JP5567468B2 - Method and apparatus for treating organic wastewater - Google Patents

Method and apparatus for treating organic wastewater Download PDF

Info

Publication number
JP5567468B2
JP5567468B2 JP2010287144A JP2010287144A JP5567468B2 JP 5567468 B2 JP5567468 B2 JP 5567468B2 JP 2010287144 A JP2010287144 A JP 2010287144A JP 2010287144 A JP2010287144 A JP 2010287144A JP 5567468 B2 JP5567468 B2 JP 5567468B2
Authority
JP
Japan
Prior art keywords
treatment
water
reverse osmosis
supply pipe
electrodialysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010287144A
Other languages
Japanese (ja)
Other versions
JP2012130891A (en
Inventor
甬生 葛
寿実 中村
昌次郎 渡邊
寛人 與倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2010287144A priority Critical patent/JP5567468B2/en
Publication of JP2012130891A publication Critical patent/JP2012130891A/en
Application granted granted Critical
Publication of JP5567468B2 publication Critical patent/JP5567468B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

本発明は、塩類及び有機物を含んでいて再利用や河川などへの放流ができない有機性廃水から、有機性成分を除去するだけではなく、従来の処理では除去できない高濃度の塩類をあわせて除去することができ、処理水として再利用或いは放流を可能にする、有機性廃水の処理方法に関する。   The present invention not only removes organic components from organic wastewater that contains salts and organic matter and cannot be reused or discharged into rivers, but also removes high-concentration salts that cannot be removed by conventional treatment. The present invention relates to a method for treating organic wastewater that can be reused or discharged as treated water.

し尿や、ゴミ埋め立て地からの浸出水などの塩類濃度が高い有機性廃水は、一般に、カルシウムイオンや塩素イオンなどの塩類や有機物などの汚濁物質を高濃度に含んでいる。このような有機性廃水は、しばしば生化学的酸素要求量(BOD)や化学的酸素要求量(COD)が高く、多くの懸濁固体(SS)を含み、さらにコロイド物質などに原因する色度を有している。そのため、通常はこれらを何らかの用途に直接再利用したり、河川などに直接放流したりすることはできない。   Organic wastewater with high salt concentrations such as human waste and leachate from landfills generally contains high concentrations of pollutants such as salts and organic matter such as calcium ions and chlorine ions. Such organic wastewater often has high biochemical oxygen demand (BOD) and chemical oxygen demand (COD), contains many suspended solids (SS), and also has chromaticity caused by colloidal substances. have. For this reason, normally, these cannot be directly reused for some purpose or discharged directly into rivers.

このような有機性廃水の処理方法として、従来は、有機汚濁物の除去を主体とした処理方法が用いられてきた。その主な処理方法は、例えばBOD除去を目的とした生物処理や、色度、COD及びSSなどの除去を目的とした凝集沈殿処理、SSなど濁質の除去を目的とした砂ろ過、精密ろ過膜(MF膜)処理などであり、実際には、これらの処理を組み合わせることにより、BODやCODなどの有機性成分を除去することが行われていた。しかし、このような処理によると、有機性廃水中の有機性成分を除去することができても、カルシウムイオンや塩素イオンなどの塩類を除去することはできなかった。   Conventionally, as a method for treating such organic wastewater, a method mainly using organic contaminant removal has been used. The main treatment methods are, for example, biological treatment for the purpose of removing BOD, coagulation sedimentation treatment for the purpose of removing chromaticity, COD and SS, sand filtration and microfiltration for the purpose of removing turbidity such as SS. It is a membrane (MF membrane) treatment, and in practice, organic components such as BOD and COD have been removed by combining these treatments. However, according to such treatment, even if organic components in the organic wastewater can be removed, salts such as calcium ions and chlorine ions cannot be removed.

そこで我々は、塩類を含む有機性廃水の処理方法として、塩類を含有する有機性廃水に軟化処理を行ってその中のカルシウム濃度を低下させた後、生物処理、凝集沈殿処理、砂ろ過処理、精密ろ過膜処理からなる群から選ばれる1以上の処理または2以上の組み合わせからなる処理を行い、次いで逆浸透膜を用いる逆浸透膜処理により脱塩処理して、逆浸透濃縮水と処理水とに分離し、処理水を回収するとともにその一方、前記逆浸透濃縮水を引き続いて電気透析処理を施して電気透析濃縮水と電気透析処理水とに分離し、その電気透析処理水は、逆浸透膜処理の供給側に戻す一方、電気透析濃縮水は、蒸発乾燥処理することによって水分と塩類とに分離し、塩類を単離するという、有機性廃水の処理方法を提案した(特許文献1)。   Therefore, as a method for treating organic wastewater containing salts, after softening the organic wastewater containing salts to reduce the calcium concentration therein, biological treatment, coagulation sedimentation treatment, sand filtration treatment, One or more treatments selected from the group consisting of microfiltration membrane treatments or a treatment consisting of a combination of two or more, followed by desalination treatment by reverse osmosis membrane treatment using a reverse osmosis membrane, On the other hand, the treated water is collected and the reverse osmosis concentrated water is subsequently subjected to electrodialysis to separate the electrodialyzed concentrated water and the electrodialyzed water. While returning to the membrane treatment supply side, the electrodialyzed concentrated water was separated into water and salts by evaporative drying, and a method for treating organic wastewater was proposed (Patent Document 1). .

特許3800449号公報Japanese Patent No. 3800449

特許文献1で提案した処理方法は、電気透析処理で得られる濃縮水を、蒸発乾燥処理することによって水分と塩類とに分離し、塩類を単離する方法であった。しかし、この蒸発乾燥処理では、乾燥塩にするため、乾燥に伴う消費エネルギーが多く、運転コスト増大の要因となっていた。その一方、得られた乾燥塩類の利用先が少なく現実的に長期保管するか、再度最終処分場に埋め立て処分するかしかないため、回収塩類の有効利用が大きな課題となっている。   The treatment method proposed in Patent Document 1 is a method for separating concentrated water obtained by electrodialysis treatment into water and salts by evaporating and drying, and isolating the salts. However, in this evaporative drying treatment, a dry salt is used, so that much energy is consumed for drying, which increases operating costs. On the other hand, since the use of the obtained dried salt is few and it can only be practically stored for a long time or landfilled again at the final disposal site, effective utilization of the recovered salt is a major issue.

そこで本発明は、電気透析で得られる濃縮水を有効に再利用できる、新たな有機性廃水の処理方法を提案せんとするものである。   Therefore, the present invention proposes a new organic wastewater treatment method that can effectively reuse concentrated water obtained by electrodialysis.

本発明は、塩類及び有機物を含有する有機性廃水に対して軟化処理を行ってカルシウム濃度を低減させる軟化処理を行った後、生物処理、凝集沈殿処理、砂ろ過処理、精密ろ過膜処理からなる群から選ばれる1以上の処理または2以上の組み合わせからなるSS除去処理を行う前処理工程と、電気透析処理により電気透析濃縮水と電気透析処理水とに分離する電気透析処理工程と、逆浸透膜処理により逆浸透濃縮水と逆浸透膜処理水とに分離する逆浸透膜処理工程とを備えた有機性廃水の処理方法において、電気透析処理工程から得られた電気透析濃縮水を電解処理装置に供給して電気分解を行い、次亜塩素酸ナトリウム溶液を生成することを特徴とする有機性廃水の処理方法を提案する。   The present invention comprises a biological treatment, a coagulation sedimentation treatment, a sand filtration treatment, and a microfiltration membrane treatment after a softening treatment is performed on an organic wastewater containing salts and organic substances to reduce the calcium concentration. A pretreatment step for performing SS removal treatment comprising one or more treatments selected from the group or a combination of two or more, an electrodialysis treatment step for separating electrodialyzed concentrated water and electrodialysis treatment water by electrodialysis treatment, and reverse osmosis In an organic wastewater treatment method comprising a reverse osmosis membrane treatment step for separating reverse osmosis concentrate and reverse osmosis membrane treatment water by membrane treatment, an electrolysis apparatus for treating electrodialysis concentrate obtained from the electrodialysis treatment step We propose a method for treating organic wastewater, characterized in that it is supplied to the base and electrolyzed to form a sodium hypochlorite solution.

本発明が提案する有機性廃水の処理方法によれば、塩類を含有する有機性廃水に対して、先ずは軟化処理によってカルシウム溶解濃度を下げ、SS除去処理によって懸濁固体(SS)を除去することによって有機物の低減を図った後(これら軟化処理とSS除去処理をまとめて「前処理工程」という)、逆浸透膜処理及び電気透析処理を施すため、SSや有機物の影響で逆浸透膜処理の水回収率が低下したり、電気透析処理水中へ有機物成分が漏洩したりするのを防止することができる。しかも、軟化処理を行っているので、カルシウムスケールの析出というトラブルもなく、この方法によれば塩類を高い濃度で含む有機性廃水を効率的に淡水化して再利用したり、河川などに直接放流したりすることができる。
さらに、電気透析で得られる電気透析濃縮水中には塩素が多く含まれるため、電気透析濃縮水を電気分解することにより、次亜塩素酸ナトリウム溶液を生成することができ、例えば殺菌剤などとして有効利用することができる。
According to the organic wastewater treatment method proposed by the present invention, first, with respect to the organic wastewater containing salts, the calcium dissolution concentration is lowered by softening treatment, and the suspended solid (SS) is removed by SS removal treatment. In order to reduce the organic matter by this (the softening treatment and the SS removal treatment are collectively referred to as “pretreatment step”), the reverse osmosis membrane treatment and the electrodialysis treatment are performed. It is possible to prevent the water recovery rate from decreasing and the organic components from leaking into the electrodialyzed water. Moreover, since the softening treatment is performed, there is no trouble of precipitation of calcium scale, and according to this method, organic wastewater containing a high concentration of salts can be efficiently desalted and reused or directly discharged into rivers, etc. You can do it.
Furthermore, since the electrodialyzed concentrated water obtained by electrodialysis contains a large amount of chlorine, it is possible to produce a sodium hypochlorite solution by electrolyzing the electrodialyzed concentrated water. Can be used.

有機性廃水の処理方法の一例(後述する処理方法A)及びそれを実施するための有機性廃水処理装置の一例を示した概略図である。It is the schematic which showed an example (processing method A mentioned later) of an organic wastewater processing method, and an example of the organic wastewater processing apparatus for implementing it. 有機性廃水の処理方法の一例(後述する処理方法B)及びそれを実施するための有機性廃水処理装置の一例を示した概略図である。It is the schematic which showed an example (processing method B mentioned later) of an organic wastewater processing method, and an example of the organic wastewater processing apparatus for implementing it.

次に、本発明の実施の形態について説明する。但し、本発明が、次に説明する実施の形態に限定されるものではない。   Next, an embodiment of the present invention will be described. However, the present invention is not limited to the embodiment described below.

<有機性廃水処理装置1>
図1は、本発明の実施形態の一例としての有機性廃水の処理方法Aを実施するための有機性廃水処理装置1の一例を示す概略図である。但し、有機性廃水の処理方法Aを実施するための装置がこの装置に限定されるものではない。
<Organic wastewater treatment equipment 1>
FIG. 1 is a schematic view showing an example of an organic wastewater treatment apparatus 1 for carrying out an organic wastewater treatment method A as an example of an embodiment of the present invention. However, the apparatus for implementing the organic wastewater treatment method A is not limited to this apparatus.

有機性廃水処理装置1においては、有機性廃水を供給する被処理水流入管2が軟化処理装置3に接続され、軟化処理装置3の出口側に軟化処理水供給管4を介してSS除去処理装置5が接続され、SS除去処理装置5の出口側にはSS除去処理水供給管6を介して逆浸透膜処理(RO処理)装置7が接続され、逆浸透膜処理装置7の出口側には逆浸透濃縮水供給管8と逆浸透膜処理水排出管9が接続されており、この逆浸透濃縮水供給管8は電気透析(ED処理)装置10に接続され、電気透析装置10の出口側には電気透析処理水供給管11と電気透析濃縮水供給管12とが接続され、電気透析処理水供給管11は軟化処理水供給管4又はSS除去処理水供給管6に接続され、他方の電気透析濃縮水供給管12は、電解処理装置13に接続され、電解処理装置13の出口側には次亜塩素酸ナトリウム溶液供給管14が接続されている。   In the organic wastewater treatment apparatus 1, the treated water inflow pipe 2 for supplying organic wastewater is connected to the softening treatment apparatus 3, and the SS removal treatment apparatus is connected to the outlet side of the softening treatment apparatus 3 via the softened treatment water supply pipe 4. 5 is connected, a reverse osmosis membrane treatment (RO treatment) device 7 is connected to the outlet side of the SS removal treatment device 5 via an SS removal treatment water supply pipe 6, and the outlet side of the reverse osmosis membrane treatment device 7 is A reverse osmosis concentrated water supply pipe 8 and a reverse osmosis membrane treated water discharge pipe 9 are connected, and this reverse osmosis concentrated water supply pipe 8 is connected to an electrodialysis (ED treatment) apparatus 10, and the outlet side of the electrodialysis apparatus 10 Is connected to an electrodialyzed treated water supply pipe 11 and an electrodialyzed concentrated water supply pipe 12, and the electrodialyzed treated water supply pipe 11 is connected to the softened treated water supply pipe 4 or the SS removal treated water supply pipe 6. The electrodialysis concentrated water supply pipe 12 is connected to the electrolytic treatment apparatus 13. It is sodium hypochlorite solution supply pipe 14 is connected to the outlet side of the electrolytic treatment apparatus 13.

SS除去処理装置5としては、生物処理装置、凝集沈殿処理装置、砂ろ過処理装置、精密ろ過膜処理装置からなる群から選ばれる1以上の装置または2以上の装置を組み合せて構成すればよい。
例えば生物処理装置の出口側に凝集精密ろ過装置を接続することにより、生物処理水に無機凝集剤等を添加して凝集物を生成させた水を精密ろ過膜(MF膜)によりろ過することができる。
The SS removal treatment device 5 may be configured by combining one or more devices selected from the group consisting of a biological treatment device, a coagulation sedimentation treatment device, a sand filtration treatment device, and a microfiltration membrane treatment device, or a combination of two or more devices.
For example, by connecting an agglomeration microfiltration device to the outlet side of the biological treatment device, it is possible to filter the water produced by adding an inorganic flocculant or the like to the biological treatment water through a microfiltration membrane (MF membrane). it can.

上記の各装置間は各種処理水供給管によって接続されていてもよいし、適宜箇所にタンクを設けて、そこにいったん処理液を貯蔵し、そこから各装置に供給するようにしてもよい。その他の処理装置を適宜設けることも可能である。   Each of the above devices may be connected by various treated water supply pipes, or a tank may be provided at an appropriate location, and the treatment liquid may be temporarily stored therein and supplied from there to each device. Other processing apparatuses can be provided as appropriate.

<本処理方法A>
このような装置を使用して、次のような本処理方法Aを実施することができる。
有機性廃水の処理方法A(「本処理方法A」と称する)は、図1に示すように、塩類及び有機物を含有する有機性廃水に対して軟化処理を行ってカルシウム濃度を低減させた後(軟化処理工程)、生物処理、凝集沈殿処理、砂ろ過処理、精密ろ過膜処理からなる群から選ばれる1以上の処理または2以上の組み合わせからなるSS除去処理を行い(SS除去処理工程)、次いで、逆浸透膜処理(RO処理)により脱塩処理して、逆浸透濃縮水と逆浸透膜処理水とに分離し(逆浸透膜処理工程)、逆浸透膜処理水を回収する一方、逆浸透濃縮水に電気透析処理(ED処理)を施して脱塩処理して、電気透析濃縮水と電気透析処理水とに分離し(電気透析処理工程)、該電気透析処理水を逆浸透膜処理又はSS除去処理の供給側に戻す一方に、前記電気透析濃縮水は、電解処理装置に供給して電気分解を行い、次亜塩素酸ナトリウム溶液を生成する(電解処理工程)という一連の処理方法を実施することにより、前記の逆浸透膜処理水と次亜塩素酸ナトリウム溶液を回収する方法である。
<This processing method A>
Using such an apparatus, the following processing method A can be carried out.
As shown in FIG. 1, the organic wastewater treatment method A (referred to as “this treatment method A”) is performed after softening the organic wastewater containing salts and organic matter to reduce the calcium concentration. (Softening treatment step), biological treatment, coagulation sedimentation treatment, sand filtration treatment, SS removal treatment consisting of one or more treatments selected from the group consisting of microfiltration membrane treatment or a combination of two or more (SS removal treatment step), Next, desalination treatment is performed by reverse osmosis membrane treatment (RO treatment), and reverse osmosis concentrated water and reverse osmosis membrane treatment water are separated (reverse osmosis membrane treatment step). The osmotic concentrated water is subjected to electrodialysis treatment (ED treatment), desalted, and separated into electrodialyzed concentrated water and electrodialyzed water (electrodialysis treatment step), and the electrodialyzed water is subjected to reverse osmosis membrane treatment. Or return to the supply side of SS removal process, The electrodialyzed concentrated water is supplied to the electrolytic treatment apparatus, electrolyzed, and by carrying out a series of treatment methods of generating a sodium hypochlorite solution (electrolytic treatment step), the above-mentioned reverse osmosis membrane treated water And a method of recovering a sodium hypochlorite solution.

(被処理水)
本処理方法Aの被処理水としては、塩類及び有機物を含み、再利用や河川などへの放流ができない有機性廃水であればよい。例えば、し尿や、ゴミの埋め立て地の浸出水などの塩類濃度が高い有機性廃水を挙げることができる。これらは一般に、カルシウムイオンや塩素イオンなどの塩類や有機物などの汚濁物質を高濃度に含んでいる。
本処理方法Aの効果をより一層享受できる観点から、被処理水の塩素イオン濃度は2000〜20000mg/Lであるのが好ましく、中でも5000mg/L以下、その中でも4000mg/L以下であるのがさらに好ましい。
また、被処理水の蒸発残留物成分濃度(TDS)としては4000〜40000mg/Lであるのが好ましい。
(Treated water)
The treated water of this treatment method A may be any organic wastewater that contains salts and organic matter and cannot be reused or discharged into rivers. For example, organic wastewater having a high salt concentration, such as human waste and leachate from landfills for garbage, can be mentioned. These generally contain high concentrations of pollutants such as salts such as calcium ions and chlorine ions and organic substances.
From the viewpoint of further enjoying the effect of the present treatment method A, the chlorine ion concentration of the water to be treated is preferably 2000 to 20000 mg / L, more preferably 5000 mg / L or less, and most preferably 4000 mg / L or less. preferable.
Moreover, it is preferable that the evaporation residue component density | concentration (TDS) of to-be-processed water is 4000-40000 mg / L.

(軟化処理工程)
被処理水流入管2を通じて、被処理水としての有機性廃水が軟化処理装置3に供給され、軟化処理装置3において軟化処理された後、その処理水は軟化処理水供給管4を通じてSS除去処理装置5に供給される。
(Softening process)
The organic waste water as the treated water is supplied to the softening treatment device 3 through the treated water inflow pipe 2 and is softened in the softening treatment device 3, and then the treated water is SS-removed treatment device through the softened treatment water supply pipe 4. 5 is supplied.

軟化処理は、例えば石灰ソーダ軟化法や、イオン交換硬水軟化法によって水中のカルシウムやマグネシウムの硬水成分(難溶塩形成成分)を低減する処理である。
そのうちの石灰ソーダ軟化法は、消石灰(水酸化カルシウム)或いは、消石灰とソーダ灰(炭酸ナトリウム)を併用して、カルシウムを炭酸カルシウムとして沈殿させてカルシウム濃度を低減させることにより硬度を除去する方法である。
イオン交換法は、イオン交換樹脂で硬度成分を除去する方法である。
但し、これらの処理方法に限定されるものではなく、公知の軟化処理方法を採用することができる。
A softening process is a process which reduces the hard water component (hardly soluble salt formation component) of calcium and magnesium in water by the lime soda softening method or the ion exchange hard water softening method, for example.
Among them, the lime soda softening method is a method of removing hardness by reducing calcium concentration by precipitating calcium as calcium carbonate by using slaked lime (calcium hydroxide) or slaked lime and soda ash (sodium carbonate) together. is there.
The ion exchange method is a method of removing hardness components with an ion exchange resin.
However, it is not limited to these processing methods, A well-known softening processing method is employable.

軟化処理により、軟化処理水中のT−Ca濃度を100mg/L以下、特に50mg/L以下にすることが好ましい。その濃度は低いほど良いが、この程度であれば、以下の処理を行う上で支障が無くすことができる。
ここで、「T−Ca濃度」とは、水中の全カルシウム濃度であって、イオンだけでなく、溶解して未解離のカルシウム塩も含むものである。このT−Ca濃度が100mg/L以下になると、逆浸透膜処理工程や電気透析処理工程でカルシウムスケールが発生することを効果的に防止することができるため好ましい。
It is preferable that the T-Ca concentration in the softened water is 100 mg / L or less, particularly 50 mg / L or less by the softening treatment. The lower the concentration, the better. However, if it is this level, it is possible to eliminate problems in performing the following processing.
Here, the “T-Ca concentration” is the total calcium concentration in water and includes not only ions but also dissolved and undissociated calcium salts. It is preferable that the T-Ca concentration is 100 mg / L or less because it is possible to effectively prevent the occurrence of calcium scale in the reverse osmosis membrane treatment process and the electrodialysis treatment process.

(SS除去処理工程)
軟化処理水は、軟化処理水供給管4を通じてSS除去処理装置5に供給され、ここでSSや有機物が除去された後、SS除去処理水供給管6を通じて逆浸透膜処理装置7に供給される。
(SS removal process)
The softened treated water is supplied to the SS removal processing device 5 through the softened treated water supply pipe 4, and after SS and organic substances are removed here, the softened treated water is supplied to the reverse osmosis membrane treatment device 7 through the SS removed treated water supply pipe 6. .

SS除去処理工程では、生物処理、凝集沈殿処理、砂ろ過処理、精密ろ過膜処理などにより、有機汚濁物などの懸濁物質(SS)を除去することができる。
SS除去処理液中の懸濁物質(SS)は5mg/L以下であるのが好ましく、中でも1mg/L以下であるのがさらに好ましい。
In the SS removal treatment step, suspended substances (SS) such as organic contaminants can be removed by biological treatment, coagulation sedimentation treatment, sand filtration treatment, microfiltration membrane treatment or the like.
The suspended substance (SS) in the SS removal treatment solution is preferably 5 mg / L or less, and more preferably 1 mg / L or less.

生物処理としては、具体的には標準的な活性汚泥法の他に、生物学的硝化脱窒素法なども挙げることができ、これらの方法を利用することにより、有機物の分解や窒素除去をすることができ、懸濁物質(SS)及びBODを低下させることができる。   Specific examples of biological treatment include biological activated nitrification and denitrification in addition to the standard activated sludge method. By using these methods, organic substances are decomposed and nitrogen is removed. And can reduce suspended matter (SS) and BOD.

凝集沈殿処理とは、水中の微細な浮遊物質やコロイド状物質を、凝集剤によりフロック(凝集体)を形成させ、必要に応じて高分子凝集剤などで更にフロックを大きくして固液分離したり、或いは、イオン化した重金属をキレート剤等の凝集剤により化学反応させて沈降分離除去したりする処理方法である。凝集沈殿処理によって、懸濁物質(SS)や、重金属イオン成分などを除去することができる。またCODも下げることができる。
凝集沈殿処理に先だって生物処理を行うことにより、凝集剤の添加量も少なく、処理効率を上がることができる。
The coagulation-precipitation process is a process that forms fine flocculent substances and colloidal substances in water with flocculants to form flocs (aggregates), and if necessary, further increases the flocs with a polymer flocculant and solid-liquid separation. Alternatively, it is a treatment method in which ionized heavy metals are chemically reacted with a flocculant such as a chelating agent to precipitate and remove. Suspended substances (SS), heavy metal ion components, and the like can be removed by the coagulation sedimentation treatment. COD can also be lowered.
By performing biological treatment prior to the coagulation sedimentation treatment, the amount of coagulant added is small, and the treatment efficiency can be increased.

砂ろ過処理とは、砂利を積んだ支持砂利層の上に、各種砂の層を積層してなる砂ろ過池に、被処理水を通過させて不純物を除去するろ過方法であり、懸濁物質(SS)や、鉄やマンガンなどを除去することができる。
凝集沈殿処理を砂ろ過処理のSS除去処理として行うことは特に有効である。
Sand filtration treatment is a filtration method that removes impurities by passing water to be treated through a sand filtration pond in which various layers of sand are laminated on a gravel-supported gravel layer. (SS), iron, manganese and the like can be removed.
It is particularly effective to perform the coagulation sedimentation treatment as the SS removal treatment of the sand filtration treatment.

凝集精密ろ過(凝集MF膜ろ過)は、精密ろ過膜を利用した処理方法であり、好ましくは、生物処理と組み合わせて、生物処理による処理水に無機凝集剤を添加して凝集させたものを、精密ろ過膜でろ過するのがよい。このような方法を利用すると、特に懸濁物質(SS)を廃水中から除去することができる。   Aggregation microfiltration (aggregation MF membrane filtration) is a treatment method using a microfiltration membrane, and preferably, in combination with biological treatment, an aggregate obtained by adding an inorganic flocculant to treated water by biological treatment, It is better to filter with a microfiltration membrane. When such a method is used, suspended substances (SS) can be removed from waste water.

(逆浸透膜処理工程)
SS除去処理水は、SS除去処理水供給管6を通じて逆浸透膜処理装置7に供給される。また、後述するように、電気透析処理によって脱塩された電気透析処理水も、軟化処理水供給管4又はSS除去処理水供給管6を介して逆浸透膜処理装置7に供給される。このようにSS除去処理水と電気透析処理水とが混合されて逆浸透膜処理装置7に供給され、ここで逆浸透膜処理されて脱塩された後、脱塩された逆浸透膜処理水は逆浸透膜処理水排出管9を通じて回収される一方、高濃度塩を含有する濃縮水は逆浸透濃縮水供給管8を通じて電気透析装置10に供給される。
(Reverse osmosis membrane treatment process)
The SS removal treated water is supplied to the reverse osmosis membrane treatment device 7 through the SS removal treated water supply pipe 6. Moreover, as will be described later, the electrodialyzed water desalted by the electrodialysis treatment is also supplied to the reverse osmosis membrane treatment device 7 via the softened treated water supply pipe 4 or the SS removal treated water supply pipe 6. Thus, the SS removal treated water and the electrodialysis treated water are mixed and supplied to the reverse osmosis membrane treatment device 7, where the reverse osmosis membrane treatment is desalted by desalting and then desalted reverse osmosis membrane treated water. Is recovered through the reverse osmosis membrane treated water discharge pipe 9, while concentrated water containing a high concentration salt is supplied to the electrodialyzer 10 through the reverse osmosis concentrated water supply pipe 8.

逆浸透膜処理(「RO処理」とも称する)は、半透膜(RO膜)で仕切られた室中の塩類水に浸透圧以上の機械的圧力を加えて半透膜を通すことにより、逆浸透濃縮水(「RO濃縮水」ともいう)と逆浸透膜処理水とに分離する方法である。   Reverse osmosis membrane treatment (also referred to as “RO treatment”) is performed by applying mechanical pressure higher than osmotic pressure to salt water in a chamber partitioned by a semipermeable membrane (RO membrane) and passing through the semipermeable membrane. This is a method of separating into osmotic concentrated water (also referred to as “RO concentrated water”) and reverse osmosis membrane treated water.

逆浸透膜処理の効率は、塩類濃度が低い場合に良くなることが知られている。
本処理方法Aでは、次工程の電気透析処理によって脱塩された処理水を、軟化処理水供給管4又はSS除去処理水供給管6に戻して、逆浸透膜処理の被処理水としており、戻さない場合と比べて、逆浸透膜処理装置7に供給される被処理水の塩類濃度が低減するため、逆浸透膜処理を通常の廃水より塩類濃度の低い状態で行うことができ、その分、塩類濃度が非常に低い逆浸透膜処理水を効率よく回収できる。しかも、高い濃度の逆浸透濃縮水を縮小した容積で回収できることになり、次工程の電気透析処理では、このような縮小した容積の逆浸透濃縮水を対象として行わせることができ、電気透析処理の量的負担を少なくすることができる。
It is known that the efficiency of the reverse osmosis membrane treatment is improved when the salt concentration is low.
In this treatment method A, the treated water desalted by the electrodialysis treatment in the next step is returned to the softened treated water supply pipe 4 or the SS removal treated water supply pipe 6 to be treated water for reverse osmosis membrane treatment, Compared with the case of not returning, the salt concentration of the water to be treated supplied to the reverse osmosis membrane treatment device 7 is reduced, so that the reverse osmosis membrane treatment can be performed in a state where the salt concentration is lower than that of normal waste water. The reverse osmosis membrane treated water having a very low salt concentration can be efficiently recovered. Moreover, the reverse osmosis concentrated water having a high concentration can be collected in a reduced volume, and the electrodialysis treatment in the next step can be performed on the reduced volume reverse osmosis concentrated water as an object. Can reduce the quantitative burden.

逆浸透膜処理の脱塩率は80%以上であるのが好ましく、中でも85%以上、その中でも特に98%以上であるのがさらに好ましい。また、逆浸透濃縮水の蒸発残留物成分濃度(TDS)は15000mg/L以上であるのが好ましく、中でも25000mg/L以上であるのがさらに好ましい。
ここで、「蒸発残留物成分(TDS)」とは、その水の水分を蒸発させれば固形成分として蒸発缶中に残留する成分をいう。
The desalting rate in the reverse osmosis membrane treatment is preferably 80% or more, more preferably 85% or more, and particularly preferably 98% or more. Further, the evaporation residue component concentration (TDS) of reverse osmosis concentrated water is preferably 15000 mg / L or more, more preferably 25000 mg / L or more.
Here, the “evaporation residue component (TDS)” refers to a component that remains in the evaporator as a solid component when the water content of the water is evaporated.

(電気透析処理工程)
逆浸透膜濃縮水は、逆浸透濃縮水供給管8を通じて電気透析装置10に供給され、ここで脱塩された電気透析処理水は、電気透析処理水供給管11を通じて軟化処理水供給管4又はSS除去処理水供給管6に供給され、他方の濃縮水は電気透析濃縮水供給管12を通じて電解処理装置13に供給される。
(Electrodialysis treatment process)
The reverse osmosis membrane concentrated water is supplied to the electrodialysis apparatus 10 through the reverse osmosis concentrated water supply pipe 8, and the desalted electrodialyzed water is supplied through the electrodialyzed water supply pipe 11 or the softened treated water supply pipe 4 or 4. The SS removal treated water supply pipe 6 is supplied, and the other concentrated water is supplied to the electrolytic treatment apparatus 13 through the electrodialysis concentrated water supply pipe 12.

電気透析処理(「ED処理」ともいう)は、多数の電気透析膜を配列し、交互に形成した濃縮室と希釈室に逆浸透濃縮水を供給して、通電して濃縮室に高濃度の電気透析濃縮水を得、希釈室に低濃度の電気透析処理水を得る方法である。   In electrodialysis treatment (also called “ED treatment”), a large number of electrodialysis membranes are arranged, reverse osmosis concentrated water is supplied to alternately formed concentration chambers and dilution chambers, energized, and high concentration is supplied to the concentration chambers. This is a method for obtaining electrodialyzed concentrated water and obtaining low-concentration electrodialyzed water in a dilution chamber.

電気透析処理の脱塩率は80%以上であるのが好ましく、中でも95%以上であるのがさらに好ましい。
また、電気透析処理水のTDS(蒸発残留物)は6000mg/L以下であるのが好ましく、中でも5000mg/L以下であるのがさらに好ましい。
また、電気透析処理後の電気透析濃縮水におけるTDS(蒸発残留物)は100,000mg/L以上であるのが好ましく、塩素イオン濃度は50,000mg/L以上であるのが好ましい。
The desalting rate in the electrodialysis treatment is preferably 80% or more, and more preferably 95% or more.
The TDS (evaporation residue) of electrodialyzed water is preferably 6000 mg / L or less, more preferably 5000 mg / L or less.
Further, the TDS (evaporation residue) in the electrodialyzed concentrated water after the electrodialysis treatment is preferably 100,000 mg / L or more, and the chloride ion concentration is preferably 50,000 mg / L or more.

電気透析処理によって脱塩した処理水は、上述のように軟化処理水供給管4又はSS除去処理水供給管6に戻すことにより、逆浸透膜処理装置7に供給される被処理水の塩類濃度が低減するため、逆浸透膜処理の処理効率を高めることができると共に、高い濃度の逆浸透濃縮水を縮小した容積で回収できることになり、電気透析処理では、このような縮小した容積の逆浸透濃縮水を対象として行わせることができ、電気透析処理の量的負担を少なくすることができる。
中でも、電気透析処理によって脱塩された処理水を軟化処理水供給管4に戻すことにより、SS除去処理、特に生物処理を行って残留有機物を分解することができ、有機物の低減をより一層図ることができる。電気透析処理後の処理水は塩類濃度が大きく低減される。しかし、非イオン性である有機物が電気透析処理では除去できず、処理水に残留したままである。これらを前処理工程に返送することで分解除去される。
The treated water desalted by the electrodialysis treatment is returned to the softened treated water supply pipe 4 or the SS-removed treated water supply pipe 6 as described above, so that the salt concentration of the treated water supplied to the reverse osmosis membrane treatment apparatus 7 is increased. Therefore, the treatment efficiency of reverse osmosis membrane treatment can be increased, and high concentration reverse osmosis concentrated water can be collected in a reduced volume. In electrodialysis treatment, reverse osmosis of such reduced volume is possible. Concentrated water can be used as a target, and the quantitative burden of electrodialysis treatment can be reduced.
Among them, by returning the treated water desalted by the electrodialysis treatment to the softened treated water supply pipe 4, it is possible to decompose the residual organic matter by performing SS removal treatment, particularly biological treatment, and further reduce the organic matter. be able to. The treated water after electrodialysis treatment is greatly reduced in salt concentration. However, organic substances that are nonionic cannot be removed by electrodialysis, and remain in the treated water. These are disassembled and removed by returning them to the pretreatment step.

(電解処理工程)
電気透析処理により濃縮された電気透析濃縮水は、電気透析濃縮水供給管12を通じて電解処理装置13に供給され、電解処理装置13にて次亜塩素酸ナトリウム溶液が作製される。
(Electrolytic treatment process)
The electrodialyzed concentrated water concentrated by the electrodialysis treatment is supplied to the electrolytic treatment apparatus 13 through the electrodialysis concentrated water supply pipe 12, and a sodium hypochlorite solution is produced in the electrolytic treatment apparatus 13.

電解処理工程では、塩素を多く含む電気透析濃縮水を電気分解することにより、次亜塩素酸ナトリウム溶液を作製することができる。   In the electrolytic treatment step, a sodium hypochlorite solution can be prepared by electrolyzing electrodialyzed concentrated water containing a large amount of chlorine.

<有機性廃水処理装置21>
図2は、本発明の実施形態の一例としての有機性廃水の処理方法Bを実施するための有機性廃水処理装置21の一例を示す概略図である。但し、有機性廃水の処理方法Bを実施するための装置がこれに限定されるものではない。
<Organic wastewater treatment device 21>
FIG. 2 is a schematic view showing an example of an organic wastewater treatment apparatus 21 for carrying out the organic wastewater treatment method B as an example of the embodiment of the present invention. However, the apparatus for implementing the organic wastewater treatment method B is not limited to this.

有機性廃水処理装置21では、有機性廃水を供給する被処理水流入管22が軟化処理装置23に接続され、軟化処理装置23の出口側には、軟化処理水供給管24を介してSS除去処理装置25が接続され、SS除去処理装置25の出口側にはSS除去処理水供給管26を介して電気透析(ED処理)装置27が接続され、電気透析装置27の出口側には電気透析処理水供給管28と電気透析濃縮水供給管29とが接続され、一方の電気透析処理水供給管28は逆浸透膜処理(RO処理)装置30に接続され、他方の電気透析濃縮水供給管29は電解処理装置33に接続されている。そして、逆浸透膜処理装置30の出口側には、逆浸透膜処理水排出管31と逆浸透濃縮水供給管32が接続されており、この逆浸透濃縮水供給管32はSS除去処理水供給管26又は軟化処理水供給管24に接続されている。また、電解処理装置33の出口側には次亜塩素酸ナトリウム溶液供給管34が接続されている。   In the organic wastewater treatment apparatus 21, a treated water inflow pipe 22 for supplying organic wastewater is connected to the softening treatment apparatus 23, and an SS removal treatment is performed on the outlet side of the softening treatment apparatus 23 via the softening treatment water supply pipe 24. An apparatus 25 is connected, an electrodialysis (ED process) apparatus 27 is connected to the outlet side of the SS removal treatment apparatus 25 via an SS removal treatment water supply pipe 26, and an electrodialysis treatment is performed on the outlet side of the electrodialysis apparatus 27. A water supply pipe 28 and an electrodialyzed concentrated water supply pipe 29 are connected, one electrodialyzed water supply pipe 28 is connected to a reverse osmosis membrane treatment (RO treatment) device 30, and the other electrodialyzed concentrated water supply pipe 29. Is connected to the electrolytic treatment apparatus 33. A reverse osmosis membrane treated water discharge pipe 31 and a reverse osmosis concentrated water supply pipe 32 are connected to the outlet side of the reverse osmosis membrane treatment apparatus 30, and the reverse osmosis concentrated water supply pipe 32 supplies SS removal treated water. It is connected to the pipe 26 or the softened treated water supply pipe 24. A sodium hypochlorite solution supply pipe 34 is connected to the outlet side of the electrolytic treatment apparatus 33.

有機性廃水処理装置21の各装置の構成及び機能は、上記有機性廃水処理装置1と同様であればよい。
また、上記の各装置間は各種処理水供給管によって接続されていてもよいし、適宜箇所にタンクを設けて、そこにいったん処理液を貯蔵し、そこから各装置に供給するようにしてもよい。その他の処理装置を適宜設けることも可能である。
The configuration and function of each device of the organic wastewater treatment device 21 may be the same as those of the organic wastewater treatment device 1.
In addition, each of the above devices may be connected by various treated water supply pipes, or a tank may be provided at an appropriate location to temporarily store the treatment liquid and supply it to each device from there. Good. Other processing apparatuses can be provided as appropriate.

<本処理方法B>
このような装置を使用して、次のような本処理方法Bを実施することができる。
有機性廃水の処理方法B(「本処理方法B」と称する)では、図2に示すように、塩類及び有機物を含有する有機性廃水に対して軟化処理を行ってカルシウム濃度を低減させた後(軟化処理工程)、生物処理、凝集沈殿処理、砂ろ過処理、精密ろ過膜処理からなる群から選ばれる1以上の処理または2以上の組み合わせからなるSS除去処理を行い(SS除去処理工程)、次いで、電気透析処理(ED処理)により脱塩処理して電気透析濃縮水と電気透析処理水とに分離し(電気透析処理工程)、該電気透析処理水を逆浸透膜処理(RO処理)により脱塩処理して逆浸透濃縮水と逆浸透膜処理水とに分離し(逆浸透膜処理工程)、逆浸透膜処理水を回収する一方、逆浸透濃縮水を電気透析処理又はSS除去処理の供給側に戻すと共に、前記電気透析濃縮水は、電解処理装置に供給して電気分解を行い、次亜塩素酸ナトリウム溶液を生成する(電解処理工程)という一連の処理方法を実施することにより、前記の逆浸透膜処理水と次亜塩素酸ナトリウム溶液を得ることができる。
<This processing method B>
Using such an apparatus, the following processing method B can be implemented.
In the organic wastewater treatment method B (referred to as “the present treatment method B”), as shown in FIG. 2, the organic wastewater containing salts and organic matter is softened to reduce the calcium concentration. (Softening treatment step), biological treatment, coagulation sedimentation treatment, sand filtration treatment, SS removal treatment consisting of one or more treatments selected from the group consisting of microfiltration membrane treatment or a combination of two or more (SS removal treatment step), Next, desalting is performed by electrodialysis treatment (ED treatment) to separate electrodialyzed concentrated water and electrodialysis treatment water (electrodialysis treatment step), and the electrodialysis treatment water is subjected to reverse osmosis membrane treatment (RO treatment). It is desalted and separated into reverse osmosis concentrated water and reverse osmosis membrane treated water (reverse osmosis membrane treatment step), and reverse osmosis membrane treated water is recovered while reverse osmosis concentrated water is subjected to electrodialysis treatment or SS removal treatment. While returning to the supply side, The dialysis concentrated water is supplied to the electrolytic treatment apparatus, electrolyzed, and by carrying out a series of treatment methods of generating a sodium hypochlorite solution (electrolytic treatment step), the reverse osmosis membrane treated water and A sodium hypochlorite solution can be obtained.

(被処理水)
本処理方法Bの被処理水としては、塩類及び有機物を含んでいて再利用や河川などへの放流ができない有機性廃水であればよい。例えば、し尿や、ゴミの埋め立て地の浸出水などの塩類濃度が高い有機性廃水は、一般に、カルシウムイオンや塩素イオンなどの塩類や有機物などの汚濁物質を高濃度に含んでいる。
但し、本処理方法Bは、本処理方法Aに比べて、塩類濃度がより一層高い有機性廃水を効果的に処理することができる。そのため、本処理装置Bは、例えば塩素イオン濃度が5000mg/L以上、特に10000mg/L以上、中でも20000mg/L以上の有機性廃水を被処理水とするのがより一層効果的である。蒸発残留物成分濃度(TDS)で言えば、10000mg/L以上、特に20000mg/L以上、中でも40000mg/L以上の有機性廃水を被処理水とするのがより効果的である。
(Treated water)
The treated water of this treatment method B may be organic wastewater that contains salts and organic matter and cannot be reused or discharged into rivers. For example, organic wastewater with a high salt concentration, such as human waste and leachate from landfills of garbage, generally contains high concentrations of pollutants such as salts such as calcium ions and chlorine ions and organic matter.
However, the present treatment method B can effectively treat organic wastewater having a higher salt concentration than the present treatment method A. For this reason, in the present processing apparatus B, for example, organic waste water having a chlorine ion concentration of 5000 mg / L or more, particularly 10,000 mg / L or more, and especially 20000 mg / L or more is more effective. In terms of evaporation residue component concentration (TDS), it is more effective to use organic wastewater of 10000 mg / L or more, particularly 20000 mg / L or more, especially 40000 mg / L or more as water to be treated.

(軟化処理およびSS除去処理)
処理方法Bにおける軟化処理およびSS除去処理は、処理方法Aのそれと同様である。
(Softening treatment and SS removal treatment)
The softening process and the SS removal process in the processing method B are the same as those in the processing method A.

(電気透析処理工程)
SS除去処理工程で懸濁物質(SS)が除去された処理水は、SS除去処理水供給管26を通じて電気透析装置27に供給される。また、後述するように、逆浸透膜処理装置30で濃縮された逆浸透膜処理濃縮水も、軟化処理水供給管24又はSS除去処理水供給管26を介して電気透析装置27に供給され、ここで電気透析処理される。
(Electrodialysis treatment process)
The treated water from which suspended substances (SS) have been removed in the SS removal treatment step is supplied to the electrodialysis apparatus 27 through the SS removal treatment water supply pipe 26. Further, as will be described later, the reverse osmosis membrane treated concentrated water concentrated by the reverse osmosis membrane treatment device 30 is also supplied to the electrodialysis device 27 via the softened treated water supply pipe 24 or the SS removal treated water supply pipe 26, Here, it is electrodialyzed.

電気透析処理(「ED処理」ともいう)は、多数の電気透析膜を配列し、交互に形成した濃縮室と希釈室に逆浸透濃縮水を供給して、通電して濃縮室に高濃度の電気透析濃縮水を得、希釈室に低濃度の電気透析処理水を得る方法である。電気透析処理は、逆浸透膜処理に比べて、塩類や有機成分を多く含む廃水を処理することが可能である。   In electrodialysis treatment (also called “ED treatment”), a large number of electrodialysis membranes are arranged, reverse osmosis concentrated water is supplied to alternately formed concentration chambers and dilution chambers, energized, and high concentration is supplied to the concentration chambers. This is a method for obtaining electrodialyzed concentrated water and obtaining low-concentration electrodialyzed water in a dilution chamber. Electrodialysis treatment can treat wastewater containing a large amount of salts and organic components, compared to reverse osmosis membrane treatment.

電気透析処理の脱塩率は80%以上であるのが好ましく、中でも95%以上であるのがさらに好ましい。
また、電気透析処理水のTDS(蒸発残留物)は6000mg/L以下であるのが好ましく、中でも5000mg/L以下であるのがさらに好ましい。
また、電気透析処理後の電気透析濃縮水におけるTDS(蒸発残留物)は100,000mg/L以上であるのが好ましく、塩素イオン濃度は50,000mg/L以上であるのが好ましい。
The desalting rate in the electrodialysis treatment is preferably 80% or more, and more preferably 95% or more.
The TDS (evaporation residue) of electrodialyzed water is preferably 6000 mg / L or less, more preferably 5000 mg / L or less.
Further, the TDS (evaporation residue) in the electrodialyzed concentrated water after the electrodialysis treatment is preferably 100,000 mg / L or more, and the chloride ion concentration is preferably 50,000 mg / L or more.

(逆浸透膜処理工程)
電気透析処理によって脱塩された処理水は、電気透析処理水供給管28を通じて逆浸透膜処理装置30に供給され、逆浸透膜処理装置30で逆浸透膜処理して脱塩された後、逆浸透膜処理水排出管31を通じて回収される。他方、高濃度塩及び有機物を含有する逆浸透膜処理濃縮水は、逆浸透濃縮水供給管32を通じて電気透析処理又はSS除去処理の供給側に返送される。
(Reverse osmosis membrane treatment process)
The treated water desalted by the electrodialysis treatment is supplied to the reverse osmosis membrane treatment device 30 through the electrodialysis treatment water supply pipe 28, and after reverse osmosis membrane treatment by the reverse osmosis membrane treatment device 30 and desalting, the reverse It collects through the osmotic membrane treated water discharge pipe 31. On the other hand, the reverse osmosis membrane treated concentrated water containing the high-concentration salt and the organic matter is returned to the supply side of the electrodialysis process or the SS removal process through the reverse osmosis concentrated water supply pipe 32.

逆浸透膜処理は、半透膜(RO膜)で仕切られた室中の塩類水に浸透圧以上の機械的圧力を加えて半透膜を通すことにより、逆浸透濃縮水(「RO濃縮水」ともいう)と逆浸透膜処理水とに分離する方法である。   Reverse osmosis membrane treatment applies reverse osmosis concentrated water (“RO concentrated water”) by applying mechanical pressure higher than osmotic pressure to salt water in a room partitioned by a semipermeable membrane (RO membrane) and passing it through the semipermeable membrane. And the reverse osmosis membrane treated water.

逆浸透膜処理の効率は、塩類濃度が低い場合に良くなることが知られている。
本処理方法Bでは、電気透析処理によって脱塩された処理水のみを、逆浸透膜処理の被処理水としているため、上述した本処理方法Aと比べても、塩類濃度がより一層低い状態で逆浸透膜処理することができるため、塩類濃度が非常に低い大量の逆浸透膜処理水を効率よく回収できる。
It is known that the efficiency of the reverse osmosis membrane treatment is improved when the salt concentration is low.
In this treatment method B, only treated water that has been desalted by electrodialysis treatment is treated water for reverse osmosis membrane treatment, so that the salt concentration is still lower than that in this treatment method A described above. Since reverse osmosis membrane treatment can be performed, a large amount of reverse osmosis membrane treated water having a very low salt concentration can be efficiently recovered.

また、高濃度塩を含有する逆浸透濃縮水を、電気透析処理又はSS除去処理の供給側に返送することにより、電気透析濃縮水をさらに濃縮することができるから、次亜塩素酸ナトリウム溶液の生産効率を高めることができる。中でも、SS除去処理の供給側に返送することによって、電気透析では除去できない有機物を再びSS除去処理、特に生物処理を行うことができるから、残留有機物を分解することができ、有機物の低減をより一層図ることができる。   In addition, by returning the reverse osmosis concentrated water containing a high-concentration salt to the supply side of the electrodialysis treatment or the SS removal treatment, the electrodialysis concentrated water can be further concentrated, so that the sodium hypochlorite solution Production efficiency can be increased. Among them, by returning to the SS removal treatment supply side, organic matter that cannot be removed by electrodialysis can be subjected to SS removal treatment, in particular biological treatment, so that residual organic matter can be decomposed and organic matter can be further reduced. More can be achieved.

逆浸透膜処理の脱塩率は80%以上であるのが好ましく、中でも85%以上、その中でも特に98%以上であるのがさらに好ましい。また、逆浸透濃縮水の蒸発残留物成分濃度(TDS)は15000mg/L以上であるのが好ましく、中でも25000mg/L以上であるのがさらに好ましい。   The desalting rate in the reverse osmosis membrane treatment is preferably 80% or more, more preferably 85% or more, and particularly preferably 98% or more. Further, the evaporation residue component concentration (TDS) of reverse osmosis concentrated water is preferably 15000 mg / L or more, more preferably 25000 mg / L or more.

(電解処理工程)
電気透析処理により濃縮された電気透析濃縮水は、電気透析濃縮水供給管12を通じて電解処理装置13に供給され、電解処理装置13にて次亜塩素酸ナトリウム溶液が生成される。
(Electrolytic treatment process)
The electrodialyzed concentrated water concentrated by the electrodialysis treatment is supplied to the electrolytic treatment device 13 through the electrodialysis concentrated water supply pipe 12, and a sodium hypochlorite solution is generated in the electrolytic treatment device 13.

電解処理工程では、電気透析濃縮水を電気分解することにより、次亜塩素酸ナトリウム溶液を生成する。   In the electrolytic treatment process, a sodium hypochlorite solution is generated by electrolyzing the electrodialyzed concentrated water.

<処理方法Aと処理方法Bの対比>
処理方法Aでは、被処理水に対し、先に逆浸透膜による透過を行なうため、被処理水の塩類濃度が高いと、浸透圧が上昇し、逆浸透膜での操作圧力が高くなる。通常、逆浸透膜の操作圧力が6MPaであるため、被処理水の塩類濃度が高いと透過水量が低下して水回収率の低下を招き、処理水量の安定確保が困難となる。また、SS除去処理水と電気透析処理水の混合水が逆浸透膜処理の被処理水となる場合は、被処理水の有機物濃度が高いと、逆浸透膜供給液に有機物が蓄積することになり、逆浸透膜に及ぼす有機物の汚染が増大し、透過速度低下の要因となる可能性がある。このような理由から、処理方法Aは、被処理水の有機物濃度および塩類濃度が比較的低い場合、具体的には塩素イオン濃度が2000〜20000mg/L以下、特に5000mg/L以下、中でも44000mg/L以下の有機性廃水を被処理水とするのがより一層効果的である。蒸発残留物成分濃度(TDS)で言えば、4000〜40000mg/L以下、特に10000mg/L以下、中でも8000mg/L以下の有機性廃水を被処理水とするのがより効果的である。逆浸透膜処理によれば、有機物及び塩類をより効果的に除去することができ、より水質の高い最終処理液を得ることができる。
<Contrast between Processing Method A and Processing Method B>
In the treatment method A, the water to be treated is first permeated through the reverse osmosis membrane. Therefore, if the salt concentration of the water to be treated is high, the osmotic pressure increases and the operating pressure in the reverse osmosis membrane increases. Usually, since the operating pressure of the reverse osmosis membrane is 6 MPa, if the salt concentration of the water to be treated is high, the amount of permeated water is lowered, leading to a reduction in the water recovery rate, making it difficult to ensure the stability of the treated water amount. Moreover, when the mixed water of SS removal treated water and electrodialysis treated water is treated water for reverse osmosis membrane treatment, if the organic matter concentration in the treated water is high, organic matter accumulates in the reverse osmosis membrane supply liquid. Therefore, the contamination of the organic matter on the reverse osmosis membrane increases, which may cause a decrease in permeation rate. For such a reason, the treatment method A has a chlorine ion concentration of 2000 to 20000 mg / L or less, particularly 5000 mg / L or less, particularly 44000 mg / L when the organic matter concentration and salt concentration of the water to be treated are relatively low. It is even more effective to use organic waste water of L or less as treated water. In terms of evaporation residue component concentration (TDS), it is more effective to use organic waste water of 4000 to 40,000 mg / L or less, particularly 10,000 mg / L or less, especially 8000 mg / L or less as the water to be treated. According to the reverse osmosis membrane treatment, organic substances and salts can be more effectively removed, and a final treatment liquid with higher water quality can be obtained.

これに対し、処理方法Bによれば、逆浸透膜処理の被処理水は電気透析処理水のみであるから、逆浸透膜処理の被処理水の塩類濃度も低いから、逆浸透膜処理での水回収率を高めることができる。このような点は、有機性廃水の塩類濃度及び塩素イオン濃度が高い場合ほど、効果の差異が顕著である。
しかも、逆浸透膜濃縮水を電気透析処理の供給側に返送することにより、電気透析濃縮水における塩素イオン濃度を高めることができ、電解処理による次亜塩素酸ナトリウム溶液の生成量を高めることができる。
このような理由から、処理方法Bは、被処理水の有機物濃度および塩類濃度が比較的高い場合、具体的には、塩素イオン濃度が5000mg/L以上、特に10000mg/L以上、中でも20000mg/L以上の有機性廃水を被処理水とするのがより一層効果的であり、蒸発残留物成分濃度(TDS)で言えば、10000mg/L以上、特に20000mg/L以上、中でも40000mg/L以上の有機性廃水を被処理水とするのがより効果的である。
On the other hand, according to the processing method B, since the water to be treated for reverse osmosis membrane treatment is only electrodialyzed water, the salt concentration of the water to be treated for reverse osmosis membrane treatment is also low. The water recovery rate can be increased. In such a point, the difference in the effect becomes more remarkable as the salt concentration and the chlorine ion concentration of the organic wastewater are higher.
Moreover, by returning the reverse osmosis membrane concentrated water to the electrodialysis treatment supply side, the chlorine ion concentration in the electrodialysis concentrated water can be increased, and the amount of sodium hypochlorite solution produced by electrolytic treatment can be increased. it can.
For this reason, in the treatment method B, when the organic substance concentration and the salt concentration of the water to be treated are relatively high, specifically, the chlorine ion concentration is 5000 mg / L or more, particularly 10000 mg / L or more, especially 20000 mg / L. It is even more effective to use the above organic wastewater as water to be treated. In terms of evaporation residue component concentration (TDS), it is 10000 mg / L or more, particularly 20000 mg / L or more, especially 40000 mg / L or more. It is more effective to use treated wastewater as treated water.

<NF膜処理>
処理方法A及び処理方法Bにおける逆浸透膜処理の代わりに、NF膜処理を行うことも可能である。装置としては、逆浸透膜処理装置の代わりに、NF膜処理装置を設置することが可能である。
逆浸透膜処理に使われる逆浸透膜(RO膜)は、孔の大きさが概ね2nm以下であり、水を通すが、イオンや塩類など水以外の不純物は透過しない性質を有している。
これに対し、NF膜処理に使われるナノフィルターは、孔の大きさが概ね1nm〜2nmであり、イオンや塩類などの阻止率が概ね70%以下程度である。但し、その形態や原理、使用法は逆浸透膜と同様である。
<NF membrane treatment>
In place of the reverse osmosis membrane treatment in the treatment method A and the treatment method B, an NF membrane treatment can also be performed. As an apparatus, an NF membrane treatment apparatus can be installed instead of the reverse osmosis membrane treatment apparatus.
A reverse osmosis membrane (RO membrane) used for reverse osmosis membrane treatment has a pore size of approximately 2 nm or less and allows water to pass through but does not allow impurities other than water, such as ions and salts, to pass through.
On the other hand, the nanofilter used for the NF membrane treatment has a pore size of about 1 nm to 2 nm and a blocking rate of ions and salts of about 70% or less. However, the form, principle, and usage are the same as for reverse osmosis membranes.

逆浸透膜は、被処理水の塩類濃度が高くなると、膜の厚さを増したり複数の膜を連続して通すなどして高い圧力をかけてろ過する必要がある。これに対し、NF膜は、被処理水の塩類濃度が高くても、そのような負担は少ない。よって、被処理水の塩類濃度がそれ程高くなく、有機物濃度の高い場合には、NF膜処理を行って水回収率を高めるのが好ましい。
中でも、有機物濃度が高い被処理水を処理する場合には、処理方法BにおいてNF処理を採用するのが好ましい。非イオン性である有機物は電気透析処理では除去されないため、逆浸透膜処理では運転圧力を高める必要があるが、NF膜処理によれば、運転圧力をそれほど高める必要がなく、しかも有機物をほとんど除去することができ、水回収率も高いからである。
When the reverse osmosis membrane has a high salt concentration in the water to be treated, it is necessary to increase the thickness of the membrane or continuously apply a plurality of membranes to apply a high pressure for filtration. On the other hand, the NF membrane has a small burden even if the salt concentration of the water to be treated is high. Therefore, when the salt concentration of the water to be treated is not so high and the organic matter concentration is high, it is preferable to perform the NF membrane treatment to increase the water recovery rate.
Especially, when processing the to-be-processed water with high organic substance density | concentration, it is preferable to employ | adopt NF processing in the processing method B. FIG. Since organic substances that are nonionic are not removed by electrodialysis treatment, it is necessary to increase the operating pressure in reverse osmosis membrane treatment, but NF membrane treatment does not require so much increase in operating pressure, and most organic matter is removed. This is because the water recovery rate is high.

以下、実施例および比較例によって本発明を更に詳細に説明するが、本発明は下記の実施例によって制限を受けるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not restrict | limited by the following Example.

<実施例1>
実施例1で使用した有機性廃水処理装置1は、図1に示すように、有機性廃水を供給する被処理水流入管2が軟化処理装置3に接続され、軟化処理装置3の出口側に軟化処理水供給管4を介してSS除去処理装置5が接続され、SS除去処理装置5の出口側にSS除去処理水供給管6を介して逆浸透膜処理(RO処理)装置7が接続され、逆浸透膜処理装置7の出口側には逆浸透濃縮水供給管8と逆浸透膜処理水排出管9が接続されており、逆浸透濃縮水供給管8は電気透析(ED処理)装置10に接続され、電気透析装置10の出口側には電気透析処理水供給管11と電気透析濃縮水供給管12とが接続され、電気透析処理水供給管11は軟化処理水供給管4に接続され、他方の電気透析濃縮水供給管12は、電解処理装置13に接続され、電解処理装置13の出口側には次亜塩素酸ナトリウム溶液供給管14が接続されている。
ここで、上記SS除去処理装置5は、生物処理装置と精密ろ過膜処理装置とから構成されている。
<Example 1>
As shown in FIG. 1, the organic wastewater treatment apparatus 1 used in Example 1 is connected to the softening treatment apparatus 3 with the treated water inflow pipe 2 for supplying organic wastewater, and is softened on the outlet side of the softening treatment apparatus 3. The SS removal treatment device 5 is connected via the treated water supply pipe 4, and the reverse osmosis membrane treatment (RO treatment) device 7 is connected to the outlet side of the SS removal treatment device 5 via the SS removal treatment water supply pipe 6. A reverse osmosis concentrated water supply pipe 8 and a reverse osmosis membrane treated water discharge pipe 9 are connected to the outlet side of the reverse osmosis membrane treatment apparatus 7, and the reverse osmosis concentrated water supply pipe 8 is connected to an electrodialysis (ED treatment) apparatus 10. The electrodialyzed water supply pipe 11 and the electrodialyzed concentrated water supply pipe 12 are connected to the outlet side of the electrodialyzer 10, and the electrodialyzed water supply pipe 11 is connected to the softened treated water supply pipe 4. The other electrodialysis concentrated water supply pipe 12 is connected to the electrolytic treatment apparatus 13. The outlet side of the electrolytic treatment apparatus 13 sodium hypochlorite solution supply pipe 14 is connected.
Here, the SS removal treatment device 5 is composed of a biological treatment device and a microfiltration membrane treatment device.

実施例1では、廃棄物埋立最終処分場の浸出水を被処理水(詳しくは表1参照)とし、この被処理水に対して軟化処理を行ってカルシウム濃度を低減させた後、生物処理及び精密ろ過膜(MF膜)処理を組み合わせたSS除去処理を行った。
次に、精密ろ過膜(MF膜)で得た処理水(「MF処理水」という)を、操作圧力4−5MPaの高圧条件で逆浸透膜処理(RO処理)を行い、有機物及び塩類を除去した逆浸透膜処理水と、それらが濃縮した逆浸透濃縮水とに分離し、逆浸透膜処理水(「RO処理水」という)を回収する一方、逆浸透濃縮水(「RO濃縮水」という)は電気透析(ED処理)装置10に供給し、電気透析処理(ED処理)して、有機物及び塩類を除去した電気透析処理水と、それらが濃縮した電気透析濃縮水とに分離した。そして、該電気透析処理水は、SS除去処理装置5の生物処理装置の供給側に環流させて生物処理により有機物の分解から繰り返して処理させる一方、前記電気透析濃縮水は、電解処理装置13に供給して電気分解を行い、次亜塩素酸ナトリウム溶液(表中の「電解処理水」)を生成した。
In Example 1, the leachate at the landfill final disposal site is treated water (see Table 1 for details), and the treated water is softened to reduce the calcium concentration. SS removal treatment combined with microfiltration membrane (MF membrane) treatment was performed.
Next, the treated water (referred to as “MF treated water”) obtained from the microfiltration membrane (MF membrane) is subjected to reverse osmosis membrane treatment (RO treatment) under high pressure conditions of 4 to 5 MPa to remove organic substances and salts. The reverse osmosis membrane treated water and the reverse osmosis concentrated water in which they are concentrated are collected and the reverse osmosis membrane treated water (referred to as “RO treated water”) is recovered, while the reverse osmosis concentrated water (referred to as “RO concentrated water”). ) Was supplied to the electrodialysis (ED process) apparatus 10 and electrodialyzed (ED process) to separate the electrodialyzed water from which organic substances and salts were removed and the electrodialyzed concentrated water in which they were concentrated. The electrodialyzed water is circulated to the supply side of the biological treatment apparatus of the SS removal treatment apparatus 5 and repeatedly treated from the decomposition of the organic matter by biological treatment, while the electrodialysis concentrated water is supplied to the electrolytic treatment apparatus 13. It was supplied and electrolyzed to produce a sodium hypochlorite solution (“electrolytically treated water” in the table).

上記の被処理水、MF処理水、RO処理水、RO濃縮水及び電解処理水の分析結果を表1に示す。
なお、Caスケール析出状況は、分析及び装置の処理性能より判断した(他の実施例も同様)。
Table 1 shows the analysis results of the water to be treated, MF treated water, RO treated water, RO concentrated water, and electrolytic treated water.
The Ca scale deposition state was judged from the analysis and the processing performance of the apparatus (the same applies to other examples).

Figure 0005567468
Figure 0005567468

表1に示す如く、被処理水は、色度が300度、濁度が200度、CODが250mg/L、T−Caが1200mg/Lであったのに対し、軟化処理、生物処理と凝集MFろ過からなる前処理を行った後のMF処理水は、色度が30〜50度、濁度が0.5度以下、CODが20〜30mg/L、T−Caが20mg/Lとなった。特にT−Caに関しては、軟化処理を行ったことにより約98%除去でき、RO処理の被処理水のT−Caが20mg/Lに低下した結果、水回収率80〜85%時のRO及びED処理でのCaスケールの生成がまったくなく、RO処理水の色度が2度、CODが2.0mg/Lとなった。
また、このように塩類除去しても、被処理水の電気伝導率が10000〜15000μS/cm、塩素イオン濃度(Cl-)が4500〜5500mg/L、TDSが8000〜10000mg/Lであったのに対し、RO処理水の電気伝導率が300〜500μS/cm、塩素イオン濃度(Cl-)が120〜240mg/LTDSが200〜400mg/Lであり、いずれも96%以上の除去率となった。
RO処理水の水質は極めて良好であり、再利用することも可能である。さらにRO濃縮水から得られたED濃縮水に対し、電解処理を行なった結果、電解処理水の電気伝導率が110000〜120000μS/cm、TDSが約100000〜105000mg/Lとなり、極めて塩類濃度が高く、塩類を十分に濃縮できた。さらに、電解処理水の有効塩素濃度が2500mg/Lと高く、放流水に対する消毒・殺菌薬液として十分利用できるものであった。
As shown in Table 1, the water to be treated had a chromaticity of 300 degrees, a turbidity of 200 degrees, COD of 250 mg / L, and T-Ca of 1200 mg / L, whereas softening treatment, biological treatment and aggregation. The MF treated water after the pretreatment consisting of MF filtration has a chromaticity of 30 to 50 degrees, a turbidity of 0.5 degrees or less, a COD of 20 to 30 mg / L, and a T-Ca of 20 mg / L. It was. About T-Ca in particular, about 98% can be removed by performing the softening treatment, and as a result of the reduction of T-Ca of RO treated water to 20 mg / L, RO and 80% to 85% RO recovery rate are obtained. No Ca scale was generated in the ED treatment, the chromaticity of the RO-treated water was 2 °, and the COD was 2.0 mg / L.
Moreover, even when the salts were removed in this way, the electrical conductivity of the water to be treated was 10,000 to 15000 μS / cm, the chlorine ion concentration (Cl ) was 4500 to 5500 mg / L, and the TDS was 8000 to 10,000 mg / L. On the other hand, the electrical conductivity of RO-treated water is 300 to 500 μS / cm, the chlorine ion concentration (Cl ) is 120 to 240 mg / LTDS is 200 to 400 mg / L, and both have a removal rate of 96% or more. .
The quality of RO treated water is extremely good and can be reused. Furthermore, as a result of electrolytic treatment of the ED concentrated water obtained from the RO concentrated water, the electric conductivity of the electrolytic treated water is 110000 to 120,000 μS / cm, the TDS is about 100,000 to 105000 mg / L, and the salt concentration is extremely high. The salt could be concentrated sufficiently. Furthermore, the effective chlorine concentration of the electrolytically treated water was as high as 2500 mg / L, and it could be sufficiently used as a disinfectant / disinfectant solution for discharged water.

このような結果とこれまでの結果から、RO膜として脱塩率90%、好ましくは95%以上のものを用いると、被処理水のTDSが変動してもRO処理水のTDSが概ね500mg/L以下となり、良好な水質が得られることが分かった。
RO濃縮液に対するED処理において、ED濃縮液のTDSが高いほど、電解処理での有効塩素濃度が高く得られることが分かった。通常、ED濃縮液のTDSを100000mg/L以上となるようなED処理条件とすることが好ましい。ED処理水を前処理工程に返送するため、ED処理での脱塩率を80%以上とすれば十分である。
From these results and the results so far, when the RO membrane has a desalination rate of 90%, preferably 95% or more, even if the TDS of the treated water fluctuates, the TDS of the RO treated water is approximately 500 mg / It became below L and it turned out that favorable water quality is obtained.
In the ED treatment for the RO concentrate, it was found that the higher the TDS of the ED concentrate, the higher the effective chlorine concentration in the electrolytic treatment. Usually, it is preferable to set the ED treatment conditions such that the TDS of the ED concentrate is 100000 mg / L or more. Since the ED treated water is returned to the pretreatment process, it is sufficient to set the desalting rate in the ED treatment to 80% or more.

<実施例2>
実施例2で使用した有機性廃水処理装置21は、図2に示すように、有機性廃水を供給する被処理水流入管22が軟化処理装置23に接続され、軟化処理装置23の出口側に軟化処理水供給管24を介してSS除去処理装置25が接続され、SS除去処理装置25の出口側には、SS除去処理水供給管26を介して電気透析(ED処理)装置27が接続され、電気透析装置27の出口側には電気透析処理水供給管28と電気透析濃縮水供給管29とが接続され、一方の電気透析処理水供給管28はNF処理装置30に接続され、他方の電気透析濃縮水供給管29は電解処理装置33に接続されている。NF処理装置30の出口側には、NF処理水排出管31とNF濃縮水供給管32とが接続されており、NF濃縮水供給管32は軟化処理水供給管24に接続されている。また、電解処理装置33の出口側には次亜塩素酸ナトリウム溶液供給管34が接続されている。
ここで、SS除去処理装置25は、生物処理装置と精密ろ過膜処理装置とから構成されている。
<Example 2>
As shown in FIG. 2, the organic wastewater treatment apparatus 21 used in Example 2 is connected to the softening treatment apparatus 23 in the treated water inflow pipe 22 for supplying the organic wastewater, and is softened on the outlet side of the softening treatment apparatus 23. An SS removal treatment device 25 is connected via the treated water supply pipe 24, and an electrodialysis (ED treatment) device 27 is connected to the outlet side of the SS removal treatment device 25 via an SS removal treatment water supply pipe 26, An electrodialyzed water supply pipe 28 and an electrodialyzed concentrated water supply pipe 29 are connected to the outlet side of the electrodialyzer 27, and one electrodialyzed water supply pipe 28 is connected to the NF processing apparatus 30, and the other electric The dialysis concentrate supply pipe 29 is connected to the electrolytic treatment apparatus 33. An NF treated water discharge pipe 31 and an NF concentrated water supply pipe 32 are connected to the outlet side of the NF treatment apparatus 30, and the NF concentrated water supply pipe 32 is connected to the softened treated water supply pipe 24. A sodium hypochlorite solution supply pipe 34 is connected to the outlet side of the electrolytic treatment apparatus 33.
Here, the SS removal processing device 25 includes a biological processing device and a microfiltration membrane processing device.

実施例2では、廃棄物埋立最終処分場の浸出水を被処理水(詳しくは表2参照)とし、この被処理水に対して軟化処理を行ってカルシウム濃度を低減させた後、生物処理及び精密ろ過膜(MF膜)処理を組み合わせたSS除去処理を行った。次に、精密ろ過膜(MF膜)で得た処理水(「MF処理水」という)を、電気透析(ED処理)装置27にて電気透析処理(ED処理)して、有機物及び塩類を除去した電気透析処理水(「ED処理水」という)と、それらが濃縮した電気透析濃縮水とに分離し、該電気透析処理水をNF処理装置30に供給する一方、電気透析濃縮水は電解処理装置33に供給した。そして、NF処理装置30において、有機物及び塩類を除去したNF処理水と、それらが濃縮したNF濃縮水とに分離し、NF処理水はそのまま回収する一方、NF濃縮水はSS除去処理装置25の生物処理装置の供給側に環流させて生物処理により有機物の分解から繰り返して処理させた。また、電解処理装置33では、電気透析濃縮水を電気分解して次亜塩素酸ナトリウム溶液(表中の「電解処理水」)を生成した。   In Example 2, the leachate at the landfill final disposal site is treated water (see Table 2 for details), and the treated water is softened to reduce the calcium concentration. SS removal treatment combined with microfiltration membrane (MF membrane) treatment was performed. Next, the treated water (referred to as “MF treated water”) obtained from the microfiltration membrane (MF membrane) is electrodialyzed (ED treatment) with an electrodialysis (ED treatment) device 27 to remove organic substances and salts. The electrodialyzed treated water (referred to as “ED treated water”) and the electrodialyzed concentrated water in which they are concentrated are supplied to the NF treatment device 30 while the electrodialyzed concentrated water is electrolyzed. The apparatus 33 was supplied. Then, in the NF treatment device 30, the NF treatment water from which organic substances and salts have been removed is separated into the NF concentrated water in which they are concentrated, and the NF treatment water is recovered as it is, while the NF concentrate is collected by the SS removal treatment device 25. It was made to recirculate | circulate to the supply side of a biological treatment apparatus, and was processed repeatedly from decomposition | disassembly of organic substance by biological treatment. Moreover, in the electrolytic treatment apparatus 33, the electrodialysis concentrated water was electrolyzed to produce a sodium hypochlorite solution (“electrolytically treated water” in the table).

上記の被処理水、MF処理水、ED処理水、NF処理水、NF濃縮水及び電解処理水の分析結果を表2に示す。   Table 2 shows the analysis results of the water to be treated, MF treated water, ED treated water, NF treated water, NF concentrated water, and electrolytic treated water.

Figure 0005567468
Figure 0005567468

表2に示す如く、被処理水は、色度が300度、濁度が200度、CODが350mg/L、T−Caが1200mg/Lであったのに対し、軟化処理、生物処理と凝集MFろ過からなる前処理を行った後のMF処理水は、色度が30〜50度、濁度が0.5度以下、CODが30〜50mg/L、T−Caが20mg/Lとなった。特にT−Caに関しては、軟化処理を行ったことにより約98%除去できた。このようにしてED処理の被処理水の水T−Caが20mg/Lに低下した結果、ED処理での塩類濃縮倍率は約6倍となった。   As shown in Table 2, the water to be treated had a chromaticity of 300 degrees, a turbidity of 200 degrees, a COD of 350 mg / L, and a T-Ca of 1200 mg / L. The MF treated water after the pretreatment consisting of MF filtration has a chromaticity of 30 to 50 degrees, a turbidity of 0.5 degrees or less, a COD of 30 to 50 mg / L, and T-Ca of 20 mg / L. It was. In particular, about 98% of T-Ca was removed by performing the softening treatment. As a result, the water T-Ca of the water to be treated for ED treatment was reduced to 20 mg / L. As a result, the salt concentration ratio in the ED treatment was about 6 times.

ED処理では電流効率の高い条件で処理した結果、ED処理水でTDSが2000〜2500mg/Lとなり、被処理水に比べ、塩類がかなり低減できた。
このED濃縮水に対して、電解処理を行なった結果、電解処理水の電気伝導率が110000〜120000μS/cm、TDSが約100000〜105000mg/Lとなり、極めて塩類濃度が高く、塩類を十分に濃縮できた。さらに電解処理水の有効塩素濃度は2500mg/Lと高く、放流水に対する消毒・殺菌薬液として十分利用できるものであった。
In the ED treatment, the TDS was 2000 to 2500 mg / L in the ED treated water as a result of treatment under conditions with high current efficiency, and salts could be considerably reduced compared to the treated water.
As a result of performing electrolytic treatment on this ED concentrated water, the electric conductivity of the electrolytic treated water is 110000 to 120,000 μS / cm, TDS is about 100,000 to 105000 mg / L, and the salt concentration is extremely high, and the salt is sufficiently concentrated. did it. Furthermore, the effective chlorine concentration of the electrolyzed water was as high as 2500 mg / L, and it could be sufficiently used as a disinfectant / disinfectant solution for discharged water.

ED処理水の塩類が低くなったが、有機物が基本的にMF処理水と同程度であることから、有機物をほぼ100%除去できるNF膜を用いた。ここでは脱塩率85%を使用した。これにより水回収率が90〜95%と高く、NF処理水で塩素イオン濃度(Cl-)が160〜220mg/L、TDSが300〜400mg/L、CODが1mg/Lと再利用可能レベルの良好な処理水が得られた。
なお、NF膜の脱塩率選定は被処理水の性状、NF処理水の目標TDSに対応する必要がある。通常60%以上のものを使用することが好ましい。
Although the salt of ED processing water became low, since organic substance was fundamentally equivalent to MF processing water, the NF membrane which can remove almost 100% of organic substance was used. Here, a desalting rate of 85% was used. As a result, the water recovery rate is as high as 90 to 95%, the chlorine ion concentration (Cl ) is 160 to 220 mg / L, the TDS is 300 to 400 mg / L, and the COD is 1 mg / L in NF-treated water. Good treated water was obtained.
The selection of the desalination rate of the NF membrane needs to correspond to the properties of the water to be treated and the target TDS of the NF treated water. Usually, it is preferable to use a material of 60% or more.

<実施例3>
塩類濃度がさらに高い有機性廃水を被処理水とし、NF処理の代わりに、実施例1と同様に逆浸透膜処理を行った以外は、実施例2と同様の処理フローで処理を行った。
被処理水、MF処理水、ED処理水、NF処理水、NF濃縮水及び電解処理水の分析結果を表3に示す。
<Example 3>
The treatment was performed in the same treatment flow as in Example 2 except that organic wastewater having a higher salt concentration was used as treated water and reverse osmosis membrane treatment was conducted in the same manner as in Example 1 instead of NF treatment.
Table 3 shows the analysis results of treated water, MF treated water, ED treated water, NF treated water, NF concentrated water, and electrolytic treated water.

Figure 0005567468
Figure 0005567468

表3に示す如く、被処理水は、色度が300度、濁度が200度、CODが250mg/L、T−Caが1200mg/Lであったのに対し、軟化処理、生物処理と凝集MFろ過からなる前処理を行った後のMF処理水は、色度が30〜50度、濁度が0.5度以下、CODが40〜50mg/L、T−Caが20mg/Lとなった。特にT−Caに関しては、軟化処理を行ったことにより約98%除去できた。
ED処理では電流効率の高い条件で処理を行なった結果、ED処理水TDSが4000〜5000mg/Lとなり、CODが原水と同程度の40〜50mg/Lとなった。
このED処理水に対し、脱塩率95%のRO膜による脱塩処理を行なった結果、RO処理水で塩素イオン濃度(Cl-)が170〜220mg/L、TDSが300〜400mg/L、CODが1mg/Lと良好な水質が得られた。また、ED処理では塩類濃縮倍率は約4倍にできた。このED濃縮水に対して、電解処理を行なった結果、電解処理水の電気伝導率が110000〜120000μS/cm、TDSが約100000〜105000mg/Lとなり、極めて塩類濃度が高く、塩類を十分に濃縮できた。さらに処理水の有効塩素濃度が2500mg/Lと高く、放流水に対する消毒・殺菌薬液として十分利用できるものであった。
As shown in Table 3, the water to be treated had a chromaticity of 300 degrees, a turbidity of 200 degrees, COD of 250 mg / L, and T-Ca of 1200 mg / L, whereas softening treatment, biological treatment and aggregation. The MF treated water after the pretreatment consisting of MF filtration has a chromaticity of 30 to 50 degrees, a turbidity of 0.5 degrees or less, a COD of 40 to 50 mg / L, and T-Ca of 20 mg / L. It was. In particular, about 98% of T-Ca was removed by performing the softening treatment.
In the ED treatment, as a result of treatment under conditions with high current efficiency, the ED treated water TDS was 4000 to 5000 mg / L, and the COD was 40 to 50 mg / L, which was the same as the raw water.
As a result of performing desalting treatment with an RO membrane having a desalination rate of 95% on this ED treated water, the chlorine ion concentration (Cl ) in the RO treated water is 170 to 220 mg / L, the TDS is 300 to 400 mg / L, A good water quality with a COD of 1 mg / L was obtained. In addition, with the ED treatment, the salt concentration ratio could be about 4 times. As a result of performing electrolytic treatment on this ED concentrated water, the electric conductivity of the electrolytic treated water is 110000 to 120,000 μS / cm, TDS is about 100,000 to 105000 mg / L, and the salt concentration is extremely high, and the salt is sufficiently concentrated. did it. Furthermore, the effective chlorine concentration of treated water was as high as 2500 mg / L, and it could be sufficiently used as a disinfectant / disinfectant solution for discharged water.

上記のように、被処理水に対し、ED処理後の処理水性状として、TDSが2500mg/L以上、好ましくは3500mg/L以上と高い場合は脱塩率の高いRO膜を使うことで良好な処理水が得られることが分かった。他方、TDSが2500mg/L以下、かつ、CODが30mg/L以上、好ましくは50mg/L以上と高い場合、脱塩率の低いNF膜を用いることが有利となることが分かった。   As described above, when the TDS is 2500 mg / L or more, preferably 3500 mg / L or more as the treatment aqueous state after the ED treatment with respect to the water to be treated, it is good to use an RO membrane having a high desalination rate. It was found that treated water was obtained. On the other hand, when the TDS is 2500 mg / L or less and the COD is 30 mg / L or more, preferably 50 mg / L or more, it has been found that it is advantageous to use an NF membrane having a low desalting rate.

<実施例4>
実施例3同様に塩類濃度がさらに高い有機性廃水を被処理水とした以外は、実施例1と同様に処理を行った。
被処理水、MF処理水、RO処理水、ED処理水の分析結果を表4に示す。
<Example 4>
As in Example 3, treatment was performed in the same manner as in Example 1 except that organic wastewater having a higher salt concentration was used as treated water.
Table 4 shows the analysis results of treated water, MF treated water, RO treated water, and ED treated water.

Figure 0005567468
Figure 0005567468

表4に示すように、MF処理水のTDSが最大25000mg/Lと高いため、RO処理での水回収率が50〜60%しかなく、実施例3より大きく低下した。さらにED処理水のCODが80〜100mg/Lと高く、これをRO原水流入側に返送していることから、RO原水のCODがMF原水より高くなった。この結果、RO膜供給液の有機物濃度が高く、膜表面の有機物汚染によりRO処理水のCODが2〜3mg/Lとなり、実施例3より若干増加した。さらに、処理水の塩素濃度が300〜400mg/L、TDSが600〜700mg/Lと高く、一般的に再利用可能とされているTDS基準500mg/Lをクリアできなかった。   As shown in Table 4, since the TDS of the MF treated water was as high as 25000 mg / L at the maximum, the water recovery rate in the RO treatment was only 50 to 60%, which was significantly lower than in Example 3. Furthermore, since the COD of the ED treated water is as high as 80 to 100 mg / L and is returned to the RO raw water inflow side, the COD of the RO raw water is higher than that of the MF raw water. As a result, the organic matter concentration in the RO membrane supply liquid was high, and the COD of the RO-treated water became 2-3 mg / L due to organic matter contamination on the membrane surface, which was slightly increased from Example 3. Furthermore, the chlorine concentration of the treated water was as high as 300 to 400 mg / L and the TDS was as high as 600 to 700 mg / L, and the TDS standard of 500 mg / L, which is generally considered to be reusable, could not be cleared.

(まとめ)
実施例に示す如く、被処理水の有機物濃度および塩類濃度が比較的低い場合、具体的には、塩素イオン濃度が2000〜20000mg/L以下、特に5000mg/L以下、中でも4000mg/L以下、蒸発残留物成分濃度(TDS)で言えば、4000〜40000mg/L以下、特に10000mg/L以下、中でも8000mg/L以下の有機性廃水を被処理水とする場合、上記の処理方法Aの順に処理するのが好ましい。RO濃縮水の有機濃度が高いため、ED処理後の処理水もRO濃縮水と同程度であり、ED処理水を前処理工程に返送することで前処理工程においてその一部が再び分解や吸着等で除去されることから、RO処理への有機物負荷が低減し、RO膜に対する汚染が低減されて高い透過水量及び脱塩率を長時間にわたって得られる。また、ED濃縮液に対して電解処理することで有効塩素濃度の高い次亜塩素酸水溶液が得られて放流水への殺菌等に利用できる。
(Summary)
As shown in the examples, when the organic matter concentration and the salt concentration of the water to be treated are relatively low, specifically, the chlorine ion concentration is 2000 to 20000 mg / L or less, particularly 5000 mg / L or less, and more preferably 4000 mg / L or less. In terms of the residual component concentration (TDS), when treating organic wastewater of 4000 to 40000 mg / L or less, particularly 10000 mg / L or less, especially 8000 mg / L or less, in the order of the above treatment method A Is preferred. Since the organic concentration of RO concentrated water is high, the treated water after ED treatment is similar to RO concentrated water, and by returning the ED treated water to the pretreatment process, part of it is decomposed and adsorbed again in the pretreatment process. Therefore, the organic substance load on the RO treatment is reduced, the contamination of the RO membrane is reduced, and a high permeated water amount and a desalting rate can be obtained for a long time. In addition, by performing electrolytic treatment on the ED concentrate, a hypochlorous acid aqueous solution having a high effective chlorine concentration can be obtained and used for sterilization of discharged water.

他方、被処理水の有機物濃度および塩類濃度が比較的高い場合、具体的には、塩素イオン濃度が5000mg/L以上、特に10000mg/L以上、中でも20000mg/L以上であり、蒸発残留物成分濃度(TDS)で言えば、10000mg/L以上、特に20000mg/L以上、中でも40000mg/L以上の場合には、処理方法Bの順に処理するのが好ましい。先にED処理にて脱塩濃縮すれば、TDSとして100mg/L以上の高塩類の濃縮液が得られ、この高塩類濃縮液を電解処理すれば、有効塩素濃度の高い次亜塩素酸水溶液が得られて放流水への殺菌等に利用できる。
また、塩類濃度の低減されたED処理水を、NFまたはRO処理にて脱塩処理すれば、比較的低い運転圧力で水質良好な処理水が得られる一方、水回収率が高くなり、高い処理水量が得られる。
そして、有機物濃度の高い濃縮液を前処理工程に循環すれば、前処理工程においてその一部が再び分解や吸着等で除去されることから、ED及びNFまたはRO処理への有機物汚染負荷が低減されて、安定した処理水量と水質を得ることができる。
On the other hand, when the organic matter concentration and the salt concentration of the water to be treated are relatively high, specifically, the chlorine ion concentration is 5000 mg / L or more, particularly 10000 mg / L or more, especially 20000 mg / L or more, and the evaporation residue component concentration In terms of (TDS), in the case of 10000 mg / L or more, particularly 20000 mg / L or more, especially 40000 mg / L or more, it is preferable to perform the treatment in the order of the treatment method B. If the salt is first desalted and concentrated by ED treatment, a concentrated solution of high salt with a TDS of 100 mg / L or more is obtained. If this high salt concentrated solution is subjected to electrolytic treatment, a hypochlorous acid aqueous solution having a high effective chlorine concentration is obtained. It can be used for sterilization of discharged water.
In addition, if ED-treated water with reduced salt concentration is desalted by NF or RO treatment, treated water with good water quality can be obtained at a relatively low operating pressure, while the water recovery rate is high and high treatment is achieved. The amount of water is obtained.
And if a concentrated liquid with a high organic matter concentration is circulated to the pretreatment step, a part of it is removed again by decomposition, adsorption, etc. in the pretreatment step, reducing the organic contamination load on the ED and NF or RO treatment. Thus, a stable amount of treated water and water quality can be obtained.

1 有機性廃水処理装置
2 被処理水流入管
3 軟化処理装置
4 軟化処理水供給管
5 SS除去処理装置
6 SS除去処理水供給管
7 逆浸透膜処理(RO処理)装置又はNF膜処理装置
8 逆浸透濃縮水供給管又はNF濃縮水供給管
9 逆浸透膜処理水排出管又はNF処理水排出管
10 電気透析(ED処理)装置
11 電気透析処理水供給管
12 電気透析濃縮水供給管
13 電解処理装置
14 次亜塩素酸ナトリウム溶液供給管
21 有機性廃水処理装置
22 被処理水流入管
23 軟化処理装置
24 軟化処理水供給管
25 SS除去処理装置
26 SS除去処理水供給管
27 電気透析(ED処理)装置
28 電気透析処理水供給管
29 電気透析濃縮水供給管
30 逆浸透膜処理(RO処理)装置又はNF膜処理装置
31 逆浸透膜処理水排出管又はNF処理水排出管
32 逆浸透濃縮水供給管又はNF濃縮水供給管
33 電解処理装置
34 次亜塩素酸ナトリウム溶液供給管
DESCRIPTION OF SYMBOLS 1 Organic waste water treatment apparatus 2 Water to be treated inflow pipe 3 Softening treatment apparatus 4 Softening treatment water supply pipe 5 SS removal treatment apparatus 6 SS removal treatment water supply pipe 7 Reverse osmosis membrane treatment (RO treatment) apparatus or NF membrane treatment apparatus 8 Reverse Osmotic concentrated water supply pipe or NF concentrated water supply pipe 9 Reverse osmosis membrane treated water discharge pipe or NF treated water discharge pipe 10 Electrodialysis (ED treatment) device 11 Electrodialyzed water supply pipe 12 Electrodialyzed concentrated water supply pipe 13 Electrolytic treatment Apparatus 14 Sodium hypochlorite solution supply pipe 21 Organic wastewater treatment apparatus 22 Water to be treated inflow pipe 23 Softening treatment apparatus 24 Softening treatment water supply pipe 25 SS removal treatment apparatus 26 SS removal treatment water supply pipe 27 Electrodialysis (ED treatment) Apparatus 28 Electrodialyzed treated water supply pipe 29 Electrodialyzed concentrated water supply pipe 30 Reverse osmosis membrane treatment (RO treatment) apparatus or NF membrane treatment apparatus 31 Reverse osmosis membrane treated water discharge pipe or NF treated water discharge Outlet pipe 32 Reverse osmosis concentrated water supply pipe or NF concentrated water supply pipe 33 Electrolytic treatment device 34 Sodium hypochlorite solution supply pipe

Claims (4)

塩類及び有機物を含有する有機性廃水に対して軟化処理を行ってカルシウム濃度を低減させた後、生物処理、凝集沈殿処理、砂ろ過処理、精密ろ過膜処理からなる群から選ばれる1以上の処理または2以上の組み合わせからなるSS除去処理を行い、次いで、電気透析処理により電気透析濃縮水と電気透析処理水とに分離し、該電気透析処理水を逆浸透膜処理により逆浸透濃縮水と逆浸透膜処理水とに分離し、逆浸透膜処理水を回収する一方、逆浸透濃縮水を電気透析処理の供給側又はSS除去処理の供給側に戻すと共に、
前記電気透析濃縮水は、電解処理装置に供給して電気分解を行って次亜塩素酸ナトリウム溶液を生成することを特徴とする有機性廃水の処理方法。
One or more treatments selected from the group consisting of biological treatment, coagulation sedimentation treatment, sand filtration treatment, and microfiltration membrane treatment after softening treatment on organic wastewater containing salts and organic matter to reduce calcium concentration Alternatively, SS removal treatment consisting of a combination of two or more is performed, and then electrodialysis is separated into electrodialysis concentrate and electrodialysis treatment water, and the electrodialysis treatment water is reversed from reverse osmosis concentrate by reverse osmosis membrane treatment. While separating the osmosis membrane treated water and collecting the reverse osmosis membrane treated water, the reverse osmosis concentrated water is returned to the supply side of the electrodialysis treatment or the supply side of the SS removal treatment,
The electrodialyzed concentrated water is supplied to an electrolytic treatment apparatus and electrolyzed to produce a sodium hypochlorite solution.
塩類及び有機物を含有する有機性廃水に対して軟化処理を行ってカルシウム濃度を低減させた後、生物処理、凝集沈殿処理、砂ろ過処理、精密ろ過膜処理からなる群から選ばれる1以上の処理または2以上の組み合わせからなるSS除去処理を行い、次いで、
逆浸透膜処理により逆浸透濃縮水と逆浸透膜処理水とに分離し、逆浸透膜処理水を回収する一方、逆浸透濃縮水に電気透析処理を施して電気透析濃縮水と電気透析処理水とに分離し、該電気透析処理水をSS除去処理の供給側に戻すと共に、
前記電気透析濃縮水は、電解処理装置に供給して電気分解を行って次亜塩素酸ナトリウム溶液を生成することを特徴とする有機性廃水の処理方法。
One or more treatments selected from the group consisting of biological treatment, coagulation sedimentation treatment, sand filtration treatment, and microfiltration membrane treatment after softening treatment on organic wastewater containing salts and organic matter to reduce calcium concentration Or an SS removal process consisting of a combination of two or more, and then
The reverse osmosis membrane treatment separates the reverse osmosis concentrated water and the reverse osmosis membrane treated water, and collects the reverse osmosis membrane treated water. On the other hand, the reverse osmosis concentrated water is subjected to electrodialysis treatment and electrodialyzed concentrated water and electrodialysis treated water. And the electrodialyzed water is returned to the supply side of the SS removal process,
The electrodialyzed concentrated water is supplied to an electrolytic treatment apparatus and electrolyzed to produce a sodium hypochlorite solution.
有機性廃水を供給する被処理水流入管が軟化処理装置に接続され、軟化処理装置の出口側に軟化処理水供給管を介して、生物処理装置、凝集沈殿処理装置、砂ろ過処理装置、精密ろ過膜処理装置からなる群から選ばれる1以上からなるSS除去処理装置又はこれらのうちの2以上の組み合わせからなるSS除去処理装置が接続され、SS除去処理装置の出口側にはSS除去処理水供給管を介して電気透析装置が接続され、電気透析装置の出口側には電気透析処理水供給管と電気透析濃縮水供給管とが接続され、一方の電気透析処理水供給管は逆浸透膜処理装置に接続され、他方の電気透析濃縮水供給管は電解処理装置に接続され、逆浸透膜処理装置の出口側には逆浸透濃縮水供給管と逆浸透膜処理水排出管が接続され、この逆浸透濃縮水供給管は軟化処理水供給管又はSS除去処理水供給管に接続され、電解処理装置の出口側には次亜塩素酸ナトリウム溶液供給管が接続されてなる構成を備えた有機性廃水の処理装置。   The treated water inflow pipe for supplying organic wastewater is connected to the softening treatment device, and the biological treatment device, the coagulation sedimentation treatment device, the sand filtration treatment device, and the microfiltration are connected to the outlet side of the softening treatment device via the softening treatment water supply tube. An SS removal treatment device consisting of one or more selected from the group consisting of membrane treatment devices or an SS removal treatment device consisting of a combination of two or more of them is connected, and SS removal treatment water is supplied to the outlet side of the SS removal treatment device. An electrodialyzer is connected via a pipe, and an electrodialyzed water supply pipe and an electrodialyzed concentrated water supply pipe are connected to the outlet side of the electrodialyzer, and one of the electrodialyzed water supply pipes is treated with a reverse osmosis membrane. The other electrodialysis concentrated water supply pipe is connected to the electrolytic treatment apparatus, and a reverse osmosis concentrated water supply pipe and a reverse osmosis membrane treated water discharge pipe are connected to the outlet side of the reverse osmosis membrane treatment apparatus. Reverse osmosis concentrated water supply Softening treatment water supply pipe or is connected to the SS removal treatment water supply pipe, the processing apparatus of organic waste water having a configuration in which sodium hypochlorite solution supply pipe is connected to the outlet side of the electrolytic treatment apparatus. 有機性廃水を供給する被処理水流入管が軟化処理装置に接続され、軟化処理装置の出口側に軟化処理水供給管を介して、生物処理装置、凝集沈殿処理装置、砂ろ過処理装置、精密ろ過膜処理装置からなる群から選ばれる1以上からなるSS除去処理装置又はこれらのうちの2以上の組み合わせからなるSS除去処理装置が接続され、SS除去処理装置の出口側にはSS除去処理水供給管を介して逆浸透膜処理装置が接続され、逆浸透膜処理装置の出口側には逆浸透濃縮水供給管と逆浸透膜処理水排出管が接続され、この逆浸透濃縮水供給管は電気透析装置に接続され、電気透析装置の出口側には電気透析処理水供給管と電気透析濃縮水供給管とが接続され、一方の電気透析処理水供給管は、軟化処理水供給管に接続され、他方の電気透析濃縮水供給管は、電解処理装置に接続され、電解処理装置の出口側には次亜塩素酸ナトリウム溶液供給管が接続されてなる構成を備えた有機性廃水の処理装置。 The treated water inflow pipe for supplying organic wastewater is connected to the softening treatment device, and the biological treatment device, the coagulation sedimentation treatment device, the sand filtration treatment device, and the microfiltration are connected to the outlet side of the softening treatment device via the softening treatment water supply tube. An SS removal treatment device consisting of one or more selected from the group consisting of membrane treatment devices or an SS removal treatment device consisting of a combination of two or more of them is connected, and SS removal treatment water is supplied to the outlet side of the SS removal treatment device. A reverse osmosis membrane treatment apparatus is connected via a pipe, and a reverse osmosis concentrated water supply pipe and a reverse osmosis membrane treatment water discharge pipe are connected to the outlet side of the reverse osmosis membrane treatment apparatus. The electrodialyzed water supply pipe and the electrodialyzed concentrated water supply pipe are connected to the outlet side of the electrodialyzer, and one of the electrodialyzed water supply pipes is connected to the softened water supply pipe. The other electrodialysis concentration Supply pipe is connected to the electrolytic treatment apparatus, the processing apparatus of organic waste water having a configuration in which sodium hypochlorite solution supply pipe is connected to the outlet side of the electrolytic treatment apparatus.
JP2010287144A 2010-12-24 2010-12-24 Method and apparatus for treating organic wastewater Active JP5567468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010287144A JP5567468B2 (en) 2010-12-24 2010-12-24 Method and apparatus for treating organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010287144A JP5567468B2 (en) 2010-12-24 2010-12-24 Method and apparatus for treating organic wastewater

Publications (2)

Publication Number Publication Date
JP2012130891A JP2012130891A (en) 2012-07-12
JP5567468B2 true JP5567468B2 (en) 2014-08-06

Family

ID=46647131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010287144A Active JP5567468B2 (en) 2010-12-24 2010-12-24 Method and apparatus for treating organic wastewater

Country Status (1)

Country Link
JP (1) JP5567468B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5482917B2 (en) 2013-01-22 2014-05-07 栗田工業株式会社 Water recovery device for closed system space
KR101360019B1 (en) 2013-03-15 2014-02-12 재단법인 한국계면공학연구소 Method of reusing reverse osmosis concentrated water and system using the same
JP6066804B2 (en) * 2013-03-29 2017-01-25 株式会社クラレ Organic wastewater treatment method
CN104628196A (en) * 2015-02-03 2015-05-20 贵州宏达环保科技有限公司 Combined treatment method for metallurgical wastewater
CN104710055A (en) * 2015-03-31 2015-06-17 无锡元坤科技有限公司 Organic wastewater treatment method adopting boron-doped diamond electrode
CN105000726A (en) * 2015-09-02 2015-10-28 波鹰(厦门)科技有限公司 Method for treating and recycling high-salt oil-field wastewater
US10669168B2 (en) * 2016-11-29 2020-06-02 China Petroleum & Chemical Corporation Method and system for treating brine waste water
CN108675514A (en) * 2018-06-22 2018-10-19 杭州深瑞水务有限公司 A kind of system of recycling treatment waste water from dyestuff with high salt
CN109160663A (en) * 2018-10-16 2019-01-08 江苏环保产业技术研究院股份公司 A kind of dye industry waste water from dyestuff sub-prime with high salt recycles technique and device
CN111392978A (en) * 2020-04-13 2020-07-10 鹭滨环保科技(上海)股份有限公司 Landfill leachate sludge reduction synergistic concentrated solution recycling treatment process
KR102473760B1 (en) * 2020-07-07 2022-12-05 성균관대학교산학협력단 Deodorization apparatus using wet scrubber
CN113860592A (en) * 2021-11-04 2021-12-31 青岛科技大学 Wastewater treatment equipment and method
CN114230055A (en) * 2021-12-24 2022-03-25 华能山东发电有限公司 Method for reducing membrane method concentration scaling rate and flux recovery promotion of desulfurization wastewater
CN114410716A (en) * 2022-01-12 2022-04-29 赤峰蒙广生物科技有限公司 Method for reusing water in beta-thymidine for fermentation
CN114804453A (en) * 2022-03-14 2022-07-29 国能朗新明南京环保科技有限公司 Concentrated brine recycling treatment system and method
CN115849524B (en) * 2023-02-23 2023-05-05 西安泰瑞环保技术有限公司 Wastewater heavy metal recovery method, device and equipment based on improved electrodialysis method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019680A (en) * 1973-06-25 1975-03-01
JPS548180A (en) * 1977-06-21 1979-01-22 Toshiba Corp Desalting method
JPH0741243B2 (en) * 1987-04-15 1995-05-10 株式会社クボタ Organic wastewater treatment method
JP3909793B2 (en) * 1999-09-07 2007-04-25 株式会社荏原製作所 Method and apparatus for treating organic wastewater containing high-concentration salts
JP3698093B2 (en) * 2001-11-22 2005-09-21 東レ株式会社 Water treatment method and water treatment apparatus
JP3978124B2 (en) * 2002-12-03 2007-09-19 三菱重工業株式会社 Hypochlorous acid self-sufficiency method and equipment in organic waste treatment system
JP4954543B2 (en) * 2005-12-14 2012-06-20 三菱重工環境・化学エンジニアリング株式会社 Water treatment system

Also Published As

Publication number Publication date
JP2012130891A (en) 2012-07-12

Similar Documents

Publication Publication Date Title
JP5567468B2 (en) Method and apparatus for treating organic wastewater
JP5873771B2 (en) Organic wastewater treatment method and treatment apparatus
JP3909793B2 (en) Method and apparatus for treating organic wastewater containing high-concentration salts
Sahinkaya et al. Concentrate minimization and water recovery enhancement using pellet precipitator in a reverse osmosis process treating textile wastewater
Subramani et al. Treatment technologies for reverse osmosis concentrate volume minimization: A review
AU2013356476B2 (en) Water treatment process
CN104445788B (en) High slat-containing wastewater treatment for reuse zero-emission integrated technique
Pérez-González et al. State of the art and review on the treatment technologies of water reverse osmosis concentrates
CN108383315B (en) Multistage electrically driven ionic membrane&#39;s waste water recovery device
EP2421798A2 (en) Water treatment
CN105540967A (en) Processing method for reducing and recycling organic waste water and processing system
JP2011056345A (en) Desalination system
JP2009095821A (en) Method of treating salt water
JP2008223115A (en) Method for treating salt water
Lee et al. Integrated pretreatment with capacitive deionization for reverse osmosis reject recovery from water reclamation plant
JP5564174B2 (en) Purification method and apparatus for purification of water containing metal components
JP6738145B2 (en) Method for producing sodium hypochlorite and apparatus for producing sodium hypochlorite
JP3800450B2 (en) Method and apparatus for treating organic wastewater containing high concentrations of salts
TW201249756A (en) Seawater desalination system
JP3698093B2 (en) Water treatment method and water treatment apparatus
JP3800449B2 (en) Method and apparatus for treating organic wastewater containing high concentrations of salts
JP3137831B2 (en) Membrane processing equipment
JP5238778B2 (en) Desalination system
RU2207987C2 (en) Method for purifying drain water of solid domestic waste polygons
WO2021215099A1 (en) Waste water treatment method, ultrapure water production method, and waste water treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140619

R150 Certificate of patent or registration of utility model

Ref document number: 5567468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250