WO2021142762A1 - Hopping pattern for cross bandwidth part frequency hopping - Google Patents

Hopping pattern for cross bandwidth part frequency hopping Download PDF

Info

Publication number
WO2021142762A1
WO2021142762A1 PCT/CN2020/072680 CN2020072680W WO2021142762A1 WO 2021142762 A1 WO2021142762 A1 WO 2021142762A1 CN 2020072680 W CN2020072680 W CN 2020072680W WO 2021142762 A1 WO2021142762 A1 WO 2021142762A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
frequency
slot
bwp
successive slots
Prior art date
Application number
PCT/CN2020/072680
Other languages
French (fr)
Inventor
Jing Dai
Chao Wei
Min Huang
Qiaoyu Li
Peter Pui Lok Ang
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/072680 priority Critical patent/WO2021142762A1/en
Publication of WO2021142762A1 publication Critical patent/WO2021142762A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/7143Arrangements for generation of hop patterns

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for hopping pattern for cross bandwidth part frequency hopping.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a user equipment (UE) may communicate with a base station (BS) via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
  • New Radio which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • 3GPP Third Generation Partnership Project
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a method of wireless communication may include determining a pattern for frequency hopping from among a first pattern and a second pattern.
  • the first pattern may include a first frequency hop in the first BWP and a second frequency hop in a second BWP
  • the second pattern may include the first frequency hop in the second BWP and the second frequency hop in the first BWP.
  • the method may include performing communication according to the pattern.
  • a method of wireless communication may include determining a pattern for frequency hopping from among a first pattern and a second pattern.
  • the first pattern and the second pattern may each include intra-slot or inter-slot frequency hopping, from a first frequency to a second frequency, in a first quantity of successive slots in the first BWP, and intra-slot or inter-slot frequency hopping in a second quantity of successive slots in a second BWP.
  • the first pattern may include intra-slot or inter-slot frequency hopping in the second quantity of successive slots from a third frequency to a fourth frequency
  • the second pattern may include intra-slot or inter-slot frequency hopping in the second quantity of successive slots from the fourth frequency to the third frequency; and performing communication according to the pattern.
  • a method of wireless communication may include determining a pattern for frequency hopping from among a first pattern and a second pattern.
  • the first pattern may include a first frequency hop in the first BWP and a second frequency hop in a second BWP
  • the second pattern may include the first frequency hop in the second BWP and the second frequency hop in the first BWP.
  • the method may include performing communication according to the pattern.
  • a method of wireless communication may include determining a pattern for frequency hopping from among a first pattern and a second pattern.
  • the first pattern and the second pattern may each include intra-slot or inter-slot frequency hopping, from a first frequency to a second frequency, in a first quantity of successive slots in the first BWP, and intra-slot or inter-slot frequency hopping in a second quantity of successive slots in a second BWP.
  • the first pattern may include intra-slot or inter-slot frequency hopping in the second quantity of successive slots from a third frequency to a fourth frequency
  • the second pattern may include intra-slot or inter-slot frequency hopping in the second quantity of successive slots from the fourth frequency to the third frequency.
  • the method may include performing communication according to the pattern.
  • a UE active in a first BWP may include memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to determine a pattern for frequency hopping from among a first pattern and a second pattern.
  • the first pattern may include a first frequency hop in a first BWP in which the UE is active and a second frequency hop in a second BWP
  • the second pattern may include the first frequency hop in the second BWP and the second frequency hop in the first BWP.
  • the memory and the one or more processors may be configured to perform communication according to the pattern.
  • a UE active in a first BWP may include memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to determine a pattern for frequency hopping from among a first pattern and a second pattern, wherein the first pattern and the second pattern each include intra-slot or inter-slot frequency hopping, from a first frequency to a second frequency, in a first quantity of successive slots in a first BWP in which the UE is active, and intra-slot or inter-slot frequency hopping in a second quantity of successive slots in a second BWP, wherein the first pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from a third frequency to a fourth frequency, and wherein the second pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from the fourth frequency to the third frequency; and perform communication according to the pattern.
  • a base station configured to communicate with a UE that is active in a first BWP may include memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to determine a pattern for frequency hopping from among a first pattern and a second pattern.
  • the first pattern may include a first frequency hop in the first BWP and a second frequency hop in a second BWP
  • the second pattern may include the first frequency hop in the second BWP and the second frequency hop in the first BWP.
  • the memory and the one or more processors may be configured to perform communication according to the pattern.
  • a base station configured to communicate with a UE that is active in a first BWP may include memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to determine a pattern for frequency hopping from among a first pattern and a second pattern.
  • the first pattern and the second pattern may each include intra-slot or inter-slot frequency hopping, from a first frequency to a second frequency, in a first quantity of successive slots in the first BWP, and intra-slot or inter-slot frequency hopping in a second quantity of successive slots in a second BWP.
  • the first pattern may include intra-slot or inter-slot frequency hopping in the second quantity of successive slots from a third frequency to a fourth frequency
  • the second pattern may include intra-slot or inter-slot frequency hopping in the second quantity of successive slots from the fourth frequency to the third frequency.
  • the memory and the one or more processors may be configured to perform communication according to the pattern.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a UE active in a first BWP, may cause the one or more processors to determine a pattern for frequency hopping from among a first pattern and a second pattern, where the first pattern includes a first frequency hop in the first BWP and a second frequency hop in a second BWP, and where the second pattern includes the first frequency hop in the second BWP and the second frequency hop in the first BWP, and perform communication according to the pattern.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a UE active in a first BWP, may cause the one or more processors to determine a pattern for frequency hopping from among a first pattern and a second pattern, where the first pattern and the second pattern each include intra-slot or inter-slot frequency hopping, from a first frequency to a second frequency, in a first quantity of successive slots in the first BWP, and intra-slot or inter-slot frequency hopping in a second quantity of successive slots in a second BWP, where the first pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from a third frequency to a fourth frequency, and where the second pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from the fourth frequency to the third frequency, and perform communication according to the pattern.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a base station configured to communicate with a UE that is active in a first BWP, may cause the one or more processors to: determine a pattern for frequency hopping from among a first pattern and a second pattern, wherein the first pattern includes a first frequency hop in the first BWP and a second frequency hop in a second BWP, and wherein the second pattern includes the first frequency hop in the second BWP and the second frequency hop in the first BWP; and perform communication according to the pattern.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a base station configured to communicate with a UE that is active in a first BWP, may cause the one or more processors to: determine a pattern for frequency hopping from among a first pattern and a second pattern, wherein the first pattern and the second pattern each include intra-slot or inter-slot frequency hopping, from a first frequency to a second frequency, in a first quantity of successive slots in the first BWP, and intra-slot or inter-slot frequency hopping in a second quantity of successive slots in a second BWP, wherein the first pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from a third frequency to a fourth frequency, and wherein the second pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from the fourth frequency to the third frequency; and perform communication according to the pattern.
  • an apparatus for wireless communication may include means for determining a pattern for frequency hopping from among a first pattern and a second pattern, where the first pattern includes a first frequency hop in a first BWP and a second frequency hop in a second BWP, and where the second pattern includes the first frequency hop in the second BWP and the second frequency hop in the first BWP, and means for performing communication according to the pattern.
  • an apparatus for wireless communication may include means for determining a pattern for frequency hopping from among a first pattern and a second pattern, where the first pattern and the second pattern each include intra-slot or inter-slot frequency hopping, from a first frequency to a second frequency, in a first quantity of successive slots in a first BWP, and intra-slot or inter-slot frequency hopping in a second quantity of successive slots in a second BWP, where the first pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from a third frequency to a fourth frequency, and where the second pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from the fourth frequency to the third frequency, and means for performing communication according to the pattern.
  • an apparatus for wireless communication may include means for determining a pattern for frequency hopping from among a first pattern and a second pattern, where the first pattern includes a first frequency hop in a first BWP and a second frequency hop in a second BWP, and where the second pattern includes the first frequency hop in the second BWP and the second frequency hop in the first BWP, and means for performing communication according to the pattern.
  • an apparatus for wireless communication may include means for determining a pattern for frequency hopping from among a first pattern and a second pattern, where the first pattern and the second pattern each include intra-slot or inter-slot frequency hopping, from a first frequency to a second frequency, in a first quantity of successive slots in a first BWP, and intra-slot or inter-slot frequency hopping in a second quantity of successive slots in a second BWP, where the first pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from a third frequency to a fourth frequency, and where the second pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from the fourth frequency to the third frequency, and means for performing communication according to the pattern.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a block diagram conceptually illustrating an example of a base station in communication with a UE in a wireless communication network, in accordance with various aspects of the present disclosure.
  • Fig. 3A is a block diagram conceptually illustrating an example of a frame structure in a wireless communication network, in accordance with various aspects of the present disclosure.
  • Fig. 3B is a block diagram conceptually illustrating an example synchronization communication hierarchy in a wireless communication network, in accordance with various aspects of the present disclosure.
  • Fig. 4 is a block diagram conceptually illustrating an example slot format with a normal cyclic prefix, in accordance with various aspects of the present disclosure.
  • Fig. 5 illustrates an example of frequency hopping that is not limited to a bandwidth part (BWP) boundary.
  • BWP bandwidth part
  • Fig. 6 is a diagram illustrating an example of communications that involve a hopping pattern for cross-BWP frequency hopping, in accordance with various aspects of the present disclosure.
  • Fig. 7 is a diagram illustrating a continuation of the example in Fig. 6, in accordance with various aspects of the present disclosure.
  • Fig. 8 is a diagram illustrating an example of a first frequency hopping pattern, in accordance with various aspects of the present disclosure.
  • Fig. 9 is a diagram illustrating an example of a second frequency hopping pattern, in accordance with various aspects of the present disclosure.
  • Fig. 10 is a diagram illustrating an example of a first intra-slot or inter-slot, cross-BWP frequency hopping pattern, in accordance with various aspects of the present disclosure.
  • Fig. 11 is a diagram illustrating an example of a second intra-slot or inter-slot, cross-BWP frequency hopping pattern, in accordance with various aspects of the present disclosure.
  • Fig. 12 is a diagram illustrating an example process performed, for example, by a user equipment, in accordance with various aspects of the present disclosure.
  • Fig. 13 is a diagram illustrating an example process performed, for example, by a user equipment, in accordance with various aspects of the present disclosure.
  • Fig. 14 is a diagram illustrating an example process performed, for example, by a base station, in accordance with various aspects of the present disclosure.
  • Fig. 15 is a diagram illustrating an example process performed, for example, by a base station, in accordance with various aspects of the present disclosure.
  • Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced.
  • the wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network.
  • the wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • Some UEs may be considered a Customer Premises Equipment (CPE) .
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • TX transmit
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • the synchronization signals can be generated with location encoding to convey additional information.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • modulators 254a through 254r e.g., for DFT-s-OFDM, CP-OFDM, and/or the like
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with a hopping pattern for cross bandwidth part (cross-BWP) frequency hopping, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 1200 of Fig. 12, process 1300 of Fig. 13, process 1400 of Fig. 14, process 1500 of Fig. 15, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • memory 242 and/or memory 282 may comprise a non-transitory computer-readable medium storing one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of the base station 110 and/or the UE 120, may perform or direct operations of, for example, process 1200 of Fig. 12, process 1300 of Fig. 13, process 1400 of Fig. 14, process 1500 of Fig. 15, and/or other processes as described herein.
  • a scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
  • UE 120 may include means for determining a pattern for frequency hopping from among a first pattern and a second pattern, where the first pattern includes a first frequency hop in the first BWP and a second frequency hop in a second BWP, and where the second pattern includes the first frequency hop in the second BWP and the second frequency hop in the first BWP, means for performing communication according to the pattern, and/or the like.
  • such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
  • UE 120 may include means for determining a pattern for frequency hopping from among a first pattern and a second pattern, where the first pattern and the second pattern each include intra-slot or inter-slot frequency hopping, from a first frequency to a second frequency, in a first quantity of successive slots in the first BWP, and intra-slot or inter-slot frequency hopping in a second quantity of successive slots in a second BWP, where the first pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from a third frequency to a fourth frequency, and where the second pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from the fourth frequency to the third frequency, means for performing communication according to the pattern, and/or the like.
  • such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
  • base station 110 may include means for determining a pattern for frequency hopping from among a first pattern and a second pattern, where the first pattern includes a first frequency hop in the first BWP and a second frequency hop in a second BWP, and where the second pattern includes the first frequency hop in the second BWP and the second frequency hop in the first BWP, means for performing communication according to the pattern, and/or the like.
  • such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
  • base station 110 may include means for determining a pattern for frequency hopping from among a first pattern and a second pattern, where the first pattern and the second pattern each include intra-slot or inter-slot frequency hopping, from a first frequency to a second frequency, in a first quantity of successive slots in the first BWP, and intra-slot or inter-slot frequency hopping in a second quantity of successive slots in a second BWP, where the first pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from a third frequency to a fourth frequency, and where the second pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from the fourth frequency to the third frequency, means for performing communication according to the pattern, and/or the like.
  • such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • Fig. 3A shows an example frame structure 300 for frequency division duplexing (FDD) in a telecommunications system (e.g., NR) .
  • the transmission timeline for each of the downlink and uplink may be partitioned into units of radio frames (sometimes referred to as frames) .
  • Each radio frame may have a predetermined duration (e.g., 10 milliseconds (ms) ) and may be partitioned into a set of Z (Z ⁇ 1) subframes (e.g., with indices of 0 through Z-1) .
  • Each subframe may have a predetermined duration (e.g., 1 ms) and may include a set of slots (e.g., 2 m slots per subframe are shown in Fig.
  • Each slot may include a set of L symbol periods.
  • each slot may include fourteen symbol periods (e.g., as shown in Fig. 3A) , seven symbol periods, or another number of symbol periods.
  • the subframe may include 2L symbol periods, where the 2L symbol periods in each subframe may be assigned indices of 0 through 2L-1.
  • a scheduling unit for the FDD may be frame-based, subframe-based, slot-based, symbol-based, and/or the like.
  • a wireless communication structure may refer to a periodic time-bounded communication unit defined by a wireless communication standard and/or protocol. Additionally, or alternatively, different configurations of wireless communication structures than those shown in Fig. 3A may be used.
  • a base station may transmit synchronization signals.
  • a base station may transmit a primary synchronization signal (PSS) , a secondary synchronization signal (SSS) , and/or the like, on the downlink for each cell supported by the base station.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • the PSS and SSS may be used by UEs for cell search and acquisition.
  • the PSS may be used by UEs to determine symbol timing
  • the SSS may be used by UEs to determine a physical cell identifier, associated with the base station, and frame timing.
  • the base station may also transmit a physical broadcast channel (PBCH) .
  • the PBCH may carry some system information, such as system information that supports initial access by UEs.
  • the base station may transmit the PSS, the SSS, and/or the PBCH in accordance with a synchronization communication hierarchy (e.g., a synchronization signal (SS) hierarchy) including multiple synchronization communications (e.g., SS blocks) , as described below in connection with Fig. 3B.
  • a synchronization communication hierarchy e.g., a synchronization signal (SS) hierarchy
  • multiple synchronization communications e.g., SS blocks
  • Fig. 3B is a block diagram conceptually illustrating an example SS hierarchy, which is an example of a synchronization communication hierarchy.
  • the SS hierarchy may include an SS burst set, which may include a plurality of SS bursts (identified as SS burst 0 through SS burst B-1, where B is a maximum number of repetitions of the SS burst that may be transmitted by the base station) .
  • each SS burst may include one or more SS blocks (identified as SS block 0 through SS block (b max_SS -1) , where b max_SS -1 is a maximum number of SS blocks that can be carried by an SS burst) .
  • An SS burst set may be periodically transmitted by a wireless node, such as every X milliseconds, as shown in Fig. 3B.
  • an SS burst set may have a fixed or dynamic length, shown as Y milliseconds in Fig. 3B.
  • the SS burst set shown in Fig. 3B is an example of a synchronization communication set, and other synchronization communication sets may be used in connection with the techniques described herein.
  • the SS block shown in Fig. 3B is an example of a synchronization communication, and other synchronization communications may be used in connection with the techniques described herein.
  • an SS block includes resources that carry the PSS, the SSS, the PBCH, and/or other synchronization signals (e.g., a tertiary synchronization signal (TSS) ) and/or synchronization channels.
  • synchronization signals e.g., a tertiary synchronization signal (TSS)
  • multiple SS blocks are included in an SS burst, and the PSS, the SSS, and/or the PBCH may be the same across each SS block of the SS burst.
  • a single SS block may be included in an SS burst.
  • the SS block may be at least four symbol periods in length, where each symbol carries one or more of the PSS (e.g., occupying one symbol) , the SSS (e.g., occupying one symbol) , and/or the PBCH (e.g., occupying two symbols) .
  • the symbols of an SS block are consecutive, as shown in Fig. 3B. In some aspects, the symbols of an SS block are non-consecutive. Similarly, in some aspects, one or more SS blocks of the SS burst may be transmitted in consecutive radio resources (e.g., consecutive symbol periods) during one or more slots. Additionally, or alternatively, one or more SS blocks of the SS burst may be transmitted in non-consecutive radio resources.
  • the SS bursts may have a burst period, whereby the SS blocks of the SS burst are transmitted by the base station according to the burst period. In other words, the SS blocks may be repeated during each SS burst.
  • the SS burst set may have a burst set periodicity, whereby the SS bursts of the SS burst set are transmitted by the base station according to the fixed burst set periodicity. In other words, the SS bursts may be repeated during each SS burst set.
  • the base station may transmit system information, such as system information blocks (SIBs) on a physical downlink shared channel (PDSCH) in certain slots.
  • SIBs system information blocks
  • the base station may transmit control information/data on a physical downlink control channel (PDCCH) in C symbol periods of a slot, where B may be configurable for each slot.
  • the base station may transmit traffic data and/or other data on the PDSCH in the remaining symbol periods of each slot.
  • Figs. 3A and 3B are provided as examples. Other examples may differ from what is described with regard to Figs. 3A and 3B.
  • Fig. 4 shows an example slot format 410 with a normal cyclic prefix.
  • the available time frequency resources may be partitioned into resource blocks.
  • Each resource block may cover a set of subcarriers (e.g., 12 subcarriers) in one slot and may include a number of resource elements.
  • Each resource element may cover one subcarrier in one symbol period (e.g., in time) and may be used to send one modulation symbol, which may be a real or complex value.
  • An interlace structure may be used for each of the downlink and uplink for FDD in certain telecommunications systems (e.g., NR) .
  • Q interlaces with indices of 0 through Q -1 may be defined, where Q may be equal to 4, 6, 8, 10, or some other value.
  • Each interlace may include slots that are spaced apart by Q frames.
  • interlace q may include slots q, q + Q, q + 2Q, etc., where q ⁇ ⁇ 0, ..., Q -1 ⁇ .
  • a UE may be located within the coverage of multiple BSs. One of these BSs may be selected to serve the UE. The serving BS may be selected based at least in part on various criteria such as received signal strength, received signal quality, path loss, and/or the like. Received signal quality may be quantified by a signal-to-noise-and-interference ratio (SNIR) , or a reference signal received quality (RSRQ) , or some other metric.
  • SNIR signal-to-noise-and-interference ratio
  • RSRQ reference signal received quality
  • the UE may operate in a dominant interference scenario in which the UE may observe high interference from one or more interfering BSs.
  • New Radio may refer to radios configured to operate according to a new air interface (e.g., other than Orthogonal Frequency Divisional Multiple Access (OFDMA) -based air interfaces) or fixed transport layer (e.g., other than Internet Protocol (IP) ) .
  • OFDM Orthogonal Frequency Divisional Multiple Access
  • IP Internet Protocol
  • NR may utilize OFDM with a CP (herein referred to as cyclic prefix OFDM or CP-OFDM) and/or SC-FDM on the uplink, may utilize CP-OFDM on the downlink, and may include support for half-duplex operation using time division duplexing (TDD) .
  • TDD time division duplexing
  • NR may, for example, utilize OFDM with a CP (herein referred to as CP-OFDM) and/or discrete Fourier transform spread orthogonal frequency-division multiplexing (DFT-s-OFDM) on the uplink, and may utilize CP-OFDM on the downlink and include support for half-duplex operation using TDD.
  • CP-OFDM OFDM with a CP
  • DFT-s-OFDM discrete Fourier transform spread orthogonal frequency-division multiplexing
  • NR may include Enhanced Mobile Broadband (eMBB) service targeting wide bandwidth (e.g., 80 megahertz (MHz) and beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g., 60 gigahertz (GHz) ) , massive MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra reliable low latency communications (URLLC) service.
  • eMBB Enhanced Mobile Broadband
  • mmW millimeter wave
  • mMTC massive MTC
  • URLLC ultra reliable low latency communications
  • NR resource blocks may span 12 sub-carriers with a sub-carrier bandwidth of 60 or 120 kilohertz (kHz) over a 0.1 millisecond (ms) duration.
  • Each radio frame may include 40 slots and may have a length of 10 ms. Consequently, each slot may have a length of 0.25 ms.
  • Each slot may indicate a link direction (e.g., DL or UL) for data transmission and the link direction for each slot may be dynamically switched.
  • Each slot may include DL/UL data as well as DL/UL control data.
  • NR may support a different air interface, other than an OFDM-based interface.
  • NR networks may include entities such as central units or distributed units.
  • Fig. 4 is provided as an example. Other examples may differ from what is described with regard to Fig. 4.
  • NR-Light which is a part of 3GPP Release 17.
  • NR-Light operations use less transmission power, have less computational complexity, and use fewer antennas as compared to normal NR operations. Peak throughput, latency, and reliability requirements may be relaxed.
  • NR-Light UEs may also use less bandwidth. For example, an NR-Light UE may use bandwidths of 5 MHz -20 MHz as compared to an NR premium UE that uses a bandwidth of 50 MHz or 100 MHz.
  • Networks may be designed so that NR premium UEs, including enhanced mobile broadband (eMBB) UEs, may coexist with NR-Light UEs.
  • eMBB enhanced mobile broadband
  • a bandwidth part may be a set of contiguous physical resource blocks on a carrier.
  • a BWP allows a UE to transmit or receive with a narrower bandwidth than the entire carrier bandwidth.
  • a UE may have a maximum BWP bandwidth (i.e., maximum channel bandwidth) that the UE may support, and this maximum may be set according to a capability of the UE.
  • NR-light UEs may support smaller bandwidths than UEs that are capable of supporting wide bandwidths.
  • a BWP may be associated with a numerology (subcarrier spacing and cyclic prefix) , a frequency location, and a bandwidth.
  • a UE may be configured with up to 4 downlink (DL) BWPs and up to 4 uplink (UL) BWPs respectively, with only one DL BWP and one UL BWP active at any moment for a UE. While UEs that use BWPs may save power, UEs that use narrower BWPs may save more power because a baseband interface may operate with a lower sampling rate and with less baseband processing.
  • UEs that operate according to 3GPP Releases 15 and 16 are not able to transmit communications on a physical uplink shared channel (PUSCH) or a physical uplink control channel (PUCCH) outside of an active UL BWP, and such UEs are not able to receive communications on a physical downlink shared channel (PDSCH) outside an active DL BWP. Transmission on the PUSCH or PUCCH with frequency hopping is also limited to within a BWP boundary.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • Fig. 5 illustrates an example of frequency hopping that is not limited to a BWP boundary.
  • legacy NR, or NR as defined in 3GPP Releases 15 and 16, provides for intra-BWP UL frequency hopping.
  • NR-Light UEs may have a reduced maximum bandwidth, and thus intra-BWP UL frequency hopping may have a limited diversity gain. Therefore, for the PUSCH, PUCCH, or PDSCH, frequency hopping may occur across BWPs, and this may be referred to as cross-BWP frequency hopping.
  • Frequency hopping may also include bundling multiple slots of a radio frame into a single frequency hop to reduce frequency retuning times, which improves channel estimation and phase tracking.
  • a frequency offset for a frequency hop may be indicated in a radio resource control (RRC) message or a downlink control information (DCI) message.
  • RRC radio resource control
  • DCI downlink control information
  • Fig. 5 is provided as an example. Other examples may differ from what is described with regard to Fig. 5.
  • a radio frame may have multiple slots for transmission, and a UE may perform intra-slot frequency hopping or inter-slot frequency hopping for a PUSCH or a PUCCH.
  • Intra-slot frequency hopping is frequency hopping within a slot of the radio frame.
  • Inter-slot frequency hopping is frequency hopping from one slot to another slot. Transmissions in any two successive slots may correspond to two different frequency locations of two frequency hops. Frequency locations for transmission may be determined by a corresponding slot index (odd or even) .
  • a slot index within a radio frame may be represented by slot index ⁇ (e.g., absolute index) .
  • the slots for the PUCCH transmission may be numbered as ⁇ 0, 1, ..., M -1 ⁇ (e.g., relative index) .
  • a UE may not use a starting slot index to determine a pattern for the frequency hopping. Without a clear indication or determination of a pattern for cross-BWP frequency hopping with successive slot bundling, a UE that operates in a narrow BWP may not be able to achieve a satisfactory diversity gain. This may affect a quality of the signals, and the UE may expend power and processing resources to account for a lack of signal definition of frequency hops.
  • a UE may determine a frequency hopping pattern for cross-BWP frequency hopping with successive slot bundling.
  • M-slot PUSCH, PUCCH, or PDSCH transmission with cross-BWP frequency hopping at least two patterns may be determined.
  • the patterns may be determined by a configuration, indicated by signaling, or determined by a starting slot index within a radio frame of a communication.
  • the patterns for frequency hopping described herein may involve slot bundling with less BWP hopping and less radio frequency retuning.
  • the patterns may provide for higher frequency diversity for hybrid intra-BWP and cross-BWP frequency hopping.
  • a UE that performs frequency hopping with narrow BWPs may save power and processing resources due to efficiencies provided by a more satisfactory diversity gain.
  • Fig. 6 is a diagram illustrating an example 600 of communications that involve a hopping pattern for cross-BWP frequency hopping, in accordance with various aspects of the present disclosure.
  • Fig. 6 shows a base station (BS) 610 (e.g., BS 110 depicted in Figs. 1 and 2) that may communicate with a UE 620 (e.g., UE 120 depicted in Figs. 1 and 2) .
  • BS base station
  • UE 620 e.g., UE 120 depicted in Figs. 1 and 2 .
  • BS 610 may determine a pattern for frequency hopping from among at least a first pattern and a second pattern.
  • the first pattern may include a first frequency hop in a first BWP that is an active BWP for UE 620 and a second frequency hop in a second BWP.
  • the second pattern may include the first frequency hop in the second BWP and the second frequency hop in the first BWP.
  • BS 610 may transmit an indication of the pattern to UE 620.
  • the indication may be included in an RRC configuration message, a DCI message, and/or the like.
  • UE 620 may determine the pattern from at least the first pattern and the second pattern.
  • UE 620 may determine the pattern from received messages.
  • BS 610 and UE 620 may determine the pattern from stored configuration information.
  • an initial transmission may be within a BWP, and at least one retransmission may be outside the BWP.
  • the at least one retransmission may be in another BWP.
  • Fig. 6 is provided as an example. Other examples may differ from what is described with regard to Fig. 6.
  • Fig. 7 is a diagram illustrating a continuation of example 600 in Fig. 6, in accordance with various aspects of the present disclosure.
  • BS 610 and UE 620 may perform communication using the pattern.
  • the pattern is known by both BS 610 and BS 620 so that transmissions carried out on frequencies that follow the pattern for frequency hopping may be received at those frequencies.
  • Fig. 7 is provided as an example. Other examples may differ from what is described with regard to Fig. 7.
  • Fig. 8 is a diagram illustrating an example 800 of a first frequency hopping pattern, in accordance with various aspects of the present disclosure.
  • Fig. 8 shows successive slots of a transmission interval, such as a radio frame.
  • a first frequency hopping pattern may include a bundle of successive slots in one frequency hop (Hop1) in an active BWP and a bundle of successive slots in a next frequency hop (Hop2) outside the active BWP (exceeding a boundary of the active BWP) .
  • Hop2 may be in another BWP.
  • Fig. 8 also shows gaps for retuning between frequencies.
  • M may be a quantity of successive slots in the radio frame.
  • Hop1 may include a first half of the M successive slots, or a first M/2 slots.
  • Hop2 may include a second half of the M successive slots, or a second M/2 slots.
  • Fig. 8 is provided as an example. Other examples may differ from what is described with regard to Fig. 8.
  • Fig. 9 is a diagram illustrating an example 900 of a second frequency hopping pattern, in accordance with various aspects of the present disclosure.
  • Fig. 9 shows successive slots of a transmission interval, such as a radio frame.
  • a first frequency hopping pattern may include a bundle of successive slots in one frequency hop (Hop1) outside an active BWP and a bundle of successive slots in a next frequency hop (Hop2) within the active BWP.
  • Hop1 may include a first half of the M successive slots, or a first M/2 slots.
  • Hop2 may include a second half of the M successive slots, or a second M/2 slots.
  • BS 610 and UE 620 may determine a pattern of frequency hopping from among the two frequency hopping patterns shown in Figs. 8 and 9 (or among other frequency hopping patterns) , and perform communication with each other using the pattern.
  • Fig. 9 is provided as an example. Other examples may differ from what is described with regard to Fig. 9.
  • BS 610 and UE 620 may determine to use a frequency hopping pattern that is a hybrid of intra-slot frequency hopping and cross-BWP frequency hopping.
  • intra-slot frequency hopping there may be 2 frequency locations in each M/2-successive-slot. In some aspects, there may be more than 2 frequency locations.
  • Fig. 10 is a diagram illustrating an example 1000 of a first intra-slot or inter-slot, cross-BWP frequency hopping pattern, in accordance with various aspects of the present disclosure.
  • Fig. 10 shows successive slots of a radio frame.
  • a first pattern may include, within each slot of a first quantity of successive slots, a frequency hop from a first frequency to a second frequency by a frequency offset.
  • the first quantity of successive slots may be in a first BWP.
  • the first BWP may be an active BWP.
  • the first pattern may further include, within each slot of a second quantity of successive slots, a frequency hop from a third frequency to a fourth frequency.
  • the second quantity of successive slots may be outside the first BWP, such as in another BWP.
  • a distance of the frequency hop may be the frequency offset between the first frequency and the second frequency, or another frequency offset.
  • the frequencies may be in ascending order or in descending order.
  • Starting time and frequency resources such as starting resource blocks (RBs)
  • RB start1 RB start2 ⁇ ⁇ RB start3 , RB start4 ⁇
  • M may be a total amount of the successive slots in the radio frame, and M/4 may be slots used for each frequency location, while the other M/4 successive slots are for transmission at a different frequency location.
  • Frequency locations of the 4 M/4 successive slots may be determined by (n start mod 4) , where n start is a slot index within the radio frame for a communication.
  • a frequency hopping pattern includes multiple frequency locations, there may be multiple frequency locations for hops within a slot (intra-slot frequency hopping) and/or for hops across the slots (inter-slot frequency hopping) .
  • intra-slot frequency hopping transmissions in any two successive slots may correspond to two different frequency locations of two hops.
  • a length of these hops may be a length of a slot.
  • a length of a hop may be less than a length of a slot, such as a length used in intra-slot frequency hopping.
  • inter-slot frequency hopping may include hops that are half of a length of a slot or a quarter of a length of a slot.
  • frequency hopping may include intra-slot frequency hopping in the time domain, inter-slot frequency hopping in the time domain, or a combination thereof.
  • a frequency offset in a first quantity of successive slots may be the same frequency distance and a same direction (e.g., higher frequency or lower frequency) as a frequency offset in a second quantity of successive slots (see Fig. 10) .
  • the frequency offset in the first quantity of successive slots may be in an opposite direction as the frequency offset in the second quantity of successive slots.
  • Fig. 10 is provided as an example. Other examples may differ from what is described with regard to Fig. 10.
  • Fig. 11 is a diagram illustrating an example 1100 of a second intra-slot or interslot, cross-BWP frequency hopping pattern, in accordance with various aspects of the present disclosure.
  • Fig. 11 shows successive slots that follow the successive slots of the radio frame depicted in Fig. 10.
  • a second pattern may include, within each slot of the first quantity of successive slots, a frequency hop from the first frequency to the second frequency by the frequency offset.
  • the first quantity of successive slots may be in the first BWP.
  • the second pattern may further include, within each slot of the second quantity of successive slots, a frequency hop from the fourth frequency to the third frequency.
  • the second pattern may be preferred and BS 610 or UE 620 may bias selection towards the second pattern.
  • the second pattern may be more conducive to frequency offset estimation by a receiver.
  • Starting RBs for the frequencies may be represented as ⁇ RB start1 , RB start2 ⁇ ⁇ RB start3 , RB start4 ⁇ , respectively.
  • Fig. 11 is provided as an example. Other examples may differ from what is described with regard to Fig. 11.
  • Fig. 12 is a diagram illustrating an example process 1200 performed, for example, by a UE active in a first BWP, in accordance with various aspects of the present disclosure.
  • Example process 1200 is an example where the UE (e.g., UE 120 depicted in Figs. 1 and 2, UE 620 depicted in Fig. 6, and/or the like) performs operations associated with a hopping pattern for cross-BWP frequency hopping.
  • the UE e.g., UE 120 depicted in Figs. 1 and 2, UE 620 depicted in Fig. 6, and/or the like
  • process 1200 may include determining a pattern for frequency hopping from among a first pattern and a second pattern (block 1210) .
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • the first pattern includes a first frequency hop in the first BWP and a second frequency hop in a second BWP.
  • the second pattern includes the first frequency hop in the second BWP and the second frequency hop in the first BWP.
  • process 1200 may include performing communication according to the pattern (block 1220) .
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • Process 1200 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • determining the pattern includes determining the pattern based at least in part on stored configuration information for a physical channel.
  • determining the pattern includes determining the pattern based at least in part on a radio resource control configuration message.
  • determining the pattern includes determining the pattern based at least in part on a starting slot index within a radio frame of a communication.
  • determining the pattern includes determining the pattern based at least in part on downlink control information.
  • determining the pattern includes determining the pattern based at least in part on a quantity of slots for a radio frame being 1.
  • the pattern includes a plurality of successive slots in a radio frame
  • the first frequency hop includes a first quantity of successive slots in the radio frame
  • the second frequency hop includes a second quantity of successive slots in the radio frame
  • the first quantity of successive slots is a first half of the plurality of successive slots and the second quantity of successive slots is a second half of the plurality of successive slots.
  • process 1200 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 12. Additionally, or alternatively, two or more of the blocks of process 1200 may be performed in parallel.
  • Fig. 13 is a diagram illustrating an example process 1300 performed, for example, by a UE active in a first BWP, in accordance with various aspects of the present disclosure.
  • Example process 1300 is an example where the UE (e.g., UE 120 depicted in Figs. 1 and 2, UE 620 depicted in Fig. 6, and/or the like) performs operations associated with a hopping pattern for cross-BWP frequency hopping.
  • the UE e.g., UE 120 depicted in Figs. 1 and 2, UE 620 depicted in Fig. 6, and/or the like
  • process 1300 may include determining a pattern for frequency hopping from among a first pattern and a second pattern (block 1310) .
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • the first pattern and the second pattern each include intra-slot or inter-slot frequency hopping, from a first frequency to a second frequency, in a first quantity of successive slots in the first BWP, and intra-slot or inter-slot frequency hopping in a second quantity of successive slots in a second BWP.
  • the first pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from a third frequency to a fourth frequency.
  • the second pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from the fourth frequency to the third frequency.
  • process 1300 may include performing communication according to the pattern (block 1320) .
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • Process 1300 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the second frequency is determined from the first frequency by a frequency offset
  • the fourth frequency is determined from the third frequency by the frequency offset
  • one or more of the first frequency, the second frequency, the third frequency, or the fourth frequency are determined based at least in part on a starting slot index within a radio frame of a communication.
  • the pattern includes a plurality of successive slots in a radio frame, and the first quantity of successive slots is a first half of the plurality of successive slots and the second quantity of successive slots is a second half of the plurality of successive slots.
  • determining the pattern includes determining the pattern based at least in part on stored configuration information for a physical uplink channel.
  • determining the pattern includes determining the pattern based at least in part on a radio resource control configuration message.
  • determining the pattern includes determining the pattern based at least in part on a starting slot index within a radio frame of a communication.
  • determining the pattern includes determining the pattern based at least in part on downlink control information.
  • process 1300 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 13. Additionally, or alternatively, two or more of the blocks of process 1300 may be performed in parallel.
  • Fig. 14 is a diagram illustrating an example process 1400 performed, for example, by a base station configured to communicate with a UE in an active BWP, in accordance with various aspects of the present disclosure.
  • Example process 1400 is an example where the base station (e.g., BS 110 depicted in Figs. 1 and 2, BS 610 depicted in Fig. 6, and/or the like) performs operations associated with a hopping pattern for cross-BWP frequency hopping.
  • the base station e.g., BS 110 depicted in Figs. 1 and 2, BS 610 depicted in Fig. 6, and/or the like
  • process 1400 may include determining a pattern for frequency hopping from among a first pattern and a second pattern (block 1410) .
  • the base station e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like
  • the first pattern includes a first frequency hop in the first BWP and a second frequency hop in a second BWP.
  • the second pattern includes the first frequency hop in the second BWP and the second frequency hop in the first BWP.
  • process 1400 may include performing communication according to the pattern (block 1420) .
  • the base station e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like
  • Process 1400 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • determining the pattern includes determining the pattern based at least in part on stored configuration information for a physical channel.
  • process 1400 includes transmitting an indication of the pattern to the UE in a radio resource control configuration message.
  • process 1400 includes transmitting an indication of the pattern to the UE in downlink control information.
  • the pattern includes a plurality of successive slots in a radio frame
  • the first frequency hop includes a first quantity of successive slots in the radio frame
  • the second frequency hop includes a second quantity of successive slots in the radio frame
  • the first quantity of successive slots is a first half of the plurality of successive slots and the second quantity of successive slots is a second half of the plurality of successive slots.
  • process 1400 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 14. Additionally, or alternatively, two or more of the blocks of process 1400 may be performed in parallel.
  • Fig. 15 is a diagram illustrating an example process 1500 performed, for example, by a base station configured to communicate with a UE in an active BWP, in accordance with various aspects of the present disclosure.
  • Example process 1500 is an example where base station (e.g., BS 110 depicted in Figs. 1 and 2, BS 610 depicted in Fig. 6, and/or the like) performs operations associated with a hopping pattern for cross-BWP frequency hopping.
  • base station e.g., BS 110 depicted in Figs. 1 and 2, BS 610 depicted in Fig. 6, and/or the like
  • process 1500 may include determining a pattern for frequency hopping from among a first pattern and a second pattern (block 1510) .
  • the base station e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like
  • the first pattern and the second pattern each include intra-slot or inter-slot frequency hopping, from a first frequency to a second frequency, in a first quantity of successive slots in the first BWP, and intra-slot or inter-slot frequency hopping in a second quantity of successive slots in a second BWP.
  • the first pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from a third frequency to a fourth frequency.
  • the second pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from the fourth frequency to the third frequency.
  • process 1500 may include performing communication according to the pattern (block 1520) .
  • the base station e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like
  • Process 1500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the second frequency is determined from the first frequency by a frequency offset
  • the fourth frequency is determined from the third frequency by the frequency offset
  • one or more of the first frequency, the second frequency, the third frequency, or the fourth frequency are determined based at least in part on a starting slot index within a radio frame of a communication.
  • the pattern includes a plurality of successive slots in a radio frame, and the first quantity of successive slots is a first half of the plurality of successive slots and the second quantity of successive slots is a second half of the plurality of successive slots.
  • determining the pattern includes determining the pattern based at least in part on stored configuration information for a physical uplink channel.
  • process 1500 includes transmitting an indication of the pattern to the UE in a radio resource control configuration message.
  • process 1500 includes transmitting an indication of the pattern to the UE in downlink control information.
  • process 1500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 15. Additionally, or alternatively, two or more of the blocks of process 1500 may be performed in parallel.
  • ком ⁇ онент is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, and/or a combination of hardware and software.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Various aspects of the present disclosure generally relate to a hopping pattern for cross bandwidth part (BWP) frequency hopping. In some aspects, a user equipment (UE) active in a first BWP may determine a pattern for frequency hopping from among a first pattern and a second pattern. The first pattern includes a first frequency hop in the first BWP and a second frequency hop in a second BWP, and the second pattern includes the first frequency hop in the second BWP and the second frequency hop in the first BWP. The UE may perform communication according to the pattern. Numerous other aspects are provided.

Description

HOPPING PATTERN FOR CROSS BANDWIDTH PART FREQUENCY HOPPING
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for hopping pattern for cross bandwidth part frequency hopping.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level.  New Radio (NR) , which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) . NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in LTE and NR technologies. Preferably, these improvements should be applicable to other multiple access technologies and the telecommunication standards that employ these technologies.
SUMMARY
In some aspects, a method of wireless communication, performed by a user equipment (UE) active in a first bandwidth part (BWP) , may include determining a pattern for frequency hopping from among a first pattern and a second pattern. The first pattern may include a first frequency hop in the first BWP and a second frequency hop in a second BWP, and the second pattern may include the first frequency hop in the second BWP and the second frequency hop in the first BWP. The method may include performing communication according to the pattern.
In some aspects, a method of wireless communication, performed by a UE active in a first BWP, may include determining a pattern for frequency hopping from among a first pattern and a second pattern. The first pattern and the second pattern may each include intra-slot or inter-slot frequency hopping, from a first frequency to a second frequency, in a first quantity of successive slots in the first BWP, and intra-slot or inter-slot frequency hopping in a second quantity of successive slots in a second BWP. The first pattern may include intra-slot or inter-slot frequency hopping in the second quantity of successive slots from a third frequency to a fourth frequency, and the second pattern may include intra-slot or inter-slot frequency hopping in the second quantity of successive slots from the fourth frequency to the third frequency; and performing communication according to the pattern.
In some aspects, a method of wireless communication, performed by a base station configured to communicate with a UE that is active in a first BWP, may include determining a pattern for frequency hopping from among a first pattern and a second pattern. The first pattern may include a first frequency hop in the first BWP and a second frequency hop in a second BWP, and the second pattern may include the first frequency hop in the second BWP and the second frequency hop in the first BWP. The method may include performing communication according to the pattern.
In some aspects, a method of wireless communication, performed by a base station configured to communicate with a UE that is active in a first BWP, may include determining a pattern for frequency hopping from among a first pattern and a second pattern. The first pattern and the second pattern may each include intra-slot or inter-slot frequency hopping, from a first frequency to a second frequency, in a first quantity of successive slots in the first BWP, and intra-slot or inter-slot frequency hopping in a second quantity of successive slots in a second BWP. The first pattern may include intra-slot or inter-slot frequency hopping in the second quantity of successive slots from a third frequency to a fourth frequency, and the second pattern may include intra-slot or inter-slot frequency hopping in the second quantity of successive slots from the fourth frequency to the third frequency. The method may include performing communication according to the pattern.
In some aspects, a UE active in a first BWP may include memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to determine a pattern for frequency hopping from among a first pattern and a second pattern. The first pattern may include a first frequency hop in a first BWP in which the UE is active and a second frequency hop in a second BWP, and the second pattern may include the first frequency hop in the second BWP and the second frequency hop in the first BWP. The memory and the one or more processors may be configured to perform communication according to the pattern.
In some aspects, a UE active in a first BWP may include memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to determine a pattern for frequency hopping from among a first pattern and a second pattern, wherein the first pattern and the second pattern each include intra-slot or inter-slot frequency hopping, from a first frequency to a second frequency, in a first quantity of successive slots in a first BWP in which the UE is active, and intra-slot or inter-slot frequency hopping in a second quantity of successive  slots in a second BWP, wherein the first pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from a third frequency to a fourth frequency, and wherein the second pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from the fourth frequency to the third frequency; and perform communication according to the pattern.
In some aspects, a base station configured to communicate with a UE that is active in a first BWP may include memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to determine a pattern for frequency hopping from among a first pattern and a second pattern. The first pattern may include a first frequency hop in the first BWP and a second frequency hop in a second BWP, and the second pattern may include the first frequency hop in the second BWP and the second frequency hop in the first BWP. The memory and the one or more processors may be configured to perform communication according to the pattern.
In some aspects, a base station configured to communicate with a UE that is active in a first BWP may include memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to determine a pattern for frequency hopping from among a first pattern and a second pattern. The first pattern and the second pattern may each include intra-slot or inter-slot frequency hopping, from a first frequency to a second frequency, in a first quantity of successive slots in the first BWP, and intra-slot or inter-slot frequency hopping in a second quantity of successive slots in a second BWP. The first pattern may include intra-slot or inter-slot frequency hopping in the second quantity of successive slots from a third frequency to a fourth frequency, and the second pattern may include intra-slot or inter-slot frequency hopping in the second quantity of successive slots from the fourth frequency to the third frequency. The memory and the one or more processors may be configured to perform communication according to the pattern.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a UE active in a first BWP, may cause the one or more processors to determine a pattern for frequency hopping from among a first pattern and a second pattern, where the first pattern includes a first frequency hop in the first BWP and a second frequency hop in a second BWP, and where the second pattern  includes the first frequency hop in the second BWP and the second frequency hop in the first BWP, and perform communication according to the pattern.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a UE active in a first BWP, may cause the one or more processors to determine a pattern for frequency hopping from among a first pattern and a second pattern, where the first pattern and the second pattern each include intra-slot or inter-slot frequency hopping, from a first frequency to a second frequency, in a first quantity of successive slots in the first BWP, and intra-slot or inter-slot frequency hopping in a second quantity of successive slots in a second BWP, where the first pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from a third frequency to a fourth frequency, and where the second pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from the fourth frequency to the third frequency, and perform communication according to the pattern.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a base station configured to communicate with a UE that is active in a first BWP, may cause the one or more processors to: determine a pattern for frequency hopping from among a first pattern and a second pattern, wherein the first pattern includes a first frequency hop in the first BWP and a second frequency hop in a second BWP, and wherein the second pattern includes the first frequency hop in the second BWP and the second frequency hop in the first BWP; and perform communication according to the pattern.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a base station configured to communicate with a UE that is active in a first BWP, may cause the one or more processors to: determine a pattern for frequency hopping from among a first pattern and a second pattern, wherein the first pattern and the second pattern each include intra-slot or inter-slot frequency hopping, from a first frequency to a second frequency, in a first quantity of successive slots in the first BWP, and intra-slot or inter-slot frequency hopping in a second quantity of successive slots in a second BWP, wherein the first pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from a third  frequency to a fourth frequency, and wherein the second pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from the fourth frequency to the third frequency; and perform communication according to the pattern.
In some aspects, an apparatus for wireless communication may include means for determining a pattern for frequency hopping from among a first pattern and a second pattern, where the first pattern includes a first frequency hop in a first BWP and a second frequency hop in a second BWP, and where the second pattern includes the first frequency hop in the second BWP and the second frequency hop in the first BWP, and means for performing communication according to the pattern.
In some aspects, an apparatus for wireless communication may include means for determining a pattern for frequency hopping from among a first pattern and a second pattern, where the first pattern and the second pattern each include intra-slot or inter-slot frequency hopping, from a first frequency to a second frequency, in a first quantity of successive slots in a first BWP, and intra-slot or inter-slot frequency hopping in a second quantity of successive slots in a second BWP, where the first pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from a third frequency to a fourth frequency, and where the second pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from the fourth frequency to the third frequency, and means for performing communication according to the pattern.
In some aspects, an apparatus for wireless communication may include means for determining a pattern for frequency hopping from among a first pattern and a second pattern, where the first pattern includes a first frequency hop in a first BWP and a second frequency hop in a second BWP, and where the second pattern includes the first frequency hop in the second BWP and the second frequency hop in the first BWP, and means for performing communication according to the pattern.
In some aspects, an apparatus for wireless communication may include means for determining a pattern for frequency hopping from among a first pattern and a second pattern, where the first pattern and the second pattern each include intra-slot or inter-slot frequency hopping, from a first frequency to a second frequency, in a first quantity of successive slots in a first BWP, and intra-slot or inter-slot frequency hopping in a second quantity of successive slots in a second BWP, where the first pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from a third frequency to a fourth frequency, and where the second pattern  includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from the fourth frequency to the third frequency, and means for performing communication according to the pattern.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 2 is a block diagram conceptually illustrating an example of a base station in communication with a UE in a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 3A is a block diagram conceptually illustrating an example of a frame structure in a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 3B is a block diagram conceptually illustrating an example synchronization communication hierarchy in a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 4 is a block diagram conceptually illustrating an example slot format with a normal cyclic prefix, in accordance with various aspects of the present disclosure.
Fig. 5 illustrates an example of frequency hopping that is not limited to a bandwidth part (BWP) boundary.
Fig. 6 is a diagram illustrating an example of communications that involve a hopping pattern for cross-BWP frequency hopping, in accordance with various aspects of the present disclosure.
Fig. 7 is a diagram illustrating a continuation of the example in Fig. 6, in accordance with various aspects of the present disclosure.
Fig. 8 is a diagram illustrating an example of a first frequency hopping pattern, in accordance with various aspects of the present disclosure.
Fig. 9 is a diagram illustrating an example of a second frequency hopping pattern, in accordance with various aspects of the present disclosure.
Fig. 10 is a diagram illustrating an example of a first intra-slot or inter-slot, cross-BWP frequency hopping pattern, in accordance with various aspects of the present disclosure.
Fig. 11 is a diagram illustrating an example of a second intra-slot or inter-slot, cross-BWP frequency hopping pattern, in accordance with various aspects of the present disclosure.
Fig. 12 is a diagram illustrating an example process performed, for example, by a user equipment, in accordance with various aspects of the present disclosure.
Fig. 13 is a diagram illustrating an example process performed, for example, by a user equipment, in accordance with various aspects of the present disclosure.
Fig. 14 is a diagram illustrating an example process performed, for example, by a base station, in accordance with various aspects of the present disclosure.
Fig. 15 is a diagram illustrating an example process performed, for example, by a base station, in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It should be noted that while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced. The wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network. The wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A BS is an entity that communicates with  user equipment (UEs) and may also be referred to as a base station, a NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises  Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for  reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively. According to various aspects described in more detail below, the synchronization signals can be generated with location encoding to convey additional information.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like. In some aspects, one or more components of UE 120 may be included in a housing.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM,  CP-OFDM, and/or the like) , and transmitted to base station 110. At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with a hopping pattern for cross bandwidth part (cross-BWP) frequency hopping, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 1200 of Fig. 12, process 1300 of Fig. 13, process 1400 of Fig. 14, process 1500 of Fig. 15, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. In some aspects, memory 242 and/or memory 282 may comprise a non-transitory computer-readable medium storing one or more instructions for wireless communication. For example, the one or more instructions, when executed by one or more processors of the base station 110 and/or the UE 120, may perform or direct operations of, for example, process 1200 of Fig. 12, process 1300 of Fig. 13, process 1400 of Fig. 14, process 1500 of Fig. 15, and/or other processes as described herein. A scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
In some aspects, UE 120 may include means for determining a pattern for frequency hopping from among a first pattern and a second pattern, where the first pattern includes a first frequency hop in the first BWP and a second frequency hop in a second BWP, and where the second pattern includes the first frequency hop in the second BWP and the second frequency hop in the first BWP, means for performing communication according to the pattern, and/or the like. In some aspects, such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266,  MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
In some aspects, UE 120 may include means for determining a pattern for frequency hopping from among a first pattern and a second pattern, where the first pattern and the second pattern each include intra-slot or inter-slot frequency hopping, from a first frequency to a second frequency, in a first quantity of successive slots in the first BWP, and intra-slot or inter-slot frequency hopping in a second quantity of successive slots in a second BWP, where the first pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from a third frequency to a fourth frequency, and where the second pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from the fourth frequency to the third frequency, means for performing communication according to the pattern, and/or the like. In some aspects, such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
In some aspects, base station 110 may include means for determining a pattern for frequency hopping from among a first pattern and a second pattern, where the first pattern includes a first frequency hop in the first BWP and a second frequency hop in a second BWP, and where the second pattern includes the first frequency hop in the second BWP and the second frequency hop in the first BWP, means for performing communication according to the pattern, and/or the like. In some aspects, such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
In some aspects, base station 110 may include means for determining a pattern for frequency hopping from among a first pattern and a second pattern, where the first pattern and the second pattern each include intra-slot or inter-slot frequency hopping, from a first frequency to a second frequency, in a first quantity of successive slots in the first BWP, and intra-slot or inter-slot frequency hopping in a second quantity of successive slots in a second BWP, where the first pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from a third frequency to a fourth frequency, and where the second pattern includes intra-slot or inter-slot  frequency hopping in the second quantity of successive slots from the fourth frequency to the third frequency, means for performing communication according to the pattern, and/or the like. In some aspects, such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
Fig. 3A shows an example frame structure 300 for frequency division duplexing (FDD) in a telecommunications system (e.g., NR) . The transmission timeline for each of the downlink and uplink may be partitioned into units of radio frames (sometimes referred to as frames) . Each radio frame may have a predetermined duration (e.g., 10 milliseconds (ms) ) and may be partitioned into a set of Z (Z ≥ 1) subframes (e.g., with indices of 0 through Z-1) . Each subframe may have a predetermined duration (e.g., 1 ms) and may include a set of slots (e.g., 2 m slots per subframe are shown in Fig. 3A, where m is a numerology used for a transmission, such as 0, 1, 2, 3, 4, and/or the like) . Each slot may include a set of L symbol periods. For example, each slot may include fourteen symbol periods (e.g., as shown in Fig. 3A) , seven symbol periods, or another number of symbol periods. In a case where the subframe includes two slots (e.g., when m = 1) , the subframe may include 2L symbol periods, where the 2L symbol periods in each subframe may be assigned indices of 0 through 2L-1. In some aspects, a scheduling unit for the FDD may be frame-based, subframe-based, slot-based, symbol-based, and/or the like.
While some techniques are described herein in connection with frames, subframes, slots, and/or the like, these techniques may equally apply to other types of wireless communication structures, which may be referred to using terms other than “frame, ” “subframe, ” “slot, ” and/or the like in 5G NR. In some aspects, a wireless communication structure may refer to a periodic time-bounded communication unit defined by a wireless communication standard and/or protocol. Additionally, or alternatively, different configurations of wireless communication structures than those shown in Fig. 3A may be used.
In certain telecommunications (e.g., NR) , a base station may transmit synchronization signals. For example, a base station may transmit a primary synchronization signal (PSS) , a secondary synchronization signal (SSS) , and/or the like,  on the downlink for each cell supported by the base station. The PSS and SSS may be used by UEs for cell search and acquisition. For example, the PSS may be used by UEs to determine symbol timing, and the SSS may be used by UEs to determine a physical cell identifier, associated with the base station, and frame timing. The base station may also transmit a physical broadcast channel (PBCH) . The PBCH may carry some system information, such as system information that supports initial access by UEs.
In some aspects, the base station may transmit the PSS, the SSS, and/or the PBCH in accordance with a synchronization communication hierarchy (e.g., a synchronization signal (SS) hierarchy) including multiple synchronization communications (e.g., SS blocks) , as described below in connection with Fig. 3B.
Fig. 3B is a block diagram conceptually illustrating an example SS hierarchy, which is an example of a synchronization communication hierarchy. As shown in Fig. 3B, the SS hierarchy may include an SS burst set, which may include a plurality of SS bursts (identified as SS burst 0 through SS burst B-1, where B is a maximum number of repetitions of the SS burst that may be transmitted by the base station) . As further shown, each SS burst may include one or more SS blocks (identified as SS block 0 through SS block (b max_SS-1) , where b max_SS-1 is a maximum number of SS blocks that can be carried by an SS burst) . In some aspects, different SS blocks may be beam-formed differently. An SS burst set may be periodically transmitted by a wireless node, such as every X milliseconds, as shown in Fig. 3B. In some aspects, an SS burst set may have a fixed or dynamic length, shown as Y milliseconds in Fig. 3B.
The SS burst set shown in Fig. 3B is an example of a synchronization communication set, and other synchronization communication sets may be used in connection with the techniques described herein. Furthermore, the SS block shown in Fig. 3B is an example of a synchronization communication, and other synchronization communications may be used in connection with the techniques described herein.
In some aspects, an SS block includes resources that carry the PSS, the SSS, the PBCH, and/or other synchronization signals (e.g., a tertiary synchronization signal (TSS) ) and/or synchronization channels. In some aspects, multiple SS blocks are included in an SS burst, and the PSS, the SSS, and/or the PBCH may be the same across each SS block of the SS burst. In some aspects, a single SS block may be included in an SS burst. In some aspects, the SS block may be at least four symbol periods in length,  where each symbol carries one or more of the PSS (e.g., occupying one symbol) , the SSS (e.g., occupying one symbol) , and/or the PBCH (e.g., occupying two symbols) .
In some aspects, the symbols of an SS block are consecutive, as shown in Fig. 3B. In some aspects, the symbols of an SS block are non-consecutive. Similarly, in some aspects, one or more SS blocks of the SS burst may be transmitted in consecutive radio resources (e.g., consecutive symbol periods) during one or more slots. Additionally, or alternatively, one or more SS blocks of the SS burst may be transmitted in non-consecutive radio resources.
In some aspects, the SS bursts may have a burst period, whereby the SS blocks of the SS burst are transmitted by the base station according to the burst period. In other words, the SS blocks may be repeated during each SS burst. In some aspects, the SS burst set may have a burst set periodicity, whereby the SS bursts of the SS burst set are transmitted by the base station according to the fixed burst set periodicity. In other words, the SS bursts may be repeated during each SS burst set.
The base station may transmit system information, such as system information blocks (SIBs) on a physical downlink shared channel (PDSCH) in certain slots. The base station may transmit control information/data on a physical downlink control channel (PDCCH) in C symbol periods of a slot, where B may be configurable for each slot. The base station may transmit traffic data and/or other data on the PDSCH in the remaining symbol periods of each slot.
As indicated above, Figs. 3A and 3B are provided as examples. Other examples may differ from what is described with regard to Figs. 3A and 3B.
Fig. 4 shows an example slot format 410 with a normal cyclic prefix. The available time frequency resources may be partitioned into resource blocks. Each resource block may cover a set of subcarriers (e.g., 12 subcarriers) in one slot and may include a number of resource elements. Each resource element may cover one subcarrier in one symbol period (e.g., in time) and may be used to send one modulation symbol, which may be a real or complex value.
An interlace structure may be used for each of the downlink and uplink for FDD in certain telecommunications systems (e.g., NR) . For example, Q interlaces with indices of 0 through Q -1 may be defined, where Q may be equal to 4, 6, 8, 10, or some other value. Each interlace may include slots that are spaced apart by Q frames. In particular, interlace q may include slots q, q + Q, q + 2Q, etc., where q ∈ {0, ..., Q -1} .
A UE may be located within the coverage of multiple BSs. One of these BSs may be selected to serve the UE. The serving BS may be selected based at least in part on various criteria such as received signal strength, received signal quality, path loss, and/or the like. Received signal quality may be quantified by a signal-to-noise-and-interference ratio (SNIR) , or a reference signal received quality (RSRQ) , or some other metric. The UE may operate in a dominant interference scenario in which the UE may observe high interference from one or more interfering BSs.
While aspects of the examples described herein may be associated with NR or 5G technologies, aspects of the present disclosure may be applicable with other wireless communication systems. New Radio (NR) may refer to radios configured to operate according to a new air interface (e.g., other than Orthogonal Frequency Divisional Multiple Access (OFDMA) -based air interfaces) or fixed transport layer (e.g., other than Internet Protocol (IP) ) . In some aspects, NR may utilize OFDM with a CP (herein referred to as cyclic prefix OFDM or CP-OFDM) and/or SC-FDM on the uplink, may utilize CP-OFDM on the downlink, and may include support for half-duplex operation using time division duplexing (TDD) . In some aspects, NR may, for example, utilize OFDM with a CP (herein referred to as CP-OFDM) and/or discrete Fourier transform spread orthogonal frequency-division multiplexing (DFT-s-OFDM) on the uplink, and may utilize CP-OFDM on the downlink and include support for half-duplex operation using TDD. NR may include Enhanced Mobile Broadband (eMBB) service targeting wide bandwidth (e.g., 80 megahertz (MHz) and beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g., 60 gigahertz (GHz) ) , massive MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra reliable low latency communications (URLLC) service.
In some aspects, a single component carrier bandwidth of 100 MHz may be supported. NR resource blocks may span 12 sub-carriers with a sub-carrier bandwidth of 60 or 120 kilohertz (kHz) over a 0.1 millisecond (ms) duration. Each radio frame may include 40 slots and may have a length of 10 ms. Consequently, each slot may have a length of 0.25 ms. Each slot may indicate a link direction (e.g., DL or UL) for data transmission and the link direction for each slot may be dynamically switched. Each slot may include DL/UL data as well as DL/UL control data.
Beamforming may be supported and beam direction may be dynamically configured. MIMO transmissions with precoding may also be supported. MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL  transmissions up to 8 streams and up to 2 streams per UE. Multi-layer transmissions with up to 2 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells. Alternatively, NR may support a different air interface, other than an OFDM-based interface. NR networks may include entities such as central units or distributed units.
As indicated above, Fig. 4 is provided as an example. Other examples may differ from what is described with regard to Fig. 4.
Many devices, such as smart wearable devices, industrial sensors, and video surveillance devices, may be designed to operate using NR-Light, which is a part of 3GPP Release 17. NR-Light operations use less transmission power, have less computational complexity, and use fewer antennas as compared to normal NR operations. Peak throughput, latency, and reliability requirements may be relaxed. NR-Light UEs may also use less bandwidth. For example, an NR-Light UE may use bandwidths of 5 MHz -20 MHz as compared to an NR premium UE that uses a bandwidth of 50 MHz or 100 MHz. Networks may be designed so that NR premium UEs, including enhanced mobile broadband (eMBB) UEs, may coexist with NR-Light UEs.
A bandwidth part (BWP) may be a set of contiguous physical resource blocks on a carrier. A BWP allows a UE to transmit or receive with a narrower bandwidth than the entire carrier bandwidth. A UE may have a maximum BWP bandwidth (i.e., maximum channel bandwidth) that the UE may support, and this maximum may be set according to a capability of the UE. NR-light UEs may support smaller bandwidths than UEs that are capable of supporting wide bandwidths.
A BWP may be associated with a numerology (subcarrier spacing and cyclic prefix) , a frequency location, and a bandwidth. A UE may be configured with up to 4 downlink (DL) BWPs and up to 4 uplink (UL) BWPs respectively, with only one DL BWP and one UL BWP active at any moment for a UE. While UEs that use BWPs may save power, UEs that use narrower BWPs may save more power because a baseband interface may operate with a lower sampling rate and with less baseband processing.
UEs that operate according to 3GPP Releases 15 and 16 are not able to transmit communications on a physical uplink shared channel (PUSCH) or a physical uplink control channel (PUCCH) outside of an active UL BWP, and such UEs are not able to receive communications on a physical downlink shared channel (PDSCH)  outside an active DL BWP. Transmission on the PUSCH or PUCCH with frequency hopping is also limited to within a BWP boundary.
Fig. 5 illustrates an example of frequency hopping that is not limited to a BWP boundary. As shown in Fig. 5, legacy NR, or NR as defined in 3GPP Releases 15 and 16, provides for intra-BWP UL frequency hopping. However, NR-Light UEs may have a reduced maximum bandwidth, and thus intra-BWP UL frequency hopping may have a limited diversity gain. Therefore, for the PUSCH, PUCCH, or PDSCH, frequency hopping may occur across BWPs, and this may be referred to as cross-BWP frequency hopping. Frequency hopping may also include bundling multiple slots of a radio frame into a single frequency hop to reduce frequency retuning times, which improves channel estimation and phase tracking. A frequency offset for a frequency hop may be indicated in a radio resource control (RRC) message or a downlink control information (DCI) message.
As indicated above, Fig. 5 is provided as an example. Other examples may differ from what is described with regard to Fig. 5.
A radio frame may have multiple slots for transmission, and a UE may perform intra-slot frequency hopping or inter-slot frequency hopping for a PUSCH or a PUCCH. Intra-slot frequency hopping is frequency hopping within a slot of the radio frame. Inter-slot frequency hopping is frequency hopping from one slot to another slot. Transmissions in any two successive slots may correspond to two different frequency locations of two frequency hops. Frequency locations for transmission may be determined by a corresponding slot index (odd or even) . For PUSCH, a slot index within a radio frame may be represented by slot index ∈
Figure PCTCN2020072680-appb-000001
 (e.g., absolute index) . For multiple slots (M-slot) PUCCH, the slots for the PUCCH transmission may be numbered as {0, 1, ..., M -1} (e.g., relative index) . However, for a cross-BWP frequency hopping pattern with successive slot bundling in a same hop, a UE may not use a starting slot index to determine a pattern for the frequency hopping. Without a clear indication or determination of a pattern for cross-BWP frequency hopping with successive slot bundling, a UE that operates in a narrow BWP may not be able to achieve a satisfactory diversity gain. This may affect a quality of the signals, and the UE may expend power and processing resources to account for a lack of signal definition of frequency hops.
According to various aspects described in the present disclosure, a UE may determine a frequency hopping pattern for cross-BWP frequency hopping with  successive slot bundling. For M-slot PUSCH, PUCCH, or PDSCH transmission with cross-BWP frequency hopping, at least two patterns may be determined. The patterns may be determined by a configuration, indicated by signaling, or determined by a starting slot index within a radio frame of a communication. The patterns for frequency hopping described herein may involve slot bundling with less BWP hopping and less radio frequency retuning. The patterns may provide for higher frequency diversity for hybrid intra-BWP and cross-BWP frequency hopping. A UE that performs frequency hopping with narrow BWPs may save power and processing resources due to efficiencies provided by a more satisfactory diversity gain.
Fig. 6 is a diagram illustrating an example 600 of communications that involve a hopping pattern for cross-BWP frequency hopping, in accordance with various aspects of the present disclosure. Fig. 6 shows a base station (BS) 610 (e.g., BS 110 depicted in Figs. 1 and 2) that may communicate with a UE 620 (e.g., UE 120 depicted in Figs. 1 and 2) .
As shown by reference number 630, BS 610 may determine a pattern for frequency hopping from among at least a first pattern and a second pattern. The first pattern may include a first frequency hop in a first BWP that is an active BWP for UE 620 and a second frequency hop in a second BWP. The second pattern may include the first frequency hop in the second BWP and the second frequency hop in the first BWP.
As shown by reference number 635, in some aspects, BS 610 may transmit an indication of the pattern to UE 620. The indication may be included in an RRC configuration message, a DCI message, and/or the like. As shown by reference number 640, UE 620 may determine the pattern from at least the first pattern and the second pattern. UE 620 may determine the pattern from received messages. In some aspects, BS 610 and UE 620 may determine the pattern from stored configuration information.
In some aspects, UE 620 may determine the pattern from a starting slot index within a radio frame of a communication. For example, a starting slot index n start and a modulo operation may indicate the first pattern or the second pattern. If n start mod 2=0, the first pattern is used. If n start mod 2=1, the second pattern is used. The opposite may apply, where if n start mod 2=0, the second pattern is used. If n start mod 2=1, the first pattern is used.
In some aspects, for single-slot PUSCH or PDSCH (i.e., M = 1) , an initial transmission may be within a BWP, and at least one retransmission may be outside the BWP. The at least one retransmission may be in another BWP.
As indicated above, Fig. 6 is provided as an example. Other examples may differ from what is described with regard to Fig. 6.
Fig. 7 is a diagram illustrating a continuation of example 600 in Fig. 6, in accordance with various aspects of the present disclosure.
As shown by reference number 645, BS 610 and UE 620 may perform communication using the pattern. The pattern is known by both BS 610 and BS 620 so that transmissions carried out on frequencies that follow the pattern for frequency hopping may be received at those frequencies.
As indicated above, Fig. 7 is provided as an example. Other examples may differ from what is described with regard to Fig. 7.
Fig. 8 is a diagram illustrating an example 800 of a first frequency hopping pattern, in accordance with various aspects of the present disclosure. Fig. 8 shows successive slots of a transmission interval, such as a radio frame.
As shown in Fig. 8, a first frequency hopping pattern may include a bundle of successive slots in one frequency hop (Hop1) in an active BWP and a bundle of successive slots in a next frequency hop (Hop2) outside the active BWP (exceeding a boundary of the active BWP) . Hop2 may be in another BWP. Fig. 8 also shows gaps for retuning between frequencies. In some aspects, M may be a quantity of successive slots in the radio frame. Hop1 may include a first half of the M successive slots, or a first M/2 slots. Hop2 may include a second half of the M successive slots, or a second M/2 slots.
As indicated above, Fig. 8 is provided as an example. Other examples may differ from what is described with regard to Fig. 8.
Fig. 9 is a diagram illustrating an example 900 of a second frequency hopping pattern, in accordance with various aspects of the present disclosure. Fig. 9 shows successive slots of a transmission interval, such as a radio frame.
As shown in Fig. 9, a first frequency hopping pattern may include a bundle of successive slots in one frequency hop (Hop1) outside an active BWP and a bundle of successive slots in a next frequency hop (Hop2) within the active BWP. In some aspects, Hop1 may include a first half of the M successive slots, or a first M/2 slots. Hop2 may include a second half of the M successive slots, or a second M/2 slots. BS 610 and UE 620 may determine a pattern of frequency hopping from among the two frequency hopping patterns shown in Figs. 8 and 9 (or among other frequency hopping patterns) , and perform communication with each other using the pattern.
As indicated above, Fig. 9 is provided as an example. Other examples may differ from what is described with regard to Fig. 9.
In some aspects, BS 610 and UE 620 may determine to use a frequency hopping pattern that is a hybrid of intra-slot frequency hopping and cross-BWP frequency hopping. For intra-slot frequency hopping, there may be 2 frequency locations in each M/2-successive-slot. In some aspects, there may be more than 2 frequency locations.
Fig. 10 is a diagram illustrating an example 1000 of a first intra-slot or inter-slot, cross-BWP frequency hopping pattern, in accordance with various aspects of the present disclosure. Fig. 10 shows successive slots of a radio frame.
As shown in Fig. 10, a first pattern may include, within each slot of a first quantity of successive slots, a frequency hop from a first frequency to a second frequency by a frequency offset. The first quantity of successive slots may be in a first BWP. The first BWP may be an active BWP. The first pattern may further include, within each slot of a second quantity of successive slots, a frequency hop from a third frequency to a fourth frequency. The second quantity of successive slots may be outside the first BWP, such as in another BWP. A distance of the frequency hop may be the frequency offset between the first frequency and the second frequency, or another frequency offset. The frequencies may be in ascending order or in descending order.
Starting time and frequency resources, such as starting resource blocks (RBs) , for the frequencies may be represented as {RB start1, RB start2} {RB start3, RB start4} , respectively. The frequency offset may be determined as RB start2 -RB start1 = - (RB start4 -RB start3) . M may be a total amount of the successive slots in the radio frame, and M/4 may be slots used for each frequency location, while the other M/4 successive slots are for transmission at a different frequency location. Frequency locations of the 4 M/4 successive slots may be determined by (n start mod 4) , where n start is a slot index within the radio frame for a communication.
In some aspects, if a frequency hopping pattern includes multiple frequency locations, there may be multiple frequency locations for hops within a slot (intra-slot frequency hopping) and/or for hops across the slots (inter-slot frequency hopping) . For inter-slot frequency hopping, transmissions in any two successive slots may correspond to two different frequency locations of two hops. A length of these hops may be a length of a slot. In some aspects, a length of a hop may be less than a length of a slot, such as a length used in intra-slot frequency hopping. For example, inter-slot frequency  hopping may include hops that are half of a length of a slot or a quarter of a length of a slot.
In each quantity of successive slots (also referred to as a sub-FH) , frequency hopping may include intra-slot frequency hopping in the time domain, inter-slot frequency hopping in the time domain, or a combination thereof. A frequency offset in a first quantity of successive slots may be the same frequency distance and a same direction (e.g., higher frequency or lower frequency) as a frequency offset in a second quantity of successive slots (see Fig. 10) . However, as shown in Fig. 11, in some aspects, the frequency offset in the first quantity of successive slots may be in an opposite direction as the frequency offset in the second quantity of successive slots.
As indicated above, Fig. 10 is provided as an example. Other examples may differ from what is described with regard to Fig. 10.
Fig. 11 is a diagram illustrating an example 1100 of a second intra-slot or interslot, cross-BWP frequency hopping pattern, in accordance with various aspects of the present disclosure. Fig. 11 shows successive slots that follow the successive slots of the radio frame depicted in Fig. 10.
As shown in Fig. 11, a second pattern may include, within each slot of the first quantity of successive slots, a frequency hop from the first frequency to the second frequency by the frequency offset. The first quantity of successive slots may be in the first BWP. The second pattern may further include, within each slot of the second quantity of successive slots, a frequency hop from the fourth frequency to the third frequency. In some aspects, the second pattern may be preferred and BS 610 or UE 620 may bias selection towards the second pattern. The second pattern may be more conducive to frequency offset estimation by a receiver. Starting RBs for the frequencies may be represented as {RB start1, RB start2} {RB start3, RB start4} , respectively. The frequency offset may be determined as RB start2 -RB start1 = RB start4 -RB start3.
As indicated above, Fig. 11 is provided as an example. Other examples may differ from what is described with regard to Fig. 11.
Fig. 12 is a diagram illustrating an example process 1200 performed, for example, by a UE active in a first BWP, in accordance with various aspects of the present disclosure. Example process 1200 is an example where the UE (e.g., UE 120 depicted in Figs. 1 and 2, UE 620 depicted in Fig. 6, and/or the like) performs operations associated with a hopping pattern for cross-BWP frequency hopping.
As shown in Fig. 12, in some aspects, process 1200 may include determining a pattern for frequency hopping from among a first pattern and a second pattern (block 1210) . For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may determine a pattern for frequency hopping from among a first pattern and a second pattern, as described above. In some aspects, the first pattern includes a first frequency hop in the first BWP and a second frequency hop in a second BWP. In some aspects, the second pattern includes the first frequency hop in the second BWP and the second frequency hop in the first BWP.
As further shown in Fig. 12, in some aspects, process 1200 may include performing communication according to the pattern (block 1220) . For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may perform communication according to the pattern, as described above.
Process 1200 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, determining the pattern includes determining the pattern based at least in part on stored configuration information for a physical channel.
In a second aspect, alone or in combination with the first aspect, determining the pattern includes determining the pattern based at least in part on a radio resource control configuration message.
In a third aspect, alone or in combination with one or more of the first and second aspects, determining the pattern includes determining the pattern based at least in part on a starting slot index within a radio frame of a communication.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, determining the pattern includes determining the pattern based at least in part on downlink control information.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, determining the pattern includes determining the pattern based at least in part on a quantity of slots for a radio frame being 1.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the pattern includes a plurality of successive slots in a radio frame, and the first frequency hop includes a first quantity of successive slots in the radio  frame and the second frequency hop includes a second quantity of successive slots in the radio frame.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the first quantity of successive slots is a first half of the plurality of successive slots and the second quantity of successive slots is a second half of the plurality of successive slots.
Although Fig. 12 shows example blocks of process 1200, in some aspects, process 1200 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 12. Additionally, or alternatively, two or more of the blocks of process 1200 may be performed in parallel.
Fig. 13 is a diagram illustrating an example process 1300 performed, for example, by a UE active in a first BWP, in accordance with various aspects of the present disclosure. Example process 1300 is an example where the UE (e.g., UE 120 depicted in Figs. 1 and 2, UE 620 depicted in Fig. 6, and/or the like) performs operations associated with a hopping pattern for cross-BWP frequency hopping.
As shown in Fig. 13, in some aspects, process 1300 may include determining a pattern for frequency hopping from among a first pattern and a second pattern (block 1310) . For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may determine a pattern for frequency hopping from among a first pattern and a second pattern, as described above. In some aspects, the first pattern and the second pattern each include intra-slot or inter-slot frequency hopping, from a first frequency to a second frequency, in a first quantity of successive slots in the first BWP, and intra-slot or inter-slot frequency hopping in a second quantity of successive slots in a second BWP. In some aspects, the first pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from a third frequency to a fourth frequency. In some aspects, the second pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from the fourth frequency to the third frequency.
As further shown in Fig. 13, in some aspects, process 1300 may include performing communication according to the pattern (block 1320) . For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may perform communication according to the pattern, as described above.
Process 1300 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the second frequency is determined from the first frequency by a frequency offset, and the fourth frequency is determined from the third frequency by the frequency offset.
In a second aspect, alone or in combination with the first aspect, one or more of the first frequency, the second frequency, the third frequency, or the fourth frequency are determined based at least in part on a starting slot index within a radio frame of a communication.
In a third aspect, alone or in combination with one or more of the first and second aspects, the pattern includes a plurality of successive slots in a radio frame, and the first quantity of successive slots is a first half of the plurality of successive slots and the second quantity of successive slots is a second half of the plurality of successive slots.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, determining the pattern includes determining the pattern based at least in part on stored configuration information for a physical uplink channel.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, determining the pattern includes determining the pattern based at least in part on a radio resource control configuration message.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, determining the pattern includes determining the pattern based at least in part on a starting slot index within a radio frame of a communication.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, determining the pattern includes determining the pattern based at least in part on downlink control information.
Although Fig. 13 shows example blocks of process 1300, in some aspects, process 1300 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 13. Additionally, or alternatively, two or more of the blocks of process 1300 may be performed in parallel.
Fig. 14 is a diagram illustrating an example process 1400 performed, for example, by a base station configured to communicate with a UE in an active BWP, in accordance with various aspects of the present disclosure. Example process 1400 is an  example where the base station (e.g., BS 110 depicted in Figs. 1 and 2, BS 610 depicted in Fig. 6, and/or the like) performs operations associated with a hopping pattern for cross-BWP frequency hopping.
As shown in Fig. 14, in some aspects, process 1400 may include determining a pattern for frequency hopping from among a first pattern and a second pattern (block 1410) . For example, the base station (e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like) may determine a pattern for frequency hopping from among a first pattern and a second pattern, as described above. In some aspects, the first pattern includes a first frequency hop in the first BWP and a second frequency hop in a second BWP. In some aspects, the second pattern includes the first frequency hop in the second BWP and the second frequency hop in the first BWP.
As further shown in Fig. 14, in some aspects, process 1400 may include performing communication according to the pattern (block 1420) . For example, the base station (e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like) may perform communication according to the pattern, as described above.
Process 1400 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, determining the pattern includes determining the pattern based at least in part on stored configuration information for a physical channel.
In a second aspect, alone or in combination with the first aspect, process 1400 includes transmitting an indication of the pattern to the UE in a radio resource control configuration message.
In a third aspect, alone or in combination with one or more of the first and second aspects, process 1400 includes transmitting an indication of the pattern to the UE in downlink control information.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the pattern includes a plurality of successive slots in a radio frame, and the first frequency hop includes a first quantity of successive slots in the radio frame and the second frequency hop includes a second quantity of successive slots in the radio frame.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the first quantity of successive slots is a first half of the plurality of successive slots and the second quantity of successive slots is a second half of the plurality of successive slots.
Although Fig. 14 shows example blocks of process 1400, in some aspects, process 1400 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 14. Additionally, or alternatively, two or more of the blocks of process 1400 may be performed in parallel.
Fig. 15 is a diagram illustrating an example process 1500 performed, for example, by a base station configured to communicate with a UE in an active BWP, in accordance with various aspects of the present disclosure. Example process 1500 is an example where base station (e.g., BS 110 depicted in Figs. 1 and 2, BS 610 depicted in Fig. 6, and/or the like) performs operations associated with a hopping pattern for cross-BWP frequency hopping.
As shown in Fig. 15, in some aspects, process 1500 may include determining a pattern for frequency hopping from among a first pattern and a second pattern (block 1510) . For example, the base station (e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like) may determine a pattern for frequency hopping from among a first pattern and a second pattern, as described above. In some aspects, the first pattern and the second pattern each include intra-slot or inter-slot frequency hopping, from a first frequency to a second frequency, in a first quantity of successive slots in the first BWP, and intra-slot or inter-slot frequency hopping in a second quantity of successive slots in a second BWP. In some aspects, the first pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from a third frequency to a fourth frequency. In some aspects, the second pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from the fourth frequency to the third frequency.
As further shown in Fig. 15, in some aspects, process 1500 may include performing communication according to the pattern (block 1520) . For example, the base station (e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like) may perform communication according to the pattern, as described above.
Process 1500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the second frequency is determined from the first frequency by a frequency offset, and the fourth frequency is determined from the third frequency by the frequency offset.
In a second aspect, alone or in combination with the first aspect, one or more of the first frequency, the second frequency, the third frequency, or the fourth frequency are determined based at least in part on a starting slot index within a radio frame of a communication.
In a third aspect, alone or in combination with one or more of the first and second aspects, the pattern includes a plurality of successive slots in a radio frame, and the first quantity of successive slots is a first half of the plurality of successive slots and the second quantity of successive slots is a second half of the plurality of successive slots.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, determining the pattern includes determining the pattern based at least in part on stored configuration information for a physical uplink channel.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, process 1500 includes transmitting an indication of the pattern to the UE in a radio resource control configuration message.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, process 1500 includes transmitting an indication of the pattern to the UE in downlink control information.
Although Fig. 15 shows example blocks of process 1500, in some aspects, process 1500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 15. Additionally, or alternatively, two or more of the blocks of process 1500 may be performed in parallel.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software. As used herein, a  processor is implemented in hardware, firmware, and/or a combination of hardware and software.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items, and may be used interchangeably with “one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” and/or the like are  intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Claims (41)

  1. A method of wireless communication performed by a user equipment (UE) active in a first bandwidth part (BWP) , comprising:
    determining a pattern for frequency hopping from among a first pattern and a second pattern,
    wherein the first pattern includes a first frequency hop in the first BWP and a second frequency hop in a second BWP, and
    wherein the second pattern includes the first frequency hop in the second BWP and the second frequency hop in the first BWP; and
    performing communication according to the pattern.
  2. The method of claim 1, wherein determining the pattern includes determining the pattern based at least in part on stored configuration information for a physical channel.
  3. The method of claim 1, wherein determining the pattern includes determining the pattern based at least in part on a radio resource control configuration message.
  4. The method of claim 1, wherein determining the pattern includes determining the pattern based at least in part on a starting slot index within a radio frame of a communication.
  5. The method of claim 1, wherein determining the pattern includes determining the pattern based at least in part on downlink control information.
  6. The method of claim 1, wherein determining the pattern includes determining the pattern based at least in part on a quantity of slots for a radio frame being 1.
  7. The method of claim 1, wherein the pattern includes a plurality of successive slots in a radio frame, and wherein the first frequency hop includes a first quantity of successive slots in the radio frame and the second frequency hop includes a second quantity of successive slots in the radio frame.
  8. The method of claim 7, wherein the first quantity of successive slots is a first half of the plurality of successive slots and the second quantity of successive slots is a second half of the plurality of successive slots.
  9. A method of wireless communication performed by a user equipment (UE) active in a first bandwidth part (BWP) , comprising:
    determining a pattern for frequency hopping from among a first pattern and a second pattern, wherein the first pattern and the second pattern each include intra-slot or inter-slot frequency hopping, from a first frequency to a second frequency, in a first quantity of successive slots in the first BWP, and intra-slot or inter-slot frequency hopping in a second quantity of successive slots in a second BWP,
    wherein the first pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from a third frequency to a fourth frequency, and
    wherein the second pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from the fourth frequency to the third frequency; and
    performing communication according to the pattern.
  10. The method of claim 9, wherein the second frequency is determined from the first frequency by a frequency offset, and the fourth frequency is determined from the third frequency by the frequency offset.
  11. The method of claim 9, wherein one or more of the first frequency, the second frequency, the third frequency, or the fourth frequency are determined based at least in part on a starting slot index within a radio frame of a communication.
  12. The method of claim 9, wherein the pattern includes a plurality of successive slots in a radio frame, and wherein the first quantity of successive slots is a first half of the plurality of successive slots and the second quantity of successive slots is a second half of the plurality of successive slots.
  13. The method of claim 9, wherein determining the pattern includes determining the pattern based at least in part on stored configuration information for a physical uplink channel.
  14. The method of claim 9, wherein determining the pattern includes determining the pattern based at least in part on a radio resource control configuration message.
  15. The method of claim 9, wherein determining the pattern includes determining the pattern based at least in part on a starting slot index within a radio frame of a communication.
  16. The method of claim 9, wherein determining the pattern includes determining the pattern based at least in part on downlink control information.
  17. A method of wireless communication performed by a base station configured to communicate with a user equipment (UE) that is active in a first bandwidth part (BWP) , the method comprising:
    determining a pattern for frequency hopping from among a first pattern and a second pattern,
    wherein the first pattern includes a first frequency hop in the first BWP and a second frequency hop in a second BWP, and
    wherein the second pattern includes the first frequency hop in the second BWP and the second frequency hop in the first BWP; and
    performing communication according to the pattern.
  18. The method of claim 17, wherein determining the pattern includes determining the pattern based at least in part on stored configuration information for a physical channel.
  19. The method of claim 17, further comprising transmitting an indication of the pattern to the UE in a radio resource control configuration message.
  20. The method of claim 17, further comprising transmitting an indication of the pattern to the UE in downlink control information.
  21. The method of claim 17, wherein the pattern includes a plurality of successive slots in a radio frame, and wherein the first frequency hop includes a first quantity of successive slots in the radio frame and the second frequency hop includes a second quantity of successive slots in the radio frame.
  22. The method of claim 21, wherein the first quantity of successive slots is a first half of the plurality of successive slots and the second quantity of successive slots is a second half of the plurality of successive slots.
  23. A method of wireless communication performed by a base station configured to communicate with a user equipment (UE) that is active in a first bandwidth part (BWP) , the method comprising:
    determining a pattern for frequency hopping from among a first pattern and a second pattern, wherein the first pattern and the second pattern each include intra-slot or inter-slot frequency hopping, from a first frequency to a second frequency, in a first quantity of successive slots in the first BWP, and intra-slot or inter-slot frequency hopping in a second quantity of successive slots in a second BWP,
    wherein the first pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from a third frequency to a fourth frequency, and
    wherein the second pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from the fourth frequency to the third frequency; and
    performing communication according to the pattern.
  24. The method of claim 23, wherein the second frequency is determined from the first frequency by a frequency offset, and the fourth frequency is determined from the third frequency by the frequency offset.
  25. The method of claim 23, wherein one or more of the first frequency, the second frequency, the third frequency, or the fourth frequency are determined based at least in part on a starting slot index within a radio frame of a communication.
  26. The method of claim 23, wherein the pattern includes a plurality of successive slots in a radio frame, and wherein the first quantity of successive slots is a first half of the plurality of successive slots and the second quantity of successive slots is a second half of the plurality of successive slots.
  27. The method of claim 23, wherein determining the pattern includes determining the pattern based at least in part on stored configuration information for a physical uplink channel.
  28. The method of claim 23, further comprising transmitting an indication of the pattern to the UE in a radio resource control configuration message.
  29. The method of claim 23, further comprising transmitting an indication of the pattern to the UE in downlink control information.
  30. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    determine a pattern for frequency hopping from among a first pattern and a second pattern,
    wherein the first pattern includes a first frequency hop in a first bandwidth part (BWP) in which the UE is active and a second frequency hop in a second BWP, and
    wherein the second pattern includes the first frequency hop in the second BWP and the second frequency hop in the first BWP; and
    perform communication according to the pattern.
  31. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    determine a pattern for frequency hopping from among a first pattern and a second pattern, wherein the first pattern and the second pattern each include intra-slot or inter-slot frequency hopping, from a first frequency to a second frequency, in a first quantity of successive slots in a first bandwidth part (BWP) in which the UE is active, and intra-slot or inter-slot frequency hopping in a second quantity of successive slots in a second BWP,
    wherein the first pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from a third frequency to a fourth frequency, and
    wherein the second pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from the fourth frequency to the third frequency; and
    perform communication according to the pattern.
  32. A base station configured to communicate with a user equipment (UE) that is active in a first bandwidth part (BWP) , comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    determine a pattern for frequency hopping from among a first pattern and a second pattern,
    wherein the first pattern includes a first frequency hop in the first BWP and a second frequency hop in a second BWP, and
    wherein the second pattern includes the first frequency hop in the second BWP and the second frequency hop in the first BWP; and
    perform communication according to the pattern.
  33. A base station configured to communicate with a user equipment (UE) that is active in a first bandwidth part (BWP) , comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    determine a pattern for frequency hopping from among a first pattern and a second pattern, wherein the first pattern and the second pattern each include  intra-slot or inter-slot frequency hopping, from a first frequency to a second frequency, in a first quantity of successive slots in the first BWP, and intra-slot or inter-slot frequency hopping in a second quantity of successive slots in a second BWP,
    wherein the first pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from a third frequency to a fourth frequency, and
    wherein the second pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from the fourth frequency to the third frequency; and
    perform communication according to the pattern.
  34. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a user equipment (UE) active in a first bandwidth part (BWP) , cause the one or more processors to:
    determine a pattern for frequency hopping from among a first pattern and a second pattern,
    wherein the first pattern includes a first frequency hop in the first BWP and a second frequency hop in a second BWP, and
    wherein the second pattern includes the first frequency hop in the second BWP and the second frequency hop in the first BWP; and
    perform communication according to the pattern.
  35. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a user equipment (UE) active in a first bandwidth part (BWP) , cause the one or more processors to:
    determine a pattern for frequency hopping from among a first pattern and a second pattern, wherein the first pattern and the second pattern each include intra-slot or inter-slot frequency hopping, from a first frequency to a second frequency, in a first quantity of successive slots in the first BWP, and intra-slot or inter-slot frequency hopping in a second quantity of successive slots in a second BWP,
    wherein the first pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from a third frequency to a fourth frequency, and
    wherein the second pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from the fourth frequency to the third frequency; and
    perform communication according to the pattern.
  36. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a base station configured to communicate with a user equipment (UE) that is active in a first bandwidth part (BWP) , cause the one or more processors to:
    determine a pattern for frequency hopping from among a first pattern and a second pattern,
    wherein the first pattern includes a first frequency hop in the first BWP and a second frequency hop in a second BWP, and
    wherein the second pattern includes the first frequency hop in the second BWP and the second frequency hop in the first BWP; and
    perform communication according to the pattern.
  37. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a base station configured to communicate with a user equipment (UE) that is active in a first bandwidth part (BWP) , cause the one or more processors to:
    determine a pattern for frequency hopping from among a first pattern and a second pattern, wherein the first pattern and the second pattern each include intra-slot or inter-slot frequency hopping, from a first frequency to a second frequency, in a first quantity of successive slots in the first BWP, and intra-slot or inter-slot frequency hopping in a second quantity of successive slots in a second BWP,
    wherein the first pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from a third frequency to a fourth frequency, and
    wherein the second pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from the fourth frequency to the third frequency; and
    perform communication according to the pattern.
  38. An apparatus for wireless communication, comprising:
    means for determining a pattern for frequency hopping from among a first pattern and a second pattern,
    wherein the first pattern includes a first frequency hop in a first bandwidth part (BWP) and a second frequency hop in a second BWP, and
    wherein the second pattern includes the first frequency hop in the second BWP and the second frequency hop in the first BWP; and
    means for performing communication according to the pattern.
  39. An apparatus for wireless communication, comprising:
    means for determining a pattern for frequency hopping from among a first pattern and a second pattern, wherein the first pattern and the second pattern each include intra-slot or inter-slot frequency hopping, from a first frequency to a second frequency, in a first quantity of successive slots in a first bandwidth part (BWP) , and intra-slot or inter-slot frequency hopping in a second quantity of successive slots in a second BWP,
    wherein the first pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from a third frequency to a fourth frequency, and
    wherein the second pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from the fourth frequency to the third frequency; and
    means for performing communication according to the pattern.
  40. An apparatus for wireless communication, comprising:
    means for determining a pattern for frequency hopping from among a first pattern and a second pattern,
    wherein the first pattern includes a first frequency hop in a first bandwidth part (BWP) and a second frequency hop in a second BWP, and
    wherein the second pattern includes the first frequency hop in the second BWP and the second frequency hop in the first BWP; and
    means for performing communication according to the pattern.
  41. An apparatus for wireless communication, comprising:
    means for determining a pattern for frequency hopping from among a first pattern and a second pattern, wherein the first pattern and the second pattern each include intra-slot or inter-slot frequency hopping, from a first frequency to a second frequency, in a first quantity of successive slots in a first bandwidth part (BWP) , and intra-slot or inter-slot frequency hopping in a second quantity of successive slots in a second BWP,
    wherein the first pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from a third frequency to a fourth frequency, and
    wherein the second pattern includes intra-slot or inter-slot frequency hopping in the second quantity of successive slots from the fourth frequency to the third frequency; and
    means for performing communication according to the pattern.
PCT/CN2020/072680 2020-01-17 2020-01-17 Hopping pattern for cross bandwidth part frequency hopping WO2021142762A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072680 WO2021142762A1 (en) 2020-01-17 2020-01-17 Hopping pattern for cross bandwidth part frequency hopping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072680 WO2021142762A1 (en) 2020-01-17 2020-01-17 Hopping pattern for cross bandwidth part frequency hopping

Publications (1)

Publication Number Publication Date
WO2021142762A1 true WO2021142762A1 (en) 2021-07-22

Family

ID=76863204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072680 WO2021142762A1 (en) 2020-01-17 2020-01-17 Hopping pattern for cross bandwidth part frequency hopping

Country Status (1)

Country Link
WO (1) WO2021142762A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023028397A1 (en) * 2021-08-25 2023-03-02 Qualcomm Incorporated Narrow bandwidth part hopping pattern

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108521850A (en) * 2017-11-16 2018-09-11 北京小米移动软件有限公司 Frequency hopping configuration method and device
CN109451847A (en) * 2017-09-08 2019-03-08 北京小米移动软件有限公司 Paging message method of reseptance and device and paging configuration method and device
CN109787721A (en) * 2017-11-14 2019-05-21 珠海市魅族科技有限公司 Method and device, tone hopping information configuration method and the device of Data duplication transmission
US20190222256A1 (en) * 2018-01-12 2019-07-18 At&T Intellectual Property I, L.P. Facilitating improvements to the uplink performance of 5g or other next generation networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109451847A (en) * 2017-09-08 2019-03-08 北京小米移动软件有限公司 Paging message method of reseptance and device and paging configuration method and device
CN109787721A (en) * 2017-11-14 2019-05-21 珠海市魅族科技有限公司 Method and device, tone hopping information configuration method and the device of Data duplication transmission
CN108521850A (en) * 2017-11-16 2018-09-11 北京小米移动软件有限公司 Frequency hopping configuration method and device
US20190222256A1 (en) * 2018-01-12 2019-07-18 At&T Intellectual Property I, L.P. Facilitating improvements to the uplink performance of 5g or other next generation networks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "Further details of UL transmission procedures", 3GPP DRAFT; R1-1720205, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20171127 - 20171201, 18 November 2017 (2017-11-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051369841 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023028397A1 (en) * 2021-08-25 2023-03-02 Qualcomm Incorporated Narrow bandwidth part hopping pattern
US11942983B2 (en) 2021-08-25 2024-03-26 Qualcomm Incorporated Narrow bandwidth part hopping pattern

Similar Documents

Publication Publication Date Title
US11683709B2 (en) Indicating a user equipment capability for crosslink interference measurement
US11950212B2 (en) Timing advance signaling for multi-transmit receive point operation
US11368956B2 (en) Radio link management under bandwidth part switching
US11516814B2 (en) Beam selection for communication in a multi-transmit-receive point deployment
US20190387532A1 (en) System information block transmission scheduling
WO2021146887A1 (en) Frequency hopping within a virtual bandwidth part
US20200413405A1 (en) Techniques for subband based resource allocation for nr-u
US11425702B2 (en) Repetition configuration determination
US11695595B2 (en) Phase tracking for initial access
US10886995B2 (en) Beam management signaling
EP3811712B1 (en) Collision management
WO2021142762A1 (en) Hopping pattern for cross bandwidth part frequency hopping
US20200266951A1 (en) Techniques for shared radio frequency spectrum channel configuration
EP4026376A1 (en) Offline discontinuous reception procedure
US11758478B2 (en) Power saving based on a combined timing indication and search space set group indication
US20230337236A1 (en) Avoiding collisions with reference signals
WO2021120139A1 (en) Frequency diversity in uplink transmissions with frequency hopping
WO2019200608A1 (en) Techniques and apparatuses for numerology signaling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20914689

Country of ref document: EP

Kind code of ref document: A1