WO2021187104A1 - Substrate treatment method and substrate treatment device - Google Patents

Substrate treatment method and substrate treatment device Download PDF

Info

Publication number
WO2021187104A1
WO2021187104A1 PCT/JP2021/008152 JP2021008152W WO2021187104A1 WO 2021187104 A1 WO2021187104 A1 WO 2021187104A1 JP 2021008152 W JP2021008152 W JP 2021008152W WO 2021187104 A1 WO2021187104 A1 WO 2021187104A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
substrate
substrate processing
supplying
processing method
Prior art date
Application number
PCT/JP2021/008152
Other languages
French (fr)
Japanese (ja)
Inventor
博紀 村上
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2021187104A1 publication Critical patent/WO2021187104A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • This disclosure relates to a substrate processing method and a substrate processing apparatus.
  • a substrate processing device for embedding a film in a substrate having irregularities is known.
  • Patent Document 1 describes a treatment method comprising sequentially exposing the surface of a substrate to a silicon halide precursor and then to a nitrogen-containing reactant at a temperature of about 600 ° C. or higher in order to form a silicon nitride film. It is disclosed.
  • the present disclosure provides a substrate processing method and a substrate processing apparatus for forming a silicon nitride film.
  • the step of supplying the silicon-containing gas to the temperature-controlled substrate and the step of supplying the nitrogen-containing gas to the substrate are repeated to form a silicon nitride film.
  • a substrate processing method for forming wherein the temperature of the substrate is adjusted to 600 ° C. or lower, the silicon-containing gas contains halogen, and the nitrogen-containing gas is different from the first gas and the first gas.
  • a substrate processing method is provided, which is a mixed gas containing at least a second gas.
  • the schematic diagram which shows the structural example of the substrate processing apparatus.
  • FIG. 1 is a schematic view showing a configuration example of the substrate processing apparatus 100.
  • the substrate processing apparatus 100 is a film forming apparatus for forming a SiN film (silicon nitride film) on the substrate W.
  • the substrate processing device 100 has a cylindrical processing container 1 with a ceiling whose lower end is opened.
  • the entire processing container 1 is made of, for example, quartz.
  • a ceiling plate 2 made of quartz is provided near the upper end of the processing container 1, and a region below the ceiling plate 2 is sealed.
  • a metal manifold 3 formed in a cylindrical shape is connected to the opening at the lower end of the processing container 1 via a sealing member 4 such as an O-ring.
  • the manifold 3 supports the lower end of the processing container 1, and is a wafer on which a large number (for example, 25 to 150) semiconductor wafers (hereinafter referred to as “board W”) are placed in multiple stages as substrates from below the manifold 3.
  • the boat 5 is inserted into the processing container 1. In this way, a large number of substrates W are housed in the processing container 1 substantially horizontally with an interval along the vertical direction.
  • the wafer boat 5 is made of, for example, quartz.
  • the wafer boat 5 has three rods 6 (two rods are shown in FIG. 1), and a large number of substrates W are supported by grooves (not shown) formed in the rods 6.
  • the wafer boat 5 is placed on the table 8 via a heat insulating cylinder 7 made of quartz.
  • the table 8 is supported on a rotating shaft 10 penetrating a metal (stainless steel) lid 9 that opens and closes the opening at the lower end of the manifold 3.
  • a magnetic fluid seal 11 is provided at the penetrating portion of the rotating shaft 10, and the rotating shaft 10 is hermetically sealed and rotatably supported.
  • a sealing member 12 for maintaining the airtightness in the processing container 1 is provided between the peripheral portion of the lid 9 and the lower end of the manifold 3.
  • the rotating shaft 10 is attached to the tip of an arm 13 supported by an elevating mechanism (not shown) such as a boat elevator, and the wafer boat 5 and the lid 9 are integrally elevated and lowered into the processing container 1. On the other hand, it is inserted and removed.
  • the table 8 may be fixedly provided on the lid 9 side so that the substrate W can be processed without rotating the wafer boat 5.
  • the substrate processing apparatus 100 has a gas supply unit 20 that supplies a predetermined gas such as a processing gas or a purge gas into the processing container 1.
  • a gas supply unit 20 that supplies a predetermined gas such as a processing gas or a purge gas into the processing container 1.
  • the gas supply unit 20 has gas supply pipes 21, 22, and 24.
  • the gas supply pipes 21 and 22 are made of, for example, quartz, penetrate the side wall of the manifold 3 inward, bend upward, and extend vertically.
  • a plurality of gas holes 21g and 22g are formed at predetermined intervals in the vertical portions of the gas supply pipes 21 and 22 over a length in the vertical direction corresponding to the wafer support range of the wafer boat 5.
  • the gas holes 21g and 22g discharge gas in the horizontal direction.
  • the gas supply pipe 24 is made of, for example, quartz, and is composed of a short quartz pipe provided so as to penetrate the side wall of the manifold 3.
  • the gas supply pipe 21 is provided with a vertical portion (vertical portion in which the gas hole 21 g is formed) in the processing container 1.
  • the raw material gas (precursor gas) is supplied to the gas supply pipe 21 from the gas supply source 21a via the gas pipe.
  • the gas pipe is provided with a flow rate controller 21b and an on-off valve 21c. As a result, the raw material gas from the gas supply source 21a is supplied into the processing container 1 via the gas pipe and the gas supply pipe 21.
  • the gas supply source 21a supplies a raw material gas containing Si.
  • a silicon-containing gas containing halogen such as DCS (dichlorosilane, Si 2 H 2 Cl 2 ) and HCDS (hexachlorodisilane, Si 2 Cl 6) can be used.
  • a halogen-free silicon-containing gas such as monosilane, disilane, higher-order silane, aminosilanes and silylamines can also be used.
  • the gas supply pipe 22 is provided with a vertical portion (vertical portion in which the gas hole 22 g is formed) in the processing container 1.
  • the reducing gas (first gas) is supplied to the gas supply pipe 22 from the gas supply source 22a via the gas pipe.
  • the gas pipe is provided with a flow rate controller 22b and an on-off valve 22c.
  • the gas supply pipe 22 is supplied with the added gas (second gas) from the gas supply source 23a via the gas pipe.
  • the gas pipe is provided with a flow rate controller 23b and an on-off valve 23c.
  • the gas supply source 22a supplies the reducing gas.
  • a gas composed of a nitrogen atom, a hydrogen atom, or a compound of a nitrogen atom and a hydrogen atom can be used.
  • a gas containing nitrogen such as NH 3 can be used.
  • the reducing gas may be N 2 gas or H 2 gas.
  • deuterated compounds such as D 2 and ND 3 can be used as the reducing gas.
  • the gas supply source 23a supplies an additive gas to be added to the reducing gas.
  • an additive gas for example, a hydrazine-containing gas such as MMH (monomethylhydrazine, CH 3 (NH) NH 2 ) NH 3 can be used.
  • Purge gas is supplied to the gas supply pipe 24 from a purge gas supply source (not shown) via a gas pipe.
  • the gas pipe (not shown) is provided with a flow rate controller (not shown) and an on-off valve (not shown).
  • the purge gas from the purge gas supply source is supplied into the processing container 1 via the gas pipe and the gas supply pipe 24.
  • an inert gas such as argon (Ar) or nitrogen (N 2) can be used.
  • the purge gas is supplied from the purge gas supply source to the processing container 1 via the gas pipe and the gas supply pipe 24 has been described, but the present invention is not limited to this, and the purge gas is supplied from any of the gas supply pipes 21 and 22. May be done.
  • An exhaust port 40 for vacuum exhausting the inside of the processing container 1 is provided on the side wall portion of the processing container 1 facing the position where the gas supply pipes 21 and 22 are arranged.
  • the exhaust port 40 is vertically elongated so as to correspond to the wafer boat 5.
  • An exhaust port cover member 41 having a U-shaped cross section is attached to a portion of the processing container 1 corresponding to the exhaust port 40 so as to cover the exhaust port 40.
  • the exhaust port cover member 41 extends upward along the side wall of the processing container 1.
  • An exhaust pipe 42 for exhausting the processing container 1 via the exhaust port 40 is connected to the lower part of the exhaust port cover member 41.
  • An exhaust device 44 including a pressure control valve 43 for controlling the pressure in the processing container 1 and a vacuum pump is connected to the exhaust pipe 42, and the inside of the processing container 1 is exhausted by the exhaust device 44 via the exhaust pipe 42. Will be done.
  • a cylindrical heating mechanism 50 for heating the processing container 1 and the substrate W inside the processing container 1 is provided so as to surround the outer circumference of the processing container 1.
  • the substrate processing device 100 has a control unit 60.
  • the control unit 60 controls the operation of each part of the substrate processing device 100, for example, supply / stop of each gas by opening / closing the on-off valves 21c to 23c, controlling the gas flow rate by the flow rate controllers 21b to 23b, and exhausting by the exhaust device 44. Take control. Further, the control unit 60 controls the temperature of the substrate W by, for example, the heating mechanism 50.
  • the control unit 60 may be, for example, a computer or the like. Further, the computer program that operates each part of the substrate processing apparatus 100 is stored in the storage medium.
  • the storage medium may be, for example, a flexible disk, a compact disk, a hard disk, a flash memory, a DVD, or the like.
  • FIG. 2 is an example of a time chart showing the first film formation process of the SiN film by the substrate processing apparatus 100.
  • the film forming process shown in FIG. 2 includes a step S101 for supplying a raw material gas, a step S102 for purging, a step S103 for supplying a reducing gas and an added gas, and a step S103 for supplying the substrate W whose temperature has been adjusted to a predetermined temperature.
  • This is a process of forming a SiN film on the surface of the substrate W by repeating an ALD (Atomic Layer Deposition) process in which the purging step S104 is one cycle for a predetermined cycle. Note that FIG. 2 shows only one cycle.
  • N 2 gas is a purge gas from the gas supply pipe 24 is constantly during the film formation process (continuously) is supplied.
  • the step S101 for supplying the raw material gas is a step of supplying DCS gas or HCDS gas (shown as Si in FIG. 2) as the raw material gas containing Si into the processing container 1.
  • the raw material gas is supplied from the gas supply source 21a through the gas supply pipe 21 into the processing container 1 by opening the on-off valve 21c.
  • the purging step S102 is a step of purging excess raw material gas and the like in the processing container 1.
  • the on-off valve 21c is closed to stop the supply of the raw material gas.
  • the purge gas constantly supplied from the gas supply pipe 24 purges the surplus raw material gas and the like in the processing container 1.
  • Supplying a reducing gas and additive gas S103 is a step of supplying a MMH gas as the NH 3 gas and the additive gas as the reducing gas.
  • the on-off valves 22c and 23c are opened to supply the reducing gas and the added gas from the gas supply sources 22a and 23a into the processing container 1 via the gas supply pipe 22.
  • the purging step S104 is a step of purging excess reducing gas, added gas, etc. in the processing container 1.
  • the on-off valves 22c and 23c are closed to stop the supply of the reducing gas and the added gas.
  • the purge gas constantly supplied from the gas supply pipe 24 purges the excess reducing gas, added gas, and the like in the processing container 1.
  • Substrate temperature 500 ° C or higher and 600 ° C or lower Pressure: 0.1-9 Torr
  • Raw material gas flow rate 500-5000 sccm
  • Reduction gas flow rate 1000-10000 sccm
  • Addition gas flow rate 10-1000 sccm
  • FIG. 3 is an example of a time chart showing the second film formation process of the SiN film by the substrate processing apparatus 100.
  • the film forming process shown in FIG. 3 includes a step S301 for supplying the raw material gas, a step S302 for purging, a step S303 for supplying the reducing gas and the added gas, and a step S303 for supplying the substrate W whose temperature has been adjusted to a predetermined temperature.
  • This is a process of forming a SiN film on the surface of the substrate W by repeating the ALD process in which the purging step S304 is one cycle for a predetermined cycle. Note that FIG. 3 shows only one cycle.
  • N 2 gas is a purge gas from the gas supply pipe 24 is constantly during the film formation process (continuously) is supplied.
  • the second film forming process shown in FIG. 3 is different from the first film forming process shown in FIG. 2 in the step S303 for supplying the reducing gas and the added gas.
  • the step S303 for supplying the reducing gas and the added gas is a step of supplying the N 2 gas or the H 2 gas as the reducing gas and the MMH gas as the added gas. That is, in the step S303 for supplying the reducing gas and the added gas, the gas supply source 22a for supplying the reducing gas to the processing container 1 supplies N 2 gas or H 2 gas instead of NH 3 gas.
  • Other configurations are the same as those of the first film forming process, and redundant description will be omitted.
  • FIG. 4 is an example of a time chart showing a third film formation process of the SiN film by the substrate processing apparatus 100.
  • the film forming process shown in FIG. 4 includes a step S501 for supplying a raw material gas, a step S502 for purging, a step S503 for supplying a reducing gas, a reducing gas and an added gas for the substrate W whose temperature has been adjusted to a predetermined temperature.
  • This is a process of forming a SiN film on the surface of the substrate W by repeating a predetermined cycle of the ALD process in which the step S504 for supplying the gas and the step S505 for purging are one cycle. Note that FIG. 4 shows only one cycle.
  • N 2 gas is a purge gas from the gas supply pipe 24 is constantly during the film formation process (continuously) is supplied.
  • the third film forming process is different from the first film forming process in the step S503 for supplying the reducing gas and the step S504 for supplying the reducing gas and the added gas.
  • the supply of the reducing gas is started first in the step S503, and then the supply of the added gas is started while supplying the reducing gas in the step S504.
  • Other configurations are the same as those of the first film forming process, and redundant description will be omitted.
  • Substrate temperature 500 ° C or higher and 600 ° C or lower Pressure: 0.1-9 Torr
  • Raw material gas flow rate 500-5000 sccm
  • Reduction gas flow rate 1000-10000 sccm
  • Addition gas flow rate 10-1000 sccm
  • FIG. 5 is an example of a graph showing the relationship between the process temperature and the film formation rate.
  • the horizontal axis shows the process temperature, and the vertical axis shows the film formation rate (GPC; Growth Per Cycle).
  • the film forming result by the first film forming process (see FIG. 2) using DCS gas as a raw material gas, NH 3 gas as a reducing gas, and MMH gas as an additive gas is shown by a white circle.
  • DCS gas as a source gas using the NH 3 gas as the reducing gas shows the deposition results of Reference Example deposition process without addition of additive gas with black circles.
  • Graph 400 shows the relationship between the process temperature and the film forming rate in the film forming process of the reference example in which MMH gas is not added.
  • the first deposition process showing the relationship between the process temperature and the deposition rate when the MMH gas was added 10% flow ratio to the total flow rate of the NH 3 gas and MMH gas in the graph 410.
  • the first deposition process showing the relationship between the process temperature and the deposition rate in the case of adding MMH gas 2% flow ratio to the total flow rate of the NH 3 gas and MMH gas in the graph 420.
  • a graph 400 as shown by comparing the graphs 410 and 420, in a temperature range of the process temperature is 500 ° C. or higher 600 ° C. or less, the reducing gas (NH 3 gas), adding a MMH gas as additive gas Therefore, the film formation rate of the SiN film can be improved.
  • the SiN film is preferably formed in the temperature range of 600 ° C. or higher.
  • the SiN film is formed in a temperature region (500 ° C. or higher and 600 ° C. or lower) lower than the film forming temperature (600 ° C. or higher) of the film forming process of the reference example. be able to.
  • the flow rate ratios of the MMH gas to the total flow rates of the NH 3 gas and the MMH gas were 0.5%, 1% and 2% (measurement results at 550 ° C. in the graph 420), 10% ( The film formation result by the first film formation process (see FIG. 2) is also shown in FIG. 5 as 20% of the measurement result at 550 ° C. in Graph 410).
  • the film forming speed is compared with the film forming process of the reference example. Can be improved. Further, according to the first film forming process, the film forming rate can be improved as the flow rate ratio of the added MMH gas is increased.
  • step S103 is 0.3 Torr (measurement result at 550 ° C. in Graph 420), 3.6 Torr (2%, 3.6 T). , 7.0 Torr (2%, 7T), and the film forming result by the first film forming process (see FIG. 2) is also shown in FIG.
  • the film forming rate can be improved as the pressure in the step S103 for supplying the reducing gas and the added gas is increased.
  • the film forming result by the first film forming process (see FIG. 2) using HCDS gas as a raw material gas, NH 3 gas as a reducing gas, and MMH gas as an additive gas is shown by a white diamond. Further, it HCDS gas as a material gas, using NH 3 gas as the reducing gas, shows the deposition results of Reference Example deposition process without addition of additive gas with black diamonds.
  • Graph 500 shows the relationship between the process temperature and the film formation rate in the film formation process of the reference example in which MMH gas is not added. Further, the relationship between the process temperature and the film forming speed in the first film forming process is shown in Graph 510.
  • MMH gas was added at a flow rate ratio of 10% at process temperatures of 350 ° C. and 450 ° C., and MMH gas was added at a flow rate ratio of 1% at a process temperature of 550 ° C.
  • a graph 500, as shown by comparing the graph 510, in the temperature range of the process temperature is 500 ° C. or higher 600 ° C. or less, by adding MMH gas in a reducing gas (NH 3 gas), HCDS gas as a source gas
  • a reducing gas NH 3 gas
  • HCDS gas as a source gas
  • the film forming result by the second film forming process (see FIG. 3) using DCS gas as the raw material gas, N 2 gas or H 2 gas as the reducing gas, and MMH gas as the additive gas is shown as a white triangle. It is indicated by a mark and a white square mark.
  • the point 601 represents a case of using N 2 gas and MMH gas for process temperature 550 ° C. as the reducing gas
  • the point 602 represents the case of using H 2 gas and MMH gas as the reducing gas for the process temperature 550 ° C..
  • a SiN film can be formed on the substrate W in a temperature range where the process temperature is 500 ° C. or higher and 600 ° C. or lower.
  • FIG. 6 is an example of a graph showing the relationship between the number of ALD cycles and the film thickness.
  • the horizontal axis shows the number of ALD cycles, and the vertical axis shows the film thickness.
  • process temperature 630 ° C., DCS gas as a source gas using the NH 3 gas as the reducing gas shows the deposition results of Reference Example deposition process without addition of additive gas with black circles.
  • the wire 700 fitted to the result of the film forming process of the reference example is shown.
  • the film formation results of the above film formation process are indicated by white circles.
  • the line 710 fitted to the result of the first film forming process to which 10% was added is shown.
  • the process temperature 550 ° C., DCS gas as a source gas, NH 3 gas as the reducing gas, a MMH gas as additive gas, the first addition of MMH gas 2% flow ratio to the total flow rate of the NH 3 gas and MMH gas is shown by a white square mark.
  • the line 720 fitted to the result of the first film forming process in which 2% was added is shown.
  • the incubation cycle was 11 times.
  • the incubation cycle was 0 times.
  • the incubation cycle can be reduced as compared with the film forming process of the reference example.
  • the film thickness controllability at the time of thin film formation and the uniformity of the film thickness can be improved.
  • the present disclosure is not limited to the above-described embodiment and the like, and various modifications and modifications are made within the scope of the gist of the present disclosure described in the claims. It can be improved.
  • Substrate processing device 1 Processing container 2
  • Ceiling plate 20 Gas supply unit 21, 22, 24 Gas supply pipes 21a to 23a Gas supply source 44
  • Exhaust device 50 Heating mechanism 60 Control unit

Abstract

Provided are a substrate treatment method and a substrate treatment device for forming a silicon nitride film . This substrate treatment method forms a silicon nitride film by repeating a step for feeding a silicon-containing gas to a temperature-regulated substrate and a step for feeding a nitrogen-containing gas to the substrate, wherein the substrate temperature is regulated to 600℃ or lower, the silicon-containing gas contains a halogen, and the nitrogen-containing gas is a mixed gas containing at least a first gas and a second gas that is different from the first gas.

Description

基板処理方法及び基板処理装置Substrate processing method and substrate processing equipment
 本開示は、基板処理方法及び基板処理装置に関する。 This disclosure relates to a substrate processing method and a substrate processing apparatus.
 例えば、凹凸が形成された基板に膜を埋め込む基板処理装置が知られている。 For example, a substrate processing device for embedding a film in a substrate having irregularities is known.
 特許文献1には、窒化ケイ素膜を形成するため、基板表面を、約600℃以上の温度でハロゲン化ケイ素前駆体に、次いで窒素含有反応物質に逐次的に曝露することを含む、処理方法が開示されている。 Patent Document 1 describes a treatment method comprising sequentially exposing the surface of a substrate to a silicon halide precursor and then to a nitrogen-containing reactant at a temperature of about 600 ° C. or higher in order to form a silicon nitride film. It is disclosed.
特表2018-525841号公報Special Table 2018-525841
 一の側面では、本開示は、シリコン窒化膜を成膜する基板処理方法及び基板処理装置を提供する。 On the one side, the present disclosure provides a substrate processing method and a substrate processing apparatus for forming a silicon nitride film.
 上記課題を解決するために、一の態様によれば、温度調整された基板にシリコン含有ガスを供給する工程と、前記基板に窒素含有ガスを供給する工程と、を繰り返して、シリコン窒化膜を形成する、基板処理方法であって、前記基板は、600℃以下に温度調整され、前記シリコン含有ガスは、ハロゲンを含み、前記窒素含有ガスは、第1ガスと、前記第1ガスとは異なる第2ガスと、を少なくとも含む混合ガスである、基板処理方法が提供される。 In order to solve the above problem, according to one embodiment, the step of supplying the silicon-containing gas to the temperature-controlled substrate and the step of supplying the nitrogen-containing gas to the substrate are repeated to form a silicon nitride film. A substrate processing method for forming, wherein the temperature of the substrate is adjusted to 600 ° C. or lower, the silicon-containing gas contains halogen, and the nitrogen-containing gas is different from the first gas and the first gas. A substrate processing method is provided, which is a mixed gas containing at least a second gas.
 一の側面によれば、シリコン窒化膜を成膜する基板処理方法及び基板処理装置を提供することができる。 According to one aspect, it is possible to provide a substrate processing method and a substrate processing apparatus for forming a silicon nitride film.
基板処理装置の構成例を示す概略図。The schematic diagram which shows the structural example of the substrate processing apparatus. 基板処理装置によるSiN膜の第1の成膜プロセスを示すタイムチャートの一例。An example of a time chart showing a first film formation process of a SiN film by a substrate processing apparatus. 基板処理装置によるSiN膜の第2の成膜プロセスを示すタイムチャートの一例。An example of a time chart showing a second film formation process of a SiN film by a substrate processing apparatus. 基板処理装置によるSiN膜の第3の成膜プロセスを示すタイムチャートの一例。An example of a time chart showing a third film formation process of a SiN film by a substrate processing apparatus. プロセス温度と成膜速度との関係を示すグラフの一例。An example of a graph showing the relationship between the process temperature and the film formation rate. ALDサイクル数と膜厚との関係を示すグラフの一例。An example of a graph showing the relationship between the number of ALD cycles and the film thickness.
 以下、図面を参照して本開示を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。 Hereinafter, a mode for carrying out the present disclosure will be described with reference to the drawings. In each drawing, the same components may be designated by the same reference numerals and duplicate description may be omitted.
〔基板処理装置〕
 本実施形態に係る基板処理装置100について、図1を用いて説明する。図1は、基板処理装置100の構成例を示す概略図である。なお、基板処理装置100は、基板WにSiN膜(シリコン窒化膜)を成膜する成膜装置である。
[Board processing equipment]
The substrate processing apparatus 100 according to this embodiment will be described with reference to FIG. FIG. 1 is a schematic view showing a configuration example of the substrate processing apparatus 100. The substrate processing apparatus 100 is a film forming apparatus for forming a SiN film (silicon nitride film) on the substrate W.
 基板処理装置100は、下端が開口された有天井の円筒体状の処理容器1を有する。処理容器1の全体は、例えば石英により形成されている。処理容器1内の上端近傍には、石英により形成された天井板2が設けられており、天井板2の下側の領域が封止されている。処理容器1の下端の開口には、円筒体状に成形された金属製のマニホールド3がOリング等のシール部材4を介して連結されている。 The substrate processing device 100 has a cylindrical processing container 1 with a ceiling whose lower end is opened. The entire processing container 1 is made of, for example, quartz. A ceiling plate 2 made of quartz is provided near the upper end of the processing container 1, and a region below the ceiling plate 2 is sealed. A metal manifold 3 formed in a cylindrical shape is connected to the opening at the lower end of the processing container 1 via a sealing member 4 such as an O-ring.
 マニホールド3は、処理容器1の下端を支持しており、マニホールド3の下方から基板として多数枚(例えば25~150枚)の半導体ウエハ(以下「基板W」という。)を多段に載置したウエハボート5が処理容器1内に挿入される。このように処理容器1内には、上下方向に沿って間隔を有して多数枚の基板Wが略水平に収容される。ウエハボート5は、例えば石英により形成されている。ウエハボート5は、3本のロッド6を有し(図1では2本を図示する。)、ロッド6に形成された溝(図示せず)により多数枚の基板Wが支持される。 The manifold 3 supports the lower end of the processing container 1, and is a wafer on which a large number (for example, 25 to 150) semiconductor wafers (hereinafter referred to as “board W”) are placed in multiple stages as substrates from below the manifold 3. The boat 5 is inserted into the processing container 1. In this way, a large number of substrates W are housed in the processing container 1 substantially horizontally with an interval along the vertical direction. The wafer boat 5 is made of, for example, quartz. The wafer boat 5 has three rods 6 (two rods are shown in FIG. 1), and a large number of substrates W are supported by grooves (not shown) formed in the rods 6.
 ウエハボート5は、石英により形成された保温筒7を介してテーブル8上に載置されている。テーブル8は、マニホールド3の下端の開口を開閉する金属(ステンレス)製の蓋体9を貫通する回転軸10上に支持される。 The wafer boat 5 is placed on the table 8 via a heat insulating cylinder 7 made of quartz. The table 8 is supported on a rotating shaft 10 penetrating a metal (stainless steel) lid 9 that opens and closes the opening at the lower end of the manifold 3.
 回転軸10の貫通部には、磁性流体シール11が設けられており、回転軸10を気密に封止し、且つ回転可能に支持している。蓋体9の周辺部とマニホールド3の下端との間には、処理容器1内の気密性を保持するためのシール部材12が設けられている。 A magnetic fluid seal 11 is provided at the penetrating portion of the rotating shaft 10, and the rotating shaft 10 is hermetically sealed and rotatably supported. A sealing member 12 for maintaining the airtightness in the processing container 1 is provided between the peripheral portion of the lid 9 and the lower end of the manifold 3.
 回転軸10は、例えばボートエレベータ等の昇降機構(図示せず)に支持されたアーム13の先端に取り付けられており、ウエハボート5と蓋体9とは一体として昇降し、処理容器1内に対して挿脱される。なお、テーブル8を蓋体9側へ固定して設け、ウエハボート5を回転させることなく基板Wの処理を行うようにしてもよい。 The rotating shaft 10 is attached to the tip of an arm 13 supported by an elevating mechanism (not shown) such as a boat elevator, and the wafer boat 5 and the lid 9 are integrally elevated and lowered into the processing container 1. On the other hand, it is inserted and removed. The table 8 may be fixedly provided on the lid 9 side so that the substrate W can be processed without rotating the wafer boat 5.
 また、基板処理装置100は、処理容器1内へ処理ガス、パージガス等の所定のガスを供給するガス供給部20を有する。 Further, the substrate processing apparatus 100 has a gas supply unit 20 that supplies a predetermined gas such as a processing gas or a purge gas into the processing container 1.
 ガス供給部20は、ガス供給管21,22,24を有する。ガス供給管21,22は、例えば石英により形成されており、マニホールド3の側壁を内側へ貫通して上方へ屈曲されて垂直に延びる。ガス供給管21,22の垂直部分には、ウエハボート5のウエハ支持範囲に対応する上下方向の長さに亘って、複数のガス孔21g,22gが所定間隔で形成されている。各ガス孔21g,22gは、水平方向にガスを吐出する。ガス供給管24は、例えば石英により形成されており、マニホールド3の側壁を貫通して設けられた短い石英管からなる。 The gas supply unit 20 has gas supply pipes 21, 22, and 24. The gas supply pipes 21 and 22 are made of, for example, quartz, penetrate the side wall of the manifold 3 inward, bend upward, and extend vertically. A plurality of gas holes 21g and 22g are formed at predetermined intervals in the vertical portions of the gas supply pipes 21 and 22 over a length in the vertical direction corresponding to the wafer support range of the wafer boat 5. The gas holes 21g and 22g discharge gas in the horizontal direction. The gas supply pipe 24 is made of, for example, quartz, and is composed of a short quartz pipe provided so as to penetrate the side wall of the manifold 3.
 ガス供給管21は、その垂直部分(ガス孔21gが形成される垂直部分)が処理容器1内に設けられている。ガス供給管21には、ガス配管を介してガス供給源21aから原料ガス(プリカーサガス)が供給される。ガス配管には、流量制御器21b及び開閉弁21cが設けられている。これにより、ガス供給源21aからの原料ガスは、ガス配管及びガス供給管21を介して処理容器1内に供給される。 The gas supply pipe 21 is provided with a vertical portion (vertical portion in which the gas hole 21 g is formed) in the processing container 1. The raw material gas (precursor gas) is supplied to the gas supply pipe 21 from the gas supply source 21a via the gas pipe. The gas pipe is provided with a flow rate controller 21b and an on-off valve 21c. As a result, the raw material gas from the gas supply source 21a is supplied into the processing container 1 via the gas pipe and the gas supply pipe 21.
 ここで、ガス供給源21aは、Siを含む原料ガスを供給する。原料ガスとしては、例えば、DCS(ジクロロシラン、SiCl)、HCDS(ヘキサクロロジシラン、SiCl)等のハロゲンを含むシリコン含有ガスを利用できる。他には、原料ガスとして、モノシラン・ジシラン・高次シラン、アミノシラン類やシリルアミン類などのハロゲンを含まないシリコン含有ガスも用いることが可能である。 Here, the gas supply source 21a supplies a raw material gas containing Si. As the raw material gas, for example, a silicon-containing gas containing halogen such as DCS (dichlorosilane, Si 2 H 2 Cl 2 ) and HCDS (hexachlorodisilane, Si 2 Cl 6) can be used. In addition, as the raw material gas, a halogen-free silicon-containing gas such as monosilane, disilane, higher-order silane, aminosilanes and silylamines can also be used.
 ガス供給管22は、その垂直部分(ガス孔22gが形成される垂直部分)が処理容器1内に設けられている。ガス供給管22には、ガス配管を介してガス供給源22aから還元ガス(第1ガス)が供給される。ガス配管には、流量制御器22b及び開閉弁22cが設けられている。また、ガス供給管22には、ガス配管を介してガス供給源23aから添加ガス(第2ガス)が供給される。ガス配管には、流量制御器23b及び開閉弁23cが設けられている。これにより、ガス供給源22a,23aからの窒素含有ガス(還元ガス、添加ガスの混合ガス)は、ガス配管及びガス供給管22を介して処理容器1内に供給される。 The gas supply pipe 22 is provided with a vertical portion (vertical portion in which the gas hole 22 g is formed) in the processing container 1. The reducing gas (first gas) is supplied to the gas supply pipe 22 from the gas supply source 22a via the gas pipe. The gas pipe is provided with a flow rate controller 22b and an on-off valve 22c. Further, the gas supply pipe 22 is supplied with the added gas (second gas) from the gas supply source 23a via the gas pipe. The gas pipe is provided with a flow rate controller 23b and an on-off valve 23c. As a result, the nitrogen-containing gas (mixed gas of reduced gas and added gas) from the gas supply sources 22a and 23a is supplied into the processing container 1 via the gas pipe and the gas supply pipe 22.
 ここで、ガス供給源22aは、還元ガスを供給する。還元ガスとしては、窒素原子、水素原子、または、窒素原子と水素原子の化合物からなるガスを利用できる。例えばNH等の窒素を含むガスを利用できる。また、還元ガスは、Nガス、Hガスであってもよい。他にも、還元ガスとして、D、NDなどの重水素化物を用いることができる。 Here, the gas supply source 22a supplies the reducing gas. As the reducing gas, a gas composed of a nitrogen atom, a hydrogen atom, or a compound of a nitrogen atom and a hydrogen atom can be used. For example, a gas containing nitrogen such as NH 3 can be used. Further, the reducing gas may be N 2 gas or H 2 gas. In addition, deuterated compounds such as D 2 and ND 3 can be used as the reducing gas.
 また、ガス供給源23aは、還元ガスに添加する添加ガスを供給する。添加ガスとしては、例えばMMH(モノメチルヒドラジン、CH(NH)NH)NH等のヒドラジン含有ガスを利用できる。 Further, the gas supply source 23a supplies an additive gas to be added to the reducing gas. As the added gas, for example, a hydrazine-containing gas such as MMH (monomethylhydrazine, CH 3 (NH) NH 2 ) NH 3 can be used.
 ガス供給管24には、ガス配管を介してパージガス供給源(図示せず)からパージガスが供給される。ガス配管(図示せず)には、流量制御器(図示せず)及び開閉弁(図示せず)が設けられている。これにより、パージガス供給源からのパージガスは、ガス配管及びガス供給管24を介して処理容器1内に供給される。パージガスとしては、例えばアルゴン(Ar)、窒素(N)等の不活性ガスを利用できる。なお、パージガスがパージガス供給源からガス配管及びガス供給管24を介して処理容器1内に供給される場合を説明したが、これに限定されず、パージガスはガス供給管21、22のいずれから供給されてもよい。 Purge gas is supplied to the gas supply pipe 24 from a purge gas supply source (not shown) via a gas pipe. The gas pipe (not shown) is provided with a flow rate controller (not shown) and an on-off valve (not shown). As a result, the purge gas from the purge gas supply source is supplied into the processing container 1 via the gas pipe and the gas supply pipe 24. As the purge gas, for example, an inert gas such as argon (Ar) or nitrogen (N 2) can be used. The case where the purge gas is supplied from the purge gas supply source to the processing container 1 via the gas pipe and the gas supply pipe 24 has been described, but the present invention is not limited to this, and the purge gas is supplied from any of the gas supply pipes 21 and 22. May be done.
 ガス供給管21,22が配置される位置に対向する処理容器1の側壁部分には、処理容器1内を真空排気するための排気口40が設けられている。排気口40は、ウエハボート5に対応して上下に細長く形成されている。処理容器1の排気口40に対応する部分には、排気口40を覆うように断面U字状に成形された排気口カバー部材41が取り付けられている。排気口カバー部材41は、処理容器1の側壁に沿って上方に延びている。排気口カバー部材41の下部には、排気口40を介して処理容器1を排気するための排気管42が接続されている。排気管42には、処理容器1内の圧力を制御する圧力制御バルブ43及び真空ポンプ等を含む排気装置44が接続されており、排気装置44により排気管42を介して処理容器1内が排気される。 An exhaust port 40 for vacuum exhausting the inside of the processing container 1 is provided on the side wall portion of the processing container 1 facing the position where the gas supply pipes 21 and 22 are arranged. The exhaust port 40 is vertically elongated so as to correspond to the wafer boat 5. An exhaust port cover member 41 having a U-shaped cross section is attached to a portion of the processing container 1 corresponding to the exhaust port 40 so as to cover the exhaust port 40. The exhaust port cover member 41 extends upward along the side wall of the processing container 1. An exhaust pipe 42 for exhausting the processing container 1 via the exhaust port 40 is connected to the lower part of the exhaust port cover member 41. An exhaust device 44 including a pressure control valve 43 for controlling the pressure in the processing container 1 and a vacuum pump is connected to the exhaust pipe 42, and the inside of the processing container 1 is exhausted by the exhaust device 44 via the exhaust pipe 42. Will be done.
 また、処理容器1の外周を囲むようにして処理容器1及びその内部の基板Wを加熱する円筒体状の加熱機構50が設けられている。 Further, a cylindrical heating mechanism 50 for heating the processing container 1 and the substrate W inside the processing container 1 is provided so as to surround the outer circumference of the processing container 1.
 また、基板処理装置100は、制御部60を有する。制御部60は、例えば基板処理装置100の各部の動作の制御、例えば開閉弁21c~23cの開閉による各ガスの供給・停止、流量制御器21b~23bによるガス流量の制御、排気装置44による排気制御を行う。また、制御部60は、例えば加熱機構50による基板Wの温度の制御を行う。 Further, the substrate processing device 100 has a control unit 60. The control unit 60 controls the operation of each part of the substrate processing device 100, for example, supply / stop of each gas by opening / closing the on-off valves 21c to 23c, controlling the gas flow rate by the flow rate controllers 21b to 23b, and exhausting by the exhaust device 44. Take control. Further, the control unit 60 controls the temperature of the substrate W by, for example, the heating mechanism 50.
 制御部60は、例えばコンピュータ等であってよい。また、基板処理装置100の各部の動作を行うコンピュータのプログラムは、記憶媒体に記憶されている。記憶媒体は、例えばフレキシブルディスク、コンパクトディスク、ハードディスク、フラッシュメモリ、DVD等であってよい。 The control unit 60 may be, for example, a computer or the like. Further, the computer program that operates each part of the substrate processing apparatus 100 is stored in the storage medium. The storage medium may be, for example, a flexible disk, a compact disk, a hard disk, a flash memory, a DVD, or the like.
<SiN膜の第1の成膜プロセス>
 次に、図1に示す基板処理装置100による基板処理の一例について説明する。図2は、基板処理装置100によるSiN膜の第1の成膜プロセスを示すタイムチャートの一例である。
<First film formation process of SiN film>
Next, an example of substrate processing by the substrate processing apparatus 100 shown in FIG. 1 will be described. FIG. 2 is an example of a time chart showing the first film formation process of the SiN film by the substrate processing apparatus 100.
 図2に示される成膜プロセスは、所定の温度に温度調整された基板Wに対して、原料ガスを供給する工程S101、パージする工程S102、還元ガス及び添加ガスを供給する工程S103、及び、パージする工程S104を1サイクルとするALD(Atomic Layer Deposition)プロセスを所定サイクル繰り返し、基板Wの表面にSiN膜を成膜するプロセスである。なお、図2では、1サイクルのみを示す。なお、工程S101~S104において、ガス供給管24からパージガスであるNガスが成膜プロセス中に常時(連続して)供給されている。 The film forming process shown in FIG. 2 includes a step S101 for supplying a raw material gas, a step S102 for purging, a step S103 for supplying a reducing gas and an added gas, and a step S103 for supplying the substrate W whose temperature has been adjusted to a predetermined temperature. This is a process of forming a SiN film on the surface of the substrate W by repeating an ALD (Atomic Layer Deposition) process in which the purging step S104 is one cycle for a predetermined cycle. Note that FIG. 2 shows only one cycle. In the step S101 ~ S104, N 2 gas is a purge gas from the gas supply pipe 24 is constantly during the film formation process (continuously) is supplied.
 原料ガスを供給する工程S101は、Siを含む原料ガスとしてのDCSガスまたはHCDSガス(図2ではSiとして示す。)を処理容器1内に供給する工程である。原料ガスを供給する工程S101では、開閉弁21cを開くことにより、ガス供給源21aからガス供給管21を経て原料ガスを処理容器1内に供給する。 The step S101 for supplying the raw material gas is a step of supplying DCS gas or HCDS gas (shown as Si in FIG. 2) as the raw material gas containing Si into the processing container 1. In the step S101 of supplying the raw material gas, the raw material gas is supplied from the gas supply source 21a through the gas supply pipe 21 into the processing container 1 by opening the on-off valve 21c.
 パージする工程S102は、処理容器1内の余剰の原料ガス等をパージする工程である。パージする工程S102では、開閉弁21cを閉じて原料ガスの供給を停止する。これにより、ガス供給管24から常時供給されているパージガスが処理容器1内の余剰の原料ガス等をパージする。 The purging step S102 is a step of purging excess raw material gas and the like in the processing container 1. In the purging step S102, the on-off valve 21c is closed to stop the supply of the raw material gas. As a result, the purge gas constantly supplied from the gas supply pipe 24 purges the surplus raw material gas and the like in the processing container 1.
 還元ガス及び添加ガスを供給する工程S103は、還元ガスとしてのNHガス及び添加ガスとしてのMMHガスを供給する工程である。還元ガス及び添加ガスを供給する工程S103では、開閉弁22c,23cを開くことにより、ガス供給源22a,23aからガス供給管22を経て処理容器1内に供給する。 Supplying a reducing gas and additive gas S103 is a step of supplying a MMH gas as the NH 3 gas and the additive gas as the reducing gas. In the step S103 of supplying the reducing gas and the added gas, the on-off valves 22c and 23c are opened to supply the reducing gas and the added gas from the gas supply sources 22a and 23a into the processing container 1 via the gas supply pipe 22.
 パージする工程S104は、処理容器1内の余剰の還元ガス、添加ガス等をパージする工程である。パージする工程S104では、開閉弁22c,23cを閉じて還元ガス及び添加ガスの供給を停止する。これにより、ガス供給管24から常時供給されているパージガスが処理容器1内の余剰の還元ガス、添加ガス等をパージする。 The purging step S104 is a step of purging excess reducing gas, added gas, etc. in the processing container 1. In the purging step S104, the on-off valves 22c and 23c are closed to stop the supply of the reducing gas and the added gas. As a result, the purge gas constantly supplied from the gas supply pipe 24 purges the excess reducing gas, added gas, and the like in the processing container 1.
 以上のサイクルを繰り返すことで、基板WにSiN膜を成膜する。 By repeating the above cycle, a SiN film is formed on the substrate W.
 ここで、成膜プロセスの成膜条件の好ましい範囲を以下に示す。
基板温度:500℃以上600℃以下
圧力:0.1~9Torr
原料ガス流量:500~5000sccm
還元ガス流量:1000~10000sccm
添加ガス流量:10~1000sccm
ガス流量:500~5000sccm
工程S101時間:2~30秒
工程S102時間:2~30秒
工程S103時間:5~60秒
工程S104時間:2~30秒
Here, the preferable range of the film forming conditions of the film forming process is shown below.
Substrate temperature: 500 ° C or higher and 600 ° C or lower Pressure: 0.1-9 Torr
Raw material gas flow rate: 500-5000 sccm
Reduction gas flow rate: 1000-10000 sccm
Addition gas flow rate: 10-1000 sccm
N 2 gas flow rate: 500-5000 sccm
Process S101 time: 2 to 30 seconds Process S102 time: 2 to 30 seconds Process S103 time: 5 to 60 seconds Process S104 time: 2 to 30 seconds
<SiN膜の第2の成膜プロセス>
 次に、図1に示す基板処理装置100による基板処理の一例について説明する。図3は、基板処理装置100によるSiN膜の第2の成膜プロセスを示すタイムチャートの一例である。
<Second film formation process of SiN film>
Next, an example of substrate processing by the substrate processing apparatus 100 shown in FIG. 1 will be described. FIG. 3 is an example of a time chart showing the second film formation process of the SiN film by the substrate processing apparatus 100.
 図3に示される成膜プロセスは、所定の温度に温度調整された基板Wに対して、原料ガスを供給する工程S301、パージする工程S302、還元ガス及び添加ガスを供給する工程S303、及び、パージする工程S304を1サイクルとするALDプロセスを所定サイクル繰り返し、基板Wの表面にSiN膜を成膜するプロセスである。なお、図3では、1サイクルのみを示す。なお、工程S301~S304において、ガス供給管24からパージガスであるNガスが成膜プロセス中に常時(連続して)供給されている。 The film forming process shown in FIG. 3 includes a step S301 for supplying the raw material gas, a step S302 for purging, a step S303 for supplying the reducing gas and the added gas, and a step S303 for supplying the substrate W whose temperature has been adjusted to a predetermined temperature. This is a process of forming a SiN film on the surface of the substrate W by repeating the ALD process in which the purging step S304 is one cycle for a predetermined cycle. Note that FIG. 3 shows only one cycle. In the step S301 ~ S304, N 2 gas is a purge gas from the gas supply pipe 24 is constantly during the film formation process (continuously) is supplied.
 図3に示す第2の成膜プロセスは、図2に示す第1の成膜プロセスと比較して、還元ガス及び添加ガスを供給する工程S303が異なっている。還元ガス及び添加ガスを供給する工程S303は、還元ガスとしてのNガスまたはHガス及び添加ガスとしてのMMHガスを供給する工程である。即ち、還元ガス及び添加ガスを供給する工程S303において、処理容器1に還元ガスを供給するガス供給源22aは、NHガスに替えて、NガスまたはHガスを供給する。その他の構成は、第1の成膜プロセスと同様であり、重複する説明を省略する。 The second film forming process shown in FIG. 3 is different from the first film forming process shown in FIG. 2 in the step S303 for supplying the reducing gas and the added gas. The step S303 for supplying the reducing gas and the added gas is a step of supplying the N 2 gas or the H 2 gas as the reducing gas and the MMH gas as the added gas. That is, in the step S303 for supplying the reducing gas and the added gas, the gas supply source 22a for supplying the reducing gas to the processing container 1 supplies N 2 gas or H 2 gas instead of NH 3 gas. Other configurations are the same as those of the first film forming process, and redundant description will be omitted.
 ここで、成膜プロセスの成膜条件の好ましい範囲を以下に示す。
基板温度:500℃以上600℃以下
圧力:0.1~9Torr
原料ガス流量:500~5000sccm
還元ガス流量:1000~10000sccm
添加ガス流量:10~1000sccm
ガス流量:500~5000sccm
工程S301時間:2~30秒
工程S302時間:2~30秒
工程S303時間:5~60秒
工程S304時間:2~30秒
Here, the preferable range of the film forming conditions of the film forming process is shown below.
Substrate temperature: 500 ° C or higher and 600 ° C or lower Pressure: 0.1-9 Torr
Raw material gas flow rate: 500-5000 sccm
Reduction gas flow rate: 1000-10000 sccm
Addition gas flow rate: 10-1000 sccm
N 2 gas flow rate: 500-5000 sccm
Process S30 1 hour: 2 to 30 seconds Process S302 time: 2 to 30 seconds Process S303 time: 5 to 60 seconds Process S304 time: 2 to 30 seconds
<SiN膜の第3の成膜プロセス>
 次に、図1に示す基板処理装置100による基板処理の一例について説明する。図4は、基板処理装置100によるSiN膜の第3の成膜プロセスを示すタイムチャートの一例である。
<Third film formation process of SiN film>
Next, an example of substrate processing by the substrate processing apparatus 100 shown in FIG. 1 will be described. FIG. 4 is an example of a time chart showing a third film formation process of the SiN film by the substrate processing apparatus 100.
 図4に示される成膜プロセスは、所定の温度に温度調整された基板Wに対して、原料ガスを供給する工程S501、パージする工程S502、還元ガスを供給する工程S503、還元ガス及び添加ガスを供給する工程S504、及び、パージする工程S505を1サイクルとするALDプロセスを所定サイクル繰り返し、基板Wの表面にSiN膜を成膜するプロセスである。なお、図4では、1サイクルのみを示す。なお、工程S501~S505において、ガス供給管24からパージガスであるNガスが成膜プロセス中に常時(連続して)供給されている。 The film forming process shown in FIG. 4 includes a step S501 for supplying a raw material gas, a step S502 for purging, a step S503 for supplying a reducing gas, a reducing gas and an added gas for the substrate W whose temperature has been adjusted to a predetermined temperature. This is a process of forming a SiN film on the surface of the substrate W by repeating a predetermined cycle of the ALD process in which the step S504 for supplying the gas and the step S505 for purging are one cycle. Note that FIG. 4 shows only one cycle. In the step S501 ~ S505, N 2 gas is a purge gas from the gas supply pipe 24 is constantly during the film formation process (continuously) is supplied.
 第3の成膜プロセスは、第1の成膜プロセスと比較して、還元ガスを供給する工程S503及び還元ガス及び添加ガスを供給する工程S504が異なっている。第3の成膜プロセスでは、工程S503で先に還元ガスの供給を開始した後に、工程S504で還元ガスを供給しつつ添加ガスの供給を開始する。その他の構成は、第1の成膜プロセスと同様であり、重複する説明を省略する。 The third film forming process is different from the first film forming process in the step S503 for supplying the reducing gas and the step S504 for supplying the reducing gas and the added gas. In the third film forming process, the supply of the reducing gas is started first in the step S503, and then the supply of the added gas is started while supplying the reducing gas in the step S504. Other configurations are the same as those of the first film forming process, and redundant description will be omitted.
 ここで、成膜プロセスの成膜条件の好ましい範囲を以下に示す。
基板温度:500℃以上600℃以下
圧力:0.1~9Torr
原料ガス流量:500~5000sccm
還元ガス流量:1000~10000sccm
添加ガス流量:10~1000sccm
ガス流量:500~5000sccm
工程S501時間:2~30秒
工程S502時間:2~30秒
工程S503時間:1~30秒
工程S504時間:5~60秒
工程S505時間:2~30秒
Here, the preferable range of the film forming conditions of the film forming process is shown below.
Substrate temperature: 500 ° C or higher and 600 ° C or lower Pressure: 0.1-9 Torr
Raw material gas flow rate: 500-5000 sccm
Reduction gas flow rate: 1000-10000 sccm
Addition gas flow rate: 10-1000 sccm
N 2 gas flow rate: 500-5000 sccm
Step S501 Hours: 2 to 30 seconds Step S502 Hours: 2 to 30 seconds Step S503 Hours: 1 to 30 seconds Step S504 Hours: 5 to 60 seconds Step S505 Hours: 2 to 30 seconds
<プロセス温度を成膜速度>
 次に、図5は、プロセス温度と成膜速度との関係を示すグラフの一例である。横軸はプロセス温度を示し、縦軸は成膜速度(GPC;Growth Per Cycle)を示す。
<Process temperature and film formation rate>
Next, FIG. 5 is an example of a graph showing the relationship between the process temperature and the film formation rate. The horizontal axis shows the process temperature, and the vertical axis shows the film formation rate (GPC; Growth Per Cycle).
 図5において、原料ガスとしてDCSガス、還元ガスとしてNHガス、添加ガスとしてMMHガスを用いた第1の成膜プロセス(図2参照)による成膜結果を白抜き丸印で示す。また、原料ガスとしてDCSガス、還元ガスとしてNHガスを用い、添加ガスを添加しない参考例の成膜プロセスによる成膜結果を黒塗り丸印で示す。 In FIG. 5, the film forming result by the first film forming process (see FIG. 2) using DCS gas as a raw material gas, NH 3 gas as a reducing gas, and MMH gas as an additive gas is shown by a white circle. Further, DCS gas as a source gas using the NH 3 gas as the reducing gas, shows the deposition results of Reference Example deposition process without addition of additive gas with black circles.
 MMHガスを添加しない参考例の成膜プロセスにおけるプロセス温度と成膜速度との関係をグラフ400に示す。また、第1の成膜プロセスにおいて、NHガス及びMMHガスの総流量に対する流量比でMMHガスを10%添加した場合のプロセス温度と成膜速度との関係をグラフ410に示す。また、第1の成膜プロセスにおいて、NHガス及びMMHガスの総流量に対する流量比でMMHガスを2%添加した場合のプロセス温度と成膜速度との関係をグラフ420に示す。 Graph 400 shows the relationship between the process temperature and the film forming rate in the film forming process of the reference example in which MMH gas is not added. In the first deposition process, showing the relationship between the process temperature and the deposition rate when the MMH gas was added 10% flow ratio to the total flow rate of the NH 3 gas and MMH gas in the graph 410. In the first deposition process, showing the relationship between the process temperature and the deposition rate in the case of adding MMH gas 2% flow ratio to the total flow rate of the NH 3 gas and MMH gas in the graph 420.
 グラフ400と、グラフ410,420とを対比して示すように、プロセス温度が500℃以上600℃以下の温度領域において、還元ガス(NHガス)に、添加ガスとしてのMMHガスを添加することにより、SiN膜の成膜速度を向上させることができる。換言すれば、参考例の成膜プロセスでは、グラフ400に示すように、600℃以上の温度領域において、好適にSiN膜が成膜される。これに対し、第1の成膜プロセスによれば、参考例の成膜プロセスの成膜温度(600℃以上)よりも低温の温度領域(500℃以上600℃以下)でSiN膜を成膜することができる。 A graph 400, as shown by comparing the graphs 410 and 420, in a temperature range of the process temperature is 500 ° C. or higher 600 ° C. or less, the reducing gas (NH 3 gas), adding a MMH gas as additive gas Therefore, the film formation rate of the SiN film can be improved. In other words, in the film forming process of the reference example, as shown in Graph 400, the SiN film is preferably formed in the temperature range of 600 ° C. or higher. On the other hand, according to the first film forming process, the SiN film is formed in a temperature region (500 ° C. or higher and 600 ° C. or lower) lower than the film forming temperature (600 ° C. or higher) of the film forming process of the reference example. be able to.
 また、プロセス温度550℃において、NHガス及びMMHガスの総流量に対するMMHガスの流量比を、それぞれ0.5%、1%、2%(グラフ420における550℃の測定結果)、10%(グラフ410における550℃の測定結果)、20%として、第1の成膜プロセス(図2参照)による成膜結果を図5に併せて示す。 Further, at a process temperature of 550 ° C., the flow rate ratios of the MMH gas to the total flow rates of the NH 3 gas and the MMH gas were 0.5%, 1% and 2% (measurement results at 550 ° C. in the graph 420), 10% ( The film formation result by the first film formation process (see FIG. 2) is also shown in FIG. 5 as 20% of the measurement result at 550 ° C. in Graph 410).
 図5に示すように、第1の成膜プロセスによれば、流量比0.5%以上20%以下でMMHガスを添加することにより、参考例の成膜プロセスと比較して、成膜速度を向上させることができる。また、第1の成膜プロセスによれば、添加するMMHガスの流量比を大きくするほど成膜速度を向上させることができる。 As shown in FIG. 5, according to the first film forming process, by adding MMH gas at a flow rate ratio of 0.5% or more and 20% or less, the film forming speed is compared with the film forming process of the reference example. Can be improved. Further, according to the first film forming process, the film forming rate can be improved as the flow rate ratio of the added MMH gas is increased.
 また、プロセス温度550℃、かつ、添加するMMHガスの流量比2%について、工程S103の圧力を0.3Torr(グラフ420における550℃の測定結果)、3.6Torr(2%,3.6T)、7.0Torr(2%,7T)として、第1の成膜プロセス(図2参照)による成膜結果を図5に併せて示す。 Further, when the process temperature is 550 ° C. and the flow rate ratio of the MMH gas to be added is 2%, the pressure in step S103 is 0.3 Torr (measurement result at 550 ° C. in Graph 420), 3.6 Torr (2%, 3.6 T). , 7.0 Torr (2%, 7T), and the film forming result by the first film forming process (see FIG. 2) is also shown in FIG.
 図5に示すように、第1の成膜プロセスによれば、還元ガス及び添加ガスを供給する工程S103の圧力を高くするほど成膜速度を向上させることができる。 As shown in FIG. 5, according to the first film forming process, the film forming rate can be improved as the pressure in the step S103 for supplying the reducing gas and the added gas is increased.
 また、図5において、原料ガスとしてHCDSガス、還元ガスとしてNHガス、添加ガスとしてMMHガスを用いた第1の成膜プロセス(図2参照)による成膜結果を白抜き菱形印で示す。また、原料ガスとしてHCDSガス、還元ガスとしてNHガスを用い、添加ガスを添加しない参考例の成膜プロセスによる成膜結果を黒塗り菱形印で示す。 Further, in FIG. 5, the film forming result by the first film forming process (see FIG. 2) using HCDS gas as a raw material gas, NH 3 gas as a reducing gas, and MMH gas as an additive gas is shown by a white diamond. Further, it HCDS gas as a material gas, using NH 3 gas as the reducing gas, shows the deposition results of Reference Example deposition process without addition of additive gas with black diamonds.
 MMHガスを添加しない参考例の成膜プロセスにおけるプロセス温度と成膜速度との関係をグラフ500に示す。また、第1の成膜プロセスにおけるプロセス温度と成膜速度との関係をグラフ510に示す。なお、グラフ510では、プロセス温度350℃及び450℃では流量比10%でMMHガスを添加し、プロセス温度550℃では流量比1%でMMHガスを添加した。 Graph 500 shows the relationship between the process temperature and the film formation rate in the film formation process of the reference example in which MMH gas is not added. Further, the relationship between the process temperature and the film forming speed in the first film forming process is shown in Graph 510. In Graph 510, MMH gas was added at a flow rate ratio of 10% at process temperatures of 350 ° C. and 450 ° C., and MMH gas was added at a flow rate ratio of 1% at a process temperature of 550 ° C.
 グラフ500と、グラフ510とを対比して示すように、プロセス温度が500℃以上600℃以下の温度領域において、還元ガス(NHガス)にMMHガスを添加することにより、原料ガスとしてHCDSガスを用いた場合でもSiN膜の成膜速度を向上させることができる。 A graph 500, as shown by comparing the graph 510, in the temperature range of the process temperature is 500 ° C. or higher 600 ° C. or less, by adding MMH gas in a reducing gas (NH 3 gas), HCDS gas as a source gas The film formation rate of the SiN film can be improved even when the above is used.
 また、図5において、原料ガスとしてDCSガス、還元ガスとしてNガスまたはHガス、添加ガスとしてMMHガスを用いた第2の成膜プロセス(図3参照)による成膜結果を白抜き三角形印及び白抜き四角印で示す。なお、点601はプロセス温度550℃について還元ガスとしてNガスとMMHガスを用いた場合を示し、点602はプロセス温度550℃について還元ガスとしてHガスとMMHガスを用いた場合を示す。 Further, in FIG. 5, the film forming result by the second film forming process (see FIG. 3) using DCS gas as the raw material gas, N 2 gas or H 2 gas as the reducing gas, and MMH gas as the additive gas is shown as a white triangle. It is indicated by a mark and a white square mark. Incidentally, the point 601 represents a case of using N 2 gas and MMH gas for process temperature 550 ° C. as the reducing gas, the point 602 represents the case of using H 2 gas and MMH gas as the reducing gas for the process temperature 550 ° C..
図5のプロセス温度550℃の場合を例に示すように、還元ガスとしてNガスまたはHガスを用いる第2の成膜プロセスによれば、添加ガスを添加しない参考例の成膜プロセス(グラフ400参照)と比較して、プロセス温度が500℃以上600℃以下の温度領域において、基板WにSiN膜を成膜することができる。 As shown in the case of the process temperature of 550 ° C. in FIG. 5 , according to the second film forming process using N 2 gas or H 2 gas as the reducing gas, the film forming process of the reference example in which the added gas is not added ( Compared with (see Graph 400), a SiN film can be formed on the substrate W in a temperature range where the process temperature is 500 ° C. or higher and 600 ° C. or lower.
 図6は、ALDサイクル数と膜厚との関係を示すグラフの一例である。横軸はALDサイクル数を示し、縦軸は膜厚を示す。 FIG. 6 is an example of a graph showing the relationship between the number of ALD cycles and the film thickness. The horizontal axis shows the number of ALD cycles, and the vertical axis shows the film thickness.
 図6において、プロセス温度630℃、原料ガスとしてDCSガス、還元ガスとしてNHガスを用い、添加ガスを添加しない参考例の成膜プロセスによる成膜結果を黒塗り丸印で示す。参考例の成膜プロセスの結果にフィッティングした線700を示す。また、プロセス温度550℃、原料ガスとしてDCSガス、還元ガスとしてNHガス、添加ガスとしてMMHガスを用い、NHガス及びMMHガスの総流量に対する流量比でMMHガスを10%添加した第1の成膜プロセス(図2参照)による成膜結果を白抜き丸印で示す。10%添加した第1の成膜プロセスの結果にフィッティングした線710を示す。また、プロセス温度550℃、原料ガスとしてDCSガス、還元ガスとしてNHガス、添加ガスとしてMMHガスを用い、NHガス及びMMHガスの総流量に対する流量比でMMHガスを2%添加した第1の成膜プロセス(図2参照)による成膜結果を白抜き四角印で示す。2%添加した第1の成膜プロセスの結果にフィッティングした線720を示す。 6, process temperature 630 ° C., DCS gas as a source gas using the NH 3 gas as the reducing gas, shows the deposition results of Reference Example deposition process without addition of additive gas with black circles. The wire 700 fitted to the result of the film forming process of the reference example is shown. Further, the process temperature 550 ° C., DCS gas as a source gas, NH 3 gas as the reducing gas, a MMH gas as additive gas, the first addition of MMH gas 10% flow ratio to the total flow rate of the NH 3 gas and MMH gas The film formation results of the above film formation process (see FIG. 2) are indicated by white circles. The line 710 fitted to the result of the first film forming process to which 10% was added is shown. Further, the process temperature 550 ° C., DCS gas as a source gas, NH 3 gas as the reducing gas, a MMH gas as additive gas, the first addition of MMH gas 2% flow ratio to the total flow rate of the NH 3 gas and MMH gas The film formation result of the above film formation process (see FIG. 2) is shown by a white square mark. The line 720 fitted to the result of the first film forming process in which 2% was added is shown.
 参考例の成膜プロセスにおいて、インキュベーションサイクルは11回であった。これに対し、10%添加した第1の成膜プロセス及び2%添加した第1の成膜プロセスにおいて、インキュベーションサイクルは0回であった。 In the film formation process of the reference example, the incubation cycle was 11 times. On the other hand, in the first film forming process in which 10% was added and the first film forming process in which 2% was added, the incubation cycle was 0 times.
 この様に、第1の成膜プロセスによれば、参考例の成膜プロセスと比較して、インキュベーションサイクルを少なくすることができる。これにより、薄膜形成時の膜厚制御性や、膜厚の均一性を向上させることができる。 Thus, according to the first film forming process, the incubation cycle can be reduced as compared with the film forming process of the reference example. As a result, the film thickness controllability at the time of thin film formation and the uniformity of the film thickness can be improved.
 以上、基板処理装置100による基板処理について説明したが、本開示は上記実施形態等に限定されるものではなく、特許請求の範囲に記載された本開示の要旨の範囲内において、種々の変形、改良が可能である。 Although the substrate processing by the substrate processing apparatus 100 has been described above, the present disclosure is not limited to the above-described embodiment and the like, and various modifications and modifications are made within the scope of the gist of the present disclosure described in the claims. It can be improved.
 尚、本願は、2020年3月17日に出願した日本国特許出願2020-46630号に基づく優先権を主張するものであり、これらの日本国特許出願の全内容を本願に参照により援用する。 Note that this application claims priority based on Japanese Patent Application No. 2020-46630 filed on March 17, 2020, and the entire contents of these Japanese patent applications are incorporated herein by reference.
W     基板
100   基板処理装置
1     処理容器
2     天井板
20    ガス供給部
21,22,24 ガス供給管
21a~23a ガス供給源
44    排気装置
50    加熱機構
60    制御部
W Substrate 100 Substrate processing device 1 Processing container 2 Ceiling plate 20 Gas supply unit 21, 22, 24 Gas supply pipes 21a to 23a Gas supply source 44 Exhaust device 50 Heating mechanism 60 Control unit

Claims (11)

  1.  温度調整された基板にシリコン含有ガスを供給する工程と、
     前記基板に窒素含有ガスを供給する工程と、を繰り返して、シリコン窒化膜を形成する、基板処理方法であって、
     前記基板は、600℃以下に温度調整され、
     前記シリコン含有ガスは、ハロゲンを含み、
     前記窒素含有ガスは、第1ガスと、前記第1ガスとは異なる第2ガスと、を少なくとも含む混合ガスである、
    基板処理方法。
    The process of supplying silicon-containing gas to the temperature-controlled substrate,
    A substrate processing method for forming a silicon nitride film by repeating the steps of supplying a nitrogen-containing gas to the substrate.
    The temperature of the substrate is adjusted to 600 ° C. or lower.
    The silicon-containing gas contains halogen and
    The nitrogen-containing gas is a mixed gas containing at least a first gas and a second gas different from the first gas.
    Substrate processing method.
  2.  前記シリコン含有ガスは、ジクロロシランガスである、
    請求項1に記載の基板処理方法。
    The silicon-containing gas is dichloromethane.
    The substrate processing method according to claim 1.
  3.  前記第1ガスは、窒素原子、水素原子、または、窒素原子と水素原子の化合物からなるガスである、
    請求項1または請求項2に記載の基板処理方法。
    The first gas is a gas composed of a nitrogen atom, a hydrogen atom, or a compound of a nitrogen atom and a hydrogen atom.
    The substrate processing method according to claim 1 or 2.
  4.  前記第1ガスは、NHガス、Hガス、Nガスのいずれかである、
    請求項1乃至請求項3のいずれか1項に記載の基板処理方法。
    The first gas is any of NH 3 gas, H 2 gas, and N 2 gas.
    The substrate processing method according to any one of claims 1 to 3.
  5.  前記第2ガスは、ヒドラジン含有ガスである、
    請求項1乃至請求項4のいずれか1項に記載の基板処理方法。
    The second gas is a hydrazine-containing gas.
    The substrate processing method according to any one of claims 1 to 4.
  6.  前記第2ガスは、モノメチルヒドラジンガスである、
    請求項1乃至請求項5のいずれか1項に記載の基板処理方法。
    The second gas is monomethylhydrazine gas.
    The substrate processing method according to any one of claims 1 to 5.
  7.  前記第1ガス及び前記第2ガスの混合ガスにおける前記第2ガスの流量比は、0.5%以上、20%以下である、
    請求項1乃至請求項6のいずれか1項に記載の基板処理方法。
    The flow rate ratio of the second gas in the mixed gas of the first gas and the second gas is 0.5% or more and 20% or less.
    The substrate processing method according to any one of claims 1 to 6.
  8.  前記窒素含有ガスを供給する工程は、
     同時に前記第1ガスと前記第2ガスを供給する、
    請求項1乃至請求項7のいずれか1項に記載の基板処理方法。
    The step of supplying the nitrogen-containing gas is
    At the same time, the first gas and the second gas are supplied.
    The substrate processing method according to any one of claims 1 to 7.
  9.  前記窒素含有ガスを供給する工程は、
     前記第1ガスを供給した後に、前記第1ガスを供給しつつ前記第2ガスを供給する、
    請求項1乃至請求項8のいずれか1項に記載の基板処理方法。
    The step of supplying the nitrogen-containing gas is
    After supplying the first gas, the second gas is supplied while supplying the first gas.
    The substrate processing method according to any one of claims 1 to 8.
  10.  前記基板は、500℃以上に温度調整される、
    請求項1乃至請求項9のいずれか1項に記載の基板処理方法。
    The temperature of the substrate is adjusted to 500 ° C. or higher.
    The substrate processing method according to any one of claims 1 to 9.
  11.  基板を収容する収容容器と、
     前記収容容器内の前記基板を加熱する加熱部と、
     前記収容容器にガスを供給するガス供給部と、
     制御部と、を備え、
     前記制御部は、
     温度調整された前記基板にシリコン含有ガスを供給する工程と、
     前記基板に窒素含有ガスを供給する工程と、を繰り返して、シリコン窒化膜を形成し、
     前記基板は、600℃以下に温度調整され、
     前記シリコン含有ガスは、ハロゲンを含み、
     前記窒素含有ガスは、第1ガスと、前記第1ガスとは異なる第2ガスと、を少なくとも含む混合ガスである、
    基板処理装置。
    A storage container for accommodating the substrate and
    A heating unit that heats the substrate in the storage container,
    A gas supply unit that supplies gas to the storage container and
    With a control unit
    The control unit
    The process of supplying silicon-containing gas to the temperature-controlled substrate, and
    The step of supplying the nitrogen-containing gas to the substrate is repeated to form a silicon nitride film, and the silicon nitride film is formed.
    The temperature of the substrate is adjusted to 600 ° C. or lower.
    The silicon-containing gas contains halogen and
    The nitrogen-containing gas is a mixed gas containing at least a first gas and a second gas different from the first gas.
    Board processing equipment.
PCT/JP2021/008152 2020-03-17 2021-03-03 Substrate treatment method and substrate treatment device WO2021187104A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020046630A JP2021150382A (en) 2020-03-17 2020-03-17 Substrate processing method and substrate processing device
JP2020-046630 2020-03-17

Publications (1)

Publication Number Publication Date
WO2021187104A1 true WO2021187104A1 (en) 2021-09-23

Family

ID=77768102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008152 WO2021187104A1 (en) 2020-03-17 2021-03-03 Substrate treatment method and substrate treatment device

Country Status (2)

Country Link
JP (1) JP2021150382A (en)
WO (1) WO2021187104A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281082A (en) * 2006-04-04 2007-10-25 Tokyo Electron Ltd Film formation method, film-forming device, and storage medium
JP2017174919A (en) * 2016-03-23 2017-09-28 東京エレクトロン株式会社 Method for forming nitride film
JP2018525841A (en) * 2015-08-21 2018-09-06 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated High temperature thermal ALD and silicon nitride film
JP2018198288A (en) * 2017-05-24 2018-12-13 東京エレクトロン株式会社 Film forming method and film forming apparatus of silicon nitride film
JP2019204942A (en) * 2018-02-20 2019-11-28 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Method of forming silicon nitride films using microwave plasma

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281082A (en) * 2006-04-04 2007-10-25 Tokyo Electron Ltd Film formation method, film-forming device, and storage medium
JP2018525841A (en) * 2015-08-21 2018-09-06 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated High temperature thermal ALD and silicon nitride film
JP2017174919A (en) * 2016-03-23 2017-09-28 東京エレクトロン株式会社 Method for forming nitride film
JP2018198288A (en) * 2017-05-24 2018-12-13 東京エレクトロン株式会社 Film forming method and film forming apparatus of silicon nitride film
JP2019204942A (en) * 2018-02-20 2019-11-28 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Method of forming silicon nitride films using microwave plasma

Also Published As

Publication number Publication date
JP2021150382A (en) 2021-09-27

Similar Documents

Publication Publication Date Title
KR101749398B1 (en) Cleaning method, manufacturing method of semiconductor device, substrate processing apparatus, and program
TWI819348B (en) Semiconductor device manufacturing method, substrate processing method, substrate processing device and program
US7205187B2 (en) Micro-feature fill process and apparatus using hexachlorodisilane or other chlorine-containing silicon precursor
KR101705966B1 (en) Cleaning method, method of manufacturing semiconductor device, substrate processing apparatus, and program
KR20180014661A (en) Method and apparatus for forming nitride film
KR20170037831A (en) Method of manufacturing semiconductor device, substrate processing apparatus, and program
US11694890B2 (en) Substrate processing method and substrate processing apparatus
WO2017168513A1 (en) Substrate processing device, semiconductor device manufacturing method, and recording medium
US11923193B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP6902958B2 (en) Silicon film forming method and forming device
TWI686504B (en) Nitride film forming method and storage medium
WO2021187104A1 (en) Substrate treatment method and substrate treatment device
JP7012563B2 (en) Film formation method and film formation equipment
CN114250447A (en) Method for manufacturing semiconductor device, substrate processing apparatus, and recording medium
TWI821637B (en) Film forming method
WO2021187174A1 (en) Substrate processing method and substrate processing apparatus
JP7186909B2 (en) Substrate processing method, semiconductor device manufacturing method, substrate processing apparatus, and program
WO2024062662A1 (en) Substrate processing method, production method for semiconductor device, program, and substrate processing device
WO2021210441A1 (en) Method and device for forming tungsten film, and device for forming intermediate film before forming tungsten film
US20240087946A1 (en) Substrate processing apparatus, method of cleaning, method of manufacturing semiconductor device, and recording medium
WO2020189373A1 (en) Semiconductor device production method, substrate processing device, and program
EP4133120A1 (en) Apparatuses and methods of protecting nickel and nickel containing components with thin films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21770568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21770568

Country of ref document: EP

Kind code of ref document: A1