component of the regenerated water to regenerate the weakly acidic cation exchange resin.
  • the used wastewater after using the ultrapure water produced in the ultrapure water manufacturing process is used as a regenerating agent for the regeneration of the weakly acidic cation exchange resin, so that the weakly acidic cation exchange resin can be regenerated. Therefore, it is not necessary to add acid.
  • the amount of neutralizing alkali added required for the treatment of used wastewater is reduced by the amount of the regenerated components consumed in the neutralization reaction during regeneration.
  • FIG. 1 is a configuration diagram showing an ultrapure water production system including the wastewater treatment apparatus of the first embodiment.
  • FIG. 2 is a configuration diagram showing an ultrapure water production system of the first comparative example.
  • FIG. 3 is a configuration diagram showing an ultrapure water production system of the second comparative example.
  • the ultrapure water production system 16 is a so-called non-chemical type ultrapure water production system that does not use chemicals in the process of producing ultrapure water. Since the ultrapure water production system 16 does not use chemicals, it has various effects listed below. It should be noted that these effects are merely examples. -There is no effect on the ultrapure water system due to problems associated with the use of chemicals, such as residual chemicals. -There is no change in the quality of ultrapure water. ⁇ It is possible to avoid the danger of handling chemicals. -The load on wastewater treatment can be reduced, and the load on the environment can be further reduced.
  • the ultrapure water production system 16 includes an ultrapure water production apparatus 14 for producing ultrapure water, a wastewater treatment apparatus 12 for treating wastewater generated by the ultrapure water production apparatus 14, and used water. It includes a wastewater recovery device 42 for recovering ultrapure water (acid drainage) and using it again for producing ultrapure water.
  • the ultrapure water production apparatus 14 has a raw water tank 18, a pretreatment unit 72, a primary pure water production unit 74, a secondary pure water production unit 76, and a use point 34.
  • the pretreatment unit 72 has a sand filtration device 20 and an activated carbon device 22.
  • the primary pure water production unit 74 includes a first membrane filtration device 24, a second membrane filtration device 26, a degassing device 28, and a deionizing device 30.
  • the secondary pure water production unit 76 has a polisher 32.
  • the raw water tank 18 accommodates the raw water supplied to the ultrapure water production apparatus 14. Examples of raw water include industrial water, tap water, groundwater, river water and the like. This raw water is supplied to the sand filtration device 20.
  • the sand filtration device 20 is a device that removes fine foreign substances from the raw water by passing the supplied raw water through the filtered sand as a filter medium.
  • a coagulation sedimentation device may be used to precipitate foreign substances and remove them from the raw water.
  • the water that has passed through the sand filtration device 20 is supplied to the activated carbon device 22 as water to be treated.
  • the activated carbon device 22 has a structure in which a container is filled with particulate activated carbon. A large number of pores are formed in this activated carbon, and by passing the supplied water to be treated through the activated carbon, foreign matter that cannot be removed by the sand filtration device 20, for example, chlorine that causes deterioration of the subsequent device. Etc. are captured in the pores of activated carbon and removed or decomposed from the water to be treated.
  • the water to be treated from which foreign substances have been removed by the activated carbon device 22 is supplied to the first membrane filtration device 24.
  • the water containing a large amount of foreign matter removed by the activated carbon device 22 is filtered by the filtration device 36 and then sent to the wastewater utilization facility 38.
  • a microfiltration membrane (MF membrane) device or a sand filtration device can be preferably used as the filtration device 36.
  • the first membrane filtration device 24 is, for example, a reverse osmosis device that desalinates the water to be treated by passing the water to be treated through the reverse osmosis membrane.
  • hardness components such as calcium ion (Ca 2+ ), magnesium ion (Mg 2+ ), bicarbonate ion and the like are removed from the water to be treated.
  • the water to be treated is divided into water in which the hardness component is concentrated to a high concentration (hereinafter referred to as "drainage after desalting") and water in which the hardness component is diluted to a low concentration.
  • the water in which the hardness component is diluted to a low concentration is supplied to the second membrane filtration device 26 as water to be treated.
  • the desalted wastewater is supplied to the wastewater treatment device 12 as described later.
  • the first membrane filtration device 24 that desalinates the water to be treated in this way for example, a nanomembrane filtration device may be used.
  • the device using the reverse osmosis membrane described above is preferable.
  • the water to be treated is re-demineralized by passing the water to be treated through the reverse osmosis membrane.
  • the hardness component is further removed from the water to be treated by the re-salting treatment.
  • the water in which the hardness component is diluted to a lower concentration is supplied to the degassing device 28 as water to be treated.
  • the drainage after desalting in the second membrane filtration device 26 is returned to the raw water tank 18 because it has a low hardness component unlike the drainage after desalting by the first membrane filtration device 24, and the production of ultrapure water is performed again. Used for.
  • the degassing device 28 is, for example, a membrane degassing device using a gas separation film that does not allow moisture to permeate but allows gas to permeate.
  • the degassing device 28 can remove gas in the water to be treated, particularly carbon dioxide gas.
  • the water to be treated by the degassing device 28 has a low concentration of carbon dioxide gas and is supplied to the deionizing device 30 as water to be treated.
  • the deionization device 30 is a device that removes impurity ions such as organic acids contained in the liquid to be treated.
  • an electro deionizing device EDI
  • a mixed bed type ion exchange resin device Mated Bed Ion Exchange Resin Equipment
  • An electrodeionizer is preferable from the viewpoint that it is not necessary to add a chemical for the regeneration of the ion exchange resin.
  • the electrodeionizer fills the voids formed by the anion exchange membrane and the cation exchange membrane with an ion exchange resin to form a desalting chamber and a concentration chamber, and applies a DC current to the liquid to be treated. It is configured to remove ions.
  • the water to be treated is supplied in parallel to the desalination chamber and the concentration chamber, and the mixture of the anion exchange resin and the cation exchange resin in the desalination chamber removes impurity ions in the liquid to be treated.
  • Adsorb The adsorbed impurity ions are transferred to the concentration chamber by the action of direct current.
  • the concentrated water in the concentration chamber is returned to, for example, the raw water tank 18.
  • the mixed bed type ion exchange resin device has, for example, a structure in which a cylindrical closed container is filled with a mixed bed type ion exchange resin in which a cation exchange resin and an anion exchange resin are mixed.
  • the water from which impurity ions have been removed by the deionization device 30 is supplied to the polisher 32 as water to be treated.
  • the primary pure water production unit 74 is not limited to the above configuration.
  • an ultraviolet oxidizing device may be provided for the purpose of oxidatively decomposing organic substances in the water to be treated.
  • it has a degassing device having a configuration capable of removing dissolved oxygen as a gas in the water to be treated, in place of or in combination with the degassing device 28 having the above configuration for removing carbon dioxide gas as a gas in the water to be treated. May be.
  • a degassing device for removing carbon dioxide gas, an ultraviolet irradiation device, and a degassing device for removing dissolved oxygen may be provided in order from the upstream side of the flow of water to be treated.
  • the polisher 32 performs final treatment on the water to be treated, that is, removal of a very small amount of impurities in the primary pure water to obtain ultrapure water.
  • the polisher 32 is, for example, a non-regenerative mixed bed type ion exchange resin device.
  • the secondary pure water production unit 76 may be provided with heat exchangers before and after the polisher 32 to adjust the temperature by heat exchange (heating or cooling) with the water to be treated.
  • heat exchanger include a plate-type heat exchanger, but the specific structure is not particularly limited.
  • various treatment devices are provided before and after the polisher 32 as necessary, such as taking measures against contamination of microorganisms by sterilizing means or the like, to obtain ultrapure water having a desired purity. You can also get it. Examples of such processing devices include ultraviolet oxidizing devices, hydrogen peroxide removing devices, degassing devices, and ultrafiltration (UF) membrane devices.
  • the hydrogen peroxide removing device is a device for decomposing and removing hydrogen peroxide in water.
  • the hydrogen peroxide removing device includes a palladium-supporting resin device that decomposes and removes hydrogen peroxide with a palladium (Pd) -supporting resin, or a reducing resin having a sulfite group and / or a hydrogen peroxide group in a basic anion exchange resin. It is a filled reducing resin device or the like.
  • the ultrapure water obtained by the polisher 32 (ultrapure water production apparatus 14) is sent to the use point 34 where it is used. From the use point 34, the water after using the ultrapure water is discharged as used wastewater.
  • This used wastewater is acid wastewater containing hydrogen ions (H +).
  • Examples of the use point 34 include manufacturing factories for semiconductors, liquid crystal panels, and displays.
  • Examples of used wastewater include cleaning wastewater using acid, etching wastewater, resist removal wastewater, and CMP wastewater.
  • the wastewater recovery device 42 has a used drainage tank 44, an activated carbon device 46, and a membrane filtration device 48.
  • the used wastewater discharged from the use point 34 is stored in the used drainage tank 44. Then, for example, when the used drainage tank 44 is full, the overflowing used drainage is sent to the activated carbon device 46.
  • the activated carbon device 46 removes foreign substances contained in the used wastewater by capturing them in the pores of the activated carbon.
  • the used wastewater from which foreign substances have been removed by the activated carbon device 46 is sent to the membrane filtration device 48.
  • membrane filtering device 48 by passing the spent effluent in the reverse osmosis membrane, the water to be treated, chloride ion (Cl -), nitrate ion (NO 3 -), sulfate ion (SO 4 2- ), fluorine ion (F -) and phosphate ion (PO 4 2-) acid component or the like is eliminated.
  • the used wastewater having a low acid component is returned to the raw water tank 18 and used again for the production of ultrapure water.
  • the used wastewater having a high concentration of acid components concentrated in the membrane filtration device 48 has a high hydrogen ion concentration and is sent to the wastewater treatment device 12.
  • the wastewater treatment device 12 includes a high hardness water tank 54, a weakly acidic cation exchange device 56, a degassing device 58, a salt removing device 60, a concentration tank 62, and a membrane filtration device 64.
  • the high hardness water tank 54 of the wastewater treatment device 12 accommodates the desalted wastewater generated by the first membrane filtration device 24.
  • the drainage after desalting is sent from the high hardness water tank 54 to the weakly acidic cation exchange device 56.
  • the weakly acidic cation exchange device 56 has a weakly acidic cation exchange resin.
  • This weakly acidic cation exchange resin has hydrogen ions (H + ) as an ion exchange component, is in the form of particles or fibers, and is sealed in a container.
  • H + hydrogen ions
  • the weakly acidic cation exchange resin is touched by the drainage after desalting and passes through the weakly acidic cation exchange device 56, the calcium ions and magnesium ions, which are the hardness components of the drainage after desalting, are changed to the hydrogen ions of the weakly acidic cation exchange resin. Is replaced with.
  • the desalted wastewater having a reduced hardness component is sent to the degassing device 58 as treated water.
  • the degassing device 58 removes dissolved gas such as carbon dioxide from the treated water.
  • Examples of the degassing device 58 include, but are not limited to, a vacuum degassing device, a normal pressure degassing device, and a membrane degassing device.
  • a normal pressure degassing device or a membrane degassing device is preferable, and a normal pressure degassing device is more preferable. Further, from the viewpoint of facilitating management, a membrane deaerator is preferable.
  • the treated water of the weakly acidic cation exchange device 56 contained carbon dioxide gas generated by the neutralization reaction of bicarbonate ions contained in the wastewater after desalting and hydrogen ions contained as an ion exchange component. , It is an acidic liquid. By degassing the treated water, carbon dioxide gas can be efficiently removed without the need to add an acid.
  • the treated water from which the dissolved gas has been removed by the degassing device 58 is sent to the salt removing device 60.
  • the salt removing device 60 removes residual salts from the treated water.
  • Examples of the salt removing device 60 include an electrodialysis device that removes salt with an electrodialysis membrane and a membrane filtration device that removes salt with a reverse osmosis membrane.
  • the treated water from which salts have been removed by the salt removing device 60 is sent to the wastewater utilization facility 38 for use.
  • Examples of the wastewater utilization equipment 38 include reclaimed water equipment such as scrubber equipment, cooling tower equipment, and toilet purification equipment.
  • the treated water from which salts have been removed by the salt removing device 60 is wastewater having a higher impurity concentration than the raw water supplied to the ultrapure water production system 16.
  • the wastewater utilization facility 38 is a facility that can be used even for wastewater having such a high impurity concentration.
  • the weakly acidic cation exchange device 56 Since the weakly acidic cation exchange device 56 has a low removal rate other than the hardness component, it is not generally used for the purpose of returning the drainage after desalting generated in the first membrane filtration device 24 to the ultrapure water production process. However, it can be suitably used for the purpose of producing wastewater that can be used in the wastewater utilization facility 38 described above.
  • the device configuration and operating conditions between the weakly acidic ion exchange device 56 and the wastewater utilization facility 38 can be appropriately determined in consideration of the required water quality of the wastewater utilization facility 38 and the like. For example, if it is not necessary to remove the salt remaining in the treated water of the weakly acidic cation exchange device 56, the salt removing device 60 may be omitted. If the wastewater utilization facility 38 is a reclaimed water facility such as a scrubber facility, a cooling tower facility, and a toilet purification facility as described above, it is preferable that a device configuration and operating conditions that are low cost and / or easy to manage can be applied.
  • the concentration tank 62 of the wastewater treatment device 12 accommodates used wastewater having a high hydrogen ion concentration in the membrane filtration device 48.
  • the used wastewater contained in the concentration tank 62 is sent to the membrane filtration device 64.
  • the used wastewater is passed through the reverse osmosis membrane in the same manner as in the membrane filtration device 48.
  • the hydrogen ion concentration of the used wastewater can be increased.
  • the used wastewater after concentrating the hydrogen ion concentration is returned to the used drainage tank 44.
  • the hydrogen ions of the weakly acidic cation exchange resin are replaced with the hardness component of the drainage after desalting, so that the hardness component is adsorbed on the weakly acidic cation exchange resin.
  • the hydrogen ions contained in the used wastewater function as a regenerating component for regenerating the weakly acidic cation exchange resin by replacing the hardness component of the weakly acidic cation exchange resin. That is, by sending the used wastewater from the concentration tank 62 to the weakly acidic cation exchange device 56, the used wastewater is reused as a regenerating agent, and the weakly acidic cation exchange resin of the weakly acidic cation exchange device 56 is used. Can be played.
  • the concentration tank 62 since the hydrogen ion concentration of the used wastewater is increased, the weakly acidic cation exchange resin of the weakly acidic cation exchange device 56 can be efficiently regenerated.
  • the used wastewater after being used for the regeneration of the weakly acidic cation exchange resin is obtained by neutralizing the remaining acid with alkali as necessary, and then in the wastewater treatment device 12. It is discharged to the outside. Further, the treated water that has not been sent from the salt removing device 60 to the wastewater utilization facility 38 is also discharged to the outside of the wastewater treatment device 12. Substantially, the wastewater from the weakly acidic cation exchange device 56 and the wastewater from the salt removing device 60 become the wastewater from the ultrapure water production system 16.
  • the method of regenerating the weakly acidic cation exchange resin using the regenerated component contained in the used wastewater after using ultrapure water is not limited to the method of the present embodiment.
  • a weakly acidic cation exchange resin may be regenerated into a Na type having an ion exchange component of sodium ions.
  • wastewater include recycled wastewater after regenerating a mixed bed type ion exchange resin or anion exchange resin by adding caustic soda.
  • hydrogen ions are used as the regeneration component, and the weakly acidic cation exchange resin is regenerated in the H type in which the ion exchange component is hydrogen ions. Is preferable.
  • the concentration of the regenerated component is 40 ppm as CaCO. 3 or more is preferable, and 100 ppm as CaCO 3 or more is more preferable.
  • the pH of the used wastewater is preferably 4 or less, more preferably 3 or less.
  • the concentration of the regenerated component is 300 ppm as CaCO 3 or less.
  • 250 ppm as CaCO 3 or less is more preferable.
  • the pH of this used wastewater is preferably 2 or more.
  • the concentration of the regenerated component is preferably 1% by weight as CaCO 3 or more. More preferably, it is 3 % by weight as CaCO 3 or more.
  • the pH of the used wastewater is preferably 2 or less, more preferably 1 or less.
  • the used wastewater sent to the weakly acidic cation exchange device 56 is used.
  • the concentration of the regenerated component is preferably 8% by weight as CaCO 3 or less, and more preferably 5% by weight as CaCO 3 or less.
  • the pH of this used wastewater is preferably 0 or more.
  • the operation of the ultrapure water production system 16 of the present embodiment, the wastewater treatment method, and the ultrapure water production method are described in the ultrapure water production system 82 of the first comparative example shown in FIG. 2 and the second shown in FIG. This will be described while comparing with the ultrapure water production system 92 of the comparative example.
  • the same elements as those in FIG. 1 are designated by the same reference numerals.
  • the amount of water flowing through each portion in each ultrapure water production system is indicated by a number in a circle. The unit of each number is m 3 / h.
  • the amount of water shown here is an example for convenience of explanation.
  • Table 1 shows the amount of water in the main part of the ultrapure water production system of the present embodiment, the first comparative example and the second comparative example.
  • the amount of ultrapure water used at the use point 34 is 200 m 3 / h, and the ultrapure water is discharged from the use point 34.
  • the amount of acid drainage is 100 m 3 / h, which is 50% of the ultrapure water used at use point 34, and the amount of wastewater used at the wastewater utilization facility 38 is that of the ultrapure water used at use point 34. It is set to 50 m 3 / h, which is 25% of the amount.
  • the ultrapure water production system 82 of the first comparative example shown in FIG. 2 is not provided with the wastewater treatment device 12 in the ultrapure water production system 16 of the first embodiment. Then, the drainage after desalting generated in the first membrane filtration device 24 is discharged to the outside of the ultrapure water production system 82. Further, a part of the used wastewater is also discharged to the outside of the ultrapure water production system 82 from the membrane filtration device 48 of the wastewater recovery device 42.
  • the ultrapure water production system 92 of the second comparative example shown in FIG. 3 has a configuration in which a dispersant is charged between the activated carbon device 22 and the first membrane filtration device 24.
  • the dispersant also called a scale inhibitor, has an action of dispersing the hardness component in the water to be treated in a solvent and suppressing the crystal growth of impurities. Then, the demineralized drainage discharged from the first membrane filtration device 24 is filtered by the membrane filtration device 94 and returned to the raw water tank 18, and a part of the drainage is discharged to the outside of the ultrapure water production system 92.
  • the raw water fed to the raw water tank 18 (154.5m 3 / h) ( 9m 3 / h) is sent to the wastewater utilizing facility 38
  • the rest (145.5 m 3 / h) is sent to the raw water tank 18.
  • the raw water tank 18, as described later, the treated water back from the second membrane filtration device 26 (10m 3 / h), treated water back from the deionizer 30 (10m 3 / h), and the membrane filtering device 48 Used drainage (99.5 m 3 / h) returning from is also housed.
  • the raw water contained in the raw water tank 18 is sequentially sent to the sand filtration device 20 and the activated carbon device 22 (265 m 3 / h).
  • the water from which foreign substances in the raw water have been removed by the sand filtration device 20 and the activated carbon device 22 is sent to the first membrane filtration device 24 as water to be treated (260 m 3 / h), and further, calcium ions and magnesium from the water to be treated. Ions, bicarbonate ions, etc. are removed (demineralized) and sent to the second membrane filtration device 26 (220 m 3 / h).
  • the desalted wastewater (water having a high concentration of calcium ions and magnesium ions) generated in the first membrane filtration device 24 is sent to the high hardness water tank 54 of the wastewater treatment device 12 (40 m 3 / h).
  • the second membrane filtration device 26 calcium ions, magnesium ions, bicarbonate ions and the like are further removed from the water to be treated and sent to the degassing device 28 (210 m 3 / h).
  • the water to be treated that has not been sent from the second membrane filtration device 26 to the degassing device 28 is returned to the raw water tank 18 (10 m 3 / h).
  • the gas in the water to be treated is removed, and the water to be treated after removing the carbon dioxide gas is sent to the deionizing device 30 as water to be treated (210 m 3 / h).
  • the deionization device 30 impurity ions are removed from the liquid to be treated, the liquid to be treated is sent to the polisher 32 (200 m 3 / h), and the water to be treated that was not sent to the polisher 32 is returned to the raw water tank 18. (10m 3 / h).
  • the polisher 32 the final treatment of the water to be treated is performed, and the obtained ultrapure water is sent to the use point 34 (200 m 3 / h).
  • Ultrapure water is used at use point 34, and the water after use is discharged as used wastewater.
  • the used wastewater is stored in the used drainage tank 44 of the wastewater recovery device 42. As will be described later, the used drainage is returned to the used drainage tank 44 from the membrane filtration device 64 (10.5 m 3 / h).
  • the used wastewater from the used drainage tank 44 is sent to the activated carbon device 46 (110.5 m 3 / h), and the activated carbon device 46 removes foreign substances contained in the used wastewater. Further, the used wastewater is sent to the membrane filtration device 48 to generate used wastewater having a low concentration of hydrogen ion components and used wastewater having a high concentration of hydrogen ions. The used wastewater having a low hydrogen ion concentration is returned to the raw water tank 18, and the used wastewater having a high hydrogen ion concentration is sent to the concentration tank 62 of the wastewater treatment apparatus 12.
  • the high hardness water tank 54 of the wastewater treatment apparatus 12 contains the desalted wastewater generated by the first membrane filtration apparatus 24 of the ultrapure water production apparatus 14.
  • the drainage after desalting is sent to the weakly acidic cation exchange device 56.
  • the calcium ions and magnesium ions which are the hardness components of the drainage after desalting, are replaced with the hydrogen ions of the weakly acidic cation exchange resin.
  • the hardness component of the wastewater is reduced, and the treated water is sent to the degassing device 58.
  • dissolved gas such as carbon dioxide gas is removed from the treated water, and then the treated water is sent to the salt removing device 60 to further remove salts.
  • the treated water is sent to the wastewater utilization facility 38 (36 m 3 / h) and used, but the treated water that is not sent to the wastewater utilization facility 38 is discharged to the outside of the wastewater treatment device 12. (4m 3 / h).
  • the hydrogen ions of the weakly acidic cation exchange resin are replaced with the calcium ions and magnesium ions of the high hardness water.
  • used wastewater having an increased hydrogen ion concentration is sent (0.5 m 3 / h).
  • the weakly acidic cation exchange resin is regenerated by replacing the hydrogen ions in the used wastewater with the calcium ions and magnesium ions of the weakly acidic cation exchange resin.
  • the used wastewater after being used for the regeneration of the weakly acidic cation exchange resin is neutralized with alkali as necessary for the remaining acid, and is outside the wastewater treatment device 12. (0.5 m 3 / h).
  • the weakly acidic cation exchange resin is regenerated, the amount of acid remaining in the used wastewater is reduced by the neutralization reaction in this regeneration.
  • the hardness component of the drainage after desalting generated in the ultrapure water production process in the ultrapure water production apparatus 14 is removed by the weakly acidic cation exchange apparatus 56. Then, in the regeneration of the weakly acidic cation exchange resin of the weakly acidic cation exchange device 56, since the used wastewater after being used at the use point 34 is effectively used, the weakly acidic cation exchange resin can be regenerated. Therefore, it is not necessary to add acid. Moreover, the amount of alkali added for neutralizing the used wastewater after being used for the regeneration of the weakly acidic cation exchange resin is reduced by the amount of the regenerated components consumed in the neutralization reaction during the regeneration.
  • the ultrapure water production system 16 Since the wastewater from the ultrapure water production system 16 is only the wastewater from the weakly acidic cation exchange device 56 and the wastewater from the salt removal device 60, the ultrapure water production system 16 having a configuration that does not have the wastewater treatment device 12 In comparison, it is possible to reduce the amount of wastewater in the entire system.
  • the ultrapure water of the present embodiment As shown in Table 1, in the ultrapure water production system 16 of the present embodiment, the ultrapure water of 200 m 3 / h used at the use point 34 and the drainage of 50 m 3 / h used at the wastewater utilization facility 38. In order to obtain this, 154.5 m 3 / h of raw water is used. The total amount of wastewater discharged from the ultrapure water production system 16 is 4.5 m 3 / h.
  • the ultrapure water production system 82 of the first comparative example shown in FIG. 2 among the raw water 200m 3 / h, 45m 3 / h is fed to the waste water utilization facility 38, the raw water tank 18 is 155m 3 / h is sent.
  • the second membrane filtration device 26 returns 10 m 3 / h and the deionizer 30 returns 10 m 3 / h of treated water to the raw water tank 18, and the membrane filtration device 48 returns 90 m 3 / h of used wastewater. ..
  • the sent 260 m 3 / h of water to be treated is desalted, and the 220 m 3 / h of water to be treated after desalting is sent to the second film filter 26 and 40 m 3
  • the water to be treated at / h is discharged to the outside of the ultrapure water production apparatus 14.
  • 210 m 3 / h of water to be treated is sent to the deaeration device 28 and the deionizer 30, and from the deionizer 30, 200 m 3 / h of the liquid to be treated is a polisher 32. At the same time, the liquid to be treated at 10 m 3 / h is returned to the raw water tank 18.
  • 100 m 3 / h is recovered and sent to the used drainage tank 44, the activated carbon device 46, and the membrane filtration device 48.
  • the 90 m 3 / h used wastewater filtered by the membrane filtration device 48 is returned to the raw water tank 18, and the 10 m 3 / h used wastewater is discharged to the outside of the ultrapure water production device 14.
  • a dispersant is charged into the water to be treated between the activated carbon device 22 and the first membrane filtration device 24. Therefore, by filtering 40 m 3 / h of wastewater from the first membrane filtration device 24 by the membrane filtration device 94 (reverse osmosis device), 20 m 3 / h of water to be treated can be returned to the raw water tank 18.
  • the actual drainage from the first membrane filtration device 24 is 20 m 3 / h.
  • the amount of wastewater compared with any of the ultrapure water production system 82 of the first comparative example and the ultrapure water production system 92 of the second embodiment. Can be seen to be reduced.
  • the amount of raw water used is reduced by the amount that the reduced wastewater is used for the wastewater utilization facility 38 and the like.
  • the amount of raw water required to obtain 200 m 3 / h of ultrapure water and 50 m 3 / h of wastewater used in the wastewater utilization facility 38 is the first. It is reduced by about 23% with respect to the ultrapure water production system 82 of the first comparative example, and is reduced by about 14% with respect to the ultrapure water production system 92 of the second comparative example.
  • the hardness component of the drainage after desalting which is the wastewater generated by the first film filtration device 24, is removed by the weakly acidic cation exchange device 56, and after this removal treatment.
  • the weakly acidic cation exchange device 56 of the above is regenerated using the used wastewater generated at the use point 34.
  • the used wastewater (0.5 m 3 / h) discharged to the outside is treated with respect to the used wastewater (0.5 m 3 / h) discharged to the outside.
  • the amount of alkali added for neutralization can be halved as compared with the ultrapure water system 82 of the first comparative example and the ultrapure water system 92 of the second comparative example.
  • the amount of wastewater generated when obtaining 200 m 3 / h ultrapure water is reduced by 91% as compared with the ultrapure water production system 82 of the first comparative example. It is reduced by 85% compared to the ultrapure water production system 92 of the second comparative example.
  • the hydrogen ion concentration of the used wastewater is increased by circulating the used wastewater between the concentration tank 62 and the membrane filtration device 64. ing. Since the used wastewater in which hydrogen ions are concentrated by performing the concentration treatment on the used wastewater a plurality of times is used, the weakly acidic cation exchange resin of the weakly acidic cation exchange device 56 can be efficiently regenerated.
  • a strongly acidic cation exchange resin instead of a weakly acidic cation exchange resin only for removing the hardness component from the drainage after desalting.
  • the amount of impurity ions removed per unit resin amount is generally weakly acidic cation exchange resin. Since it is less (for example, 1/2 to 1/4), the amount of resin required is increased.
  • the weakly acidic cation exchange resin by using the weakly acidic cation exchange resin, the hardness component to be removed can be selectively and efficiently removed from the drainage after desalting, and the weakly acidic cation exchange resin can be easily regenerated.
  • the regenerating agent for regenerating the weakly acidic cation exchange resin is not limited to the above-mentioned used wastewater in which hydrogen ions are concentrated, but by effectively using the hydrogen ions contained in the used wastewater, it is ultrapure.
  • the configuration is highly effective in contributing to the reduction of the amount of wastewater in the water production system 16.
  • the hardness component is removed by the first membrane filtration device 24 as the desalting treatment.
  • the desalting treatment may involve removal of salts other than calcium ions and magnesium ions, which are hardness components. If a large amount of the hardness component is contained, it may cause scale precipitation in a subsequent process (downstream side of the flow of the liquid to be treated). By removing the component that causes such scale, the generation of scale can be suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)

Abstract

In the present invention, weakly acidic cation exchange resin is regenerated by: replacing desalinated waste water hardness-components, which are produced as a result of a desalination treatment in an ultrapure water production process, with ion exchange components of a weakly acidic cation exchange resin; and replacing hardness components adsorbed on the weakly acidic cation exchange resin with regenerated components contained in spent waste water which results after ultrapure water produced in the ultrapure water production process has been used.

Description

排水処理方法、超純水製造方法及び排水処理装置Wastewater treatment method, ultrapure water production method and wastewater treatment equipment
 本開示は、排水処理方法、超純水製造方法及び排水処理装置に関する。 This disclosure relates to a wastewater treatment method, an ultrapure water production method, and a wastewater treatment device.
 近年の超純水製造システムでは、例えばTOC(Total Organic Carbon:全有機炭素)濃度が5μgC/L以下、比抵抗率が17.5MΩ・cm以上など、より高純度な超純水の製造が求められている。 In recent ultrapure water production systems, it is required to produce ultrapure water having a higher purity, for example, a TOC (Total Organic Carbon: total organic carbon) concentration of 5 μg C / L or less and a specific resistivity of 17.5 MΩ · cm or more. Has been done.
 そのため、超純水製造システムにおける各装置の安定化も、より厳しく求められている。たとえば、特開2010-36160号公報には、排水を高濃縮しても、微生物の増殖を抑制してスライムの発生による分離膜の目詰まりを防止できる方法及び装置が記載されている。特開2003-154362号公報には、予め固液分離した逆浸透ろ過(RO)膜および/またはナノろ過膜(NF膜)の濃縮水を軟化処理法および/または有機物除去法で処理することによって、高回収率運転でもファウリングやスケールを抑制できる水処理装置及び水処理方法が記載されている。このように、装置の運転の不安定化につながる生成物の発生は、高度に抑制されることが必要である。 Therefore, stabilization of each device in the ultrapure water production system is also required more strictly. For example, Japanese Patent Application Laid-Open No. 2010-36160 describes a method and an apparatus capable of suppressing the growth of microorganisms and preventing clogging of the separation membrane due to the generation of slime even if the waste water is highly concentrated. According to Japanese Patent Application Laid-Open No. 2003-154362, concentrated water of a reverse osmosis filtration (RO) membrane and / or a nanofiltration membrane (NF membrane) separated in advance by solid-liquid separation is treated by a softening treatment method and / or an organic substance removal method. , A water treatment device and a water treatment method capable of suppressing fouling and scale even in high recovery rate operation are described. As described above, the generation of products leading to the instability of the operation of the device needs to be highly suppressed.
 超純水製造システムが有する超純水製造装置は、例えば、
・原水中の懸濁物質を除去して前処理水を得る前処理部
・前処理水中のTOC成分やイオン成分を除去して一次純水を製造する一次純水製造部
・一次純水中の極微量の不純物を除去して超純水を製造する二次純水製造部
から主に構成されている。
The ultrapure water production equipment of the ultrapure water production system is, for example,
・ Pretreatment part that removes suspended solids in raw water to obtain pretreatment water ・ Primary pure water production part that removes TOC components and ionic components in pretreatment water to produce primary pure water ・ In primary pure water It is mainly composed of a secondary pure water production unit that produces ultrapure water by removing a very small amount of impurities.
 そして、超純水製造装置は、多くの場合は一次純水製造部において、逆浸透装置やナノ膜濾過装置等の脱塩処理装置を含んでいる。これらの脱塩処理装置の濃縮液は、例えばコスト削減や水資源の有効利用、排水処理工程の小規模化の観点から再利用されることが好ましい。 In many cases, the ultrapure water production device includes a desalination treatment device such as a reverse osmosis device and a nano-membrane filtration device in the primary pure water production section. The concentrates of these desalination treatment devices are preferably reused from the viewpoints of cost reduction, effective use of water resources, and downsizing of wastewater treatment steps, for example.
 しかし、この濃縮液を超純水製造工程に戻す場合には、例えば特開2010-36160号公報に記載されているようなカチオン除去、特開2003-154362号公報に記載されているような軟化処理や有機物除去など、先述の生成物の発生原因となりうる不純物の除去は高度に行われている必要がある。 However, when returning this concentrated solution to the ultrapure water production process, for example, cation removal as described in JP-A-2010-36160 and softening as described in JP-A-2003-154362. The removal of impurities that can cause the above-mentioned products, such as treatment and removal of organic substances, needs to be highly performed.
 超純水製造装置の上流に設置された脱塩処理装置の濃縮水は、一般的に塩や有機物などの不純物濃度が高く、スケールの原因となる成分も析出限界濃度に近い濃度で含まれている。 The concentrated water of the desalination treatment equipment installed upstream of the ultrapure water production equipment generally has a high concentration of impurities such as salts and organic substances, and also contains components that cause scale at a concentration close to the precipitation limit concentration. There is.
 この濃縮水から高度に不純物を除去する場合、被処理水を、不純物が除去された処理済水と、更に不純物が濃縮された濃縮水と、に分ける装置、例えば逆浸透装置や電気脱イオン装置(EDI)が使用されることがある。このような逆浸透装置や電気脱イオン装置を使用した場合は、スケール発生を抑制するためには、装置の回収率(被処理水の量に対する処理済水の量の割合)を大きくとれない。 When removing impurities from this concentrated water to a high degree, a device that divides the water to be treated into treated water from which impurities have been removed and concentrated water in which impurities have been further concentrated, such as a reverse osmosis device and an electrodeionization device. (EDI) may be used. When such a reverse osmosis device or an electrodeionization device is used, the recovery rate of the device (the ratio of the amount of treated water to the amount of water to be treated) cannot be increased in order to suppress the generation of scale.
 また、後述するスケールインヒビターとも称される分散剤を被処理水に添加することも行われている。このスケールインヒビターは、不純物の結晶成長を抑制することで、析出限界濃度を向上させるための分散剤である。しかし、スケールインヒビターを被処理水に添加しても析出限界濃度を格段に向上させることは難しいため、先述の回収率の向上には限界がある。 In addition, a dispersant also called a scale inhibitor, which will be described later, is also added to the water to be treated. This scale inhibitor is a dispersant for improving the precipitation limit concentration by suppressing the crystal growth of impurities. However, even if a scale inhibitor is added to the water to be treated, it is difficult to significantly improve the precipitation limit concentration, so that there is a limit to the improvement of the recovery rate described above.
 一方で、後述する理由により、超純水製造システムについて、酸やアルカリなどの化学薬品を用いないノンケミカルタイプ化も求められている。 On the other hand, for the reason described later, there is also a demand for a non-chemical type of ultrapure water production system that does not use chemicals such as acids and alkalis.
 このように超純水製造システムについてノンケミカルタイプ化を図る観点からは、化学薬品、特に危険性の高い酸やアルカリを用いる必要がある処理装置や運転条件は、超純水製造システムに採用できない。例えば、再生に酸やアルカリの添加が必要となるイオン交換樹脂は、一般的に使用することができない。また、スケールインヒビターとも称される分散剤も、化学薬品であるため添加されないことが好ましい。 From the viewpoint of making the ultrapure water production system non-chemical type, processing equipment and operating conditions that require the use of chemicals, especially high-risk acids and alkalis, cannot be adopted for the ultrapure water production system. .. For example, an ion exchange resin that requires the addition of an acid or alkali for regeneration cannot generally be used. Further, it is preferable that the dispersant, which is also called a scale inhibitor, is not added because it is a chemical agent.
 以上の結果として、超純水製造システムの上流に設置された脱塩処理装置の濃縮水のうち、超純水製造工程に戻せるものは、あってもごく一部にとどまっている。こうした濃縮水の再利用率を高めることが、課題の一つである。 As a result of the above, only a small part of the concentrated water of the desalination treatment equipment installed upstream of the ultrapure water production system can be returned to the ultrapure water production process. One of the challenges is to increase the reuse rate of such concentrated water.
 一方で、超純水が用いられている設備、例えば半導体や液晶パネル、ディスプレイの製造工場では、大量の酸排水が発生する。酸排水の例としては、酸を使用した洗浄排水、エッチング排水、レジスト除去排水、CMP排水が挙げられる。 On the other hand, a large amount of acid wastewater is generated in equipment that uses ultrapure water, such as semiconductor, liquid crystal panel, and display manufacturing plants. Examples of acid effluent include cleaning effluent using acid, etching effluent, resist removal effluent, and CMP effluent.
 これらの酸排水の一部は再利用されているが、その再利用率の向上も課題の一つとなっている。 Some of these acid wastewaters are reused, but improving the reuse rate is also an issue.
 また、酸排水を外部に排出する場合は、酸排水を中和する必要があり、そのためには必要に応じてアルカリを添加する必要がある。しかし、コスト面や、超純水製造工程と同様のノンケミカルタイプ化の需要の高まりから、アルカリの添加量の削減も課題の一つとなっている。 In addition, when discharging acid wastewater to the outside, it is necessary to neutralize the acid wastewater, and for that purpose, it is necessary to add alkali as necessary. However, due to cost and increasing demand for non-chemical type as in the ultrapure water production process, reducing the amount of alkali added is also one of the issues.
 このように、超純水を製造する工程で生じる排水に対し、より適切な処理を行うことが求められている。 In this way, it is required to treat the wastewater generated in the process of producing ultrapure water more appropriately.
 本開示では、超純水を製造する工程で生じる排水に対し適切な処理を行うことが目的である。 The purpose of this disclosure is to appropriately treat the wastewater generated in the process of producing ultrapure water.
 第一態様の排水処理方法では、超純水製造工程における脱塩処理で生じた脱塩後排水の硬度成分を、弱酸性陽イオン交換樹脂のイオン交換成分で置き換え、前記弱酸性陽イオン交換樹脂に吸着された前記硬度成分を、前記超純水製造工程で製造された超純水を使用した後の使用済排水に含まれる再生成分で置換して前記弱酸性陽イオン交換樹脂を再生する。 In the wastewater treatment method of the first aspect, the hardness component of the desalted wastewater generated in the desalting treatment in the ultrapure water production process is replaced with the ion exchange component of the weakly acidic cation exchange resin, and the weakly acidic cation exchange resin is used. The weakly acidic cation exchange resin is regenerated by substituting the hardness component adsorbed on the water with a regenerated component contained in the used wastewater after using the ultrapure water produced in the ultrapure water production step.
 この排水処理方法では、超純水製造工程における脱塩処理で生じた脱塩後排水の硬度成分を、弱酸性陽イオン交換樹脂のイオン交換成分で置き換える。これにより、脱塩後排水中の硬度成分が少なくなる。 In this wastewater treatment method, the hardness component of the desalted wastewater generated by the desalination treatment in the ultrapure water production process is replaced with the ion exchange component of the weakly acidic cation exchange resin. As a result, the hardness component in the wastewater after desalting is reduced.
 弱酸性陽イオン交換樹脂には硬度成分が吸着されるが、この硬度成分を、超純水製造工程で製造された超純水を使用した後の使用済排水に含まれる再生成分で置換する。これにより、弱酸性陽イオン交換樹脂を再生する。このように、弱酸性陽イオン交換樹脂の再生に、超純水製造工程で製造された超純水を使用した後の使用済排水を再生剤として用いるので、弱酸性陽イオン交換樹脂の再生のために、酸を添加する必要がなくなる。また、使用済排水の処理に必要な中和用アルカリの添加量が、再生時の中和反応で消費された再生成分の分、少なくなる。 A hardness component is adsorbed on the weakly acidic cation exchange resin, and this hardness component is replaced with a regenerated component contained in the used wastewater after using the ultrapure water produced in the ultrapure water manufacturing process. As a result, the weakly acidic cation exchange resin is regenerated. In this way, the used wastewater after using the ultrapure water produced in the ultrapure water manufacturing process is used as a regenerating agent for the regeneration of the weakly acidic cation exchange resin, so that the weakly acidic cation exchange resin can be regenerated. Therefore, it is not necessary to add acid. In addition, the amount of neutralizing alkali added required for the treatment of used wastewater is reduced by the amount of the regenerated components consumed in the neutralization reaction during regeneration.
 第二態様では、第一態様において、前記硬度成分が、カルシウムイオン及びマグネシウムイオンの少なくとも一方を含む。 In the second aspect, in the first aspect, the hardness component contains at least one of calcium ion and magnesium ion.
 したがって、脱塩後排水から、カルシウムイオン及びマグネシウムイオンを、弱酸性陽イオン交換樹脂のイオン交換成分で置き換えることで、除去することが可能である。 Therefore, it is possible to remove calcium ions and magnesium ions from the desalted wastewater by replacing them with the ion exchange components of the weakly acidic cation exchange resin.
 第三態様では、第一又は第二態様において、前記再生成分が、水素イオンを含む。 In the third aspect, in the first or second aspect, the regenerated component contains hydrogen ions.
 使用済排水に含まれる水素イオンを有効に用いて、弱酸性陽イオン交換樹脂を再生できる。 The weakly acidic cation exchange resin can be regenerated by effectively using the hydrogen ions contained in the used wastewater.
 第四態様では、第一から第三のいずれか一つの態様において、前記使用済排水に対し濃縮処理により前記再生成分を濃縮した濃縮排水を用いて、前記弱酸性陽イオン交換樹脂の再生を行う。 In the fourth aspect, in any one of the first to third aspects, the weakly acidic cation exchange resin is regenerated by using the concentrated wastewater obtained by concentrating the regenerated components with respect to the used wastewater. ..
 使用済排水を濃縮した濃縮排水を用いるので、弱酸性陽イオン交換樹脂を効率的に再生できると共に、再生に用いた後の排水の量を少なくできる。 Since concentrated wastewater obtained by concentrating used wastewater is used, weakly acidic cation exchange resin can be efficiently regenerated, and the amount of wastewater after being used for regeneration can be reduced.
 第五態様では、第四態様において、前記濃縮処理を使用済排水に対し複数回行って前記再生成分を濃縮する。 In the fifth aspect, in the fourth aspect, the concentration treatment is performed a plurality of times on the used wastewater to concentrate the regenerated component.
 濃縮処理を複数回行うことで、1回のみ行う場合と比較して、濃縮排水の再生成分の濃度を高めることができ、弱酸性陽イオン交換樹脂をより効果的に再生できると共に、再生に用いた後の排水の量をより少なくできる。 By performing the concentration treatment multiple times, the concentration of the regenerated component of the concentrated wastewater can be increased as compared with the case where the concentration treatment is performed only once, and the weakly acidic cation exchange resin can be regenerated more effectively and is used for regeneration. The amount of drainage after being discharged can be reduced.
 第六態様では、第一から第五のいずれか一つの態様において、前記硬度成分が前記イオン交換成分で置き換えられた処理済水に対し気体成分を除去する脱気処理を行う。 In the sixth aspect, in any one of the first to fifth aspects, the treated water in which the hardness component is replaced with the ion exchange component is degassed to remove the gas component.
 処理済水から気体成分を除去することで、この処理済水の再利用が容易になる。 By removing the gas component from the treated water, it becomes easy to reuse this treated water.
 第七態様では、第一から第六のいずれか一つの態様において、前記硬度成分が前記イオン交換成分で置き換えられた処理済水に対し塩を除去する塩除去処理を行う。 In the seventh aspect, in any one of the first to sixth aspects, a salt removal treatment for removing salt is performed on the treated water in which the hardness component is replaced with the ion exchange component.
 処理済水に対し塩除去処理を行って塩を除去することで、この処理済水の再利用が容易になると共に、再利用されない排水の量を少なくできる。 By performing salt removal treatment on the treated water to remove the salt, it is possible to easily reuse the treated water and reduce the amount of wastewater that is not reused.
 第八態様では、第一から第七のいずれか一つの態様において、前記脱塩処理を、逆浸透膜に被処理水を浸透させることにより行う。 In the eighth aspect, in any one of the first to seventh aspects, the desalting treatment is performed by infiltrating the reverse osmosis membrane with water to be treated.
 逆浸透膜を用いることで、脱塩処理を確実に行って、被処理水を脱塩できる。 By using a reverse osmosis membrane, desalination treatment can be reliably performed and the water to be treated can be desalted.
 第九態様の超純水製造方法では、原水に対し少なくとも脱塩処理を含む超純水製造工程により超純水を製造し、前記脱塩処理で生じた脱塩後排水の硬度成分を、弱酸性陽イオン交換樹脂のイオン交換成分で置き換え、前記弱酸性陽イオン交換樹脂に吸着された前記硬度成分を、前記超純水製造工程で製造された超純水を使用した後の使用済排水に含まれる再生成分で置き換えて前記弱酸性陽イオン交換樹脂を再生し、前記使用済排水のうち前記弱酸性陽イオン交換樹脂の再生に用いなかった前記使用済排水を前記超純水製造工程に戻す。 In the method for producing ultra-pure water according to the ninth aspect, ultra-pure water is produced by an ultra-pure water production process including at least desalting treatment of raw water, and the hardness component of the drainage after desalting generated by the desalting treatment is weakened. Replaced with the ion exchange component of the acidic cation exchange resin, the hardness component adsorbed on the weakly acidic cation exchange resin is used as used wastewater after using the ultrapure water produced in the ultrapure water production process. The weakly acidic cation exchange resin is regenerated by replacing it with a contained recycled component, and the used wastewater that was not used for the regeneration of the weakly acidic cation exchange resin among the used wastewater is returned to the ultrapure water production process. ..
 この超純水製造方法では、原水に対し超純水製造工程を行うことで、超純水を製造する。超純水製造工程は、少なくとも脱塩処理を含んでいるので、超純水製造工程では、脱塩後排水として、硬度成分を含む排水が生成される。 In this ultrapure water production method, ultrapure water is produced by performing an ultrapure water production process on raw water. Since the ultrapure water production process includes at least desalting treatment, in the ultrapure water production process, wastewater containing a hardness component is generated as wastewater after desalting.
 脱塩後排水の硬度成分を、弱酸性陽イオン交換樹脂のイオン交換成分で置き換える。これにより、脱塩後排水中の硬度成分が少なくなる。 Replace the hardness component of the drainage after desalting with the ion exchange component of the weakly acidic cation exchange resin. As a result, the hardness component in the wastewater after desalting is reduced.
 弱酸性陽イオン交換樹脂には硬度成分が吸着されるが、この硬度成分を、超純水製造工程で製造された超純水を使用した後の使用済排水に含まれる再生成分で置換する。これにより、弱酸性陽イオン交換樹脂を再生する。このように、弱酸性陽イオン交換樹脂の再生に、超純水製造工程で製造された超純水を使用した後の使用済排水を再生剤として用いるので、弱酸性陽イオン交換樹脂の再生のために、酸を添加する必要がなくなる。また、使用済排水の処理に必要な中和用アルカリの添加量が、再生時の中和反応で消費された再生成分の分、少なくなる。 A hardness component is adsorbed on the weakly acidic cation exchange resin, and this hardness component is replaced with a regenerated component contained in the used wastewater after using the ultrapure water produced in the ultrapure water manufacturing process. As a result, the weakly acidic cation exchange resin is regenerated. In this way, the used wastewater after using the ultrapure water produced in the ultrapure water manufacturing process is used as a regenerating agent for the regeneration of the weakly acidic cation exchange resin, so that the weakly acidic cation exchange resin can be regenerated. Therefore, it is not necessary to add acid. In addition, the amount of neutralizing alkali added required for the treatment of used wastewater is reduced by the amount of the regenerated components consumed in the neutralization reaction during regeneration.
 使用済排水のうち弱酸性陽イオン交換樹脂の再生に用いなかった使用済排水を超純水製造工程に戻すので、使用済排水を無駄にすることなく、有効に再利用して、超純水を製造できる。 Of the used wastewater, the used wastewater that was not used to regenerate the weakly acidic cation exchange resin is returned to the ultrapure water manufacturing process, so the used wastewater can be effectively reused without wasting it, and the ultrapure water can be reused. Can be manufactured.
 第十態様の排水処理装置では、超純水製造工程における脱塩処理で生じた脱塩後排水の硬度成分を、弱酸性陽イオン交換樹脂のイオン交換成分で置き換える弱酸性陽イオン交換装置と、前記弱酸性陽イオン交換樹脂に吸着された前記硬度成分を、前記超純水製造工程で製造された超純水を使用した後の使用済排水に含まれる再生成分で置換して前記弱酸性陽イオン交換樹脂を再生するための再生水を供給する再生水供給装置と、を有する。 In the wastewater treatment apparatus of the tenth aspect, a weakly acidic cation exchange apparatus that replaces the hardness component of the desalted wastewater generated by the desalting treatment in the ultrapure water production process with an ion exchange component of a weakly acidic cation exchange resin, The hardness component adsorbed on the weakly acidic cation exchange resin is replaced with a regenerated component contained in the used wastewater after using the ultrapure water produced in the ultrapure water manufacturing process, and the weakly acidic cation is replaced. It has a regenerated water supply device that supplies regenerated water for regenerating the ion exchange resin.
 この排水処理装置の弱酸性陽イオン交換装置では、超純水製造工程における脱塩処理で生じた脱塩後排水の硬度成分を、弱酸性陽イオン交換樹脂のイオン交換成分で置き換える。これにより、脱塩後排水中の硬度成分が少なくなる。 In the weakly acidic cation exchange device of this wastewater treatment device, the hardness component of the desalinated wastewater generated by the desalting treatment in the ultrapure water production process is replaced with the ion exchange component of the weakly acidic cation exchange resin. As a result, the hardness component in the wastewater after desalting is reduced.
 再生水供給装置では、弱酸性陽イオン交換樹脂に吸着された硬度成分を、超純水製造工程で製造された超純水を使用した後の使用済排水に含まれる再生成分で置換して弱酸性陽イオン交換樹脂を再生するための再生水を供給する。弱酸性陽イオン交換樹脂に吸着された硬度成分を再生水の再生成分で置換し、弱酸性陽イオン交換樹脂を再生する。このように、弱酸性陽イオン交換樹脂の再生に、超純水製造工程で製造された超純水を使用した後の使用済排水を再生剤として用いるので、弱酸性陽イオン交換樹脂の再生のために、酸を添加する必要がなくなる。また、使用済排水の処理に必要な中和用アルカリの添加量が、再生時の中和反応で消費された再生成分の分、少なくなる。 In the reclaimed water supply device, the hardness component adsorbed on the weakly acidic cation exchange resin is replaced with the reclaimed water contained in the used wastewater after using the ultrapure water produced in the ultrapure water manufacturing process, and the reclaimed water is weakly acidic. Supply reclaimed water to regenerate the cation exchange resin. The hardness component adsorbed on the weakly acidic cation exchange resin is replaced with the regenerated component of the regenerated water to regenerate the weakly acidic cation exchange resin. In this way, the used wastewater after using the ultrapure water produced in the ultrapure water manufacturing process is used as a regenerating agent for the regeneration of the weakly acidic cation exchange resin, so that the weakly acidic cation exchange resin can be regenerated. Therefore, it is not necessary to add acid. In addition, the amount of neutralizing alkali added required for the treatment of used wastewater is reduced by the amount of the regenerated components consumed in the neutralization reaction during regeneration.
 本開示では、超純水を製造する工程で生じる排水に対し適切な処理を行うことが可能である。 In the present disclosure, it is possible to appropriately treat the wastewater generated in the process of producing ultrapure water.
図1は第一実施形態の排水処理装置を備えた超純水製造システムを示す構成図である。FIG. 1 is a configuration diagram showing an ultrapure water production system including the wastewater treatment apparatus of the first embodiment. 図2は第一比較例の超純水製造システムを示す構成図である。FIG. 2 is a configuration diagram showing an ultrapure water production system of the first comparative example. 図3は第二比較例の超純水製造システムを示す構成図である。FIG. 3 is a configuration diagram showing an ultrapure water production system of the second comparative example.
 以下、図面を参照して第一実施形態の排水処理装置12と、この排水処理装置12を備えた超純水製造システム16について説明する。なお、この超純水製造システム16は、超純水を製造する過程において、化学薬品を用いない、いわゆるノンケミカルタイプの超純水製造システムである。超純水製造システム16は化学薬品を用いないため、以下に挙げる各種の効果を有する。なお、これらの効果はあくまで例示である。
・化学薬品の使用に伴う不具合、たとえば化学薬品の残存による超純水システムへの影響がない。
・超純水の品質変動等がない。
・化学薬品取り扱いにかかわる危険性を回避できる。
・排水処理への負荷を削減でき、さらに環境への負荷を下げることができる。
Hereinafter, the wastewater treatment apparatus 12 of the first embodiment and the ultrapure water production system 16 provided with the wastewater treatment apparatus 12 will be described with reference to the drawings. The ultrapure water production system 16 is a so-called non-chemical type ultrapure water production system that does not use chemicals in the process of producing ultrapure water. Since the ultrapure water production system 16 does not use chemicals, it has various effects listed below. It should be noted that these effects are merely examples.
-There is no effect on the ultrapure water system due to problems associated with the use of chemicals, such as residual chemicals.
-There is no change in the quality of ultrapure water.
・ It is possible to avoid the danger of handling chemicals.
-The load on wastewater treatment can be reduced, and the load on the environment can be further reduced.
 この超純水製造システム16は、超純水を製造するための超純水製造装置14と、この超純水製造装置14で生じた排水を処理するための排水処理装置12と、使用済の超純水(酸排水)を回収してあらためて超純水製造に用いるための排水回収装置42と、を含む。 The ultrapure water production system 16 includes an ultrapure water production apparatus 14 for producing ultrapure water, a wastewater treatment apparatus 12 for treating wastewater generated by the ultrapure water production apparatus 14, and used water. It includes a wastewater recovery device 42 for recovering ultrapure water (acid drainage) and using it again for producing ultrapure water.
 超純水製造装置14は、原水タンク18、前処理部72、一次純水製造部74、二次純水製造部76及びユースポイント34を有している。前処理部72は、砂濾過装置20、活性炭装置22を有している。一次純水製造部74は、第一膜濾過装置24、第二膜濾過装置26、脱気装置28、脱イオン装置30を有している。二次純水製造部76は、ポリッシャー32を有している。 The ultrapure water production apparatus 14 has a raw water tank 18, a pretreatment unit 72, a primary pure water production unit 74, a secondary pure water production unit 76, and a use point 34. The pretreatment unit 72 has a sand filtration device 20 and an activated carbon device 22. The primary pure water production unit 74 includes a first membrane filtration device 24, a second membrane filtration device 26, a degassing device 28, and a deionizing device 30. The secondary pure water production unit 76 has a polisher 32.
 原水タンク18には、この超純水製造装置14に供給される原水が収容される。原水としては、工業用水、水道水、地下水、河川水等を挙げることができる。この原水は、砂濾過装置20に供給される。 The raw water tank 18 accommodates the raw water supplied to the ultrapure water production apparatus 14. Examples of raw water include industrial water, tap water, groundwater, river water and the like. This raw water is supplied to the sand filtration device 20.
 砂濾過装置20は、供給された原水を、濾材としての濾過砂に通過させることで、原水から、微細な異物を除去する装置である。砂濾過装置20に加えて、たとえば凝集沈殿装置を用いて、異物を沈殿させて原水から除去してもよい。砂濾過装置20を通過した水は、被処理水として活性炭装置22に供給される。 The sand filtration device 20 is a device that removes fine foreign substances from the raw water by passing the supplied raw water through the filtered sand as a filter medium. In addition to the sand filtration device 20, for example, a coagulation sedimentation device may be used to precipitate foreign substances and remove them from the raw water. The water that has passed through the sand filtration device 20 is supplied to the activated carbon device 22 as water to be treated.
 活性炭装置22は、容器内に粒子状の活性炭が充填された構成である。この活性炭には、多数の細孔が形成されており、供給された被処理水をこの活性炭に通過させることで、砂濾過装置20では除去できなかった異物、例えば後続装置の劣化原因になる塩素等を活性炭の細孔に捕捉し、被処理水から除去あるいは分解する。活性炭装置22によって異物が除去された被処理水は、第一膜濾過装置24に供給される。活性炭装置22によって除去された異物を多く含む水は、濾過装置36で濾過された後、排水利用設備38に送られる。 The activated carbon device 22 has a structure in which a container is filled with particulate activated carbon. A large number of pores are formed in this activated carbon, and by passing the supplied water to be treated through the activated carbon, foreign matter that cannot be removed by the sand filtration device 20, for example, chlorine that causes deterioration of the subsequent device. Etc. are captured in the pores of activated carbon and removed or decomposed from the water to be treated. The water to be treated from which foreign substances have been removed by the activated carbon device 22 is supplied to the first membrane filtration device 24. The water containing a large amount of foreign matter removed by the activated carbon device 22 is filtered by the filtration device 36 and then sent to the wastewater utilization facility 38.
 濾過装置36としては、例えば精密濾過膜(Microfiltration Membrane:MF膜)装置や、砂濾過装置を好適に使用できる。 As the filtration device 36, for example, a microfiltration membrane (MF membrane) device or a sand filtration device can be preferably used.
 第一膜濾過装置24は、一例として、逆浸透膜に被処理水を通過させることで、被処理水に対し脱塩処理を行う逆浸透装置である。この脱塩処理により、被処理水から硬度成分、すなわちカルシウムイオン(Ca2+)、マグネシウムイオン(Mg2+)、重炭酸イオン等が除去される。実際には、被処理水が、硬度成分が高濃度に濃縮された水(以下、「脱塩後排水」という)と、硬度成分が低濃度に希薄された水と、に分けられる。硬度成分が低濃度に希薄された水は、被処理水として、第二膜濾過装置26に供給される。これに対し、脱塩後排水は、後述するように、排水処理装置12に供給される。 The first membrane filtration device 24 is, for example, a reverse osmosis device that desalinates the water to be treated by passing the water to be treated through the reverse osmosis membrane. By this desalting treatment, hardness components such as calcium ion (Ca 2+ ), magnesium ion (Mg 2+ ), bicarbonate ion and the like are removed from the water to be treated. Actually, the water to be treated is divided into water in which the hardness component is concentrated to a high concentration (hereinafter referred to as "drainage after desalting") and water in which the hardness component is diluted to a low concentration. The water in which the hardness component is diluted to a low concentration is supplied to the second membrane filtration device 26 as water to be treated. On the other hand, the desalted wastewater is supplied to the wastewater treatment device 12 as described later.
 このように被処理水に対し脱塩処理を行う第一膜濾過装置24としては、例えばナノ膜濾過装置を使用してもよい。ただし、塩除去率や、他に被処理水に含まれている不純物の除去率を高くする観点からは、上記した逆浸透膜を用いた装置であることが好ましい。 As the first membrane filtration device 24 that desalinates the water to be treated in this way, for example, a nanomembrane filtration device may be used. However, from the viewpoint of increasing the salt removal rate and the removal rate of other impurities contained in the water to be treated, the device using the reverse osmosis membrane described above is preferable.
 第二膜濾過装置26では、一例として、第一膜濾過装置24と同様に、逆浸透膜に被処理水を通過させることで、被処理水に対し再度の脱塩処理を行う。再度の脱塩処理により、被処理水から、硬度成分がさらに除去される。硬度成分がさらに低濃度に希薄された水は、被処理水として、脱気装置28に供給される。これに対し、第二膜濾過装置26における脱塩後排水は、第一膜濾過装置24による脱塩後排水と異なり、硬度成分は低いので、原水タンク18に戻され、あらためて超純水の製造に用いられる。 In the second membrane filtration device 26, as an example, similarly to the first membrane filtration device 24, the water to be treated is re-demineralized by passing the water to be treated through the reverse osmosis membrane. The hardness component is further removed from the water to be treated by the re-salting treatment. The water in which the hardness component is diluted to a lower concentration is supplied to the degassing device 28 as water to be treated. On the other hand, the drainage after desalting in the second membrane filtration device 26 is returned to the raw water tank 18 because it has a low hardness component unlike the drainage after desalting by the first membrane filtration device 24, and the production of ultrapure water is performed again. Used for.
 脱気装置28は、たとえば、水分を透過させず気体は透過させる気体分離膜を用いた膜脱気装置である。この脱気装置28により、被処理水中の気体、特に炭酸ガスを除去できる。脱気装置28で処理された被処理水は、炭酸ガスの濃度が低い状態となり、被処理水として脱イオン装置30に供給される。 The degassing device 28 is, for example, a membrane degassing device using a gas separation film that does not allow moisture to permeate but allows gas to permeate. The degassing device 28 can remove gas in the water to be treated, particularly carbon dioxide gas. The water to be treated by the degassing device 28 has a low concentration of carbon dioxide gas and is supplied to the deionizing device 30 as water to be treated.
 脱イオン装置30は、被処理液に含まれる有機酸などの不純物イオンを除去する装置である。 The deionization device 30 is a device that removes impurity ions such as organic acids contained in the liquid to be treated.
 脱イオン装置30としては、たとえば、電気脱イオン装置(Electro Deionization:EDI)や混床式イオン交換樹脂装置(Mixed Bed Ion Exchange Resin Equipment)を好適に使用できる。イオン交換樹脂の再生のために薬品を添加する必要がないという観点からは、電気脱イオン装置が好ましい。 As the deionizing device 30, for example, an electro deionizing device (EDI) or a mixed bed type ion exchange resin device (Mixed Bed Ion Exchange Resin Equipment) can be preferably used. An electrodeionizer is preferable from the viewpoint that it is not necessary to add a chemical for the regeneration of the ion exchange resin.
 電気脱イオン装置は、陰イオン交換膜と陽イオン交換膜で形成された空隙にイオン交換樹脂を充填して、脱塩室、濃縮室を形成し、直流電流を印加して被処理液中のイオンを除去するよう構成されている。電気脱イオン装置において、例えば、被処理水は脱塩室及び濃縮室に並行して供給され、脱塩室の陰イオン交換樹脂と陽イオン交換樹脂の混合体が被処理液中の不純物イオンを吸着する。吸着された不純物イオンは直流電流の作用により濃縮室に移行される。濃縮室の濃縮水は、例えば原水タンク18に戻される。 The electrodeionizer fills the voids formed by the anion exchange membrane and the cation exchange membrane with an ion exchange resin to form a desalting chamber and a concentration chamber, and applies a DC current to the liquid to be treated. It is configured to remove ions. In the electrodeionizer, for example, the water to be treated is supplied in parallel to the desalination chamber and the concentration chamber, and the mixture of the anion exchange resin and the cation exchange resin in the desalination chamber removes impurity ions in the liquid to be treated. Adsorb. The adsorbed impurity ions are transferred to the concentration chamber by the action of direct current. The concentrated water in the concentration chamber is returned to, for example, the raw water tank 18.
 混床式イオン交換樹脂装置は、たとえば、円筒形の密閉容器に陽イオン交換樹脂と陰イオン交換樹脂が混合された混床式イオン交換樹脂が充填された構造である。脱イオン装置30によって不純物イオンを除去された水は、被処理水として、ポリッシャー32に供給される。 The mixed bed type ion exchange resin device has, for example, a structure in which a cylindrical closed container is filled with a mixed bed type ion exchange resin in which a cation exchange resin and an anion exchange resin are mixed. The water from which impurity ions have been removed by the deionization device 30 is supplied to the polisher 32 as water to be treated.
 一次純水製造部74は上記した構成に限定されない。例えば他に、被処理水中の有機物を酸化分解する目的で紫外線酸化装置を有していてもよい。また、被処理水中の気体として特に炭酸ガスを除去する上記構成の脱気装置28に代えて、あるいは併用して、被処理水中の気体として特に溶存酸素を除去できる構成の脱気装置を有していてもよい。例えば、被処理水の流れの上流側から順に、炭酸ガスを除去する脱気装置、紫外線照射装置、溶存酸素を除去する脱気装置、を有していてもよい。 The primary pure water production unit 74 is not limited to the above configuration. For example, in addition, an ultraviolet oxidizing device may be provided for the purpose of oxidatively decomposing organic substances in the water to be treated. Further, it has a degassing device having a configuration capable of removing dissolved oxygen as a gas in the water to be treated, in place of or in combination with the degassing device 28 having the above configuration for removing carbon dioxide gas as a gas in the water to be treated. May be. For example, a degassing device for removing carbon dioxide gas, an ultraviolet irradiation device, and a degassing device for removing dissolved oxygen may be provided in order from the upstream side of the flow of water to be treated.
 ポリッシャー32では、被処理水に対する最終的な処理、すなわち一次純水中の極微量の不純物の除去を行い、超純水を得る。ポリッシャー32は、例えば非再生型の混床式イオン交換樹脂装置である。 The polisher 32 performs final treatment on the water to be treated, that is, removal of a very small amount of impurities in the primary pure water to obtain ultrapure water. The polisher 32 is, for example, a non-regenerative mixed bed type ion exchange resin device.
 なお、二次純水製造部76では、ポリッシャー32の前後に、熱交換器を設け、被処理水に対する熱交換(加熱又は冷却)による温度調整を行うようにしてもよい。熱交換器としては、例えば、プレート型の熱交換器を挙げることができるが、具体的構造は特に限定されない。 The secondary pure water production unit 76 may be provided with heat exchangers before and after the polisher 32 to adjust the temperature by heat exchange (heating or cooling) with the water to be treated. Examples of the heat exchanger include a plate-type heat exchanger, but the specific structure is not particularly limited.
 また、二次純水製造部76では、ポリッシャー32の前後において、殺菌手段等により微生物の混入対策を行う等、必要に応じて各種の処理装置を設けて、所望の純度を有する超純水を得るようにすることもできる。こうした処理装置の例としては、紫外線酸化装置、過酸化水素除去装置、脱気装置、限外濾過(Ultrafiltration:UF)膜装置が挙げられる。 Further, in the secondary pure water production unit 76, various treatment devices are provided before and after the polisher 32 as necessary, such as taking measures against contamination of microorganisms by sterilizing means or the like, to obtain ultrapure water having a desired purity. You can also get it. Examples of such processing devices include ultraviolet oxidizing devices, hydrogen peroxide removing devices, degassing devices, and ultrafiltration (UF) membrane devices.
 過酸化水素除去装置は、水中の過酸化水素を分解除去するための装置である。例えば、過酸化水素除去装置は、パラジウム(Pd)担持樹脂によって過酸化水素を分解除去するパラジウム担持樹脂装置や、塩基性陰イオン交換樹脂に亜硫酸基及び/又は亜硫酸水素基を有する還元性樹脂を充填した還元性樹脂装置などである。 The hydrogen peroxide removing device is a device for decomposing and removing hydrogen peroxide in water. For example, the hydrogen peroxide removing device includes a palladium-supporting resin device that decomposes and removes hydrogen peroxide with a palladium (Pd) -supporting resin, or a reducing resin having a sulfite group and / or a hydrogen peroxide group in a basic anion exchange resin. It is a filled reducing resin device or the like.
 ポリッシャー32(超純水製造装置14)によって得られた超純水は、使用場所であるユースポイント34へ送出される。ユースポイント34からは、超純水を使用した後の水を使用済排水として排出する。この使用済排水は、水素イオン(H)を含む酸排水である。 The ultrapure water obtained by the polisher 32 (ultrapure water production apparatus 14) is sent to the use point 34 where it is used. From the use point 34, the water after using the ultrapure water is discharged as used wastewater. This used wastewater is acid wastewater containing hydrogen ions (H +).
 ユースポイント34としては、例えば半導体や液晶パネル、ディスプレイの製造工場が挙げられる。また、使用済排水としては、例えば酸を用いた洗浄排水やエッチング排水、レジスト除去排水、CMP排水が挙げられる。 Examples of the use point 34 include manufacturing factories for semiconductors, liquid crystal panels, and displays. Examples of used wastewater include cleaning wastewater using acid, etching wastewater, resist removal wastewater, and CMP wastewater.
 排水回収装置42は、使用済排水タンク44、活性炭装置46及び膜濾過装置48を有している。ユースポイント34から排出された使用済排水は、使用済排水タンク44に収容される。そして、たとえば、使用済排水タンク44が満杯状態になると、溢れた使用済排水が、活性炭装置46に送られる。 The wastewater recovery device 42 has a used drainage tank 44, an activated carbon device 46, and a membrane filtration device 48. The used wastewater discharged from the use point 34 is stored in the used drainage tank 44. Then, for example, when the used drainage tank 44 is full, the overflowing used drainage is sent to the activated carbon device 46.
 活性炭装置46では、使用済排水に含まれる異物を、活性炭の細孔に捕捉することで除去する。活性炭装置46によって異物が除去された使用済排水は、膜濾過装置48に送られる。 The activated carbon device 46 removes foreign substances contained in the used wastewater by capturing them in the pores of the activated carbon. The used wastewater from which foreign substances have been removed by the activated carbon device 46 is sent to the membrane filtration device 48.
 膜濾過装置48では、一例として、逆浸透膜に使用済排水を通過させることで、被処理水から、塩化物イオン(Cl)、硝酸イオン(NO )、硫酸イオン(SO 2-)、フッ素イオン(F)及びリン酸イオン(PO 2-)等の酸成分が除去される。酸成分が低濃度とされた使用済排水は、原水タンク18に戻され、あらためて超純水の製造に用いられる。膜濾過装置48において酸成分が濃縮されて高濃度とされた使用済排水は、水素イオン濃度が高濃度となっており、排水処理装置12に送られる。 In membrane filtering device 48, as an example, by passing the spent effluent in the reverse osmosis membrane, the water to be treated, chloride ion (Cl -), nitrate ion (NO 3 -), sulfate ion (SO 4 2- ), fluorine ion (F -) and phosphate ion (PO 4 2-) acid component or the like is eliminated. The used wastewater having a low acid component is returned to the raw water tank 18 and used again for the production of ultrapure water. The used wastewater having a high concentration of acid components concentrated in the membrane filtration device 48 has a high hydrogen ion concentration and is sent to the wastewater treatment device 12.
 排水処理装置12は、高硬度水タンク54、弱酸性陽イオン交換装置56、脱気装置58、塩除去装置60、濃縮用タンク62及び膜濾過装置64を有している。 The wastewater treatment device 12 includes a high hardness water tank 54, a weakly acidic cation exchange device 56, a degassing device 58, a salt removing device 60, a concentration tank 62, and a membrane filtration device 64.
 排水処理装置12の高硬度水タンク54には、第一膜濾過装置24で生じた脱塩後排水が収容される。この脱塩後排水は、高硬度水タンク54から、弱酸性陽イオン交換装置56に送られる。 The high hardness water tank 54 of the wastewater treatment device 12 accommodates the desalted wastewater generated by the first membrane filtration device 24. The drainage after desalting is sent from the high hardness water tank 54 to the weakly acidic cation exchange device 56.
 弱酸性陽イオン交換装置56は、弱酸性陽イオン交換樹脂を有している。この弱酸性陽イオン交換樹脂は、イオン交換成分として水素イオン(H)を有しており、粒子状あるいは繊維状とされて、容器に封入されている。弱酸性陽イオン交換樹脂に脱塩後排水が触れつつ弱酸性陽イオン交換装置56を通過すると、脱塩後排水の硬度成分であるカルシウムイオン及びマグネシウムイオンが、弱酸性陽イオン交換樹脂の水素イオンと置き換えられる。硬度成分が少なくなった脱塩後排水は、処理済水として、脱気装置58に送られる。 The weakly acidic cation exchange device 56 has a weakly acidic cation exchange resin. This weakly acidic cation exchange resin has hydrogen ions (H + ) as an ion exchange component, is in the form of particles or fibers, and is sealed in a container. When the weakly acidic cation exchange resin is touched by the drainage after desalting and passes through the weakly acidic cation exchange device 56, the calcium ions and magnesium ions, which are the hardness components of the drainage after desalting, are changed to the hydrogen ions of the weakly acidic cation exchange resin. Is replaced with. The desalted wastewater having a reduced hardness component is sent to the degassing device 58 as treated water.
 脱気装置58は、処理済水から、炭酸ガス等の溶存ガスの除去を行う。脱気装置58としては、たとえば真空脱気装置、常圧脱気装置又は膜脱気装置を挙げることができるが、これらに限定されない。 The degassing device 58 removes dissolved gas such as carbon dioxide from the treated water. Examples of the degassing device 58 include, but are not limited to, a vacuum degassing device, a normal pressure degassing device, and a membrane degassing device.
 コストを低くする観点からは、常圧脱気装置又は膜脱気装置が好ましく、常圧脱気装置が更に好ましい。また、管理を容易にする観点からは、膜脱気装置が好ましい。 From the viewpoint of reducing the cost, a normal pressure degassing device or a membrane degassing device is preferable, and a normal pressure degassing device is more preferable. Further, from the viewpoint of facilitating management, a membrane deaerator is preferable.
 弱酸性陽イオン交換装置56の処理済水は、脱塩後排水に含まれていた重炭酸イオンとイオン交換成分として有されていた水素イオンの中和反応により生成された炭酸ガスが含まれた、酸性の液となっている。この処理済水に対して脱気処理を行うことで、酸を添加する必要なく、効率よく炭酸ガスを除去することができる。 The treated water of the weakly acidic cation exchange device 56 contained carbon dioxide gas generated by the neutralization reaction of bicarbonate ions contained in the wastewater after desalting and hydrogen ions contained as an ion exchange component. , It is an acidic liquid. By degassing the treated water, carbon dioxide gas can be efficiently removed without the need to add an acid.
 脱気装置58によって溶存ガスが除去された処理済水は、塩除去装置60に送られる。 The treated water from which the dissolved gas has been removed by the degassing device 58 is sent to the salt removing device 60.
 塩除去装置60では、処理済水から、残存している塩類の除去を行う。塩除去装置60としては、たとえば、電気透析膜で塩を除去する電気透析装置や、逆浸透膜により塩を除去する膜濾過装置を挙げることができる。塩除去装置60によって塩類が除去された処理済水は、排水利用設備38に送られて利用される。排水利用設備38としては、たとえば、スクラバー設備、クーリングタワー設備、及びトイレ浄化設備等の中水設備を挙げることができる。 The salt removing device 60 removes residual salts from the treated water. Examples of the salt removing device 60 include an electrodialysis device that removes salt with an electrodialysis membrane and a membrane filtration device that removes salt with a reverse osmosis membrane. The treated water from which salts have been removed by the salt removing device 60 is sent to the wastewater utilization facility 38 for use. Examples of the wastewater utilization equipment 38 include reclaimed water equipment such as scrubber equipment, cooling tower equipment, and toilet purification equipment.
 塩除去装置60によって塩類が除去された処理済水は、超純水製造システム16に供給される原水と比較すると、不純物濃度が高い排水である。排水利用設備38は、このように不純物濃度が高い排水であっても利用できる設備である。 The treated water from which salts have been removed by the salt removing device 60 is wastewater having a higher impurity concentration than the raw water supplied to the ultrapure water production system 16. The wastewater utilization facility 38 is a facility that can be used even for wastewater having such a high impurity concentration.
 弱酸性陽イオン交換装置56は、硬度成分以外の除去率が低いため、第一膜濾過装置24で生じた脱塩後排水を超純水製造工程に戻す目的では一般に使用されない。しかし、上記の排水利用設備38で利用できる排水を製造する目的には好適に使用できる。 Since the weakly acidic cation exchange device 56 has a low removal rate other than the hardness component, it is not generally used for the purpose of returning the drainage after desalting generated in the first membrane filtration device 24 to the ultrapure water production process. However, it can be suitably used for the purpose of producing wastewater that can be used in the wastewater utilization facility 38 described above.
 弱酸性イオン交換装置56と排水利用設備38の間の装置構成や運転条件は、排水利用設備38の要求水質等を考慮して適宜決定することができる。例えば、弱酸性陽イオン交換装置56の処理済水に残存している塩を除去する必要がなければ、塩除去装置60は省略してもよい。排水利用設備38が上記のようなスクラバー設備、クーリングタワー設備、及びトイレ浄化設備等の中水設備であれば、低コストかつ/又は管理が容易な装置構成や運転条件も適用できて好ましい。 The device configuration and operating conditions between the weakly acidic ion exchange device 56 and the wastewater utilization facility 38 can be appropriately determined in consideration of the required water quality of the wastewater utilization facility 38 and the like. For example, if it is not necessary to remove the salt remaining in the treated water of the weakly acidic cation exchange device 56, the salt removing device 60 may be omitted. If the wastewater utilization facility 38 is a reclaimed water facility such as a scrubber facility, a cooling tower facility, and a toilet purification facility as described above, it is preferable that a device configuration and operating conditions that are low cost and / or easy to manage can be applied.
 排水処理装置12の濃縮用タンク62には、膜濾過装置48において、水素イオン濃度が高濃度とされた使用済排水が収容される。濃縮用タンク62に収容された使用済排水は、膜濾過装置64に送られる。膜濾過装置64では、膜濾過装置48と同様に、逆浸透膜に使用済排水を通過させる。これにより、使用済排水において、すなわち水素イオン濃度がさらに高くなった成分が抽出され、濃縮用タンク62に戻される。濃縮用タンク62と膜濾過装置64との間で使用済排水を循環させることで、使用済排水の水素イオン濃度を高めることができる。膜濾過装置64において、水素イオン濃度を濃縮した後の使用済排水は、使用済排水タンク44に戻される。 The concentration tank 62 of the wastewater treatment device 12 accommodates used wastewater having a high hydrogen ion concentration in the membrane filtration device 48. The used wastewater contained in the concentration tank 62 is sent to the membrane filtration device 64. In the membrane filtration device 64, the used wastewater is passed through the reverse osmosis membrane in the same manner as in the membrane filtration device 48. As a result, in the used wastewater, that is, the component having a higher hydrogen ion concentration is extracted and returned to the concentration tank 62. By circulating the used wastewater between the concentration tank 62 and the membrane filtration device 64, the hydrogen ion concentration of the used wastewater can be increased. In the membrane filtration device 64, the used wastewater after concentrating the hydrogen ion concentration is returned to the used drainage tank 44.
 このように、濃縮用タンク62と膜濾過装置64との間で循環されて水素イオン濃度が高められた使用済排水は、弱酸性陽イオン交換装置56に送られる。 In this way, the used wastewater circulated between the concentration tank 62 and the membrane filtration device 64 and whose hydrogen ion concentration is increased is sent to the weakly acidic cation exchange device 56.
 弱酸性陽イオン交換装置56では、弱酸性陽イオン交換樹脂の水素イオンが、脱塩後排水の硬度成分と置き換えられているので、弱酸性陽イオン交換樹脂には硬度成分が吸着されている。これに対し、使用済排水に含まれる水素イオンは、弱酸性陽イオン交換樹脂の硬度成分と置換することで、弱酸性陽イオン交換樹脂を再生する再生成分として機能する。すなわち、弱酸性陽イオン交換装置56に、濃縮用タンク62から使用済排水を送ることで、この使用済排水を再生剤として再利用し、弱酸性陽イオン交換装置56の弱酸性陽イオン交換樹脂を再生することができる。特に、濃縮用タンク62では、使用済排水の水素イオン濃度が高められているので、弱酸性陽イオン交換装置56の弱酸性陽イオン交換樹脂を効率的に再生できる。 In the weakly acidic cation exchange device 56, the hydrogen ions of the weakly acidic cation exchange resin are replaced with the hardness component of the drainage after desalting, so that the hardness component is adsorbed on the weakly acidic cation exchange resin. On the other hand, the hydrogen ions contained in the used wastewater function as a regenerating component for regenerating the weakly acidic cation exchange resin by replacing the hardness component of the weakly acidic cation exchange resin. That is, by sending the used wastewater from the concentration tank 62 to the weakly acidic cation exchange device 56, the used wastewater is reused as a regenerating agent, and the weakly acidic cation exchange resin of the weakly acidic cation exchange device 56 is used. Can be played. In particular, in the concentration tank 62, since the hydrogen ion concentration of the used wastewater is increased, the weakly acidic cation exchange resin of the weakly acidic cation exchange device 56 can be efficiently regenerated.
 弱酸性陽イオン交換装置56において、弱酸性陽イオン交換樹脂の再生に使用された後の使用済排水は、残存している酸を必要に応じてアルカリで中和した後、排水処理装置12の外部に排出される。また、塩除去装置60から排水利用設備38に送られなかった処理済水も、排水処理装置12の外部に排出される。実質的に、弱酸性陽イオン交換装置56からの排水、及び塩除去装置60からの排水が、超純水製造システム16からの排水となる。 In the weakly acidic cation exchange device 56, the used wastewater after being used for the regeneration of the weakly acidic cation exchange resin is obtained by neutralizing the remaining acid with alkali as necessary, and then in the wastewater treatment device 12. It is discharged to the outside. Further, the treated water that has not been sent from the salt removing device 60 to the wastewater utilization facility 38 is also discharged to the outside of the wastewater treatment device 12. Substantially, the wastewater from the weakly acidic cation exchange device 56 and the wastewater from the salt removing device 60 become the wastewater from the ultrapure water production system 16.
 超純水を使用した後の使用済排水に含まれる再生成分を用いて、弱酸性陽イオン交換樹脂を再生する方法は、本実施形態の方法に限定されない。 The method of regenerating the weakly acidic cation exchange resin using the regenerated component contained in the used wastewater after using ultrapure water is not limited to the method of the present embodiment.
 例えば、使用後排水が、ナトリウム濃度の高い使用後排水である場合には、イオン交換成分がナトリウムイオンであるNa型に弱酸性陽イオン交換樹脂を再生させてもよい。このような排水の例としては、苛性ソーダを添加して混床式イオン交換樹脂や陰イオン交換樹脂の再生処理を行った後の、再生排水が挙げられる。 For example, when the post-use wastewater is a post-use wastewater having a high sodium concentration, a weakly acidic cation exchange resin may be regenerated into a Na type having an ion exchange component of sodium ions. Examples of such wastewater include recycled wastewater after regenerating a mixed bed type ion exchange resin or anion exchange resin by adding caustic soda.
 ただし、再生が容易であり、再生処理に薬品の添加が不必要という観点からは、再生成分に水素イオンを用い、イオン交換成分が水素イオンであるH型に弱酸性陽イオン交換樹脂を再生させることが好ましい。 However, from the viewpoint of easy regeneration and no need to add chemicals for the regeneration process, hydrogen ions are used as the regeneration component, and the weakly acidic cation exchange resin is regenerated in the H type in which the ion exchange component is hydrogen ions. Is preferable.
 使用済排水の濃縮を、弱酸性陽イオン交換樹脂の再生を効果的に行える濃度まで容易に行う観点からは、ユースポイント34から排出される使用済排水において、例えば再生成分の濃度は40ppm as CaCO以上が好ましく、100ppm as CaCO以上がより好ましい。また、この使用済排水のpHは4以下が好ましく、3以下がより好ましい。 From the viewpoint of easily concentrating the used wastewater to a concentration at which the weakly acidic cation exchange resin can be effectively regenerated, in the used wastewater discharged from the use point 34, for example, the concentration of the regenerated component is 40 ppm as CaCO. 3 or more is preferable, and 100 ppm as CaCO 3 or more is more preferable. The pH of the used wastewater is preferably 4 or less, more preferably 3 or less.
 一方、排水回収装置42によって不純物を除去した使用済排水を超純水製造工程に戻す観点からは、ユースポイント34から排出される使用済排水において、例えば再生成分の濃度は300ppm as CaCO以下が好ましく、250ppm as CaCO以下がより好ましい。また、この使用済排水のpHは2以上が好ましい。 On the other hand, from the viewpoint of returning the used wastewater from which impurities have been removed by the wastewater recovery device 42 to the ultrapure water production process, in the used wastewater discharged from the use point 34, for example, the concentration of the regenerated component is 300 ppm as CaCO 3 or less. Preferably, 250 ppm as CaCO 3 or less is more preferable. Moreover, the pH of this used wastewater is preferably 2 or more.
 弱酸性陽イオン交換樹脂の再生を効果的に行う観点からは、弱酸性陽イオン交換装置56に送られる使用済排水において、例えば再生成分の濃度は1重量% as CaCO以上であることが好ましく、3重量% as CaCO以上であることがより好ましい。また、この使用済み排水のpHは2以下が好ましく、1以下がさらに好ましい。 From the viewpoint of effectively regenerating the weakly acidic cation exchange resin, in the used wastewater sent to the weakly acidic cation exchange device 56, for example, the concentration of the regenerated component is preferably 1% by weight as CaCO 3 or more. More preferably, it is 3 % by weight as CaCO 3 or more. The pH of the used wastewater is preferably 2 or less, more preferably 1 or less.
 一方、再生に伴う体積変化が急激に起こることで樹脂が破損するリスクや、装置の使用部材が腐食するリスク等を抑える観点からは、弱酸性陽イオン交換装置56に送られる使用済排水において、例えば再生成分の濃度は、8重量% as CaCO以下であることが好ましく、5重量% as CaCO以下であることがより好ましい。また、この使用済排水のpHは0以上が好ましい。 On the other hand, from the viewpoint of suppressing the risk of resin breakage due to sudden volume change due to regeneration and the risk of corrosion of the members used in the device, the used wastewater sent to the weakly acidic cation exchange device 56 is used. For example, the concentration of the regenerated component is preferably 8% by weight as CaCO 3 or less, and more preferably 5% by weight as CaCO 3 or less. Moreover, the pH of this used wastewater is preferably 0 or more.
 次に、本実施形態の超純水製造システム16の作用、排水処理方法及び超純水製造方法を、図2に示す第一比較例の超純水製造システム82、及び図3に示す第二比較例の超純水製造システム92と比較しつつ説明する。なお、図2及び図3において、図1と同様の要素については、同一符号を付している。また、図1~図3には、それぞれの超純水製造システムにおいて、各部分を流れる水の量が、円内の数字で示されている。各数字の単位は、m/hである。ここで示す水の量は、説明の便宜のための一例である。 Next, the operation of the ultrapure water production system 16 of the present embodiment, the wastewater treatment method, and the ultrapure water production method are described in the ultrapure water production system 82 of the first comparative example shown in FIG. 2 and the second shown in FIG. This will be described while comparing with the ultrapure water production system 92 of the comparative example. In FIGS. 2 and 3, the same elements as those in FIG. 1 are designated by the same reference numerals. Further, in FIGS. 1 to 3, the amount of water flowing through each portion in each ultrapure water production system is indicated by a number in a circle. The unit of each number is m 3 / h. The amount of water shown here is an example for convenience of explanation.
 また、表1には、本実施形態、第一比較例及び第二比較例の超純水製造システムにおける、主要な部分での水の量が記載されている。 In addition, Table 1 shows the amount of water in the main part of the ultrapure water production system of the present embodiment, the first comparative example and the second comparative example.
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000001

 
 第一実施形態、第一比較例及び第二比較例のそれぞれの超純水製造システムにおいて、ユースポイント34で使用される超純水の量は200m/hとし、ユースポイント34から排出される酸排水の量は、ユースポイント34で使用された超純水の50%の100m/hとし、排水利用設備38で利用される排水の量は、ユースポイント34で使用された超純水の量の25%の50m/hとしている。 In each of the ultrapure water production systems of the first embodiment, the first comparative example and the second comparative example, the amount of ultrapure water used at the use point 34 is 200 m 3 / h, and the ultrapure water is discharged from the use point 34. The amount of acid drainage is 100 m 3 / h, which is 50% of the ultrapure water used at use point 34, and the amount of wastewater used at the wastewater utilization facility 38 is that of the ultrapure water used at use point 34. It is set to 50 m 3 / h, which is 25% of the amount.
 図2に示す第一比較例の超純水製造システム82は、第一実施形態の超純水製造システム16における排水処理装置12が設けられていない。そして、第一膜濾過装置24で生じた脱塩後排水が、超純水製造システム82の外部に排出される。また、排水回収装置42の膜濾過装置48からも、使用済排水の一部が超純水製造システム82の外部に排出される。 The ultrapure water production system 82 of the first comparative example shown in FIG. 2 is not provided with the wastewater treatment device 12 in the ultrapure water production system 16 of the first embodiment. Then, the drainage after desalting generated in the first membrane filtration device 24 is discharged to the outside of the ultrapure water production system 82. Further, a part of the used wastewater is also discharged to the outside of the ultrapure water production system 82 from the membrane filtration device 48 of the wastewater recovery device 42.
 図3に示す第二比較例の超純水製造システム92では、活性炭装置22と第一膜濾過装置24との間で、分散剤を投入する構成である。分散剤は、スケールインヒビターとも称され、被処理水中の硬度成分を溶媒中に分散させて、不純物の結晶成長を抑制する作用を有する。そして、第一膜濾過装置24から排出された脱塩後排水が、膜濾過装置94によって濾過されて原水タンク18に戻されると共に、一部は超純水製造システム92の外部に排出される。 The ultrapure water production system 92 of the second comparative example shown in FIG. 3 has a configuration in which a dispersant is charged between the activated carbon device 22 and the first membrane filtration device 24. The dispersant, also called a scale inhibitor, has an action of dispersing the hardness component in the water to be treated in a solvent and suppressing the crystal growth of impurities. Then, the demineralized drainage discharged from the first membrane filtration device 24 is filtered by the membrane filtration device 94 and returned to the raw water tank 18, and a part of the drainage is discharged to the outside of the ultrapure water production system 92.
 図1に示すように、本実施形態の超純水製造システム16では、原水タンク18へ送られる原水(154.5m/h)の一部(9m/h)が排水利用設備38に送られるが、残り(145.5m/h)は原水タンク18に送られる。原水タンク18には、後述するように、第二膜濾過装置26から戻る被処理水(10m/h)、脱イオン装置30から戻る被処理水(10m/h)、及び膜濾過装置48から戻る使用済排水(99.5m/h)も収容されている。そして、原水タンク18に収容された原水が、砂濾過装置20及び活性炭装置22へ順次送られる(265m/h)。 As shown in FIG. 1, a part of the ultrapure water production system 16 of the present embodiment, the raw water fed to the raw water tank 18 (154.5m 3 / h) ( 9m 3 / h) is sent to the wastewater utilizing facility 38 However, the rest (145.5 m 3 / h) is sent to the raw water tank 18. The raw water tank 18, as described later, the treated water back from the second membrane filtration device 26 (10m 3 / h), treated water back from the deionizer 30 (10m 3 / h), and the membrane filtering device 48 Used drainage (99.5 m 3 / h) returning from is also housed. Then, the raw water contained in the raw water tank 18 is sequentially sent to the sand filtration device 20 and the activated carbon device 22 (265 m 3 / h).
 砂濾過装置20及び活性炭装置22で、原水中の異物が除去された水は、被処理水として第一膜濾過装置24に送られ(260m/h)、さらに被処理水からカルシウムイオン、マグネシウムイオン、重炭酸イオン等が除去され(脱塩され)て、第二膜濾過装置26に送られる(220m/h)。第一膜濾過装置24で生じた脱塩後排水(カルシウムイオン及びマグネシウムイオンの濃度が高い水)は、排水処理装置12の高硬度水タンク54に送られる(40m/h)。 The water from which foreign substances in the raw water have been removed by the sand filtration device 20 and the activated carbon device 22 is sent to the first membrane filtration device 24 as water to be treated (260 m 3 / h), and further, calcium ions and magnesium from the water to be treated. Ions, bicarbonate ions, etc. are removed (demineralized) and sent to the second membrane filtration device 26 (220 m 3 / h). The desalted wastewater (water having a high concentration of calcium ions and magnesium ions) generated in the first membrane filtration device 24 is sent to the high hardness water tank 54 of the wastewater treatment device 12 (40 m 3 / h).
 第二膜濾過装置26では、被処理水から、さらにカルシウムイオン、マグネシウムイオン、重炭酸イオン等が除去され、脱気装置28に送られる(210m/h)。第二膜濾過装置26から脱気装置28に送られなかった被処理水は、原水タンク18に戻される(10m/h)。 In the second membrane filtration device 26, calcium ions, magnesium ions, bicarbonate ions and the like are further removed from the water to be treated and sent to the degassing device 28 (210 m 3 / h). The water to be treated that has not been sent from the second membrane filtration device 26 to the degassing device 28 is returned to the raw water tank 18 (10 m 3 / h).
 脱気装置28では、被処理水中の気体、特に炭酸ガスが除去され、炭酸ガス除去後の被処理水は、被処理水として脱イオン装置30に送られる(210m/h)。脱イオン装置30では、被処理液から不純物イオンが除去され、被処理液はポリッシャー32に送られる(200m/h)と共に、ポリッシャー32に送られなかった被処理水は、原水タンク18に戻される(10m/h)。ポリッシャー32では、被処理水に対する最終的な処理を行い、得た超純水がユースポイント34に送られる(200m/h)。ユースポイント34で超純水が使用され、使用した後の水は使用済排水として排出される。使用済排水は、排水回収装置42の使用済排水タンク44に収容される。使用済排水タンク44には、後述するように、膜濾過装置64からも使用済排水が戻される(10.5m/h) In the degassing device 28, the gas in the water to be treated, particularly carbon dioxide gas, is removed, and the water to be treated after removing the carbon dioxide gas is sent to the deionizing device 30 as water to be treated (210 m 3 / h). In the deionization device 30, impurity ions are removed from the liquid to be treated, the liquid to be treated is sent to the polisher 32 (200 m 3 / h), and the water to be treated that was not sent to the polisher 32 is returned to the raw water tank 18. (10m 3 / h). In the polisher 32, the final treatment of the water to be treated is performed, and the obtained ultrapure water is sent to the use point 34 (200 m 3 / h). Ultrapure water is used at use point 34, and the water after use is discharged as used wastewater. The used wastewater is stored in the used drainage tank 44 of the wastewater recovery device 42. As will be described later, the used drainage is returned to the used drainage tank 44 from the membrane filtration device 64 (10.5 m 3 / h).
 排水回収装置42では、使用済排水タンク44の使用済排水が、活性炭装置46に送られ(110.5m/h)、活性炭装置46において、使用済排水に含まれる異物が除去される。さらに、使用済排水は膜濾過装置48に送られて、水素イオン成分が低濃度の使用済排水と、水素イオン濃度が高濃度の使用済排水とが生成される。水素イオン成分が低濃度の使用済排水は原水タンク18に戻され、水素イオン濃度が高濃度の使用済排水は、排水処理装置12の濃縮用タンク62に送られる。 In the wastewater recovery device 42, the used wastewater from the used drainage tank 44 is sent to the activated carbon device 46 (110.5 m 3 / h), and the activated carbon device 46 removes foreign substances contained in the used wastewater. Further, the used wastewater is sent to the membrane filtration device 48 to generate used wastewater having a low concentration of hydrogen ion components and used wastewater having a high concentration of hydrogen ions. The used wastewater having a low hydrogen ion concentration is returned to the raw water tank 18, and the used wastewater having a high hydrogen ion concentration is sent to the concentration tank 62 of the wastewater treatment apparatus 12.
 排水処理装置12の高硬度水タンク54には、超純水製造装置14の第一膜濾過装置24で生じた脱塩後排水が収容されている。この脱塩後排水は、弱酸性陽イオン交換装置56に送られる。そして、脱塩後排水の硬度成分であるカルシウムイオン及びマグネシウムイオンが、弱酸性陽イオン交換樹脂の水素イオンに置き換えられる。脱塩後排水の硬度成分は少なくなり、処理済水として脱気装置58に送られる。脱気装置58では、処理済水から、炭酸ガス等の溶存ガスが除去され、その後、処理済水は塩除去装置60に送られて、さらに塩類が除去される。そして、処理済水は、排水利用設備38に送られて(36m/h)利用されるが、排水利用設備38に送られなかった処理済水は、排水処理装置12の外部に排出される(4m/h)。 The high hardness water tank 54 of the wastewater treatment apparatus 12 contains the desalted wastewater generated by the first membrane filtration apparatus 24 of the ultrapure water production apparatus 14. The drainage after desalting is sent to the weakly acidic cation exchange device 56. Then, the calcium ions and magnesium ions, which are the hardness components of the drainage after desalting, are replaced with the hydrogen ions of the weakly acidic cation exchange resin. After desalting, the hardness component of the wastewater is reduced, and the treated water is sent to the degassing device 58. In the degassing device 58, dissolved gas such as carbon dioxide gas is removed from the treated water, and then the treated water is sent to the salt removing device 60 to further remove salts. Then, the treated water is sent to the wastewater utilization facility 38 (36 m 3 / h) and used, but the treated water that is not sent to the wastewater utilization facility 38 is discharged to the outside of the wastewater treatment device 12. (4m 3 / h).
 弱酸性陽イオン交換装置56では、上記したように、弱酸性陽イオン交換樹脂の水素イオンが、高硬度水のカルシウムイオン及びマグネシウムイオンに置換されるが、弱酸性陽イオン交換装置56には、濃縮用タンク62から、水素イオン濃度が高められた使用済排水が送られる(0.5m/h)。この使用済排水の水素イオンが、弱酸性陽イオン交換樹脂のカルシウムイオン及びマグネシウムイオンと置換されることで、弱酸性陽イオン交換樹脂が再生される。弱酸性陽イオン交換装置56において、弱酸性陽イオン交換樹脂の再生に使用された後の使用済排水は、残存している酸が必要に応じてアルカリで中和され、排水処理装置12の外部に排出される(0.5m/h)。弱酸性陽イオン交換樹脂の再生時には、この再生における中和反応により、使用済排水に残存している酸の量が少なくなる。 In the weakly acidic cation exchange device 56, as described above, the hydrogen ions of the weakly acidic cation exchange resin are replaced with the calcium ions and magnesium ions of the high hardness water. From the concentration tank 62, used wastewater having an increased hydrogen ion concentration is sent (0.5 m 3 / h). The weakly acidic cation exchange resin is regenerated by replacing the hydrogen ions in the used wastewater with the calcium ions and magnesium ions of the weakly acidic cation exchange resin. In the weakly acidic cation exchange device 56, the used wastewater after being used for the regeneration of the weakly acidic cation exchange resin is neutralized with alkali as necessary for the remaining acid, and is outside the wastewater treatment device 12. (0.5 m 3 / h). When the weakly acidic cation exchange resin is regenerated, the amount of acid remaining in the used wastewater is reduced by the neutralization reaction in this regeneration.
 このように、本実施形態では、超純水製造装置14における超純水製造工程で生じる脱塩後排水の硬度成分を、弱酸性陽イオン交換装置56において除去している。そして、弱酸性陽イオン交換装置56の弱酸性陽イオン交換樹脂の再生には、ユースポイント34において使用された後の使用済排水を有効に用いているので、弱酸性陽イオン交換樹脂の再生のために酸を添加する必要はない。しかも、弱酸性陽イオン交換樹脂の再生に使用された後の使用済排水の中和に必要なアルカリの添加量が、再生時の中和反応で消費された再生成分の分、少なくなる。超純水製造システム16からの排水は、弱酸性陽イオン交換装置56からの排水、及び塩除去装置60からの排水だけなので、排水処理装置12を有さない構成の超純水製造システム16と比較して、システム全体での排水の量を少なくすることが可能である。 As described above, in the present embodiment, the hardness component of the drainage after desalting generated in the ultrapure water production process in the ultrapure water production apparatus 14 is removed by the weakly acidic cation exchange apparatus 56. Then, in the regeneration of the weakly acidic cation exchange resin of the weakly acidic cation exchange device 56, since the used wastewater after being used at the use point 34 is effectively used, the weakly acidic cation exchange resin can be regenerated. Therefore, it is not necessary to add acid. Moreover, the amount of alkali added for neutralizing the used wastewater after being used for the regeneration of the weakly acidic cation exchange resin is reduced by the amount of the regenerated components consumed in the neutralization reaction during the regeneration. Since the wastewater from the ultrapure water production system 16 is only the wastewater from the weakly acidic cation exchange device 56 and the wastewater from the salt removal device 60, the ultrapure water production system 16 having a configuration that does not have the wastewater treatment device 12 In comparison, it is possible to reduce the amount of wastewater in the entire system.
 表1に示すように、本実施形態の超純水製造システム16では、ユースポイント34で使用される200m/hの超純水、および排水利用設備38で利用される50m/hの排水を得るために、154.5m/hの原水を用いている。そして、超純水製造システム16からの排水の合計は、4.5m/hである。 As shown in Table 1, in the ultrapure water production system 16 of the present embodiment, the ultrapure water of 200 m 3 / h used at the use point 34 and the drainage of 50 m 3 / h used at the wastewater utilization facility 38. In order to obtain this, 154.5 m 3 / h of raw water is used. The total amount of wastewater discharged from the ultrapure water production system 16 is 4.5 m 3 / h.
 これに対し、図2に示す第一比較例の超純水製造システム82では、原水200m/hのうち、45m/hは排水利用設備38に送られ、原水タンク18には155m/hが送られる。原水タンク18には、第二膜濾過装置26から10m/h、脱イオン装置30から10m/hの被処理水が戻り、膜濾過装置48から、90m/hの使用済排水が戻る。原水タンク18からは砂濾過装置20へ265m/hの原水が送られ、活性炭装置22に送られると共に、その一部である5m/hは、濾過装置36を経て、排水利用設備38に送られる。 In contrast, in the ultrapure water production system 82 of the first comparative example shown in FIG. 2, among the raw water 200m 3 / h, 45m 3 / h is fed to the waste water utilization facility 38, the raw water tank 18 is 155m 3 / h is sent. The second membrane filtration device 26 returns 10 m 3 / h and the deionizer 30 returns 10 m 3 / h of treated water to the raw water tank 18, and the membrane filtration device 48 returns 90 m 3 / h of used wastewater. .. From the raw water tank 18, 265 m 3 / h of raw water is sent to the sand filtration device 20 and sent to the activated carbon device 22, and 5 m 3 / h, which is a part of the raw water, is sent to the drainage utilization facility 38 via the filtration device 36. Sent.
 第一膜濾過装置24では、送られた260m/hの被処理水を脱塩し、脱塩後の220m/hの被処理水は第二膜濾過装置26に送られると共に、40m/hの被処理水が超純水製造装置14の外部に排出される。 In the first film filtration device 24, the sent 260 m 3 / h of water to be treated is desalted, and the 220 m 3 / h of water to be treated after desalting is sent to the second film filter 26 and 40 m 3 The water to be treated at / h is discharged to the outside of the ultrapure water production apparatus 14.
 第二膜濾過装置26からは、210m/hの被処理水が脱気装置28及び脱イオン装置30へと送られ、脱イオン装置30からは、200m/hの被処理液がポリッシャー32に送られると共に、10m/hの被処理液が原水タンク18に戻される。 From the second membrane filtration device 26, 210 m 3 / h of water to be treated is sent to the deaeration device 28 and the deionizer 30, and from the deionizer 30, 200 m 3 / h of the liquid to be treated is a polisher 32. At the same time, the liquid to be treated at 10 m 3 / h is returned to the raw water tank 18.
 ユースポイント34で使用された超純水のうち100m/hが回収されて使用済排水タンク44、活性炭装置46及び膜濾過装置48へ送られる。膜濾過装置48で濾過された90m/hの使用済排水が原水タンク18に戻され、10m/hの使用済排水が、超純水製造装置14の外部に排出される。 Of the ultrapure water used at use point 34, 100 m 3 / h is recovered and sent to the used drainage tank 44, the activated carbon device 46, and the membrane filtration device 48. The 90 m 3 / h used wastewater filtered by the membrane filtration device 48 is returned to the raw water tank 18, and the 10 m 3 / h used wastewater is discharged to the outside of the ultrapure water production device 14.
 表1に示すように、第一比較例の超純水製造システム82では、ユースポイント34で使用される200m/hの超純水、および排水利用設備38で利用される50m/hの排水を得るために、200m/hの原水を用いている。そして、超純水製造システム82からの排水の合計は、50m/hである。 As shown in Table 1, in the ultrapure water production system 82 of the first comparative example, the ultrapure water of 200 m 3 / h used in the use point 34 and the ultrapure water of 50 m 3 / h used in the wastewater utilization facility 38. 200 m 3 / h of raw water is used to obtain drainage. The total amount of wastewater discharged from the ultrapure water production system 82 is 50 m 3 / h.
 図3に示す第二比較例の超純水製造システム92では、活性炭装置22と第一膜濾過装置24との間で、被処理水に分散剤を投入している。このため、第一膜濾過装置24からの40m/hの排水を膜濾過装置94(逆浸透装置)によって濾過することで、20m/hの被処理水は原水タンク18に戻すことが可能であり、第一膜濾過装置24からの実質的な排水は20m/hになっている。 In the ultrapure water production system 92 of the second comparative example shown in FIG. 3, a dispersant is charged into the water to be treated between the activated carbon device 22 and the first membrane filtration device 24. Therefore, by filtering 40 m 3 / h of wastewater from the first membrane filtration device 24 by the membrane filtration device 94 (reverse osmosis device), 20 m 3 / h of water to be treated can be returned to the raw water tank 18. The actual drainage from the first membrane filtration device 24 is 20 m 3 / h.
 表1に示すように、第二比較例の超純水製造システム92では、ユースポイント34で使用される200m/hの超純水、および排水利用設備38で利用される50m/hの排水を得るために、180m/hの原水を用いている。そして、超純水製造システム92からの排水の合計は、30m/hである。 As shown in Table 1, in the ultrapure water production system 92 of the second comparative example, the ultrapure water of 200 m 3 / h used in the use point 34 and the ultrapure water of 50 m 3 / h used in the wastewater utilization facility 38. 180 m 3 / h of raw water is used to obtain drainage. The total amount of wastewater discharged from the ultrapure water production system 92 is 30 m 3 / h.
 このように、本実施形態の超純水製造システム16では、第一比較例の超純水製造システム82及び第二実施形態の超純水製造システム92のいずれと比較しても、排水の量が低減されていることが分かる。 As described above, in the ultrapure water production system 16 of the present embodiment, the amount of wastewater compared with any of the ultrapure water production system 82 of the first comparative example and the ultrapure water production system 92 of the second embodiment. Can be seen to be reduced.
 そして、低減された排水が排水利用設備38等に利用される分、原水の使用量が削減されている。 And, the amount of raw water used is reduced by the amount that the reduced wastewater is used for the wastewater utilization facility 38 and the like.
 すなわち、本実施形態の超純水製造システム16では、200m/hの超純水、および排水利用設備38で利用される50m/hの排水を得るために必要な原水の量が、第一比較例の超純水製造システム82に対して約23%削減され、第二比較例の超純水製造システム92に対して約14%削減されている。 That is, in the ultrapure water production system 16 of the present embodiment, the amount of raw water required to obtain 200 m 3 / h of ultrapure water and 50 m 3 / h of wastewater used in the wastewater utilization facility 38 is the first. It is reduced by about 23% with respect to the ultrapure water production system 82 of the first comparative example, and is reduced by about 14% with respect to the ultrapure water production system 92 of the second comparative example.
 しかも、本実施形態の超純水製造システム16では、第一膜濾過装置24で生じた排水である脱塩後排水の硬度成分を、弱酸性陽イオン交換装置56で除去し、この除去処理後の弱酸性陽イオン交換装置56を、ユースポイント34で生じた使用済排水を用いて再生している。 Moreover, in the ultrapure water production system 16 of the present embodiment, the hardness component of the drainage after desalting, which is the wastewater generated by the first film filtration device 24, is removed by the weakly acidic cation exchange device 56, and after this removal treatment. The weakly acidic cation exchange device 56 of the above is regenerated using the used wastewater generated at the use point 34.
 その際に、使用済排水に含まれていた水素イオンが消費されるので、本実施形態の超純水製造システム16では、外部に排出された使用済排水(0.5m/h)について、中和のために必要となったアルカリの添加量を、第一比較例の超純水システム82および第二比較例の超純水システム92に対して半減させることができる。 At that time, hydrogen ions contained in the used wastewater are consumed. Therefore, in the ultrapure water production system 16 of the present embodiment, the used wastewater (0.5 m 3 / h) discharged to the outside is treated with respect to the used wastewater (0.5 m 3 / h) discharged to the outside. The amount of alkali added for neutralization can be halved as compared with the ultrapure water system 82 of the first comparative example and the ultrapure water system 92 of the second comparative example.
 また、本実施形態の超純水製造システム16では、200m/hの超純水を得るにあたって生じる排水の量が、第一比較例の超純水製造システム82に対して91%削減され、第二比較例の超純水製造システム92に対して85%削減されている。 Further, in the ultrapure water production system 16 of the present embodiment , the amount of wastewater generated when obtaining 200 m 3 / h ultrapure water is reduced by 91% as compared with the ultrapure water production system 82 of the first comparative example. It is reduced by 85% compared to the ultrapure water production system 92 of the second comparative example.
 しかも、本実施形態の超純水製造システム16に用いられる排水処理装置12では、濃縮用タンク62と膜濾過装置64とで使用済排水を循環させることで、使用済排水の水素イオン濃度を高めている。使用済排水に対する濃縮処理を複数回行って水素イオンが濃縮された使用済排水を用いるので、弱酸性陽イオン交換装置56の弱酸性陽イオン交換樹脂を、効率的に再生できる。 Moreover, in the wastewater treatment device 12 used in the ultrapure water production system 16 of the present embodiment, the hydrogen ion concentration of the used wastewater is increased by circulating the used wastewater between the concentration tank 62 and the membrane filtration device 64. ing. Since the used wastewater in which hydrogen ions are concentrated by performing the concentration treatment on the used wastewater a plurality of times is used, the weakly acidic cation exchange resin of the weakly acidic cation exchange device 56 can be efficiently regenerated.
 本実施形態において、脱塩後排水から硬度成分を除去するためだけであれば、弱酸性陽イオン交換樹脂ではなく強酸性陽イオン交換樹脂を用いることも可能である。しかしながら、強酸性陽イオン交換樹脂を用いると、脱塩後排水から硬度成分以外の成分も除去してしまうことに加え、一般的に単位樹脂量あたりの不純物イオン除去量も弱酸性陽イオン交換樹脂より少なくなる(例えば1/2~1/4)ため、必要な樹脂量が多くなる。また、強酸性陽イオン交換樹脂の再生が難しく、酸などの化学薬品の添加が必須となるため、ノンケミカルタイプの設備では一般的に使用できない。これに対し、弱酸性陽イオン交換樹脂を用いることで、脱塩後排水から、除去対象である硬度成分を選択的に効率よく除去できると共に、弱酸性陽イオン交換樹脂の再生が容易である。 In the present embodiment, it is also possible to use a strongly acidic cation exchange resin instead of a weakly acidic cation exchange resin only for removing the hardness component from the drainage after desalting. However, when a strongly acidic cation exchange resin is used, in addition to removing components other than the hardness component from the drainage after desalting, the amount of impurity ions removed per unit resin amount is generally weakly acidic cation exchange resin. Since it is less (for example, 1/2 to 1/4), the amount of resin required is increased. In addition, it is difficult to regenerate a strongly acidic cation exchange resin, and it is essential to add a chemical such as an acid, so that it cannot be generally used in non-chemical type equipment. On the other hand, by using the weakly acidic cation exchange resin, the hardness component to be removed can be selectively and efficiently removed from the drainage after desalting, and the weakly acidic cation exchange resin can be easily regenerated.
 弱酸性陽イオン交換樹脂を再生するための再生剤としても、上記の水素イオンが濃縮された使用済排水に限定されないが、使用済排水に含まれる水素イオンを効果的に用いることで、超純水製造システム16における排水量の削減に寄与する効果が高い構成となる。 The regenerating agent for regenerating the weakly acidic cation exchange resin is not limited to the above-mentioned used wastewater in which hydrogen ions are concentrated, but by effectively using the hydrogen ions contained in the used wastewater, it is ultrapure. The configuration is highly effective in contributing to the reduction of the amount of wastewater in the water production system 16.
 特に、使用済排水において、濃縮処理を複数回行っているので、水素イオン濃度が高くなった使用後排水を用いて、弱酸性陽イオン交換樹脂の再生を効率的に行うことが可能である。 In particular, since the used wastewater is concentrated multiple times, it is possible to efficiently regenerate the weakly acidic cation exchange resin by using the used wastewater having a high hydrogen ion concentration.
 本実施形態では、脱塩処理として、第一膜濾過装置24による硬度成分の除去を行っている。脱塩処理には、硬度成分であるカルシウムイオンやマグネシウムイオン以外の塩類の除去を伴っていてもよい。硬度成分は、多量に含まれていると、後工程(被処理液の流れの下流側)において、スケールが析出する原因となることがある。このようなスケールの原因となる成分を除去することで、スケールの発生を抑制できる。 In the present embodiment, the hardness component is removed by the first membrane filtration device 24 as the desalting treatment. The desalting treatment may involve removal of salts other than calcium ions and magnesium ions, which are hardness components. If a large amount of the hardness component is contained, it may cause scale precipitation in a subsequent process (downstream side of the flow of the liquid to be treated). By removing the component that causes such scale, the generation of scale can be suppressed.
 2020年4月21日に出願された日本国特許出願2020-75687号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2020-75687, filed April 21, 2020, is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.

Claims (10)

  1.  超純水製造工程における脱塩処理で生じた脱塩後排水の硬度成分を、弱酸性陽イオン交換樹脂のイオン交換成分で置き換え、
     前記弱酸性陽イオン交換樹脂に吸着された前記硬度成分を、前記超純水製造工程で製造された超純水を使用した後の使用済排水に含まれる再生成分で置換して前記弱酸性陽イオン交換樹脂を再生する、排水処理方法。
    The hardness component of the desalinated wastewater generated by the desalination treatment in the ultrapure water production process is replaced with the ion exchange component of the weakly acidic cation exchange resin.
    The hardness component adsorbed on the weakly acidic cation exchange resin is replaced with a regenerated component contained in the used wastewater after using the ultrapure water produced in the ultrapure water manufacturing process, and the weakly acidic cation is replaced. A wastewater treatment method that regenerates ion exchange resins.
  2.  前記硬度成分が、カルシウムイオン及びマグネシウムイオンの少なくとも一方を含む請求項1に記載の排水処理方法。 The wastewater treatment method according to claim 1, wherein the hardness component contains at least one of calcium ions and magnesium ions.
  3.  前記再生成分が、水素イオンを含む請求項1又は請求項2に記載の排水処理方法。 The wastewater treatment method according to claim 1 or 2, wherein the regenerated component contains hydrogen ions.
  4.  前記使用済排水に対し濃縮処理により前記再生成分を濃縮した濃縮排水を用いて、前記弱酸性陽イオン交換樹脂の再生を行う請求項1から請求項3の何れか一項に記載の排水処理方法。 The wastewater treatment method according to any one of claims 1 to 3, wherein the weakly acidic cation exchange resin is regenerated by using the concentrated wastewater obtained by concentrating the recycled components with respect to the used wastewater. ..
  5.  前記濃縮処理を使用済排水に対し複数回行って前記再生成分を濃縮する請求項4に記載の排水処理方法。 The wastewater treatment method according to claim 4, wherein the concentration treatment is performed a plurality of times on the used wastewater to concentrate the regenerated component.
  6.  前記硬度成分が前記イオン交換成分で置き換えられた処理済水に対し気体成分を除去する脱気処理を行う請求項1から請求項5のいずれか一項に記載の排水処理方法。 The wastewater treatment method according to any one of claims 1 to 5, wherein the treated water in which the hardness component is replaced with the ion exchange component is degassed to remove the gas component.
  7.  前記硬度成分が前記イオン交換成分で置き換えられた処理済水に対し塩を除去する塩除去処理を行う請求項1から請求項6のいずれか一項に記載の排水処理方法。 The wastewater treatment method according to any one of claims 1 to 6, wherein a salt removal treatment for removing salt is performed on the treated water in which the hardness component is replaced with the ion exchange component.
  8.  前記脱塩処理を、逆浸透膜に被処理水を浸透させることにより行う請求項1から請求項7のいずれか一項に記載の排水処理方法。 The wastewater treatment method according to any one of claims 1 to 7, wherein the desalting treatment is performed by infiltrating the reverse osmosis membrane with water to be treated.
  9.  原水に対し少なくとも脱塩処理を含む超純水製造工程により超純水を製造し、
     前記脱塩処理で生じた脱塩後排水の硬度成分を、弱酸性陽イオン交換樹脂のイオン交換成分で置き換え、
     前記弱酸性陽イオン交換樹脂に吸着された前記硬度成分を、前記超純水製造工程で製造された超純水を使用した後の使用済排水に含まれる再生成分で置き換えて前記弱酸性陽イオン交換樹脂を再生し、
     前記使用済排水のうち前記弱酸性陽イオン交換樹脂の再生に用いなかった前記使用済排水を前記超純水製造工程に戻す超純水製造方法。
    Ultrapure water is produced by an ultrapure water production process that includes at least desalination of raw water.
    The hardness component of the desalted wastewater generated by the desalination treatment is replaced with the ion exchange component of the weakly acidic cation exchange resin.
    The hardness component adsorbed on the weakly acidic cation exchange resin is replaced with a regenerated component contained in the used wastewater after using the ultrapure water produced in the ultrapure water manufacturing process, and the weakly acidic cation is replaced. Regenerate the exchange resin,
    A method for producing ultrapure water, in which the used wastewater that was not used for regenerating the weakly acidic cation exchange resin among the used wastewater is returned to the ultrapure water production step.
  10.  超純水製造工程における脱塩処理で生じた脱塩後排水の硬度成分を、弱酸性陽イオン交換樹脂のイオン交換成分で置き換える弱酸性陽イオン交換装置と、
     前記弱酸性陽イオン交換樹脂に吸着された前記硬度成分を、前記超純水製造工程で製造された超純水を使用した後の使用済排水に含まれる再生成分で置換して前記弱酸性陽イオン交換樹脂を再生するための再生水を供給する再生水供給装置と、
     を有する排水処理装置。
    A weakly acidic cation exchange device that replaces the hardness component of the drainage after desalting generated by the desalination treatment in the ultrapure water production process with the ion exchange component of the weakly acidic cation exchange resin.
    The hardness component adsorbed on the weakly acidic cation exchange resin is replaced with a reclaimed water component contained in the reclaimed water after using the ultrapure water produced in the ultrapure water manufacturing process, and the weakly acidic cation is replaced. A reclaimed water supply device that supplies reclaimed water for reclaiming ion exchange resins,
    Wastewater treatment equipment with.
PCT/JP2021/006424 2020-04-21 2021-02-19 Waste water treatment method, ultrapure water production method, and waste water treatment apparatus WO2021215099A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227037088A KR20230004537A (en) 2020-04-21 2021-02-19 Drainage treatment method, ultrapure water production method, and wastewater treatment device
CN202180029928.0A CN115485245A (en) 2020-04-21 2021-02-19 Method for treating wastewater, method for producing ultrapure water, and wastewater treatment apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020075687A JP6924300B1 (en) 2020-04-21 2020-04-21 Wastewater treatment method, ultrapure water production method and wastewater treatment equipment
JP2020-075687 2020-04-21

Publications (1)

Publication Number Publication Date
WO2021215099A1 true WO2021215099A1 (en) 2021-10-28

Family

ID=77364645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006424 WO2021215099A1 (en) 2020-04-21 2021-02-19 Waste water treatment method, ultrapure water production method, and waste water treatment apparatus

Country Status (4)

Country Link
JP (1) JP6924300B1 (en)
KR (1) KR20230004537A (en)
CN (1) CN115485245A (en)
WO (1) WO2021215099A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115260007A (en) * 2022-09-15 2022-11-01 杭州唯铂莱生物科技有限公司 Method for extracting high-purity 3,4-dihydroxyphenyl ethanol from fermentation liquor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1142498A (en) * 1997-07-25 1999-02-16 Nomura Micro Sci Co Ltd Desalter
JP2002096068A (en) * 2000-09-27 2002-04-02 Japan Organo Co Ltd Treating method and device for waste water of desalting
JP2007528781A (en) * 2003-03-28 2007-10-18 ケミトリート ピーティーイー リミテッド Continuous electrodeionization apparatus and method
JP2015157262A (en) * 2014-02-25 2015-09-03 野村マイクロ・サイエンス株式会社 Water treatment apparatus, water treatment method, and ultrapure water production system
CN212151930U (en) * 2020-03-16 2020-12-15 佛山市云米电器科技有限公司 Water purification system and water purifier with multiple purification units

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1142498A (en) * 1997-07-25 1999-02-16 Nomura Micro Sci Co Ltd Desalter
JP2002096068A (en) * 2000-09-27 2002-04-02 Japan Organo Co Ltd Treating method and device for waste water of desalting
JP2007528781A (en) * 2003-03-28 2007-10-18 ケミトリート ピーティーイー リミテッド Continuous electrodeionization apparatus and method
JP2015157262A (en) * 2014-02-25 2015-09-03 野村マイクロ・サイエンス株式会社 Water treatment apparatus, water treatment method, and ultrapure water production system
CN212151930U (en) * 2020-03-16 2020-12-15 佛山市云米电器科技有限公司 Water purification system and water purifier with multiple purification units

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115260007A (en) * 2022-09-15 2022-11-01 杭州唯铂莱生物科技有限公司 Method for extracting high-purity 3,4-dihydroxyphenyl ethanol from fermentation liquor
CN115260007B (en) * 2022-09-15 2024-01-26 杭州唯铂莱生物科技有限公司 Method for extracting 3, 4-dihydroxyphenethyl alcohol from fermentation liquor

Also Published As

Publication number Publication date
JP6924300B1 (en) 2021-08-25
CN115485245A (en) 2022-12-16
JP2021171678A (en) 2021-11-01
KR20230004537A (en) 2023-01-06

Similar Documents

Publication Publication Date Title
JP4648307B2 (en) Continuous electrodeionization apparatus and method
JP5733351B2 (en) Method and apparatus for treating boron-containing water
TWI414486B (en) Pure water manufacturing apparatus and pure water manufacturing method
JP5567468B2 (en) Method and apparatus for treating organic wastewater
KR20040106478A (en) Method and apparatus for fluid treatment by reverse osmosis under acidic conditions
JP4599803B2 (en) Demineralized water production equipment
JPH11244853A (en) Production of pure water
JP3137831B2 (en) Membrane processing equipment
JP6228471B2 (en) To-be-treated water processing apparatus, pure water production apparatus and to-be-treated water processing method
WO2018096700A1 (en) System for producing ultrapure water and method for producing ultrapure water
JP2007307561A (en) High-purity water producing apparatus and method
WO2021215099A1 (en) Waste water treatment method, ultrapure water production method, and waste water treatment apparatus
JP2000015257A (en) Apparatus and method for making high purity water
JP3656458B2 (en) Pure water production method
JP2000051665A (en) Desalination method
JP2010042324A (en) Pure water producing apparatus and pure water producing method
CN114616212A (en) Pure water production method, pure water production system, ultrapure water production method, and ultrapure water production system
JP2017217596A (en) Acid solution recovery device from regeneration waste liquid of acid ion exchanger and recovery method using the same
JP2001191080A (en) Electric deionizing device and electric deionizing treatment method using the same
WO2020184044A1 (en) Pure-water production device and pure-water production method
JP3674475B2 (en) Pure water production method
WO2024090356A1 (en) Pure water production method, pure water production device, and ultra-pure water production system
JP2012196630A (en) Treatment equipment and treatment method of acid liquid
WO2023026554A1 (en) Method and device for treating fluorine-containing water
JP6290503B1 (en) Surface treatment equipment, wastewater treatment equipment, and wastewater treatment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21792458

Country of ref document: EP

Kind code of ref document: A1